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Abstract

The number of objects in earth orbit is increasing at an unprecedented rate, increasing the need for space
situational awareness. A novel approach for the design and optimization of a disaggregated and scalable
satellite constellation for space object detection is proposed. Discussions of the payload design objectives
and detection constraints are presented with respect to the design process. To understand the effect of
detection capabilities for a space based sensor, a series of simulations were performed using the publicly
available JSpOC catalog through varying constellation architectures. A genetic algorithm was employed
to explore the objective space of constellation architectures in order to optimize mission performance. In
particular, this optimization effort seeks to maximize economic return of the space mission by quantifying
the financial value of mission performance.

I. Introduction

Growth of the space industry has given
the area in which spacecraft operate an
intrinsic value in and of itself. Although

largely theoretical when it was proposed, the
"Kessler Syndrome", a cascading of collisions
between orbiting objects rendering Earth orbit
inaccessible for generations [1], is a concern-
ing possibility in the near future. Decades
of "big sky" mentality regarding Space Ob-
jects (SOs) have left a Low Earth Orbit (LEO)
environment that is growing more and more
crowded with debris: functional satellites, non-
functional satellites, rocket bodies, and every-
thing else placed into orbit that has not yet
come down. The majority of information about
SOs comes from the U.S. Space Surveillance
Network (SSN), a network of ground- and
space-based assets dedicated to tracking satel-
lites, space debris, and all objects in Earth orbit
[2]. Data from the SSN is reported to and sub-
sequently made publicly available by the De-
partment of Defense’s Joint Space Operations

Command (JSpOC) [3]. JSpOC currently places
the number of objects in LEO larger than 10
cm at more than 21,000.

Given that the majority of SSN sensors are
ground-based radar arrays, only objects that
are larger than 10 cm in diameter can be con-
sistently tracked. Rayleigh scattering makes
smaller objects difficult to consistently detect
[4] and therefore objects smaller than 10 cm
cannot be cataloged. As such, the recorded
numbers of objects below 10 cm are only esti-
mates: approximately 500,000 SOs between 1
cm and 10 cm in diameter [5] and many mil-
lions of SOs below 1 cm in diameter [6]. The
situation is difficult to characterize even as it
continues to worsen. Events such as the 2007
Chinese Anti-Satellite Fengyun-3 test [7] and
the 2009 collision between the defunct Cosmos-
2251 satellite and the operational Iridium-33
satellite have both significantly worsened the
situation. These two events alone doubled the
number of SOs larger than 1 cm, producing
over 250,000 new pieces of space debris [8].
Despite international criticism, it is suspected
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that on-orbit ASAT tests such as those in 2013
and 2014 [9] will continue. JSpOC catalogs re-
veal that only 7% of SOs are operational assets.
This leaves 93% of the objects in orbit uncon-
trollable [11]. The severity of the issue becomes
apparent when considering its impact on op-
erational missions; orbital debris larger than
10 cm can cause catastrophic failure in most
space missions, and debris between 1 and 10
cm can easily disable or damage core mission
functionality [10].

Such a dire situation has caused concerns
over the long term health of the space environ-
ment. The United States has identified Space
Situational Awareness (SSA) as one of the most
important goals of space technology develop-
ment over the coming years. The Presidential
Space Policy calls for increased knowledge of
our space environment [12]. Publication 3-14
from the Joint Chiefs of Staff calls for increased
SSA as one of the most important areas of tech-
nology development for the coming decade
[13, 14]. Indeed, some of the most recent Con-
gressional budgets include requests from the
US Air Force for up to $6.5 billion for increased
SSA as well [15] in hopes that innovative so-
lutions will protect the space environment for
years to come. In terms of global resolution,
the United Nations Committee on the Peace-
ful Uses of Outer Space has also urged inter-
national cooperation on SSA as an issue that
affects all space-faring nations equally [16].

While many attempts have been made to
accurately characterize the current situation of
debris in earth orbit, few attempts have been
made to do so in a disaggregated manner. The
SBSS mission is a planned constellation of satel-
lites for on-orbit SSA, but has yet to be fully de-
ployed. Likewise, Space Fence consists of two
ground-based radar arrays, but is not planned
to scale any further [17]. A design paradigm
that has yet to be implemented to address the
SSA problem is a constellation of small satel-
lites. The design objectives of such a constella-
tion are delineated to allow the requirements
of the mission to drive the capabilities of the
satellite. Various sensor sizing metrics are de-
scribed to demonstrate that a small satellite
constellation can be feasibly created. The stan-
dard detection constraints for all space based
optical systems – line of sight, illumination,

and visual magnitude – are detailed in their
relevance to the simulation and of system ca-
pabilities. Once the parameters of the system
have been defined, a detailed simulation of mis-
sion performance will be performed. Finally,
an genetic algorithm is employed to optimize
the economic return of the proposed satellite
constellation.

II. Design Objectives and Sensor

Sizing

SSA mission architectures dictate a need to
detect as many objects as possible, detect the
dimmest objects possible, and obtain detections
with as much accuracy as possible, providing
criteria by which the system’s optical sensor
can be sized. While many parameters affect the
performance of an optical sensor, aperture di-
ameter D, pixel size p, and f-number N can be
used to more easily quantify the performance
of a given optical system, assuming all other pa-
rameters relevant to sensor sizing are assigned
constant values [21]. An analysis on these three
sizing parameters can narrow prospective op-
tics choices, but is not considered a means to
obtain a final system design.

By leveraging the three parameters stated
above, the instantaneous field of view or IFOV
for a given optical system can be defined.

IFOV = 2tan−1
(

p
2ND

)
(1)

IFOV can be described as the field of view for
a single pixel. This parameter is important in
determining the overall field of view or FOV
for an optical sensor, as well as affecting the
accuracy of a system. The following equation
shows how to calculate the vertical and hor-
izontal components of FOV, FOVv and FOVh
respectively, where np is the number of pixels
in a given sensor in each direction.

FOVv = np,v IFOV (2)

FOVh = np,h IFOV (3)

Optical systems with larger FOVs are capable
of detecting a higher volume of objects per
frame; however, because a sensor with a larger
IFOV captures photons from a larger area, the
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precise location of any detected object will be
less accurately defined. A tradeoff must be
made between increased detection and accu-
racy of detection with regard to IFOV. This
trade informs all three design parameters, D,
N, and p. The impact of this tradeoff can be
mitigated by choosing a sensor with a larger
pixel count, but consideration must be given to
other aspects of sensor design such as power
draw and physical dimensions. Additionally, a
higher FOV sensor will be capable of detecting
objects with higher angular velocities, given
shorter integration times [22], which can sim-
plify processing of frames.

To quantify the limiting magnitude, or
dimmest magnitude observable by an optical
system, a metric for magnitude needs to be
defined. In Equations 4 through 6, mv is the
limiting magnitude. The equation has been
split into smaller equations here in the interest
of space.

h1 = SNRalg[
√

miωND(qsky + qdark)]
1/2 (4)

h2 = Φ0τatmτopt

(
πD2

4

)
QE
√

p (5)

mv = −2.5log10

[
h1

h2

]
(6)

The above equation, developed by Coder
and Holzinger [21], incorporates a minimum
detectable signal to noise ratio, or SNR, which
is defined as the ratio of photons emitted by
the target object to the photons emitted by all
other noise sources. mi is the number of pixel
occupied by an SO, ω is the relative velocity
between the sensor and the SO, qsky is back-
ground radiance intensity per pixel, qdark is
dark current per pixel, Φ0 is the spectral ex-
citance of a magnitude 0 object, τatm is atmo-
spheric transmittance, τopt is optical transmit-
tance, and QE is the quantum efficiency of a
given sensor . Again, a higher limiting mag-
nitude indicates that dimmer objects can be
detected, so it is desirable to maximize this
value. In terms of design parameters, this im-
plies higher f-number, N, and lower aperture
diameter, D.

Features can be extracted from an image
using any number of open source codes for

feature or blob detection. Feature centroids are
extracted from an image based on an intensity
threshold. This threshold can be dynamically
calculated for each frame in order to more ac-
curately detect as many features as possible
while limiting false detections due to noise or
other image imperfections such as Earthshine.

Once an optical system has been selected
for a mission, high level algorithms for process-
ing images extracted from the sensor. Differen-
tiating between stars and SOs can be expressed
as a comparison of relative velocities of de-
tected features [23]. The assumption must be
made that more than half of the features de-
tected in a given image are stars. Stars will
move in a similar fashion, while SOs will de-
viate from this average. Then, by calculating a
rotation and translation of frames necessary to
align the greatest number of features, stars can
be identified and removed from the frames. Re-
maining features can then be classified as SOs.
Due to intermittent detection of some objects
on the edge of the sensor’s limiting magnitude
for a given expose time, there is the potential
for some misclassified objects. If, however, ob-
jects are tracked from frame to frame, tracks of
objects that have non-uniform detection history
can be maintained from further frames.

Features that have been identified as stars
can be matched to star catalog IDs by using
a Lost in Space or LIS algorithm [20]. This
method assumes no previous knowledge of
pointing attitude and matches stars based on
angular distances. Once stars have been as-
sociated with inertial bearings given in a star
catalog, these values can be used to calculate
inertial bearings of any SOs in the same frame.
This process is repeated for each frame and
a list of objects can be compiled for a set of
images taken with the optical payload. The
resulting data product can be a list of inertial
bearings, or right ascensions and declinations,
for each SO.

III. Detection Constraints

Before carrying out an analysis of the de-
tectability of objects, it is convenient to estab-
lish a constant coordinate system in which one
can work. This analysis, as with others [24],
is carried out with the I, J, and K positions
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and velocities of the objects and the observer
being fixed in the Earth Centered Inertial (ECI)
frame. The position of the observer is denoted
as o and the position of the SO can be denoted
as r. The distance between these two vectors
is defined as the line of sight (LOS) from the
observer to the objects, v. The center of the
FOV of the optic is defined as p̂. The sun vec-
tor is defined as the unit vector in the direction
from the object to the sun, ŝ. Calculation of
reflectivity requires the angle between the LOS
and the sun, and so ψ, the solar phase angle, is
also defined. With the radius of the earth being
Re, the LOS would be tangent to the surface of
the earth when v is equal to v‖ at an angle θ
from the observer. All of this notation can be
visualized in Figure 1.

Figure 1: The relationship between an observer and an
SO in orbit around Earth.

III.1. Line Of Sight

At this point, LOS equations can be derived to
define which objects are geometrically possible
for an observer to see. The angle θ between
v‖ and v is used to define angles at which the
Earth will not be between an object and the
observer. The Earth radius at the tangent point
is denoted as Re such that inspection will yield
that ‖Re‖2 + ‖v‖‖2 = ‖o‖2. Continuing this
analysis, the following equations can define
LOS condition for a given SO:

cosθ =

√
‖o‖2 − ‖Re‖2

‖o‖ (7)

o · v ≥ −cos(θ)‖o‖‖v‖ (8)

The inequality shown in Equation 9 can
then be derived via the substitution of Equa-

tion 7 into Equation 8. Equation 9 will be true
if the SO is in the LOS of the observer, and
will be false if the SO is not in the LOS of the
observer.

o · v̂ +
√
‖o‖2 − ‖Re‖2 ≥ 0 (9)

III.2. Illumination

Objects that are located in the earth’s shadow
will not be illuminated by the sun and will
therefore not be visible to the observer. For the
sun vector ŝ defined in Figure 1, the following
two conditions must be satisfied for an object
to be eclipsed by the Earth:

r · ŝ > 0 (10)

‖ŝ× r‖ ≤ Re (11)

III.3. Signal to Noise Ratio

While the limiting and visual magnitude of an
object are both useful for abstract determina-
tion of optical payload performance, they are
not ideal metrics for defining detectability of
an object. Instead, relations involving the vi-
sual magnitude of objects can be used to derive
the signal to noise ratio (SNR) of an object. The
SNR can be much more useful for simulation
as it can be manipulated to serve as a function
of distance between the observer and the ob-
ject, ‖v‖, and parameters of the payload and
environment.

In deriving an applicable form of this equa-
tion, one must first define ψ using the coor-
dinate system outlined in Figure 1. The total
reflectivity, a, of an object is defined as the
sum of the specular and diffuse components of
reflectivity as functions of ψ.

ψ = arccos
(

v · s
‖v‖ · ‖s‖

)
(12)

a = adi f f (ψ) + aspec(ψ) (13)

Having defined the reflectivity, an equation for
visual magnitude can be developed. The ra-
dius of the object r defines the area A = 2πr.
The distance to the object, ρ = ‖v‖, and the
reflectivity of an object, a, respectively, are then
parameters of an equation for the conservative
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approximation for the visual magnitude of a
spherical object in the vacuum of space [24].

mSO = msun − 2.5log
(

Aαa
ρ2

)
(14)

In Equation 14, the illuminated area of an SO
is A, and the albedo of the SO is α ∈ [0, 1]. The
following substitution will be made in further
calculations.

b = Aαa (15)

The mean value for the albedo of space debris
has recently been estimated as 0.175 [25]. This
value will be used for both α and aspec in simu-
lation. adi f f can be calculated from the geome-
try of the two objects as defined in [21]. SNR is
defined as the ratio between the average num-
ber of photons from an SO and the standard
deviation of photon flux from all noise sources
[21]. SNR is defined below in Equation 16 with
substitutions made for simplicity.

SNR =
qSOt√

qSOt + c
(16)

c = m
(

1 +
1
z

)[
(qsky + qdark)t +

σ2
r

n2

]
(17)

The average number of photons from the SO
can be approximated as the photon flux qSO
multiplied by integration time t with the stan-
dard deviation of photon flux from all noise
sources is the square root of the average num-
ber of photons from the SO plus c. c is defined
as the sum of all other noise sources: qp,sky and
qp,dark as defined earlier, m being number of
pixels occupied by an SO, z being the number
of pixels without an SO, σ2

r being the read noise
of the camera, and n being pixel binning fac-
tor. It is important to note that qSO is the only
term in the above SNR equation that varies
with distance from observer to SO ρ. As such,
the minimum photon flux necessary to detect
an object qmin can be written as a quadratic
in terms of the minimum SNR SNRmin and
integration time t.

q2
SO

(
tint

SNRmin

)2

− qSOtint − c = 0 (18)

qmin =
SNR2

min
2t2

int

(
tint +

√
t2
int + 4

t2
int

SNR2
min

c

)
(19)

Only the positive, real root of qSO is considered
as a negative or imaginary root would only be
valid for a photon source, rather than a photon
detector. Another form of qSO can also be deter-
mined from the total spectral excitance of the
SO ΦSO, the transmittance of the atmosphere
and the optic τatm, τopt ∈ [0, 1], the quantum
efficiency of the camera QE, and the diameter
of the lens D [21].

qSO = ΦSOτatmτopt

(
πD2

4

)
QE (20)

Given the definition for ΦSO for a constant Φ0
for a magnitude zero object [21],

ΦSO = Φ0 × 10−.4mSO (21)

This equation can be simplified, as space based
optical sensors need not take the transmittance
of the atmosphere into account, i.e. τatm = 1.

qSO = ΦSOτopt

(
πD2

4

)
QE (22)

Defining qopt as

qopt = τopt

(
πD2

4

)
QEΦ0 (23)

qSO = qopt × 10−.4mSO (24)

Substituting qmin as qSO

mSO = −2.5log10

(
qmin
qopt

)
(25)

Substituting Equation 25 into Equation 14 and
making the appropriate substitutions yields:

2.5log10

(
qmin
qopt

)
+ msun = 2.5log10

(
b
ρ2

)
(26)

Defining mreq as

mreq = 2.5log10

(
qmin
qopt

)
+ msun (27)
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A final form of maximum range ρmax as a func-
tion of SNRmin and t can now be obtained:

ρ ≤ ρmax =

√
b

10.4mreq
(28)

The three constraints on object detection:
line of sight, illumination, and signal to noise
ratio are now defined. The reader will note
that these three constraints vary solely on the
geometry of the coordinate system in Figure 1
and the performance of the optical payload.
As such, assumptions may be made about the
optical payload to simulate the performace of
an observation platform through a variety of
orbital parameters.

Using the following values for nominal
small satellite payload parameters , a plot of ρ
vs. SNR can be obtained.

Table 1: Nominal small satellite optical payload parame-
ters for calculation of ρ vs SNRmin

Variable Value Units

ψ π
3 radians

t .1 seconds
Φ0 5.636× 1010 photons/s/m2

D .075 meters
N .8 N/A
f N*D meters
QE .6 N/A
z 1024*1280*.1 pixels
m 5 pixels
qp,dark .5 photons/s/pixel
qp,sky .5 photons/s/pixel
τopt .9 N/A
σ2

r 9 photons/s/pixel
n 1 N/A
SNRmin 4 N/A
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Figure 2: The range at which an observer can detect an
object as a function of SNR. A nominal SNR
value of 4 would yield detectability of an object
1 cm in diameter at approximately 600 km.

IV. Constellation Design

The performance of many space missions is
enhanced through the utilization of a constella-
tion architecture. For space situational aware-
ness missions, constellations are particularly
valuable for maximizing the quantity of de-
tections from a space based platform. By de-
ploying multiple sensors that are distributed
throughout the orbit environment, a constel-
lation based SSA mission can significantly in-
crease detection performance. The recent devel-
opments in small satellite systems have given
rise to several other benefits in constellation
design as well [31]. First, a constellation ar-
chitecture is by definition a fractionated and
disaggregated system that is resilient to fault.
By utilizing a series of identical satellites, a con-
stellation is more resilient to individual satellite
failure. Second, constellations are highly scal-
able in that they can be incrementally deployed.
This provides financial and operational flexi-
bility for mission planners, not requiring the
entire system to be deployed in a single launch.
Finally, this incremental deployment results
in a much higher technology refreshment rate
than larger satellite missions. With a shorter
life time and scalable architecture, sequential
satellite deployments can take advantage of in-
cremental technology improvements, leading
to more adaptive system architectures. These
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benefits make the utilization of a constellation
architecture highly attractive in the design of a
space situational awareness campaign.

IV.1. Performance Simulation

A thorough discussion of the parameters de-
scribing payload design and detection capa-
bility has been presented. To quantify the ef-
fects of these parameters on a space mission,
a detailed space situational awareness mission
simulator has been developed. This simulator
leverages much of the work done at Georgia
Tech in the realm of space situational aware-
ness and propagation modeling [24].

The simulation begins by generating a fixed
set of surveillance spacecraft that are placed
in a low earth orbit. These simulated satel-
lites employ the same payload parameters pre-
sented in Table 1 and are representative of the
capabilities typical of small satellites. These
spacecraft are propagated over a given sample
period and are aligned with their sensors di-
rected along the prograde vector. Fixed step
two-body propagation is deemed sufficiently
accurate for short simulations and the applica-
tion at hand.

Next, the 15,106 known SOs contained in
the 2015 Space Object Catalog (SOC)1 are prop-
agated in a similar manner to the surveillance
satellites. The relative motion of SOs within
the surveillance spacecraft field of view can
be determined by considering the propagated
orbit information along with attitude informa-
tion. Finally, this relative motion can be used
to simulate the detection capability of each
spacecraft using the photometric Equations 16
through 28. All objects are assumed to have 10
cm diameter, and only the diffuse component
of reflectivity is considered. These values were
assumed for conservatism. Orbit propagation
and detection calculations are performed for
a period of 24 hours and are used to deter-
mine the number of unique object detections
in that time period. By simulating the mo-
tion of known SOs from the SOC along with
proven photometric relationships, the perfor-
mance simulation model yields high fidelity
estimations of a constellation’s performance.
An example of the detection capabilities of a

single surveillance spacecraft over the course
of a nominal day is shown in Figure 3.

Figure 3: Unique detections. Single Spacecraft, 500 km,
60 deg

The simulated spacecraft undergoes 15 or-
bital periods in the given 24 hours sample time.
Outside of the initial peak in unique detec-
tions, the number of new objects detected by
the spacecraft is relatively constant through
each orbital period. The relative motion of
thousands of bodies is a highly nonlinear func-
tion whose performance varies over any given
24 hour period. However, a 24 hour sample
period is deemed sufficient for this analysis in
that the decrease in unique detections is rel-
atively minimal over 15 orbital periods. An
actual space surveillance satellite should ex-
pect to observe more objects than described
here, as objects outside of the object catalog are
not included.

IV.2. Objective Space

This detailed performance simulation can be
utilized in an optimization algorithm to max-
imize the performance of a constellation of
space sensors. By nature, mission design is a
multidisciplinary effort, making the establish-
ment of an objective function difficult. In many
previous constellation optimization efforts, a
series of multiple objective functions were es-
tablish a set of pareto-optimal solutions [26].
These algorithms develop a pareto hrontier of
design points that represent tradeoffs between
performance objectives. For example, many of
the design tradeoffs performed in constellation

1www.space-track.org; accessed on 3/30/2015

Snow, et. al 7 of 12 29th Annual AIAA/USU
Conference on Small Satellites



optimization dealt with maximizing earth cov-
erage while minimizing mission cost [26, 27].
These two objectives can intuitively be seen
to be inversely proportional, making the def-
inition of an optimal solution unclear. Other
optimization efforts have sought to remove the
pareto frontier and establish a single optimum
point by requiring a minimum performance
level and seeking to only minimize cost [28].
This optimization effort takes advantage of re-
cent developments in the economics of satellite
design to generate a single objective function
in terms of economic return. The optimization
algorithm employed here can be described as:

maximize
X f (X) = Net Present Value

subject to: 1
6578 km

0◦

 ≤
N

a
i

 ≤
 36

7678 km
100◦


(29)

Net Present Value (NPV) is a quantitative
measure of economic return and is defined as
the summation of all discounted present and
future cash flows. NPV can be written as:

NPV = ∑(Revenue− Costs) (30)

NPV provides a practical method for eval-
uating financial decisions by considering the
time value of money. The design variable N is
the number of satellites deployed in the constel-
lation, a is the semi-major axis of all satellites
in the constellation, and i is the inclination.
There are several ways to configure the satel-
lite constellation, yet the Walker Delta pattern
[29] has been commonly used for initial con-
stellation design, as it evenly distributes the
satellites throughout the orbit environment. A
Walker Delta constellation is characterized by
N satellites distributed across P planes with
S satellites per plane. All satellites share the
same semi-major axis, eccentricity, and incli-
nation but are phased in terms of argument
of periapis and right ascension of ascending
node. The ascending nodes of the P orbital
planes are distributed evenly at intervals of
360
P . Similarly the S satellites in each orbital

plane are distributed evenly at intervals of 360
S .

Finally, the phase difference angle ∆φ repre-
sents the difference in argument of periapis
between adjacent planes. This phase differ-
ence angle must be an integer multiple of 360

N .
The Walker Delta configuration ensures that
all satellites are evenly distributed throughout
the orbit environment. This analysis only con-
siders constellations of up to 36 satellites with
an orbital altitude between 500 and 1300 km
and inclinations ranging from equatorial to sun
synchronous configurations.

The objective function utilized relies on
careful calculation of economic value gener-
ated by a particular constellation as well as its
lifecycle cost. The evaluation of constellation
performance in terms of economic return is
a valuable tool for mission planners, yet re-
quires a detailed understanding of the true
value of the space mission for its end data
consumers. The prevailing market price that
consumers are willing to pay for space services
can be explored for various space missions,
but in terms of space surveillance, Orbital Out-
look, a DARPA initiative, has provided helpful
metrics for quantifying the financial value of
space surveillance. This initiative provides a
mechanism for importing additional data from
sources outside the SSN. Orbital Outlook has
specified that the value of relevant SSA data is
on the order of $.01/byte [30]. This enables the
calculation of revenue as follows:

Revenue =
nobs ·

bytes
observation ·

$
byte

(1 + R)T (31)

Where R is the required rate of return, nobs
is the number of observations, and T is the
discount period. A three year mission lifetime
is assumed with two years of development and
a single year of operation. Orbital Outlook has
identified specific areas of relevant data [32]
to which space based sensors can contribute.
These data products include the angular obser-
vations of rA and dec relative to the spacecraft,
the pixel size/location of the detected object
in the field of view as well as uncertainty mea-
surements. The total data generation capacity
of a small space based sensor can be quantified
at 1000 byptes per unique observation. This
data product could be increased from uncor-
related track information to correlated track
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information through post processing on the
ground, but this added value is not considered
in this analysis. After considering the revenue
generated by a constellation of satellites, the
lifecycle cost of deploying these satellites can
be defined as follows:

Cost = CDev + CProd + CLaunch + COps (32)

Where CDev is the development cost, CProd
is the production cost, CLaunch is the launch
cost, and COps is the operational cost. Devel-
opment is considered as a fixed cost effort at
$2,000,000 for the design, development, and
testing of the satellite system. This cost is dis-
counted at a rate R of 6% and is incurred over a
two year development period. The production
of a constellation of satellites is given by:

CProd =
TFU · N1+ log(B)

log(2)

(1 + R)T (33)

This incorporates a Wright Model learning
curve [31] where the incremental unit cost is
reduced with increased production based on a
learning curve fraction, B. In this analysis, a
protoflight development cycle is assumed with
production costs incurred after one year of de-
velopment.

Launch costs are assumed at $545,000 per
unit based on secondary payload manifesting
prices. These costs are incurred after the two
year development period and are discounted at
the same rate, R. Finally, operations are given
as:

COps =
0.08 · CProd + Rent · tOps + 2 ·M

(1 + R)T (34)

Where operational time is given as tOps and
is modeled to scale with increasing number of
satellites in addition to an overhead rate for
ground station equipment. M describes the
encumbered salary rate for ground station op-
erators. It can be assumed that two ground
operators are sufficient to handle the relatively
small constellations considered here. The op-
erational time for the mission is limited to one
year and is discounted at rate R. The specific
values for each of the parameters are given in
Table 2 below.

Table 2: Spacecraft Mass Distributions

Parameter Value

CDev $2,000,000
CTFU $200,000
Learning 0.90
CLaunch $545,000/unit
CDev $3,000/month
M $150,000
Rate 6%
Total Lifetime 3 years

V. Optimization Methodology

Performance simulation based on discrete cal-
culations leads to an objective space that is
highly discontinuous and nonlinear. Several
optimization algorithms are suited for this op-
timization problem such as the simulated an-
nealing and iterative mixed-integer methods,
but a genetic algorithm was selected for this de-
sign problem. Many constellation optimization
problems have been addressed using genetic
algorithms [26] due to its stochastic nature and
ability to freely explore the objective space. Ge-
netic algorithms are meta-heuristic algorithms
inspired by the reproductive and evolutionary
processes found in nature. The specific genetic
algorithm metrics employed in this optimiza-
tion effort are shown in Table 3. A full descrip-
tion of these parameters can be studied further
in other texts [26].

Table 3: Summary of genetic algorithm parameters.

Function Value

Population Size 20
Generations 15
Elitism Count 2
Selection Method Roulette
Crossover Fraction 75%
Mutation Fraction 1%
Constraint Evaluation Exterior Penalty

V.1. Optimization Results

Using the optimization algorithm described
here, an optimal design has been found for
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a constellation consisting with [N, a, i] =
[4, 6700km, 77◦] with an overall economic re-
turn of $12.4 million by using a genetic algo-
rithm whose performance can be measured in
Figures 4 and 5. This NPV represents a return
on investment of 261%.

Figure 4: Distance between design points through gen-
erations

Figure 5: Range of population objective function through
generations

Figure 4 describes the convergence of de-
sign points to a near homogeneous population
at the optimal solution through consecutive
generations. Figure 5 displays the range of the
population’s fitness in the objective space. As
the population converges, the range of objec-
tive function values decreases. However, the
stochastic nature of genetic algorithms ensure
that the population continues to explore the
sample space.

To understand the impact of each of the
design variables N, a, and i, a univariate sam-
pling of the objective space is displayed in Fig-
ures 6, 7, and 8. The effects on both economic
return (NPV) as well as number of unique de-
tections per day are analyzed. In particular,
unique detections are provided as percentage
of the SOC.
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Figure 6: Semi-Major Axis of Orbit vs Economic Return
and Unique Detections

With changing semi-major axis, it can be
seen that lower altitudes are more favorable in
general. The lower altitude orbits have a faster
orbital period, which can in general generate
more observations in a given mission time line.
Given that most objects in the SO catalog are
below 1200 km in altitude, any altitude below
this can be expected to give a high number of
observations.
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Figure 7: Inclination of orbit vs Economic Return and
Unique Detections

By changing inclination alone, it can be seen
that in general optimal orbit locations are at
higher inclinations. Higher inclination orbits
are typically regions that are well lit and con-
tain largest special density of objects as many
orbital planes intersect. It should be noted that
for the case of a single satellite at 500 km alti-
tude, little advantage is gained from increasing
an inclination of 60 degrees to 90 degrees.
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Figure 8: Number of Satelites vs Economic Return and
Unique Detections

Finally, a uni-variate sweep of constellation
size can be analyzed. By nature, increasing the
number of sensors will increase the quantity
of relevant data being produced by the con-
stellation. However, there exists a point of di-
minishing returns, where additional satellites
increase the number of unique detections at a
decreasing rate. Though it can be seen that to-
tal observations are continually increasing with
the number of satellites, the marginal return
of these observations is less than the marginal
cost of deploying additional satellites.

It should be noted that for all design points
a large percentage of the current SOC is ob-
served every day. Space Fence consistently
monitors 90% of the SOC [17]. The proposed
constellation stands to significantly augment
current SSA efforts.

V.2. Uncertainty

Economic return calculations are heavily de-
pendent on performance estimations as well as
reliable values for financial parameters. It is
prudent to quantify the uncertainty surround-
ing these parameters. Mission performance in
terms of SO detection has been thoroughly clas-
sified through numerical modeling. Though
variations in payload parameters have an ef-
fect on system performance, the values selected
here are conservative. Moreover, the number of
objects propagated in the simulation are far less
than the actual number of space objects. The
SOC simulated here does not include objects
smaller than 10 cm in diameter and does not
include the further increase of objects through
the course of the simulation. As this optimiza-
tion effort seeks to quantify the economic re-

turns generated by mission performance, the
financial parameters provided in these calcu-
lations are just as important in the objective
function value as detection performance. As
the coefficient of economic value per relevant
byte of data is a driving factor for the over-
all objective function, a sensitivity analysis of
varying payment rates was considered. At sev-
eral values of $/byte payment rate a complete
optimization algorithm was performed. The re-
sults shown in Figure 9 capture the sensitivity
of the optimization effort with respect to the
changes in the price of data generated by the
constellation.

Figure 9: Sensitivity of Economic Return and Constella-
tion size to Payment Rate

It is evident that the level of economic re-
turn is highly dependent on payment rate.
However, the designs shown here generate a
positive economic return at a payment rate
80% less than the expected value. The signif-
icant performance-to-cost capability of small
satellite constellations enables sufficient con-
tingency against changes in payment rate. For
each optimal point generated generated across
varying payment rates, semi-major axis and
inclination remained constant at 6700 km and
70◦respectively. However, as the payment rate
increases, the optimal number of satellites in-
creases as well. The higher payment rate raises
the point of diminishing returns displayed in
Figure 8.

VI. Conclusion

The design process proposed here includes the
design of a spacecraft payload, an analysis of
the detection constraints, and an optimization
effort to maximize constellation performance.
The prospect of deploying a constellation of
small satellites for space situational awareness
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is promising in terms of economic return and
overall detection capability. The total returns
produced by the optimal configuration amount
to over 2.5 times the required costs while ob-
serving nearly 40% of the SOC each day. The
performance simulation and quantification of
economic return provide compelling reasons
to pursue the development of such a constella-
tion. Quantifying the financial value of mission
performance enables mission planners to truly
evaluate the economics of a space mission. Op-
timization based on economic return provides
a powerful tool for aerospace firms and can
give confidence to pursue new endeavors.
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