

Methods to predict fatigue in CubeSat structures and mechanisms

By Walter Holemans (PSC), Floyd Azure (PSC) and Ryan Hevner (PSC)

08-09 August 2015 12th Annual Summer CubeSat Developers' Workshop

Outline

- Problem Statement
- What is fatigue?
- Cyclic loading and strength
- What is sensitive?
- Steps 1-8
- What is preload?
- Summary

Problem Statement

- Why do CubeSats fail 30 to 50 percent of the time?
- One failure mode may be fatigue failure

Source: Swartwout, Michael
Parks College of Engineering, Aviation & Technology
Saint Louis University

https://script.google.com/macros/s/AKfycbynG51p-33r5fBqV-uuNv4Sm3dz4XYThZkPx5pdIT-Wtjmi-Y9X/exec?source=P3

What is fatigue?

- Fatigue is the process of damage and failure due to cyclic loading
- Cyclic loading may come from:
 - Oscillating acceleration like random vibration and shock
 - Oscillating thermal loading from orbital period or heating cooling cycles of components turned OFF and ON
 - Pressure and vacuum cycling
 - Humidity cycling
 - Assembly cycles

"The results of this study show that the pins failed as a result of fatigue loading."

(a) Photograph of processing chip on circuit board

(b) Photograph of broken electrical connector pins

Connectors, NASA/TM-2008-215531, October 2008 [Mars Science Laboratory]

Source: Failure Analysis of Electrical Pin

Cyclic loading reduces material strength by about 50 percent

Typical Stress Versus Life (S-N) Curve

Fatigue Life, Cycles

Figure 3.6.2.2.8. Best-fit S/N curves for unnotched 6061-T6 aluminum alloy, various wrought products, longitudinal direction.

Source: Battelle-MMPDS Metallic Materials Properties Development and Standardization

What items are sensitive to fatigue?

All solid state materials of any size

Solar panels

Fuse-wires

Reaction-wheel bearings

MEMS

Step 1: Build Finite Element Model (FEM) of CubeSat

Step 2: Join CubeSat FEM to Dispenser FEM

Step: 3 Verify model is Linear

- Compared the response of each component to the base input. Peak values were:
 - Base input [g] = 1.01
 - Battery A [g] = 1.01
 - Bottom PCB [g] = 1.00

Step 4: Normal Modes Analysis

The base of the Dispenser (not shown) is fixed

Step 5: Identify Elements with high stress or strain

A Microcontroller's pins may be modelled

Also see Solomon, H. D. et. al. Prediction of Solder Joint Fatigue Life, Air Force Wright Aeronautical Laboratories, April 1988

Step 6: Random Vibration Analysis

- The input vibration is at the base of the dispenser
- Are the responses exceeding specification?
 - Example: Is Battery A being exposed to random vibration (cyclic loading) in excess of its specification?

Step 7: Predict fatigue damage

- Using the Rms stress from **Step 6**, and assume a full stress reversal
- Use Miner's Rule to compute Fatigue damage ratio.
 - Values less than 1.0 are indicate no fatigue failure

	Inner Standoff	Cross Beam	Inner Base Standoff	Outer Base Standoff
Resonant Frequency [Hz]	329	329	1,295	1,296
Duration [sec]	120	120	120	120
Trials [-]	1	1	1	1
Total Duration [sec]	120	120	120	120
Duration Cycle [sec]	0.0030	0.0030	0.0008	0.0008
Total Cycles [-]	39,480	39,480	155,400	155,520
Stress (1-sigma) [psi]	1,309	2,013	261	163
Stress (2-sigma) [psi]	2,619	4,026	522	326
Stress (3-sigma) [psi]	3,928	6,040	782	488
Time Stress Occurs (1-sigma) [-] Time Stress Occurs (2-sigma) [-]	68.3% 27.2%	68.3% 27.2%	68.3% 27.2%	68.3% 27.2%
Time Stress Occurs (3-sigma) [-]	4.3%	4.3%	4.3%	4.3%
Number of Cycles (1-sigma) [-]	26,953	26,953	26,953	26,953
Number of Cycles (2-sigma) [-]	10,731	10,731	10,731	10,731
Number of Cycles (3-sigma) [-]	1,690	1,690	1,690	1,690
Fatigue Limit (1-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Limit (2-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Limit (3-sigma) [-]	1.00E+08	1.00E+08	1.00E+08	1.00E+08
Fatigue Damage Ratio [-]	3.94E-04	3.94E-04	3.94E-04	3.94E-04

Step 8: Test Verification

- In the actual test, response accelerometers are used to correlate the FFM
 - Damping and stiffness are modified in the FFM to best mimic test response
- If pre and post sine sweeps are substantially different, fracture may have occurred changing the load path and so changing the response frequency and amplitude
- A fractured electrical junction may not be detected until thermal or operations testing
 - At temperature extremes, an already cracked circuit element may OPEN as the materials contract
 - So it is valuable to follow vibration testing with thermal vacuum testing

If the load path changed because of fatique, one would see a change in frequency or amplitude

www.planetarvsvstemscorp.com

What is a preloaded junction?

- A compressive load to join parts wherein the compressive load is greater than external load
 - Because the junction does not slip it behaves as if it were welded together
- Examples of preloaded junctions
 - Tightened bolts holding a wheel to a car
 - Tightened C-clamp holding two pieces of wood together
 - Straps holding cargo inside a plane
- Examples of un-preloaded junctions
 - Untightened bolts holding a wheel to a car
 - The wheels will jiggle and wreck the bolts. Then the wheel will fall off.
 - Untightened C-clamp holding two pieces of wood together
 - One piece of wood will slip away
 - Cargo moving around the inside of a plane

Fatigue cannot be predicted with unpreloaded CubeSats

- In un-preloaded CubeSats, response changes with applied load and time
 - Very non-linear = impractical to usefully model
 - So model correlation is impractical as well
 - Non-linearities are (also) consistent with fatigue!
 - So CubeSats may have suffered a fatigue failure, but engineers can't tell...

Non-linearity # 1: The higher the loading, the lower the transmissibility

Figure 5: X axis response of CubeSat in 3U TestPOD over time (test 3-3).

Non-linearity # 2: Response is changing with time

Source: Furger, S. Development of Random Vibration Profiles for Test Deployers to Simulate the Dynamic Environment in the Poly-Picosatellite Orbital Deployer, California Polytechnic, San Luis Obispo, 2013

Summary

- Analysis can be used to predict fatigue life allowing engineers to avoid failure modes associated with fatigue and focus on predicted weaknesses
- Un-preloaded CubeSats cannot be practically analyzed for fatigue life
 - Un-preloaded (jiggling) Cubesats may be masking useful data about fatigue failure

Thank You

Questions?