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Abstract

We present storage integrity concepts developed for the CubeSat MOVE-II over the past two years, enabling
dependable computing without relying solely upon hardened special purpose hardware. Neither component level,
nor hardware- or software-side measures individually can guarantee sufficient system consistency with modern
highly scaled components. Instead, a combination of hardware and software measures can drastically increase
system dependability, even for missions with a very long duration. Dependability in the most basic sense can
only be assured if program code and required supplementary data can be stored consistently and reliably aboard
a spacecraft. Thus, to enable any form of meaningful dependable computing, storage integrity must be assured
first and foremost. We present three software-driven concepts to assure storage consistency, each specifically
designed towards protecting key components: a system for volatile memory protection, the filesystem FTRFS to
protect system software, and MTD-mirror to safeguard payload data. All described solutions can be applied to
on-board computer design in general and do not require systems to be specifically designed for them. Hence,
simplicity can be maintained, error sources minimized, testability enhanced, and survival rates of miniaturized
satellite increased drastically.

I. INTRODUCTION

Recent miniaturized satellite development shows a

rapid increase in available compute performance and

storage capacity, but also in system complexity. Cube-

Sats have proven to be both versatile and efficient for

various use-cases, thus have also become platforms for

an increasing variety of scientific payloads and even

commercial applications. Such satellites also require

an increased level of dependability in all subsystems

compared to educational satellites, due to prolonged

mission duration and computing burden. Nanosatellite

computing will therefore evolve away from federated

clusters of microcontrollers towards more powerful,

general purpose computers; a development that could

also be observed with larger spacecraft in the past.

Certainly, an increased computing burden also requires

more sophisticated operating system (OS) or soft-

ware, making software-reuse a crucial aspect in future

nanosatellite design. In commercial and agency space-

flight, a concentration on few major OSs (e.g. RTEMS

[1]) and processors (e.g. LEON3 and RAD750) has

therefore occurred. A similar evolution, albeit much

faster, can also be observed for miniaturized satellites.

To satisfy scientific and commercial objectives,

miniaturized satellites will also require increased

data storage capacity for scientific data. Thus, many

such satellites have begun fielding a small but

integrity-critical core system storage for software,

and a dedicated mass-memory for pre-processing and

caching payload-generated data. Unfortunately, tradi-

tional hardware-centered approaches to achieving de-

pendability of these components, especially radiation-

hardening, can also drastically increase costs, weight,

complexity and energy consumption while decreasing

overall performance. Therefore, such solutions (shield-

ing, simple- and triple-modular-redundancy – TMR)

are often infeasible for miniaturized satellite design

and unsuitable for nanosatellites. Also, hardware-based

error detection and correction (EDAC) becomes in-

creasingly less effective if applied to modern high-

density electronics due to diminishing returns with fine

structural widths. As a result of these concepts’ limited

applicability, nanosatellite design is challenged by ever

increasing long-term dependability requirements.

Neither component level, nor hardware or software

measures alone can guarantee sufficient system consis-

tency. However, hybrid solutions can increase reliabil-

ity drastically introducing negligible or no additional

complexity. Software driven fault detection, isolation

and recovery from (hardware) errors (FDIR) is a

proven approach also within space-borne computing,

though it is seldom implemented on nanosatellites. A

broad variety of measures capable of enhancing or en-

abling FDIR for on-board electronics exists, especially

for data storage. Combined hard- and software mea-

sures can drastically increase system dependability.

The authors are involved in developing the

nanosatellite MOVE-II based upon an ARM-Cortex

processor as a platform for scientific payloads. Hence,

we designed MOVE-II’s on-board computer (OBC) to

guarantee data integrity using software side measures

and affordable standard hardware where necessary,

as traditional approaches for achieving dependability

do not suffice for such a system. After a detailed

evaluation of potential OSs for use aboard MOVE-

II, we chose the Linux kernel due to its adaptability,

extensive soft-/hardware support and vast community.

We decided against utilizing RTEMS mainly due to our

limited software development manpower, the intended

application aboard our nanosatellite MOVE-II, and the

abundant compute power of recent OBCs.

Often, dependability aboard spacecraft is only as-

sured for processing components, while the integrity of

program code is neglected. In the next section, we thus

outline the importance of memory integrity as a foun-

dation for dependable computing and provide a view
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on the topic at the grand scale. To protect data stored in

volatile memory, we present a minimalist yet efficient

approach to combine error scrubbing, blacklisting, and

error correction encoded (ECC) memory in Section III.

MOVE-II will utilize magneto-resistive random access

memory (MRAM) [2] as firmware storage, hence, we

developed a POSIX-compatible filesystem (FS) offer-

ing memory protection, checksumming and forward

error correction. This FS is being presented in Section

IV, can efficiently protect an OS- or firmware image

and supports hardware acceleration. Finally, a high

performance dependable storage concept combining

block-level redundancy and composite erasure coding

for highly scaled flash memory was implemented to

assure payload data integrity, the resulting concept is

outlined in Section V.

II. MEMORY INTEGRITY AS A BASE FOR

DEPENDABILITY

The increasing professionalization, prolonged mis-

sion durations, and a broader spectrum of scientific

and commercial applications have resulted in many

different proprietary on-board computer concepts for

miniaturized satellites. Therefore, miniaturized satel-

lite development has not only seen a rapid increase

in available compute power and storage capacity, but

also in system complexity. However, while system

sophistication has continuously increased, re-usability,

dependability, and reliability remained quite low [3].

Recent studies of all previously launched CubeSats

show an overall launch success rate of only 40% [4].

Such low reliability rates are unacceptable for missions

with more refined or long-term objectives, especially

with commercial interests involved. As nanosatellites

mostly consist of electronics, connected to and con-

trolled by the OBC, achieving an elevated level of

system dependability must begin with this component.

Besides extreme temperature variations and the ab-

sence of atmosphere for heat dissipation, the impact

of the near-Earth radiation environment are crucial in

space computing and system design. About 20% of all

detected anomalies aboard satellites can be attributed

to high-energy particles from the various sources,

also in OBC-related components [5], [3]. Depending

on the orbit of the spacecraft and the occurrence

of solar particle events, its on-board computer will

be penetrated by a mixture of high-energy protons,

electrons and heavy ions. Physical shielding using alu-

minum or other material can reduce certain radiation

effects. However, sufficient protection would require

unreasonable additional mass for shielding.

In Low Earth Orbit (LEO), the radiation bombard-

ment will be increased while transiting the South

Atlantic Anomaly (SAA) [6]. Earth’s magnetic field

experiences a local, height-dependent dip within the

SAA, due to an offset of the spin axis from the

magnetic axis. In this zone, a satellite and its elec-

tronics will experience an increase of proton flux

of up to 10
4 times (energies > 30 MeV) [7]. This

flux increase results in a rapid growth of bit errors

and other upsets in a satellite’s OBC. In the case

of MOVE-II, the full functionality of the command-

and-data-handling subsystem, thus also its OBC, is

required at all time due to scientific measurements

being conducted from one of the satellite’s possible

payloads, even though planned maintenance outages

(e.g. reboots) are acceptable. This scientific payload

should measure the anti-proton flux within the SAA,

whose properties are subject of scientific debate.

Currently, dependable computing on satellites is

based mainly upon radiation tolerant special purpose

hardware, as the cost of space electronics and software

is usually dwarfed by a satellite’s launch, testing

and validation costs. Such components usually are

significantly more expensive than commercial off-the-

shelf (COTS) hardware. In part, this can be attributed

to a thorough selection process performed for such

components, but pricing is designed for aerospace and

spaceflight applications equipped with vast budgets

for long-term projects. Also, these components usu-

ally require more energy, but offer comparably little

compute power due to decreased clock frequencies

and smaller caches. These drawbacks mainly originate

from a primary reliance upon increased structural

width of the silicon, besides more resilient manufactur-

ing techniques and materials. For miniaturized satellite

use, especially in nanosatellites, the prices commonly

charged for such components are prohibitively high,

often making their use entirely infeasible.

Regardless if hardened processing components can

be utilized, an OBC must compensate for radiation

induced displacement damage, latch-up and indirect

event effects which can not be mitigated technolog-

ically. Therefore, both soft- and hardware must be

designed to handle these issues, not if, but when they

occur. However, this fact has been largely ignored

Fig. 1. A satellite’s memory hierarchy including input/output
functionality (depicted in white) and the processor. Data transiting
or stored within elements shown in yellow may be corrupted
arbitrarily. Components depicted in blue must be safeguarded against
corruption, i.e. using the concepts presented within this paper.
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especially in nanosatellite design, resulting in compa-

rably cheap energy efficient federated OBC concepts

based upon highly fragile clusters of microcontrollers.

This aspect certainly is undergoing a fundamental shift

also due to externally induced mission requirements

and an increasing level of professionalization [8].

Dependability in the most basic sense can only be

assured if program code and required supplementary

data can be stored consistently and reliably aboard a

spacecraft. Thus, to enable any form of meaningful de-

pendable computing, storage integrity must be assured

first and foremost. In the future, new manufacturing

techniques such as FD-SOI [9] will enable relatively

radiation-tolerant, cheap application processors of-the-

shelf [10], reinforcing the need for dependable data

storage solutions. Therefore, this research was mo-

tivated by finding solutions to assure dependability

without fully relying on rad-hard processors and TMR.

Different storage technologies vary regarding the

energy-threshold necessary to induce an effect and the

severity of its consequences. Various types of Single

Event Effects (SEEs), the destructive ones being the

most relevant, are well described in [11]. Some novel

memory technologies (e.g. MRAM [2], PCM [12])

have shown inherent radiation tolerance against bit-

flips, Single Event Upsets (SEUs), due to their data

storage mechanism [13], [14]. Due to a shifting voltage

threshold in floating gate cells caused by the total ion-

izing dose, flash memories become more susceptible

to bit errors the higher they are scaled. Highly scaled

flash memories are more prone to SEUs causing shifts

in the threshold voltage profile of one or more storage

cells as well [15]. All these memory technologies are

sensitive to Single Event Functional Interrupts (SEFIs)

[16], which can affect blocks, banks or entire circuits

due to particle strikes in the peripheral circuitry.

To enable meaningful dependable computing, data

consistency must be assured both within volatile and

non-volatile memory, see Figure 1. Data is usually

classified as either system data or payload data stored

in volatile or non-volatile memory. The storage ca-

pacity required for system data may vary from few

kilobytes (firmware images stored within a micro-

controller) to several megabytes (an OS kernel, its

and accompanying software). Very large OS installa-

tions and applications are highly uncommon aboard

spacecraft and thus not considered in this paper. Pay-

load data storage on the other hand requires much

larger memory capacities ranging from several hundred

megabytes to many terabytes depending on the space-

craft’s mission, downlink bandwidth or link budget,

and mission duration. In addition, data and code will

temporarily reside in volatile system memory and of

course the relevant memories within controllers and

processors (i.e. caches and registers) which again must

satisfy entirely different requirements to performance

and size. Due to these varying requirements, different

memory technologies have become popular for sys-

tem data storage, payload data storage and volatile

memory. In the following sections, we will discuss

and develop protective concepts to ensure dependable

data storage aboard spacecraft with a special focus on

our nanosatellite use-case. All these concepts can be

implemented at least as efficiently to larger satellites,

as size and energy restrictions are much less pressing

aboard these vessels.

III. VOLATILE MEMORY CONSISTENCY

Inevitably, data stored will at least temporarily re-

side within an OBC’s volatile memory and all cur-

rent widely used memory technologies (e.g. SRAM,

SDRAM) are prone to radiation effects [17]. As a

straightforwards solution, some OBCs were built to

utilize only (non-volatile) MRAM as system memory

which is inherently immune to SEUs and therefore

allows OBC engineers to bypass additional integrity

assurance guarantees for RAM. However, MRAM

currently can not be scaled to capacities large enough

to accommodate more complex OSs. Thus, while

small satellites and very simple nanosatellites often

utilize custom firmware optimized for very low RAM

usage, larger spacecraft as well as most current and

future nanosatellites do rely upon SRAM, DRAM

or SDRAM. For simplicity, we will refer to these

technologies as RAM within this section. However, it

is not to be confused with the use of the term RAM

in Sections IV and Vof this paper, as in MRAM.

Radiation induced errors alongside device failover

is often assured using error correcting codes (ECC),

which have been in use in space engineering for

decades. However, a miniaturized satellite’s OS must

take an active role in volatile memory integrity assur-

ance by reacting to ECC errors and testing the relevant

memory areas for permanent faults. To avoid accu-

mulating errors over time in less frequently accessed

memory, an OS must periodically perform scrubbing.

In case of permanent errors, software should cease

utilizing such memory segments for future computa-

tion and blacklist them to reduce the strain on the

Fig. 2. Integrity of volatile memory can be guaranteed if mem-
ory checking (yellow), ECC and page-wise blacklisting (blue) are
combined. Scrubbing must be performed periodically to avoid
accumulating errors in rarely used code or data.
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used erasure code. Assuming these FDIR measures are

implemented, a consistency regime based on memory

validation, error scrubbing and blacklisting as depicted

in Figure 2 can be established.

A. Memory Corruption and Countermeasures

The threat scenario for RAM mainly includes two

types of gradually accumulating errors: soft-errors (bit-

rot) and permanent hard errors. Depending on the

amount of data residing in RAM, even few hard errors

can cripple an on-board computer: the likelihood for

the corruption of critical instructions increases drasti-

cally over time. Soft errors occur on the Earth as well

as in orbit, due to electrical effects and highly charged

particles originating from beyond our solar system. In

case of such an error, data is corrupted temporarily

but, and once the relevant memory has been re-written,

consistency can be re-established. The likelihood of

these events on the ground is usually negligible as the

Earth’s magnetic field and the atmosphere provide sig-

nificant protection from these events, thus very weak

or no erasure coding is utilized. Hard errors generally

occur due to manufacturing flaws, ESD, thermal- and

aging effects. Thus, they may also occur or surface

during an ongoing mission, further information on the

causes for hard-faults in RAM is described in detail

in [18]. Highly charged particles impacting the silicon

of RAM chips can also permanently damage circuitry.

Therefore, to compensate for both hard and soft errors,

ECC should be introduced [19].

By utilizing ECC-RAM integrity of the memory can

be assured starting at boot-up, though in contrast to

other approaches ECC can not efficiently be applied

in software [20]. Due to the high performance require-

ments towards RAM, weak but fast erasure codes such

as single error correction Hamming codes with a word

length of 8 bits are used [21], [22]. ECC modules

for space-use usually offer two or more bit-errors-per-

word correction. These codes require additional stor-

age space, thereby reducing available net memory, and

increase access latency due to the higher computational

burden. Single-bit error correcting EDAC ASICs are

available off-the-shelf at minimal cost, whereas multi-

bit error correcting ones are somewhat less common

and drastically more expensive. While such econom-

ical aspects are usually less pressing for miniaturized

satellites beyond the 10kg range, nanosatellite budgets

usually are much more constrained prompting for alter-

native, lightweight low-budget-compatible solutions.

Below, we thus present a software driven approach

to achieve a high level of RAM integrity without

expensive and comparably slow space-grade multi-bit-

error correcting ECC modules. Ultimately, stronger

ECC for RAM is not a satisfying final solution to RAM

consistency requirements due to inherent weaknesses

of this approach during prolonged operation.

B. A Memory Consistency Assurance Concept

When utilizing ECC, memory consistency is only

assured at access time, unless specialized self-checking

RAM concepts are applied in hardware [23], [24].

Rarely used data and code residing within memory

will over time accumulate errors without the OS being

aware of this fact, unless scrubbing is performed reg-

ularly to detect and correct bit-errors before they can

accumulate. The scrubbing frequency must be chosen

based on the amount of memory attached to the OBC,

the expected system load and the duration required

for one full scrubbing-run [25]. Resource conserving

scrubbing intervals for common memory sizes aboard

nanosatellites range from several minutes up to an

hour. Also, if a spacecraft were to pass through a

region of space with elevated radiation levels (e.g. the

SAA), scrubbing should be performed directly before

and after passing through such regions.

Scrubbing tasks can be implemented in software

within the OS’s kernel, but could be initiated by a

userland application as well. In the case of a Linux

Kernel and a GNU userland, a scrubbing task can

most conveniently be implemented as a cron-job

reading the OBC’s physical memory. For this purpose,

the device node /dev/mem is offered by the Linux

Kernel as a character device. /dev/mem allows access

to physical memory where scrubbing must begin at

the device specific SDRAM base address to which

the RAM is mapped. Technically, even common Unix

programs like dd(1) could perform this task without

requiring custom written application software.

Another possibility would be to implement a Linux

kernel module using system timers to perform the

same task directly within kernel space. In this case, the

scrubbing-module could also directly react to detected

faults by manipulating page table mappings or initi-

ating further checks to assure consistency. Execution

within kernel mode would also increase scrubbing

speed, allowing more precise and reliable timing.

Fig. 3. With single-bit correcting ECC-RAM, a word should no
longer be used once a single hard-fault has been detected. Hard
faults are depicted in black, soft faults in yellow, erasure code parity
in green.
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C. Memory Checking and Blacklisting

Unless very strong multi-bit-error correcting ECC

(> 2 bit error correction) and scrubbing are utilized,

ECC can not sufficiently protect a spacecraft’s RAM

due to in-word-collisions of soft- and hard errors

as depicted in Figure 3. To avoid such collisions,

memory words containing hard faults should no longer

be utilized, as any further bit-flip would make the

word non-recoverable [26]. Even when using multi-

bit ECC, memory should be blacklisted in case of

grouped permanent defects which may be induced due

to radiation effects or manufacturing flaws as well.

Memory must also be validated upon allocation

before being issued to a process. Validation can be

implemented either in hardware or software, with the

hardware variant offering superior testing performance

over the software approach. However, memory test-

ing in hardware requires complex logic and circuitry,

whereas the software variant can be kept extremely

simple. The Linux kernel offers the possibility to per-

form these steps within the memory management sub-

system for newly allocated pages for ia32 processors

already, and are currently porting this functionality

to the ARMv7 MMU-code. In case the Linux kernel

detects a fault in memory, the affected memory page

is reserved, thereby blacklisted from future use, and

another validated and healthy page is issued to the

process. Therefore, we chose to rely upon this proven

and much simpler software-side approach.

The ia32 implementation does not retain this list

of blacklisted memory regions beyond a restart of the

OS, though doing so is an important feature for use

aboard a satellite. As memory checking takes place at

a very low kernel-level (MMU code essentially works

on registers directly and in part must be written in

assembly), textual logging is impossible and persistent

storage would have to be realized in hardware. An

external logging facility implemented at this level

would entail rather complex and thus slow and error

prone logic, thus, a logging based implementation is

infeasible. However, at this stage we can still utilize

other functionality of the memory management subsys-

tem to access directly mapped non-volatile RAM, in

which we can retain this information beyond a reboot.

Due to the small size required to store a page bitmap, it

can be stored within a small dedicated MRAM module,

read by the bootloader and passed on to the kernel

upon startup. This implementation can thus enable

multi-bit-error correcting equivalent protection without

requiring costly specialized hardware, while increasing

system performance on strongly degraded systems.

IV. FTRFS: A FAULT-TOLERANT

RADIATION-ROBUST FILESYSTEM FOR SPACE USE

While MRAM can not yet offer the capacity nec-

essary for payload data, it is an excellent choice for

storing OS data due to its SEU immunity. However,

even then the OBC is still prone to SEFIs, stray-writes,

processor- and controller errors as well as in-transit

data corruption. FTRFS (fault-tolerant radiation-robust

filesystem for space use) was designed for small

volumes (≤4MB), but can also manage significantly

larger volumes up to several gigabytes in size (de-

pending on the data block size). Erasure coding is

applied to protect against in-transit data corruption

and stray-writes within memory pages, which can not

be prevented using memory protection. Cyclic redun-

dancy checksums (specifically CRC32) are utilized

for performance reasons in tandem with the Reed-

Solomon (RS) erasure code [27]. Even though CRC16

could be considered sufficient for most common block

sizes, we utilize a 32-bit checksum to further minimize

collision probability at a minimal compute overhead.

Most modern processors support memory pro-

tection, also for directly mapped memory such as

MRAM, thereby enable a powerful safeguard against

data corruption due to processor and controller faults.

However, memory protection has been largely ignored

in RAM-FS design, which, in part, can be attributed

to a misconception of memory protection as a pure

security measure. For directly mapped non-volatile

memory, memory protection introduces the memory

management unit as a safeguard against data corrup-

tion due to upsets in the system [28]. In a scenario

where MRAM is used, only in-use memory pages will

be writable even from kernel space, whereas the vast

majority of memory is kept read-only, protected from

misdirected write access i.e. due to SEUs in a register

used for addressing during a store operation.

As the volatile memory’s integrity can be assured

by the previously described functionality, we assume

ECC to be applied to CPU-caches, thus faults in these

deceives are considered detectable and possibly cor-

rectable at runtime. A computer running FTRFS must

be equipped with a memory management unit with

its page-table residing in integrity-assured memory to

enable run-time dynamic memory protection. All other

Fig. 4. The basic layout of FTRFS: EDAC data is appended or prepended to structures, depending on if a structure is of compile-time
fixed size or not. PSB and SSB denote the primary and secondary super blocks. The root inode is statically assumed to be the first inode.
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elements (e.g. periphery and compute units), memories

(e.g. registers) and in-transit data in buffers are con-

sidered potential error sources. A loss of components

has to be compensated at the software- or hardware

level through voting or simple redundancy. Multi-

device capability was considered for this FS, however

it should rather be implemented below the FS level

[29] or as an overlay, e.g. RAIF [30].

A. Approach Outline and Alternatives

We consider an FS the most portable and efficient

approach to combine these features, as the resulting

solution should also be bootable while maintaining

flexible EDAC capabilities. RAM FSs are not block

based and benefit from the ability to access data arbi-

trarily. Data structures holding information about the

physical (e.g. inode count and volume size) or logical

(e.g. directory structure and permissions) FS layout

require relatively little space compared to file data.

In contrast to block-based erasure coding, FS level

measures enables stronger erasure coding for these

structures requiring minimal extra space. Also, block-

based coding would introduce abstraction, thereby ad-

ditional code and complexity. A block-based approach

would also sacrificing the random access possibility

on MRAM, requiring more complicated locking. We

initially intended to utilize an existing FS instead

of implementing and maintaining one, and therefore

conducted an in-depth review of potential alternatives.

Silent data corruption has become a practical issue

with nowadays common many-terabyte sized volumes.

Therefore, next-generation FSs, e.g. BTRFS [31] and

ZFS [32], and some modern RAID 1 solutions [33]

can maintain checksums for data blocks and metadata,

but none of these FSs scale to small storage vol-

umes. All of these FSs include throughput enhancing

functionality like caching and disk head tracking, to

optimize data access and utilize locality. However,

these enhancements do not apply to random-access

memories and add significant code overhead, thereby

reducing performance while at the same time mak-

ing FS implementations more error prone. Minimum

1Redundant Array of Independent Disks

supported volume sizes are far beyond what current

miniaturized satellites can offer.

FSs for flash devices [34], [35] already handle

wear leveling2 and support device EDAC functionality

(checksumming, spare handling and recovery). How-

ever, these FSs require interaction with the memory

technology or the flash translation layer (FTL) 3,

thereby are incompatible with other memory technolo-

gies. This introduces further input/output-load and may

result in data corruption, and, as flash memory is block

based, these FSs would suffer similar drawbacks as a

pure error correcting block layer.

RAM FSs are usually optimized for throughput

or simplicity, but are usually designed for volatile

memory, thus do not even include nondestructive un-

mount procedures. Few RAM FSs for non-volatile

exist [36], [37], but none of these FSs are designed

with dependability in mind, albeit PRAMFS which

however so does not offer data integrity guarantees.

Thus, in the absence of a potentially reusable FS,

we decided to develop FTRFS based on a layout

similar to the simple and space conserving extended

2 (ext2) FS. Aligning FTRFS to this FS’s layout

enabled significant code reuse especially regarding

concurrency, locking and permission handling. We

adapted PRAMFS’s memory protection functionality

for FTRFS and introduced erasure coding.

B. Metadata Integrity Protection

Efficient error detection and correction of meta

information and data was considered crucial during

development. The protective guarantees offered by the

FS can be adjusted at format time or later through the

use of external tools to the mission duration, destina-

tion and the orbit a spacecraft operates on. For proper

protection at the logical level, in addition to the stored

FS objects (inodes) and their data, all other information

must be protected as well. Thus, we borrow memory

protection from the wprotect component of PRAMFS.

Although the basic FS layout is inspired by ext2 data

addressing and bad block handling work fundamen-

2keeping all parts of a memory device at an evenly used, level
3The memory technology device subsystem (MTD) in Linux

Fig. 5. Each inode can either utilize direct addressing or double indirection for storing file data. An inode may possess extended attribute
and contains a reference to its parent directory. Each directory’s child inodes are kept within a double linked list maintained by the parent.
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Fig. 6. A 512B data block subdivided into 4 subblocks using example RS parameters. Checksums for the entire data block, EDAC data
and each subblock are depicted in yellow, FEC data in blue.

tally differently. The Super Block (SB) is kept redun-

dantly, as depicted in Figure 4 and an update to the SB

always implies a refresh of the secondary SB. The SB

contains EDAC parameters for blocks, inodes and the

bitmap, and is static after volume creation. We avoid

accumulating errors over time through scrubbing and

trigger this functionality upon execution of certain FS

functionality (e.g. directory traversal). Using MRAM,

the FS does not suffer from radiation induced bit-rot

and errors thereby can only accumulate during usage,

additional time-triggered scrubbing during periods of

little or no volume access is unnecessary.

A block-usage bitmap is appended to the secondary

SB and allocated based on the overhead subtracted

data-block count. Thus, the protection data is located

in the first block after the end of the bitmap, see Figure

4. We refrain from re-computing and re-checking the

entire bitmap upon each access, as file allocation or

truncate related operations can imply up to hundreds

of consecutive alterations to the bitmap.

Inodes are kept as an array, each representing a file,

directory or other FS object. Their consistency is of

paramount importance as they define the logical struc-

ture of the FS. As each inode is an independent entity,

an inode-table wide FEC segment is unnecessary.

Most modern FSs utilize tree-based structures or

triple-indirection to organize data into blocks or ex-

tends (chunks of data extending over a given number of

blocks or size). These structures are comparably fragile

and space inefficient for small files, as a significant

base-amount of blocks must be set aside only for ad-

dressing (e.g. 1 block to hold the actual data, 3 blocks

for triple-indirection). To optimize the FS towards both

larger (e.g. a kernel image, a database) and very small

(e.g. scripts) files, direct data addressing and double

indirection are supported, as depicted in Figure 5.

Nanosatellites are not yet considered security critical

devices. However, the application area of nanosatellites

will expand considerably in the future and include

security critical applications [8]. An increasing pro-

fessionalization will introduce enhanced requirements

regarding dependability and security. Shared-satellite

usage scenarios as well as technology testing satellites

will certainly also require stronger security measures,

which can be implemented using extended attributes

(xattrs). As xattr blocks contain various records and

different individual permissions, the block’s integrity

is verified once before an operation and it is updated

after all write access (in bulk) has been concluded.

xattrs are treated like data blocks but are deduplicated

and referenced directly within inodes.

C. Algorithm Details and Performance

There are numerous erasure codes available that

could be used to protect a full size-optimized Linux

root FS including a kernel image safely over a long

period of time. After careful consideration, Reed-

Solomon (RS) was chosen mainly due to the following:

• Cyclic block codes show excellent performance

for multi-bit error correction. RS is particularly

well analyzed, and widely used in various embed-

ded scenarios, including spacecraft. Optimized

software implementations, IP-cores and ASICs

are available, guaranteeing universal availability.

• MRAM, while being SEU immune, is still prone

to stray-writes, controller errors and in-transit

Data Correction Correction
Structure Size (B) Symbols/Code # Codes Total (B) Overhead (B) Overhead (%)

Super Block 128 32 1 32 76 59.38%
Inode 160 32 1 32 76 47.50%
Bitmap 1543 16 14 224 448 29.09%

Data Blocks 1024 4 8 32 104 10.16%
1024 8 8 64 168 16.41%

4096 4 32 128 392 9.57%
4096 8 32 256 648 15.82%

TABLE I
EDAC OVERHEAD FOR DIFFERENT FS STRUCTURES. BITMAP FOR: 16MB FS, 1024B BS WITH 8B CORRECTION CAPABILITY PER

128B DATA
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data corruption. Misdirected access within a page

evades memory protection and corrupts the FS,

thus grouped errors will occur. RS relies upon

symbol level error correction, which is precisely

the kind of corruption the FS must correct.

RS decoding becomes computationally more ex-

pensive with increasing symbol size, thus it is im-

portant to utilize small symbols while choosing large

enough symbols to enable reasonably long codes. The

protected data is subdivided into sub-blocks sized to

128B plus the user specified number of correction-

roots using a comparably small symbol size of 8

bits. 8 bit sized symbols enable high-performance

RS decoding and byte-alignment simplifies addressing,

while Inodes and SBs fit into single RS-codes. To skip

the expensive RS decoding step during regular read

operations, data- and FEC integrity are verified using

CRC32 checksums. Data blocks (Figure 6) are divided

into subblocks so the FS can make optimal use of the

RS code length, while correction data is accumulated

at the end of the data block. For common block-sizes

and error correction strengths, 4 to 32 RS code words

are necessary, see Table I FS overhead.

V. HIGH-PERFORMANCE FLASH MEMORY

INTEGRITY

To enable larger payload mass-storage, highly scaled

memory is required and NAND-flash (see Section

V-A) is currently the most popular technology to

fill this role. Even though flash may eventually be

replaced by (radiation tolerant) phase change memory

(PCM) in the long run, it is not yet available in high-

density versions. Thus we must focus our attention on

flash as the only viable mass storage technology, until

high-density PCM becomes available in the future.

For this memory type, software must compensate for

wear and various translation and abstraction layers,

making all-in-one solutions like FSs very complex and

error prone. Thus, more sophisticated EDAC concepts

are required, as simple redundancy, parity or erasure

coding are insufficient. A protective concept efficient

also for highly-scaled flash memory must therefore

be based upon the special properties of flash and its

architecture. Therefore the initial parts of this section

are dedicated to flash memory organization and an

analysis of why simple voting is insufficient in this

case. We used these results to construct an EDAC

concept specifically to handle highly scaled multi-level

cell NAND-flash according to the these requirements:

1) Efficient data storage on MLC flash memory.

2) Integrity protection and error correction strength

adjustable to varying mission parameters.

3) Effective handling of radiation effects on the

memory as well as the control logic.

4) Protection against device failure.

5) Low soft- and hardware complexity.

6) Universal FS and OS support.

We consider these requirements to be met best with

FTL-middleware, which is similar to a self contained

extension or a plugin. Therein, RAID-like features

and checksumming can be combined effectively with

a composite erasure coding system. We implemented

MTD-mirror as part of the MTD subsystem of the

Linux Kernel. By utilizing mirroring (RAID1) or dis-

tributed parity (RAID5/6) we can therefore protect

against device, block and page failure.

To handle permanent block defects, single event

functional interrupts, radiation induced programmatic

errors and logic related problems, we apply coarse

symbol level erasure coding. As outlined below, this

measure would be insufficient to compensate for radi-

ation effects, silent data corruption and bit flips. The

solution is to be implemented within the FTL, there-

fore it can still be kept abstract and device independent

while it can also profit from hardware acceleration,

additionally providing enhanced diagnostics.

A. Single- and Multi-Level Cell Flash

Each flash memory cell consists of a single field

effect transistor with an additional floating gate. De-

pending on the voltage applied between the gate’s

source and drain, electrons are pumped into or out

of the floating gate. A cell’s state is thus dependent

on whether or not a specific threshold voltage level is

exceeded. a cell can be read as programmed (0) if the

threshold is a exceeded, or erased (1), see Figure 7a.

A Single Level Cell Flash (SLC) cell can thereby

store one bit using one threshold. In an Multi Level

Cell (MLC) gate, additional thresholds are used to

differentiate between multiple values, see Figure 7b.

With 2
n voltage levels and 2

n − 1 thresholds, it is

possible to encode n bits, on the same piece of silicon,

MLC can thus allow a much higher packing density.

However, electrical complexity grows and the required

Fig. 7. The voltage reference and thresholds of SLC- (a) and MLC (b) cells. (c): Bit-flips for the value 00 due to leakage (01) and radiation
effects (10).
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read sensitivity and write specificity increases with the

number of bits represented.

As the voltage-delta between levels decreases, in-

creased precision is required for sensing and charge-

placement, resulting in MLC memory being more

dependent on its cells’ ability to retain charge. A

state machine is required for addressing MLC memory

which in turn increases latency and adds considerable

overhead logic, as multiple addresses are not mapped

to one gate. This comparably complex state machine

may thus hang or introduce arbitrary delays with op-

erations requiring multiple cycles and varying latency.

Environmental temperature variations change the

leakage current of the silicon, draining the floating gate

of both SLC and MLC flash over time [38]. Software,

e.g. the flash translation layer (FTL), must impose

appropriate countermeasures against these effects in

addition to high energy radiation related degradation.

MLC flash memories are also more susceptible to bit

errors than SLC [39] due to a shift voltage threshold

in floating gate cells caused by the total ionizing dose.

Also, highly scaled flash memories become increas-

ingly prone to single event upsets (SEU) causing shifts

in the threshold voltage profile of cells, referred to as

multiple bit upsets [40]. A varying amount of data

will thereby be corrupted through one SEU for which

EDAC measures must be adapted, depending on the

number of bits represented within a cell [41]. Currently

widely used single-bit error correcting EDAC mea-

sures are thus insufficient to protect MLC consistency.

Data in flash memory can not read freely due to

the layout of the cell circuitry. NAND-flash memory

is organized in blocks and pages, in which cells are

connected as negated AND circuits, forming NAND-

gates. If connected as NOR gates, random-read-access

is possible at the cost of strongly increased wiring

and controller overhead is possible, curtailing so called

NOR-flash’s data storage density. Partial writes to flash

are impossible and the entire block’s previous content

must be read and updated in RAM, afterwards the

block can be erased (by draining the block’s cells’

voltage) and programmed anew. Hence, read and write

operations induce different timing behavior and make

access to MLC-flash much more complicated than to

SLC-NAND- or NOR-flash due to the addressing state

machine. With either technology, a flash FS and the

FTL must handle basic block FDIR as well as erase-

block and (for NAND-flash) read-page abstraction. A

flash FS must thus implement all functionality nec-

essary to handle failure of memory blocks and pages

to extend memory life. It must perform block wear

leveling, read and erase block abstraction, bad-block

relocation and garbage collection to prevent premature

degradation and failure of pages and blocks. The FTL

can implement parts of this FDIR functionality for the

FS interfacing with hardware specific device drivers.

Over time, a flash memory bank will accumulate

fully defective blocks and utilize spare blocks to

compensate. Eventually, the pool of spares will be

depleted, in which case the FTL or FS will begin

recycling less defective blocks and compensate with

erasure coding only, thereby sacrificing performance

to a certain degree. Traditionally, erasure coding is

applied in software or by the controller to counter

defects due to wear and bit-flips due to charge leakage.

For simplicity, cyclic block codes with large symbol

sizes are utilized, though the latest generation of

solid-state-drive controllers has begun employing more

sophisticated codes. For space use, the symbol size is

reduced to support one or two bit correcting erasure

coding, as corruption will mostly result from radiation

effects. However, block EDAC becomes inefficient due

to the occurrence of grouped errors and SEUs affecting

multiple cells in highly scaled memory [42].

B. Alternative Approaches

While voting and triple-modular-redundancy are

technically still possible for MLC-flash, it is severely

constrained by the additional circuitry, logic and

strongly varying timing behavior. Voting would have

to be implemented for the addressing state machine

as well, otherwise it could stall the entire voting

circuit. However, due to the varying timing behavior of

NAND-flash and the more complex logic, the resulting

voter-circuit would thus become more error prone,

require more energy and reduce overall performance.

Like with FTRFS, the outlined requirements could

also be met using a flash FS. UFFS particularly would

be a prime candidate to be extended to handle multiple

memory devices and enhanced EDAC, however, the

resulting all-in-one FS would be complex and error

prone. Device independence could also be added on

top of regular flash FS as a separate layer of software

[30], see Figure 8. Within a RAIF set, increased pro-

tective requirements could be satisfied with additional

redundant copies of the FS content. The underlying

individual FSs would then have to handle all EDAC

functionality, as RAIF by itself does not offer any

integrity guarantees beyond FS or file failure.

Fig. 8. Memory access hierarchy for a RAIF based system with
added error correction. Extensive modifications to various compo-
nents are be required; affected elements are depicted in yellow.
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RAIF sets, however, are prone to FS-metadata cor-

ruption which can result in single block errors failing

an entire FS, as RAIF only reads from underlying FSs.

Files damaged across all of a RAIF set’s FSs would

become unrecoverable and would forward a defective

copy to the application, instead of combining multiple

damaged copies into a correct one. RAIF therefore

actively inhibits error correction and may even cripple

recovery of larger files. While RAIF could be adapted

to this issue, the resulting storage architecture would

again become highly complex, difficult to validate and

debug. As RAIF implements simple FS redundancy, its

storage efficiency will always be lacking compared to

distributed parity concepts. Being a pure software layer

without the possibility to interact with the devices,

hardware acceleration of RAIF would be impossible.

RAID can be applied efficiently to space-borne

storage architectures and has been used previously

aboard spacecraft (e.g. in the GAIA mission), in con-

trast to RAIF [43]. These architectures, however, were

designed for SLC (see Section V) and only relied

on RAID to achieve device fail-over through data

mirroring (RAID1) and distributed parity (RAID5/6)

[44], [43]. However, they usually rely upon the block

level hardware error correction provided by the flash

memory or controller or implement simple parity only.

The different distribution of bit-errors on MLC flash,

can not be addressed using these concepts and coarse

symbol based erasure coding is insufficient.

C. The MTD-Mirror Middleware Layer

RAID-like functionality could be implemented as a

middleware within the FTL as depicted in Figure 9,

thus the software can interact both with the FS and

the rest of the FTL, without requiring alterations to

either. Such middleware can remain pervious to FS

operations and allows device failure protection to be

combined with enhanced erasure coding as RAID can

therein be implemented with comparably little effort.

Validation, testing and analysis can thus be simplified

as all implementation work can be concentrated into

Fig. 9. Memory access and data flow hierarchy for an MTD-
Mirror set. Flash-memory specific logic is depicted in blue and may
partially reside within the FTL. Required modifications are indicated
in yellow.

an FTL middleware module.

The functional layout of MTD-mirror’s block con-

sistency protection is depicted in Figure 10 and is

based upon a serial concatenated (composite) erasure

code system. Like in FTRFS, a data checksum allows

bypassing decoding of intact data. The second check-

sum is used to prevent symbol drift of the erasure

coding layers. The first erasure coding layer is based

on relatively coarse symbols and protects against data

corruption induced by stray writes, controller issues

and multi-bit errors similar to FTRFS, due to which

RS [45] was selected as well.

Erasure coding with coarse symbols is efficient if

symbols are largely or entirely corrupted, but shows

weak performance when compensating radiation-

induced bit-rot. SEUs statistically will equally degrade

all data of a code word, corrupting multiple code

symbols with comparably few bit errors, due to which

previous storage concepts often relied upon convolu-

tion codes. However, as error-models become more

complex (2 or more bit-errors in MLC), convolution

code complexity increases, and storage efficiency di-

minishes. To handle single or double bit-flips within

individual code symbols of the first level RS code,

a second level of erasure coding using Low-Density

Parity Check Codes (LDPC) [46] was added. LDPC

is efficient with very small symbol sizes (1 or two

bit), allows high-speed iterative decoding [47] and

offers superior performance compared to convolution

codes [48]. LCPC supports recovery of slightly cor-

rupted RS-symbols and parity, but due to more costly

decoding is only being used in case RS fails for

repairing individual damaged symbols. This runtime

behavior can thereby drastically increase recovery rates

on radiation-degraded memories. The set can also

attempt repair using data from different blocks in the

hope of obtaining a consistent combination of block-

data, as multiple copies of the erasure code parity data

and checksums are available.

We chose to apply the two FEC layers in order

(Figure 10) as hardware-acceleration of RS is readily

available to us. Hence, the sequence should be deter-

mined based on the available acceleration possibilities

and mission parameters. If severe bit-rot is expected

or higher order density MLC is used, the LDPC-layer

should be applied prior to RS decoding.

D. Optimization & Future Work

While the logic required to implement this storage

solution is relatively simple, more advanced distributed

parity RAID concepts offer increased mass/cost/energy

efficiency due to overhead reduction. There has been

prior research on adding checksumming support to

RAID5 in [44], [43], though utilizing RAID5 directly

would introduce issues. Error correction information

in RAID5C [44] can either be stored redundantly with

each block, introducing unnecessary overhead, or as

single copy within the parity-block. While this would

increase the net storage capacity, a single point of
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Fig. 10. The simplified layout of an MTD-mirror write-block without to read-page indication. Added erasure code correction information
is depicted in yellow, checksums in blue.

failure would be introduced for each block group.

If the parity block was lost, the integrity of data

which was protected by this block could no longer

be verified. Instead, RAID5 can be applied to data

and error correction information independently, only

requiring one extra checksum to be stored per block.

RAID6, however, can be implemented almost as-

is, with error correction data and checksums being

stored directly on the two or more parity blocks

associated with each group. There are also promising

concepts for utilizing erasure coding for generating

parity blocks by themselves, thereby obsoleting simple

hamming-distance based parity coding [49], [50]. Fur-

ther research on this topic is required and may enable

optimization for flash memory and radiation aspects

similar to the ones described in this paper.

VI. RESULTS AND CURRENT STATUS

For testing our volatile memory protection system,

we are currently using the memcheck functionality

within a virtualized ia32-demonstrator. Once the mem-

check port for ARM has been completed, we will

switch the demonstrator to the ARMv7 architecture

and can thereby re-use the existing setup for testing

and debugging.

FTRFS is currently undergoing testing and has

been implemented using the RS implementation of

the Linux kernel, as its API also supports hardware

acceleration. Due to its POSIX-compliance, the FS

could easily be ported to other platforms. An in-depth

description and analysis of FTRFS has been published

as part of the computer science conference ARCS2015

proceedings [51]. While the FS has been tested and

logically validated, the code should be optimized

which will result in a drastic performance increase.

The FS’s overall performance depends strongly upon

the utilized hardware, as synthetic benchmarks are

not representative for different OBC implementations.

An in-depth analysis will be conducted once a fea-

ture complete OBC implementation for MOVE-II is

available. Data degradation during metering will be

introduced using fault injection. However, artificial

fault injection is usually not considered sufficient to

prove the efficiency of a fault-tolerance concept for

space-use. An identical test-model of our satellite’s

OBC including the FS will undergo testing using

various radiation sources before launch. Results will be

made available once these tests have been conducted.

The high level architecture of MTD-mirror has

been implemented for RAID1, though we have begun

working towards enabling more advanced distributed

parity concepts. The concept originally begun as a

spin-off from FTRFS using a fault-tolerant block layer

for more complex memory than MRAM. MTD-mirror

therefore also serves as a showcase for how inno-

vative concepts developed for miniaturized satellites

can influence commercial and agency space flight:

the concept’s design was in part influenced by the

payload data storage requirements of the JUICE and

Euclid missions. A related paper on how the MTD-

mirror layer can be adapted to very large storage

volumes common to these missions was published

at DASIA2015 [52], which however is not intended

directly for nanosatellite use. FTLs like Linux-MTD

exist for most modern OSs or are built into the base

kernel for those supporting flash memory directly.

Besides API adaptions to MTD-mirror, little additional

work is required for porting it to other OSs.

VII. CONCLUSIONS

In this paper we presented three software-driven

concepts to assure storage consistency, each specif-

ically designed towards protecting key components:

a system for volatile memory protection, FTRFS to

protect firmware or OS images and MTD-mirror to

safeguard payload data. All outlined solutions can

be applied to different OBC designs and do not re-

quire the OBC to be specifically designed for them.

They can be used universally in miniaturized satellite

architectures for both long and short-term missions,

thereby laying the foundation to increased system

dependability. In contrast to earlier concepts, none of

the approaches requires or enforces design-time fixed

protection parameters. Both can be implemented either

completely in software, or as hardware accelerated

hybrids. The protective guarantees offered are fully

run-time configurable.

Assuring integrity of core system storage up to a

size of several gigabytes, FTRFS enables a software-

side protective scheme against data degradation.

Thereby, we have demonstrated the feasibility of a

simple bootable, POSIX-compatible FS which can

efficiently protect a full OS image. The MTD-mirror

middleware enables reliable high-performance MLC-

NAND-flash usage with a minimal set of software

and logic. MTD-mirror is independent of the partic-
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ular memory devices and can be entirely based on

nanosatellite-compatible flash chips by utilizing FEC

enabled RAID1 and checksumming.

Neither traditional hardware nor pure software mea-

sures individually can guarantee sufficiently strong

system consistency for long-term missions. Tradition-

ally, stronger EDAC and component-redundancy are

used to compensate for radiation effects in space

systems, which does not scale for complex systems

and results in increased energy consumption. While

redundancy and hardware-side voting can protect well

from device failure, data integrity protection is difficult

at this level. A combination of hardware and software

measures, as outlined in this paper, can thus drasti-

cally increase system dependability, even for missions

with a very long duration. Thereby, simplicity can be

maintained, error sources minimized, testability can be

increased and throughput maximized.
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