
Rolenc 1 29th Annual AIAA/USU
 Conference on Small Satellites

SSC15-VI-4

Creating an IP Router for Space to Ground Communications

David Rolenc
RT Logic

12515 Academy Ridge View, Colorado Springs, CO; 719-884-6344
dave@rtlogic.com

ABSTRACT
For smallsat ground station owners who are dissatisfied with the traditional and costly way of building stove-piped
ground station solutions, why not simply treat the satellite as a member of the IP network on the ground? This
solution allows the software on both the ground and satellite to dynamically change to meet the end-user needs,
unlike the static approach of ground stations of the past. Using the internet protocol (IP) to implement space to
ground communications allows flexible and affordable solutions. Leveraging currently available network stacks in
conjunction with existing space communications standards brings the internet protocol to space, allowing standard
client/server communications directly with the satellite by extending the ground network to space. Updating the
satellite’s software is accomplished by securely copying the software using readily available open source tools, such
as secure copy (SCP.) Interfacing with the satellite’s operating system is done using secure shell (SSH.) Software
development for the ground station and satellite under this paradigm is just like traditional network software
development, taking place at any time during the satellite’s lifecycle. By developing a custom linux network driver,
the network stack can be used to route packets to and from the satellite through a modem. The linux server on the
ground has an IP address on its network that is on the same subnet as that of the satellite. Network Address
Translation, which is built in to linux, can then be used to communicate with the satellite with traditional network
programming techniques. Well accepted standards like CCSDS can be used to encapsulate the IP traffic that is
transmitted to and received from the satellite. The satellite has built in software that performs the reverse operation
of the ground.

INTRODUCTION
What makes a ground station expensive? The general
answer is that ground stations don’t take advantage of
economies of scale. Most ground stations are built once
per satellite or group of satellites in a very custom,
stove-piped manner, and then they are only used for
that mission. Most development inside of ground
stations looks to solve an immediate problem. How do I
get my payload for this satellite? How do I access the
telemetry content for this satellite? How do I use this
satellite’s peripherals? How do I command this
satellite? Engineers don’t necessarily think about the
larger problem of reuse and efficiency. We collectively
have already solved this issue on the ground in
terrestrial-based computers and networks. Think of a
PC sitting on one’s desk. That PC may have a very
different mix of peripherals than any other computer,
but the operating system has a set of standards it can
use to access the peripherals in a seamless manner. It
treats all cameras like cameras and all printers like
printers and all keyboards like keyboards and all mice
like mice. As long as the peripheral plays by the rules,
it can be attached to the system and used almost
immediately. The problem with satellite
communications and more specifically ground stations

is that there are currently very few standards dealing
with how to build one. This leads to inefficiency and
lack of reuse. There is no chance that any peripheral or
piece of software can be reused as-is without a well-
accepted set of standards. With the advent of small
satellites, this may change. The push for small satellites
has resulted in a demand for low cost solutions. One
way to reduce cost is to encourage standards and reuse.
That brings us to the topic at hand, using existing and
already well-accepted standards to streamline the
communications from the ground to space. This
ultimately will make it easier to quickly and cheaply
deploy and communicate with small satellites (or any
satellites for that matter.) Standardized platforms
coupled with greater demand leads to more plentiful
and less costly solutions.

Standards
Which standards should the community use? On the
ground, the Internet Protocol, or IP is the dominant
solution. The internet makes use of the TCP/IP protocol
to serve web pages, so there is no lack of developers
who are well-versed in client/server programming
utilizing IP. Looking at the space side, the Consultative
Committee for Space Data Systems, or CCSDS, has a

Rolenc 2 29th Annual AIAA/USU
 Conference on Small Satellites

large set of standards for ground systems and their
interfaces to space systems. It’s usually better to use
standards that already exist and are well-accepted
instead of making new ones, so using various CCSDS
standards for communication to the satellite makes
sense. See table 1 for the applicable CCSDS standards.

Table 1: Applicable CCSDS Standards

CCSDS
Standard

Title

702.1-B-1 IP Over CCSDS Space Links

131.0-B-2 TM Synchronization and Channel Coding

732.0-B-2 AOS Space Data Link Protocol

231.0-B-2 TC Synchronization and Channel Coding

232.0-B-2 TC Space Data Link Protocol

132.0-B-1 TM Space Data Link Protocol

This paper deals with how to bridge the gap between
the dominant terrestrial solution and the dominant space
solution. The goal is to use commodity software
development techniques on both the ground and the
satellite to reduce costs. More to the point, no developer
should have to know anything about CCSDS to make
applications for the satellite or the ground interface to
the satellite. That should be part of the standardized
platform. Ideally, a majority of developers should
operate within the realm of client/server development.

Design
If the end goal is to bridge the gap between IP and a
satellite that accepts a CCSDS protocol, it stands to
reason that a router is needed that can accept IP input
and communicate with the space segment via CCSDS
protocols. Fortunately, CCSDS has a standard for
embedding IP within CCSDS frames. After the satellite
receives the data, it needs to pull out the IP packet
content and push the data on to the network stack.
Similarly, when IP data flows from the satellite to the
ground via CCSDS packets, the router on the ground
should pull out the IP data and push the data onto the
network stack for further routing. This router on the
ground is a critical part of the solution, since it allows
client/server communication from many hosts on the
ground to potentially many satellites in space. With this
solution, every satellite in space has an IP address, and
every host on the ground wishing to communicate with
it simply has to have a route through the ground to
space router.

10.20.10.40

10.20.30.41

10.20.30.42

10.20.30.43

Space to Ground Router

Standard NIC
10.20.30.25

PCIe Space NIC
192.168.1.5

Linux
Network

Stack
NAT

192.168.1.6

Modem

Modem PCIe Card

Network Switch/Router .

 Network Switch/Router

Standard NIC
10.20.10.41

LVDS

Figure 1: Ground Station Router

How to Make a Router
The linux operating system running on a commodity
server can be used as a router. It has all the tools
necessary to create complex routing structures. It can
essentially bridge the gap between different network
subnets. The most typical use-case of linux network
routers is to route traffic between a private subnet and
the internet making use of commodity network cards
for data transport. This is known as NAT, or Network
Address Translation.

The network card for communication to the space
segment doesn’t look like a typical network card, since
it has to interface with a modem to communicate with
the satellite using CCSDS protocols. The first
implementation of this idea used a PCI express digital
front-end processor card with LVDS inputs and outputs
to interface with the modem. The linux driver
developed for this card registered both as a linux
character device and a network card. This was initially
called a “Space NIC,” and allowed the linux server to
have an IP address for communication to the space
segment. In this solution the ground segment is on a
separate network subnet from the space segment. The
hosts on the ground network need to be able to
communicate with the space to ground router via a
regular NIC on the same subnet, then the linux routing
function routes the traffic to the space segment via the
Space Nic.

Linux systems are split into user space and kernel
space. Linux drivers operate within kernel space, while
most other programs operate within user space. This
address space separation provides some security to the
operating system. User space programs are much easier
to develop, so registering as a character device allowed

Rolenc 3 29th Annual AIAA/USU
 Conference on Small Satellites

the transfer of data from the device driver to user space
programs. The user space programs could then perform
the required CCSDS translations and feed the result
back into the device driver for further routing or
transmission to the satellite. The linux device driver for
the Space NIC does not have to be associated with a
physical card; it can instead be a piece of software that
performs the necessary CCSDS translation and
forwards the result to an IP-based modem. Being a
device driver that registers as a network card allows it
to play in the linux network stack’s routing tables.

Space NIC
Incoming
packets

from Modem
(Satellite)

Driver and user space app

Extract Data,
Pull IP Out Of CCSDS
Formatted Packets

Network Stack ?
Route Data To
Another NIC

Route Data To
Local Process

Push Data To
Network Stack

Figure 2: Example Incoming Packet Flow from the
Satellite

Regular NIC
Incoming
packets

from Ground

Linux router NAT

driver and user space app

This packet is
going to the space
segment!

Format into CCSDS
packets

Send to Modem for
transmit to satellite

Space NIC

Figure 3: Example Outgoing Packet Flow from the
Ground

Encryption Caveats
Packets on the space link are formatted according to
CCSDS Internet Protocol Extensions (IPE)
specifications. It may be desirable to encrypt this link,
so some level of custom formatting for encryption may
be needed. For example, AES encryption may require
an initialization vector and key index to be passed in the
clear in order to allow for decryption of the packet.
Note that the key index is not the key itself, and the
initialization vector does not need to be protected.
Another option is to not encrypt the link at this level
and count on other encryption mechanisms at different
layers, like TLS/SSL. That is the way the internet
works. There are many examples of how to set up
secure client/server connections that follow best
practices with TLS/SSL.

The Satellite Side
If the satellite is running linux, it can use a lot of the
same code as the ground side router. The idea is the
same, in that CCSDS packets are received from the
ground with embedded IP packets. The IP packets are
extracted and either routed through other
communications channels or delivered to local
applications. Local applications on the satellite can hold
simple client/server conversations with the ground,
since the device driver in the satellite abstracts away the
complexities of CCSDS from the developer. The
applications on both the ground systems and the
satellite are reduced to simple client/server network
applications that speak the already well-accepted
TCP/IP, UDP or pick any other protocol that rides on
top of IP. An example use-case is a satellite serving
web pages using a stock Apache web server. The
ground pulls up the satellite’s web page using a
standard Firefox web browser. Files can be transferred
to the satellite using the standard scp (secure copy)
utility. Administrators can use ssh (secure shell) to gain
full access to the satellite’s operating system. All the
complexity of CCSDS is completely hidden, and the
readily available client/server solutions can be used to
provide powerful solutions both on the satellite and the
ground.

Considerations for TCP/IP
TCP/IP is the protocol that the vast majority of the
internet uses. TCP/IP provides guaranteed delivery
(within reason) and guaranteed order. Internet traffic
uses the HTTP protocol, but it rides over TCP/IP.
TCP/IP is bi-directional and session-based, so a client
and server establish a channel for communication. Each
side must provide a “window,” which is simply a buffer
for data. When side A sends data to side B, side B must
acknowledge receipt of the data to side A before side A
can forget that data. After all, if the data doesn’t arrive

Rolenc 4 29th Annual AIAA/USU
 Conference on Small Satellites

to side B, side B will be requesting a retransmission of
the data. This action is known as “advancing the
window,” and it makes room for more data to be
transmitted between the client and server. Since
communication latency can be great between the
satellite and ground, any lost packets can cause
significant backups in the data windows on either side
of the TCP/IP conversation.

1. Initial
Transmit

2. Request
Re-Transmit
After Realizing
One Is Missing

3. Re-Transmit

Figure 4: Missed Packet Retransmission
If throughput is valued, the TCP/IP data windows on
both the satellite and ground should be configured large
enough to ride through any network communications
errors. The appropriate window size should be thought
of in terms of data rate and round trip time, but is
beyond the scope of this paper.

Forward Error Correction
One way to reduce the need for retransmissions of
TCP/IP packets is to implement forward error
correction on the link. The CCSDS TM
Synchronization and Channel Coding standard provides
numerous forward error correction techniques including
Reed-Solomon Coding, Low-Density Parity Check
Coding, Turbo Coding, and Convolutional Coding. The
ability to correct the data instead of requesting a
retransmission is crucial in getting good performance
on the space to ground link.

TCP/IP Congestion Avoidance
There are many algorithms to regulate TCP/IP windows
and other behavior. These are known as congestion
avoidance algorithms. The main way that the network
stack in any given system throttles TCP/IP date flow is
by reducing or increasing the advertised TCP/IP
window. When packet corruption occurs, the response
by the congestion avoidance algorithms is to reduce the
advertised window size. After all, if the link cannot
keep up reliably at the current rate, what good is it to

keep going that fast? Since TCP/IP is the backbone for
the internet, many algorithms like this are mandated so
that TCP/IP consumers and providers are good
neighbors. One of the most problematic algorithms is
the TCP slow start, which starts each TCP/IP session
with a very small TCP/IP window, and gradually
increases the window advertisement with each
positively acknowledged packet. With large latency
between the space and ground, it can take a while for
the advertised window to be large enough to support a
high throughput application. RFC-5681 mandates the
use of TCP slow start1, so it is not technically valid to
remove it on space links.

The Nagle Algorithm and Delayed Acknowledgements
The Nagle algorithm is used to combine small packets
into larger ones, provided there is unacknowledged data
already in transit. The idea is to reduce overhead by
combining the smaller packets into larger ones, but it
can have negative effects on throughput and latency. It
is recommended to disable the Nagle algorithm on
applications in the satellite and on the ground unless the
Nagle algorithm is shown to provide a needed benefit.
Delayed Acknowledgements are similarly meant to
reduce overhead by delaying TCP acknowledgements
by up to 500 ms.2 This behavior does reduce overhead,
but is also reduces the rate of window advancement.
When coupled with the Nagle algorithm, it can lead to
undesirable behavior. The Nagle algorithm relies on
acknowledgements to determine when to send the next
data; if the acknowledgement is delayed, then the data
that is to be transmitted is also be delayed.

UDP
User Datagram Protocol has a lot of attractive
characteristics for space/ground communication. UDP
does not guarantee delivery or order, but it is very
efficient and fast. It is ideal for health and status data
that periodically repeats, since if a packet gets missed,
another will show up in a short time. It is not ideal for
most payload data without a mechanism to request
retransmissions of missing packets. In these cases
developers find that they are recreating parts of TCP on
top of UDP. There’s nothing wrong with that approach,
but it can lead to more custom code spread across the
ground and space segments.

PGM
Pragmatic General Multicast has a negative
acknowledgement mechanism. A receiver requests a
retransmission only when it knows it is missing a
packet. It does not guarantee delivery like TCP/IP, but
it does maintain a data window for retransmission of

Rolenc 5 29th Annual AIAA/USU
 Conference on Small Satellites

missed data. It is not required to hold on to the data
until it is positively acknowledged by the receiver.
PGM also maintains sequence numbers for the packets,
so it can make sense of out of order receipt of data. This
leads to the best of both worlds in that a receiver can
request retransmission of a missed packet, but a slow
receiver doesn’t hold up the advancement of the data
window. Since it is multicast, multiple receivers can
consume data while not having a major impact on
bandwidth from the satellite. With TCP/IP, a window is
maintained for each client/server connection. In
contrast, PGM can maintain one window per data
source. This is very useful for payload distribution
amongst multiple clients on the ground. If the payload
happens to be important, the PGM windows can be very
large to allow significant protection from missed
packets.

Conclusion
Implementing routers on the ground that use existing
and well-established standards to translate the common
terrestrial network communications to standard space
communications is an important step in reducing cost of
ground station and satellite application development.
Utilizing widely available developers who are well-
versed in client/server development can lead to much
more interesting work within the space community by
focusing on the real problems instead of worrying about
the communications. In addition, there is a great deal of
client/server applications already available that can be
used in satellite applications. Web servers and secure
file transfer utilities are just the tip of the iceberg.
Standardization of communication will lead to faster
and cheaper deployments of satellites and their
corresponding ground stations, and much more reuse in
the industry.

References
1. Blanton, E. “RFC-5681 TCP Congestion

Control,” https://tools.ietf.org/html/rfc5681,
September 2009.

2. Braden, R. “RFC-1122 Requirements for Internet
Hosts - Communication Layers,”
https://tools.ietf.org/html/rfc1122, October 1989.

https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc1122

	Creating an IP Router for Space to Ground Communications
	ABSTRACT
	INTRODUCTION
	Standards
	Design
	How to Make a Router
	Encryption Caveats
	The Satellite Side
	Considerations for TCP/IP
	Forward Error Correction
	TCP/IP Congestion Avoidance
	The Nagle Algorithm and Delayed Acknowledgements
	UDP
	PGM
	Conclusion
	References

