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Fig. 5.8: Voltage and current control loops schematic.

Fig. 5.9: Simulation of voltage and current control loops in MATLAB/Simulink.
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Fig. 5.10: Simulation of current control loop in MATLAB/Simulink.

Fig. 5.11: Simulation of a two-level three-phase grid-connected PV system.
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5.3.1 Design Criteria

To design the current and voltage controllers in the frequency domain, the cross-over

frequency and phase margin need to be defined initially. The optimal cross-over frequency

and phase margin to control a grid-connected PV system have been determined in Liu et al.

work [106]. According to this research, for the current control loop in a grid-connected PV

system application, the optimal range of natural frequency is ωn ∈ [160, 990]rad/s. Under

this condition, the stability of this system is guaranteed. This optimal range for the voltage

control loop is ωn ∈ [20, 120]rad/s.

To maintain 5% overshoot in the time response of the system, the damping ratio is

considered to be ζ = 0.707. Since the relationship between ζ, ωn and ωc is

ωc

ωn
=

√

−2ζ2 +
√

1 + 4ζ4, (5.16)

then cross-over frequency of the current control loop and voltage control loop will be in the

range of [100, 640]rad/s and [10, 80]rad/s, respectively.

In the following, the cross-over frequency of the current control loop is chosen to be

ωc = 600rad/s and this value for the voltage control loop is desired to be ωc = 15rad/s.

According to Fig. 5.12, to have a damping ratio of ζ = 0.707, the phase margin needs to be

ΦM = π
3 .

5.3.2 System Design

Power-Electronics Design of the Three-Phase Grid-Connected PV System

In the following simulations, the PV array consists of 35 parallel cells and four parallel

strings, each with ten BP365 modules from “BPAlternativenergy Inc.” [107]. This PV array

defines the nominal input power of the single-stage inverter, whose value is 9kW , with 600V

input DC voltage and 15A input current. The switching frequency of the inverter is 10kHz.

The grid RMS phase voltage is 325V and its frequency is 60Hz.
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Fig. 5.12: Phase margin vs. damping ratio of a second order system.

Four criteria play an essential role in the choice of DC link capacitor [35],

CDC >
Tr∆Pmax

2Vo∆Vo
, (5.17)

where Tr is the introduced delays by filtering of the DC voltage and current control loop,

∆Pmax is the maximum variation of the power on DC bus, ∆Vo is the acceptable voltage

tolerance on DC bus. Obviously, there is a trade-off between the time response of the system

and tolerable DC bus voltage and power variations. Usually, the higher the capacitance of

DC link capacitor, the better the system. However, C is limited by cost, size, and safety

considerations.

Grid line inductors are determined by [6]

L =

√
2Vg

4fsw∆IL
, (5.18)

where ∆IL is the acceptable ripple current, Vg is the voltage of the grid, and fsw is the

switching frequency of the inverter.

According to (5.17) and (5.18), the inductance of the output filter and DC link capacitor

are designed to be 10mH and 1mF , respectively. The sampling time is 10kHz. Considering
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a high sampling period as well as a low cut-off frequencies on control loops, the phase lag

in the system is very small and can be disregarded.

Tuning of Controllers

According to the power electronics design values, the normalized open-loop transfer

function of the current control loop is

GP (s) =
1

0.01s + 1
e1e−4s. (5.19)

The Equivalent Series Resistance (ESR) of the output filter is assumed to be 1Ω.

To obtain a fair comparison between integer order and fractional order controllers,

the same tuning approach, which has been discussed in Chapter 2, is applied to all the

controllers. As discussed before, since the derived tuning equations for FO-PI and FO-[PI]

are a set of nonlinear equations which cannot be solved analytically, the graphical method

is employed to find the solution(s).

To tune the FO-PI controller for the current loop, equations (2.72) and (2.76) are

depicted in the same plot, as seen in Fig. 5.13. The intersection point between these two

plots determines the order and integrator gain of the FO-PI. By substituting these two

values to (2.75), the proportional gain of FO-PI is determined.

The gains of FO-[PI] can be determined by plotting equations (2.80) and (2.83) as

shown in Fig. 5.14. The integrator gain and order of the controller are obtained from

the intersection(s) of these plots. Then, by substituting these two values to (2.82), the

proportional gain of FO-[PI] is determined.

Following this method, the tuned gains for FO-PI are kp = 3.10, ki = 132 and λ = 0.72.

By applying the same approach to FO-[PI], these gains are obtained; kp = 11, ki = 13650

and λ = 0.56. The proportional and integral gains of the IO-PI are obtained by (2.87) and

(2.88) and these values are kp = 4.63 and ki = 2020.

Consequently, the tuned current controllers for the benchmarked three-phase grid-

connected PV system are
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Fig. 5.13: Graphical method of finding ki and λ for FO-PI.
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CIOPI = 4.63 + 2020
s

CFOPI = 3.10
(

1 + 132
s0.72

)

CFO[PI] =
(

11 + 13650
s

)0.56
.

(5.20)

To implement the FO-PI and FO-[PI] controllers, “ninteger” toolbox and “impulse

response invariant discretization” methods will be used [108,109].

The truncation order of estimated integer order transfer function will be defined to

be five in both cases. It has been observed that increasing the order of truncation did not

improve the simulation results and decreasing this order reduces the accuracy of the results.

The Bode plots of these three controllers have been depicted in Fig. 5.15.

As seen in Fig. 5.15, IO-PI, FO-PI, and FO-[PI] satisfy the design criteria for cross-over

frequency and phase margin. The fractional order controllers have a flat phase around cross-

over frequency, which means these controllers have more robustness against gain variations.

In other words, a small amount of gain variation shifts the cross-over frequency to higher or

lower frequencies, which will change the phase margin of the controlled plant by IO-PI. But

under gain variation condition, the phase margin remains constant for FO-PI and FO-[PI]

since their phase plots are flat around the cross-over frequency.

This feature is an important feature for a controller in the grid-connected PV systems

because, in addition to the deviation of nominal designed values in the passive components

(which is caused by ambient temperature or aging), the DC bus voltage, inverter gain, grid

voltage and frequency, etc. fluctuate in the system continuously. All of these deviations in

the system parameters vary the dynamics of the system. Hence, having a robust controller

which can tolerate these type of uncertainties is highly desirable in this application.

The time response of these three controllers have been illustrated in Fig. 5.16. As

shown in this figure, the overshoots of step responses in the designed FO-[PI] and FO-PI

controllers are smaller than IO-PI.

In Fig. 5.17, the step responses of the designed IO-PI, FO-PI, and FO-[PI] under
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Fig. 5.15: Bode plot of controlled system using IO-PI and FO-PI.
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Fig. 5.16: Time response comparison among three controllers.
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±20% open-loop gain variations are depicted. The amplitude of the input step has been

normalized.

The percentage of overshoot deviations under gain variations are reported in Table 5.1.

Clearly, the system has less overshoot deviations under loop gain variations when fractional

order controllers are applied.

5.3.3 Tuning of Voltage Controller

The open-loop transfer function for voltage control loop is

GP (s) =
1

0.001s
e1e−4sMid, (5.21)

where the reduced order Mid for FO-PI is

Mid =
1

0.003s + 1.33
, (5.22)

for FO-[PI], the reduced order Mid is

Mid =
3.8

0.01s + 4.8
, (5.23)

and eventually, the reduced order Mid for IO-PI is

Mid =
4

0.01s + 5
. (5.24)

In all three cases, Mid has a pole which is far from imaginary axis and then the voltage

control loop can be approximated by

GP (s) =
1

0.001s
e1e−4s. (5.25)

By applying the proposed tuning method, the tuned gains of IO-PI for the voltage

control loop are kp = 0.2, ki = 10.



123

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness of IOPI Controller

 

 
K=0.8
K=1.0
K=1.2

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness FOPI Controller

 

 
K=0.8
K=1.0
K=1.2

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

Time(s)

V
ol

ta
ge

Robustness FOPIB Controller

 

 
K=0.8
K=1.0
K=1.2

Fig. 5.17: Robustness comparison among all three controllers.
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Table 5.1: Overshoot variation in presence of open-loop gain variations.

Controller Variations in Overshoot

IO-PI 1.82%

FO-PI 1.42%

FO-[PI] 1.03%

In the case of FO-PI, according to Fig. 5.18, the intersection point of two plots deter-

mines the order and integrator gain of FO-PI. By substituting these two values in (2.75),

the proportional gain is obtained. As seen in Fig. 5.18, the optimal order of integrator is

1 and the integrator gain of FO-PI is equal to 9.09 which is close to the integrator gain of

IO-PI.

The same approach has been applied for the tuning of FO-[PI], and according to

Fig. 5.19, ki and λ of FO-[PI] are obtained. By substituting these two values into (2.82),

the kp is determined. As seen in Fig. 5.19, for FO-[PI], λ = 1, ki = 10, and kp = 0.2 which

are equal to the integrator and proportional gains of IO-PI and FO-PI. This means that

all three controllers have the same gains and orders for voltage control loop under required

design criteria. The designed controller for the voltage loop control will be

C(s) = 0.2 +
10

s
. (5.26)

The Bode plot of the voltage control loop has been illustrated in Fig. 5.20.

5.3.4 Simulation of Three-Phase Grid-Connected PV System

To evaluate the performance of the benchmarked three-phase grid-connected PV system

using IOPI, FOPI, and FO[PI] controllers, in the first step, the behavior of this system

under step-like and ramp-like sun irradiation variations will be investigated. For this set

of simulations, sun irradiation varies as follow: G = 0.5 for t ∈ (0, 0.05), and it will be,

G = 0 for t ∈ (0.05, 0.1), and then G = 1 for t ∈ (0.1, 0.15), then G decreases from 1.0 to
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Fig. 5.20: Bode plot of voltage controlled system.

0.6 within the time period of t ∈ (0.15, 0.17), and G = 0.6 for t ∈ (0.17, 0.2) according to

Fig. 5.21.

Figure 5.22 illustrates the DC link voltage of the system during sun irradiation fluctu-

ations. Although the voltage controller is similar for all three current controllers, but since

current control loop have different regulators which cause different dynamics, the DC link

voltage acts differently. Obviously, in the case of using fractional order controllers, DC bus

faces less overshoot compared to IO-PI regulator.

Figure 5.23 shows that fractional order controllers and IO-PI controller have the same

responses for the ramp-like sun irradiation variations, but in the case of step-like fluctuations

in the sun irradiation, FO-PI and FO-[PI] extract more power from PV array.

Figure 5.24 illustrates the active and reactive injected power to the grid. As mentioned

before, current controllers try to increase the efficiency by maximizing the active power and

forcing the reactive power to be zero. However, fractional order controllers have better time

response features in the power control scheme. As can be seen in Fig. 5.24, the amount

of reactive power delivered to the grid is higher when the system is controlled by IO-PI
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Fig. 5.21: Sun irradiation profile.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
540

560

580

600

620

640

660

680

Time(s)

V
ol

ta
ge

(V
)

 

 
IO−PI
FO−PI
FO−[PI]

Fig. 5.22: Grid voltage of three-phase grid-connected PV system.
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Fig. 5.23: Ouput power of PV panels.

controller. Therefore, using IO-PI controller results less efficiency compared to fractional

order controllers.

If the system works under sun irradiation variation profile of Fig. 5.21, the total har-

monic distortion (THD) of the injected current to the grid will be as shown in Fig. 5.25.

According to these results, a grid-connected PV system, controlled by fractional order con-

trollers, deliver current to the grid with acceptable amounts of THD according to IEEE929

and this THD is less than the level of THD of the inverter output current when it is con-

trolled by IO-PI.

To investigate the robustness of the controller, the effect of changing the output filter

inductance value on the THD of output current has been evaluated. The simulations have

been done with nominal inductance L = 0.01H and L = 0.012H. Figure 5.26 illustrates the

THD of phase (a) of a three-phase grid-connected PV system when filter has the nominl

inductance and also when its inductance increases by 20%. As seen in this figure, IO-PI

controller has totally different THDs under different inductances but FO-PI and FO-[PI]

have similar THD level and they can tolerate some level of deviations in the system as
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Fig. 5.24: Active and reactive power of the three-phase grid-connected PV system.
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Fig. 5.25: Total harmonic distortion of the three-phase grid-connected system.
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expected.

5.4 Summary

The advantages of using FO-PI and FO-[PI] compared to IO-PI in the voltage and

current control loops of a three-phase grid-connected PV system was presented in this

chapter. According to the simulation studies, FO-PI and FO-[PI] are more robust against

the system uncertainties compared to IO-PI. In addition, using FO-PI and FO-[PI] decrease

the amount of delivered reactive power to the grid and consequently, increase the efficiency

of the system.

Fig. 5.26: Robustness of controlled grid-connected PV system against output filter indu-
tance deviations.
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Chapter 6

Conclusion and Future Works

The main purpose of this dissertation was to develop a close-loop control system for

a three-phase grid-connected PV system. The intention of the control system is to achieve

peak power point tracking to extract the maximum amount of power from the PV array

and control the output current and voltage of the inverter.

A two-level three-phase inverter with an inductive filter was chosen, due to the fact

that this topology is more popular and simple in a grid-connected PV system. Although

there are many different types of inverters for grid-connected PV systems and some of them

have better performance than the considered plant, the goal of this work is to compare

different control strategies, and therefore a specific topology used in the benchmark is not

an essential aspect in this work.

The main contributions of this research can be summarized as follows:

• This dissertation has introduced two types of MPPT algorithms, fractional order

extremum seeking control and BICO extremum seeking control, which have better

features compared to the existing MPPT methods.

First, these two algorithms have shorter rise time and faster convergence rate and

they can follow the rapid variations in the environmental conditions. Therefore, the

possibility of getting lost from the peak power point tracking is lower in these two

proposed MPPT algorithms compared to the previous ones. In addition, faster con-

vergence response may help in reducing the amount of capacitance needed for DC link

capacitor. Furthermore, the stability of these two algorithms has been investigated

and it has been shown that the BICO ESC and FO-ESC have more stability margin in

comparison with IO-ESC. Moreover, a fractional horse power dynamometer has been

benchmarked to compare the FO-ESC and IO-ESC performances.
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• In the second part of this dissertation, the control-loop performance in a three-phase

grid-connected PV system has been improved by using two types of fractional order

controllers, FO-PI and FO-[PI]. It has been shown that using these controllers not

only improves the efficiency of the system, but also the system can tolerate more

deviations in its parameters. These variations may occur because of environmental

conditions or aging in the components. By considering the results of this work, it

can be concluded that fractional order controllers are less sensitive to the mentioned

uncertainties.

Moreover, fractional order controllers improve the time response of grid-connected PV

system by injecting less oscillation to the grid and therefore less THD. This feature

improves the efficiency of the system by reducing the losses caused by THD.

Although the work presented in this dissertation has achieved some interesting results

from analysis and control point of view for grid-connected systems, many problems remain

open and will be the subject of future investigations. The main future research items are:

• The extension of fractional order controllers in the stationary domain for grid con-

nected systems.

• Applying the fractional order controllers and MPPT algorithms to other grid con-

nected PV system topologies for instance the LCL filtering topology.

• Thermal analysis of grid connected system and comparing the thermal losses and

amount of stress on the switches in the inverter when the control system is under

fractional order controllers and integer order controllers

• Applying distributed-order controllers to the grid connected PV systems.

• Hardware implementation of MPPT algorithms and fractional order controllers.
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