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Table 4.10
Best rate curve and parameter estimates for each fungus based on a criteria of BIC.

Best parameters and rate curves for the fungal datasets

T0 Tm B

E. sp.B.
9.28 34.32 0.0008 ω = 0.63

(R1, Briere-2, MLE)

C. brevicomi
3.22 41.56 B = ropt = 1.04 Topt = 23.00

(R2, Dogleg, MLE)

G. clavigera
0.71 34.61 0.0003 ω = 1.42

(R1, Briere-2, MLE)

O. montium
-0.09 30.74 19.11 ω = 0.0092 Δm = 0.45

(R3, Hansen, MLE)

4.4.3. Overall parameter estimates from the three parameterization methods

Using BIC as the criteria for best parameter estimates, we found that G. clavig-

era was best parameterized using the Briere-2 curve (R1) with temperature thresholds

of (T0, Tm) = (0.71, 34.61) while O. montium was best parameterized with the Hansen

curve (R3) with temperature thresholds of (T0, Tm) = (−0.09, 30.74) (Table 4.10, Figure

4.9). For WPB-associated fungi, we found that the Briere-2 (R1) curve provided the best

fit to E. sp.B. data while the Dogleg (R2) curve provided the best fit to C. brevicomi.

The respective temperature thresholds for these fungi were (T0, Tm) = (9.28, 34.32) and

(T0, Tm) = (3.22, 41.56) (Table 4.10, Figure 4.9), indicating that C. brevicomi has a much

wider range of temperatures where it can grow.

4.5. Discussion

Based on a cursory application of the various parameterization techniques, we found

that for each dataset, parameter estimates were sensitive to the rate curve, choice of prior

distribution, and parameterization method. Overall, MLE performed well when estimating

curves with lower numbers of parameters though it often had to be repeated more than

10 times to achieve convergence. Even convergent applications of MLE experienced diffi-

culty in terms of estimating unrealistic temperature thresholds (i.e., the lower temperature

threshold for E. sp.B., both thresholds for O. montium using the Briere-2 curve (R1), and
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Fig. 4.9: Comparison of the observed data and the best parameterized rate curves for each
fungus (Plots A-D) using the curves and parameters shown in Table 4.10. Plot E overlays
the rate curve for MPB-associated fungi and Plot F overlays WPB-associated fungi. Here
we see that while the temperature thresholds for O. montium (the warm-loving fungus
associated with MPB) lie below those of G. clavigera (the cool-loving fungus with MPB),
the overall growth characteristics reflect known behavior of the fungi.



101

the upper temperature threshold for O. montium using the Dogleg curve (R2); see Tables

4.5-4.8), allowing estimates to be nearly zero or negative, or resulting in drastically dif-

ferent parameter values given small perturbations in the initial guess. As the number of

parameters increased (the Hansen and Régnière curves; R3 and R4), MLE (occasionally)

experienced even more difficulty and had the potential to completely misrepresent the data

(see Figures 4.5-4.8).

B-MLE utilized the same optimizer as MLE, however, the inclusion of prior knowledge

regarding T0 and Tm successfully prevented unrealistic parameter estimates for the temper-

ature thresholds and negative estimates for the remaining parameters. This allowed B-MLE

to regularly achieve good parameter estimates for the curves with four parameters (Briere-2

and Dogleg, R1 and R2) though it still suffered from lack of convergence and inconsistency

(see Figures 4.7 and 4.8), and often resulted in overly angular/choppy rate curves (Figures

4.5-4.8). MH, also including prior knowledge (as well as allowing user tuning to ensure

adequate exploration of the parameter space) was the most consistent of the techniques. It

did not always achieve the lowest BIC value; however, it seemed most able to accommodate

variable, messy data. MH provided reasonable parameter estimates and visually well-fitting

rate curves for the Briere-2, Dogleg and Hansen curves (R1, R2, and R3 which had up to

five parameters). As with the other techniques, MH struggled to parameterize the Régnière

curve (R4) in that the fits obtained were angular and slightly underestimated the upper

temperature threshold.

Taken together, we see why MLE is often the parameterization method of choice. It

is fast, easy, and often accurate. In parameterizing the various rate curves and datasets

with different structure and amounts of variability, we also found limitations of MLE. It is

sensitive to the choice of initial parameters and may fail to converge. It can also run off

to regions of parameter space that are invalid and achieve terrible fits. This indicates that

MLE requires a significant amount of user knowledge and input after the fact to obtain

good parameter estimates. That is, the user must not only ensure that MLE has converged,

but also that the parameter values it has converged to are reasonable or the technique
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must be repeated. B-MLE can improve consistency somewhat, however, failure to converge

and converging to a local minima is still a concern so the user must again exercise caution

in trusting parameter estimates. MH, on the other hand, was quite consistent. From a

standpoint of repeatability, MH is desirable in that it requires the user to be extremely

clear from the outset regarding their knowledge of previous parameters and how much

weight they wish this knowledge to have relative to the data (versus secretly discarding

undesirable parameter estimates after the fact). That said, MH did struggle when the

number of parameters in the function were increased. This could likely be remedied with

improved prior knowledge. This prior knowledge could affect the algorithm in terms of

having a more informative prior distribution on the parameters as well as allowing the user

to specify more reasonable step-sizes for the proposal distribution.

Overall, based on ease of parameterization and quality of fit (ΔBIC, shown in Table

4.9), R1 and R2, the Briere-2 and Dogleg rate curves best approximated the fungus growth

rate data. Overall, the Briere-2 (R1) provided the best fit for G. clavigera and E. sp.B.

and the Dogleg (R2) provided the best fit for C. brevicomi. For O. montium, the best rate

curve was either the Dogleg or the Hansen curve (R2 or R3), depending on the method used

for parameterization. MLE was able to achieve the lowest BIC for O. montium using the

Hansen curve (R3), though when prior knowledge was included (MH, B-MLE), the Dogleg

curve (R2) achieved the best fits. This could partly be due to the prior distribution on

Tm (i.e., Tm ∼ N(32, 22)) causing MH and B-MLE to provide more weight to parameter

estimates for Tm that were closer to 32 (MLE estimated that Tm was 30.74). The data for O.

montium also exhibited an extremely high degree of variability, especially for measurements

taken at 30◦C which makes it difficult to distinguish between the performance of the rate

curves.

4.6. Conclusions

Though many techniques are available for parameterizing functions to data, the best

technique will often depend on the complexity of the function and the variability and size

of the dataset. In this paper, we used nonlinear functions having four to six parameters
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to describe moderately large datasets containing a few hundred observations with high

amounts of variability and parameterized the functions using three techniques: MLE, MH,

and B-MLE. For these functions and datasets, MH was clearly the superior method in terms

of consistency and requiring the user to formally specify any biases from the outset. MLE

and B-MLE were occasionally able to attain better fits to the data (as measured by BIC),

however, this often required perturbing initial parameters more than 10 times to achieve

convergence and then knowing whether the convergent parameters and resulting fit were

reasonable or whether the method needed to be repeated again. MH, on the other hand,

consistently resulted in adequate fits using one run of the algorithm. Considering today’s

atmosphere where repeatability and reproducibility of scientific experiments (Stodden, 2010;

Vanschoren et al., 2012) is prized, the ability to produce consistent parameter estimates and

fully justify any user bias are more important than ever. This makes techniques such as

MH increasingly attractive.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this work we utilized mathematical tools to create and validate two models describing

the interactions of three species with overlapping phenologies. These models incorporated

previous models or approaches for MPB development and new models for fungus growth in

a tree and were parameterized using direct and indirect observations (i.e., fungus growth

rates collected in an artificial medium as well as records of attacking and emerging MPB and

the fungus they were carrying). We posit that predictions about the system as a whole will

be made stronger when considering their overlapping phenologies. MPB success is thought

to depend on nutritional benefits obtained from feeding on fungus colonized phloem at

different stages in its development. Due to differences between its fungal symbionts, the

degree of MPB success will also depend on fungal timing. Thus, in order to best predict

or understand the future of the MPB-fungus system, inclusive models that quantify the

likelihood of fungal presence at the appropriate time are essential.

In Chapter 2 we developed an individual-based model describing the growth of fungal

lesions on a one-dimensional ring of tree circumference. Using the assumption that the

fungi would not actively compete, we allowed the fungus lesions to grow at a rate based on

temperature and then stop when they reached another lesion (mimicking the finite space

available to colonize within a host tree). Using this model for fungal growth, we combined

its predictions with a median model for MPB development. This allowed us to predict

when the median MPB adult would emerge from a tree based on an observed record of

hourly temperatures so that we could determine the proportion of each fungus that would

be carried to a new host tree the following year. Finally, we utilized this combination

of models to test whether different forms of variability in temperature could explain the

relatively stable dynamics between MPB, G. clavigera and O. montium over time. Using

observed temperature records from the Sawtooth National Wildlife Refuge and a higher

elevation site, Railroad Ridge, as well as simulated temperature records formed from these

datasets, we tested whether intra-year variability (variability over the course of a single
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year), inter-year variability (variability between years), or variability due to a portion of

the MPB population periodically transitioning between thermal regions could explain the

continued presence of both fungi in the mutualism. We found that cooler years favored

G. clavigera and warmer years favored O. montium (which was expected based on known

growth profiles exhibited by the fungi). In general, however, temperature records from the

SNRA tended to consistently favor O. montium while the temperatures at RRR consistently

favored G. clavigera. When viewed over a long period of time, this generally resulted in a

loss of one fungus from the mutualism.

An unexpected result of the MPB fungus simulations was that the distance between

fungal lesions (determined by the density of attacking MPB) could also influence the pro-

portion of each fungi over time. We found that closely spaced lesions (due to high densities

of attacking MPB) could also stabilize the mutualism. Regarding temperature variability,

however, we found that only large-scale variability in temperature, such as from portions

of the MPB population periodically transitioning between different thermal environments,

was enough to stabilize the mutualism over a long period of time. Regarding the future

of the mutualism as a whole, the simulations conducted in Chapter 2 seemed to indicate

that in the face of increasing temperatures, G. clavigera would be slowly displaced from the

mutualism due to its preference for cooler temperatures relative to O. montium.

In Chapter 3, we adapted the fungal growth model from Chapter 2 and then compared

its predictions against real world observations of MPB and fungus exiting the tree. This

model included several changes: 1) the fungal growth model was restructured so that it

was deterministic (rather than stochastic) and the cumulative growth of all fungal lesions

was tracked (rather than the growth of lesions individually), 2) the model incorporated

two parameters describing how the growth of G. clavigera and O. montium scaled from

a Petri dish to a tree, 3) a distributional approach was used to determine the TA feeding

window (rather than calculating the date of emergence for the median MPB), and 4) five

submodels were introduced to describe a spectrum of possible various interactions between

MPB and fungi within the host tree. These changes resulted in a number of benefits,
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they significantly reduced computational time, provided the ability to track fungus lesions

that began growing on different days (as they would in a tree), and allowed us to compare

predictions with observed MPB emergence data (difficult with the previous model because

it modeled too few individuals). This model was then parameterized and tested using real-

world MPB attack and emergence observations collected from 2010 to 2011 and 2011 to

2012.

After parameterizing and testing the models, we found that while dynamics between

years were different, the models which assigned the fungi in the mycangia of MPB based

on the fungi present in the tree just prior to emergence performed best. This indicates that

fungus present at the end of the teneral adult feeding window just prior to MPB emergence

from a host tree is more important than the fungus present during earlier phases of the

feeding window. We also found that the growth of the two fungi scale very differently from

a Petri dish to a live tree. G. clavigera, known to be more virulent and better able to tolerate

low oxygen conditions (such as those in a freshly attacked tree) grew approximately 25 times

more quickly than O. montium. However, these exact numbers were directly influenced by

observations from study trees in which very low numbers of beetles were observed exiting

with O. montium.

Since MPB success is strongly tied to the success of its symbionts and Chapters 2 and

3 seemed to predict different outcomes from the mutualism in terms of whether both fungi

will be maintained, we revisited the parameterization of the fungal growth rate curves in

Chapter 4. Fungal growth rate curves are used by both models to predict how fast each

fungus will grow as a function of temperature. The format of these curves can vary widely;

however, nonlinear curves are generally preferred because they more accurately represent the

growth of the fungi over a broad range of temperatures. These curves formed the basis of the

fungal growth model, determining how fast the fungi can colonize the host tree. We wanted

to see whether the fungal growth rate curves used in Chapter 3 could be improved upon

to better distinguish the growth of each species and to better explain fungal emergence for

both the parameterization and validation dataset. To do this, we selected four possible rate
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curves used to model the growth of other cold-blooded organisms and then parameterized

the curves using maximum likelihood estimation (MLE), Metropolis Hastings (MH), and

Bayesian “MLE” (B-MLE) to best fit observed growth rates for mountain pine beetle and

western pine beetle associated fungi collected in an artificial medium. The intent was to test

whether the inclusion of prior information, allowed in MH and B-MLE, could improve the fit

of the data or the reliability of the parameter estimation technique. What we found is that

MLE is a good technique; it often produces very good parameter estimates as quantified by

the Bayesian Information Criterion. On the other hand, MLE did not consistently achieve

good parameter estimates. Often, the method had to be repeated and results discarded due

to lack of convergence or convergence to a poor region of parameter space. This made MLE

highly unreliable and indicates that some degree of expert knowledge is required (after the

fact) to obtain good, trustworthy parameters. The inclusion of prior knowledge in B-MLE

did help to remedy these issues, though it still had the potential to converge to poor regions

of parameter space and obtain very unrealistic fits to the data. Finally, using MH, we

found that we could achieve much more consistent and realistic fits, though as the number

of parameters increased, the method also resulted in more variable parameter estimates. We

assess that this could be remedied by increasing the precision in the prior distribution for

the parameters (by leaning more heavily on prior knowledge regarding several parameters

in the rate curve).

Overall, the most significant portions of this work are the development of a framework

for connecting models describing the phenology of various species to better understand how

the system will act as a whole and introducing the use of prior knowledge when estimating

fungal growth rate curves. Using the notion of a colonization index, we were able to com-

bine different forms of output from phenology models (i.e., translating predictions of length

colonized by fungi to predictions of the proportion of a tree colonized so that these could be

combined with temporal predictions for MPB development) to arrive at an accurate model

for the combined dynamics of three interacting species. In addition, since fungal growth

rates at various temperatures formed the basis of our models, introducing Bayesian param-
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eter estimation greatly improved the ease of parameterization as well as the consistency of

the estimates (across rate curves and fungal datasets).

In an era of warming climate, researchers are interested in whether the MPB-fungus

relationship will remain stable, or whether one fungus will be displaced from the mutualism.

Since the fungi differ substantially in their benefits to the beetle, the loss of one fungi could

greatly affect the ability of MPB (for better or worse) to spread across landscapes. Our

models seem to indicate that if the rate of fungal growth in a tree is proportionate to that

measured in an artificial medium (i.e., with the growth of both fungi scaling in the same

way), then one symbiont will likely be lost from the mutualism unless portions of MPB

periodically transition to different thermal areas. When parameterizing the MPB-fungus

model to data, however, it seemed much more likely that the fungus growth rates observed

in an artificial medium will scale differently for each species with G. clavigera gaining a

substantial advantage over O. montium in a tree. This seems to indicate that G. clavigera

will likely not be lost from the mutualism any time soon, though the accuracy of our growth

rate scaling parameters was slightly suspect due to the oddities in our dataset, in which

extremely low numbers of MPB were observed to be emerging with O. montium. In reality,

it is likely that some combination of results from Chapter 2 and Chapter 3 will occur. We

assess that the growth rate scaling parameters of the fungi do differ, though not by as great

a margin. As a result, it is likely that O. montium, the warm-loving fungus, will experience

greater success in warmer climates while G. clavigera, through its greater virulence, will

also continue to persist in the mutualism.
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