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ABSTRACT

Beetles, Fungi and Trees: A Story for the Ages? Modeling

and Projecting the Multipartite Symbiosis Between the

Mountain Pine Beetle, Dendroctonus ponderosae, and

Its Fungal Symbionts, Grosmannia clavigera

and Ophiostoma montium

by

Audrey L. Addison, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. James A. Powell
Department: Mathematics and Statistics

As data collection and modeling improve, ecologists increasingly discover that inter-

species dynamics greatly affect the success of individual species. Models accounting for the

dynamics of multiple species are becoming more important. In this work, we explore the

relationship between mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) and

two mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. These species are

involved in a multipartite symbiosis, critical to the survival of MPB, in which each species

benefits.

Extensive phenological modeling has been done to determine how temperature affects

the timing of life events and cold-weather mortality of MPB. The fungi have also been closely

studied to determine how they interact with MPB and how they differ in terms of virulence,

response to temperature, and nutritional benefits to developing beetles. Overall, researchers

consider G. clavigera to be the superior mutualist. Beetles developing near G. clavigera

are larger, produce more brood, and have higher survival rates. Regarding temperature

preferences, G. clavigera is considered “cool-loving,” growing at cooler temperatures than O.

montium. These findings lead researchers to wonder 1) why has G. clavigera not displaced
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O. montium from the mutualism (if it is the superior mutualist) and 2) what will happen

to the MPB-fungus mutualism in the face of a warming climate.

In this work we present two models connecting fungal growth in a tree to predictions

of MPB emergence: a stochastic, individual-based model and a deterministic, tree-based

model. We begin by exploring whether variability in temperature can act as a stabilizing

mechanism and find that temperature variability due to MPB periodically transitioning

between different thermal environments is the most likely explanation for the continued

presence of both fungi in the mutualism. Using the second model, we parameterize and

validate the model using attack and emergence observations of MPB and the fungi they are

carrying. In the process, we test several submodels to learn more about specific MPB-fungi

interactions. Finally, utilizing information from previous fungal growth experiments, we

test and parameterize several growth rate curves using Bayesian techniques to determine

whether the inclusion of prior knowledge can lead to more realistic fits.

(140 pages)



v

PUBLIC ABSTRACT

Beetles, Fungi and Trees: A Story for the Ages? Modeling

and Projecting the Multipartite Symbiosis Between the

Mountain Pine Beetle, Dendroctonus ponderosae, and

Its Fungal Symbionts, Grosmannia clavigera

and Ophiostoma montium

Audrey L. Addison

As technology improves, so do modes of data collection and mathematical modeling.

With this increased data, ecologists are learning that the success or failure of a given species

depends not just on the species, but on those it interacts with as well. A prime example of

this is the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) which spends

the majority of its life inside a host pine tree, emerging only to find new trees and lay eggs

for the next generation. This beetle is of interest because it is capable of killing healthy

pine trees on a landscape scale, causing large economic and ecological impacts. As a result,

scientists have spent many years studying and modeling the life cycle and habits of the

beetle. In the process, they have found that MPB are highly dependent on two species of

fungi, Grosmannia clavigera and Ophiostoma montium. These three species are involved

in an obligate multipartite mutualism in which the beetles benefit the fungi by providing

transport to new host trees and the fungi benefit MPB as a supplemental food source during

several of their developmental life stages.

Scientists have studied these two fungi to determine how they interact with MPB and

how they differ in terms of their ability to grow in a tree, their temperature preferences and

tolerances, and the amount and type of nutritional benefits they can provide to developing

beetles. Overall, researchers consider G. clavigera to be more helpful to MPB. Beetles

developing near G. clavigera are larger, produce more offspring, and have higher survival

rates. Regarding temperature preferences, G. clavigera is considered “cool-loving,” growing
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faster at cooler temperatures than O. montium while O. montium is considered “warm-

loving” and is able to grow faster at higher temperatures. These findings lead researchers

to wonder, 1) if G. clavigera is better for MPB, why has it not displaced O. montium from

the mutualism, and 2) what will happen to the MPB-fungus mutualism as temperatures

warm.

In this work we present a stochastic, individual-based model and a deterministic,

population-level model describing the growth of both fungi in a tree and connect these

to existing models or approaches for MPB development as a function of the temperature

inside a host tree. Using the first model, we begin by exploring whether variability in tem-

perature can act as a stabilizing mechanism, keeping both fungi present in the mutualism,

and find that temperature variability due to MPB periodically transitioning from warmer

areas to cooler areas and back again is the most likely explanation for the continued pres-

ence of both fungi in the MPB-fungus relationship. Using the second model, we estimate

parameters for the model using real-world attack and emergence observations of MPB and

the fungi they are carrying. In the process, we test several hypotheses describing the timing

of when MPB collect fungal spores (to carry to a new host tree) and find that the fungus

present as MPB are preparing to exit the tree is most likely to be the fungus transported

to new host trees. Finally, using information from previous fungal growth experiments,

we test several growth rate curves to determine which is best able to describe the growth

of the fungi. We estimate parameters for these curves using a statistical technique that

allows prior knowledge of the fungi (from previous experiments) to be taken into account

and determine whether this prior knowledge can lead to more accurate functions describing

their growth.
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CHAPTER 1

INTRODUCTION

In an era of rapidly changing climate, our ability to predict and understand future

events will increasingly rely on data collection, modeling efforts, and the ability to incor-

porate community effects of a system rather than the effects of a single species. One such

system is the multipartite mutualism that exists between the mountain pine beetle (MPB,

Dendroctonus ponderosae Hopkins) and two species of filamentous fungi, Grosmannia clav-

igera and Ophiostoma montium.

MPB is an aggressive species of bark beetle that inhabits lodgepole, ponderosa, and

whitebark pine trees in the western United States and Canada (Wood, 1982). This insect is

a serious pest that has the ability to kill healthy trees and cause landscape-level tree mor-

tality (Meddens et al., 2012), though in the past it has also acted as a natural disturbance

agent helping to maintain forest ecosystem structure and function. It accomplishes this task

with the use of aggregation pheromones (Raffa, 2001) to ensure new trees are rapidly at-

tacked by high numbers of beetles. This high density allows MPB to overcome host defenses

such as resin response mechanisms (Raffa, 2001) and eventually cause host tree mortality

by severely disrupting fluid transport in the tree (Bentz et al., 2010). The ability of MPB to

kill healthy trees and to devastate thousands of acres of trees during an outbreak, make it a

very important species both economically and ecologically. The MPB life cycle commonly

takes one to two years to complete (a generation completed in one year is known as univol-

tine while a generation taking longer is known as semivoltine) depending on temperatures

inside the host tree; higher temperatures can lead to faster generation times while cooler

temperatures can prolong developmental stages and lead to slower generation times. The

MPB life cycle progresses as follows: after attacking a new host tree, mating occurs and

adult MPB excavate tunnels in the phloem layer of the host tree (Safranyik et al., 2007),

laying eggs to either side. As time progresses, beetle eggs hatch into larvae which create

larval galleries or tunnels where they feed in the surrounding phloem (Bentz et al., 2010).

The beetles continue to feed and develop inside the tree at a rate based on temperature,
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moving through four larval stages and one pupal stage before becoming teneral (sexually

immature) adults (Safranyik et al., 2007). The MPB life cycle repeats the following year as

new adult MPB tunnel out of the bark layer of the tree and fly in search of a new host tree

to colonize (Bentz et al., 2010).

Past studies of MPB primarily focused on modeling the insect’s phenology, or develop-

mental timing, as a function of temperature (Bentz et al., 2010; Logan and Powell, 2001) or

analyzing the large-scale spatial pattern of its attacks from year to year using aerial survey

data (Powell and Bentz, 2014; Chen and Walton, 2011). It is increasingly being recognized,

however, that the dynamics of a single species can be greatly affected by those with which

it interacts, though information has generally been lacking on how to quantify these effects

(Bentz et al., 2010). In the case of MPB, this means that the success or failure of the beetle

can be closely tied to the performance of its fungal symbionts.

The issue of phenological overlap is not new; many species interact in ways which bind

their fates. In addition to MPB, which must coincide timing of larval development with its

fungal symbionts, some plants rely on insects or animals for pollination or seed dispersal.

Phenological timing can also be important within a species. In some ant and butterfly

species, different development rates or maturation times in males and females can lead to

variability in the timing of the reproductive period. This can affect mate preference and

potentially which individuals are able to mate (Kaspari et al., 2001), possibly even raising

the risk of extinction in small populations (Calabrese and Fagan, 2004). From a disease

or parasite modeling standpoint, the spread of a disease generally depends on whether

susceptible individuals come in contact with a given pathogen at a certain time (Molnár

et al., 2013). Connecting models of phenology and development for multiple interacting

species would increase our understanding of the broader effects species can have on one

another.

The relationship between MPB, G. clavigera, and O. montium is considered an obligate

multipartite mutualism. The fungi benefit by receiving transport to host trees and some

shelter from the environment during transport inside the mycangia, specialized structures
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for dispersing spores located on the maxillary cardines of both males and females (Six and

Paine, 1998). The benefit to the beetles is less understood. It was previously thought that

the fungi aided the beetles by quickly growing throughout the substrate of the new host

tree, helping to choke its fluid transport systems and cause mortality (Harrington, 1993;

Paine et al., 1997), however, this view is less accepted today. The current hypothesis is that

mycophagy, the feeding by beetles as larvae or teneral adults on fungi, is the main benefit

received by MPB (Harrington, 2005). Since the majority of the MPB life cycle is completed

within the phloem layer of a dying host tree, mycophagy allows for more efficient use of

the inner bark by increasing the amount of nitrogen available. The fungi also produce large

amounts of ergosterol, a sterol that insects can convert to hormones that support molting

and reproduction (Bentz and Six, 2006). Other potential benefits to MPB could include

protection from harmful fungi or other organisms. Since MPB host trees are often also

colonized by yeasts and other fungi, it is possible that MPB inoculation of a new host with

G. clavigera and O. montium spores allow these mutualistic fungi to take root in the tree

and limit the space available for other, possibly harmful, species of fungi (Klepzig et al.,

2009).

Like many mutualisms, however, the MPB-fungus system is predicted to be unstable.

The two fungi use the same resource at the same time (a freshly killed tree) and ultimately

must compete for beetles when it is time to be dispersed. As a result, the fungi are expected

to be in strong competition with one another and ecological theory suggests that the stronger

competitor should outcompete the weaker competitor over time. Nonetheless, the MPB-

fungus mutualism has remained relatively stable over a long period of evolutionary time

(Six and Bentz, 2007). To better understand this dynamic, numerous studies have been

conducted on beetle-associated fungi. These studies have uncovered differences between

the fungi in terms of virulence, temperature preferences and tolerances, and the nutritional

benefits they provide. Overall, G. clavigera is thought to be more virulent and more tolerant

of low oxygen conditions than O. montium (Solheim and Krokene, 1998), meaning that it

can likely grow better or faster immediately after attack. Growth experiments indicate G.
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clavigera is the “cool-loving” fungus relative O. montium in that it tends to grow faster

at low temperatures and can survive at colder temperatures. O. montium, on the other

hand, is considered to be “warm-loving” with a higher optimum temperature for growth

and generally higher growth rates at warmer temperatures. Finally, in terms of nutritional

benefits, G. clavigera is considered slightly more nutritious to MPB. Beetles developing

in the presence of G. clavigera are larger, have increased brood development, and higher

survival rates (Six and Paine, 1998; Bleiker and Six, 2007).

Based on this synopsis, reasonable questions to ask include: 1) why is O. montium

still present in the mutualism? and, 2) what will happen to the mutualism in the face of

climate change? This work seeks to expand on previous knowledge of MPB and answer

these questions by modeling and analyzing the critical symbiosis between MPB and its two

fungal symbionts, G. clavigera and O. montium. Considerable attention has been given

to understanding how temperature directly affects MPB developmental timing and cold-

weather mortality (Bentz et al., 2010; Safranyik et al., 2010; Hicke et al., 2006; Logan and

Powell, 2001). However, little work has focused on how temperature affects the symbiosis

that exists between the MPB and its symbionts. Since this symbiosis is critical for the

survival of MPB (Six and Bentz, 2007), understanding how temperature affects its fungal

partners and how this in turn affects MPB is very important.

Our work seeks to combine previous knowledge and phenological models for MPB with

experimental observations of fungus growth (direct fungal measurements) and observations

of attacking and emerging MPB and the fungus they are carrying (indirect fungal measure-

ments) to accurately model MPB-fungus dynamics inside a host tree. Using these models,

we explore the future of the MPB-fungus system in the face of climate change and attempt

to learn more about beetle-fungus interactions. We do this in three parts. In Chapter 2,

we create a stochastic, individual-based model for fungi growing on a one-dimensional ring

of tree circumference as a function of hourly temperature inside a host tree. This model

includes the effect of finite space available to colonize and is combined with a previously

developed temperature-driven model for median MPB development. Using this combina-
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tion of models, we explore whether variability in temperature (over the course of a year,

from year to year, or larger variability due to periodically transitioning between different

thermal regions) can act as a stabilizing mechanism for the fungi. In the process, we also

test whether differences in MPB attack density (which correspondingly affect the distance

between fungal lesions) can help stabilize the mutualism.

In Chapter 3, we adapt the model developed for Chapter 2 to allow more input informa-

tion such as the distribution of MPB attacks and the proportion of each fungus carried over

time. This model computes cumulative fungus growth (on a tree-, rather than individual

lesion-based, scale) and utilizes a colonization index to account for finite space available.

Other adaptations include taking a distributional approach to determine the teneral adult

feeding window (rather than using the timing of the median individual, as used in Chapter

2) and allowing fungal lesions to begin growing at different times (as they would in a tree).

This model is then combined with a spectrum of five hypotheses representing the timing

of fungal spore acquisition by MPB. Each hypothesis is implemented as a submodel which

is parameterized using MPB attack and emergence data collected from 2010 to 2011. The

submodels are compared and then tested against a second dataset collected from 2011 to

2012 to determine whether the MPB-fungus model can adequately model the actual system

and to determine which mycangial packing hypothesis is most valid.

Finally, in Chapter 4, we use Bayesian statistical techniques in an attempt to improve

the fit of fungal growth rate curves for both MPB-associated fungi as well as western pine

beetle (WPB, Dendroctonus brevicomis) associated fungi. Fungal growth rate curves can

take many forms, ranging from linear to nonlinear in nature with many different choices for

parameters. Since temperature is thought to be one of the key drivers of success for the MPB

and most likely to affect the MPB-fungus mutualism, we focus on several fungal growth rate

curves that employ temperature thresholds (i.e., the coldest and warmest temperature where

the fungi can grow) as key parameters. Though these temperature thresholds are important

and biologically meaningful, a practical issue with their use is that they are difficult to

directly measure, however, much expert knowledge exists on their relative location (e.g.,
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from past, failed experiments). This fact makes a Bayesian approach ideal for parameter

estimation. Two of its major benefits are the ability to include prior knowledge about the

system when obtaining parameter estimates and the ability to tune the algorithm to ensure

it does not become captured in poor regions of parameter space. We compare this technique

to maximum likelihood estimation (MLE) with a built-in optimizer, an extremely common

and simple-to-implement technique for parameter estimation, as well as to Bayesian “MLE”

(B-MLE) which utilizes the same optimizer for MLE with the addition of prior knowledge

in the equation being optimized.

From a broader perspective, this work utilizes mathematical tools to create and validate

models for the interaction of three species with overlapping phenologies. These models

incorporate previous models or approaches for MPB development and new models for fungus

growth in a tree that can be parameterized using direct observations (i.e., fungus growth

rates collected in an artificial medium). They are then combined using knowledge of the

biological system and further parameterized with indirect observations of fungal prevalence

(i.e., records of attacking and emerging MPB and the fungus they are carrying). We posit

that predictions about the system as a whole will be made stronger when considering their

overlapping phenologies. MPB success is thought to depend on nutritional benefits obtained

from feeding on fungus colonized phloem at different stages in its development. Due to

differences between its fungal symbionts, the degree of MPB success will also depend on

fungal timing. Thus, in order to best predict or understand the future of the MPB-fungus

system, inclusive models that quantify the likelihood of fungal presence at the appropriate

time are essential.
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CHAPTER 2

THE ROLE OF TEMPERATURE VARIABILITY IN STABILIZING THE MOUNTAIN

PINE BEETLE-FUNGUS MUTUALISM1

Abstract

As global climate patterns continue to change and extreme weather events become

increasingly common, it is likely that many ecological interactions will be affected. One

such interaction is the multipartite symbiosis that exists between the mountain pine beetle

and two species of fungi, Grosmannia clavigera and Ophiostoma montium. In this mutu-

alism, the fungi provide nutrition to the beetle, while the fungi benefit by being dispersed

to new host trees. Multi-partite mutualisms are predicted to be unstable due to strong di-

rect competition among symbionts or natural selection for superior over inferior mutualists.

However, this mutualism has remained stable over long periods of evolutionary time. In this

paper, we developed a temperature-based model for the spread of fungi within a tree and

connected it to an existing model for mountain pine beetle development. Using this inte-

grated model for fungal growth, we explored the possibility that temperature variability is a

stabilizing mechanism for the mountain pine beetle - fungi mutualism. Of the three types of

temperature variability we tested, intra-year, inter-year and variability due to transitioning

between different thermal habitats (thermal migration), we found that thermal migration

was the most robust stabilizing mechanism. Additionally, we found that the MPB attack

density or spacing between fungal lesions also had a significant effect on the stability of the

system. High attack densities or close lesion spacings also tended to stabilize the system,

regardless of temperature.

1

1This chapter is reprinted from A.L. Addison, J.A. Powell, D.L. Six, M. Moore, B.J. Bentz The role

of temperature variability in stabilizing the mountain pine beetle-fungus mutualism, Journal of Theoretical
Biology 335 (2013), 40-50.
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2.1. Introduction

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a bark beetle

native to western North America (Wood, 1982). This insect is a serious pest that also

acts as a natural disturbance agent, helping to maintain forest ecosystem structure and

function. Although MPB population eruptions have occurred for millenia, the size of current

outbreaks is greater than those recorded in the past century (Taylor et al., 2007). The

distribution of lodgepole pine (Pinus contorta), a primary host for MPB, extends further

north than the current MPB range suggesting that MPB is limited by climate. Within the

past two decades, outbreak MPB populations have expanded north in British Columbia,

Canada, and across the Rocky Mountains infesting a new host jack pine (Pinus banksiana)

in eastern Alberta (Cullingham et al., 2011). Several factors are playing a role in MPB

population success and expansion including warming temperatures and past management

strategies that promoted landscape homogeneity (Raffa et al., 2008).

Considerable attention has been given to understanding how temperature directly af-

fects MPB development timing and cold temperature mortality, factors that influence geo-

graphic range expansion (Bentz et al., 2010; Safranyik et al., 2010; Hicke et al., 2006; Logan

and Powell, 2001). However, little work has focused on how temperature affects the critical

symbiosis that exists between the MPB and two fungal symbionts, Grosmannia clavigera

(G. clavigera) and Ophiostoma montium (O. montium). The symbiosis is critical for the

survival of MPB (Six and Bentz, 2007), and thus, understanding how temperature affects

the fungal partners is as important as understanding how temperature will directly affect

the host beetle.

The symbiosis between MPB and fungi is a mutualism. The beetle provides benefit

to the fungi through transport to new host trees. This occurs in specialized structures of

the insect exoskeleton called mycangia which are located on the maxillary cardines of both

males and females (Six and Paine, 1998). When new adults leave the tree they carry spores

of the fungi in the mycangia which are then inoculated into the phloem of the next tree

as beetles construct egg galleries. In turn, the fungi aid the beetles by providing critical
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nutrients to developing beetles (Six and Paine, 1998; Adams and Six, 2007; Bleiker and Six,

2007).

Nutritional benefits to MPB appear to be of two types. The fungi colonize both the

phloem and sapwood of the tree. Mycelium growing in the sapwood picks up nitrogen

and moves it into the phloem where the larvae feed and develop. Increases in phloem

nitrogen due to the fungi can be substantial (40-50%) and likely account for observations

that beetles developing with fungi have much higher survival rates and are significantly

larger than those that develop without. The fungi also produce large amounts of ergosterol,

a sterol that insects can convert to hormones that support molting and reproduction (Bentz

and Six, 2006). MPB have been shown to require feeding on spores of fungi as new adults

in order to produce eggs. This requirement may relate to ergosterol consumption (Six and

Paine, 1998; Bentz and Six, 2006).

While the two fungi appear to impart the same types of benefits to the beetle, the

degree of benefit varies (Six and Paine, 1998; Bleiker and Six, 2007; Goodsman et al., 2012;

Cook et al., 2010). Overall, G. clavigera appears to be superior in concentrating nitrogen

(Goodsman et al., 2012; Cook et al., 2010) and supporting brood development (Six and

Paine, 1998; Bleiker and Six, 2007). Beetles developing with G. clavigera are larger and

have higher survival rates (Six and Paine, 1998; Bleiker and Six, 2007). Larger size of beetles

developing with G. clavigera may mean greater fecundity and overall fitness indicating that

G. clavigera is the superior mutualist.

Like many mutualisms, the MPB-fungus system is predicted to be unstable. The two

fungi use the same resource at the same time (a freshly killed tree) and ultimately must

compete for host beetles when it comes time to be dispersed. Therefore, they are expected

to be in strong competition with one another, and that the stronger competitor should

outcompete the weaker competitor over time. Likewise, natural selection would be expected

to select for the superior mutualist with G. clavigera eventually moving to fixation with the

beetle (Six, 2012). Nonetheless, the MPB-fungus mutualism has remained relatively stable

over a long period of evolutionary time (Six and Bentz, 2007). This indicates that some sort
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of stabilizing mechanism exists. The stability of the mutualism may be tied to differential

temperature tolerances of the two fungi interacting with a variable habitat. Optimal growth

of G. clavigera occurs somewhere between 20 and 25◦C. O. montium, on the other hand,

grows best at 25◦C (Rice et al., 2008). These differences have led to the hypothesis that

the different temperature tolerances of the two fungi minimize direct competition by giving

each an advantage at different times. It has also been hypothesized that having two fungal

symbionts, each with different temperature optima, may allow the beetle to exist across a

broad range of environmental conditions by ensuring it is never without a symbiont (Six

and Bentz, 2007). While the differential temperature tolerances of the two fungi may allow

the beetle greater environmental amplitude, it may also be a major mechanism supporting

the existence of two symbionts in this mutualism.

We hypothesized that variability in temperature acts as a stabilizing mechanism for

the mutualism. In particular, we considered three types of temperature variability: intra-

year, inter-year and thermal migration. By intra-year variability, we mean day-to-day and

seasonal fluctuations in temperature that allow an advantage in growth rate to switch back

and forth between the fungi throughout the year. For example, in a typical year, warm

summer temperatures allow O. montium to grow faster than G. clavigera. However, as fall

temperatures cool, G. clavigera may gain the advantage until late spring or early summer,

when O. montium regains the advantage.

Another form of variability we considered was inter-year variability, which includes

differences in temperatures from year to year. Because some years are cooler and some

warmer, this form of variability could result in some years where one species dominates and

others where the other species gains the advantage. Over the long term however, because

the advantage passes back and forth, the relative prevalence of each may remain stable. The

final form of temperature variability we considered was variability due to thermal migration.

This variability represented varying thermal environments as fungi-carrying MPB moved

between warm and cold environments on a landscape. This will be called the thermal

migration hypothesis. Our theory was that O. montium, the warm-loving fungus, grows in
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prevalence during outbreak years at lower elevation environments and that G. clavigera, the

cool-loving fungus, may gain in prevalence while the beetle occupies a cooler, high-elevation

location. This would cause the relative proportion of each fungi to oscillate but remain

essentially stable over time.

In this paper we developed a temperature-driven model for fungal growth that includes

effects of competition for space in a tree. This model was parameterized using growth data

collected from G. clavigera and O. montium isolates from the mycangia of emerging MPB

collected from Logan Canyon in northern Utah in 2010. To project fungal prevalence

into the future, we combined the fungal growth model with an existing temperature-based

model for MPB development (Powell and Logan, 2005) to determine the proportion of each

fungi present in the pupal chambers as teneral adults prepare to leave the tree. Finally,

using this integrated model, we simulated the outcomes for the mutualism for a variety of

temperature scenarios (emphasizing intra-year, inter-year or thermal migration variability),

and attempted to determine how these differences affected the relative prevalence of G.

clavigera and O. montium in the mutualism. Using these models, our goal was to determine

whether variations in temperature, and the differential rates of fungus growth at those

temperatures, could explain the continued persistence of both G. clavigera and O. montium

in the MPB-fungus mutualism.

2.2. Model development

2.2.1. MPB/fungus interactions

In summer, adult MPB emerge from the trees within which they developed and fly

in search of new host trees. Females initiate attacks and release pheromones to attract

other dispersing males and females. This results in a mass attack that often occurs over

a period of a few days. In a successful attack, males and females excavate long J-shaped

galleries in the phloem layer of the tree. Eggs are laid on the sides of the gallery and spores

stored in the mycangia and on the body of the beetles are introduced into the phloem

(Safranyik et al., 2007). From this point, the development of beetle brood and growth of

the fungi into the tree occurs at a rate based on temperature (Safranyik et al., 2007). The
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fungal spores germinate and form hyphae that spread throughout the phloem and sapwood

while MPB eggs hatch and the larvae progress through four stages while feeding on both

phloem and fungal hyphae in larval galleries they construct (Safranyik et al., 2007). After

larval development is complete, they construct pupal chambers where they pupate and then

develop into new (teneral) adults. The new adults feed on spores that the fungi produce in

a dense lining in the pupal chamber while packing their mycangia with spores (Safranyik

et al., 2007; Six and Bentz, 2007). Brood adults then emerge from the tree in search of new

hosts. This sequence typically takes one year depending on temperature although multiple

years are required in cold environments.

To model the prevalence of G. clavigera and O. montium in relation to MPB devel-

opment, we modeled the fungi as they spread outward (and captured space) from beetle

galleries and computed the relative proportion of each fungus present in the tree as teneral

adult beetles prepared to leave. This proportion was important as it directly influenced

the proportion of each fungus being carried by the next generation of MPB. We used these

models to describe the relationship between temperature and the rate of fungus growth,

developed a model for fungal growth in a tree, and used this model in combination with an

existing model for MPB development to project the mutualism into the future.

2.2.2. Fungal growth rate curves

Beetle-associated fungi grow by forming a mycelium (network of connected hyphae)

that spreads radially outward at a rate governed by temperature. To model growth of the

fungi, we developed a relationship between observed fungal growth rates and temperature

that allowed us to calculate the area each fungus colonized based on a record of hourly

temperatures.

Fungus growth data

Fungi were isolated from the mycangia of beetles emerging from lodgepole pine trees

in Logan Canyon, UT in the summer of 2010 and 2011. These fungi were identified to

species using morphology (Upadhyay, 1981). To determine the growth rates of each species

as well as the variability within species, 3-4 replicates of 24 isolates of G. clavigera and
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17 isolates of O. montium were grown in Petri dishes containing 2% malt extract agar (a

growth medium) and held at constant temperatures of 5, 10, 15, 20, 25, 30, and 35 ◦C.

These plates were monitored daily and the amount of area colonized by the fungi traced.

“Image J” (Schneider et al., 2012) was used to measure the number of pixels (i.e. area)

colonized each day by the fungi. The number of pixels was then converted to area.

Next, the 587 estimates of area colonized were converted to measurements of radius

colonized and a line fitted to obtain a single radial growth rate for each Petri dish. Finally,

maximum likelihood estimation was used to fit these radial growth rates to a distribution

often used for modeling insect development (Logan, 1988; Régnière et al., 2012),

r(T ) = B
�

eα(T−T0) − 1
�

−B
�

eα(Tm−T0) − 1
�

e(T−Tm)/b , (2.1)

assuming lognormal error. In this equation, r(T ) represents the rate of fungal growth per

day in mm based on the temperature T in ◦C, B is a scaling factor that affects the maximum

rate of fungus growth, α affects how quickly the growth rate increases at low temperatures,

b is the thickness of the boundary layer between peak growth and the upper temperature

threshold, and T0 and Tm represent the lower and upper temperature thresholds for the

fungi in ◦C (i.e., the lowest and highest temperature where the fungus will continue to

grow). These parameter values were obtained using a built-in Matlab optimizer (the

Nelder-Mead simplex algorithm, ‘fminsearch’) and the constraint that T0 and Tm have

biologically reasonable values (0 < T0 < 5 and Tm ≈ 30 ◦C). Figure 2.1 shows the observed

radial growth rates for G. clavigera and O. montium as well as their parameterized rate

curves. The parameters for these curves are included in Table 2.1.

2.2.3. Fungal growth in cross section

Consider a horizontal section of a tree bole, which will be intersected by female MPB

constructing egg galleries and depositing G. clavigera or O. montium spores from their my-

cangia as they burrow. Each intersection can be represented as a distinct fungal inoculation

point distributed evenly around the circumference of the tree with some small additive error

at a discrete location, that is, xi(0) =
(i−1)πd

n + ε where i = 1, 2, ...n, d is the diameter of
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Table 2.1
Parameters for the fungal rate curves (Eqn 2.1). In these rate curves, α affects the rate of
increase at low temperatures, b is the thickness of the boundary layer between peak growth
and the upper temperature threshold, B is a scaling factor which affects the maximum rate
of fungal growth, while T0 and Tm are the lower and upper temperature thresholds for the
fungi in ◦C. These values were estimated using Maximum Likelihood estimation.

Parameter Values for Fungal Growth Rate Curves

fungus type α b B T0 (◦C) Tm (◦C)

G. clavigera 0.0041 8.0407 95.6120 0.9123 32

O. montium 0.0662 7.4949 3.8395 -0.0236 34
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Fig. 2.1: Growth rate observations for G. clavigera, GC (*), and O. montium, OM (◦), are
shown with their parameterized growth rate curves. Note that G. clavigera (solid line) has
a higher rate of growth when temperatures are below 16.3◦C, while O. montium (dashed
line) has the higher rate of growth for temperatures above 16.3◦C and that its rate curve
extends further to the right than G. clavigera. This confirms previous observations that
G. clavigera is the “cool-loving” fungus while O. montium is the “warm-loving” fungus.
Parameters for these rate curves are shown in Table 2.1.
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the tree in mm, and ε is drawn from a normal distribution with mean zero (see Figure 2.2).

These locations were then assigned to be G. clavigera with probability pgc or O. montium

with probability 1− pgc. Because we restricted our model to a single dimension, we allowed

the fungi to spread from these locations horizontally around the circumference of the cross

section of the tree at a rate proportional to their radial growth rate (which is determined

by temperature). To allow for the fact that fungal growth in a tree will likely be much

slower than fungal growth in a Petri dish we also included a scaling factor, β ∈ (0, 1], in the

model (a description of how β was estimated is included in Section 2.2.3). This allowed the

movement in the left endpoint of the fungus lesion to be represented by

ẋi,L(t) =















−βr(T (t)), if xi−1,R(t) < xi,L(t)

0, if xi−1,R(t) ≥ xi,L(t) (i.e. if lesions overlap),

(2.2)

at time t, and the growth of the right endpoint by

ẋi,R(t) =















βr(T (t)), if xi,R(t) < xi+1,L(t)

0, if xi,R(t) ≥ xi+1,L(t),

(2.3)

where i = 1, 2, ...n and r represents either rgc or rom, the radial growth rate (which is a

function of the temperature at time t) for G. clavigera or O. montium, depending on the

type of fungus growing from lesion i.

In the model, competition by fungi for space within the tree is implemented by setting

the fungal growth rates to zero when two fungal lesions meet. This is based on observations

that only exploitative, not direct competition, occurs between the fungi (Bleiker and Six,

2007). This mechanism also accounts for the finite area available for fungal colonization

within the tree; once available space between lesions is occupied, a fungus can no longer

capture more space. Based on temperature, the model allows fungal growth to continue

until the entire cross section is colonized or until a specified amount of time has gone by,

such as the amount of time necessary for the MPB eggs to develop into teneral adults. After
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Fig. 2.2: A horizontal cross section of a tree bole that has been intersected by female MPB
galleries (represented by dark striations). At each point, either G. clavigera or O. montium
spreads horizontally outward at a rate based on the temperature at time t.

this the proportion of the two fungi present in the tree is calculated and used to update pgc

for the next generation of fungus lesions.

Temperature data

To project fungal growth and test our hypotheses, two long-term temperature datasets

were used. One was collected in the Stanley Valley of the Sawtooth National Recreation

Area (SNRA) in central Idaho and the other at Railroad Ridge (RRR), a high-elevation

site located in the White Cloud Mountains in the Challis National Forest of central Idaho.

The SNRA temperature dataset consists of hourly phloem temperatures from Julian day

(JD) 200 of 1992 to JD 289 of 2004 collected at an elevation of approximately 2,040 m

(6,700 ft). These were collected from the phloem of 12 different MPB-infested lodgepole

pines (one per year) located throughout the SNRA and combined to form a continuous 12-

year temperature record (Powell and Bentz, 2009). This dataset was used to test all three

of our hypotheses. The RRR temperature dataset consists of hourly phloem temperatures

recorded at the southern weather station established along RRR, a broad east/west running

ridge that slopes from approximately 2,900 m (9,500 ft) to 3,400 m (10,500 ft). This dataset

was primarily used as the higher elevation site to test the thermal migration hypothesis.

Simulations in this paper were performed using south bole aspect RRR phloem temperatures

recorded from 1996-2004 (Logan and Powell, 2001).

Estimating the growth scaling parameter

The parameter β included in equations (2.2) and (2.3) was used to scale the rate

of fungus growth in a Petri dish to the much slower rate of fungal growth in a tree. A
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rough estimate for this parameter was obtained using the observation that beetle larvae will

tunnel backwards to older sections of their larval gallery to eat fungus colonized phloem

(Adams and Six, 2007). We assumed that the approximate total growth of a lesion could be

estimated using the length of MPB larval galleries. For example, using 1994 temperatures

from the SNRA dataset, the period from MPB oviposition to pupation took 198 days (using

the MPB model which will be described in Section 2.2.4). During that time G. clavigera

would have grown 28.84cm on agar. To determine a rough estimate of the length the

larvae would have colonized as they developed through their four larval instar stages, we

measured the length of larval galleries on three pieces of stripped lodgepole bark in the USU

Applied Entomology lab and observed larval gallery lengths between 3 and 5cm. We used

the mean of these measurements, 4cm, which allowed us to calculate β as approximately

4/28.84 = 0.1387. We note that this value of β serves only as a rough approximation, as

different estimates could be obtained using a different year from the temperature record or

if larval gallery lengths vary greatly from our observations. A more data-driven estimate

for β is the subject of our next work which will utilize detailed information about MPB

attacks and emergence, the proportion of each fungus entering and a tree, and an hourly-

temperature record.

2.2.4. The MPB median developmental model

To connect the implications of fungal growth in a tree with the stability of the MPB-

fungus mutualism, we used an existing model for MPB development. This model predicts

the median emergence date of the MPB from each of their life stages (egg, larvae, pupae

and teneral adult) (Powell and Logan, 2005). The model works by taking a year-long

temperature record and calculating the corresponding median rates of development through

each MPB life stage. Then, based on the median date of MPB attack on a tree, it determines

the median date at which MPB transition between life stages. We used this model to

determine the window of time during which teneral adult MPB feed on spore layers of

the fungi that line the pupal chambers. This window was used to calculate the relative

prevalence of G. clavigera and O. montium available to be carried to the next generation
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of host trees. Model details, including integration strategies and rate curve parameters for

the eight phases of the MPB life cycle can be found in (Powell and Logan, 2005).

2.3. Model integration

Simulations to project fungal prevalence into the future were done by specifying host

tree size, the average distance between fungal lesions (corresponding to the density of at-

tacking MPB), the average proportion of each fungus being carried, the date the majority of

MPB began attacking a particular tree (which acts as the date of inoculation for the fungi),

and a year-long temperature record. Using these values, the MPB median developmen-

tal model described in Section 2.2.4 was used to calculate the teneral adult spore-feeding

window. The fungal growth model from Section 2.2.3 was used to determine the relative

proportion of G. clavigera and O. montium present in the tree at that time. The propor-

tion of each fungus available during this window was averaged and used as the proportion

carried by beetles to attack new host trees.

To ensure as much realism as possible, we used fungal lesion spacings which corre-

sponded to observed MPB attack densities. A previous study on MPB found that the

minimum attack threshold (the lowest density of attacking MPB that will result in a suc-

cessful MPB generation) for MPB in lodgepole pine is about 40 attacks/m2, the optimal

attack density is 62 attacks/m2, and a high attack density is considered to be 80 attacks/m2

(Raffa and Berryman, 1983). Given the fact that MPB parental galleries average 30cm in

length and that beetles prefer to attack trees 25cm in diameter or larger (Safranyik et al.,

2007), we found that 40-85mm was a reasonable range to include for lesion spacings (where

54mm corresponds to the optimal attack density) assuming the MPB galleries are evenly

dispersed across the tree bole. To reduce complexity of the simulations and minimize small

sample size effects 1000 cross-sections were spliced together to form a vast mega-section.

The number of fungal lesions varied depending on the spacing between lesions used. Ta-

ble 2.2 shows the approximate relationship between MPB attack density and fungus lesion

spacing.
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Table 2.2
Approximate correlation between lesion spacing in mm and MPB attack density in
beetles/m2 (assuming female galleries are dispersed evenly across the tree bole).

Relationship between lesion spacing and MPB attack density

spacing in mm approximate number of beetles/m2

40 85
50 67
60 56
70 48
80 42

2.3.1. Hypothesis evaluation

To determine whether temperature variability is allowing both fungi to persist in the

mutualism we constructed several vectors of hourly temperature data which included intra-

year, inter-year or thermal migration variability and used these to project fungal prevalence

into the future. For simplicity, we began each simulation with the relative proportion of each

fungus at 50% and examined how different thermal scenarios eroded or enhanced mutualism

stability.

Temperature sets to test intra-year variability were constructed by dividing the SNRA

temperature dataset into one-year increments and repeating them for a specified number of

years. This allowed us to determine whether variability present in a single year’s tempera-

ture record was enough to maintain both fungi in the mutualism. Inter-year variability was

tested by projecting fungal prevalence into the future using our two observed long-term tem-

perature datasets as well as datasets constructed by randomly permuting year-long chunks

of observed temperature data from the SNRA or RRR. The final form of variability we con-

sidered was variation caused by portions of the MPB population periodically transitioning

between different thermal environments. In this case, we selected the number of years the

MPB would be at a low elevation or warm environment, n1, and the number of years they

would be at a high elevation or cool environment, n2, and then randomly selected n1 years

from the Sawtooth dataset and n2 years from the RRR dataset and repeated this process

for the number of cycles we wished to observe. See Table 2.3 for more explanation about
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Table 2.3
Method of constructing simulated temperature datasets to test our hypotheses. The hy-
pothesis name is listed on the left while the right column describes how year-long chunks
of observed temperatures were used to construct corresponding temperature datasets.

Temperature datasets to test hypotheses

intra-year year k, year k, year k, ...

inter-year 1992, 1997, 1995, ...

thermal migration SNRA1999, SNRA1997,... SNRA1994, RRR1996, RRR2000,... RRR1997, ...

how these datasets were constructed.

2.4. Results

2.4.1. Intra-year variability

When projecting fungal prevalence through time, we found that for any given year, one

fungus would nearly always gain a slight advantage over the other. Due to the stochastic na-

ture (lesion location and type) of the fungal growth model, this advantage could potentially

switch back and forth between the two fungi if the simulation was repeated, particularly

if the advantage gained by one fungus was quite small. However, when projected over a

long time period, we found that the stability of the mutualism was strongly dependent on

how closely the fungal lesions were spaced (i.e. density of MPB attacks). When lesions

were close (40mm and below, indicating a very high density of attacking MPB), intra-year

variability allowed both fungi to maintain a strong presence in the mutualism in most of

the thermal scenarios we tested (Figures 2.3 and 2.4, plots A and B). As lesion spacing in-

creased, we found that the advantage ceased to pass back and forth as often, nearly always

allowing one fungus to continue to gain an advantage (Figures 2.3 and 2.4, plots C-J). This

would eventually cause the relative prevalence of the other fungus to move toward zero. As

lesion spacing increased, the rate at which one fungus began to dominate the mutualism

also tended to increase. Exceptions to this with SNRA data occurred in 1994 and 2003

(Figure 2.3, plot J) and RRR data in 2000 (Figure 2.4, plots E-J). These will be discussed

further below.
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Fig. 2.3: Testing the intra-year variability hypothesis and the effect of lesion spacing on
fungal prevalence using SNRA temperature data. Each subplot shows 12 curves (corre-
sponding to the 12 years of temperature observations from the SNRA dataset, south bole)
representing the predicted prevalence of G. clavigera after iterating the model 200 times
using a single year’s temperatures. We note that when lesion spacing was small (40-45mm,
A and B, corresponding to very high attack density), both O. montium and G. clavigera
remained present in similar proportions for the entire 200 years. As fungal spacing increased
however, more and more years resulted in G. clavigera being lost from the mutualism (C-J).
Interestingly, further increases in spacing allowed 1994 temperatures to favor G. clavigera
and lessened the advantage O. montium was able to obtain for 2003 temperatures (J).
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Fig. 2.4: Testing the intra-year variability hypothesis and the effect of lesion spacing on
fungal prevalence using RRR temperature data. Each subplot shows 6 curves (corresponding
to the 6 years of temperature observations from the RRR dataset, 1996-2001, south bole)
representing the predicted prevalence of G. clavigera after iterating the model 200 times
using a single year’s temperatures. As with the SNRA temperatures, when spacing between
lesions was small (40-45mm, A and B) O. montium and G. clavigera were able to remain
present in similar proportions for the entire 200 years. As fungal spacing increased, the
coolness of the climate favored G. clavigera and O. montium began to be lost from the
mutualism (D-J). An exception occurred for temperatures from 2000, a warm year, in
which larger lesion spacings allowed O. montium to gain in prevalence and G. clavigera to
diminish.
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Several simulations were performed repeating a single-year temperature series to test

whether intra-year variability could stabilize the mutualism. In each case, the simulation

began on JD 205 with G. clavigera and O. montium initially present in the mutualism at a

relative proportion of 50%. Projecting their relative proportions forward using a repeated

string of yearly temperatures from the SNRA or RRR, we found that when fungal lesions

were spaced 40mm apart (equivalent to a very high MPB attack density, ∼ 90 beetles/m2),

the mutualism remained stable (Figures 2.3 and 2.4, plot A). However, as lesion spacings

increased, stability decreased (Figures 2.3 and 2.4, plots C-J). O. montium repeatedly

gained an advantage over G. clavigera causing the relative proportion of G. clavigera to

decrease over time. Further increases in lesion spacing allowed O. montium to benefit

more each year, and G. clavigera was lost from the mutualism after a few hundred years.

Interestingly, for SNRA temperatures in 1994 and 2003, the behavior of the system changed

for very large lesion spacings (80-85mm): 1994 temperatures began to favor G. clavigera and

2003 temperatures less strongly favored O. montium. Relative to the SNRA dataset, 1994

and 2003 were remarkable only in that 1994 was cooler in late summer/early fall and 2003

had a longer winter, with cooler temperatures beginning in September and lasting through

February (versus October-January). A similar result occurred for RRR simulations in that

for large lesion spacing, 2000 temperatures began to favor O. montium.

2.4.2. Inter-year variability

Simulations testing effects of inter-year variability on the mutualism produced similar

results. When projecting fungal prevalence using the observed temperature records from the

SNRA and RRR, we found that closely spaced fungal lesions (40mm) allowed the relative

proportion of each fungus to stay very near 50% while increases in lesion spacing allowed

one fungus to gain an advantage over the other. Generally O. montium, the warm fungus,

would prevail using SNRA temperatures (Figure 2.5, plot A) while G. clavigera benefited

slightly more often than O. montium (approximately 55% of the time) when using the RRR

temperatures (Figure 2.5, plot B), although the change in relative prevalence was often

quite small (less than 1%). In repeating these simulations, we found substantial variability.
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Fig. 2.5: Testing the inter-year variability hypothesis using observed temperature datasets.
One realization of the projected proportion of G. clavigera (GC, solid line) and O. montium
(OM, dashed line) present in the mutualism over time in (A) the SNRA and (B) the
higher elevation site, RRR, using a lesion spacing of 54mm. These plots suggest that over
time, regardless of inter-year variability, G. clavigera may be lost from the mutualism in
temperature regimes similar to lodgepole pine stands in the SNRA, while O. montium could
be lost from the system in higher elevation whitebark pine stands, albeit more slowly.

However, the overall trend indicated that G. clavigera will be lost from the mutualism at

the low elevation site, while O. montium will be lost, although more slowly, at the higher

elevation site.

When simulated over a longer timescale using a simulated dataset (200 years, Figure

2.6), we found that this trend continued. Small spacing between lesions (40-45mm) corre-

sponding to high densities of attacking MPB would result in long-term stability. However,

as the density of MPB attacks decreased, and spacing between lesions increased, O. mon-

tium would continue to gain an advantage in the SNRA, slowly forcing G. clavigera out of

the mutualism while G. clavigera would continue to gain an advantage at RRR.

2.4.3. Migration between different thermal environments

When testing the thermal migration hypothesis, we found that the ultimate outcome

of the system was sensitive to the number of years (or MPB generations) spent in each

habitat but that for certain lesion spacings the outcome became less sensitive to these time

periods. In general the relative proportion of G. clavigera in the mutualism tended to

decrease when MPB occupied the warmer, low-elevation location and increase when MPB
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Fig. 2.6: Testing the inter-year variability hypothesis. The projected proportion of G.
clavigera present in the mutualism over time is shown for the (A) SNRA and (B) RRR
with lesion spacings ranging from 40 to 85mm using a hypothetical dataset created by
sampling random year-long chunks from the observed temperature sets. Note that low
lesion spacings (40-45mm, indicating high densities of attacking MPB) have the potential
to stabilize the system for a long period of time while large lesion spacings (i.e. fewer
attacking MPB) can cause G. clavigera to be lost from the mutualism in the SNRA, and
O. montium to be lost from the mutualism at RRR.
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occupied the cooler, high-elevation location. Provided the ratio between the low and high

elevation periods was appropriate, the overall relative prevalence of the two fungi would

oscillate up and down, and the mutualism would not ultimately destabilize except at the

most sparse lesion spacings (Figure 2.7, plot A). If the period spent at low elevation became

too long, however, then we would see a trend favoring O. montium (Figure 2.7, plot B).

Conversely, if the period spent at high altitude was too long, then the trend would favor G.

clavigera. The prevalence of each fungus was less sensitive to MPB attack density in these

simulations than in those for MPB remaining in a single thermal environment.

2.5. Discussion/Conclusions

In this study, we developed a temperature-driven model for fungal growth in a tree

which includes effects of competition for space. This model was parametrized using fungal

growth data and combined with an existing model for MPB development. Using this inte-

grated model, we projected fungal prevalence through time using observed and constructed

temperature datasets which allowed us to test whether variability in temperature was capa-

ble of stabilizing the MPB-fungus mutualism. We found that of the three hypotheses tested,

thermal migration was the most robust stabilizing mechanism for the MPB-fungus mutu-

alism independent of lesion spacing. This type of variability allowed G. clavigera and O.

montium to remain in the mutualism indefinitely given appropriate rates of migration. Our

simulations did not indicate that either intra- or inter-year variability alone were capable of

stabilizing the mutualism. We acknowledge that inter-year variability could produce similar

results as thermal migration, although temperature records used in our model analyses did

not include years with sufficiently cool and warm temperatures.

Additionally, we were surprised to find that spacing between lesions (or the density of

attacking MPB) influenced stability of the mutualism. All three sources of variability we

tested appeared to be plausible stabilizing mechanisms when MPB attack densities were

at or above the optimal attack density of 62 beetles/m2 (corresponding to a lesion spacing

of 54mm or closer). As spacing between lesions increased (corresponding to lower MPB

attack densities) thermal migration variability emerged as the only temperature mechanism
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Fig. 2.7: Testing the thermal migration hypothesis as a portion of the MPB population
periodically transition between two distinct thermal habitats. We allowed the MPB to alter-
nate between 6 generations in the SNRA (perhaps in an outbreak phase) and 14 generations
(∼24 years) in a cooler location, RRR (A) and 6 generations in the SNRA and 8 at RRR
(∼40 years) (B). From these plots, we see that appropriate patterns of transitioning be-
tween thermal environments can maintain both fungi in the mutualism for all but the most
distant lesion spacings while different ratios of transitioning may lead to destabilization.
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capable of stabilizing the system. This raises the question, what about lesion spacing acts

to stabilize the mutualism?

How does lesion spacing stabilize fungal prevalence?

To explore the dynamics of lesion spacing, we used the fungal growth rate curves from

Section 2.2.2 to plot the competition between two lesions, each of a different fungal species.

Using these rate curves, we plotted the cumulative length of phloem each fungus could

colonize in an average year (SNRA 1995) to visualize differences between the overall growth

of the fungi (when infinite space was available to colonize). Next we plotted the cumulative

length G. clavigera could colonize coming from one direction and the cumulative length O.

montium could colonize coming from the opposite direction and varied the initial distance

between them (representing different lesion spacings) (Figure 2.8). Displayed this way the

point at which the curves cross indicates the time at which the space between two lesions

is totally colonized and how much was colonized by each species.

The cumulative growth of the two fungi was quite similar and could be divided into

three phases: rapid growth in fall, slow or zero growth in winter, and rapid growth again in

spring. Qualitatively, the biggest difference between these curves occurred at the transition

between phases (∼60-100 days after attack and ∼270-320 days after attack). In these

regions, the average growth rate of the fungi was quite different which could have a large

impact on where the fungi intersect (Figure 2.8 plot B).

When lesions were tightly spaced, the fungi intersected early in the fall when their

growth was roughly linear and average temperatures were near the temperature at which

G. clavigera and O. montium grow at the same rate (where the fungal rate curves in Figure

2.1 intersect, ∼ 16.3◦C based on our parameterization). For example, in the SNRA in 1995

the mean temperature for the first 60 days after attack (JD 205 to JD 265) was 15.23◦C.

This helped stabilize the mutualism since most of the available space was colonized in

the fall when the fungal growth rates were nearly indistinguishable, leaving less potential

for winter and spring temperatures to affect the system. As the space between lesions

increased, the fungi intersected later in the year, closer to one of the transitions between
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Fig. 2.8: Effect of spacing on the proportion of a tree each fungus is able to colonize.
Cumulative growth of G. clavigera and O. montium (A), and the dynamics of two lesions
with different fungal type initially 40, 55, 70, and 85mm apart (B). We allowed O. montium,
OM, (solid line) to grow from one direction while G. clavigera, GC, (dashed line) grows from
the other. Note, the point of intersection of the fungi (horizontal black line) is affected by
the initial space between lesions. When the space is small (40mm, on left), the fungi
intersect during their initial rapid growth phase (when their growth is nearly identical).
Each colonizes approximately 50% of the space available (regardless of winter and spring
temperatures) and the mutualism remains stable. As space between lesions increases the
fungi intersect in late fall or early spring where the fungi display the most different behavior.
For this particular year, wider space between lesions allowed G. clavigera to gain a small
advantage. This mechanism allows one fungus, depending on temperature, to colonize more
space and gain dominance in the mutualism, leading to a destabilization over time. Phloem
lengths colonized in this plot were calculated using SNRA 1995 temperatures, an attack
date of JD 205 and β = .1387.
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phases where the realized growth characteristics of the fungi were most different. This

generally resulted in one fungus claiming slightly more space than the other. Simulations

are based on a constant date of attack each year, although in reality attack date will vary

annually as temperature influences insect development and emergence timing. Changing

date of attack could significantly influence fungal interactions and future work will include

using observed MPB and fungal parameters observed at field plots to evaluate and improve

the model. Model improvements will also include a coupled competition model for the total

area colonized by each fungus under the bark and variability in fungal growth rates.

For the majority of years, temperatures in the SNRA favored O. montium (Figure 2.3)

and we saw the relative proportion of G. clavigera decrease over time for lesion spacings

above 45mm. One anomaly, however, was that large lesion spacings altered the outcome in

fungal prevalence in 1994 and 2003, causing 1994 temperatures to favor G. clavigera and

reducing the advantage O. montium could obtain in 2003 (Figure 2.3 plot J). To explore

this further in the context of lesion spacing, we looked at the overall cumulative growth

of each fungi during 1994 and 2003 (Figure 2.9) to see how their growth matched up over

these years, and in particular, how the two fungi transitioned between slow winter growth

and rapid spring growth (which would affect their point of intersection between lesions with

very large space between them).

We found that although 1994 was a cooler year the growth of each fungus was similar

during the first 60 days following the MPB attack (Figure 2.9 plot A). As the year went

on, there were brief periods which favored O. montium, but overall G. clavigera held the

advantage. This meant that with finite space available, the two fungi could either meet early

in the year when the fungi had nearly identical growth, slightly later, perhaps early in the

transition between fall and winter phases when O. montium had a brief advantage, or later,

when G. clavigera had a clear advantage. This explained how in simulations for intra-year

variability the curve representing 1994 was stable for small lesion spacings (Figure 2.3 plots

A-B), began to favor O. montium as lesion spacings increased, and how it switched and

began favoring G. clavigera for the largest spacings (Figure 2.3 plot J). The year 2003 also
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Fig. 2.9: Exploring the effect of lesion spacing on fungus prevalence for two anomalous
years, 1994 (A) and 2003 (B). The relative position of the cumulative growth curves for
G. clavigera, GC (dashed line), and O. montium, OM (solid line), and how they transition
between rapid fall growth, slow winter growth and rapid spring growth are able to explain
how differences in lesion spacings could affect the outcome of the mutualism.

produced anomalous results in that the relative proportion of G. clavigera was somewhat

higher after 200 years for large lesions spacings rather than small ones (Figure 2.3). The

mechanism behind this also became clear upon inspection of the cumulative length each

fungus would have colonized (Figure 2.9 plot B). Both fungi grew quite similarly with the

exception of the transition between slow winter growth and fast spring growth which would

have altered the outcome of the mutualism for large lesion spacings. Based on this analysis,

it seems that for current temperatures lesion spacing is quite a robust stabilizing mechanism,

which begs the question: will it maintain stability in an altered temperature regime?
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Because global temperatures are projected to warm in the coming decades, we added a

warming trend of 1 and 2◦C per 10 years and repeated the projections testing the thermal

migration hypothesis (Figure 2.10). In doing so, we found that the closest lesion spacings

(40-45mm) continued to stabilize the system. When temperature became too warm (i.e.

after several decades), MPB development slowed as temperature exceeded the optimal de-

velopmental thresholds of larvae and pupae, resulting in substantially delayed teneral adult

emergence. We halted simulations once the warming trend caused teneral adult emergence

to be delayed beyond the next year. For larger lesion spacings, the warming trend caused

G. clavigera to lose its advantage in the cooler habitat, removing the possibility for it to

make up for losses in prevalence unless MPB attack density remained extremely high. This

means that over time, G. clavigera will likely be forced from the MPB-fungus mutualism

unless there is a stabilizing mechanism distinct from temperature or one that can override

the effects of temperature.

Our results indicated that of the three forms of temperature variability tested, the

thermal migration hypothesis was capable, on its own, of stabilizing the system over the

long term. Inter-year variability could potentially act in the same way, provided there are

sufficiently cool and warm years, though none of the observed years in our dataset from

the SNRA were cool enough to allow G. clavigera to increase significantly in prevalence

and the RRR years were not warm enough for O. montium to increase in prevalence. We

also acknowledge that MPB attack density does not remain constant and it is possible

that changes in attack density along with changes in temperature could act to stabilize the

system. In particular, attack density increases during population eruptions and the cycle of

endemic to outbreak population phases this insect is known for may also help to stabilize

the system. Nonetheless, if climate change results in G. clavigera being forced out of the

mutualism, at least in portions of the MPB range, there could be important ramifications

for MPB and pine trees. For one, G. clavigera is thought to be nutritionally superior to O.

montium and supports greater beetle fitness (Six and Paine, 1998). Completely replacing

G. clavigera with O. montium could result in lower fecundity and survival of MPB, affecting
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Fig. 2.10: Result of thermal migration simulation after adding a 1◦C per 10 year warm-
ing trend. Close lesion spacing (40-45mm) continues to stabilize the system. At higher
lesion spacings (55-85mm), however, the continued warming caused G. clavigera to lose its
advantage in the cooler habitat causing it to be lost from the mutualism over time.

its ability to respond to conditions that would normally support an outbreak. It may also

diminish environmental buffering by reducing the symbiont community associated with the

beetle to one species with a reduced environmental amplitude (Six and Bentz, 2007).
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CHAPTER 3

CONNECTING PREDICTIONS FOR SYMBIOTIC FUNGAL PREVALENCE TO

TEMPERATURE AND MOUNTAIN PINE BEETLE DEVELOPMENT1

Abstract

The fate of a species is often tied to the phenology and success of community asso-

ciates. Examples include flowering plants and their pollinators, diseases or pathogens and

susceptible individuals, and even males and females of a species whose differential develop-

ment rates may lead to lack of reproductive success. Despite the prevalence of phenological

overlap, however, few methods exist for connecting phenological models for multiple, in-

teracting species. In this paper, we focus on the interactions between the mountain pine

beetle (MPB) and two species of mutualistic fungi, Grosmannia clavigera and Ophiostoma

montium. We adapt a model for the growth of these fungi within a tree and introduce the

notion of a colonization index. This allows us to combine predictions of tree colonization by

fungi to temporal predictions of MPB teneral adult feeding windows and emergence. Using

this combined model, we consider a spectrum of strategies for MPB to pack their mycangia

with mutualistic fungi, thereby directly influencing the proportion of each fungus carried to

new host trees. The models are parameterized using fungal growth rates determined in agar

and field observations of MPB, and associated fungi, entering and exiting trees. We found

that the models provide good predictions of fungus carried by MPB over time and that

the most likely mycangial packing strategy is for MPB to pack their mycangia just prior to

emergence from the tree. We also found large differences in the relative growth of the two

fungi inside a tree, with the most likely model estimating that Grosmannia clavigera can

grow approximately 25 times faster than Ophiostoma montium, though the veracity of this

result is in question due to the anomalously low production of Ophiostoma montium in the

study trees.

1

1Coauthored by Audrey Addison, James Powell, Barbara Bentz, and Diana Six; submitted to the
Journal of Theoretical Biology, March 2014
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3.1. Introduction

The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins, Coleoptera: Cur-

culionidae, Scolytinae) is currently the most significant insect species affecting pines in

western North America. Between 1997 and 2010, MPB caused tree mortality on more than

8.5 million forested ha in British Columbia and the western United States combined (Med-

dens et al., 2012). Range expansions in Alberta and northern British Columbia are ongoing

(de la Giroday et al., 2012) as a result of warming summers and winters (Cudmore et al.,

2010; Sambaraju et al., 2012). An important feature of MPB population dynamics and sur-

vival, however, is that they are influenced by two fungal symbionts, Grosmannia clavigera

and Ophiostoma montium. Together, these species are involved in an obligate multipartite

mutualism. The beetle benefits the fungi by transporting their spores to new host trees

in specialized structures called mycangia (Six and Paine, 1998). In turn, the fungi provide

benefit to the beetle by transporting nitrogen from the sapwood to the phloem layer of the

tree where larvae feed. New (teneral) adults also feed on lipid-rich fungal spores prior to

emerging from a host tree, an action that simultaneously provides beetles with nutrients

required for reproduction as well as packing spores into mycangia for dispersal (Six and

Paine, 1998; Adams and Six, 2007; Bleiker and Six, 2007). Because this association is obli-

gate, the phenologies of the fungi and beetle must overlap. The interdependence of partners

in this symbiosis make it is essential to incorporate the dynamics of all three species when

modeling or attempting to predict future MPB-caused tree mortality or estimating range

expansions or contractions.

The issue of phenological overlap in ecology is not new; many species interact in ways

that bind their fates. For example, phenological overlaps between pollinators and flower-

ing are critical for the reproduction of many plants (Gross and Werner, 1983; Murali and

Sukumar, 1994). In some ant and butterfly species, different development rates or matu-

ration times for males and females can result in loss of reproductive success under some

conditions (Kaspari et al., 2001), and increase the risk of extinction in small populations

(Calabrese and Fagan, 2004). For diseases and parasites, spread often depends on phenolog-
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ical overlap between the pathogen and susceptible individuals (Molnár et al., 2013). Thus,

being able to connect phenological models for multiple, interacting species would increase

our understanding of the broader effects species can have on one another and ecological

processes.

In this paper, we develop a methodology for connecting temperature-driven phenolog-

ical models for MPB and its symbiotic fungi, and incorporate five biologically plausible

submodels that describe a spectrum of possible ways in which MPB and its fungi interact.

While our approach is specific to the MPB-fungi system, elements of our approach can

be adapted to connect phenological predictions of other systems with multiple, interacting

species. Here we use direct (growth rate) and indirect (fungal prevalence) observations to

discriminate among models describing MPB-fungus interactions and to determine values

for cryptic parameters scaling laboratory measured growth rates to growth in a tree. This

allows us to determine that the fungi present (or sporulating) just prior to emergence (as

opposed to the fungus primarily present during the entire teneral adult feeding window) are

most likely to be dispersed, and that differential growth rates of the two fungi under bark

unexpectedly favor the cold-loving fungus G. clavigera, providing a possible mechanism for

its persistence at warm sites in spite of a warming climate.

3.1.1. The MPB-fungus system

MPB have evolved complex interactions with two species of mutualistic filamentous

fungi, G. clavigera and O. montium (Adams et al., 2008; Six, 2012). MPB and these

mutualistic fungi interact throughout their entire life cycle. Following successful attack

and colonization of a host tree, adult MPB excavate tunnels under the bark and lay eggs.

During this process, they simultaneously inoculate phloem tissue with fungal spores from

their mycangia (Six and Klepzig, 2004). After this, the beetles and fungi develop at rates

based on temperature. The larvae feed on both phloem and fungal hyphae as they develop,

and prior to emergence the newly eclosed teneral adults feed on fungal spores (Six and

Paine, 1998). Sometime during this period of spore feeding, the beetle’s mycangia becomes

packed with fungal spores which are then dispersed to the next host tree and the next
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generation of beetles. The proportion of each fungal species dispersed by each generation is

determined by the timing of fungal growth and acquisition of spores in mycangia by adult

MPB.

To connect phenological models for the MPB-fungus system, several components need

to be considered. These include 1) the presence of not one but two mutualistic fungal species,

2) the fact that phenological outputs are qualitatively different (developmental milestones

for MPB versus spatial extent for fungi), and 3) the range of biologically plausible ways

in which MPB procure fungal spores. The two symbionts of MPB differ substantially

in their effects on beetle fitness. Therefore, their relative prevalence is important, not

only in fitness of the fungi but also in how they affect beetle populations. Because the

fungi compete for the same spatial resources under bark, their relative rates of growth and

resource capture must be included in models. Phenological models for MPB only provide

temporal predictions of MPB life stage timing (Bentz et al., 1991; Logan and Bentz, 1999;

Régnière et al., 2012). The completion of fungal life stage events is not relevant in this

context, so models for the growth of the MPB mutualistic fungi are based on and predict

measurements of length colonized (see Chapter 2). These different outputs from beetle

and fungal models need to be combined in a tractable way. Finally, interactions between

MPB and their fungal symbionts take place exclusively within the phloem layer of a tree.

Although some types of interactions have been measured within this cryptic habitat (Adams

and Six, 2007; Bleiker and Six, 2007), others such as how MPB pack their mycangia with

fungi are completely unstudied. These interactions are important because they influence

nutritional acquisition, beetle fitness, and determine the relative proportions of the two

fungi that will be transported to new host trees.

From a scientific standpoint, these features make the system interesting. In addition

to the large amount of tree mortality caused by MPB, the system is notable because it

is a multipartite mutualism that has remained stable over a long period of time. This is

at odds with ecological theory, which predicts a superior or more competitive mutualist

should eventually dominate the mutualism. In Chapter 2, we explored thermal stabilizing
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mechanisms by creating a temperature-dependent model for the spread of G. clavigera and

O. montium within a tree, connecting it with existing MPB development models and simu-

lating MPB-fungi dynamics to determine whether differences in the temperature responses

between the two fungi could stabilize the system. Two processes critical to coupling the

MPB and fungal growth models were not included: first, how fungal growth rates, origi-

nally determined from lab studies in Petri dishes, scale to actual growth rates in a tree, and

second, the relationship between fungal prevalence in the tree and the proportion of each

species packed in MPB mycangia as a function of the relative timing of the teneral adult

feeding window.

3.1.2. Scaling fungal growth on an artificial medium to estimate growth in a tree

Grosmannia clavigera and O. montium are species of fungi that spread outward in an

infested tree by forming a mycelial network from their initial inoculation point. Because the

fungi grow under bark, it is impossible to monitor growth from individual inoculation points

in a tree over time. Instead, growth rates were determined in lab experiments by growing

the two fungi on 2% malt extract agar in Petri dishes at six temperatures (Moore, 2013).

These data were used to develop the fungal growth rate curves and growth rate parameters

discussed in Section 3.2.2 and to develop the models in Chapter 2. A concern with using

these measurements directly, however, is that conditions inside the tree are different than

those in a Petri dish – and likely less hospitable. Fungi are likely to grow slower in the

tree than growth rate curves based on lab experiments suggest. The result of inoculation

studies also suggest that G. clavigera is a better first invader of a tree (Krokene and Solheim,

1998) than O. montium because it is more virulent and so can better tolerate tree defences.

To account for this in our model, we incorporate growth rate scaling parameters for each

fungus.

3.1.3. MPB-fungus interaction and mycangial packing

Timing of MPB mycangial packing will influence which fungus is transported from a

brood tree to a new tree. MPB feed on fungal spores as teneral adults (Adams and Six,

2007). Teneral adults pack their mycangia with fungal spores sometime following eclosion
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from the pupa but prior to emerging from the host tree (Six and Paine, 1998). The feeding

window for teneral adults may last weeks, however, and during this time fungal prevalence

may change drastically. This makes the timing and efficiency of mycangial packing an

important factor in developing accurate models. To better predict fungal acquisition by

teneral adults, we hypothesize and test five possible strategies for the timing of mycangial

packing. These strategies describe a spectrum of behaviors ranging from model 1, in which

MPB immediately pack their mycangia with the first fungus available, to model 5, in which

they delay mycangial packing until just prior to emerging from the tree.

Our goal is to determine the most likely model describing mycangial packing and deduce

under-bark growth rates from field data. Using derived fungal growth rate scaling param-

eters and five mycangial packing hypotheses, we construct likelihood functions connecting

mathematical hypotheses with observations of fungi carried by emerging MPB adults from

observations in the field. We also validate the model and determine which mycangial pack-

ing strategy is most likely. Finally, we discuss our findings in relation to the MPB-fungus

system and suggest follow-up studies that would aid in our understanding of mechanisms

involved in mycangial packing and ultimately fungal prevalence in the following year and

with the next generation of beetles.

3.2. Methods

3.2.1. MPB, fungi and temperature data collection

The timing of MPB attacks on trees and adult emergence the following summer was

monitored on three lodgepole pine (Pinus contorta) in 2010-2011 and four lodgepole pine in

2011-2012 at a site in Logan Canyon, UT (41.9528, -111.55290, 2190m). The MPB popula-

tion in the vicinity of the site was considered incipient epidemic with approximately one tree

per square kilometer infested. In addition to monitoring timing of attack and emergence

of adult MPB, the identity of fungal associates (i.e., G. clavigera and O. montium) carried

by MPB entering and exiting trees, and present with the beetle in trees over the one year

development period, was determined through phloem sampling and mycangial dissection of

adults.
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MPB attack timing

On August 2, 2010, an aggregation lure (Synergy Semiochemicals Corporation, Burn-

aby, BC, Canada) was placed on the north side of each tree. After 10-15 MPB attacks were

observed on a tree (i.e., 1 to 3 days) the lure was removed to allow the MPB attack process

to continue naturally. Attacks were monitored daily on each tree between 1 and 5 feet above

the ground, by bole quadrant (i.e., north, south, east and west). MPB attacks are visible as

frass or resin exuding from small entrance holes through the bark. The number of attacks

was recorded for each day and each day’s attacks marked with a different colored straight

pin. This process was repeated in 2011 in the same vicinity using new live trees.

Fungal samples from attacking MPB

Our protocol assumed that fungi introduced into a tree by individual MPB will be

present in the phloem surrounding its entry site. To allow adequate time for the fungi to

grow into the phloem following adult MPB attacks, we waited 10 days after the first attacks

to begin sampling trees. On the 10th day following the first day of attack, 12 attack sites

were randomly chosen from all attacks that occurred on a single tree over the first three

days. These areas were prepared for fungal sampling by smoothing the bark just above the

entry hole (MPB tunnel upward after entry). We then sprayed the area with 70% ETOH.

Using a ETOH sterilized 9mm cork borer, a core containing bark and phloem was removed

from just above the entry hole. The phloem portion was placed into a sterile-autoclaved

microcentrifuge tube that was labeled with the tree number, date of MPB attack, and date

of sampling and then placed on ice and transported to the laboratory. This process was

repeated for each tree every 3 days throughout the attack period, resulting in up to 120

samples per tree.

To identify the fungal species present in each phloem sample, a sample was placed

onto the center of a Petri dish containing 2% malt extract agar amended with Streptomycin

and cycloheximide and stored at room temperature for 1 week to allow fungal growth.

Isolates were then identified using cultural characteristics and morphology of conidia and

conidiophores.
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MPB emergence timing

In both years following successful attack, mesh cages were placed on all four quadrants

of each tree covering the entire sample area. The following summer, emerging univoltine

beetles were collected from cages daily. Beetles were transported to the laboratory where

they were placed in sterile Petri dishes with filter paper moistened with distilled water and

stored at 3◦C for less than 1 week. Each adult beetle’s sex was determined and the width

of its pronotum measured. Both mycangia of each live beetle were dissected and placed

individually on opposite sides of a Petri dish containing 2% malt extract agar amended

with Streptomycin and cycloheximide. Each dish was labeled with a unique code that

identified a single beetle so that fungal identification could be cross-referenced to the tree,

bole quadrant, emergence date, size and sex. A maximum of 20 adult MPB from each of the

four quadrants of each sampled tree were dissected per sample day (i.e., 80 beetles per day).

Fungal cultures were grown at room temperature (∼21◦C) and then identified to species.

Length of the MPB life cycle in trees attacked in 2010 was predominately univoltine

(i.e., one generation in a single year), although ∼20% of the population was semivoltine (i.e.,

one generation every two years) (Bentz et al., 2013). MPB in trees attacked in 2011 were

100% univoltine. Only data from univoltine beetles from 2010 attacks were used in model

parameterization, and data from trees attacked in 2011 were used in model validation.

Temperature measurements

Ambient air temperature was measured at the study site using a radiation-shielded

temperature probe placed at 1.4 m above the ground on the north side of a tree to reduce

direct sun exposure (Campbell Scientific Inc., Logan UT). North and south bole aspect

phloem temperatures were measured using thin-tipped (0.34 mm2) thermocouple tempera-

ture probes (Omega Engineering, Inc., Stamford, DT) inserted under the bark and into the

phloem layer. Hourly air and phloem temperatures were collected continuously over both

sampling years (May 27, 2010 through November 8, 2012) using a datalogger (Campbell

Scientific Inc., Logan UT). Model performance was tested using each of the temperature

records to explore the effect of north versus south bole temperatures and to determine how
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the model might perform for a different site if only ambient temperatures are available.

3.2.2. Fungal growth model

The model we develop here is a modification of the model presented in Chapter 2 in

which fungal growth is tracked around a cross section with fungus lesions stochastically,

but uniformly, placed around the tree. Lesions were indexed individually and allowed to

grow at a rate based on temperature until they contacted the neighboring lesion. When

parameterizing the model to fungus input and output observations, however, we found this

approach was too rigid. The assumption that fungus lesions could not cross prevented rapid

changes in fungal prevalence observed in the field. Thus we moved to a deterministic model

that includes a colonization index. To account for the fact that the fungi will not grow into

an area already colonized while still allowing fungi to grow around more slowly-growing

lesions, we do not explicitly place lesions but instead calculate the cumulative effect of each

fungus based on the number (and timing) of attacking MPB carrying each type of fungus.

Under-bark colonization rates are proportional to parameterized fungal growth rate curves

which describe the length each fungus can colonize based on temperature. We then use

a maximum likelihood approach to fit the model to observed data from the field. This

includes estimating the value of parameters scaling fungal growth from agar to tree as well

as parameters describing the timing of MPB mycangial packing (described below).

Fungal growth in a tree

Using field observations of MPB attack timing and the proportion of each fungus carried

by attacking beetles, we allowed a lesion of typeG. clavigera and a lesion of typeO. montium

to begin growing on each inoculation day at a rate based on temperature. The size of these

lesions was scaled by the observed number of attacking MPB carrying that particular fungus.

After accounting for each day of MPB attacks, the contribution of each lesion was summed

to get a measure of the total distance colonized by G. clavigera and O. montium from

attack to day tk. Growth rate was based on hourly temperature, and was calculated for the

two fungal species separately using growth rate curves parameterized in Chapter 2. That

is, the growth rate r of the fungi in millimeters per day was computed as a function of the
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temperature T ,

r(T ) =















B(eα(T−T0) − 1)−B(eα(Tm−T0) − 1)e(T−Tm)/b, T ∈ (T0, Tm)

0, T �∈ (T0, Tm).

(3.1)

Parameters α, b, B, T0, and Tm dictate the shape of the curve and were estimated using

maximum likelihood estimation (MLE) techniques to best match observed fungal growth

data (see Chapter 2). Specific parameter values used for the two fungi are shown in Table

3.1.

Distances colonized by each fungus on each day were multiplied by parameters βGC

and βOM (whose values will be estimated using MLE as described in Section 3.2.2) which

scale agar growth to growth in a tree. The distances were then added together to get a

measure of the total length colonized by both fungi in the tree. That is,

G(tj) = βGC · CumGC(tj) + βOM · CumOM(tj),

where G(tj) is the total length colonized in millimeters on day tj (accounting for all fungal

lesions) and CumGC(tj) and CumOM(tj) represent the unscaled cumulative length colonized

by G. clavigera and O. montium on day tj calculated using Eqn 3.1 and observed hourly

temperatures.

As in our previous model for fungus growth, computations were simplified by consid-

ering growth around a tree cross-section. Assuming that MPB attack the tree with roughly

even spacing (vertically and horizontally), the average fungus lesion can grow linearly away

from its initial inoculation point a maximum distance depending on the size of the tree and

the density of MPB attacks. We assume that the two fungi do not colonize the same area.

To change distances to a dimensionless quantity suitable for integrating with dimensionless

MPB phenology, we divide by C, the average space between fungal lesions. This normalizes

our growth G and represents the proportion of the tree that is colonized. Considering only

MPB attack densities high enough to cause tree mortality, the average space between fungal

lesions C can range from approximately 40mm to approximately 85mm (see Chapter 2). For
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Table 3.1
Parameters for the fungal growth rate curves: α affects the rate of increase at low tem-
peratures, b is the thickness of the boundary layer between peak growth and the upper
temperature threshold, B is a scaling factor which affects the maximum rate of fungal
growth, while T0 and Tm are the lower and upper temperature thresholds for the fungi
respectively in ◦C. These parameters were estimated in Chapter 2.

Parameter Values for Fungal Growth Rate Curves

fungus type α b B T0 (◦C) Tm (◦C)

G. clavigera 0.0041 8.0407 95.6120 0.9123 32

O. montium 0.0662 7.4949 3.8395 -0.0236 34

simulations in this paper, we allowed C = 54mm corresponding to an optimal MPB attack

density of 62MPB/m2 (Raffa and Berryman, 1983). Note that the actual colonization index

may vary from tree to tree, affecting values of βGC and βOM . For this reason we will also

report the ratio between these parameters, βGC/βOM , which is independent of C.

Finally, to obtain a prediction describing the amount of each fungus in the tree on

day tj, we compute the day p in which G > C, which is when the total growth G of the

fungi will have outgrown the space available. The space between lesions therefore depends

on βGC and βOM , the observed hourly temperatures, and the observed attack distribution.

The proportion of each fungus in the tree on day tj is

pGC(tj) =















βGC · CumGC(tj) for tj < p,

βGC · CumGC(p) for tj ≥ p, and

(3.2)

pOM(tj) =















βOM · CumOM(tj) for tj < p,

βOM · CumOM(p) for tj ≥ p .

(3.3)

That is, the proportion of each fungus in the tree on a given day is equal to the cumulative

growth of the fungi (based on observed growth rates measured in a Petri dish) multiplied by

the respective growth rate scaling parameter and then normalized. Given the proportion of

each fungi present in the tree over time, we next needed to determine the probability that
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a MPB would be feeding as a teneral adult beginning on a given day.

Predicting the timing of teneral adult feeding on fungi

Which fungus resides in the mycangia of a particular emerging adult beetle is affected

by the timing of its eclosion to the teneral adult stage and the length of time it feeds on

fungal spores. A distribution of likely teneral adult feeding windows is therefore necessary.

That is, we wish to know the range of possible days tj when a teneral adult could have

begun feeding, given emergence day tk. We were also interested in the relative likelihood

of day tj relative to the other days. The feeding window distribution was determined by

working backward from a distributional MPB phenology model (Régnière et al., 2012) using

observed hourly temperatures and known attack and emergence dates. This was done by

expressing the “hang time” or “observed” development time of MPB as tk− tj = δ ·τ where

tj and tk are the predicted beginning and end dates of the observed teneral adult feeding

window, τ is the median emergence time for teneral MPB adults, and δ is the multiplicative

variability between observed and median development times. Solving this equation for δ we

find that

δ =
tk − tj

τ
=

� tk

tj

r(T (t′)) dt′, (3.4)

where r represents the teneral adult development rate of MPB as a function of temperature

T in degrees C. We follow Régnière et al. (2012) and make the assumption that δ follows a

lognormal distribution with mean 1 (that is, δ ∼ lnN (−σ2/2,σ2) where σ is an additional

parameter to be estimated). This ensures δ ≥ 0, i.e., that development times and rates are

never negative; it can be easily inverted; and its asymmetrical shape with a longer right-

hand tail is commensurate with observations of MPB development (Régnière et al., 2012).

Making this lognormal error assumption, the cumulative distribution function (CDF) of

development time is given by,

P (t > tj) = Φ

�

ln(δ) + σ2/2

σ

�

,
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so the probability density function (pdf) is

dP

dtj
=

1√
2πσ2δ2

exp

�

−(ln(δ) + σ2/2)2

2σ2

�

·
d(δ)

dtj
.

Taking into account the definition of δ (Eqn 3.4), we find that

d(δ)

dtj
= −r(T (tj)).

Putting all of this together, we find that the probability that a beetle emerging at time tk

was feeding at time tj as a teneral adult is given by

pdfk(tj) =
r(T (tj))

�

2πσ2R(tj , tk)2
exp

�

−(ln(R(tj , tk)) + σ2/2)2

2σ2

�

, (3.5)

where

R(tj, tk) =

� tk

tj

r(T (t′))dt′ .

For purposes of computation, the continuous function pdfk is approximated by a matrix of

probabilities, Pfeed, calculated by discretizing the time domain into hour-long segments

and then reporting the probability of feeding on day tj given that the beetle emerges on

day tk, that is,

Pfeed(tj , tk) = pdfk(tj). (3.6)

An example of the resulting distribution of teneral adult feeding can be seen in Figure 3.1

where the distribution of possible feeding start days is shown for a particular day of emer-

gence. This calculation was repeated for all emergence days tk. Note that this calculation

reflects the probability that an adult could emerge on day tk, given that it happens to be

under the bark on day tj. It does not reflect the actual probability of teneral adults ap-

pearing on day tj under the bark given observed attacks. It therefore may assign a nonzero

probability to teneral feeding windows beginning the previous fall or early spring (Figure

3.1), which are unrealistic in the context of observed attacks.



47

Assigning fungi to emerging MPB

Utilizing the matrix of probabilities, Pfeed, computed from Eqn 3.6 in Section 3.2.2

and the proportion of each fungus available in the tree (pGC and pOM ) over time, we can

construct submodels to compare the five mycangial packing hypotheses. The strategies

describe a spectrum of behaviors ranging from model 1, in which MPB immediately pack

their mycangia with the first fungus available, to model 5, in which they delay mycangial

packing until just prior to emerging from the tree. In the following discussion, p1, p2 and

p3, will be used to represent the proportion of MPB emerging on day tk with G. clavigera,

O. montium, and no fungus respectively. The specific method for calculating p1, p2 and p3

will differ based on the mycangial packing assumption and will be described individually

below.

1) First fungus contacted – this model assumes that the fungus present in the mycan-

gia of an emerging adult MPB is the first fungus contacted by the beetle within the

pupal chamber. The model is implemented by calculating all probable feeding win-

dows (similar to the one depicted in Figure 3.1) for MPB emerging on days in which

emergence was recorded. For each emergence day tk, the probabilities p1, p2 and p3

are:

p1(tk) =
�

tj

pGC(tj)pfeed(tj, tk),

p2(tk) =
�

tj

pOM(tj)pfeed(tj , tk), and

p3(tk) = 1− p1(tk)− p2(tk)

using information obtained from equations 3.2, 3.3 and 3.5.

2) Mostly the first fungus contacted – this model assumes that the majority of MPB

pack their mycangia with the first fungus available, but that some proportion pack

their mycangia in subsequent days, with a diminishing probability each day according

to an exponential distribution with parameter λ which represents the mean time to
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Fig. 3.1: Predicted probability of beginning feeding as a teneral adult given emergence on
a particular day tk. The solid blue curve represents the probability of beginning feeding as a
teneral adult on a particular day given that the MPB emerged from the tree 365 days after
attack (i.e., JD 204 of 2011). The emergence day is shown as a vertical line (dashed green).
This demonstrates that the most likely time for an MPB to be feeding on fungal spores in
the teneral adult stage is in the weeks leading up to emergence from a tree (though there is
some nonzero, but very low, probability – based on the phenology model – that this could
occur in late fall or early spring). The dips in the curve are a result of delays in movement
from the pupal to teneral adult stage, perhaps due to cold temperatures.
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encounter or pick up a fungal spore (as λ → 0, this model represents model 1). Using

this distribution, the probability P of first encountering a fungal spore after t days is

given by

P (first encounter at t days) = e−t/λ,

so the probability of not encountering a fungus until time t is given by

F (t) = P (no encounter ≤ t) = 1− e−t/λ.

This was used to calculate the probability that an MPB packed its mycangia during

a given period. That is,

ppack(tj + t) = F (tj + t)− F (tj + t− 1) (3.7)

is the probability that an individual packed its mycangia between JD tj+ t−1 and JD

tj + t. In order to arrive at the probabilities of an MPB emerging with G. clavigera,

O. montium or no fungi, probabilities of collecting each fungus, pGC,coll and pOM,coll,

were calculated

pGC,coll(tj) = pGC · ppack and pOM,coll(tj) = pOM · ppack.

Then

p1(tk) =
�

tj

pGC,coll(tj)pfeed(tj, tk),

p2(tk) =
�

tj

pOM,coll(tj)pfeed(tj , tk), and

p3(tk) = 1− p1(tk)− p2(tk).

3) A delay in mycangial packing – this model uses the Laplace probability distribution

in place of the exponential probability distribution used in model 2. It allows for an

initial delay in mycangial packing following eclosion to the teneral adult stage. This
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delay could be due to slow fungal growth and sporulation in the pupal chamber. A

delay could also be a result of time required for maturation of teneral adults prior to

feeding. Mycangial packing would then increase, reach some peak packing probability,

and diminish. Mathematically, this changes the probability of not encountering a

fungus until time t to

P (no encounter ≤ t) =















1
2e

t−µ
λ , for t < µ

1− 1
2e

t−µ
λ , for t ≥ µ,

(3.8)

where µ represents the delay in days after eclosing to a teneral adult until peak

mycangial packing occurs (or the delay until the greatest presence of spores to be

packed is available) and λ determines the spread in mycangial packing around this

date. The remaining calculations for p1, p2 and p3 are identical to those for model 2.

4) Mostly the last fungus contacted – this model is the opposite of model 2. It assumes

that MPB do not pack their mycangia until they are nearly done feeding, with most

MPB mycangial packing occurring just prior to emergence. It is also implemented

using an exponential probability distribution where the probability of not encountering

fungal spores until day t is given by

P (no encounter ≥ t) = 1− e−(tk−t)/λ.

As in model 2, t = 1, 2, 3, ... represents the number of days that the teneral adult has

been feeding, tk is the number of days that the teneral adult will feed prior to emerging

from the tree, and λ represents the spread in the number of days of mycangial packing.

Using this CDF, the remaining calculations for p1, p2 and p3 are identical to those for

model 2.
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5) Last fungus contacted – this model assumes that MPB pack their mycangia just prior

to emerging from the tree with whichever fungus is available at the time. We allow

p1(tk) = pGC(tk),

p2(tk) = pOM(tk), and

p3(tk) = 1− p1(tk)− p2(tk).

This means that the fungus carried by MPB emerging from the tree on day tk is

simply the proportion of each fungus available in the tree on day tk.

Differences among models in the timing of probability of feeding are shown in Figure

3.2 with λ = 4.1 for models 2 and 4 (representing the mean time to encounter/pick up

fungi) and λ = 1.3, µ = 5.4 for model 3. In model 3, the parameter µ represents the delay

in days until peak mycangial packing occurs and λ dictates the spread in mycangial packing

around that day.

Likelihood function for parameterizing the fungus growth model

To parameterize the fungal growth models and reconcile emergence observations with

the values for p1, p2 and p3 computed above, MPB field observations were divided into

categories in which n1 represented the number carrying G. clavigera, n2 represented the

number carrying O. montium, n3 represented the number carrying no fungi, and N =

n1+n2+n3 represented the total number of MPB emerging for each observed emergence day.

These values were used in a maximum likelihood framework with a multinomial distribution

to obtain the best parameter estimates for the fungal growth rate scaling parameters βGC

and βOM (as well as λ for mycangial packing hypotheses 2, 3 and 4 and µ for model 3).

The likelihood for the multinomial probability distribution is written as

L =
�

tk

N(tk)!

n1(tk)!n2(tk)!n3(tk)!
p1(tk)

n1(tk)p2(tk)
n2(tk)p3(tk)

n3(tk) . (3.9)

In this likelihood, N , n1, n2 and n3 come from the observations while p1, p2 and
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Fig. 3.2: Comparison of the different probability distributions used to construct mycangial
packing models 1-5. In model 1, mycangial packing takes place on day 1 of teneral adult
feeding (solid blue vertical line), in model 2 (dashed red exponential curve), mycangial
packing begins immediately after eclosion to the teneral adult stage, model 3 (dotted green
Laplace curve) allows a delay then a peak in mycangial packing, model 4 (dashed blue
exponential curve) results in little mycangial packing until just before adult emergence (in
this case occurring 20 days after entering the teneral adult life stage), and model 5 (solid
red vertical line) is where mycangial packing takes place on the final day before emergence.
For these plots, λ = 4.1 for models 2 and 4 and λ = 1.3 and µ = 5.4 for model 3. Note that
increasing λ has the effect of stretching the curves horizontally, prolonging the potential
period of mycangial packing while altering the value of µ in model 3 will change the timing
of peak mycangial packing.
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p3 are computed using the fungal growth model combined with the mycangial packing

strategies described in Section 3.2.2. The values of p1, p2 and p3 represent the proportion

of G. clavigera, O. montium, and no fungi, respectively, available in the tree on a given

emergence day. These three values incorporate the effects of parameters βGC , βOM , λ and

µ which allow us to obtain estimates using a built-in MATLAB optimizer (the Nelder-Mead

simplex algorithm, ‘fminsearch’) to minimize the negative log likelihood (negative log of

Eqn 3.9).

Of all the parameters and unknowns, the two that have the largest potential to impact

overall predictions are βGC and βOM , the growth rate scaling parameters for G. clavigera

and O. montium, respectively. Though we lack field measurements or observations for these

values, we will constrain and assess their values based on several assumptions:

1) We hypothesize that fungi grow slower in a tree than in a Petri dish and that they

will not decrease in prevalence (this requires βGC and βOM to lie between 0 and 1);

2) Based on observations of MPB occasionally tunneling backwards in their larval gal-

leries to eat fungus colonized phloem (Adams and Six, 2007), we obtained a rough

estimate for a single growth rate scaling parameter, β = 0.1387, for both fungi in

Chapter 2; and

3) G. clavigera is known to be more aggressive at growing in a freshly killed tree (Krokene

and Solheim, 1998) and may be less susceptible to cold induced mortality than O.

montium (Rice et al., 2008) which leads us to expect that βGC will be larger than

βOM .

Condition 1 was used to constrain the parameter estimates whereas conditions 2 and 3 will

be used later to assess their values. This constraint was implemented by setting the negative

log likelihood to an arbitrarily large positive number when β < 0, and an arbitrarily large

number times β when β > 1. This caused the optimization algorithm to move away from

the extremes and explore the valid region of parameter space. The optimization procedure

was repeated 1,000 times for each model with random initial guesses for each parameter.
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Parameters resulting in the lowest negative log likelihood were selected as the best parameter

estimates for each model.

3.2.3. Bootstrapping the data

To quantify the sensitivity of parameter estimates, we employed bootstrapping, con-

structing a new set of observations (i.e., MPB emergence date and species of fungus carried,

that is, n1(tk), n2(tk) and n3(tk)) of the same size as the original dataset by sampling the

original dataset with replacement. After obtaining a new set of observations, the model

and MLE procedure was repeated 1,000 times to generate a 95% confidence interval for the

parameters for each of the five mycangial packing hypotheses.

3.2.4. Testing model sensitivity to temperature

Sensitivity of the models to temperature was tested by running models 1-5 using their

respective parameter estimates (Table 3.3) with ambient temperature as well as north and

south bole phloem temperatures collected at each of the study trees. We also ran models

1-5 using observed temperatures from trees attacked in 2010, increased and decreased by

-1.5 to 1.5◦C (incremented by 0.05◦C). For each of the modified temperature sets, model

predictions for all five models were compared against observed MPB emergence.

3.2.5. Model evaluation

Output from the five mycangial packing models were compared using Akaike Informa-

tion Criterion (AIC), defined as

AIC = −2 log(L(θ|y)) + 2K,

where L(θ|y) is the likelihood of the model and parameters given the data and K is the

number of parameters (Burnham and Anderson, 2002). This value quantifies the amount

of information lost by the model and allows for model competition via AIC. Models were

also compared using R2.

A weak validation was conducted by starting the model with observed 2010 attacks and

running it forward with estimated parameters to predict fungal prevalence then comparing
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with observed prevalence on emergence. This was combined with probable MPB teneral

adult feeding windows. A second, stronger validation was then conducted using an inde-

pendent dataset that consisted of observed temperatures and MPB attack and emergence

data with fungus carried collected on trees attacked in 2011.

3.3. Results

3.3.1. Parameter estimates for the five mycangial packing models

MPB attack and emergence observations and associated data on the prevalence of

fungi from trees attacked in 2010 (Table 3.2) were used to obtain estimates of the growth

rate scaling parameters βGC and βOM and mycangial packing parameters λ and µ (as

applicable) for the five mycangial packing models (Table 3.3). Model parameterization was

repeated for ambient air temperatures as well as north and south bole phloem temperatures

for the various attacked trees. While there were slight differences in parameter estimates,

the models performed equally well regardless of temperature. For consistency, we chose

to parameterize the models using north bole phloem temperatures. The results of this

parameterization show some variability between βGC and βOM across models (and across

acceptable parameters for model 4), however, the ratio of the two parameters βGC/βOM

remains quite steady, ranging from just 24.16 to 24.92. Comparing the estimates for βGC and

βOM shown in Table 3.3 with assumptions described in Section 3.2.2, all the estimates seem

reasonable. Each value for βGC and βOM lies between 0 and 1, the average of the parameters

lies reasonably close to our former estimate of β = 0.1387 (see Chapter 2), and the estimates

for theG. clavigera scaling parameter are much greater than forO. montium. This difference

between the βGC and βOM estimates reflected the MPB emergence observations (Table 3.2),

which were heavily biased toward G. clavigera. MPB that attacked trees in both 2010 and

2011 were observed carrying a nearly equal mix of G. clavigera and O. montium whereas

emerging MPB from these trees were carrying predominantly G. clavigera. For example,

more than 38% of MPB attacking trees in 2010 were carrying O. montium, yet only 4.3% of

adults emerging from these same trees were observed with O. montium in their mycangia.

A similar pattern was seen in trees attacked in 2011 (Table 3.2).
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Table 3.2
Comparison of the percentages of MPB carrying G. clavigera (GC), O. montium (OM),
both fungi, or no fungi into and out of trees attacked in 2010 and 2011.

Attack and Emergence Data

# of MPB analyzed %GC %OM %Both %None

2010 Attacks 263 21.8 38.6 4.9 34.7

2010 Emergence 1099 90.4 4.3 3.5 1.9

2011 Attacks 193 26.9 28.8 1.3 42.9

2011 Emergence 908 63.9 10.8 6.2 19.2

Table 3.3
Comparison of the growth rate scaling parameter estimates βGC and βOM and feeding
distribution parameters λ (the mean waiting time to encounter fungi; models 2, 3 and 4),
and µ (the peak receptivity to fungal spores; model 3), obtained using maximum likelihood
for 2010 data. Parameter estimation for model 4 was slightly less consistent than for models
1-3 and 5, so the midpoint of the acceptable parameters that resulted in the best AIC has
been reported. Note that the ratio of the growth rate scaling parameters was largely steady
across all models.

2010 Growth Rate Scaling Parameter Estimates

Model 1 Model 2 Model 3 Model 4 Model 5

βGC .9336 1.0000 1.0000 .8959 .6355

βOM .0376 .0401 .0401 .0364 .0263

βGC/βOM 24.81 24.92 24.92 24.62 24.16

λ na 3.7054 1.2883 4.1333 na

µ na na 5.4168 na na
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3.3.2. Model performance

Using parameterized data, model fit statistics including ΔAIC (Table 3.4) and R2

(Table 3.5) were computed, where R is the correlation coefficient of the model predictions

(p1 ∗ N , p2 ∗ N and p3 ∗ N) versus the observations (n1, n2 and n3) over all observed

emergence days. We found that all five models performed well, in terms of visual fit (Figure

3.3) and high R2 (Table 3.5), when predictions were compared to field observations used for

model parameterization. Model 5, representing the case where MPB pack their mycangia

with the last fungus contacted, performed best in terms of producing the lowest AIC (Table

3.4) and model 4 also performed quite well. Differences in R2 were trivial (Table 3.5).

3.3.3. Model validation

After bootstrapping and reparameterizing the models 1,000 times using data from trees

attacked in 2010 (i.e., the data used in the original parameterization), the 95% confidence

intervals were compared (Table 3.6). These intervals showed small amounts of variability

across parameter estimates for models 1, 2, 3 and 5 and greater variability in model 4. This

was expected for model 4 due to the range of viable parameter estimates obtained from the

original dataset, perhaps indicating a very shallow likelihood surface.

When each model was run for a range of temperature shifts from -1.5 to 1.5◦C, we

found that the AIC values for each model fluctuated in different ways. Models 1 and 5

were the most variable, and model 4 was the least variable (Figure 3.4). Over the entire

temperature range, the AIC values for model 4 varied by 3.83, models 2 and 3 varied by

Table 3.4
Comparison of ΔAIC = AIC − AIClow computed for the various mycangial packing hy-
potheses for 2010 data. Models are arranged from packing early (model 1) to packing late
(model 5) and the best ΔAIC values are marked in bold. Model 5 produced the lowest
AIC for 2010, AIClow = 247.4722 with model 4 producing a very similar AIC, indicating
mycangial packing occurs late in the teneral adult feeding window.

Comparison of ΔAIC (for parameterization Data)

Model 1 Model 2 Model 3 Model 4 Model 5

4.9927 7.1009 6.3786 2.4208 0
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Table 3.5
Comparison of R2

fit for each model where the best values are marked in bold. Here the
number of MPB emerging carrying G. clavigera, O. montium, and no fungus were compared
to each model’s predictions (arranged from packing early, model 1, to packing late, model
5). Note how the R2 values for G. clavigera are very high across all models whereas they
are lower for O. montium and quite poor for “no fungi”. We suspect that this difference
could partially be attributed to the high number of G. clavigera emergence observations for
2010 which caused the optimization method to put more weight on fitting the G. clavigera
data.

Comparison of R2 (for parameterization Data)

Model 1 Model 2 Model 3 Model 4 Model 5

R2
GC .9973 .9973 .9973 .9791 .9972

R2
OM .6600 .6573 .6603 .6086 .6624

R2
none .0758 .0711 .1399 .1521 .1521

Table 3.6
95% confidence intervals for parameter estimates obtained using bootstrapped data from
the 2010 dataset. Here we see some variability in the parameter estimates for models 1
(“first fungus contacted”), 2 (“mostly first fungus contacted”), 3 (“some delay in mycangial
packing”) and 5 (“last fungus contacted”); greater variability for model 4 (“mostly last
fungus contacted”) parameters (which is expected since the model 4 parameter estimates
were found to be variable using the original 2010 dataset).

Confidence Intervals for Parameters obtained via Bootstrapping

Model 1 Model 2 Model 3 Model 4 Model 5

βGC (.9167,.9377) (1,1) (.9981,1.000) (.7209,.8853) (.5896,.6377)

βGC (.0354,.0477) (.0369,.0512) (.0373,.0515) (.0323,.0391) (.0240,.0328)
βGC

βOM
(17.22,28.98) (17.57,31.27) (16.38,30.43) (17.44,29.52) (17.66,29.96)

λ na (3.6053,4.5847) (.5777,1.5862) (4.0081,4.9052) na

µ na na (3.1076,7.9357) na na
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Fig. 3.3: Comparison of the five model predictions for fungi carried by emerging beetles
versus actual observations using the parameterization dataset (2010). Models are arranged
in order of mycangial packing with model 1 representing immediate packing and model 5
presenting packing just prior to emergence from the tree. Here we see all models perform
very well for predicting G. clavigera with emerging beetles, as well as for beetles emerging
with O. montium but have more difficulty predicting when beetles emerge with no fungi
(in part because model predictions for “no fungi” are directly affected by predictions for G.
clavigera and O. montium).
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Table 3.7
Comparison of ΔAIC = AIC−AIClow computed for the various mycangial packing models
(arranged from packing early, model 1, to packing late, model 5) for 2011 validation data
with the best value marked in bold. For the validation data, model 4 produced the lowest
AIC, AIClow = 1383.2.

Comparison of ΔAIC (for Validation Data)

Model 1 Model 2 Model 3 Model 4 Model 5

1170.1 122.9 155.5 0 838.3

Table 3.8
Comparison of R2

fit for each model (arranged from packing early, model 1, to packing late,
model 5) against the validation data where the best values are marked in bold.

Comparison of R2 (for Validation Data)

Model 1 Model 2 Model 3 Model 4 Model 5

R2
GC .9635 .9637 .9636 .9642 .9642

R2
OM .9261 .9258 .9256 .9257 .9262

R2
none .1962 .6617 .6397 .7079 .7174

23.69 and 24.16, respectively. Models 1 and 5 were the most sensitive with an overall change

in AIC of 67.59 and 284.31. The sensitivity in model 5 was quite pronounced, even with a

small change in temperature of -0.1 to 0.1◦C. The change in AIC over this range was 205.20.

The models were further evaluated using an independent dataset based on observed

MPB attack and emergence, fungus carried, and hourly temperatures for trees attacked

in 2011. ΔAIC (Table 3.7) and R2 values (Table 3.8) were computed. These provided

somewhat conflicting results with model 4 (“mostly last fungus contacted”) providing the

best AIC value by a sizeable margin and model 5 (“last fungus contacted”) providing the

best R2 values. Model predictions were less accurate than when visually compared to the

observed data used in model parameterization (Figure 3.3). All five models overpredicted

G. clavigera with emerging beetles and underpredicted emergence with O. montium and

no fungi (Figure 3.5). This is not represented in the R2 values for the models, however,

because R2 is a measure of whether the timing of increases and decreases is accounted for,

not the scale.
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Fig. 3.4: Variability in AIC when models 1-5 were run with temperature data used in
model parameterization with a small +/- change in temperature. Note the high degree of
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model 1 (“first fungus contacted,” dashed blue line). Models 2 (“mostly first fungus con-
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being the most robust to small fluctuations in temperature.
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Fig. 3.5: Comparison of the five model predictions for fungal emergence versus observed
emergence using the validation dataset from trees attacked in 2011. Models are arranged
in order of mycangial packing with model 1 representing immediate packing and model 5
presenting packing just prior to emergence from the tree. We note that temperatures in
2011-2012 were warmer than in 2010-2011 which resulted in slightly higher relative emer-
gence by O. montium. This resulted in an overprediction in the number of MPB emerging
with G. clavigera and an underprediction of the number of beetles emerging with O. mon-
tium and no fungi. The differences in model predictions are most noticeable in plot C)
where the predicted emergence of MPB carrying no fungi is shown. Note that models 1
and 5 (“first fungus contacted” and “last fungus contacted”) predict nearly zero beetles will
emerge with no fungi (likely due to full tree colonization by the fungi).
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3.4. Discussion

3.4.1. Mycangial packing hypotheses and model fit

Using the parameterization dataset, all five models describing various mycangial pack-

ing strategies provided good predictions of emerging MPB carrying G. clavigera, and rea-

sonable predictions for MPB carrying O. montium. The model that assumed MPB packed

their mycangia with the last fungus encountered (model 5) had the lowest AIC and two of

the best R2 values. None of the models did a good job of predicting MPB emergence with

“no fungi”, likely because few beetles emerging from trees attacked in 2010 (i.e., data used

for model parameterization) had no fungi. The overwhelming majority of MPB emerging

from 2010 attacks were found to be carrying G. clavigera which put more weight on match-

ing G. clavigera emergence in parameter estimation. In addition, our model defined the

proportion of “no fungi” in the tree as the proportion of the tree not already colonized by

the two fungi, making “no fungi” predictions very reliant on predictions for the other two

fungi.

The two models assuming either the first or last fungus encountered were packed in the

mycangia were the most sensitive to temperature changes. Altering the hourly temperatures

could effectively alter the prevalence of a particular fungal species at the time of emergence,

particularly if the tree was still being colonized by the fungi near the time of MPB emergence

from the tree. This was the case for model 5. The growth rate scaling parameters estimated

for this model did not result in full tree colonization until approximately JD 180 of the next

summer (using actual 2010 temperatures; Figure 3.6 Plot D). Altering the temperature

series by warming or cooling had the potential to change the timing of tree colonization,

dramatically changing model predictions of the fungal species being carried out of the tree

which could change the fit of the model (Figure 3.4). Allowing the mycangial packing

to be spread out over time (with an exponential or Laplace distribution, i.e., models 2,

3 and 4) buffered fluctuations in fungal prevalence to small changes in temperature. In

addition, fungal growth rate scaling parameters for these models were larger, which led to

higher tree colonization by fungi during the teneral adult feeding window (literally leaving
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less room for fluctuations in fungal prevalence and hence, model fit; Figure 3.4). This

figure also demonstrates the way in which “no fungi” predictions are tied to predictions

of G. clavigera and O. montium. Models 1 and 5 have the shared property that all MPB

pack their mycangia (either when they first eclose from the pupal chamber or just prior to

emergence from the tree), so predictions of no fungi must come from area available in the

tree to be colonized. The models with mycangial packing spread over time (models 2, 3 and

4), however, allow some portion of MPB to never pack their mycangia depending on the

length of the teneral adult feeding window and the value of the parameter λ – despite the

tree being fully colonized by fungi. This explains how models 2, 3 and 4 are able to predict

higher numbers of beetles emerging with no fungi than models 1 and 5.

Repeating the model comparisons using an independent dataset for temperature, MPB

attacks, emergence and associated fungi (i.e., trees attacked in 2011), we found a much

starker contrast between models in terms of AIC (Table 3.7). Model 4, where observed

fungi comes from more recent feeding, produced the lowest AIC by a substantial margin

(119.5 lower than the next model, model 2). Model 5, which performed best in terms of

AIC when the data used in parameterization was also used for validation, had the highest

R2 but the lowest AIC of all five models (Table 3.8). R2 may not be the best statistic for

model selection, however, since it describes errors in the timing of increases and decreases

in fungal prevalence rather than actual magnitudes. A visual inspection of predictions

versus observations (Figure 3.5) shows that all models overpredict prevalence of G. clavigera

and underpredict O. montium emergence, although the shapes of the distributions are

qualitatively correct. Model 4 overpredicted G. clavigera and underpredicted “no fungi” by

the smallest margin of the five models, thereby producing the lowest AIC.

Based on the two validation exercises, models 4 and 5 provided the best fit. In addition,

βGC estimates for models 1, 2 and 3 were all unrealistically large. These results suggest that

the most likely fungus for dispersal is the fungus available just prior to emergence and that

the most likely value for βGC ranges from approximately 0.6 to 0.8. Model 5 was highly

sensitive to slight changes in temperature (Figure 3.4), however, lowering its reliability.
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Fig. 3.6: This figure demonstrates how the various mycangial packing strategies and corre-
sponding fungal growth profiles combine to produce various predictions. Plot A is a graph-
ical depiction of the five models while Plots B-D show the corresponding fungal growth
profiles. Due to the similarity of beta parameters, Plot B represents the growth of fungi
using model 1 and 4 (“first fungus contacted” and “mostly last fungus contacted”), Plot C
represents the growth of the fungi using models 2 and 3 (“mostly first fungus contacted”
and “some delay in mycangial packing”) and Plot D represents the growth of the fungi with
model 5 (“last fungus contacted”).
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Therefore, the best choice is model 4 which assumes that adult MPB acquire mostly the

last fungus it encounters, although with an exponential decay in acquisition.

3.4.2. Additional thoughts

It is unclear why the number of MPB emerging from study trees and carrying O.

montium was so low, especially given that more attacking beetles in both years were carrying

O. montium. A possible explanation includes factors related to the location of the study

area. The study trees were located in a cool drainage, and therefore potentially favored

growth of the cool-loving G. clavigera once beetles were in the tree. MPB-attacked trees

on a nearby south-facing slope may have provided many of the beetles that attacked trees

used in our study and may have provided a more conducive growing environment for the

warm-loving O. montium. Cooler temperatures in the study trees, however, favored growth

of G. clavigera, causing it to dominate the emergence data.

Differences in the β estimates between the fungal species could also be attributed to

the lack of beetles observed carrying O. montium as they emerged from trees. Since the

growth rate scaling parameters were estimated by determining parameter values which best

fit the model to the data, low numbers of beetles emerging with O. montium necessarily

led to low estimates for the O. montium growth rate scaling parameter, βOM .

In Chapter 2, we hypothesized that variability in temperature could allow both G.

clavigera and O. montium to remain present in the MPB-fungus mutualism while also

exploring the effect of various lesion spacings (i.e., densities of attacking MPB). We found

that both fungi could remain if MPB periodically transitioned between warm and cold

environments. Growth rates of the two fungi, scaled using above β estimates (Table 3.3),

provide an additional explanation. Although lab data suggests that O. montium can grow

faster than G. clavigera at temperatures above 15◦C, when growth is scaled by β, G.

clavigera grows significantly faster until 30◦C (Figure 3.7). The faster growth ofG. clavigera,

even at warm temperatures, would allow G. clavigera to persist in the mutualism under a

wide range of conditions. It is unclear if these same differences in growth scaled to a tree

would persist at a different field location.
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Fig. 3.7: Unscaled (i.e., rates observed in culture; Plot A) and scaled (Plot B) rates
of growth for the two fungi using estimates from model 5 (based on validation data)
where rGC(T ) = βGC · rGC,culture(T ) = 0.6355 · rGC,culture(T ), and rOM(T ) = βOM ·
rOM,culture(T ) = 0.0263 · rOM,culture(T ).
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Unscaled (Plot A) and scaled fungal growth rates (Plot B) using model 5 estimates

(βGC = 0.6355 and βOM = 0.0263) appear in Figure 3.7. Plot B would look similar for

all of the model estimates because of the ratio between the growth rate scaling parameters

was approximately 25:1 for all models. These plots show how G. clavigera persists in the

mutualism despite warming conditions; its advantage under the bark allows it to grow faster

than O. montium until the temperature reaches approximately 32◦C, when it becomes too

warm for G. clavigera to grow. This plot underscores the need to have accurate parameter

estimates, specifically those that define the coldest and warmest temperatures where the

two fungi can grow (T0 and Tm from Eqn 3.1), as these most prominently distinguish the

two fungi when their growth is scaled.

3.5. Conclusions

We have tested several hypotheses regarding the timing of mycangial packing of fungi

during the MPB teneral adult feeding window and determined how growth rates under

bark compare with growth rates measured in culture in the lab. Each hypothesis was tested

by developing a mathematical representation and parameterizing the corresponding model

using field observations of fungal species being carried by MPB attacking and emerging

from trees. Model predictions were evaluated using the field data used in parameterization,

in addition to an independent dataset of field observations. We found that while all models

adequately predicted the proportion of fungi being carried from a tree when evaluated using

the same data used for parameterization, the two mycangial packing hypotheses which

corresponded to later mycangial packing, model 4 (mostly last fungi contacted) and model

5 (last fungi contacted) were most plausible. Our analyses therefore suggest that MPB may

be more likely to pack their mycangia near the end of their teneral adult feeding window.

In addition, estimated growth rate scaling parameters for the models suggest G. clavigera is

as much as twenty-five times faster growing than O. montium, although the strength of this

conclusion is in doubt due to anomalously low production of O. montium in observed trees.

To the extent that this is true, however, it provides an explanation for how G. clavigera has

maintained prevalence in the face of warming temperatures.
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We derived a method, based on observed data, for combining models to describe two

overlapping phenologies and incorporating a nontrivial interaction between them. This re-

quired connecting temporal timing predictions for MPB and predictions of length colonized

by fungi using a colonization index C which allowed us to convert the length colonized by

each fungus to a probability of the tree being colonized by one fungus or the other on a given

day. In the specific case of MPB this allowed us to deduce cryptic growth rates of fungi

under the bark and to determine that the fungi last fed upon are most likely to be dispersed

(and therefore have the highest fitness). In general, however, this same approach could be

used for systems with temperature dependent transmission of diseases and parasites, fer-

tilization of plants by specialist pollinators, and efficacy of biocontrol agents against pests,

to name a few. In all these systems, overlapping phenologies and unknown probabilities of

interaction during a thermally controlled window of opportunity control eventual outcomes.
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CHAPTER 4

ESTIMATING THE DEVELOPMENTAL THRESHOLDS OF POIKILOTHERMS

USING PRIOR KNOWLEDGE

4.1. Introduction

Over the past century, considerable attention has been focused on developing pheno-

logical models which tie the rate of development of an organism to environmental conditions

such as temperature (Régnière et al., 2012; Krenek et al., 2011). In particular, modeling

efforts have primarily focused on poikilotherms because of the higher correlation between

life events and temperature in plants and cold-blooded animals such as insects (Régnière

et al., 2012). A common approach when developing phenological models is to use labora-

tory data and field observations to relate temperature to the development rate of a species.

Early models were linear due to ease of use, however, they lacked accuracy near thermal

extremes which limited their utility (Campbell et al., 1974). To combat this, dozens of

nonlinear models have been proposed to model development (or thermal performance) as

a function of temperature in algae, fungi, arthropods, reptiles and protozoa (e.g., Logan

et al., 1976; Logan, 1988; Sharpe and DeMichele, 1977; Schoolfield et al., 1981; Briere et al.,

1999; Dauta et al., 1990; Ratkowsky et al., 1983; Smits et al., 2003; Stevenson et al., 1985;

Krenek et al., 2011). These models are generally considered an improvement over linear

models because they can be used to more accurately model the development of an organism

across a realistic range of temperatures.

A common feature of many nonlinear development models is the inclusion of one or more

biologically meaningful (ecophysiological) parameters to describe a species’ development.

These often include the lower and upper temperature threshold, T0 and Tm, or the optimal

temperature, Topt. Though the exact definition of these terms vary, in this paper we will

refer to the lower and upper temperature thresholds, T0 and Tm, as the temperatures below

and above which, respectively, development will stop. Optimal temperature, Topt, will

be used to describe the temperature at which peak development or the maximum growth

rate occurs. These parameters are important for a number of reasons (for example, when
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comparing performance between species or when investigating the effect of various climate

change scenarios) and can have a strong effect on the shape of nonlinear development models

or thermal performance curves.

While the specific shape of developmental curves may vary, a common theme in non-

linear development models is that development rates are zero for temperatures below the

species- (or individual-) specific lower threshold, T0, increase gradually with temperature

to some peak occurring at Topt, then development rates drop off sharply toward zero as the

temperature approaches the upper development threshold, Tm (Krenek et al., 2011). These

temperature thresholds are important and biologically meaningful, however, a practical is-

sue with their use is that they are difficult to directly measure or observe. In the case of

poikilotherms, development may be so slow at thermal thresholds as to appear nonexistent,

possibly with no change occurring during the window of an experiment. In other organisms

like bacteria and fungi, one may not be able to distinguish between no growth and very slow

growth and high temperature studies are often plagued with contamination issues. Thus,

these parameter values must be obtained with other non-biological parameter values using

techniques like Maximum Likelihood Estimation (MLE). Side effects of common parameter

estimation techniques are that the technique can become trapped in local minima (versus

the global minimum), lessening the accuracy of parameter estimates, and there is often no

formal method for incorporating knowledge of temperature thresholds obtained from failed

laboratory experiments or other fieldwork and previous studies. Difficulty in estimating

these thresholds is often further exaggerated by the scarcity of data near the lower tem-

perature threshold and the rapid decrease in growth near the upper temperature threshold.

Thus, there is a clear need for better methods for estimating temperature thresholds.

Fungi are among the most diverse and biologically important poikilothermic organisms

on Earth. Despite their ubiquity and importance, and extreme environmental sensitivity,

few models exist that can be used to accurately estimate their responses to temperature.

Improved temperature threshold estimates for fungi are of particular interest at this time

due to the need to better understand the effects global warming will have on biodiversity
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and ecosystem function (Daufresne et al., 2009; Hill et al., 1999; Richardson and Schoeman,

2004; Ruess et al., 1999; Weitere et al., 2009).

Here we use mutualistic fungi associated with bark beetles to test whether the fit

and ease of parameterization of growth rate curves can be improved. In particular, we

focus on gaining accurate estimates of the lowest and warmest temperature where each

fungus can grow. These fungi are critically important to their insect hosts; providing

nutrients without which the hosts cannot survive. Thus, it is important to know their

specific temperature thresholds in order to understand how they interact with their host

beetles under variable environmental conditions. These beetle-fungi systems exhibit the

following characteristics: 1) Most bark beetles involved in mutualisms with fungi carry two

specific fungi. 2) These fungi are carried to pine trees by the beetles in summer and spend

the following fall and winter colonizing their new host tree. This means that much of their

growth could occur at temperatures near their respective lower developmental thresholds. 3)

The fungi exhibit differential growth rates and thresholds in response to temperature which

affects their relative prevalence with the host over time. 4) The fungi exert differential fitness

effects on the host requiring an understanding of their individual dynamics to predict host

dynamics. Improved estimates of developmental thresholds could improve the fit of growth

rate curves that would lead, not only to more accurate models, but also to improved insight

into the behavior and dynamics of each fungal species within a tree. Mathematically-derived

temperature thresholds may also guide the design of experiments that would lead to the

best improvements in model fit. This knowledge could then be applied to poikilothermic

systems in general.

In this paper, we obtain parameter estimates (including estimates of T0 and Tm) for four

species of bark beetle associated fungi using a Bayesian-based algorithm called Metropolis-

Hastings (MH). This algorithm is a Markov Chain Monte Carlo method (MCMC) which

samples from a distribution of interest – in our case, a distribution of parameters for the

observed data. This technique offers a number of benefits including the ability to explore

the entire parameter space (rather than being trapped in local minima), the ability to tune
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the algorithm for use with a particular dataset or function, and the ability to incorporate

prior knowledge about the parameter values or valid parameter ranges. For additional

comparison, we also use a technique similar to MLE in which the function to be optimized

includes the likelihood as well as prior information. Parameter estimates obtained from

these techniques will be compared against parameters obtained using MLE (implemented

via a local, built-in optimization method) to determine whether improvements have been

made in the quality of fit of the model or ease of obtaining parameters. The two primary

goals of this work are to determine accurate temperature thresholds for the four fungal

species as well as to determine whether the use of Bayesian techniques can lead to an

improvement in the parameterization of nonlinear curves.

4.2. Methods

4.2.1. Fungal growth data

Radial growth observations from lab experiments (Moore, 2013; Dysthe et al., 2014)

for four species of bark beetle associated fungi: Grosmannia clavigera and Ophiostoma

montium, symbionts of the mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins,

Coleoptera: Curculionidae Scolytinae), and Ceratocystiopsis brevicomi and Entomocorticum

sp B., symbionts of the western pine beetle (WPB, Dendroctonus brevicomis), were used

to develop our models. These two beetle-fungus symbioses are interesting because they

involve three-way interactions whose outcomes are driven by temperature. In Chapter 2

we created a model for the growth of fungal symbionts in a tree and connected it with a

model for beetle development and found that the overall future of the mutualism is highly

dependent on temperature and that differences in the growth profiles of the fungi within the

tree have the capability to stabilize or destabilize the mutualism, particularly in an era of

climate change. As such, a more accurate understanding of the fungi’s respective thermal

performance characteristics would go a long way toward better understanding the dynamics

of the entire mutualism.
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MPB associated fungi

Grosmannia clavigera and O. montium are filamentous fungi that are only found in

association with MPB (Adams et al., 2008). Along with MPB, these species inhabit pine

forests from northern Mexico, through 12 U.S. states, and 3 Canadian provinces (Carroll

et al., 2003). The fungi benefit the beetles by providing nutrients (Six and Paine, 1998;

Bleiker and Six, 2007). In turn, the fungi benefit by obtaining transportation from the

beetles from tree to tree. When new MPB adults leave a tree, they carry spores of the

fungi in specialized structures called mycangia and then deposit the spores in a new tree

as they construct egg galleries (Six and Paine, 1998). After the spores are deposited, the

fungi begin to grow within the phloem layer and sapwood of the tree by forming dense

mycelium networks (Six and Klepzig, 2004). From lab experiments, it is known that the

radial rate of growth of both fungi is strongly dependent on temperature and that the fungi

differ in terms of their temperature preferences and tolerances. Overall, it is thought that

G. clavigera is the superior mutualist due to being slightly more virulent and a better first

invader of a tree. G. clavigera also seems to grow better at cooler temperatures relative to

O. montium.

WPB associated fungi

Ceratocystiopsis brevicomi and E. sp.B., associates of the WPB, are less well-studied

than the MPB fungi. It is thought that these fungi are also critical for beetle nutrition

because WPB feed in the outer bark, a tree tissue less nutritious than the phloem layer

where MPB feed. Like the fungi associated with MPB, one fungus is thought to be a better

partner than the other. While fitness effects of these fungi on the host beetle have not

been studied, the symbiosis very likely functions like the nutritional mutualism between the

southern pine beetle, Dentroctonus frontalis and its Entomocorticum and Ceratocystiopisis

associates. The temperature tolerances of the WPB fungi also differ, potentially affecting

the prevalence and effects of these fungi on the beetle.
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4.2.2. Temperature-dependent growth experiments

MPB-associated fungi

Fungi were isolated from the mycangia of MPB emerging from lodgepole pine trees

at three locations: Stump Hollow (Logan Canyon, UT), Lubrecht Experimental Forest

(near Missoula, MT), and Vipond Park (in southwest MT) in the summer of 2010 and

2011. These fungi were identified and replicates of 51 isolates of G. clavigera (21, 18, and

12, respectively, from Stump Hollow, Lubrecht and Vipond Park) and 42 isolates of O.

montium (23, 12, and 7 from the same sites, respectively) were grown on 2% malt extract

agar in Petri dishes held at constant temperatures of 5, 10, 15, 22*, 25, and 30◦C (22*

indicates that replicates were grown at room temperature which was approximately 22◦C).

The plates were monitored daily and the amount of area colonized by the fungi in each

culture was traced and measured. Area observations were converted to measurements of

radius colonized and a line fitted to obtain a single radial growth rate for each culture (see

Chapter 2) for further details). These data are presented in Figures 4.1 (all sites combined)

and 4.2 (by site).

WPB-associated fungi

Thirteen isolates of C. brevicomi and 14 isolates of E. sp.B. were isolated from beetles

collected from four areas that span the latitudinal range of the WPB (Southern California

to Southern British Colombia) and grown on malt extract agar in Petri dishes held at 10, 15,

22, 28, and 34◦C. As with the MPB-associated fungi, growth of the WPB-associated fungi

were measured periodically, although in the case of these fungi, which are slow growing,

measurements were made several days apart rather than daily. These area measurements

were then converted to measurements of radius colonized and a line fitted to obtain a radial

growth rate for the culture of each isolate (Figure 4.3).

MPB-associated fungi (past studies)

Several studies have assessed the growth of the fungal associates of MPB at different

temperatures (Rice et al., 2008; Plattner et al., 2008). From these experiments we know
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Fig. 4.1: Growth rates of MPB-associated fungi (mm/day) from Stump Hollow, Lubrecht
and Vipond Park combined plotted against the temperature (◦C) at which the fungi were
grown (G. clavigera, Plot A; O. montium, Plot B)
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Fig. 4.2: Growth rate of MPB-associated fungi (mm/day) plotted against the temperature
(◦C) at which the fungi were grown. Growth rates for G. clavigera (Plots A-C) and O.
montium (Plots D-F) are presented by site (Stump Hollow, Plots A,D; Lubrecht, Plots
B,E; Vipond Park, Plots C,F).
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Fig. 4.3: Growth rates of WPB-associated fungi growth rate data in mm/day (E. sp.B.,
Plot A; C. brevicomi, Plot B) plotted against the temperature (in ◦C). A key difference
to note is that the symbionts of the WPB are much slower growing than the symbionts of
MPB (G. clavigera and O. montium) and that the growth of E. sp.B. exhibits much more
variability at the higher temperatures.

that G. clavigera generally grows better at cool temperatures while O. montium continues

growing at higher temperatures (Six and Paine, 1998; Solheim and Krokene, 1998). From

studies conducted by Plattner et al. (2008), we know that G. clavigera isolates incubated

at 4, 30, and 37◦C were either unable to grow or grew poorly. Optimal growth for these

isolates was observed to occur between temperatures of 20 and 25◦C. Rice et al. (2008)

also conducted growth experiments at temperatures ranging from 5 to 37◦C as well as an

experiment testing for survival at -20◦C. They found that growth of G. clavigera and O.

montium was inhibited at 5◦C; that G. clavigera exhibited optimal growth between 20

and 25◦C (with the exception of one isolate from Alberta that exhibited optimal growth

at 15◦C); and that O. montium exhibited optimal growth at 25◦C. The optimal growth

rate of the various isolates was found to occur between 8 and 17mm/day. In terms of upper

temperature tolerances, growth of G. clavigera was found to drop off sharply at 30◦C to less

than 10% of its growth rate at 20◦C while O. montium continued to grow well (at almost

90% of its growth rate at 20◦C). As the temperature increased to 35 and 37◦C, none of the

isolates established, grew, or survived. With regards to cold-weather survival, they found

that all G. clavigera isolates survived 3 months at -20◦C whereas none of the O. montium

isolates survived a week at this temperature.
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From the results of these studies, it appears that the lower temperature threshold

for both G. clavigera and O. montium lies somewhere below 10◦C but above 4◦C. The

optimal growing temperature for G. clavigera likely lies between 20 and 25◦C and the

optimal temperature for O. montium likely lies around 25◦C. Regarding upper temperature

thresholds, the steep dropoff in growth rate for G. clavigera at 30◦C with no growth at

warmer temperatures (35, 37◦C) indicates a threshold just above 30◦C. The strong growth

of O. montium at 30◦C, but no growth at 35 and 37◦C, also indicates its upper threshold lies

somewhere just above above 30◦C, though at a higher temperature than for G. clavigera.

This information is used to quantify prior distributions for G. clavigera and O. montium in

Section 4.3.2.

WPB-associated fungi (past studies)

The WPB-fungus mutualism has been less-well studied than the relationship between

fungal symbionts of MPB and southern pine beetle. There is limited information available

regarding the growth of WPB-associated fungi and their temperature tolerances. Two

relevant studies on this system include a recent study by Davis et al. (2010) and an older

study by Hsiau and Harrington (1997). Davis et al. (2010) recently isolated E. sp.B and

C. brevicomi isolates from WPB in Coconino National Forest (AZ) and Plumas National

Forest (CA). In this study, two replicates of each fungal isolate were incubated in a dark

environment at temperatures of 5, 10, 15, 20, 25 and 28◦C with fungal growth being traced

every 48 hours for 15 days. Fungal growth rates were found to increase as temperature

increased and then decline once temperature surpassed 28◦C. The mean growth of the

fungi at 5◦C was found to be quite slow (0.074 ± 0.027mm/day for C. brevicomi and

0.057 ± 0.036mm/day for E. sp.B) and the optimal temperature (of the temperatures

studied) for both fungi occurred at 25◦C (Figure 4.4). Hsiau and Harrington (1997) also

conducted a study to determine the optimal growth temperature of C. brevicomi. This study

measured daily growth of the fungi incubated at temperatures ranging from 10 to 35◦C at

5◦C intervals. C. brevicomi was found to exhibit optimal growth between 25 and 30◦C

(with an average daily growth rate of 3.84 ± 0.25mm/day at 25◦C and 3.84 ± 0.31mm/day
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Fig. 4.4: Compilation of published (red o, Davis et al. 2010) and new (Dysthe, Bracewell,
and Six, unpublished data) growth rate data (blue *) for WPB-associated fungi at various
temperatures. This past data can be used to build prior distributions (quantifying our prior
knowledge) for the lower and upper temperature thresholds, the optimal temperature for
growth and the maximum growth rate.

at 30◦C).

These studies (and the knowledge that nonzero growth rates were observed at 34◦C for

our parameterization data) indicate that both E. sp.B. and C. brevicomi have a lower tem-

perature threshold below 5◦C and an upper temperature threshold above 34◦C. The optimal

temperature occurs somewhere between 20 and 28◦C for E. sp.B. and between 20 and 30◦C

for C. brevicomi (this range is broader because of the conflict between results in the studies

listed above). This information is quantified in Section 4.3.2 to form prior distributions for

parameters T0, Tm and Topt (for use with the Metropolis-Hastings algorithm).

4.3. Thermal performance curves

After reviewing dozens of nonlinear growth rate or thermal performance curves (Régnière

et al., 2012; Krenek et al., 2011; Shi and Ge, 2010; Hansen et al., 2011), four curves were

selected (shown in Table 4.1) based on criteria of shape, successful implementation in model-

ing development in other species, and the inclusion of both the lower and upper temperature

development thresholds as parameters (which unfortunately eliminated many popular and

successful curves from our study). These rate curves vary in terms of the number of pa-

rameters (ranging from 4-6) and the mathematical mechanisms that give them their shape.
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The fact that the growth rate observations were skewed with higher growth rates observed

closer to the (expected) upper temperature threshold means that the data requires at least

four parameters for adequate representation (two parameters to represent the lower and

upper temperature thresholds and two to help describe the location of the optimal growth

rate).

The inclusion of additional parameters, sometimes called second order parameters, can

be helpful to control other nuances in the curve such as concavity or the rate of increase at

low temperatures. These additional parameters can come at a price, particularly when used

to parameterize data with large or irregular variability. The Hansen and Régnière curves

(R3 and R4 from Table 4.1) are excellent examples of this. The inclusion of parameters

such as ω and Δm describe nuances in the appearance of the curve (such as the rate of

increase of growth rate at low temperature and the width of the boundary layer between

the optimal temperature and upper temperature threshold) that can improve the fit to data.

Problems arise, however, when a parameter estimation technique begins exploring regions

of parameter space that are unreasonable, such as allowing Δm → 0. The other parameters

in the curve can help to mitigate the damage in fit; however, the resulting curve will likely

exhibit characteristics that are unrealistic (see Figures 4.5 and 4.6, Plots C and D). Knowing

that unrealistic parameter estimations are a risk, we chose to include the Hansen curve (R3)

because it was used to parameterize G. clavigera and O. montium growth rates in Chapters

2 and 3 and we are interested in trying to improve the parameterization to determine if it

could improve the fit of models for the MPB-fungi symbiosis to data. The Régnière curve

(R4) was included primarily because it has the potential to fit data very well, however, it

is often difficult to parameterize and we would like to determine whether the inclusion of

prior information regarding parameter values can improve this process.

4.3.1. Parameterization techniques

Parameter estimation for the growth rate curves was performed using three different

methods, 1) basic Maximum Likelihood Estimation (MLE) implemented via a built-in opti-

mizer (the Nelder-Mead simplex algorithm, ‘fminsearch’ in MATLAB), 2) the Metropolis-
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Table 4.1
Temperature-dependent development rate curves used to parameterize the growth of MPB-
and WPB-associated fungi. Each of these curves is only valid for predicting development
rate for temperatures T between the thermal development thresholds T0 and Tm (measured
in degrees C).

Formulation Details

(R1)
r(T ) = BT (T − T0)(Tm − T )ω

Briere-2
4 parameters
(B,T0, Tm,ω)

Briere et al. (1999)

(R2)
r(T ) =

�

B
Topt−T0

(T − Topt) + ropt, T < B
B

Topt−Tm
(T − Topt) + ropt, T > B

Dogleg
4 parameters

(B,T0, Tm, Topt)

(R3)

r(T ) = B
��

eω(T−T0) − 1
�

−
�

eω(Tm−T0) − 1
�

e−(Tm−T )/Δm

� Hansen
5 parameters

(B,T0, Tm,ω,Δm)
Hansen et al. (2011)

(R4)

r(T ) = B

�

eω(T−T0) −
�

Tm − T

Tm − T0

�

e−ω(T−T0)/Δ0

�

Régnière et al. (2012)
6 parameters

(B,T0, Tm,ω,Δ0,Δm)

−B
��

T−T0

Tm−T0

�

eω(Tm−T0)−(Tm−T )/Δm

� Régnière et al. (2012)
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Hastings algorithm (MH), and 3) “Bayesian-type” MLE (B-MLE) using a built-in optimizer.

Method 1 has the simplest implementation of the three techniques and is a common ap-

proach for parameter estimation. Method 2 requires more extensive coding and specification

of parameters and functions before it can be used, however it is based on a relatively simple

algorithm. As a Bayesian technique it allows for formal incorporation of prior knowledge

about reasonable or most likely parameter values. A major drawback is that it requires

extensive amounts of computational time and user tuning. Method 3 is a hybrid of the first

two, using a built-in optimizer to reduce coding and tuning requirements while still allowing

formal incorporation of prior knowledge. These methods are described in detail below.

MLE via built-in optimizer

MLE takes its name because the goal is to maximize the likelihood, L(θ|robs), of the

parameters θ given the data, robs. In practice, this is completed by minimizing the negative

log likelihood of the data, nLL(θ|robs) = − log (L(θ|robs)). For our data, we assumed that

the observed growth rates collected in Sections 4.2.2 and 4.2.2 had normal (additive) error

and could be described by the equation

robs = rpred + ε, where ε ∼ N(0,σ2).

This yielded a negative log likelihood of

nLL(θ|robs) =
n

2
log(2πσ2) +

n
�

i=1

(robs,i − rpred)
2

2σ2
,

where i is the index of the datapoint and n is the number of datapoints. Using ‘fminsearch’,

MLE was implemented by providing the function to minimize, nLL(θ|robs), and an initial

guess θ (a vector of parameter values for the rate function and a variance parameter σ2

corresponding to the error assumption). The optimizer then returned a vector-valued pa-

rameter estimate θ∗, the negative log likelihood of that estimate, and an exit flag of 1 or

0 (1 indicating that the method converged and 0 indicating that it did not converge). Ad-

vantages of this method are its ease of implementation and its speed; however, it may not
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find the global optima.

The Metropolis-Hastings algorithm

The second technique we used attempts to remedy the shortcomings stated above. It

is a statistical technique implemented via the Metropolis-Hastings (MH) algorithm. This

algorithm was developed by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953

and later generalized by Hastings in 1970 (Metropolis et al., 2004). This method is not

an optimization technique, rather, it allows the user to sample from some target density

function f (that is known up to a constant multiple, i.e., f(θ) ∝ P (θ)) by generating

samples from a proposal or candidate density q(Y |θ) and accepting or rejecting the samples

based on a specific criteria. Instead of arriving at a single parameter estimate, MH results

in a distribution for each parameter in the model. For purposes of parameter estimation,

parameters can be chosen by selecting some summary statistic from each distribution (such

as the mean or mode). Another option for parameterizing an individual-based model would

be to draw parameters for each individual from the resulting MH distribution which would

be a natural way to incorporate variability in growth characteristics between individuals.

To implement MH, a target density f(θ) is chosen. For our purposes, f(θ) represents

the posterior distribution of the parameters given the rate function and the observed data.

This is proportional to the likelihood of the data, L(θ|robs) (the function we optimized for

MLE), times the prior distribution of the parameters, Prior(θ) (where prior knowledge

about the system or parameters can be incorporated). That is,

Posterior ∝ Likelihood × Prior, or

p(θ|robs) ∝ L(θ|robs)× Prior(θ). (4.1)

After specifying a likelihood function and a prior distribution, the user must specify an initial

vector of parameter values, θ0, to be the first sample of the Markov chain and a proposal

density q(Y |θt) which is used to suggest a candidate vector of new parameter values, Y ,

for the next value in the chain. MH determines whether to accept the new candidate
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based on whether it is more or less likely than the previous value in the chain, θt. This is

done by calculating the acceptance ratio α, defined to be α = f(Y )/f(θt) = P (Y )/P (θt)

(since f(θ) ∝ p(θ)). The new candidate is automatically accepted if it is more likely

than the previous value (α ≥ 1) and accepted with probability α if α < 1. If the new

candidate is accepted, we set θt+1 = Y , otherwise we reject the candidate and set θt+1 = θt.

This procedure is then repeated a large number of times to generate a Markov Chain.

Once completed, the effects of the initial guess are mitigated by removing a large number

of samples from the beginning of the chain (commonly called the burn-in period). The

remaining chain represents a collection of samples from our target distribution: the posterior

distribution of the parameters given the data. While many characteristics of the posterior

distribution on each parameter could be used, we chose the sample mean to represent the

final estimate for this technique.

There are two key differences between MH and MLE. First, MLE optimizes a function

and results in a single parameter estimate whereas MH samples from a distribution (rather

than minimizing it) and results in a chain of samples from the target distribution. Second,

MH allows for the specification of prior distributions for each parameter. This is where the

user can include prior knowledge about a given parameter (based on their knowledge of the

system being parameterized) to help ensure the algorithm does not result in overly spurious

parameter estimates and to ensure the reasonable area of parameter space is the area being

explored. MH is further described in Table 4.2.

“Bayesian-type” MLE with built-in optimizer

The final parameterization technique we tested for this paper was essentially MLE

with a built-in optimizer (described in Section 4.3.1), however, rather than maximizing the

likelihood, we maximized the posterior likelihood (i.e., the product of the likelihood times

the prior distribution as shown in Eqn 4.1). This was implemented by minimizing the

quantity

nLL(θ|robs)− log (Prior(θ)) .

This caused the optimizer to search for parameter values which minimize the negative log
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Table 4.2
Metropolis-Hastings Algorithm.

Metropolis-Hastings Algorithm
To obtain a distribution of samples from the posterior distribution p(θ|r) where θ is a
vector of parameters and r represents the observed data, we make the assumption that

p(θ|r) ∝ L(θ|r)Prior(θ)

where L(θ|r) is the likelihood of the data given the parameters and Prior(θ) is the prior
distribution of the parameters. I.e.,

Posterior probability ∝ Likelihood × Prior probability.

Thus, we ‘know’ our posterior distribution (the distribution we wish to sample from) to
within a constant and can use Metropolis Hastings.

To implement the technique, the user must specify:
- The form of the error in the data - which determines the likelihood function L(θ|r)

(see Section 4.3.1)
- The prior distribution of the parameters (see Section 4.3.2)

Can be vague or uninformed, or, in the case of biologically meaningful parameters,
a more informative prior may be used

- Initial parameter guess θ0
- A proposal density q(Y |θt) with which to generate new samples (parameter guesses)

(the average stepsize between parameter estimates can be tuned to raise or lower
the accept-reject ratio α)

- Length of the chain
- Length of the burn-in period for the chain

The algorithm proceeds as follows:
1. Provide initial parameter guess θ0
2. Generate Y ∼ q(Y |θt)

3. Calculate acceptance probability α = p(Y )
p(θt)

q(θt|Y )
q(Y |θt)

4. Let

θt+1 =

�

Y, with probability α

θt, with probability 1− α)

(the new sample is always accepted if α ≥ 1 and it may be accepted if α < 1.
5. Repeat steps 2-4.
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likelihood of (as in MLE) that were also commensurate with prior knowledge of the system.

Among the advantages of this method are that it is fast and easy to implement (like MLE),

does not require a high number of user inputs (just the prior distribution rather than the

prior distribution, proposal distribution, length of chain and burn-in period), and can utilize

prior knowledge to so that the method will converge to more realistic regions of parameter

space (like MH). This is very important when estimating the lower and upper temperature

thresholds, as a significant amount of prior knowledge exists regarding their location. As

with MLE implemented via a local optimizer, however, the method may still fail to converge

or converge to a local optimum depending on the initial choice of parameters.

4.3.2. Tuning Metropolis Hastings

As outlined in the MH algorithm (Table 4.2), use of MH requires specification of initial

parameters, proposal density, likelihood function, prior distribution of parameters, length

of chain and length of burn-in period. For consistency, initial parameters and the likelihood

function were chosen to be the same for all three parameterization techniques. The other

components were chosen to best ensure that the acceptance probability of new samples was

in the vicinity of 25% (which was most affected by the stepsize between samples – governed

by the proposal density – and the choice of prior distributions) and to allow for convergence

of the chain. The proposal density, q(Y |θt), was selected to be a normal random walk in

which the stepsize for the various parameters was commensurate to the magnitude of those

values or some proxy for the possible range of values the parameters could take on (i.e., the

lower and upper temperature thresholds were allowed to take a much larger step between

samples than the value of an empirical parameter whose magnitude ranged from 10−3 to

10−4). That is, each component of the new sample Y was selected by taking (normal)

random steps from the previous sample, i.e.,

Yi = θt,i + εiWi · s where εi ∼ N(0, 1),

where W was a vector of positive numbers loosely representing the range in values each

parameter could take on and s ∈ (0, 1) was a stepsize which could be adjusted to obtain
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the desired acceptance ratio (high stepsizes led to large steps between parameters and,

often, lower acceptance probabilities while smaller stepsizes often led to higher acceptance

probabilities). The parameter s tended to need adjusting when switching between rate

functions or estimating parameters for a different fungal dataset.

Choice of prior distributions

As shown in Eqn 4.1 of Section 4.3.1, the distribution to be sampled over in Metropolis-

Hastings includes the effects of a prior distribution describing each of the parameters in-

cluded in the fungal growth rate curves (Table 4.4) as well as a parameter, σ, representing

the error between the observations and the values predicted by the growth rate curves.

Because of previous experiments, we chose somewhat informative prior distributions for the

lower and upper temperature thresholds, T0 and Tm, as well as the optimal temperature

Topt. For the other parameters, B, b, ω, α, and σ, since we did not have an a priori estimate

of where they lie, we chose a less informative prior, mostly to ensure the parameters would

only take on positive values.

The prior distribution for each model was specified by assuming that each of the model

parameters was independent so that Prior(θ) could be written as the product of distribu-

tions describing the individual parameters. Normal distributions were used to describe the

range of temperature parameters T0 and Tm and a truncated normal was used for Topt (to

ensure Topt ∈ (T0, Tm)). Parameters for these normal distributions were chosen after re-

viewing recent growth studies involving the various fungi (Section 4.2.2). For the remaining

empirical parameters, a Gamma(α, β) distribution with shape parameter α and an inverse

scale (or rate) parameter β (with support on x ∈ (0,∞)) was chosen for its broad and fairly

uninformative shape. This distribution constrained the parameters to take on only positive

values while providing little information about the actual value so that the data could more

strongly influence the parameter estimation.

Further tuning of MH

Additional tuning of MH was required to select an appropriate length of chain (how

many samples to obtain) and an appropriate burn-in period (number of initial samples
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Table 4.3
Information from previous studies (Section 4.2.2) used to set prior distributions for tem-
perature parameters. These prior distributions were used with the Metropolis-Hastings
algorithm and with B-MLE.

Summary of prior information regarding temperature parameters

E. sp.B. C. brevicomi G. clavigera O. montium

T0 Lies below 5◦C Lies below 5◦C

Lies below 10◦C
(unable to grow/ Lies below 10◦C

grew poorly at 4◦C; (inhibited at 5◦C;
Plattner et al., 2008; Rice et al., 2008)
inhibited at 5◦C;
Rice et al., 2008)

Topt 20-28◦C 20-30◦C 20-25◦C Around 25◦C

Tm >34◦C 30-34◦C

>30◦C
>30◦C (though likely higher
and than G. clavigera

<35-37◦C threshold)
and <35-37◦C

Table 4.4
Prior distributions and parameters used for MH and B-MLE. B∗ indicates the prior for B
used with the Dogleg curve (R2) which, for this curve, is the optimal (fastest) growth rate
for the fungi. For the remaining curves, the prior for B was chosen to be Gamma(1, .5).

Summary of Prior Distributions (and parameters) used with MH

T0 Topt Tm Other

E. sp.B. N(4, 22) N(24, 32) N(36, 22)
Gamma(1,.5)

B∗ ∼ Gamma(2,.5)
κ ∼ Gamma(100,.5)

C. brevicomi N(4, 22) N(24, 32) N(36, 22)
Gamma(1,.5)

B∗ ∼ Gamma(1.5,.5)
κ ∼ Gamma(100,.5)

G. clavigera N(5, 52) N(22.5, 22) N(32, 22)
Gamma(1,.5)

B∗ ∼ Gamma(6,.5)
κ ∼ Gamma(100,.5)

O. montium N(5, 42) N(25, 22) N(32, 22)
Gamma(1,.5)

B∗ ∼ Gamma(6,.5)
κ ∼ Gamma(100,.5)
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to discard). Since there is no formula to determine the proper length of chain and burn-

in period, we generally erred on the conservative side by selecting relatively long chains

(100,000–200,000) and discarding high numbers of samples (40,000–100,000) to ensure con-

vergence. Visual indicators of convergence and a proper acceptance ratio were checked by

plotting chains of samples for each of the various parameters. From these plots we were

able to verify that the sample chain was exploring the parameter space (and not holding

constant at a single value or a small range of values) and to ensure that it was not exploring

samples in such a way that indicated it had not reached a good region of parameter space

(i.e., samples trending down or up which might indicate the method was still overcoming

the effect of a poor initial guess).

4.3.3. Comparison of methods

As stated earlier, the two primary goals of this work were to determine accurate tem-

perature thresholds for the four fungal species as well as to determine whether the use of

Bayesian techniques could lead to an improvement in the parameterization of nonlinear

curves. To evaluate this second question, we conducted a number of trials. First, all four

growth rate curves were roughly parameterized to evaluate their ability to fit the fungus

growth data, i.e., a visual fit of the data to the curves was obtained by adjusting parameters

by hand to provide an initial guess. This initial guess was sent to the parameter estima-

tion technique (and perturbed as necessary to ensure convergence for MLE and B-MLE),

however, we did not attempt to verify whether the global minima had been found. After

analyzing the fit (using visual inspection and the Bayesian Information Criterion, BIC, de-

scribed below) of the various parameterized curves, more in-depth tests were conducted by

uniformly selecting initial values for temperature thresholds from a broad region (-10 to

10◦C degrees for T0 and 30 to 40◦C for Tm) and perturbing the remaining parameters (from

the initial guess discussed above). These perturbed initial parameters were then fed into

each of the three methods as an initial guess and the methods were repeated 100 times.

Convergence information, consistency of parameter estimates, visual fit and BIC are com-

pared in Section 4.4.2. Finally, using BIC as a criterion, the best rate curve for each dataset
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was chosen. This is discussed in Section 4.4.3.

4.4. Results

4.4.1. Initial results of parameterization (all functions)

Initial parameter estimates obtained for the various fungal growth rate curves revealed

an interesting range of behavior (Tables 4.5–4.8, Figures 4.5 and 4.6) ranging from well-

behaved parameterizations (Plot A in Figures 4.6 and 4.5) to pathological behavior caused

by near-zero (Plots C and D in Figures 4.6 and 4.5) or negative parameter (Figure 4.5,

Plot A) estimates and biologically unreasonable temperature thresholds (Figure 4.6, Plot

D and Figure 4.5, Plots B and D). Temperature threshold estimates for each fungus varied

between growth rate curves (and also between parameter estimation techniques). All three

parameter estimation techniques produced (generally) reasonable parameter estimates for

curves R1 and R2 (with the exception of several estimates obtained for O. montium using

MLE; see Tables 4.5–4.8 and Figure 4.5, Plots A and B). As the number of parameters in

the rate curve increased, the parameter estimation techniques had more difficulty.

To quantify the actual fit of the rate curves to the data, the Bayesian Information

Criterion (BIC) was calculated for each rate function, fungus, and parameter estimation

technique (Table 4.9). BIC is a criteria for goodness of fit that is similar to AIC, however,

it penalizes model complexity more heavily. It estimates the probability that the posterior

probability of a model is true, so a lower BIC is considered to be more likely the true model.

BIC is defined as

BIC = −2 log(L) + log(n)k,

where n is the number of datapoints and k is the number of parameters in the model.

From these calculations, we found that overall, The Briere-2 and Dogleg curves (R1 and

R2) performed better than the Hansen and Régnière curves (R3 and R4) and that MLE

occasionally performed quite well, achieving the lowest BIC for several of the functions.

On the whole, however, it was a more volatile estimation method, occasionally resulting
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Table 4.5
Parameter estimates for G. clavigera (Stump Hollow dataset) using MLE (row 1 of each
cell), MH (row 2), and B-MLE (row 3). 0* indicates the parameter estimate neared machine
precision, i.e., zero.

Parameter estimates for G. clavigera

T0 Tm B σ2

R1 0.71; 34.61; 0.0003; 1.42; 1.67;
Briere-2 -3.72; 32.89; 0.0008; 1.06; 1.65;
r(T0, Tm, B,ω) -0.66 33.68 0.0005 1.25 1.66

R2 -2.74; 34.63; 5.98; 22.71; 1.75;
Dogleg -1.96; 34.78; 6.02; 22.39; 1.78;
r(T0, Tm, B = ropt, Topt) -1.43 34.66 6.06 22.37 1.74

R3 2.78; 30.00; 13.87; 0.016; 0*; 1.63;
Hansen -3.70; 32.02; 6.17; 0.045; 8.80; 1.68;
r(T0, Tm, B,ω,Δm) -0.39 30.00 15.25 0.013 0* 1.21

R4 -5.95; 30.00; 4.66; 0.008; 1.31; 0.02; 3.36;
Régnière -6.15; 28.98; 2.45; 0.026; 0.51; 0.54; 3.35;
r(T0, Tm, B,ω,Δ0,Δm) 2.50 29.58 5.37 0* 0* 0.26 2.89

in extremely high (poor) BICs. We found that altering the MLE setup to include prior

knowledge (B-MLE) did result in less volatility in BIC values and fewer instances of unre-

alistic parameter values. B-MLE was also able to achieve good parameter estimates for the

simpler rate curves (R1 and R2) with low BIC values. As the number of variables in the

rate curve increased, however, B-MLE also produced some extremely poor BIC values (i.e.,

for G. clavigera and O. montium with the Hansen curve, R3; see Table 4.9). MH seemed to

be the most consistent method. It did not often achieve the lowest BIC for a given dataset

or rate curve, however, the inclusion of prior knowledge and the ability to tune the method

to ensure it adequately explored the parameter space did seem to insulate it from achiev-

ing extremely poor BICs. Another detail to note is that the MH estimates were achieved

with one run of the algorithm whereas the MLE and B-MLE estimates (included in Tables

4.5–4.8) leading to these BIC estimates were sometimes the result of running the algorithm

more than 10 times before achieving convergence.
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Table 4.6
Parameter estimates for O. montium (Stump Hollow dataset) using MLE (row 1 of each
cell), MH (row 2), and B-MLE (row 3). 0* indicates the parameter estimate neared machine
precision, i.e., zero.

Parameter estimates for O. montium

T0 Tm B σ2

R1 15.92; 275.90; -0.0288; -6.66; 17.99;
Briere-2 -4.31; 34.24; 0.0025; 0.46; 1.80;
r(T0, Tm, B,ω) -4.46 34.11 0.0025 0.46 1.79

R2 -3.50; 115.00; 5.71; 32.94; 1.86;
Dogleg 1.54; 34.10; 5.92; 29.18; 1.81;
r(T0, Tm, B = ropt, Topt) 1.64 33.39 5.95 29.30 1.76

R3 -0.09; 30.74; 19.11; 0.0092; 0.45; 1.77;
Hansen -2.07; 32.65; 5.15; 0.0279; 1.85; 1.82;
r(T0, Tm, B,ω,Δm) 2.56 30.00 2.28 0.0552 0* 1.11

R4 -2.52; 40.97; 1.48; 0.0390; 0.0032; 0.0705; 1.94;
Régnière 0.23; 30.84; 1.80; 0.0349; 0.5049; 5.89; 1.91;
r(T0, Tm, B,ω,Δ0,Δm) -3.86 32.21 2.01 0.0283 0.7841 0* 1.78

Table 4.7
Parameter estimates for C. Brevicomi using MLE (row 1 of each cell), MH (row 2), and
B-MLE (row 3). 0* indicates the parameter estimate neared machine precision, i.e., zero.

Parameter estimates for C. brevicomi

T0 Tm B σ2

R1 -1.91; 29.64; 0.0007; 0.47; 0.07;
Briere-2 3.22; 38.46; 4.27E-5; 1.43; 0.04;
r(T0, Tm, B,ω) 3.38 39.27 2.97E-5 1.52 0.04

R2 3.22; 41.56; 1.04; 23.00; 0.04;
Dogleg 4.70; 41.98; 1.06; 21.21; 0.04;
r(T0, Tm, B = ropt, Topt) 3.56 40.72 1.05 22.93 0.04

R3 4.05; 30.80; 5.82; 0.0098; 3.47; 0.07;
Hansen et al. (2011) 1.05; 36.41; 3.56; 0.0209; 10.83; 0.04;
r(T0, Tm, B,ω,Δm) 1.80 36.41 4.65 0.0161 10.70 0.04

R4 2.54; 28.00; 0.70; 0.0098; 2.09; 11.97; 0.08;
Régnière et al. 3.23; 30.83; 0.48; 0.0247; 0.99; 12.32; 0.09;
r(T0, Tm, B,ω,Δ0,Δm) 3.52; 33.95; 0.92; 0* 0* 4.59 0.08
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Table 4.8
Parameter estimates for E. sp.B. using MLE (row 1 of each cell), MH (row 2), and B-MLE
(row 3). 0* indicates the parameter estimate neared machine precision, i.e., zero.

Parameter estimates for E. sp.B.

T0 Tm B σ2

R1 9.28; 34.32; 0.0008; 0.63; 0.42;
Briere-2 6.32; 34.27; 0.0008; 0.52; 0.43;
r(T0, Tm, B,ω) 5.46 34.05 0.0010 0.38 0.42

R2 12.97; 36.09; 1.61; 25.68; 0.41;
Dogleg 10.05; 37.21; 1.51; 24.26; 0.44;
r(T0, Tm, B = ropt, Topt) 8.93 36.53 1.47 25.70 0.43

R3 6.17; 34.00; 2.63; 0.02; 0*; 0.42;
Hansen 6.34; 34.52; 1.51; 0.04; 3.26; 0.44;
r(T0, Tm, B,ω,Δm) 5.51 34.00 0.89 0.04 0* 0.42

R4 0.19; 13.59; 0.0032; 0.33; 2.08; 14.87; 1.06;
Régnière 3.76; 33.25; 0.2035; 0.08; 2.08; 1.17; 0.47;
r(T0, Tm, B,ω,Δ0,Δm) 1.08 34.00 0.0045 0.21 2.76 9.91 0.47

Table 4.9
Comparison of ΔBIC = BIC − BIClow. Recall that BIC = −2 log (L) + log (n)k (where n
is the number of datapoints and k is the number of parameters in the model).

Comparison of ΔBIC across
models, fungi, and parameter estimation techniques

MLE MH B-MLE

R1 0; 8.8; 0.1; E. sp.B.
Briere-2 964.0; 13.0; 8.6; C. brevicomi
r(T0, Tm, B,ω) 0; 2.6; 2.4; G. clavigera

143.7 7.8 3.0 O. montium

R2 22.9; 23.6; 23.9; E. sp.B.
Dogleg 26.8; 6.4; 6.4; C. brevicomi
r(T0, Tm, B = ropt, Topt) 2.2; 15.5; 9.5; O. montium

0 4.8 1.2 G. clavigera

R3 242.0; 33.5; 227.9; E. sp.B.
Hansen 0; 48.6; 135.7; C. brevicomi
r(T0, Tm, B,ω,Δm) 7.0; 42.6; 8.0; G. clavigera

143.7 24.3 17.4 O. montium

R4 268.3; 267.3; 250.3; E. sp.B.
Régnière et al. 49.9; 25.6; 36.8; C. brevicomi
r(T0, Tm, B,ω,Δ0,Δm) 217.1; 26.8; 41.0; G. clavigera

184.8 192.6 190.3 O. montium
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Fig. 4.5: Comparison of the various rate curve fits for O. montium for MLE (solid red
curve), MH (using the mean of the samples collected after the burn-in period, dashed blue
curve) and B-MLE (dotted black curve). Here we see reasonable fits for the Briere-2 curve
(R1; Plot A) and with MH and B-MLE for the Dogleg curve (R2; Plot B). Pathological
behavior was also exhibited for this dataset, however. This can be seen in the unrealistically
high upper temperature threshold obtained by MLE for the Dogleg curve (Tm = 115.00),
the sharp corner in the B-MLE parameterization for the Hansen curve (R3, Plot C) and
the exponential shape of the MLE parameterization for the Régnière curve (R4; Plot D,
possibly caused by three parameters having nearly zero values).
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Fig. 4.6: Comparison of the various rate curve fits for E. sp.B. using MLE (solid red
curve), MH (using the mean of the samples collected after the burn-in period, dashed blue
curve) and B-MLE (dotted black curve). Here we see slight differences in fits obtained for
the Briere-2 and Dogleg curves (R1 and R2; Plots A and B) though it seems that MLE
has discounted the growth rate observations collected at 10◦C. Fits for the Hansen curve
(R3; Plot C) and the Régnière curve (R4; Plot D) display more pathological behavior with
sharp corners obtained for MLE and B-MLE fits for the Hansen curve (R3) and with all
techniques for the Régnière curve (R4). These can be partly attributed to Δm ∼ 0 in the
Hansen curve and other parameter values becoming small in the Régnière curve. In Plot D,
we also see that MLE has converged to a poor region of parameter space with Tm = 13.59
which is clearly not realistic.
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4.4.2. In-depth test of parameterization methods

Briere-2 function (R2) to parameterize G. clavigera and O. montium data

Using the Briere-2 function with a normal error assumption, MLE, MH and B-MLE

were applied to G. clavigera and O. montium data collected at Stump Hollow 100 times

with variable initial parameters. Overall, MLE failed to converge 49% of the time with G.

clavigera data and 75% of the time with O. montium data. In addition, half of the “conver-

gent” iterations for G. clavigera and all but one for O. montium had actually converged to

a local, rather than global, minimum (resulting in a BIC nearly 1000 higher than for many

other non-convergent iterations) which led to extremely poor and widely varied parameter

estimates. In contrast, MH resulted in stable parameter estimates with low standard devi-

ation between estimates. Bayesian-type MLE resulted in slightly higher convergence than

MLE (converging 58 of 100 times versus 51 of 100 for G. clavigera and 59 of 100 versus 25

of 100 for O. montium data) though its estimates were also highly varied. To get a better

idea of the quality of the estimates and see how the variability in parameters affected the

shape and appearance of the growth rate curves, the (convergent) parameterized rate curves

for each technique were plotted with their respective data (Figure 4.7). Here we see a high

degree of inconsistency between both MLE and B-MLE estimates and relatively consistent,

smooth, rate curves obtained via MH.

Hansen function (R3) to parameterize O. montium and C. brevicomi

The in-depth parameterization test was also applied to O. montium data collected at

Stump Hollow and C. brevicomi with the Hansen rate curve (R3). This revealed similar

results. MLE failed to converge 56% of the time for O. montium and 80% of the time for C.

brevicomi while B-MLE failed to converge 55% of the time for O. montium and 77% of the

time for C. brevicomi. As with the parameter estimates obtained with the Briere-2 curve

(R3), MLE and B-MLE estimates varied widely and, in general, produced inconsistent and

poor fits (Figure 4.8, Plots A, C, D and F). MH estimates also exhibited variability, though

parameter values were much more consistent and created reasonable looking rate curves

(Figure 4.8, Plots B and E).
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Fig. 4.7: Spread in rate curves after obtaining one hundred MLE (Plots A, B), MH (Plots C,
D), and B-MLE (Plots E, F) parameter estimates for G. clavigera and O. montium (Stump
Hollow dataset) using the Briere-2 (R1) curve, normal error, and random initial parameter
estimates. Only convergent parameter estimates are plotted for MLE and B-MLE.
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Fig. 4.8: Spread in rate curves after obtaining one hundred MLE (Plots A, B), MH (Plots C,
D), and B-MLE (Plots E, F) parameter estimates for O. montium (Stump Hollow dataset)
and C. brevicomi using the Hansen (R3) curve, normal error, and random initial parameter
estimates. Only convergent parameter estimates are plotted for MLE and B-MLE.
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Table 4.10
Best rate curve and parameter estimates for each fungus based on a criteria of BIC.

Best parameters and rate curves for the fungal datasets

T0 Tm B

E. sp.B.
9.28 34.32 0.0008 ω = 0.63

(R1, Briere-2, MLE)

C. brevicomi
3.22 41.56 B = ropt = 1.04 Topt = 23.00

(R2, Dogleg, MLE)

G. clavigera
0.71 34.61 0.0003 ω = 1.42

(R1, Briere-2, MLE)

O. montium
-0.09 30.74 19.11 ω = 0.0092 Δm = 0.45

(R3, Hansen, MLE)

4.4.3. Overall parameter estimates from the three parameterization methods

Using BIC as the criteria for best parameter estimates, we found that G. clavig-

era was best parameterized using the Briere-2 curve (R1) with temperature thresholds

of (T0, Tm) = (0.71, 34.61) while O. montium was best parameterized with the Hansen

curve (R3) with temperature thresholds of (T0, Tm) = (−0.09, 30.74) (Table 4.10, Figure

4.9). For WPB-associated fungi, we found that the Briere-2 (R1) curve provided the best

fit to E. sp.B. data while the Dogleg (R2) curve provided the best fit to C. brevicomi.

The respective temperature thresholds for these fungi were (T0, Tm) = (9.28, 34.32) and

(T0, Tm) = (3.22, 41.56) (Table 4.10, Figure 4.9), indicating that C. brevicomi has a much

wider range of temperatures where it can grow.

4.5. Discussion

Based on a cursory application of the various parameterization techniques, we found

that for each dataset, parameter estimates were sensitive to the rate curve, choice of prior

distribution, and parameterization method. Overall, MLE performed well when estimating

curves with lower numbers of parameters though it often had to be repeated more than

10 times to achieve convergence. Even convergent applications of MLE experienced diffi-

culty in terms of estimating unrealistic temperature thresholds (i.e., the lower temperature

threshold for E. sp.B., both thresholds for O. montium using the Briere-2 curve (R1), and
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Fig. 4.9: Comparison of the observed data and the best parameterized rate curves for each
fungus (Plots A-D) using the curves and parameters shown in Table 4.10. Plot E overlays
the rate curve for MPB-associated fungi and Plot F overlays WPB-associated fungi. Here
we see that while the temperature thresholds for O. montium (the warm-loving fungus
associated with MPB) lie below those of G. clavigera (the cool-loving fungus with MPB),
the overall growth characteristics reflect known behavior of the fungi.
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the upper temperature threshold for O. montium using the Dogleg curve (R2); see Tables

4.5-4.8), allowing estimates to be nearly zero or negative, or resulting in drastically dif-

ferent parameter values given small perturbations in the initial guess. As the number of

parameters increased (the Hansen and Régnière curves; R3 and R4), MLE (occasionally)

experienced even more difficulty and had the potential to completely misrepresent the data

(see Figures 4.5-4.8).

B-MLE utilized the same optimizer as MLE, however, the inclusion of prior knowledge

regarding T0 and Tm successfully prevented unrealistic parameter estimates for the temper-

ature thresholds and negative estimates for the remaining parameters. This allowed B-MLE

to regularly achieve good parameter estimates for the curves with four parameters (Briere-2

and Dogleg, R1 and R2) though it still suffered from lack of convergence and inconsistency

(see Figures 4.7 and 4.8), and often resulted in overly angular/choppy rate curves (Figures

4.5-4.8). MH, also including prior knowledge (as well as allowing user tuning to ensure

adequate exploration of the parameter space) was the most consistent of the techniques. It

did not always achieve the lowest BIC value; however, it seemed most able to accommodate

variable, messy data. MH provided reasonable parameter estimates and visually well-fitting

rate curves for the Briere-2, Dogleg and Hansen curves (R1, R2, and R3 which had up to

five parameters). As with the other techniques, MH struggled to parameterize the Régnière

curve (R4) in that the fits obtained were angular and slightly underestimated the upper

temperature threshold.

Taken together, we see why MLE is often the parameterization method of choice. It

is fast, easy, and often accurate. In parameterizing the various rate curves and datasets

with different structure and amounts of variability, we also found limitations of MLE. It is

sensitive to the choice of initial parameters and may fail to converge. It can also run off

to regions of parameter space that are invalid and achieve terrible fits. This indicates that

MLE requires a significant amount of user knowledge and input after the fact to obtain

good parameter estimates. That is, the user must not only ensure that MLE has converged,

but also that the parameter values it has converged to are reasonable or the technique
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must be repeated. B-MLE can improve consistency somewhat, however, failure to converge

and converging to a local minima is still a concern so the user must again exercise caution

in trusting parameter estimates. MH, on the other hand, was quite consistent. From a

standpoint of repeatability, MH is desirable in that it requires the user to be extremely

clear from the outset regarding their knowledge of previous parameters and how much

weight they wish this knowledge to have relative to the data (versus secretly discarding

undesirable parameter estimates after the fact). That said, MH did struggle when the

number of parameters in the function were increased. This could likely be remedied with

improved prior knowledge. This prior knowledge could affect the algorithm in terms of

having a more informative prior distribution on the parameters as well as allowing the user

to specify more reasonable step-sizes for the proposal distribution.

Overall, based on ease of parameterization and quality of fit (ΔBIC, shown in Table

4.9), R1 and R2, the Briere-2 and Dogleg rate curves best approximated the fungus growth

rate data. Overall, the Briere-2 (R1) provided the best fit for G. clavigera and E. sp.B.

and the Dogleg (R2) provided the best fit for C. brevicomi. For O. montium, the best rate

curve was either the Dogleg or the Hansen curve (R2 or R3), depending on the method used

for parameterization. MLE was able to achieve the lowest BIC for O. montium using the

Hansen curve (R3), though when prior knowledge was included (MH, B-MLE), the Dogleg

curve (R2) achieved the best fits. This could partly be due to the prior distribution on

Tm (i.e., Tm ∼ N(32, 22)) causing MH and B-MLE to provide more weight to parameter

estimates for Tm that were closer to 32 (MLE estimated that Tm was 30.74). The data for O.

montium also exhibited an extremely high degree of variability, especially for measurements

taken at 30◦C which makes it difficult to distinguish between the performance of the rate

curves.

4.6. Conclusions

Though many techniques are available for parameterizing functions to data, the best

technique will often depend on the complexity of the function and the variability and size

of the dataset. In this paper, we used nonlinear functions having four to six parameters
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to describe moderately large datasets containing a few hundred observations with high

amounts of variability and parameterized the functions using three techniques: MLE, MH,

and B-MLE. For these functions and datasets, MH was clearly the superior method in terms

of consistency and requiring the user to formally specify any biases from the outset. MLE

and B-MLE were occasionally able to attain better fits to the data (as measured by BIC),

however, this often required perturbing initial parameters more than 10 times to achieve

convergence and then knowing whether the convergent parameters and resulting fit were

reasonable or whether the method needed to be repeated again. MH, on the other hand,

consistently resulted in adequate fits using one run of the algorithm. Considering today’s

atmosphere where repeatability and reproducibility of scientific experiments (Stodden, 2010;

Vanschoren et al., 2012) is prized, the ability to produce consistent parameter estimates and

fully justify any user bias are more important than ever. This makes techniques such as

MH increasingly attractive.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this work we utilized mathematical tools to create and validate two models describing

the interactions of three species with overlapping phenologies. These models incorporated

previous models or approaches for MPB development and new models for fungus growth in

a tree and were parameterized using direct and indirect observations (i.e., fungus growth

rates collected in an artificial medium as well as records of attacking and emerging MPB and

the fungus they were carrying). We posit that predictions about the system as a whole will

be made stronger when considering their overlapping phenologies. MPB success is thought

to depend on nutritional benefits obtained from feeding on fungus colonized phloem at

different stages in its development. Due to differences between its fungal symbionts, the

degree of MPB success will also depend on fungal timing. Thus, in order to best predict

or understand the future of the MPB-fungus system, inclusive models that quantify the

likelihood of fungal presence at the appropriate time are essential.

In Chapter 2 we developed an individual-based model describing the growth of fungal

lesions on a one-dimensional ring of tree circumference. Using the assumption that the

fungi would not actively compete, we allowed the fungus lesions to grow at a rate based on

temperature and then stop when they reached another lesion (mimicking the finite space

available to colonize within a host tree). Using this model for fungal growth, we combined

its predictions with a median model for MPB development. This allowed us to predict

when the median MPB adult would emerge from a tree based on an observed record of

hourly temperatures so that we could determine the proportion of each fungus that would

be carried to a new host tree the following year. Finally, we utilized this combination

of models to test whether different forms of variability in temperature could explain the

relatively stable dynamics between MPB, G. clavigera and O. montium over time. Using

observed temperature records from the Sawtooth National Wildlife Refuge and a higher

elevation site, Railroad Ridge, as well as simulated temperature records formed from these

datasets, we tested whether intra-year variability (variability over the course of a single
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year), inter-year variability (variability between years), or variability due to a portion of

the MPB population periodically transitioning between thermal regions could explain the

continued presence of both fungi in the mutualism. We found that cooler years favored

G. clavigera and warmer years favored O. montium (which was expected based on known

growth profiles exhibited by the fungi). In general, however, temperature records from the

SNRA tended to consistently favor O. montium while the temperatures at RRR consistently

favored G. clavigera. When viewed over a long period of time, this generally resulted in a

loss of one fungus from the mutualism.

An unexpected result of the MPB fungus simulations was that the distance between

fungal lesions (determined by the density of attacking MPB) could also influence the pro-

portion of each fungi over time. We found that closely spaced lesions (due to high densities

of attacking MPB) could also stabilize the mutualism. Regarding temperature variability,

however, we found that only large-scale variability in temperature, such as from portions

of the MPB population periodically transitioning between different thermal environments,

was enough to stabilize the mutualism over a long period of time. Regarding the future

of the mutualism as a whole, the simulations conducted in Chapter 2 seemed to indicate

that in the face of increasing temperatures, G. clavigera would be slowly displaced from the

mutualism due to its preference for cooler temperatures relative to O. montium.

In Chapter 3, we adapted the fungal growth model from Chapter 2 and then compared

its predictions against real world observations of MPB and fungus exiting the tree. This

model included several changes: 1) the fungal growth model was restructured so that it

was deterministic (rather than stochastic) and the cumulative growth of all fungal lesions

was tracked (rather than the growth of lesions individually), 2) the model incorporated

two parameters describing how the growth of G. clavigera and O. montium scaled from

a Petri dish to a tree, 3) a distributional approach was used to determine the TA feeding

window (rather than calculating the date of emergence for the median MPB), and 4) five

submodels were introduced to describe a spectrum of possible various interactions between

MPB and fungi within the host tree. These changes resulted in a number of benefits,
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they significantly reduced computational time, provided the ability to track fungus lesions

that began growing on different days (as they would in a tree), and allowed us to compare

predictions with observed MPB emergence data (difficult with the previous model because

it modeled too few individuals). This model was then parameterized and tested using real-

world MPB attack and emergence observations collected from 2010 to 2011 and 2011 to

2012.

After parameterizing and testing the models, we found that while dynamics between

years were different, the models which assigned the fungi in the mycangia of MPB based

on the fungi present in the tree just prior to emergence performed best. This indicates that

fungus present at the end of the teneral adult feeding window just prior to MPB emergence

from a host tree is more important than the fungus present during earlier phases of the

feeding window. We also found that the growth of the two fungi scale very differently from

a Petri dish to a live tree. G. clavigera, known to be more virulent and better able to tolerate

low oxygen conditions (such as those in a freshly attacked tree) grew approximately 25 times

more quickly than O. montium. However, these exact numbers were directly influenced by

observations from study trees in which very low numbers of beetles were observed exiting

with O. montium.

Since MPB success is strongly tied to the success of its symbionts and Chapters 2 and

3 seemed to predict different outcomes from the mutualism in terms of whether both fungi

will be maintained, we revisited the parameterization of the fungal growth rate curves in

Chapter 4. Fungal growth rate curves are used by both models to predict how fast each

fungus will grow as a function of temperature. The format of these curves can vary widely;

however, nonlinear curves are generally preferred because they more accurately represent the

growth of the fungi over a broad range of temperatures. These curves formed the basis of the

fungal growth model, determining how fast the fungi can colonize the host tree. We wanted

to see whether the fungal growth rate curves used in Chapter 3 could be improved upon

to better distinguish the growth of each species and to better explain fungal emergence for

both the parameterization and validation dataset. To do this, we selected four possible rate
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curves used to model the growth of other cold-blooded organisms and then parameterized

the curves using maximum likelihood estimation (MLE), Metropolis Hastings (MH), and

Bayesian “MLE” (B-MLE) to best fit observed growth rates for mountain pine beetle and

western pine beetle associated fungi collected in an artificial medium. The intent was to test

whether the inclusion of prior information, allowed in MH and B-MLE, could improve the fit

of the data or the reliability of the parameter estimation technique. What we found is that

MLE is a good technique; it often produces very good parameter estimates as quantified by

the Bayesian Information Criterion. On the other hand, MLE did not consistently achieve

good parameter estimates. Often, the method had to be repeated and results discarded due

to lack of convergence or convergence to a poor region of parameter space. This made MLE

highly unreliable and indicates that some degree of expert knowledge is required (after the

fact) to obtain good, trustworthy parameters. The inclusion of prior knowledge in B-MLE

did help to remedy these issues, though it still had the potential to converge to poor regions

of parameter space and obtain very unrealistic fits to the data. Finally, using MH, we

found that we could achieve much more consistent and realistic fits, though as the number

of parameters increased, the method also resulted in more variable parameter estimates. We

assess that this could be remedied by increasing the precision in the prior distribution for

the parameters (by leaning more heavily on prior knowledge regarding several parameters

in the rate curve).

Overall, the most significant portions of this work are the development of a framework

for connecting models describing the phenology of various species to better understand how

the system will act as a whole and introducing the use of prior knowledge when estimating

fungal growth rate curves. Using the notion of a colonization index, we were able to com-

bine different forms of output from phenology models (i.e., translating predictions of length

colonized by fungi to predictions of the proportion of a tree colonized so that these could be

combined with temporal predictions for MPB development) to arrive at an accurate model

for the combined dynamics of three interacting species. In addition, since fungal growth

rates at various temperatures formed the basis of our models, introducing Bayesian param-
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eter estimation greatly improved the ease of parameterization as well as the consistency of

the estimates (across rate curves and fungal datasets).

In an era of warming climate, researchers are interested in whether the MPB-fungus

relationship will remain stable, or whether one fungus will be displaced from the mutualism.

Since the fungi differ substantially in their benefits to the beetle, the loss of one fungi could

greatly affect the ability of MPB (for better or worse) to spread across landscapes. Our

models seem to indicate that if the rate of fungal growth in a tree is proportionate to that

measured in an artificial medium (i.e., with the growth of both fungi scaling in the same

way), then one symbiont will likely be lost from the mutualism unless portions of MPB

periodically transition to different thermal areas. When parameterizing the MPB-fungus

model to data, however, it seemed much more likely that the fungus growth rates observed

in an artificial medium will scale differently for each species with G. clavigera gaining a

substantial advantage over O. montium in a tree. This seems to indicate that G. clavigera

will likely not be lost from the mutualism any time soon, though the accuracy of our growth

rate scaling parameters was slightly suspect due to the oddities in our dataset, in which

extremely low numbers of MPB were observed to be emerging with O. montium. In reality,

it is likely that some combination of results from Chapter 2 and Chapter 3 will occur. We

assess that the growth rate scaling parameters of the fungi do differ, though not by as great

a margin. As a result, it is likely that O. montium, the warm-loving fungus, will experience

greater success in warmer climates while G. clavigera, through its greater virulence, will

also continue to persist in the mutualism.
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