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ABSTRACT 
For smallsat ground station owners who are dissatisfied with the traditional and costly way of building stove-piped 
ground station solutions, why not simply treat the satellite as a member of the IP network on the ground? This 
solution allows the software on both the ground and satellite to dynamically change to meet the end-user needs, 
unlike the static approach of ground stations of the past. Using the internet protocol (IP) to implement space to 
ground communications allows flexible and affordable solutions.  Leveraging currently available network stacks in 
conjunction with existing space communications standards brings the internet protocol to space, allowing standard 
client/server communications directly with the satellite by extending the ground network to space.  Updating the 
satellite’s software is accomplished by securely copying the software using readily available open source tools, such 
as secure copy (SCP.) Interfacing with the satellite’s operating system is done using secure shell (SSH.) Software 
development for the ground station and satellite under this paradigm is just like traditional network software 
development, taking place at any time during the satellite’s lifecycle. By developing a custom linux network driver, 
the network stack can be used to route packets to and from the satellite through a modem. The linux server on the 
ground has an IP address on its network that is on the same subnet as that of the satellite. Network Address 
Translation, which is built in to linux, can then be used to communicate with the satellite with traditional network 
programming techniques. Well accepted standards like CCSDS can be used to encapsulate the IP traffic that is 
transmitted to and received from the satellite. The satellite has built in software that performs the reverse operation 
of the ground. 

INTRODUCTION 
What makes a ground station expensive?  The general 
answer is that ground stations don’t take advantage of 
economies of scale. Most ground stations are built once 
per satellite or group of satellites in a very custom, 
stove-piped manner, and then they are only used for 
that mission.  Most development inside of ground 
stations looks to solve an immediate problem. How do I 
get my payload for this satellite? How do I access the 
telemetry content for this satellite? How do I use this 
satellite’s peripherals? How do I command this 
satellite? Engineers don’t necessarily think about the 
larger problem of reuse and efficiency. We collectively 
have already solved this issue on the ground in 
terrestrial-based computers and networks. Think of a 
PC sitting on one’s desk. That PC may have a very 
different mix of peripherals than any other computer, 
but the operating system has a set of standards it can 
use to access the peripherals in a seamless manner.  It 
treats all cameras like cameras and all printers like 
printers and all keyboards like keyboards and all mice 
like mice. As long as the peripheral plays by the rules, 
it can be attached to the system and used almost 
immediately. The problem with satellite 
communications and more specifically ground stations 

is that there are currently very few standards dealing 
with how to build one. This leads to inefficiency and 
lack of reuse. There is no chance that any peripheral or 
piece of software can be reused as-is without a well-
accepted set of standards.  With the advent of small 
satellites, this may change. The push for small satellites 
has resulted in a demand for low cost solutions. One 
way to reduce cost is to encourage standards and reuse. 
That brings us to the topic at hand, using existing and 
already well-accepted standards to streamline the 
communications from the ground to space. This 
ultimately will make it easier to quickly and cheaply 
deploy and communicate with small satellites (or any 
satellites for that matter.) Standardized platforms 
coupled with greater demand leads to more plentiful 
and less costly solutions.  

Standards 
Which standards should the community use? On the 
ground, the Internet Protocol, or IP is the dominant 
solution. The internet makes use of the TCP/IP protocol 
to serve web pages, so there is no lack of developers 
who are well-versed in client/server programming 
utilizing IP. Looking at the space side, the Consultative 
Committee for Space Data Systems, or CCSDS, has a 
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large set of standards for ground systems and their 
interfaces to space systems. It’s usually better to use 
standards that already exist and are well-accepted 
instead of making new ones, so using various CCSDS 
standards for communication to the satellite makes 
sense. See table 1 for the applicable CCSDS standards.   

Table 1: Applicable CCSDS Standards 
 

CCSDS 
Standard 

Title 

702.1-B-1 IP Over CCSDS Space Links 

131.0-B-2 TM Synchronization and Channel Coding 

732.0-B-2 AOS Space Data Link Protocol 

231.0-B-2 TC Synchronization and Channel Coding 

232.0-B-2 TC Space Data Link Protocol 

132.0-B-1 TM Space Data Link Protocol 

This paper deals with how to bridge the gap between 
the dominant terrestrial solution and the dominant space 
solution. The goal is to use commodity software 
development techniques on both the ground and the 
satellite to reduce costs. More to the point, no developer 
should have to know anything about CCSDS to make 
applications for the satellite or the ground interface to 
the satellite. That should be part of the standardized 
platform. Ideally, a majority of developers should 
operate within the realm of client/server development. 

Design  
If the end goal is to bridge the gap between IP and a 
satellite that accepts a CCSDS protocol, it stands to 
reason that a router is needed that can accept IP input 
and communicate with the space segment via CCSDS 
protocols. Fortunately, CCSDS has a standard for 
embedding IP within CCSDS frames. After the satellite 
receives the data, it needs to pull out the IP packet 
content and push the data on to the network stack. 
Similarly, when IP data flows from the satellite to the 
ground via CCSDS packets, the router on the ground 
should pull out the IP data and push the data onto the 
network stack for further routing. This router on the 
ground is a critical part of the solution, since it allows 
client/server communication from many hosts on the 
ground to potentially many satellites in space. With this 
solution, every satellite in space has an IP address, and 
every host on the ground wishing to communicate with 
it simply has to have a route through the ground to 
space router.  
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Figure 1: Ground Station Router 

 

How to Make a Router 
The linux operating system running on a commodity 
server can be used as a router. It has all the tools 
necessary to create complex routing structures. It can 
essentially bridge the gap between different network 
subnets. The most typical use-case of linux network 
routers is to route traffic between a private subnet and 
the internet making use of commodity network cards 
for data transport. This is known as NAT, or Network 
Address Translation.  

The network card for communication to the space 
segment doesn’t look like a typical network card, since 
it has to interface with a modem to communicate with 
the satellite using CCSDS protocols. The first 
implementation of this idea used a PCI express digital 
front-end processor card with LVDS inputs and outputs 
to interface with the modem. The linux driver 
developed for this card registered both as a linux 
character device and a network card. This was initially 
called a “Space NIC,” and allowed the linux server to 
have an IP address for communication to the space 
segment. In this solution the ground segment is on a 
separate network subnet from the space segment. The 
hosts on the ground network need to be able to 
communicate with the space to ground router via a 
regular NIC on the same subnet, then the linux routing 
function routes the traffic to the space segment via the 
Space Nic. 

Linux systems are split into user space and kernel 
space. Linux drivers operate within kernel space, while 
most other programs operate within user space. This 
address space separation provides some security to the 
operating system. User space programs are much easier 
to develop, so registering as a character device allowed 
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the transfer of data from the device driver to user space 
programs. The user space programs could then perform 
the required CCSDS translations and feed the result 
back into the device driver for further routing or 
transmission to the satellite. The linux device driver for 
the Space NIC does not have to be associated with a 
physical card; it can instead be a piece of software that 
performs the necessary CCSDS translation and 
forwards the result to an IP-based modem. Being a 
device driver that registers as a network card allows it 
to play in the linux network stack’s routing tables.  
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Figure 2: Example Incoming Packet Flow from the 
Satellite 
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Figure 3: Example Outgoing Packet Flow from the 
Ground 

Encryption Caveats 
Packets on the space link are formatted according to 
CCSDS Internet Protocol Extensions (IPE) 
specifications.  It may be desirable to encrypt this link, 
so some level of custom formatting for encryption may 
be needed. For example, AES encryption may require 
an initialization vector and key index to be passed in the 
clear in order to allow for decryption of the packet. 
Note that the key index is not the key itself, and the 
initialization vector does not need to be protected.  
Another option is to not encrypt the link at this level 
and count on other encryption mechanisms at different 
layers, like TLS/SSL. That is the way the internet 
works. There are many examples of how to set up 
secure client/server connections that follow best 
practices with TLS/SSL.   

The Satellite Side 
If the satellite is running linux, it can use a lot of the 
same code as the ground side router. The idea is the 
same, in that CCSDS packets are received from the 
ground with embedded IP packets. The IP packets are 
extracted and either routed through other 
communications channels or delivered to local 
applications. Local applications on the satellite can hold 
simple client/server conversations with the ground, 
since the device driver in the satellite abstracts away the 
complexities of CCSDS from the developer. The 
applications on both the ground systems and the 
satellite are reduced to simple client/server network 
applications that speak the already well-accepted 
TCP/IP, UDP or pick any other protocol that rides on 
top of IP. An example use-case is a satellite serving 
web pages using a stock Apache web server. The 
ground pulls up the satellite’s web page using a 
standard Firefox web browser. Files can be transferred 
to the satellite using the standard scp (secure copy) 
utility. Administrators can use ssh (secure shell) to gain 
full access to the satellite’s operating system. All the 
complexity of CCSDS is completely hidden, and the 
readily available client/server solutions can be used to 
provide powerful solutions both on the satellite and the 
ground. 

Considerations for TCP/IP 
TCP/IP is the protocol that the vast majority of the 
internet uses. TCP/IP provides guaranteed delivery 
(within reason) and guaranteed order. Internet traffic 
uses the HTTP protocol, but it rides over TCP/IP. 
TCP/IP is bi-directional and session-based, so a client 
and server establish a channel for communication. Each 
side must provide a “window,” which is simply a buffer 
for data. When side A sends data to side B, side B must 
acknowledge receipt of the data to side A before side A 
can forget that data.  After all, if the data doesn’t arrive 
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to side B, side B will be requesting a retransmission of 
the data. This action is known as “advancing the 
window,” and it makes room for more data to be 
transmitted between the client and server.  Since 
communication latency can be great between the 
satellite and ground, any lost packets can cause 
significant backups in the data windows on either side 
of the TCP/IP conversation.  
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Figure 4: Missed Packet Retransmission 
If throughput is valued, the TCP/IP data windows on 
both the satellite and ground should be configured large 
enough to ride through any network communications 
errors.  The appropriate window size should be thought 
of in terms of data rate and round trip time, but is 
beyond the scope of this paper. 

Forward Error Correction 
One way to reduce the need for retransmissions of 
TCP/IP packets is to implement forward error 
correction on the link. The CCSDS TM 
Synchronization and Channel Coding standard provides 
numerous forward error correction techniques including 
Reed-Solomon Coding, Low-Density Parity Check 
Coding, Turbo Coding, and Convolutional Coding. The 
ability to correct the data instead of requesting a 
retransmission is crucial in getting good performance 
on the space to ground link.   

TCP/IP Congestion Avoidance 
There are many algorithms to regulate TCP/IP windows 
and other behavior. These are known as congestion 
avoidance algorithms. The main way that the network 
stack in any given system throttles TCP/IP date flow is 
by reducing or increasing the advertised TCP/IP 
window.  When packet corruption occurs, the response 
by the congestion avoidance algorithms is to reduce the 
advertised window size. After all, if the link cannot 
keep up reliably at the current rate, what good is it to 

keep going that fast? Since TCP/IP is the backbone for 
the internet, many algorithms like this are mandated so 
that TCP/IP consumers and providers are good 
neighbors. One of the most problematic algorithms is 
the TCP slow start, which starts each TCP/IP session 
with a very small TCP/IP window, and gradually 
increases the window advertisement with each 
positively acknowledged packet.  With large latency 
between the space and ground, it can take a while for 
the advertised window to be large enough to support a 
high throughput application. RFC-5681 mandates the 
use of TCP slow start1, so it is not technically valid to 
remove it on space links. 

The Nagle Algorithm and Delayed Acknowledgements 
The Nagle algorithm is used to combine small packets 
into larger ones, provided there is unacknowledged data 
already in transit. The idea is to reduce overhead by 
combining the smaller packets into larger ones, but it 
can have negative effects on throughput and latency. It 
is recommended to disable the Nagle algorithm on 
applications in the satellite and on the ground unless the 
Nagle algorithm is shown to provide a needed benefit.  
Delayed Acknowledgements are similarly meant to 
reduce overhead by delaying TCP acknowledgements 
by up to 500 ms.2  This behavior does reduce overhead, 
but is also reduces the rate of window advancement. 
When coupled with the Nagle algorithm, it can lead to 
undesirable behavior. The Nagle algorithm relies on 
acknowledgements to determine when to send the next 
data; if the acknowledgement is delayed, then the data 
that is to be transmitted is also be delayed. 

UDP 
User Datagram Protocol has a lot of attractive 
characteristics for space/ground communication. UDP 
does not guarantee delivery or order, but it is very 
efficient and fast. It is ideal for health and status data 
that periodically repeats, since if a packet gets missed, 
another will show up in a short time.  It is not ideal for 
most payload data without a mechanism to request 
retransmissions of missing packets. In these cases 
developers find that they are recreating parts of TCP on 
top of UDP. There’s nothing wrong with that approach, 
but it can lead to more custom code spread across the 
ground and space segments. 

 

PGM 
Pragmatic General Multicast has a negative 
acknowledgement mechanism. A receiver requests a 
retransmission only when it knows it is missing a 
packet. It does not guarantee delivery like TCP/IP, but 
it does maintain a data window for retransmission of 
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missed data. It is not required to hold on to the data 
until it is positively acknowledged by the receiver. 
PGM also maintains sequence numbers for the packets, 
so it can make sense of out of order receipt of data. This 
leads to the best of both worlds in that a receiver can 
request retransmission of a missed packet, but a slow 
receiver doesn’t hold up the advancement of the data 
window. Since it is multicast, multiple receivers can 
consume data while not having a major impact on 
bandwidth from the satellite. With TCP/IP, a window is 
maintained for each client/server connection. In 
contrast, PGM can maintain one window per data 
source. This is very useful for payload distribution 
amongst multiple clients on the ground. If the payload 
happens to be important, the PGM windows can be very 
large to allow significant protection from missed 
packets.  

Conclusion 
Implementing routers on the ground that use existing 
and well-established standards to translate the common 
terrestrial network communications to standard space 
communications is an important step in reducing cost of 
ground station and satellite application development. 
Utilizing widely available developers who are well-
versed in client/server development can lead to much 
more interesting work within the space community by 
focusing on the real problems instead of worrying about 
the communications. In addition, there is a great deal of 
client/server applications already available that can be 
used in satellite applications. Web servers and secure 
file transfer utilities are just the tip of the iceberg. 
Standardization of communication will lead to faster 
and cheaper deployments of satellites and their 
corresponding ground stations, and much more reuse in 
the industry.   
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