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Abstract

Control of Grid-Connected Photovoltaic Systems Using Fractional Order Operators

by

Hadi Malek, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

This work presents a new control strategy using fractional order operators in three-

phase grid-connected photovoltaic generation systems with unity power factor for any situ-

ation of solar radiation. The modeling of the space vector pulse width modulation inverter

and fractional order control strategy using Park’s transformation are proposed. The system

is able to compensate harmonic components and reactive power generated by the loads

connected to the system. A fractional order extremum seeking control and “Bode’s ideal

cut-off extremum seeking control” are proposed to control the power between the grid and

photovoltaic system, to achieve the maximum power point operation. Simulation results are

presented to validate the proposed methodology for grid-connected photovoltaic generation

systems. The simulation results and theoretical analysis indicate that the proposed control

strategy improves the efficiency of the system by reducing the total harmonic distortion of

the injected current to the grid and increases the robustness of the system against uncertain-

ties. Additionally, the proposed maximum power point tracking algorithms provide more

robustness and faster convergence under environmental variations than other maximum

power point trackers.

(159 pages)
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Public Abstract

Control of Grid-Connected Photovoltaic Systems Using Fractional Order Operators

by

Hadi Malek, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

This work presents a new peak seeking strategy for maximum power point operation

using fractional order operators in the three-phase grid-connected photovoltaic systems.

Moreover, fractional order controllers have been implemented in the voltage and current

control loops. The simulation results and theoretical analysis indicate that the proposed

fractional order control strategy improves the efficiency of the system by reducing the to-

tal harmonic distortion of the injected current to the grid and increases the robustness of

the system against uncertainties. Additionally, the proposed maximum power point track-

ing algorithms provide more robustness and faster convergence speed under environmental

variations than other maximum power point trackers.
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Chapter 1

Introduction

1.1 Solar Energy: An Alternative Energy Resource

At present, the total energy consumption in the world is fourteen tera-watts (TW) at

any given moment, and this consumption is estimated to be about two times higher by

2050 [1]. To meet this demand, all forms of energy need to be increased rapidly in the

coming years. The use of traditional energy resources such as fossils fuel is not justifiable,

due to its pollution and greenhouse gas emissions.

For this reason, there has been rapid development of renewable energy technologies to

meet the future energy demand and creates a sustainable free pollution energy economy.

Among the various ways of harvesting energy from mother nature, solar energy has become

one of the dominant forms due to its availability. According to recent data, the annual

energy reaching the earth’s surface from the sun is larger than all forms of traditional

energy resources that have ever been available, or will ever be available, from all of the

non-renewable sources on the earth including oil, coal, natural gas, and nuclear power [2].

Solar energy currently provides only a quarter of a percent of the planet electricity

supply; however, this industry is growing at a staggering speed as photovoltaic (PV) panels

have the advantage of being almost maintenance and pollution free.

In the past few decades, price and efficiency were two disincentive factors for the growth

of PV panels in power generation applications. For instance, the price per watt of crystalline

silicon PV modules was 76.67 USD in 1977 compared to 3.00 USD in 2005. More recently,

due to the mass production, a further decline has been seen in the price of PV modules.

In 2013 the price per watt of similar PV modules was 0.74 USD [3]. Since the price of

PV panels is the major contributor in the cost of the whole system, the decrease in price
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of PV panels has lead power generation companies to focus on this cheap, pollution-free,

maintenance-free, and innovative solution.

From an efficiency point of view, as shown in Fig. 1.1, solar cell efficiencies (measured

by using the ratio of electrical output power to the total light energy covers a cell) vary

from 6% to around 40% [4]. Using high efficiency cells is not always economically justifiable

because of the production cost. Energy conversion efficiencies for commercially available

solar cells are around 14 to 19%.

In recent years, solar energy demand has grown consistently due to the following factors:

• Increasing efficiency of solar cells,

• Manufacturing technology improvement, and

• Economies of scale.

PV panels can be used either offline or online. In offline applications, PV panels supply

local loads which can be residential or commercial. In online applications, these modules

not only supply local loads, but also are connected to the utility grid. In this case, the

system would be called “grid-connected PV system.” Recently, grid-connected PV system

installation is increasing tremendously in many countries. Around 75% of the total PV

systems installed in the world are grid-connected [5]. In the future, this penetration rate

will become larger because of the economical advantages of these types of renewable energy

systems.

Generally, one of the challenges of grid-connected renewable energy systems, including

solar grid-connected systems, is their compatibility with grid utility because of their different

output frequencies. This fact brings up the question of how to incorporate them into

a standard utility grid. To solve this issue, these systems have to employ some sort of

interface which makes them able to convert their output frequency and inject synchronized

power into the grid.

Since the output of PV panels are direct current (in the case of grid-connected PV

systems), the interface is typically a DC-AC converter (inverter) which inverts the DC
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Fig. 1.1: Energy conversion efficiency in some PV cell manufacturers.

output current that comes from the PV arrays into a synchronized sinusoidal waveform as

shown in Fig. 1.2 [6].

Another challenge is the way of power extraction from sun and is mostly related to

the nature of PV arrays. Each PV module is a nonlinear system that its output power is

influenced by solar irradiation and weather conditions. To match the nonlinear output of

PV modules with the load for all atmospheric conditions, a maximum power point tracking

(MPPT) technique is usually implemented and applied to a grid-connected system to always

find and track the maximum power point of the PV panel. The MPPT algorithm is applied

to the power conversion stage to adjust the operating point of the system.

Therefore, each grid-connected PV system has to perform two essential functions [7]:

• Extract maximum power output from PV arrays, and

• Inject an almost harmonic free sinusoidal current into the grid.
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Fig. 1.2: General schematic of grid-connected PV system.

There are numerous ways of injecting synchronized power from PV modules into the

utility grid. In each of these approaches, the MPPT and inverters have been implemented

with different techniques. In the next section, different structures and topologies for grid-

connected inverters will be reviewed and discussed.

1.2 Grid-Connected PV System Topologies

1.2.1 Classification of Inverter Structures

One classification for grid-connected inverters is based on their internal topology. As

can be seen in Fig. 1.3, grid-connected inverters for PV panel application are divided into

the following categories:

• Current Source Inverter (CSI), or

• Voltage Source Inverter (VSI).

The standard voltage source inverter or current source inverter are the trivial choices

to provide single stage DC-AC conversion. Figure 1.3(a) illustrates the standard voltage

source inverter topology. The VSI is fed from a DC-link capacitor which is connected in

parallel with PV panels. Figure 1.3(b) presents the topology of a standard current source

inverter [8]. The inverter is fed from a large DC-link inductor.
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Fig. 1.3: Different topologies of grid-connected PV systems: (a) current source inverter,
and (b) voltage source inverter.

1.2.2 Classification of Inverter Configurations

Generally, there are several classifications for inverter configurations with respect to

the number of power stages. According to this classification, all the configurations can be

divided into three classes [6, 8–12]:

• Single-stage inverters,

• Dual-stage inverters, or

• Multi-stage inverters.

For single-stage inverters, the maximum power point tracking and control loops (current

and voltage control loops) are handled all in one stage (Fig. 1.4(a)). For dual-stage inverters,

the maximum power point tracking is handled by additional DC-DC converter in between

the PV panels and inverter, and control loops are applied to the inverter (Fig. 1.4(b)). For

multi-stage inverters, a DC-DC converter takes care of the maximum power point tracking

control of each string and one control inverter handles the control loops (Fig. 1.4(c)) [6].

Despite these classifications for grid connected PV systems, for commercial applications

there are four acceptable configurations [6]:

• Central plant inverter,

• Multiple string DC-DC converter,
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Fig. 1.4: Different configurations of inverters: (a) single-stage inverter, (b) dual-stage in-
verter, and (c) multi-stage inverter.
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• Multiple string inverter, or

• Module integrated inverter.

The central plant inverter configuration as shown in Fig. 1.5(a) consists of a large

capacity inverter which is interfaced between the PV modules and utility grid to convert

the output DC to AC power [6]. The PV modules are divided into series connections (called

strings) and the series strings are connected in parallel. The strings produce sufficiently

high voltage, and the parallel connections increase the output power level.

As can be seen in Fig. 1.5(b), the multiple string DC-DC converter employs an ad-

ditional DC-DC converter between each string and the common DC link which feeds the

inverter [6].

Figure 1.5(c) illustrates the multiple string inverter configuration which includes one

inverter for each string of PV modules [6]. The outputs of these inverters are fed directly

into the utility grid.

In module integrated inverters, as shown in Fig. 1.5(d), each PV module has its own

inverter which is synchronized with the utility grid.

There are some advantages and disadvantages in using each of these configurations.

As mentioned earlier, since the efficiency of commercial PV modules is not high (< 20%),

extracting and delivering the most achievable power to the utility grid is one of the most

important factors in grid-connected PV systems. To reach this goal, the inverter (converter)

is designed to achieve high power conversion efficiency.

Additionally, the inverter (converter) cost per watt is as important as efficiency of the

inverter (converter) because these two factors (efficiency and manufacturing cost) directly

influence final price of the generated power.

Typically, a single-stage (central plant) inverter has higher efficiency, lower cost, and

higher reliability, since the chance of component failure is lower (with respect to other

configurations with higher number of components). However, this configuration requires

higher DC voltage in order to provide voltage/var control [13]. Also, it has been indicated
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Fig. 1.5: Different commercial configurations of grid-connected PV systems: (a) central
plant inverter, (b) multiple string DC-DC converter, (c) multiple string inverter, and (d)
module integrated inverter.
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that eliminating a DC-DC converter stage reduces the total cost of grid-connected PV

systems [14] and makes this option more attractive on the market.

The other feature which affects the design structure of grid-connected PV systems is

the use of a single-phase or a three-phase system. From the inverter structure point of view,

in high-power applications, using a three-phase system has the following advantages [6]:

• Decreasing the stresses on the inverter switches,

• Reducing the size and ratings of reactive components,

• Increasing the frequency of output current which reduces the size of output filter, and

• Creating a uniform distribution of losses.

Therefore, a three-phase single-stage grid-connected PV system has been considered

in this work (Fig. 1.6). Inverter interfacing PV module(s) with the grid involves different

requirements and standards. In the next section, these topics will be discussed.

1.3 Grid-Connected PV Standards and Demands

As the capacity of PV systems is growing significantly, the impact of PV modules on

utility grids cannot be ignored. Grid-connected PV systems can cause problems on the grid,

such as injecting more harmonics or reducing the stability level or margin by exciting the

resonant mode of the power system [15]. This problem can be severe when a large scale PV

module is connected to the grid. Current harmonics produce voltage distortions, current

distortions, and cause unsatisfactory operation of power systems.

Therefore, harmonic mitigation plays an essential role in grid-connected PV system.

To both increase the capacity of PV arrays and maintain power quality, it is necessary to

comply with some requirements such as harmonic compensation [16].

The IEEE Standard [17], which was introduced in 1981 and revised in 2003, provides

direction on dealing with harmonics produced by static power converters and nonlinear

loads. This standard helps to prevent harmonics from negatively affecting the utility grid.
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Fig. 1.6: A grid-connected PV system scheme.
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To design a grid-connected PV system, in addition to grid standards, other demands

and constraints is preferably required. These constraints can be divided into the following

three categories:

• Demands defined by the grid,

• Demands defined by the PV modules, and

• Demands defined by customers.

1.3.1 Demands Defined by the Grid

Since the output of any grid-tie inverter is eventually connected to a utility grid, the

standards given by the utility companies must be obeyed. These standards deal with power

quality, detection of islanding operation, grounding, etc. For instance, the negative pole of

the PV panels must be grounded.

Typically, grid-connected PV systems do not control and observe the voltage of the

utility grid. Therefore, the inverter must respond to any unusual grid condition in a certain

amount of time (depend on the voltage level) in order to prevent islanding. The maximum

allowable response time for a grid-tie inverter to cut the energy, in the situation of occurring

an event in the grid, are listed in Table 1.1 [18].

In this table, Vnom is the RMS nominal voltage of the grid at the point of common

coupling (PCC).

Also, according to these standards (IEC61727 and IEEE929), the allowable injected

DC current to the grid has to be less than 0.5% of the rated inverter output current into the

Table 1.1: Maximum trip time for grid-connected systems.

Voltage Maximum time to cut the injected energy

V < 50%Vnom 0.1s

50%Vnom ≤V< 85%Vnom 2.0s

85%Vnom ≤V< 110%Vnom Continuous operation

110%Vnom ≤V< 135%Vnom 2.0s

135%Vnom ≤V 0.05s
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utility grid under any operating condition [18]. The IEEE [17] and the IEC [11] standards

define these requirements on the maximum allowable amount of injected DC current into

the grid to avoid saturation of the distribution transformers [9].

Moreover, if the grid frequency deviates outside of a specified range, the inverter must

stop injecting power to the grid within a specified time. The acceptable operating frequency

and trip time limit for North America have been defined in IEEE929. According to this

standard, the frequency operating range is between 59.3 − 60.5Hz, and the inverter has

to cease to energize the grid within 6 cycles (0.1s) in the case of detecting out of range

frequencies on the utility grid. [18].

Beside these requirements, it is desirable to have a low level of injected current har-

monics into the grid. The allowable current distortion that converter can inject into the

grid is given in Table 1.2 [18].

Power factor is another constraint that should be considered when designing an inverter.

The inverter should have a power factor greater than 0.85 when the output of inverter is

greater than 10% of the rated output power and it should be greater than 0.9 if the output

of inverter is greater than 50% of the rated output power [18].

Some of the key points of these standards are listed in Table 1.3 [19].

1.3.2 Demands Defined by the Photovoltaic Module(s)

As mentioned before, to extract the maximum power from each PV module, implemen-

tation of MPPT algorithm is highly required in all PV systems. The maximum allowable

Table 1.2: Distortion limitation.

Odd harmonic order h THD of odd harmonics THD of even harmonics

THD 5% 25% of odd harmonic limit

3rd - 9th < 4.0% 25% of odd harmonic limit

11th - 15th < 2.0% 25% of odd harmonic limit

17th - 21st < 1.5% 25% of odd harmonic limit

23rd - 33rd < 0.6% 25% of odd harmonic limit

>33rd < 0.3% 25% of odd harmonic limit
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Table 1.3: IEEE and IEC standards.

Issue IEC61727 IEEE1547

Nominal power 10kW 30kW

Maximum current THD 5% 5%

Power factor at 0.90 0.90
50% of rated power

Voltage range for 85% − 110% 88% − 110%
Nominal operation (196V-121V) (97V-121V)

Frequency range 50± 1Hz 59.3Hz - 60.5Hz

DC current injection < 1%Iout < 0.5%Iout

voltage ripple in the output terminal of PV panel is given as [20]

V̂ =

√

2(KPV − 1)PMPP

3αVMPP + β
= 2

√
√
√
√

(KPV − 1)PMPP

d2ppv
dv2pv

, (1.1)

where V̂ is the maximum amplitude of desired voltage ripples, PMPP and UMPP are the

power and voltage at the maximum power point, α and β are the coefficients of second order

polynomial which is used for the curve fitting of the behavior of current versus voltage

(iPV = αV 2
PV + βVPV + γ), and KPV (utilization ratio) is the average generated power

divided by the theoretical maximum power point.

According to (1.1), in order to obtain a utilization ratio of 98%, the amplitude of the

ripple voltage is required to be lower than 8.5% of the MPP voltage [20]. For example, in

a PV module with a maximum power point voltage of 35V , the voltage ripple should not

exceed 3.0V (amplitude), in order to have a utilization ratio of 98%.

1.3.3 Demands Defined by the Operator

As discussed before, output voltage and power of a PV system are influenced by solar

irradiation and ambient temperature. Since these two parameters vary in a very wide range,

from the operator’s point of view, a grid-connected PV system is required to have a high

efficiency over a wide range of output voltage and output power.

Figure 1.7 shows the average irradiation range during a normal year in Utah, USA
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[21]. Delivering a high efficiency conversion in such a wide range of variations is highly

desirable in the grid-connected PV systems. Furthermore, a grid-connected PV system

must be highly reliable and have a long operational lifetime [22].

1.4 Literature Review

This research focuses on a three-phase single-stage grid-connected PV system, as de-

picted in Fig. 1.6 [23]. In this system, a DC-AC inverter has been interfaced between the

PV modules and utility grid. The inverter operates in the current controlled mode to ensure

a high-power factor is achieved. An inductor output filter is employed to reduce the current

ripples due to the switching operation.

Typically, a three-phase Voltage Source Inverter (VSI), in most applications and espe-

cially in the grid-connected application, requires a fast dynamic response and high perfor-

mance current controller to meet the standard requirements. Consequently, the preliminary

design objectives are to simultaneously maximize the closed-loop controller bandwidth to

achieve a fast transient response and minimize the steady state tracking error. These ob-

jectives must be balanced with ensuring that the system is stable and robust and can

maintain the standard requirements in the presence of system parameter variations, mea-

surement noises and uncertainties. All the VSI current control techniques discussed in the

literature are analyzed for advantages and disadvantages to satisfy these objectives [24,25].

Various control strategies have been proposed on grid-connected PV systems. Although

these control strategies can achieve the same goals, their performances are quite different.

Three major controllers have been widely investigated over the last few decades: hysteresis

regulators, linear PI regulators and predictive dead-beat regulators [25–27].

The advantages of hysteresis controllers are their simplicity, fast dynamic response,

and robustness. The major drawback of this type of controller is an uneven and random

switching frequency pattern, due to the variation of current reference or DC-link voltage,

which makes the filtering of output waveform quite expensive. Moreover, it results in

additional stresses on the switching devices [26, 28, 29]. Although there are a number of

active researches to improve the hysteresis current control technique [30–32], but applying
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Fig. 1.7: Solar radiation data manual for Salt Lake City.
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the variable frequency noises into the utility grid is not recommended because it can trigger

unpredictable resonances in the grid utility [26].

The other control strategy which has been applied to the grid-connected system is the

model predictive control (MPC). The advantages of predictive dead-beat control are fast

dynamic response and accurate reference tracking. However, this controller has a model-

based regulator and therefore it is quite sensitive to parameter variations, uncertainties,

inaccuracies and delays [26,28,33,34].

In several research studies, proportional-integral (PI) controllers are employed to con-

trol the AC side currents [25, 26, 35–40]. In these control schemes, the DC-link voltage is

controlled by a voltage control loop, where a PI controller acts on the DC voltage error to

generate references for the AC current in the stationary (abc or dq) or synchronous (dq)

frames. PI current regulators ensure that a clean, in phase AC current feeds the grid [29].

Since the reference signals for the current controllers in this scheme are sinusoidal, a PI

controller implemented in standard way under a stationary frame is not able to adequately

track these references, and this results in steady-state error due to the limited controller

gain at the frequency of interest [41]. In contrast, since usually a PI controller can guarantee

zero tracking error on constant signals, if a PI controller is implemented in the dq reference

frame, without any additional provisions, will be able to track the DC reference and the

tracking error will be zero [26].

The other method to control the voltage and current in a three-phase inverter is using

a Proportional Resonant (PR) regulator in the stationary frame, which is the equivalent

form of a PI regulator in the synchronous frame [26].

Since PI controller has been largely used in the grid-connected PV systems, this con-

troller will be benchmarked for this research to compare with the fractional order controllers.

Fractional order controllers, which use fractional order operators in their structures, pro-

vides more robustness and more degree of freedom compared to the integer order controllers.

Since solar radiation and ambient temperature variations have a fractional order dy-

namics [42], and because some sub-components of PV systems (for instance, storage devices)
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have shown fractionality in their dynamics [43], fractional order controllers are more com-

patible with the nature of these types of systems. This compatibility will improve the

performance and efficiency of power conversion.

In the last decade, the generalized form of PI and PID controllers, fractional order PI

(FO-PI) and fractional order PID (FO-PID) controllers, have been investigated widely in

various practical systems and have shown better performance especially in the transient

states [36, 44–47]. Although fractional order controllers have been successfully applied to

other fields of science (from modeling to control aspects), there is limited amount of research

efforts on the applications of these controllers in the power electronics systems.

Several research studies present some alternative methods for the control of power

electronic buck converters applying fractional order control [48, 49]. The controller design

methods are given, and simulations and experimental step responses are presented in order

to show the performance of the controlled system and the flexibility and feasibility of this

methods.

In other studies, a new control strategy is proposed for the variable speed operation

of wind turbines with PMSG/full power converter topology, based on fractional order con-

trollers [50, 51]. The simulation results show that the proposed fractional order control

strategy improves the performance of disturbance attenuation and system robustness.

A fractional order proportional integral derivative (FO-PID) controller is investigated

for a three-level inverter called multi-neutral point (MNP) [52]. This paper claims that the

FO-PID controller has a good dynamic response along with an excellent start-up response.

The experimental results validate the performance and robustness of the FO-PID controller.

Another study deals with the study and implementation of a multi-level inverter si-

multaneously controlled by Modulated Hysteresis Current Control (MHCC) and Fractional

Order PID (FO-PID) controllers [53]. The operation described in this work effectively

produces a suitable waveform for the grid voltage.

1.5 Objectives of This Dissertation Research

The theme in this dissertation is to demonstrate the advantages of fractional order
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operators in the control loops and peak power point tracking of a grid-connected PV system

with both theoretical analysis and simulation studies.

In summery, the two main objectives of this dissertation are:

• To improve the MPPT algorithm in a three-phase grid-connected PV system using

fractional operators, and

• To improve the performance of a three-phase grid-connected PV system using frac-

tional order controllers.

Two types of fractional order controllers, FO-PI and FO-[PI], is applied to a three-phase

grid-connected PV system model and their performances is compared with a traditional

integer order PI controller.

In addition, the fractional order extremum seeking control is proposed and its capability

to track the peak power point is compared with the integer order extremum seeking con-

trol. Furthermore, the stability of fractional order extremum seeking control is investigated

analytically.

Moreover, using Bode’s Ideal cut-off filter, the BICO extremum seeking control is pro-

posed and its performance will be compared to the integer order extremum seeking control.

The stability and robustness of this novel MPPT algorithm are studied.

1.6 Dissertation Organization

This dissertation consists of six chapters, with the first chapter introducing the impor-

tance of solar energy. This topic followed by reviewing different type of grid-connected PV

system topologies and grid-connected system standards. The literature review and objective

of this dissertation are presented in this chapter.

Chapter 2 presents the mathematical definition of fractional order operators and frac-

tional order systems. The time response and frequency response analysis of this class of

systems has been introduced. Some useful properties of fractional order operators and

controllers, which will be used in the further analysis, are breifly reviewed. Moreover, an
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analytical approach for tuning integer order PID and PI as the most popular controllers in

power electronic systems is derived. Furthermore, a tuning method for fractional order PI

and fractional order [PI] is proposed.

In Chapter 3, the mathematical modeling of a three-phase grid-connected PV system

as the benchmark for this research will be derived. This topic is followed by introduction of

some fundamental transformations which are used in analysis of three-phase grid-connected

system. The advantages and disadvantages of different drive algorithms for a three-phase

system are identified and eventually a general mathematical model, which is acceptable as

a case study is introduced.

Chapter 4 presents the importance of maximum power point trackers in the PV systems

and then identifies the reasons for choosing extremum seeking control as the maximum power

point algorithm in this dissertation. The structure of extremum seeking control is presented

in this chapter and then by introducing Bode’s ideal cut-off filter, this filter is applied to the

extremum seeking structure and the advantages of new scheme are analyzed. This topic is

followed by introducing fractional order extremum seeking control and its stability analysis.

In Chapter 5, the PI, FO-PI, and FO-[PI] controllers are tuned for the mathematical

model of current control loop and voltage control loop of the designed grid-connected PV

system, using the proposed tuning methods. Using PLECS/MATLAB, the performance

of these three controllers is compared and advantages of fractional order controllers are

presented.

Chapter 6 presents the summary of the dissertation and conclusion of this research

work as well as the future works.
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Chapter 2

Fractional Order Calculus

2.1 Fractional Order Derivative and Integral

In recent years, the fractional order paradigm has been applied to many different engi-

neering disciplines, including signal processing, control engineering, and many other fields

such as biology and neuroscience. Fractional operators are the generalization of integration

and differentiation of integer order calculus that allow us to present more accurate descrip-

tions of real systems which includes a combination of multi-disciplinary field of engineering.

What makes the fractional order system interesting is the fact that all the real dynamic

systems have certain degree of fractionality. But in many cases, this fractionality is not

strong enough to affect the behavior of the system, and therefore this behavior can be

described by an approximated integer order differential equation [54].

There are some special functions which play an important role in the fractional order

calculus. In the following section these functions will be introduced.

2.1.1 Gamma Function

The Gamma function is one of the most essential building blocks of fractional order

calculus. This function is defined as

Γ(n) =

∫ ∞

0
tn−1e−tdt. (2.1)

This function is the general form of factorial function n! = n × (n − 1) × ... × 1 when

n ∈ R.
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2.1.2 Mittag-Leffler Function

Another function which plays an essential role in fractional order calculus is the Mittag-

Leffler function. This function has the similar fundamental role of the exponential function

in integer order calculus.

Eα,β =

∞∑

k=0

zk

Γ(αk + β)
R(α) > 0,R(β) > 0 (2.2)

When β = 1, one parameter Mittag-Leffler function is obtained.

Eα,1 = Eα =

∞∑

k=0

zk

Γ(αk + 1)
R(α) > 0 (2.3)

In the following, some special cases of the Mittag-Leffler function are introduced [55].

E1,1(z) = ez

E0,1(z) =
1

1−z

E2,1(z) = cosh(
√
z)

E2,1(−z2) = cos(z)

E0.5,1(z) = ez
2

erfc(−z)

(2.4)

Figure 2.1 presents the difference between the Mittag-Leffler function and an exponen-

tial function in the range of [−1, 1].

2.2 Fractional Order Integral and Derivative

2.2.1 Grunwald-Letnikov Fractional Order Integral and Derivative

For any real continuous function, f(t), the αth order Grunwald-Letnikov derivative

is [56]

aD
α
t f(t) = lim

h→0
h−α

[
t−a
h

]

∑

j=0

(−1)j






α

j




 f(t− jh), (2.5)
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Fig. 2.1: Mittag-Leffler function vs. exponential function.

where [x] means the integer part of x, a and t are the upper and lower limits of the derivative,

and






α

j




 =

α!

j!(α − j)!
=

Γ(α+ 1)

Γ(j + 1)Γ(α − j + 1)
. (2.6)

An alternative definition of the Grunwald-Letnikov derivative is

aD
α
t f(t) =

n∑

k=0

f (k)(0+)tk−α

Γ(n+ 1− α)
+

1

Γ(n+ 1− α)

∫ t

0

f (n+1)(τ)

(t− τ)α−n
dτ n ≤ α < n+ 1. (2.7)

2.2.2 Reimann-Liouville Fractional Order Integral and Derivative

The Reimann-Liouville integral of order α for function f(t) and for α ∈ R
+ is expressed

by [57]

aI
α
t f(t) =a D−α

t f(t) =
1

Γ(−α)

∫ t

a

f(τ)

(t− τ)α+1
dτ. (2.8)
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The Reimann-Liouville derivative of order α for f(t) is expressed by

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

α

f(τ)

(t− τ)α−n+1
dτ, (2.9)

where n − 1 ≤ α < n and n ∈ N. In the special case where f(t) is causal and 0 < α < 1,

the fractional order integral (2.8) can be rewritten as

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, (2.10)

and in this case the fractional order derivative can be rewritten as

0D
α
t f(t) =

1

Γ(n− α)

d

dt

∫ t

α

f(τ)

(t− τ)α
dτ. (2.11)

2.2.3 Caputo Fractional Order Derivative

The Caputo derivative is obtained by reformatting the Reimann-Liouville definition.

The advantage of using the Caputo definition is that the initial conditions of the fractional

order differential equations are in the same form as the initial conditions of integer order

differential equations [57]

aD
α
t f(t) =

1

Γ(n− α)

∫ t

α

f (n)(τ)

(t− τ)α−n+1
dτ, (2.12)

where n − 1 ≤ α < n. If the initial conditions for Reimann-Liouville and Caputo are

homogenous, these two definitions are equivalent. In general, the relationship between

these two definitions is

RL
a Dα

t f(t) =
C
a Dα

t f(t) +

n−1∑

k=0

(t− a)k−α

Γ(k − α+ 1)
f (k)(a), (2.13)

where RLD and CD are Reimann-Leiouville and Caputo derivatives, respectively.



24

2.3 Laplace Transform of Fractional Order Operators

Similar to integer order calculus, Laplace transform is an important tool to solve the

fractional order differential equations. The Laplace transform of f(t) is defined by

F (s) =

∫ ∞

0
e−stf(t)dt. (2.14)

The Laplace transform of a function, f(t), exists if, when t → ∞, the function does

not grow faster than an exponential function. In the mathematical form

∃M,T ; eαt ‖ f(t) ‖6 M ∀t > T. (2.15)

The Laplace transform of an integer order derivative is expressed as

L{f (n)(t)} = snF (s)−
n−1∑

k=0

sn−k−1f (k)(0) = snF (s)−
n−1∑

k=0

skf (n−k−1)(0). (2.16)

The Laplace transform of fractional order Riemann-Liouville derivative is

L{0Dα
t f(t)} = sαF (s)−

n−1∑

k=0

sk0D
α−k−1
t f(t)

∣
∣
∣
t=0

n− 1 ≤ α < n. (2.17)

The Laplace transformation of Caputo derivative is

L{0Dα
t f(t)} = sαF (s)−

n−1∑

k=0

sα−k−1f (n)(t)
∣
∣
∣
t=0

n− 1 ≤ α < n. (2.18)

Under zero initial condition, the Laplace transform of fractional order derivatives of

Grunwald-Letnikov, Riemann-Liouville, and Caputo are equal to

L{0Dα
t f(t)} = sαF (s). (2.19)

An explanatory table of fractional order Laplace transformation has been presented in

Oberhrttinger and Baddi [58].
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Some of the important properties of fractional derivatives and integral are expressed

in this section.

Property 1:

According to Fig. 2.2, from the geometrical point of view, fractional order integral of

f(t) for fixed t is the shadow of this function on (g, f) wall, where, g scales f with the

following equation [59]

gt(τ) =
1

Γ(α+ 1)

{
tα − (t− τ)α

}
. (2.20)

Property 2:

According to the “short memory principal” of fractional order derivatives [47], if

t > a+ L,

aD
α
t f(t) ≃t−L Dα

t f(t), (2.21)

where L is the memory length. This principle means the fractional order derivative depends

on mainly the “recent past” values of f(t). The associated estimated error has the following

upper bound

|aDα
t f(t)−t−L Dα

t f(t)| ≤
ML−α

Γ(1− α)
∀a+ L ≤ t ≤ T, (2.22)

where M is the upper bound of f(t) in the interval of [a, T ].

Property 3:

If f(t) is an analytical function of t, then 0D
α
t f(t) is an analytical function of t and

α [56].

Property 4:

Fractional order derivatives and integrals are the general form of integer order deriva-

tives and integrals. Therefore, if the order of fractional order operators becomes integer,

the result will be the same as integer order operators. In the special case, zero’th order

fractional order derivative and integral result in the original function [56].
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Fig. 2.2: Geometrical interpretation of fractional order integral.

Property 5:

Fractional order integral and derivative are linear operators, meaning for all constants

a and b [47]

0D
α
t (af(t) + bg(t)) = a0D

α
t f(t) + b0D

α
t g(t). (2.23)

Property 6:

The integer order and fractional order derivatives of f(t) are interchangeable in the

Caputo definition [60]

∀m ∈ Z
+; C

a D
α
t

(C

a
Dm

t f(t)
)

=C
a Dm

t

(C

a
Dα

t

)

=C
a Dα+m

t f(t), (2.24)

if n− 1 ≤ α < n ∈ N, then ∀n < k < m; f (k)(0) = 0. In the Riemann-Liouville case, (2.24)

holds if ∀k < m; f (k)(0) = 0.

For the mixed integral and derivative operators in the case of Riemann-Liouville,
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aD
α
t

(

a
Iβt f(t)

)

=







aD
α−β
t f(t), α > β,

aI
β−α
t f(t), α ≤ β.

(2.25)

Property 7:

In the fractional order integral case,

aI
α
t

(

a
Iβt f(t)

)

=a Iβt

(

a
Iαt f(t)

)

=a Iα+β
t f(t). (2.26)

But, generally, in the fractional order derivative,

aD
α
t

(

a
Dβ

t f(t)
)

6=a Dβ
t

(

a
Dα

t f(t)
)

6=a Dα+β
t f(t). (2.27)

In the case of the Riemann-Liouville derivative, if α = β or ∀k < max(n,m) −

1; f (k)(0) = 0, where n− 1 ≤ α < n and m− 1 ≤ β < m, then,

aD
α
t

(

a
Dβ

t f(t)
)

=a Dβ
t

(

a
Dα

t f(t)
)

=a Dα+β
t f(t). (2.28)

In the case of the Caputo derivative, if m = n and f (n)(0) = f (m)(0) = 0, then (2.28)

holds [60].

Property 8:

If f(t) and g(t) and all their derivatives are continuous in [a, t], the Leibniz’s rule for

fractional order derivatives is

aD
α
t

(
f(t)g(t)

)
=

∞∑

k=0






r

k




 f (k)(t)aD

α−k
t g(t). (2.29)

Property 9:

The Caputo and Riemann-Liouville derivatives of a constant result differently. The

Caputo derivative of a constant is zero, C
a D

α
t K = 0, where K is a constant. However, the

Riemann-Liouville derivative of a constant is



28

aD
α
t K =

K(t− a)α

Γ(1− α)
, (2.30)

and if a → −∞ then, aD
α
t K = 0.

2.4 Linear Fractional Order Dynamic Systems

All the phenomena have some degree of fractionality, which sometimes is dominant

and sometimes is negligible. Therefore, in some cases, an integer order differential equation

(IODE) is the closest and the best approximated model to a system with fractional order

dynamics. A general fractional order differential equation is expressed by

anD
αny(t) +an−1

Dαn−1y(t) + ...+a0 D
α0y(t)

= bmDβmu(t) +bm−1
Dβm−1u(t) + ...+b0 D

β0u(t), (2.31)

where ak and bk are constants (k ∈ Z
+), y(t) and u(t) are output and input of the sys-

tem respectively, and αk and βk are arbitrary real or rational numbers, and Dα and Dβ

can be the Grunwald-Letnikov, Riemann-Liouville, or Caputo derivatives. Using Laplace

transformation, the corresponding transfer function is

G(s) =
bmsβm + bm−1s

βm−1 + ...+ b0s
β0

ansαn + an−1sαn−1 + ...+ a0sα0
. (2.32)

In the particular case of commensurate order system, where ∀k ∈ Z
+;αk = kα, βk = kα

and 0 < α < 1, the transfer function is described by

G(s) =

∑m
k=0 bks

αk

∑n
k=0 aks

αk
, (2.33)

which can be considered as a pseudo-rational function of λ = sα,

G(λ) =

∑m
k=0 bkλ

k

∑n
k=0 akλ

k
. (2.34)
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In this case, the transfer function can be expanded to the following form

G(s) = K0

[ n∑

k=1

Ak

sα + pk

]

, (2.35)

where pk’s are the transfer function poles (which are assumed to be simple). Therefore, the

analytical solution of the fractional order differential equation in this specific case is [58]

y(t) = K0

n∑

k=1

Akt
αEα,α(−pkt

α), (2.36)

where Eα,α(.) is the Mittag-Leffler function.

2.5 Stability of Linear Fractional Order System

A general way to study the stability of a system is to consider the solution(s) of its

differential equation(s). An alternative way in the case of integer order LTI system is to

study the root locations of its characteristic polynomial. In the case of fractional order LTI

systems, (2.32), the characteristic polynomial of the system is

ans
αn + an−1s

αn−1 + ...+ a0s
α0 , (2.37)

which is a multi-valued function of complex variable s. (2.37) has an infinite number of

roots, but only a finite number of these roots are placed on the principal sheet of the

Riemann surface. Among all of these roots, those which are in the secondary sheets of the

Riemann surface are related to solutions that go to zero when t → ∞ without oscillation.

The roots which are placed in the principal sheet of the Riemann surface are responsible

for the transient response dynamics [47].

2.5.1 Stability of LTI Fractional Order System

LTI irrational fractional order transfer function with G(s) = Z(s)
P (s) , is bounded input-

bounded output (BIBO) stable if and only if [56]
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R(s) ≥ 0,∃M ; |G(s)| ≤ M ∀s. (2.38)

This condition is satisfied if

• All the roots of characteristic polynomial of G(s) which is located on principal Rie-

mann sheet have negative real parts, and

• All the roots of characteristic polynomial of G(s) which is located on principal Rie-

mann sheet do not satisfy Z(s) = 0.

In the case of commensurate order system (2.33), the stability condition is described

by [56]

|arg(pk)| > α
π

2
∀pk, (2.39)

where pk’s are the roots of the characteristic polynomial of pseudo-rational function of

(2.33). The stability region of this type of systems is depicted in Fig. 2.3.

In the special case of integer order transfer function where α = 1, the stability condition

of (2.39), turns out to be

|arg(pk)| >
π

2
, (2.40)

which means to satisfy the stability condition, the argument of all the poles of integer order

transfer function need to be greater than π
2 or in other words, these poles should be located

on the left side of jω axis on complex plane.

2.5.2 Time Domain Analysis of LTI Fractional Order System

The transient response of an LTI fractional order system can be described according

to Table 2.1 [47]. In this table, PSRS stands for Principal Sheet of the Riemann Surface.

According to the discussion in the previous sections, in the case of commensurate order

system, where its step response is
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Fig. 2.3: Stability region of commensurate order systems.

Table 2.1: Transient response of LTI fractional order systems.

Place of the roots Response

No roots on PSRS Monotonically decreasing

Real negative roots on PSRS Monotonically decreasing

Roots with negative real part on PSRS Damped oscillation

Imaginary roots on PSRS Oscillation with constant amplitude

Roots with positive real part on PSRS Oscillation with increasing amplitude

Real positive roots on PSRS Monotonically increasing
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y(t) =
n∑

k=0

Akt
αEα,α+1(pkt

α), (2.41)

the transient responses for different α’s are depicted in Fig. 2.4 [47].

2.6 Fractional Order Nonlinear Systems

A fractional order non-commensurate nonlinear system is described by [56]







0D
αk
t x̄(t) = fk(x̄(t), t)

x̄k(0) = ck, k = 1, 2, ..., n,
(2.42)

where x̄(t) = [x1, x2, ..., xk], and ck’s are initial conditions. The equilibrium points of (2.42)

are the solution of fk(x̄(t), t) = 0.

Generally, stability analysis of nonlinear systems is more complex than LTI systems

because some of the phenomena like limit-cycle do not exist in the linear systems and other

than that there are different types of stability in the nonlinear systems. For instance, in

these systems, asymptotically stable, globally stable, exponentially stable has been defined

which are not applicable to the linear systems.

Asymptotical Stability of Fractional Order Nonlinear Systems:

If there is a positive real α so that

∀‖x(t)‖ with t ≤ t0,∃N(x(t)) ; ∀t ≤ t0, ‖x(t)‖ ≤ Nt−α, (2.43)

trajectory x(t) = 0 of the system (2.42) is t−α asymptotically stable [56]. The fact that the

components of x(t) slowly decay toward zero following t−q envelope sometimes called long

memory systems.

Theorem: According to the stability theorem for nonlinear fractional order systems

[61], the equilibrium points of (2.42) are asymptotically stable for α if all the eigenvalues of

the Jacobian matrix, J̄ = ∂f̄
∂x̄ , evaluated at the equilibrium E∗, satisfy the condition
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Fig. 2.4: Transient response of commensurate order systems with order α.
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|arg(eig(J̄ ))| > α
π

2
. (2.44)

2.7 Fractional Order PID Controllers

PID (proportional integral derivative) controller is one of the most popular and attrac-

tive controllers for engineers. This industrial popularity comes from the following reasons:

• PID controllers have a simple structure, which makes them easily implemented;

• The performance robustness in these type of controllers is acceptable in a wide range

of applications; and

• There are many well established PID tuning methods.

For the same reasons, PID controller is attractive for researchers in the applied frac-

tional calculus field and in the past decade there has been an increasing amount of researches

on this topic.

The fractional order PID (PIαDβ) was proposed in 1999 as a generalized form of the

PID controller by replacing the integer order integrator and derivative with fractional order

integrator, Iα, and derivative, Dβ. The transfer function of the proposed PID is [44]

C(s) =
U(s)

E(s)
= Kp +Kis

−α +Kds
β 0 < α, β < 1, (2.45)

where Kp,Ki, and Kd are proportional, integral, and derivative gains. It is expected that

PIαDβ would enhance the system control performance due to more tuning knobs which

are introduced in this controller. As seen in Fig. 2.5, PIαDβ covers an area in instead of

limited number of points which shows a huge degree of freedom in the fractional order PID

compared to integer order PID.

Some typical fractional order PID controllers are fractional order PI [47]

C(s) = Kp +
Ki

sα
, (2.46)
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Fig. 2.5: Integer order PID family vs. fractional order PID family in α− β plane.

fractional order PD controller [62]

C(s) = Kp +Kds
α, (2.47)

fractional order [PI] controller [62]

C(s) =
(

Kp +
Ki

s

)λ
. (2.48)

As pointed in Chen, in the case of closed-loop control systems using PID controller,

there are four situations [63]:

• IO (integer order) plant with IO controller,

• IO plant with FO (fractional order) controller,

• FO plant with IO controller, and

• FO plant with FO controller.

In practical applications, using the fractional order controllers are more common, be-

cause the plant model may have already been determined as an integer order form. Among

all introduced fractional order controllers, fractional order PI and fractional order [PI] have

been applied to industrial applications. In this work, these two types of controllers will
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be applied to a three-phase grid-connected PV system and the advantages of using these

controllers in the grid-connected system will be explored. The implementation of fractional

order derivative and integral has been discussed in different literature [64–66].

2.8 Controller Tuning Procedure for First Order Plus Delay System

In the integer order world, first order plus time delay model is widely used to model

systems with S-shaped reaction curve. Its generalized form is the model with a single

fractional pole replacing integer order pole, which is believed to better characterize the

reaction curve.

The general from of a fractional order pole plus delay system is

P (s) =
K

Tsα + 1
e−Ls, α ∈ (0, 1], (2.49)

where T,L, and K are constants. In this section, the goal is to define a process to tune

integer order PID, fractional order PI, and fractional order [PI], for the fractional order

plant of (2.49). The transfer function of the three controllers are given, respectively, as

follows:

C1(s) = Kp +
Ki

s
+Kds, (2.50)

C2(s) = Kp

(

1 +
Ki

sλ

)

, (2.51)

C3(s) =
(

Kp +
Ki

s

)λ
, (2.52)

where Kp, Ki, Kd, and λ ∈ (0, 1) are positive real number.

There are many different approaches for PID tuning. A tuning method for integer

order PID and also fractional order PI and [PI] controllers for time delayed system with

integer order pole was proposed in Luo et al. [67]. This tuning method has been extended

for time delayed system with fractional order pole in Malek et al. [54]. In this method, it

has been assumed that the gain crossover frequency, ωc, and phase margin, φm, are given

and design constraints for tuning the controller are presented as follows [67]:
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• Phase margin constraint

Arg[G(jωc)] = Arg[C(jωc)P (jωc)] = ∠C(jωc) + ∠P (jωc) = −π + φM , (2.53)

where G(jω) is open-loop transfer function of the system, C(jω) is the controller

transfer function, and P (jω) is the plant transfer function.

• Gain cross-over frequency constraint

| G(jωc) |=| C(jωc)P (jωc) |dB=| C(jωc) |dB | P (jωc) |dB= 0. (2.54)

• Constraint for robustness to loop gain variations

This constraint demands that the phase is flat around the gain crossover frequency, ωc.

It means that the derivative of open-loop phase around the gain cross-over frequency

is zero, i.e.,

d(Arg[G(jω)])

dω
|ω=ωc= 0. (2.55)

2.9 Tuning of the Controllers

In this section, based on the constraints introduced previously, the tuning process of the

PID controller (2.50), fractional PI controller (2.51), and fractional [PI] controller (2.52),

for the considered plant with constant time delay and fractional order pole (2.49) will be

presented.

2.9.1 Integer Order PID Controller Design

The open-loop transfer function of plant (2.49) and PID controller (2.50) is

G1(s) = C1(s)P (s) =
(

Kp +
Ki

s
+Kds

)( K

Tsα + 1
e−Ls

)

, (2.56)

where T, α and L are known and Kp,Ki, and Kd should be designed.



38

The phase of the open-loop system at the gain cross-over frequency is

Arg[G1(jωc)] = tan−1
(Kdω

2
c −Ki

ωcKp

)

− tan−1
(B

A

)

− Lωc, (2.57)

where A = 1 + Tωα
c cos(απ/2) and B = Tωα

c sin(απ/2). According to the first design

constraint (2.53), the phase of considered system with integer order PID controller at the

gain cross-over frequency (ωc) is

tan−1
(Kdω

2
c −Ki

ωcKp

)

− tan−1
(B

A

)

|ω=ωc −Lωc = −π + φM , (2.58)

so

Kdω
2
c −Ki

ωcKp
= tan

(

tan−1
(B

A

)

+ φM + Lωc − π
)

. (2.59)

The open-loop gain at the gain cross-over frequency is

| G1(jωc) |=
K
√

K2
p + (Kdωc − Ki

ωc
)2

√
A2 +B2

. (2.60)

According to the second design constraint (2.54),

√

K2
p + (Kdωc − Ki

ωc
)2

√
A2 +B2

=
1

K
. (2.61)

Based on the third constraint (2.55), the robustness to the loop gain variations can be

obtained by forcing the phase plot to be flat around the gain cross-over frequency which

is achievable if derivative of phase with respect to frequency at the cross-over frequency is

equal to zero. Then

αTωα−1
c [A sin(απ2 )−B cos(απ2 )]

A2 +B2
+ L− Kp(Kdω

2
c +Ki)

(Kpωc)2 + (Kdω2
c −Ki)2

= 0. (2.62)
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From (2.59), (2.61), and (2.62) the gain of PID controller (Kp, Ki and Kd) can be deter-

mined.

Kp =

√

A2 +B2

K2(1 +D2
1)
, (2.63)

where D1 = tan
[

tan−1
(
B
A

)

+ Lωc + φm − π
]

,

Ki =
1

2

[

E1Kpω
2
c (1 +D2

1)−D1Kpωc

]

, (2.64)

where E1 =
αTωα−1

c

A2+B2

(

A sin(απ/2) −B cos(απ/2)
)

+ L, and

Kd =
Ki +D1Kpωc

ωc
. (2.65)

2.9.2 Fractional Order PI Controller Design

The open-loop transfer function of the controlled system with the fractional order PI

(FO-PI) controller is

G2(s) = C2(s)P (s) = Kp

(

1 +
Ki

sλ

)( K

Tsα + 1
e−Ls

)

, (2.66)

where T, α and L are known and Kp,Ki, and λ should be designed in the controller design

process.

The FO-PI controller can be expressed as

C2(s) = Kp

(

1 +
Ki

sλ

)

= Kp

(

1 +
Ki

(jω)λ

)

= Kp

(

1 +
Kiω

−λ

jλ

)

. (2.67)

Since j = eπ/2, then jλ = eλπ/2 = cos(λπ/2) + j sin(λπ/2), therefore,

C2(s) = Kp

(

1 +
Kiω

−λ

cos(λπ/2) + j sin(λπ/2)

)

. (2.68)

Then open-loop phase at the gain cross-over frequency is

Arg[G2(jωc)] = − tan−1
[ Kiω

−λ
c sin(λπ2 )

1 +Kiω
−λ
c cos(λπ2 )

]

− tan−1
(B

A

)

− Lωc, (2.69)
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where A = 1 + Tωα
c cos(απ/2) and B = Tωα

c sin(απ/2).

Based on the first design constraint (2.53),

tan−1
[ Kiω

−λ
c sin(λπ2 )

1 +Kiω
−λ
c cos(λπ2 )

]

− tan−1
(B

A

)

− Lωc = −π + φM , (2.70)

or

Kiω
−λ
c sin(λπ2 )

1 +Kiω
−λ
c cos(λπ2 )

= tan
(

tan−1
(B

A

)

+ Lωc + φM

)

. (2.71)

Then, relationship between Ki and λ can be established as

Ki =
−D2

ω−λ
c sin(λπ2 ) + ω−λ

c cos(λπ2 )
, (2.72)

where D2 = tan
[
tan−1(B/A) + φM + L

]
.

Open-loop gain using FO-PI controller at the cross-over frequency is

| G2(jωc) |=
K.Kp

√

(1 +Kiω
−λ
c cos(λπ2 ))2 + (Kiω

−λ
c sin(λπ2 ))2

√
A2 +B2

. (2.73)

According to the second constraint (2.54),

K.Kp

√

(1 +Kiω−λ cos(λπ2 ))2 + (Kiω−λ sin(λπ2 ))2
√
A2 +B2

= 1, (2.74)

or

Kp =

√

A2 +B2

K2(1 +Kiω
−λ
c cos(λπ2 ))2 + (Kiω

−λ
c sin(λπ2 ))2

. (2.75)

According to the third constraint (2.55),

Kiω
λ−1 sin(λπ2 )

ω2λ + 2Kiωλ cos(λπ2 ) +K2
i

|ω=ωc −E2 = 0, (2.76)

where E2 =
αTωα−1

c

A2+B2

(

A sin(απ/2) −B cos(απ/2)
)

+ L.
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Then, an equation for Ki versus λ can be established as follows:

Ki =
−F2 ±

√

F 2
2 − 4E2

2ω
−2λ
c

2E2ω
−2λ
c

, (2.77)

where F2 = 2E2ω
−λ
c cos(λπ/2) − λω−λ−1

c sin(λπ/2).

Obviously, based on (2.72), (2.75), and (2.76), λ, Ki, and Kp can be determined by

different approaches like fminsearch function in MATLAB or by the graphical method.

In the graphical method, (2.72) and (2.76) are plotted on the same axes, and from the

intersection point, Ki and λ are obtained and then Kp is determined by (2.75).

2.9.3 Fractional Order [PI] Controller Design

The open-loop transfer function of controlled system with the fractional order [PI]

controller is

G3(jω) = C3(s)P (S) =
(

Kp +
Ki

s

)λ( K

Tsα + 1
e−Ls

)

. (2.78)

Open-loop phase at the gain cross-over frequency is

Arg[G3(jωc)] = −λ tan−1
( Ki

Kpωc

)

− tan−1
(B

A

)

− Lωc. (2.79)

According to the design rules, the open-loop phase satisfies the following relationship:

−λ tan−1
( Ki

Kpωc

)

− tan−1
(B

A

)

|ω=ωc −Lωc = −π + φM , (2.80)

so,

Ki

Kpωc
= D3, (2.81)

where D3 = tan[(π − φm − tan−1(B(ωc)/A(ωc))− Lωc)/λ].

Open-loop gain at the gain cross-over frequency should satisfy the second constraint

(2.54),

K[K2
p + (Ki

ωc
)2]

λ
2

√
A2 +B2

= 1. (2.82)
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Based on the third constraint (2.55), for the robustness to loop gain variations

λKiKp

(Kpωc)2 +K2
i

= E3, (2.83)

where E3 =
αTωα−1

c

A2+B2

(

A sin(απ2 )−B cos(απ2 )
)

+ L.

From (2.80), (2.82), and (2.83),

Ki =

√

E3

λ
ω3D3(A2(ωc) +B2(ωc))

1

λ , (2.84)

Ki = ωc

√

(A2(ωc) +B2(ωc))
1

λ [1− E3ωc

λD3
], (2.85)

and

Kp =

√

E3ωc(A2(ωc) +B2(ωc))
1

λ

λD3
. (2.86)

Ki and λ can be found graphically from (2.84) and (2.85), and then Kp is calculated

by (2.86) or alternatively, fminsearch command of MATLAB can be used to find Kp, Ki,

and λ of FO[PI] controller.

2.9.4 PI Controller Design

In the special case of integer order PI and first order plant with delay, the PI gains are

obtained by

Kp =

√

1 + T 2ω2
c

K2(1 +D2
1)
, (2.87)

and

Ki =
1

2

[

E1Kpω
2
c (1 +D2

1)−D1Kpωc

]

. (2.88)

2.10 Summary

In this chapter, some basic definitions plus a general overview of fractional order cal-

culus have been presented. As mentioned, fractional order systems behave differently from
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integer order systems, therefore, some critical features like stability definition in linear and

nonlinear fractional order systems have been reviewed. Lastly, a class of PID controllers,

fractional order PI, have been introduced and the tuning approach for these controllers plus

integer order PID and PI has been discussed.
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Chapter 3

Three-Phase Grid-Connected Inverters

3.1 Mathematical Model of Three-Phase Grid Connected VSI

Analytical models are essential tools to be used in the dynamic performance, robust-

ness, and stability analysis of different control strategies. To investigate these features on a

three-phase grid-connected PV system controlled by fractional order controllers, the math-

ematical model of the system needs to be derived. The system to be modeled is depicted

in Fig. 3.1. As shown in this figure, this system has five following building blocks:

• PV array,

• DC-AC inverter,

• Three-phase decoupling transformations,

• Synchronization, and

• Inverter driver.

In this section, the operation and role of each of these blocks will be described and its

mathematical model will be derived.

3.1.1 Photovoltaic Cell and Array Modeling

Typically, a PV cell is a simple P-N junction diode which converts solar irradiation into

electricity [68]. Figure 3.2 illustrates a simple equivalent circuit diagram of a PV cell [19].

This model consists of a current source which represents the generated current from PV cell,

a diode in parallel with the current source, a shunt resistance, and a series resistance [69].

In this model, the diode current is
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Fig. 3.1: Three-phase synchronous frame current controller scheme.

Fig. 3.2: Equivalent circuit of a PV cell and its characteristics.
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ID = Is
[
eα(νpv+Rsipv) − 1

]
, (3.1)

where α = q
AkTC

, Is is saturation current, υpv and ipv are the voltage and current of the PV

cell output. Other constants and their definitions are shown in Table 3.1 [69].

The output current, generated by the PV cell, can be calculated by applying Kirchhoff’s

law (KCL),

ipv = IL − Is
[
eα(υpv+Rsipv) − 1

]
− υpv +Rsipv

Rsh
. (3.2)

In (3.2), the current source output, IL, is related to the solar irradiation and temper-

ature by

iL =
G

1000

[
Isc + ki(TC − Tref )

]
, (3.3)

where G is the solar irradiation, Isc is the short circuit current, ki is the short circuit

current coefficient, TC is the cell’s operating temperature (in K), and Tref is the reference

temperature of the cell. The cell’s saturation current, Is, in (3.2) is related to the operating

and reference temperatures as follows:

Is = IRS

( TC

Tref

)3
e

qEg
Ak

(
1

Tref
− 1

TC

)

, (3.4)

where IRS is reverse saturation current in the reference temperature and solar irradiation,

and Eg is the bandgap energy of the PV semiconductor [68].

Table 3.1: Parameter values of the considered PV model.

TC 298C Operation Temperature

Isc 3.2A Short Circuit Current

A 1− 5 Ideality Factor

k 1.3807 × 10−23 Boltzman’s Constant

q 1.6022 × 10−19C Electron Charge

R 0.01Ω Resistance
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Since the output voltage and current of one PV cell are very low, a combination of series

and parallel cells are connected together in order to deliver higher current and voltage. These

cells are encapsulated with a transparent material to protect them from harsh environmental

conditions and form a PV module. In order to obtain a higher voltage and current for higher

power applications, a number of PV modules need to be connected to form a PV array. If

a PV array contains Ns series PV cells and Np parallel cells, the array output current, ipv

will be

ipv = NpIL −NpIs
[
e
α
(

υpv
Ns

+
Rsipv
Np

)

− 1
]
− Np

Rsh

(υpv
Ns

+
Rsipv
Np

)
. (3.5)

3.1.2 Modeling of Inverter and its Output Filter

By considering the inductor currents and capacitor voltage ([ia, ib, ic, υdc = υpv]) as

the state variables of the three-phase grid-connected PV system of Fig. 3.3, the state-space

representation of this system will be [68]







i̇a = −R
L ia − 1

Lea +
υpv
3L

(
2Sa − Sb − Sc

)

i̇b = −R
L ib − 1

Leb +
υpv
3L

(
− Sa + 2Sb − Sc

)

i̇c = −R
L ic − 1

Lec +
υpv
3L

(
− Sa − Sb + 2Sc

)
,

(3.6)

where, Sa, Sb, and Sc are the switching signals related to each phase of three-phase VSI,

and are defined as

Si(i = a, b, c) =







1 if STOP
i : on, SBOTTOM

i : off

0 if STOP
i : off, SBOTTOM

i : on
. (3.7)

On the other hand, by applying KCL to the DC link capacitor node, the state-space

equation for capacitor voltage is obtained

υ̇pv =
1

C
(ipv − idc). (3.8)
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Fig. 3.3: Three-phase grid-connected scheme.

Assuming the switching losses and conduction losses of the inverter to be negligible,

the input current of the inverter is equal to the output current,

idc = iaSa + ibSb + icSc, (3.9)

which yields,

υ̇pv =
1

C
ipv −

1

C
(iaSa + ibSb + icSc). (3.10)

Therefore, the state-space representation of a loss-less three-phase grid-connected PV

system can be presented by







i̇a = −R
L ia − 1

Lea +
υpv
3L

(
2Sa − Sb − Sc

)

i̇b = −R
L ib − 1

Leb +
υpv
3L

(
− Sa + 2Sb − Sc

)

i̇c = −R
L ic − 1

Lec +
υpv
3L

(
− Sa − Sb + 2Sc

)

υ̇pv = 1
C ipv − 1

C (iaSa + ibSb + icSc).

(3.11)

As can be seen in (3.11), this system is a nonlinear time-varying system due to the

switching functions (Sa, Sb, and Sc) and diode current (ipv). In the next section, some useful

transformations and strategies, which can be employed to ease the control process of this

nonlinear time varying system, will be discussed.
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3.2 Fundamental Transformations in Three-Phase Systems

To simplify the control design process of a three-phase grid-connected system, two

fundamental transformations are used to reduce the dimensions of the mathematical model

of the system and decouple the differential equations. These transformations are [26]:

• αβ transformation, and

• Park transformation (or dq transformation).

3.2.1 αβ Transformation

αβ transformation reduces the dimensions of the state-space representation of three-

phase systems. For instance, under certain conditions which will be defined later, by ap-

plying this transformation, the current loop model for the benchmark three-phase grid-

connected system which is describing by three differential equations (one equation per

phase) turns to a model with two differential equations. The αβγ transformation is de-

fined as follows [26]:









xα

xβ

xγ









=

√

2

3









1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2









︸ ︷︷ ︸

Tαβγ









xa

xb

xc









, (3.12)

where xa, xb, and xc can be output currents, voltages, or powers of a three-phase system

(Fig. 3.4).

From the geometrical point of view, in this transformation the three-dimensional Carte-

sian coordinate with the following three basis vectors,









1

0

0









,









0

1

0









,









0

0

1









, (3.13)

changes to another Cartesian coordinate with different base vectors as follows:
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







1

−1
2

−1
2









,









0
√
3
2

−
√
3
2









,









1√
2

1√
2

1√
2









, (3.14)

where these new basis vectors are orthonormal (which means the inverse of αβγ transfor-

mation matrix is equal to its transpose). Also, this transformation is “power invariant”

which means 〈iabcυabc〉 = 〈iαβγυαβγ〉 where 〈.〉 is scalar product of vectors [26].

In the symmetrical three-phase system, where xa + xb + xc = 0, and xγ = 0, which

means the three-phase system can be represented by two vectors, xα and xβ. On the other

word, in the symmetrical three-phase system, γ axis is orthogonal to the αβ plane and has

no projection on this plane. In this case, the αβγ transformation is called αβ transformation

and is defined as follows [26]:






xα

xβ




 =

√

2

3






1 −1
2 −1

2

0
√
3
2 −

√
3
2






︸ ︷︷ ︸

Tαβ









xa

xb

xc









. (3.15)

The inverse of αβ transformation is









xa

xb

xc









=

√

2

3









1 0

−1
2

√
3
2

−1
2

√
3
2









︸ ︷︷ ︸

TT
αβ






xα

xβ




 . (3.16)

Therefore, by using αβ transformation, a balanced three-phase system can be mapped

into a stationary two-phase system under symmetrical condition.

3.2.2 Park’s (dq) Transformation

Park’s transformation converts a three-phase, three-dimensional system to a two- di-

mensional system as αβ transformation does. The difference between the αβ transformation
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and Park’s transformation is that in the αβ transformation, the resulted coordinate is sta-

tionary, but in Park’s transformation, this coordinate rotates with a fixed frequency.

Park’s transformation consists of two rotary axes, d and q, which rotate around the

static αβ axis with a constant angular frequency, ω as shown in Fig. 3.4 [26].

Therefore, in the three-phase systems, the synchronous frame operates by two-stage

transformations. In the first step, the three-phase output vector (current or voltage) trans-

forms into the αβ stationary frame; and in the second step, the Park’s transformation

provides a rotating frame for the system.

Park’s transformation is defined by






xd

xq




 =






cos(θ) sin(θ)

− sin(θ) cos(θ)






︸ ︷︷ ︸

Tdq






xα

xβ




 , (3.17)

where θ = ωt and ω is the utility grid fundamental frequency in the grid-connected system

application. The equivalent complex form of (3.17) is [26]

~xdq = xd + jxq = ~xαβe
−jθ, (3.18)

where xdq = [xd, xq]
T and xαβ = [xα, xβ ]

T . Then xd is the real part and xq is the imag-

inary part of the Park’s transformation. Both transformation matrices, Tαβ and Tdq, are

invertible, therefore the Park’s transformation is invertible.






xα

xβ




 =






cos(θ) − sin(θ)

sin(θ) cos(θ)






︸ ︷︷ ︸

TT
dq






xd

xq




 (3.19)

With the same concept, the equivalent complex form of inverse Park’s transformation

is ~xαβ = ~xdqe
jθ. Since the result of Park’s transformation is two vectors, d and q, this

transformation is also called the dq transformation.
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(a) (b) (c)

Fig. 3.4: (a) Graphical representation of αβ transformation, (b) comparison between αβ
and Park’s transformation in Cartesian coordinate, and (c) graphical representation of
synchronous frame.

3.3 Mathematical Model of a Three-Phase Grid-Connected PV Systsem Using

dq Transformation

As discussed before in this dissertation, the synchronous frame has be chosen to be

implemented because of its advantages. In order to model the three-phase grid-connected

PV system in the synchronous frame, dq transformation is employed. Applying dq trans-

formation to (3.11), results a three-phase system in synchronous frame as follows:







İd = −R
L Id + ωIq − 1

LEd +
υpv
L Sd,

İq = −R
L Iq − ωId − 1

LEq +
υpv
L Sq,

υ̇pv =
1
C ipv − 1

C IdSd − 1
C IqSq.

(3.20)

where Ed and Eq are the direct and quadrature components of the grid voltage, and Id and

Iq are the direct and quadrature components of the output current of the inverter.

This system is a time invariant nonlinear system due to the switching terms, Sd and

Sq, and diode current, ipv. In this model, Sd and Sq are control inputs, and the output

variables are Id and υpv = υdc. It is desirable to have Iq = 0.

The active and reactive delivered powers to the grid are [70]







P = 3
2

(
EdId + EqIq

)
,

Q = 3
2

(
EdIq +EqId

)
.

(3.21)
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In order to write a set of linear dynamic equations for benchmark three-phase grid-

connected PV system, the total inductance of the grid and inverter output filter is added

together and modeled as an inductor L with equivalent series resistance (ESR) of R. Also,

the grid is considered to be balanced, which means ia + ib + ic = 0 and therefore iγ = 0.

By defining υd and υq as follows:

υd = υpvSd, υq = υpvSq, (3.22)

and if two nonlinear coupled terms, LωIq and LωId, are compensated by feeding-forward

these two terms into the current control loop (as shown in Fig. 3.1), then the current

equations of (3.20) can be rewritten as a linear time invariant equations,







İd = −R
L Id − 1

LEd +
υd
L ,

İq = −R
L Iq − 1

LEq +
υq
L ,

υ̇pv = 1
C ipv − 1

C IdSd − 1
C IqSq.

(3.23)

By decoupling the current and voltage equations, the transfer function for current

control loop will be

GAC(s) =
υd −Ed

Id
=

υq − Eq

Iq
=

1

sL+R
, (3.24)

where υd and υq are the direct and quadrature components of voltage, respectively.

DC bus dynamic transfer function can be obtained from the voltage equation of (3.23),

GDC(s) =
υdc
idc

=
υpv
ipv

= − 1

Cs
Mid(s), (3.25)

where Mid is the closed-loop transfer function of current control loop. GDC(s) describes

the variations of the inverter switching to the consequent variations of the output current.

3.4 Inverter Driver

Typically, there are several requirements for any inverter driver such as [71]:
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• Wide range of linear operations,

• Minimum number of switching to maintain low switching losses in power components,

• Minimum harmonic contents in voltage and current, and

• Operation in over-modulation region including square wave.

There are two general well-known PWM methods to drive the three-phase inverters:

• Carrier-based PWM (CB-PWM), and

• Space Vector Modulation (SVM).

Between these two methods, SVM generates less harmonic distortions in the output

current compared to CB-PWM. In addition, SVM increases the efficiency by reducing the

inverter losses. Furthermore, SVM offers more flexibility in its digital implementation [72].

For these reasons, SVM will be implemented in the simulations to drive the three-phase

inverter.

In the case of two-level three-phase converters, there are two switches in each leg and

they cannot be ON or OFF simultaneously because having both ON results in a short circuit

and having both OFF results in an open circuit. Therefore, two-level converters provide

eight possible switching states consisting of six active and two zero states [71]. According

to Fig. 3.5, states are numbered in binary format (0 for OFF and 1 for ON ) from 000 to

111 [26]. Each state is represented by a vector in a hexagon and has a dual with the same

amplitude but with opposite direction.

~V1 = −~V4

~V2 = −~V5

~V3 = −~V6

~V0 = ~V7

~V1 + ~V3 + ~V5 = 0

(3.26)

It can be seen in Fig. 3.6, that in one sampling interval, Ts, any output vector, ~V (t)

can be implemented by summation of other vectors [26].
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Fig. 3.5: Space vector modulation scheme.
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~V (t) =
t0
Ts

~V0 +
t1
Ts

~V1 + · · ·+ t7
Ts

~V7, (3.27)

where t0, t1, · · · , t7 are the turn on times for ~V0, ~V1, · · · , ~V7 and
∑7

k=0 tk = Ts. In Fig. 3.6,

δ1 =
t1
Ts
, δ2 =

t2
Ts

and δ3 =
t0
Ts
.

Therefore, any desired vector is implementable in SVM with infinite possibilities. In or-

der to reduce the ON/OFF time for switches, the output vector is decomposed by ON/OFF

sequences of projected vectors on the two nearest state vectors. The length of each projec-

tion determines the fraction of the modulation period that will be occupied by each output

vector. For instance, in area (I) (the area between V100 and V110), in one sampling interval,

the output vector ~V (t) can be expressed as

~V (t) =
t1
Ts

~V1 +
t2
Ts

~V2 +
t0
Ts

~V0 +
t7
Ts

~V7, (3.28)

where

Ts − t1 − t2 = t0 + t7 ≥ 0. (3.29)

If the length of output vector is assumed to be ~V = mE, then

m

sin(2π3 )
=

t1
Ts

1

sin(π3 − φ)
=

t2
Ts

1

sin(φ)
. (3.30)

Therefore,

t1
Ts

= 2m√
3
sin(π3 − ωt)

t2
Ts

= 2m√
3
sin(π3 )

t0 + t7 = Ts − t1 − t2.

(3.31)

These equations can be rewritten as [73]
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Fig. 3.6: Generating voltage reference vector by SVM.

t1
Ts

= 2m√
3
cos(ωt+ π

6 )

t2
Ts

= 2m√
3
cos(ωt+ 3π

2 )

t0 + t7 = Ts − t1 − t2.

(3.32)

Decomposition of ~V in different areas is shown in Table 3.2 [73].

ON/OFF time interval for non-zero vectors, ~V1, · · · , ~V6 are identical in all space vector

PWMs. The difference between SVMs comes from the distribution of t0 and t7.

To maintain sinusoidal output line to line voltage, the output voltage vector ~V must be

circular. Therefore, this trajectory is considered to be the inscribed circle of the hexagon

and the length of the output vector is

~V = mE =

√
3

2
E. (3.33)

3.5 Grid Synchronization

In the synchronous frame control method, the amplitude and phase of the grid voltage

needs to be known for the control system. These pieces of information are essential for the

current and voltage control loops in order to stabilize the system and force it to work at its

optimal point where the system will generate and deliver maximum power.
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Table 3.2: Space vector modulation timing.

SVM Timing

Area I (0 ≤ ωt ≤ pi
3 )

t1 =
√
3
2 mTs cos(ωt+

π
6 )

t2 =
√
3
2 mTs cos(ωt+

3π
2 )

t0 + t7 = Ts − t1 − t2

Area II (π3 ≤ ωt ≤ 2pi
3 )

t2 =
√
3
2 mTs cos(ωt+

11π
6 )

t3 =
√
3
2 mTs cos(ωt+

7π
6 )

t0 + t7 = Ts − t1 − t2

Area III (2π3 ≤ ωt ≤ π)

t3 =
√
3
2 mTs cos(ωt+

3π
2 )

t4 =
√
3
2 mTs cos(ωt+

5π
6 )

t0 + t7 = Ts − t1 − t2

Area IV (π ≤ ωt ≤ 4π
3 )

t4 =
√
3
2 mTs cos(ωt+

7π
6 )

t5 =
√
3
2 mTs cos(ωt+

π
2 )

t0 + t7 = Ts − t1 − t2

Area V (4π3 ≤ ωt ≤ 5π
3 )

t5 =
√
3
2 mTs cos(ωt+

6π
6 )

t6 =
√
3
2 mTs cos(ωt+

π
6 )

t0 + t7 = Ts − t1 − t2

Area V (5π3 ≤ ωt ≤ 2π)

t6 =
√
3
2 mTs cos(ωt+

π
2 )

t1 =
√
3
2 mTs cos(ωt+

11π
6 )

t0 + t7 = Ts − t1 − t2
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To obtain these vital pieces of information, a synchronization method should be em-

ployed to synchronize the inverter output and utility grid. There are various methods to

extract the phase information from a given signal. In the following some of these approaches

will be discussed.

3.5.1 Zero-Crossing Method

In the zero-crossing method, the phase angle of the grid is determined according to the

time difference between two zero-crossing points of the grid voltage. Since the zero-crossing

points are only updated at every half cycle of the utility voltage frequency, the dynamic

performance of this technique is low. Other than zero-crossing delay, an additional filtering

has to be applied in order to detect the fundamental frequency, which introduces extra

delay to the system. Filtering delay can be improved by using special high order predictive

filters without delay, but these filters add more complexity to the system. More details

regarding the concept and implementation of this synchronization technique can be found

in literature [18,74].

3.5.2 αβ and dq Filtering Algorithm

The grid phase angle can be obtained by filtering the grid voltage in stationary (αβ)

or synchronous (dq) frames.

Figure 3.7 shows the schematic of these methods of synchronization [74]. As can be seen,

the phase angle of the grid is extracted using filtering in either stationary or synchronous

frame. In stationary frame, the arc-tangent function is directly applied to the frame but in

synchronous frame, the dq signal must be transformed back into the stationary frame before

applying the arc-tangent function. The drawback of this method is the use of filtering, which

introduces a delay to the system, and therefore the calculated phase angle will lag the real

phase angle. More details regarding the concept and implementation of this synchronization

technique can be found in literature [18,74].
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Fig. 3.7: Synchronization method using αβ and dq frames.

3.5.3 Phase-Locked-Loop (PLL)

The third method of synchronization is the phase-locked-loop technique. A basic PLL

circuit often consists of three essential components: a phase detector, a loop filter, and a

Voltage Controlled Oscillator (VCO). Using a negative feedback loop, PLL minimizes the

phase and frequency errors between the input and output signals. The schematic of PLL is

depicted in Fig. 3.8.

This algorithm has better harmonic and disturbance rejection compared to zero-crossing

and αβ-dq transformation, but during grid unbalance conditions, this algorithm requires

Fig. 3.8: Phase-locked-loop scheme.
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further improvements. More details regarding the concept and implementation of this syn-

chronization technique can be found in literature [74].

Because of its advantages and wide practical usage, PLL will be employed in the sim-

ulation of control system.

3.6 Summary

As mentioned earlier, a three-phase grid-connected PV system includes PV array, DC-

AC inverter, and an output filter. Mathematical model of these components and some other

essential sub-components like grid synchronization method and inverter driver have been

introduced in this chapter. In addition, in order to simplify the control design process, some

well-known transformations for three-phase systems which can reduce the dimensions of the

system under a certain condition have been introduced.
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Chapter 4

Maximum Power Point Tracking

4.1 Introduction

The current-voltage behavior of solar panels nonlinearly depends on the solar irradi-

ation intensity and environmental temperature. As shown in Fig. 4.1, an increase in sun

irradiation level and decrease in ambient temperature result in a higher output current and

voltage [69,75]. Consequently, the environmental condition variations change the maximum

output power of solar panels.

There have been various models proposed for PV cells, and among all of these models

one of the simplest (which characterizes the I-V behavior of a PV cell), uses a diode in par-

allel with a current source [69]. Mathematical equations for this model have been discussed

in Chapter 3. A model of a PV cell and its electrical characteristic is depicted in Fig. 3.2.

As mentioned before, in the grid-connected PV system, the DC link capacitor is charged

by solar array, and then power is switched out from the capacitor using the power converter

(inverter) and the extracted power is injected to the utility grid. To ensure that solar arrays

deliver maximum available power to the converter (inverter), an interface device between

converter (inverter) and PV panels needs to be employed to control the flow of power.

Fig. 4.1: Nonlinear behavior of voltage-current and power-current of PV panels for various
sun irradiations.
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Among various MPPT algorithms, convergence speed is one of the most important features

which improves the efficiency and also increases the stability of the system [76–83]. Brunton

et al. have pointed out [69]: “As irradiance decreases rapidly, the I-V curve shrinks and the

MPV and MPI decrease. If the MPPT algorithm does not track fast enough, the control

current or voltage will fall off the I-V curve.”

Consequently, any improvement in the rise time of MPPT improves the reliability of

the system, increases the power extraction and results higher efficiency of the whole system.

4.2 Maximum Power Point Tracking Techniques

The peak power point tracking techniques vary in many aspects, such as: simplicity,

convergence speed, digital or analog implementation, sensors required, cost, range of effec-

tiveness, etc. The MPPT implementation topology greatly depends on the end-users’ knowl-

edge. In analog world, short current (SC), open voltage (OV), and temperature methods

(temperature gradient (TG) and temperature parametric equation (TP)) are good options

for MPPT, otherwise with digital circuits that require the use of micro-controllers, pertur-

bation and observation (P&O), IC (incremental conductance), and temperature methods

are easy to implement [84]. Figure 4.2 and Table 4.1 present the comparison among different

MPPT methods considering the costs of sensors, micro-controller, and the additional power

components. In this table, A means absence, L low, M medium, and H is high [84].

Currently, the most popular and the workhorse MPPT algorithm is perturb and observe

(P&O), because of its balance between performance and simplicity. However, this method

suffers from the lack of speed and adaptability which are necessary for tracking the fast

transient under varying environmental conditions [69].

4.2.1 Perturb and Observe Method

As mentioned before, currently, the most popular MPPT method in the PV systems

is perturb and observe. In this method, a small perturbation is injected to the system and

if the output power increases, a perturbation with the same direction will be injected to
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Fig. 4.2: Comparison of the MPPT methods.

Table 4.1: Comparison of MPPT algorithms.

MPPT Algorithm Additional
Compo-
nents

Sensors Micro-
Controller

Total

CV A L A/L L

SC H M A/L M

OV H L/M A/L L/M

P&Oa A M L L/M

P&Ob A M L L/M

P&Oc A M M M

IC A M M M

TG A M/H M M/H

TP A H M/H H
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the system and if the output power decreases, the next injected perturbation will be in the

opposite direction. The scheme of P&O method is presented in Fig. 4.3.

The P&O algorithm requires few mathematical calculations which makes the imple-

mentation of this algorithm fairly simple. For this reason, P&O method is heavily used in

renewable energy systems. However, the P&O algorithm is not able to distinguish the differ-

ence between the system perturbations (e.g. voltage regulation variations or environmental

condition variations) and injected perturbation from P&O, and therefore it may make a

wrong adjustment as the result, especially in the presence of rapid system variations.

Moreover, in the steady state operation, the power oscillates around the maximum

power point, therefore the system can potentially jump to undesirable or even unstable

modes. This phenomena is another disadvantage of P&O method.

Recently, a new adaptive control scheme, called extremum seeking control, has been

developed [85]. In the next section, this method will be discussed and will be developed

by using fractional order operators.

4.2.2 Extremum Seeking Control

A new robust MPPT algorithm is the method of extremum seeking control (ESC),

which not only carries all P&O’s benefits like simplicity and performance but also amelio-

rates its weaknesses [69].

Figures 4.4 and 4.5 present the experimental results of PV system controls by P&O

and ESC MPPTs [69]. The power, current, and voltage are plotted versus time for ESC

and P&O algorithms as well as the actual maximum power.

The P&O and ESC methods oscillate closely around the real maximum power voltage,

as seen in the power versus time plot. Obviously, the ESC method rises to the MPP orders

of magnitude more rapidly than the P&O. As mentioned before, increasing the convergence

speed is an important feature for any MPPT algorithm. ESC MPPT has some advantages

from hardware implementation point of view. Brunton et al. have mentioned [69]: “The

ripple-based ES algorithm has good MPPT performance over a range of inverter capacitor
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Fig. 4.3: Scheme of Perturb and Observe maximum power point tracker.

Fig. 4.4: Comparison of current controlled P&O and ESC MPPT controller.
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Fig. 4.5: Comparison of voltage controlled P&O and ESC MPPT controller.

sizes. Typically, the choice of capacitor is expensive because it must be well character-

ized and large enough to maintain a small ripple. However, because the ES control signal

exploits the natural inverter ripple, a smaller capacitor allows the tracking of rapid irradi-

ance changes. Additionally, the ES algorithm may be built using analog components and

wrapped around an existing array inverter system with a voltage-control input. This may

influence inverter manufacturers to provide a voltage-control input.”

ESC method has been successfully applied to biochemical reactors [86, 87], ABS con-

trol in automotive brakes [88], variable timing engine operation [89], electro-mechanical

valves [90], axial compressors [91], mobile robots [92], mobile sensor networks [93, 94], op-

tical fiber amplifiers [95], and so on. A good survey of the literature on this topic prior to

1980 can be found in Sternby work [96] and a more recent overview can be found in Ariyur

and Krstic work [97]. Astrom and Wittenmark rated extremum seeking as one of the most

promising adaptive control methods [98].

Since extremum seeking control has better features and performance compared to P&O

which is the best known MPPT algorithm, in the following, the improvement of better than
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the best MPPT algorithm, which is ESC, has been investigated.

4.3 How Extremum Seeking Algorithm Works

As shown in Fig. 4.6, ESC employs a slow periodic perturbation signal, sin(ωt), which

is added to the estimated signal, θ̂ [85]. If the perturbation signal is slow enough, then the

plant appears as a static map, y = f(θ), and its dynamics do not interfere with the peak

seeking scheme. If θ̂ is on either side of θ∗, which is the optimal point, the perturbation

a sin(ωt) will create a periodic response of y which is either in phase or out of phase with

a sin(ωt). The high-pass filter eliminates the “DC component” of y. Thus, a sin(ωt) and

high-pass filter will be approximately two sinusoidal which are in phase if θ̂ < θ∗ or out of

phase if θ̂ > θ∗.

The integrator θ̂ = (γ/s)χ approximates the gradient update law which tunes θ̂ [85].

The general schematic of ESC is depicted in Fig. 4.6. In Fig. 4.7, output of ESC

algorithm has been illustrated when the operating point is moving from left side of optimal

point to the right side of optimal point on power vs. voltage curve. In this figure, x1 +

x0 sin(ω0t) is modulated input signal when the operating point is in the left side of peak

power point, x2+x0 sin(ω0t) is modulated signal when the operating point is in the maximum

power point and x3 + x0 sin(ω0t) is modulated output signal when the operating point is in

the right side of peak power point.

Fig. 4.6: Extremum seeking algorithm scheme.
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Fig. 4.7: Extremum seeking algorithm operation.

System of Fig. 4.6 can be mathematically described as follows:







y = f(θ̂ + a sin(ωt))

˙̂
θ = −γχ

χ = υ ∗ L−1{GLPF (s)}

υ =
[

y ∗ L−1{GHPF (s)}
]

sin(ωt)

, (4.1)

where ∗ is the convolution operator and L−1 is the inverse Laplace transform. The transfer

functions for GHPF andGLPF in the regular SISO ESC scheme are s/(s+ωh) and ωl/(s+ωl),

respectively [97]. This model will be used for stability analysis.

In the following sections, after introducing BICO filter, the advantages of using this

filter in the ESC algorithm, from the stability and robustness point of view, will be discussed.

4.4 Bode’s Ideal Cut-off (BICO) Filter

In this section, the filter which was strongly favored by Bode, as pointed out by Hartley

and Lorenzo [99], named Bode’s Ideal Cutoff Characteristic (BICO) filter is introduced. The
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general transfer function of a low-pass BICO filter is

GLP−BICO(s) =
k

(
s
ωc

+
√

1 +
(

s
ωc

)2
)r , r ∈ R

+. (4.2)

Its corresponding time response in a special case (ωc = 1rad/s) was found by Ober-

herringer and Baddi [58]. The time response in the general form for (4.2) is

gBICOLP
(t) = k

rJr(ωct)

ωct
, (4.3)

where Jr is the r-th order Bessel function.

By replacing s by 1
s , the high-pass BICO filter is obtained. Figure 4.8 compares the

frequency responses of high-pass BICO filter and regular first order high-pass filter ( s
s+ωc

)

with the same cutoff frequency of ωc = 10rad/s.

As can be seen in this figure, BICO filter has a sharp edge in its cutoff frequency.

This great feature causes almost no attenuation for frequencies higher than ωc and a large

attenuation in the lower frequencies. Therefore, the behavior of this filter is close to an

“Ideal” filter. This sharp edge feature presents in the low-pass BICO filter as well as shown

in Fig. 4.9.

By combining high-pass and low-pass BICO filters, the band-pass BICO filter with

sharp edges in both sides can be obtained.

4.4.1 Stability Analysis of Extremum Seeking Control Scheme

The stability analysis of ESC algorithm has been investigated in literature [85,100–102].

In all of these literature, traditional extremum seeking control with regular first order filters

has been considered.

According to the previous discussion, the nonlinear map in the ESC scheme is consid-

ered to be concave and has only one extremum point. Since, in the PV system application,

MPPT is employed to extract maximum amount of power from the PV panels, therefore,
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Fig. 4.8: Comparison of high-pass BICO and first order high-pass filters.
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extremum point in this case is maximum point (θ∗) which means ∂f(θ∗)
∂θ = 0 and, ∂2f(θ∗)

∂θ2 < 0.

According to Fig. 4.6, in the ESC algorithm, the output of nonlinear map is

y = f(θ̂ + a sin(ωt)), (4.4)

where a and ω are the amplitude and angular frequency of perturbation signal. Since the

perturbation signal is assumed to be small, the Taylor expansion of (4.4) can be written as

y = f(θ̂) +
df(θ̂)

dθ̂
a sin(ωt) +H.O.T., (4.5)

where θ̂ is the approximation of θ∗ and H.O.T. stands for higher order terms. By passing

y through a first order high-pass filter, the output signal will be

J ≃ L−1{ s

s+ ωh
} ∗ f(θ̂) + L−1{ s

s+ ωh
} ∗

{df(θ̂)

dθ̂
a sin(ωt)

}
. (4.6)

First order high-pass filter acts as a derivative operator in series with a low-pass filter

(s. 1
s+ωh

). By applying the derivative operator of the high-pass filter into (4.6),

J ≃ L−1{ 1

s+ ωh
} ∗ df(θ̂)

dt
+ L−1{ 1

s+ ωh
} ∗

{df(θ̂)

dθ̂dt
a sin(ωt)

}
. (4.7)

Multiplying the modulation signal, sin(ωt), to the outcome of high-pass filter gives

υ(t) ≃
[df(θ̂)

dt
sin(ωt) +

df(θ̂)

2dθ̂dt
a+

df(θ̂)

2dθ̂dt
a sin(ωt) cos(ωt)

]

∗ L−1{ 1

s + ωh
}. (4.8)

Passing the modulated signal through the low-pass filter ( ωl

s+ωl
) results,

χ(t) ≃
[df(θ̂)

dt
sin(ωt) +

df(θ̂)

2dθ̂dt
a+

df(θ̂)

2dθ̂dt
aω sin(ωt) cos(ωt)

]

∗ L−1{ 1

s+ ωh
} ∗ L−1{ ωl

s+ ωl
}.

(4.9)
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Under the assumptions that the amplitude of the sinusoidal perturbation is small and

the harmonic of high-pass filter is attenuated by low-pass filter, output of low-pass filter is

proportional to the gradient of the nonlinear map with respect to its input and time,

χ ≃
[a

2

df(θ̂)

dθ̂dt

]

∗ L−1{ ωl

s + ωl
}. (4.10)

The output estimated signal will be

θ̂ ≃
[a

2

df(θ̂)

dθ̂dt

]

∗ L−1{ ωl

s+ ωl
} ∗ L−1{γ

s
}, (4.11)

which is equal to

θ̂ ≃
[aγ

2

df(θ̂)

dθ̂

]

∗ L−1{ ωl

s+ ωl
}. (4.12)

Therefore in the neighborhood of the extremum point, the amplitude of output signal,

θ̂, is small, since the gradient is small. It can be seen that the amplitude of estimated signal

depends on γ and a.

4.4.2 Analysis of Averaged ESC Scheme

The averaging method is typically used to analyze the periodic steady state solutions

of weakly nonlinear systems. Since the amplitude of perturbation in the ESC scheme is

small, this system can be evaluated by its averaged model. The averaged form of a signal

x(t) is

x(t) =
1

T

∫ T

0
x(t)dt, (4.13)

where T = 2π
ω . Therefore, the averaged model of an ESC scheme is
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





θ̂ = θ

y = f(θ̂) = f(θ̂) = f(θ)

υ = a
2
df(θ)

dθdt

θ̂ = γa
2

df(θ̂)

dθ̂
∗ L−1{GLPF (s)}

. (4.14)

On the other hand, in the neighborhood of the extremum point, y(t) can be approxi-

mated as

y ≃ f(θ∗) +
df(θ)

dθ
|θ=θ∗ (θ − θ∗) +

1

2

d2f(θ)

dθ
|θ=θ∗ (θ − θ∗)2. (4.15)

If the error signal between the averaged point and the extremum point is defined by

θ̃ = θ − θ∗ and since df(θ)
dθ |θ=θ∗= 0, thus,

ỹ ≃ 1

2

d2f(θ)

dθ2
|θ=θ∗ θ̃2. (4.16)

By defining 1
2
d2f(θ)
dθ2

|θ=θ∗= K, the local value of the nonlinear map gradient will be

df(θ)
dθ |θ=θ∗= 2Kθ. Therefore, df(θ)

dθ̃
= 2Kθ̃. Substituting this relationship in (4.14) gives

θ̂ = (γaKθ̃) ∗ L−1{GLPF (s)}. (4.17)

Without loss of generality and by assuming that dK
dt is the output of a high-pass filter,

GHPF (s), with a cut-off frequency higher than the cut-off frequency of a low-pass filter,

GLPF (s), when its input signal is K, then the output of ESC scheme can be rewritten as

θ̂ =
(
γaθ∗K

)
L−1{GHPF (s)} ∗ L−1{GLPF (s)} ∗ L−1{1

s
}. (4.18)

This system can be considered as a feedback system as shown in Fig. 4.10. The loop

gain of this system depends on the demodulation gain, a, the integral gain, γ, and the

curvature of nonlinear map, K. This result completely matches with the results obtained

from other stability analysis methods [85,100–102].
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Fig. 4.10: Averaged BICO ESC scheme.

4.4.3 Stability Analysis of BICO ESC and Regular ESC

In order to compare the qualitative behavior of the averaged models of BICO MPPT

and regular SISO ESC, different stability analysis method can be chosen.

Before starting stability analysis, it is important to point out that the curvature con-

stant, K, is an uncertain parameter which depends on different factors like the PV panel

manufacturer and weather conditions. The range of variation for curvature constant is

K ∈ [−0.5,−5] [102].

According to Fig. 4.10, the characteristic polynomial of averaged ESC system is 1 +

aKγGLPF (s)GHPF (s). To analyze the behavior of this system, root locus analysis method

is employed. Since there is no command in MATLAB to plot BICO root-locus, this equation

has been solved for different values of aγ and the roots have been plotted in Fig. 4.11.

To compare the behavior of a regular SISO ESC with BICO ESC, the root-locus of

characteristic polynomial of ESC has been plotted with the same method instead of using

the “rlocus” command.

Figure 4.11 shows the comparison between the root-locus of averaged ESC using BICO

and regular first-order filters. In these plots, the constant gain is assumed to be aγ = 1

and cut-off frequency in both BICO and first-order filters is assumed to be ωc = 10rad/s.

Clearly, by using first-order filter in the averaged ESC scheme, for some values of K, system

has complex poles which cause an oscillatory behavior in the response of the system. On

the other hand, by using BICO filter, roots of the characteristic polynomial are always real
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for any K. Consequently, using a BICO filter allows higher values of gain which means

system can work not only in the wider range of environmental conditions but also it can

work with different PV manufacturers.

Besides the location of the poles, as can be seen in the figure, for the same value of

K, BICO ESC has farther poles with respect to the origin compared to the regular ESC.

Therefore, the bandwidth of the BICO ESC is higher than the regular ESC with similar

coefficients. Higher bandwidth means faster response for the BICO ESC.

Since the bandwidth of BICO is close to the bandwidth of the ideal filter, BICO ESC

becomes the fastest achievable MPPT algorithm.

4.4.4 BICO ESC Simulations Results

Figures 4.12 and 4.13 show the maximum power point of a PV panel with the defined

parameters in Table 3.1. As seen in these figures, environmental conditions and especially

variations in sun irradiation will change the nonlinear P-V curve of PV panels. Shadows,

cloudy or dusty weather, and temperature variations cause moving of the optimal operating

point in PV panels.

When temperature increases, the maximum output power of PV panels decreases and

vice versa. In Fig. 4.12 the variations of the optimal operating point by environmental tem-

perature variations from 20oC to 30oC is illustrated. As Fig. 4.13 presents, sun irradiation

variations causes a wide range of changed in the maximum output power.

To compare the proposed MPPT method, which is called BICO MPPT, with the ESC

MPPT, the working conditions of both algorithms have been considered to be similar. For

all simulations, the ambient temperature is 25oC and the irradiation is assumed to be

1000W/m2. The cut-off frequency of high-pass filter is ωh = 100rad/s and for low-pass

filter this frequency is ωl = 50rad/s. Under these conditions, from Fig. 4.12, the maximum

amount of power which can be extracted from a simulated PV panel is 48 Watts and

this peak power happens around 17 Volts. To implement the BICO MPPT, the discrete

approximation of this filter in MathWorks Inc’s website has been used.
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Fig. 4.13: P-V chart of considered PV model for different sun irradiation (temperature =
25oC).

Figure 4.14 shows the outputs of peak power seeking algorithms resulted from two

different MPPT methods and Fig. 4.15 represents the maximum voltage tracking in BICO

ESC and regular ESC algorithms. As expected and proved before, the BICO ESC converges

to the maximum power point two times faster than the regular ESC algorithm. Faster

convergence speed is due to the higher bandwidth of the averaged BICO system compared

to the regular ESC.

Figures 4.16 and 4.17 show the performance of the proposed MPPT compared to the

regular SISO ESC in the presence of white noise. As can be seen in these figures, in the

presence of a white noise (Noise power= 0.04), which is considered as the variations in the

nonlinear map behavior, K, BICO MPPT performs better than the ESC MPPT from noise

rejection and tracking point of view.

Another parameter which is considered in this simulations is the robustness of these

two algorithms against the system gain variations. Figure 4.18 illustrates the performance

of BICO and regular ESC MPPT to the gain variations. Clearly, the BICO MPPT can

tolerate higher gain variations without any oscillation but by increasing the gain of the

integrator in the regular ESC MPPT, it starts oscillating.



79

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

Time(s)

P
ow

er
(W

)

 

 

ESC MPPT
BICO MPPT

Fig. 4.14: Comparison of power tracking by BICO MPPT and ESC MPPT.
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Fig. 4.15: Comparison of voltage and current tracking by BICO MPPT and ESC MPPT.
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Fig. 4.16: Performance of BICO MPPT and ESC MPPT in the presence of a white noise
with PSD= 0.04W/Hz.
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Fig. 4.17: Voltage and current tracking of BICO MPPT and ESC MPPT in the presence
of a white noise with PSD= 0.04W/Hz.



81

0 2 4 6 8 10
−10

0

10

20

30

40

50

Time(s)

P
ow

er
(W

)

 

 

Gain = 30
Gain = 55
Gain = 75
Gain = 95

0 2 4 6 8 10
−10

0

10

20

30

40

50

Time(s)

P
ow

er
(W

)

 

 

Gain = 30
Gain = 55
Gain = 75

Fig. 4.18: Performance of BICO ESC and regular ESC to the loop-gain variation.
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ESC MPPT response can be improved by using fractional order integrator instead of

the integer order integrator in the ESC scheme. In the next section, the ESC scheme with

a fractional order integrator will be investigated.

4.5 Fractional Order Extremum Seeking Control

As mentioned before, ESC is an online adaptive optimization algorithm which drives

the process to its optimal operating point where the defined cost function is minimized or

maximized. This controller consists of three main components:

• The cost function which in this work is the output power of PV system,

• The gradient estimator to approximate the variation direction, and

• The optimizer which minimize (maximize) the cost function.

In the integer order perturbation based ESC of Fig. 4.19, the averaged linearized model

relating the optimized point θ∗ and the error signal θ̃ is [103]

θ̃

θ∗
=

1

1 + L(s)
, (4.19)

where θ̃ = θ − θ∗ and

L(s) =
γa2

2s

(

ejφ
s+ jω

s+ jω + ωh
+ e−jφ s− jω

s− jω + ωh

)

. (4.20)

As Krstic stated [103]: “If the average model is asymptotically stable, 1/ω is sufficiently

small and the initial conditions are small in an appropriate sense, then the theorem would

claim the existence of an exponentially stable periodic solution which is at a distance that

continuously depends on 1/ω, a, and γ.”

If the phase delay of the perturbation signal is assumed to be φ = 0, then (4.19) is

asymptotically stable for all γ > 0. In the case of SISO ESC (Fig. 4.19), by assuming φ = 0,

the averaged linearized model relating θ∗ and θ̃ is [103]
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Fig. 4.19: Integer order extremum seeking control scheme in a three-phase grid-connected
PV system.

θ̃(s)

θ∗(s)
=

s(s2 + 2ωhs+ ω2
h + ω2)

s3 + (2ωh + ka2)s2 + (ω2
h + ω2 + ka2ωh)s+ ka2ω2

. (4.21)

By replacing integer order filters with fractional order filters in the gradient estimator

and optimizer of ESC, fractional order extremum seeking control (FO-ESC) will be created.

Figure 4.20 illustrates a three-phase grid-connected PV system using new proposed FO-

ESC.

In order to calculate a similar relationship between the optimal point and error signal

for FO-ESC as shown for IO-ESC in (4.21), following lemmas should be proved in the

fractional order systems:

Lemma 1: (Modulation property for fractional order systems) If all poles of a frac-

tional order system, H(sq), are stable, then for any real ϕ,

H(sq)[sin(ωt− ϕ)] = Im{H
(
(jω)q

)
ej(ωt−ϕ)}+ ǫ−t. (4.22)
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Fig. 4.20: Fractional order extremum seeking control scheme in a three-phase grid-connected
PV system.

Note 1: A(s)[u(t)] means a time domain signal obtained as the output of A(s) driven

by u(t).

Note 2: Generally H(sq) can be any LTI fractional order system and this notation

does not mean that the system must be commensurate order.

Proof:

H(sq)[sin(ωt− ϕ)] = H(sq)[Im{ej(ωt−ϕ)}]

=
1

2j
H(sq)[e−j(ωt−ϕ) − ej(ωt−ϕ)]

=
1

2j
L−1{H(sq)

1

s − jω
e−jϕ −H(sq)

1

s+ jω
ejϕ}.

(4.23)

By defining H(sq) = Z(sq)
P (sq) and using partial fraction decomposition, (4.23) will be

expanded as follows:
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1

2j
L−1

{
H(sq)

1

s− jω
e−jϕ −H(sq)

1

s+ jω
ejϕ

}

=
1

2j
L−1

{

H((jω)q)
1

s− jω
e−jϕ −H((jω)q)

1

s+ jω
ejϕ +

Z1(s
q)

P1(sq)
+ ...+

Zn(s
q)

Pn(sq)

}

,

(4.24)

where

Zi(s)i=1,...,n = Res
(

Pi(s)H(sq)
(jω + s)e−jϕ + (jω − s)ejϕ

s2 + ω2
, pi

)

, (4.25)

where Res stands for residue, Pi(s)’s are the factors of P (sq) and pi’s are the poles of H(sq).

Since H(sq) is assumed to be stable, then Z1(sq)
P1(sq)

+ ...+ Zn(sq)
Pn(sq)

will be decayed exponentially

(ǫ−t) which means these terms does not affect the steady state response of the system. In

other words,

H(sq)[sin(ωt− ϕ)]

=
1

2j
L−1

{

H((jω)q)
1

s− jω
e−jϕ −H((jω)q)

1

s+ jω
ejϕ

}

+ ǫ−t

= Im{H
(
(jω)q

)
ej(ωt−ϕ)}+ ǫ−t.⋄ (4.26)

Lemma 2: If fractional order systems, G(sβ) and H(sα) are stable, then for any real

ϕ and a uniformly bounded u(t),

G(sβ)[H(sα)[sin(ωt− ϕ)]u(t)] = Im
{

H((jω)α)ej(ωt−ϕ)H((jω)α)G(sβ + jω)[u(t)]
}

+ ǫ−t.

(4.27)
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Proof: From Lemma 1,

G(sβ)[H(sα)[sin(ωt− ϕ)]u(t)] = G(sβ)[Im{H((jω)α)ej(ωt−ϕ)}[u(t) + ǫ−t]

= Im{e−jϕL−1{G(sβ)H((jω)α)U(s− jω)}} + ǫ−t.

(4.28)

If G(sβ)
L−1

−−→ g(t) and U(s)
L−1

−−→ u(t), then,

L−1{G(sβ)U(s − jω)} = g(t) ⋆ u(t)ejωt

=

∫ +∞

−∞
g(τ)u(t − τ)ejω(t−tau)dτ

= ejωt
∫ +∞

−∞
g(τ)e−jωτu(t− τ)dτ

= ejωtL−1{G(sβ + jω)U(s)}. (4.29)

Therefore, (4.28) can be rewritten as

Im{e−jϕL−1{G(sβ)H((jω)α)U(s − jω)}} + ǫ−t

= Im
{

ej(ωt−ϕ)H((jω)α)L−1{G(sβ + jω)U(s)}
}

+ ǫ−t

= Im
{
ej(ωt−ϕ)H((jω)α)G(sβ + jω)[u(t)]

}
+ ǫ−t.⋄ (4.30)

Also it can be easily verified that for fractional order systems A(.) and B(., .) the

following is true:

Im{ej(ωt−ϕ)A(sq)}Im{ej(ωτ−φ)B(sq, (jω)q))[z(t)]}

=
1

2
Re{ej(ϕ−φ)A((−jω)q)B(sq, (jω)q)[z(t)]} − 1

2
Re{ej(2ωτ−ϕ−φ)A((−jω)q)B(sq, (jω)q)[z(t)]}.

(4.31)
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Therefore, as shown in Fig. 4.20, by replacing the integer order filters with fractional

order ones, the mathematical FO-ESC model will be







y(t) = f∗ + (θ(t)− θ∗(t))

θ(t) = a sin(ωt)− k
sq [ζ(t)]

ζ(t) = a sin(ωt− ϕ) sq

sq+ωh
[y(t)]

. (4.32)

Without loss of generality and to simplify the analysis, the low-pass filter in the FO-

ESC structure has been neglected. By defining θ̃ = θ∗ − θ + a sin(ωt) (to simplify the

notation, the input time argument is eliminated),

θ̃ = θ∗ +
k

sq
[a sin(ωt− ϕ)

sq

sq + ωh
[y]]

= θ∗ +
k

sq
[a sin(ωt− ϕ)

sq

sq + ωh
[f∗ + (θ − θ∗)2]]

= θ∗ +
k

sq
[a sin(ωt− ϕ)

sq

sq + ωh
[f∗] + a sin(ωt− ϕ)

sq

sq + ωh
[θ̃2]

+ a sin(ωt− ϕ)
sq

sq + ωh
[a2 sin2(ωt)]− 2a sin(ωt− ϕ)

sq

sq + ωh
[aθ̃ sin(ωt)]]. (4.33)

Then,

θ̃ +
2ka2

sq
[sin(ωt− ϕ)

sq

sq + ωh
[aθ̃ sin(ωt)]]

= θ∗ +
k

sq
[a sin(ωt− ϕ)

sq

sq + ωh
[f∗] + a sin(ωt− ϕ)

sq

sq + ωh
[θ̃2]

+ a sin(ωt− ϕ)
sq

sq + ωh
[a2 sin2(ωt)]]. (4.34)

By applying Lemma 1 and Lemma 2 and following the length calculations, the averaged

linearized model relating the optimized point θ∗ and the error signal θ̃ in the FO-ESC will

be derived,
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θ̃

θ∗
=

1

1 + L(s)
, (4.35)

where L(s) will be

L(s) =
γa2

sq
s2q + ωhs

q + ω2

s2q + 2ωhsq + ω2 + ω2
h

. (4.36)

If sq is replaced by λ = sq, the averaged linearized model is obtained by

θ̃(λ)

θ∗(λ)
=

λ(λ2 + 2ωhλ+ ω2
h + ω2)

λ3 + (2ωh + ka2)λ2 + (ω2
h + ω2 + ka2ωh)λ+ ka2ω2

. (4.37)

Root-locus method will be employed to compare the stability and behavior of linearized

averaged model of IO-ESC and FO-ESC. The root-locus of (4.21) and (4.37) for ωh =

0.1rad/s, γ = 10, ω = 2πrad/s, a = 1 and q = 0.2 is depicted in Fig. 4.21. As shown in

this figure, the averaged model of IO-ESC has a pair of poles close to the imaginary axis

which will be damped lightly and consequently, this algorithm will have a longer settling

time. However, in the averaged model of FO-ESC there is no pole close to the stability

boundaries as shown in Fig. 2.4, and consequently, the system will have a monotonically

decreasing response as discussed in Chapter 2.

Since replacing fractional order filters in the ESC algorithm add more values to this

algorithm from stability and robustness point of view, in the following section the stability

of FO-ESC will be investigated in details.

4.6 Stability of Fractional Order ESC

Mathematical model for the proposed fractional order ESC, shown in Fig. 4.22, can be

written as







x(q) = f(x, u(x, θ))

y = h(x)

. (4.38)
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Fig. 4.22: General scheme of FO-ESC.
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The mapping function, x(q) = f(x, u(x, θ)), is assumed to be a smooth function of θ

and should have an extremum point. Assume that there is a control law, u(x, θ), which

asymptotically stabilizes (4.38) at x = l(θ) which is the equilibrium of the system. The key

role of ESC is to drive θ to the optimal points θ∗, such that y = h(x) = h ◦ l(θ) is at its

extremum value.

Before going into more details of stability analysis, let us get back to the first order

FO-ESC scheme and substitute the general form of ESC equations in (4.38) with SISO

FO-ESC. The mathematical model for this system will be







dq

dtq x = f(x, u(x, θ))

dq

dtq θ̂ = kζ

dq

dtq ζ = −ωlζ + ωl(y − η)a sin(ωt)

dq

dtq η = −ωhη + ωhy,

(4.39)

where dq

dtq is fractional order Caputo derivative and q ∈ (0, 1]. As mentioned before, the

equilibrium of this system is assumed to be x = l(θ) which at this point, dq

dtq x = 0 and also

f(x, u(x, θ)) = 0. Since θ = θ̂ + a sin(ωt), the equilibrium of the system can be defined as

x = l(θ̂ + a sin(ωt)).

By changing the system coordinates to θ̃ = θ̂ − θ∗ and η̃ = η − h ◦ l(θ∗), and changing

the time scale to τ = ωt, (4.39) can be rewritten as







dq

dτq θ̃ = δk̄ζ

dq

dτq ζ̃ = δ
(
− ω̄Lζ + ω̄L(h(x)− h ◦ l(θ∗)− η̃)a sin(τ)

)

dq

dτq η̃ = δ
(
− ω̄H η̃ + ω̄H(h(x)− h ◦ l(θ∗))

)
,

(4.40)

where k = ωK = ωδk̄, ωh = ωωH = ωδω̄H , and ωl = ωωL = ωδω̄L.

By substituting the equilibrium of the system, x = l(θ̂ + a sin(ωt)), into (4.40), the

“reduced FO-ESC system” will be obtained,
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





dq

dτq θ̃r = δk̄ζr

dq

dτq ζ̃r = δ
(
− ω̄Lζr + ω̄L(ν(θ̃r + a sin(τ))− η̃r)a sin(τ)

)

dq

dτq η̃r = δ
(
− ω̄H η̃r + ω̄Hν(θ̃r + a sin(τ))

)
,

(4.41)

where (.)r stands for reduced system, and ν(θ̃r+a sin(τ)) = h◦l(θ∗+ θ̃r+a sin(τ))−h◦l(θ∗).

When h ◦ l(θ∗ + θ̃r + a sin(τ)) = h ◦ l(θ∗), system is working at its extremum point which

means θ̃r + a sin(τ) = 0, and by assuming this point as the peak point of f(x, u),







ν(0) = 0

ν ′(0) = (h ◦ l)′(θ∗) = 0

ν ′′(0) = (h ◦ l)′′(θ∗) < 0

. (4.42)

Writing the Taylor expansion for ν(θ̃r + a sin(τ)) around the extremum point and by

knowing that ν(0) = ν ′(0) = 0 in the neighborhood of this point,

ν(θ̃r + a sin(τ)) =
ν ′′(0)

2!
(θ̃r + a sin(τ))2 +

ν ′′′(0)

3!
(θ̃r + a sin(τ))3 +H.O.T, (4.43)

where H.O.T is negligible since θ̃r + a sin(τ) is small.

To simplify the stability analysis of FO-ESC, (4.41) can be approximated by its aver-

aged model. The averaged model of (4.41) will be







dq

dτq θ̃
a
r = δk̄ζar

dq

dτq ζ̃
a
r = δ

(
− ω̄Lζ

a
r + aω̄L

2π

∫ 2π
0 ν(θ̃ar + a sin(σ)) sin(σ)dσ

)

dq

dτq η̃
a
r = δ

(
− ω̄H η̃ar + ω̄H

2π

∫ 2π
0 ν(θ̃ar + a sin(σ))dσ

)

. (4.44)



92

Assume ( ˜θa,er , ζa,er , η̃a,er ) is the equilibrium point of the averaged system, then at this

point system has no dynamics and dq

dtq θ̃
a
r = 0, dq

dtq ζ̃
a
r = 0 and dq

dtq η̃
a
r = 0 gives,







ζa,er = 0

ζa,er = 1
2π

∫ 2π
0 ν(θ̃a,er + a sin(σ)) sin(σ)dσ

ηa,er = 1
2π

∫ 2π
0 ν(θ̃a,er + a sin(σ))dσ

. (4.45)

Since ζa,er = 0,

1

2π

∫ 2π

0
ν(θ̃a,er + a sin(σ)) sin(σ)dσ = 0. (4.46)

One nominee for ˜θa,er can be a linear polynomial in the form of ˜θa,er =
∑2

i=1 bia
i+O(a3).

By substituting ˜θa,er into (4.43) and substitute the result in (4.46) and equating the like

powers of a, ν ′′(0)b1 = 0 and ν ′′(0)b2 +
1
8ν

′′′(0) = 0, which means,

˜θa,er = − ν′′′(0)
8ν′′(0)a

2 +O(a3)

˜ηa,er = ν′′(0)
4 a2 +O(a3).

(4.47)

Therefore, the equilibrium of averaged system, (4.44), is







θa,er = − ν′′′(0)
8ν′′(0) +O(a3)

ζa,er = 0

ηa,er = a2ν′′(0)
4 +O(a3).

(4.48)

To linearized this system, the Jacobean of (4.44) around the equilibrium point, (4.48),

is obtained,
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Ja
r = δ













0 k̄ 0

aω̄L

2π

∫ 2π
0 ν ′(θ̂a,er + a sin(σ)) sin(σ)dσ −ω̄L 0

ω̄H

2π

∫ 2π
0 ν ′(θ̂a,er + a sin(σ))dσ 0 −ω̄H













. (4.49)

The eigenvalues of Ja
r are the roots of the characteristic polynomial, det(λiI−Ja

r ) = 0,

det(λiI − Ja
r ) = (λ+ δω̄H)

(

λ2 + δω̄Lλ− aδ2ω̄Lk̄

2π

∫ 2π

0
ν ′( ˜θa,rr + a sin(σ)) sin(σ)dσ

)

. (4.50)

To calculate the second term of (4.50), the Taylor expansion of ν is substituted and

the integral has been calculated,

∫ 2π

0
ν ′( ˜θa,rr + a sin(σ)) sin(σ)dσ = πν ′′(0)a+O(a2). (4.51)

Consequently, characteristic polynomial of linearized averaged model of FO-ESC is

det(λiI − Ja
r ) = (λ+ δω̄H)

(

λ2 + δω̄Lλ− a2δ2ω̄Lk̄

2
ν ′′(0) +O(δ2a3)

)

, (4.52)

and the eigenvalues are λ1 = −δω̄H and,

λ2,3 =
−δω̄L ±

√

δ2ω̄2
L + 2δ2ω̄Lk̄ν ′′(0)a2 −O(a3δ2)

2
. (4.53)

The eigenvalues of Ja
r are stable for sufficiently small a, therefore the linearized averaged

model FO-ESC is stable under this condition.

Another important conclusion can be drawn from this linearization. Since in the design

of ESC algorithm, usually ω̄L is picked to be small [103], and as can be seen in (4.53), the

real parts of eigenvalues are directly related to ω̄L, therefore the eigenvalues of the ESC

system can be close to the imaginary axis if q = 1 which means the integer order ESC can
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potentially have slowly damped poles in its system. However, these eigenvalues are not

close to the stability boundary of fractional order system (arg(λ) > qπ
2 ) and consequently,

they can be damped faster than their equivalent integer order system.

4.6.1 Simulation Results

In this section, the performance of IO-ESC and FO-ESC are compared using Simulink.

In the simulations, the output of ESC block is used as a reference voltage for the next stage

converter (inverter). Generally, converter (inverter) dynamics are faster than ESC dynamics

and therefore the converter (inverter) seems as a static gain to ESC, ν = Vinv(1 − d), as

shown in Fig. 4.23.

In the following simulations the performance of proposed FO-ESC and IO-ESC are

compared under sun irradiation variations. Temperature is assumed to be constant at

T = 25oC.

In the first set of simulations, sun irradiation profile varies according to Fig. 4.24. Based

on this profile, PV array has an irradiation of 1000W/m2 for 4s and then the irradiation

ramps down to 400W/m2 in 2s and stays there for 3s and lastly jumps up to 1000W/m2

and stays there for 1s. This profile shows the step-like and ramp-like response of FO-ESC

and IO-ESC.

Also to have a fair comparison between FO-ESC and IO-ESC, all other parameters, like

perturbation frequency, f = 100rad/s, cut-off frequency of high-pass filter, ωh = 500rad/s,

and gain of integrator, k = 150, are considered to be the same for both FO-ESC and IO-

ESC schemes. Under these conditions, the behavior of these schemes have been illustrated

in Fig. 4.25. Simulation results show that FO-ESC converges to the peak point faster than

the IO-ESC. Also as seen in Fig. 4.25 and Fig. 4.26, the perturbation amplitude on the

IO-ESC signal is higher than the perturbation amplitude on FO-ESC as expected.

To do further investigation regarding the role of the order of fractional order integrator

in the FO-ESC scheme, the step response of FO-ESC with different integrator order had

been depicted in Fig. 4.27. In this simulation, the order of integrator varies in the range

of 0.88 to 0.97 and as can be seen in the simulation results, as long as the system is in the
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Fig. 4.23: FO-ESC scheme series with converter.
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stable region, by decreasing the order of FO-ESC, the system converges faster to the peak

point.

4.6.2 Grid-Connected Simulations

In this section, a grid-connected PV system has been considered and three MPPT

algorithms include IO-ESC, IC and FO-ESC are applied to this system. This simulation

has been done using Simulink/MATLAB as shown in Fig. 4.28.

Figures 4.29 and 4.30 present the simulation results of three MPPT algorithms. As

seen in these figures, FO-ESC outperforms the other two algorithms. FO-ESC not only

converges faster than the other two schemes but also tracks the maximum power point

smoothly.

In addition, the three-phase inverter output is shown in Fig. 4.31. Total harmonic

distortion (THD) of injected current to the grid has been compared in Table 4.2.

As seen in this table, IO-ESC increases the convergence speed compare to IC but

creates more harmonic distortion in the output current. On the other hand, FO-ESC not

only reduces the THD of injected current and peak voltage of DC-link capacitor but also

increases the convergence speed compared to IC and IO-ESC.

4.6.3 Experimental Results

For experimental results, a fractional horsepower dynamometer is used to model the

PV panel. The dynamometer includes a DC motor and a hysteresis brake. The DC motor

in dynamometer can be approximated by

Gm(s) =
1.52

1.01s + 1
. (4.54)

As the brake has nonlinear behavior, the PV can be adopted as a model for the hys-

teresis brake. In other words, the hysteresis brake acts as a PV array. The proposed scheme

can be seen in Fig. 4.32. As can be seen in Fig. 4.33, the Magtrol hysteresis brake used in

the dynamometer produces torque strictly through an air gap, without the use of magnetic
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Fig. 4.25: Comparison of FO-ESC and IO-ESC in the time domain.
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Fig. 4.27: Comparison of FO-ESC scheme with different fractionality order in integrator.
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Fig. 4.28: Simulation of grid-connected PV system with MPPT.
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Fig. 4.29: DC link voltage in the grid-connected PV system using IC, IO-ESC, and FO-ESC
MPPTs.
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Table 4.2: Total harmonic distortion of injected current to the grid.

IC IO-ESC FO-ESC

1.8% 3.3% 1.8%

particles or friction components. This method of breaking provides far superior character-

istics (smoother torque, longer life, superior repeatability, higher degree of controllability,

and less maintenance and down time). The brake and the motor are each driven by an

advanced motion controls brush type PWM servo amplifier Model 50A8. These controllers

receive analog signals from data acquisition hardware. The PWM controllers use these sig-

nals to set the voltage output to the motor or the brake. The controller then supplies all

the current needed to maintain the set voltage level [104].

The extremum seeking control scheme is tested using MATLAB/Simulink environment,

which uses the WinCon application from Quanser, to communicate with the Quanser Mul-

tiQ3 data acquisition card. WinCon is a Windows-based application that runs Simulink

models in real-time on PCs. This brings rapid prototyping and hardware-in-the-loop sim-

ulation capabilities to Simulink models. The MATLAB Real-Time Workshop generates C

code from the Simulink model, which results in a Windows executable file that is run by

WinCon independently of Simulink. WinCon architecture ensures that the real-time pro-

cess is afforded the highest CPU priority and is not preempted by any competing tasks

other than the core OS functions. The Simulink model used for the experiments is shown in

Fig. 4.34. This figure shows the hardware-in-the-loop real time simulation model for integer

order and fractional order extremum seeking scheme, respectively. Simulink automatically

generates codes for Windows target to drive the dynamometer and brake via D/A blocks.

The experiments have been done to support the numerical simulation results. As

can be seen in the experimental results, these results are consistent with the numerical

results that have been achieved in simulations. From Fig. 4.35, it can be noticed that the

convergence speed of FO-ESC is better than the IO-ESC which admits the results achieved

from numerical simulation. In addition Fig. 4.35 illustrates that the reduction in the order
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Fig. 4.32: Modeling PV behavior using fractional horsepower dynamometer.

Fig. 4.33: The fractional horsepower dynamometer developed at CSOIS.
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Fig. 4.34: Simulink model used in the FO-ESC real-time experiments using RTW windows
target.

of fractional order integrator can improve the convergence speed of FO-ESC.

4.6.4 Summary

In this chapter, the importance of maximum power point trackers in the PV systems

has been discussed. The structure of ESC MPPT, as the outperformed MPPT among all

other MPPT algorithms was presented. By introducing Bode’s ideal cut-off filter (BICO),

this filter is applied to the structure of ESC and the advantages of using this filter were

analyzed. This topic was followed by introducing FO-ESC and comparing its performance

with IO-ESC in the grid-connected systems. lastly, the stability conditions of FO-ESC were

presented.
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Fig. 4.35: Convergence of PV output power to peak point by applying different integration
orders in IO-ESC and FO-ESC.
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Chapter 5

Voltage and Current Control of Three-Phase

Grid-Connected Inverter Using Fractional Order Controllers

5.1 Introduction

The control methodology in the grid-connected inverter is a classical control problem,

which contains an inner current control loop and an outer voltage control loop. In this

control strategy, voltage loop maintains a constant voltage on the DC link capacitor and

provides the reference for the inner current control loop. Also, a grid synchronization

method (in this work PLL) is used in order to synchronize the control system with the

phase angle of the grid.

The system which will be investigated in this work is a single-stage three-phase grid-

connected PV system as shown in Fig. 5.1.

There has been some debates in literature regarding the performance and pros and

cons of different control strategies such as model predictive, hysteresis, synchronous, or

stationary frame PI, etc. However, as discussed in the first chapter, synchronous frame PI

is still commonly used in many applications because of its relative simplicity, creating less

distortion in the output current, constant frequency, etc.

Synchronous frame PI controller operates by transforming the three-phase AC current,

[ia, ib, ic], in the stationary frame into the DC components, [Id, Iq], in the synchronous

rotating frame. This will allow the associated PI steady state error in the AC applications

to be eliminated and also provides independent control of injected active and reactive power

into the grid [105].

In the synchronous frame, the d and q components of inverter output current are reg-

ulated using two PI regulators, and the third PI controller maintains the DC link capacitor
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Fig. 5.1: Control scheme of a three-phase grid-connected VSI.

voltage in the voltage control loop. In fact, voltage control loop provides a set-point for

inner current control loop. The time constant of voltage control loop is designed to be

significantly longer than the time constant of inner current control loops, to decouple the

design processes of voltage and current control loops. Figure 5.2 illustrates the control

strategy of synchronous frame.

5.2 Mathematical Model of Three-Phase Grid-Connected PV System

As discussed in Chapter 3, in most cases, VSI switching frequency is significantly higher

than the control loop bandwidth and will have negligible impact on the inverter control loop

dynamics. Therefore, the inverter can be modeled as a constant gain with no dynamics.

However, other components of the system (e.g. DC link capacitor and filter) have significant

influence on the control loop response and must be considered in the modeling of the system.

5.2.1 Modeling of Current Control Loop

The current controller is the inner control loop of the three-phase grid-connected PV



107

Fig. 5.2: Control strategy of synchronous frame.

system. As mentioned before, in the system there are two current controllers for direct, Id,

and quadrature, Iq, components of inverter output current.

The current control loop for both direct and quadrature current components can be

modeled as shown in Fig. 5.3.

Different blocks in this model can be defined as follows:

• GDCAC represents the time delay caused by the inverter to do the time averaging

over one switching period. As mentioned before, since the switching frequency of the

inverter is significantly higher than the control loop bandwidth, the dynamics of the

Fig. 5.3: Current control loop schematic.
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inverter are negligible and GDCAC can be considered as a constant gain.

• Gfi is the measurement noise filter transfer function. Typically, in order to reduce

the measurement noises, a first order filter is employed.

• GPI represents the controller transfer function.

• Gvi represents the transfer function of the inverter output filter and describes how the

inverter output current reacts to the variations of inverter voltage.

As discussed before, the d and q axes of the currents are not independent, therefore,

these two current components need to be decoupled to simplify the model.

The transfer function of inverter and its output filter has been derived in Chapter 4,

Gvi(s) =
1

Ls+R
. (5.1)

By adding all the filtering delays in the current control loop of Fig. 5.3, the control loop

can be simplified as shown in Fig. 5.4. In this new schematic, Gsum(s) = GDCAC(s)Gfi(s).

Typically, the sum of these delays is approximately larger than the sampling time, Ts,

and therefore the design procedure can be done in continuous domain.

Therefore, the continuous open-loop transfer function of the current control loop be-

comes

GP (s) = GsumGiivi =
Ke−Tds

Ls+R
. (5.2)

Fig. 5.4: Simplified current control loop schematic.
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5.2.2 Modeling of Voltage Control Loop

Voltage controller is the outer control loop of the grid-connected PV system. As men-

tioned before, this controller creates the reference for the d axis of the current control loop.

This control loop can be modeled as shown in Fig. 5.5.

In this model:

• Gfv represents the measurement noise filter,

• GPI represents the controller transfer function,

• Mid represents the controlled current-loop transfer function,

• GDC represents the transfer function between the direct component of current and

the DC link voltage.

Applying fractional order controllers to the current control loop, makes the Mid to be

fractional order transfer function. To simplify the tuning of voltage regulators, Mid can be

approximated with a reduced order fractional order pole or first order pole plus delay.

Reduced Order Closed-Loop FO-PI Current Controller Transfer Function

In the case of FO-PI, (kp(1 + ki/s
α)), the closed-loop transfer function for the current

control loop will be

Fig. 5.5: Voltage control loop schematic.
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Mid =
K(kps

α + kpki)

Lsα+1 + (R+ kpki)sα +Kkpki
, (5.3)

or

Mid =
1
ki
sα + 1

L
Kkpki

sα+1 +
R+kpki
Kkpki

sα + 1
. (5.4)

Since in the high frequencies sα/ki >> 1 and Lsα+1/Kkpki+(R+kpki)s
α/Kkpki >> 1,

then Mid can be rewritten as

Mid =
Kkp

Ls+R+Kkp
. (5.5)

The Bode plots of reduced order and original transfer function which have been depicted

in Fig. 5.6 shows the similarity between the frequency response of these two systems.

Reduced Order Closed-Loop FO-[PI] Current Controller Transfer Function

In the case of FO-[PI], ((kp + ki/s)
α), the closed-loop transfer function for the current

control loop is

Mid =
K(kps+ ki)

α

Lsα+1 +Rsα +K(kps+ ki)α
. (5.6)

As will be shown later, in the tuned FO-[PI], ki >> kp, therefore the zero of Mid is

close to the imaginary axis and can not be neglected. Mid can be rewritten as

Mid =
K(

kp
ki
s+ 1)α

L
kαi

sα+1 + R
kαi

sα +K(
kp
ki
s+ 1)α

. (5.7)

Since in higher frequencies,
kp
ki
s >> 1, then

kp
ki
s+ 1 ≃ kp

ki
s and therefore,

Mid =
Kkαp

Ls+R+Kkαp
. (5.8)
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Fig. 5.6: Comparison between frequency responses of reduced order and original closed-loop
voltage control transfer function using FO-PI.

The Bode plots of reduced order and original transfer function which have been depicted

in Fig. 5.7 show the similarity between the frequency responses of these two systems.

Reduced Order Closed-Loop IO-PI Current Controller Transfer Function

IO-PI current controller can be considered as a special case of FO-[PI] with α = 1,

then

Mid =
Kkp

Ls+R+Kkp
. (5.9)

Reduced Order Voltage Loop Transfer Function

After calculating the transfer function of controlled current loop, the transfer function

for voltage control loop, which is the ratio between Id and υdc will be

GDC = −Kdc

Cs
Mid, (5.10)
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Fig. 5.7: Comparison between frequency responses of reduced order and original closed-loop
voltage control transfer function using FO-[PI].

where Kdc is a constant that represents the ratio between direct component of injected

current to the DC current. This ratio can be obtained by considering the relationship

between the input and output power of the system which is

υdcIdc =
3

2
VdId, (5.11)

and

υab =

√
3

2
√
2
υdcm, (5.12)

where m is the modulation index and υab is the voltage between two phases. The direct

component of phase voltage, υab, is obtained by

υd =

√
2√
3
υab =

1

2
υdcm. (5.13)

Therefore, Kdc can be calculated by combining (5.11) and (5.13),
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Kdc =
Idc
Id

=
3

2

υd
υdc

=
3

4
m. (5.14)

Since SVM has been employed to drive the inverter, 0 ≤ m ≤ 2√
3
. In the case of using

SVPWM, m =
√
3
2 and therefore, the general form of continuous open loop transfer function

of the voltage control loop will be

GP (s) =
Kdce

−Tds

Cs(Ts+ 1)
. (5.15)

5.2.3 Complete Control Scheme of the Three-Phase Grid-Connected PV Sys-

tem

An overview of the total control scheme of a three-phase grid-connected PV system

is shown in Fig. 5.8. As can be seen in this figure, the voltage and current of the grid

and inverter is decoupled using αβ and then transferred to a synchronous frame using a dq

transformation. The direct and quadrature components of current and voltage are delivered

to the current and voltage controllers. Outputs of these controllers are converted back to

the abc coordination and applied to the SVM driver to create the command for the inverter.

5.3 Simulations Results

Simulations of the benchmarked three-phase grid-connected PV system are done in

PLECS/Simulink, which is a power electronic toolbox based on MATLAB platform. The

general scheme of the simulation is presented in Fig. 5.9. As can be seen in this figure,

the voltage set-point for voltage control loop is made through a MPPT. The direct current

component, Id, is made by outer voltage control loop and the quadrature current component,

Iq, is forced to be zero to minimize the injected reactive power to the grid. The SVM has

been implemented to drive the three-phase VSI switches. The sub-blocks of the control

and power electronics schemes of the grid-connected system are presented in Fig. 5.10 and

Fig. 5.11, respectively.
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Fig. 5.8: Voltage and current control loops schematic.

Fig. 5.9: Simulation of voltage and current control loops in MATLAB/Simulink.
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Fig. 5.10: Simulation of current control loop in MATLAB/Simulink.

Fig. 5.11: Simulation of a two-level three-phase grid-connected PV system.
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5.3.1 Design Criteria

To design the current and voltage controllers in the frequency domain, the cross-over

frequency and phase margin need to be defined initially. The optimal cross-over frequency

and phase margin to control a grid-connected PV system have been determined in Liu et al.

work [106]. According to this research, for the current control loop in a grid-connected PV

system application, the optimal range of natural frequency is ωn ∈ [160, 990]rad/s. Under

this condition, the stability of this system is guaranteed. This optimal range for the voltage

control loop is ωn ∈ [20, 120]rad/s.

To maintain 5% overshoot in the time response of the system, the damping ratio is

considered to be ζ = 0.707. Since the relationship between ζ, ωn and ωc is

ωc

ωn
=

√

−2ζ2 +
√

1 + 4ζ4, (5.16)

then cross-over frequency of the current control loop and voltage control loop will be in the

range of [100, 640]rad/s and [10, 80]rad/s, respectively.

In the following, the cross-over frequency of the current control loop is chosen to be

ωc = 600rad/s and this value for the voltage control loop is desired to be ωc = 15rad/s.

According to Fig. 5.12, to have a damping ratio of ζ = 0.707, the phase margin needs to be

ΦM = π
3 .

5.3.2 System Design

Power-Electronics Design of the Three-Phase Grid-Connected PV System

In the following simulations, the PV array consists of 35 parallel cells and four parallel

strings, each with ten BP365 modules from “BPAlternativenergy Inc.” [107]. This PV array

defines the nominal input power of the single-stage inverter, whose value is 9kW , with 600V

input DC voltage and 15A input current. The switching frequency of the inverter is 10kHz.

The grid RMS phase voltage is 325V and its frequency is 60Hz.
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Fig. 5.12: Phase margin vs. damping ratio of a second order system.

Four criteria play an essential role in the choice of DC link capacitor [35],

CDC >
Tr∆Pmax

2Vo∆Vo
, (5.17)

where Tr is the introduced delays by filtering of the DC voltage and current control loop,

∆Pmax is the maximum variation of the power on DC bus, ∆Vo is the acceptable voltage

tolerance on DC bus. Obviously, there is a trade-off between the time response of the system

and tolerable DC bus voltage and power variations. Usually, the higher the capacitance of

DC link capacitor, the better the system. However, C is limited by cost, size, and safety

considerations.

Grid line inductors are determined by [6]

L =

√
2Vg

4fsw∆IL
, (5.18)

where ∆IL is the acceptable ripple current, Vg is the voltage of the grid, and fsw is the

switching frequency of the inverter.

According to (5.17) and (5.18), the inductance of the output filter and DC link capacitor

are designed to be 10mH and 1mF , respectively. The sampling time is 10kHz. Considering
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a high sampling period as well as a low cut-off frequencies on control loops, the phase lag

in the system is very small and can be disregarded.

Tuning of Controllers

According to the power electronics design values, the normalized open-loop transfer

function of the current control loop is

GP (s) =
1

0.01s + 1
e1e−4s. (5.19)

The Equivalent Series Resistance (ESR) of the output filter is assumed to be 1Ω.

To obtain a fair comparison between integer order and fractional order controllers,

the same tuning approach, which has been discussed in Chapter 2, is applied to all the

controllers. As discussed before, since the derived tuning equations for FO-PI and FO-[PI]

are a set of nonlinear equations which cannot be solved analytically, the graphical method

is employed to find the solution(s).

To tune the FO-PI controller for the current loop, equations (2.72) and (2.76) are

depicted in the same plot, as seen in Fig. 5.13. The intersection point between these two

plots determines the order and integrator gain of the FO-PI. By substituting these two

values to (2.75), the proportional gain of FO-PI is determined.

The gains of FO-[PI] can be determined by plotting equations (2.80) and (2.83) as

shown in Fig. 5.14. The integrator gain and order of the controller are obtained from

the intersection(s) of these plots. Then, by substituting these two values to (2.82), the

proportional gain of FO-[PI] is determined.

Following this method, the tuned gains for FO-PI are kp = 3.10, ki = 132 and λ = 0.72.

By applying the same approach to FO-[PI], these gains are obtained; kp = 11, ki = 13650

and λ = 0.56. The proportional and integral gains of the IO-PI are obtained by (2.87) and

(2.88) and these values are kp = 4.63 and ki = 2020.

Consequently, the tuned current controllers for the benchmarked three-phase grid-

connected PV system are
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CIOPI = 4.63 + 2020
s

CFOPI = 3.10
(

1 + 132
s0.72

)

CFO[PI] =
(

11 + 13650
s

)0.56
.

(5.20)

To implement the FO-PI and FO-[PI] controllers, “ninteger” toolbox and “impulse

response invariant discretization” methods will be used [108,109].

The truncation order of estimated integer order transfer function will be defined to

be five in both cases. It has been observed that increasing the order of truncation did not

improve the simulation results and decreasing this order reduces the accuracy of the results.

The Bode plots of these three controllers have been depicted in Fig. 5.15.

As seen in Fig. 5.15, IO-PI, FO-PI, and FO-[PI] satisfy the design criteria for cross-over

frequency and phase margin. The fractional order controllers have a flat phase around cross-

over frequency, which means these controllers have more robustness against gain variations.

In other words, a small amount of gain variation shifts the cross-over frequency to higher or

lower frequencies, which will change the phase margin of the controlled plant by IO-PI. But

under gain variation condition, the phase margin remains constant for FO-PI and FO-[PI]

since their phase plots are flat around the cross-over frequency.

This feature is an important feature for a controller in the grid-connected PV systems

because, in addition to the deviation of nominal designed values in the passive components

(which is caused by ambient temperature or aging), the DC bus voltage, inverter gain, grid

voltage and frequency, etc. fluctuate in the system continuously. All of these deviations in

the system parameters vary the dynamics of the system. Hence, having a robust controller

which can tolerate these type of uncertainties is highly desirable in this application.

The time response of these three controllers have been illustrated in Fig. 5.16. As

shown in this figure, the overshoots of step responses in the designed FO-[PI] and FO-PI

controllers are smaller than IO-PI.

In Fig. 5.17, the step responses of the designed IO-PI, FO-PI, and FO-[PI] under



121

Fig. 5.15: Bode plot of controlled system using IO-PI and FO-PI.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

S
te

p 
R

es
po

ns
e

 

 

IO−PI
FO−PI
FO−[PI]

Fig. 5.16: Time response comparison among three controllers.
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±20% open-loop gain variations are depicted. The amplitude of the input step has been

normalized.

The percentage of overshoot deviations under gain variations are reported in Table 5.1.

Clearly, the system has less overshoot deviations under loop gain variations when fractional

order controllers are applied.

5.3.3 Tuning of Voltage Controller

The open-loop transfer function for voltage control loop is

GP (s) =
1

0.001s
e1e−4sMid, (5.21)

where the reduced order Mid for FO-PI is

Mid =
1

0.003s + 1.33
, (5.22)

for FO-[PI], the reduced order Mid is

Mid =
3.8

0.01s + 4.8
, (5.23)

and eventually, the reduced order Mid for IO-PI is

Mid =
4

0.01s + 5
. (5.24)

In all three cases, Mid has a pole which is far from imaginary axis and then the voltage

control loop can be approximated by

GP (s) =
1

0.001s
e1e−4s. (5.25)

By applying the proposed tuning method, the tuned gains of IO-PI for the voltage

control loop are kp = 0.2, ki = 10.



123

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness of IOPI Controller

 

 
K=0.8
K=1.0
K=1.2

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness FOPI Controller

 

 
K=0.8
K=1.0
K=1.2

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness FOPIB Controller

 

 
K=0.8
K=1.0
K=1.2

Fig. 5.17: Robustness comparison among all three controllers.
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Table 5.1: Overshoot variation in presence of open-loop gain variations.

Controller Variations in Overshoot

IO-PI 1.82%

FO-PI 1.42%

FO-[PI] 1.03%

In the case of FO-PI, according to Fig. 5.18, the intersection point of two plots deter-

mines the order and integrator gain of FO-PI. By substituting these two values in (2.75),

the proportional gain is obtained. As seen in Fig. 5.18, the optimal order of integrator is

1 and the integrator gain of FO-PI is equal to 9.09 which is close to the integrator gain of

IO-PI.

The same approach has been applied for the tuning of FO-[PI], and according to

Fig. 5.19, ki and λ of FO-[PI] are obtained. By substituting these two values into (2.82),

the kp is determined. As seen in Fig. 5.19, for FO-[PI], λ = 1, ki = 10, and kp = 0.2 which

are equal to the integrator and proportional gains of IO-PI and FO-PI. This means that

all three controllers have the same gains and orders for voltage control loop under required

design criteria. The designed controller for the voltage loop control will be

C(s) = 0.2 +
10

s
. (5.26)

The Bode plot of the voltage control loop has been illustrated in Fig. 5.20.

5.3.4 Simulation of Three-Phase Grid-Connected PV System

To evaluate the performance of the benchmarked three-phase grid-connected PV system

using IOPI, FOPI, and FO[PI] controllers, in the first step, the behavior of this system

under step-like and ramp-like sun irradiation variations will be investigated. For this set

of simulations, sun irradiation varies as follow: G = 0.5 for t ∈ (0, 0.05), and it will be,

G = 0 for t ∈ (0.05, 0.1), and then G = 1 for t ∈ (0.1, 0.15), then G decreases from 1.0 to
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Fig. 5.20: Bode plot of voltage controlled system.

0.6 within the time period of t ∈ (0.15, 0.17), and G = 0.6 for t ∈ (0.17, 0.2) according to

Fig. 5.21.

Figure 5.22 illustrates the DC link voltage of the system during sun irradiation fluctu-

ations. Although the voltage controller is similar for all three current controllers, but since

current control loop have different regulators which cause different dynamics, the DC link

voltage acts differently. Obviously, in the case of using fractional order controllers, DC bus

faces less overshoot compared to IO-PI regulator.

Figure 5.23 shows that fractional order controllers and IO-PI controller have the same

responses for the ramp-like sun irradiation variations, but in the case of step-like fluctuations

in the sun irradiation, FO-PI and FO-[PI] extract more power from PV array.

Figure 5.24 illustrates the active and reactive injected power to the grid. As mentioned

before, current controllers try to increase the efficiency by maximizing the active power and

forcing the reactive power to be zero. However, fractional order controllers have better time

response features in the power control scheme. As can be seen in Fig. 5.24, the amount

of reactive power delivered to the grid is higher when the system is controlled by IO-PI
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Fig. 5.21: Sun irradiation profile.
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Fig. 5.22: Grid voltage of three-phase grid-connected PV system.



128

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time(s)

P
ow

er
(W

)

 

 

IO−PI
FO−PI
FO−[PI]

Fig. 5.23: Ouput power of PV panels.

controller. Therefore, using IO-PI controller results less efficiency compared to fractional

order controllers.

If the system works under sun irradiation variation profile of Fig. 5.21, the total har-

monic distortion (THD) of the injected current to the grid will be as shown in Fig. 5.25.

According to these results, a grid-connected PV system, controlled by fractional order con-

trollers, deliver current to the grid with acceptable amounts of THD according to IEEE929

and this THD is less than the level of THD of the inverter output current when it is con-

trolled by IO-PI.

To investigate the robustness of the controller, the effect of changing the output filter

inductance value on the THD of output current has been evaluated. The simulations have

been done with nominal inductance L = 0.01H and L = 0.012H. Figure 5.26 illustrates the

THD of phase (a) of a three-phase grid-connected PV system when filter has the nominl

inductance and also when its inductance increases by 20%. As seen in this figure, IO-PI

controller has totally different THDs under different inductances but FO-PI and FO-[PI]

have similar THD level and they can tolerate some level of deviations in the system as
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Fig. 5.24: Active and reactive power of the three-phase grid-connected PV system.
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Fig. 5.25: Total harmonic distortion of the three-phase grid-connected system.
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expected.

5.4 Summary

The advantages of using FO-PI and FO-[PI] compared to IO-PI in the voltage and

current control loops of a three-phase grid-connected PV system was presented in this

chapter. According to the simulation studies, FO-PI and FO-[PI] are more robust against

the system uncertainties compared to IO-PI. In addition, using FO-PI and FO-[PI] decrease

the amount of delivered reactive power to the grid and consequently, increase the efficiency

of the system.

Fig. 5.26: Robustness of controlled grid-connected PV system against output filter indu-
tance deviations.
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Chapter 6

Conclusion and Future Works

The main purpose of this dissertation was to develop a close-loop control system for

a three-phase grid-connected PV system. The intention of the control system is to achieve

peak power point tracking to extract the maximum amount of power from the PV array

and control the output current and voltage of the inverter.

A two-level three-phase inverter with an inductive filter was chosen, due to the fact

that this topology is more popular and simple in a grid-connected PV system. Although

there are many different types of inverters for grid-connected PV systems and some of them

have better performance than the considered plant, the goal of this work is to compare

different control strategies, and therefore a specific topology used in the benchmark is not

an essential aspect in this work.

The main contributions of this research can be summarized as follows:

• This dissertation has introduced two types of MPPT algorithms, fractional order

extremum seeking control and BICO extremum seeking control, which have better

features compared to the existing MPPT methods.

First, these two algorithms have shorter rise time and faster convergence rate and

they can follow the rapid variations in the environmental conditions. Therefore, the

possibility of getting lost from the peak power point tracking is lower in these two

proposed MPPT algorithms compared to the previous ones. In addition, faster con-

vergence response may help in reducing the amount of capacitance needed for DC link

capacitor. Furthermore, the stability of these two algorithms has been investigated

and it has been shown that the BICO ESC and FO-ESC have more stability margin in

comparison with IO-ESC. Moreover, a fractional horse power dynamometer has been

benchmarked to compare the FO-ESC and IO-ESC performances.
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• In the second part of this dissertation, the control-loop performance in a three-phase

grid-connected PV system has been improved by using two types of fractional order

controllers, FO-PI and FO-[PI]. It has been shown that using these controllers not

only improves the efficiency of the system, but also the system can tolerate more

deviations in its parameters. These variations may occur because of environmental

conditions or aging in the components. By considering the results of this work, it

can be concluded that fractional order controllers are less sensitive to the mentioned

uncertainties.

Moreover, fractional order controllers improve the time response of grid-connected PV

system by injecting less oscillation to the grid and therefore less THD. This feature

improves the efficiency of the system by reducing the losses caused by THD.

Although the work presented in this dissertation has achieved some interesting results

from analysis and control point of view for grid-connected systems, many problems remain

open and will be the subject of future investigations. The main future research items are:

• The extension of fractional order controllers in the stationary domain for grid con-

nected systems.

• Applying the fractional order controllers and MPPT algorithms to other grid con-

nected PV system topologies for instance the LCL filtering topology.

• Thermal analysis of grid connected system and comparing the thermal losses and

amount of stress on the switches in the inverter when the control system is under

fractional order controllers and integer order controllers

• Applying distributed-order controllers to the grid connected PV systems.

• Hardware implementation of MPPT algorithms and fractional order controllers.
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