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ABSTRACT 
 
 

Antiviral Activity of Favipiravir (T-705) Against Lethal Rift Valley Fever Virus Infection in 

Hamsters 

 
by 

 
 

Dionna Scharton, Master of Science 
 

Utah State University, 2014 
 
 

Major Professor: Brian B. Gowen 
Department: Animal, Dairy and Veterinary Science 
 
 

          Rift Valley Fever is a zoonotic, arthropod-borne disease that adversely affects ungulates 

and people.  The etiologic agent, Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus), is 

primarily transmitted through mosquito bites, yet can be transmitted by exposure to infectious 

aerosols.  Presently, there are no licensed vaccines or therapeutics to prevent or treat severe 

RVFV infection in humans.  We have previously reported on the activity of favipiravir (T-705) 

against the MP-12 vaccine strain of RVFV and other bunyaviruses in cell culture.  Additionally, 

efficacy has been documented in mouse and hamster models of infection with the related 

Punta Toro virus.  Here, we characterize a hamster RVFV challenge model and use it to evaluate 

the activity of favipiravir against the highly pathogenic ZH501 strain of the virus.  Subcutaneous 

RVFV challenge resulted in substantial serum and tissue viral loads and caused severe disease 

and mortality within 2-3 days after infection.  Oral favipiravir (200 mg/kg/day) prevented 

mortality in 60% or greater in hamsters challenged with RVFV when administered within 6 h 

post-exposure and reduced RVFV titers in serum and tissues relative to the time of treatment 

initiation.  In contrast, although ribavirin (75 mg/kg/day) was effective at protecting animals 
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from the peracute RVFV disease, most ultimately succumbed from a delayed-onset neurologic 

disease associated with high RVFV burden in the brain observed in moribund animals.  When 

combined, T-705 and ribavirin treatment started 24 h post-infection significantly improved 

survival outcome and reduced serum and tissue virus titers compared to monotherapy.  Our 

findings demonstrate significant post-RVFV exposure efficacy with favipiravir against both 

peracute disease and delayed-onset neuroinvasion, and suggest added benefit when combined 

with ribavirin. 

(74 pages)  
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PUBLIC ABSTRACT 

 

Efficacy of Favipiravir (T-705) Against Lethal Rift Valley Fever Virus Infection in Hamsters 

 

Dionna Scharton 

 

 Rift Valley fever (RVF) is a severe disease affecting both humans and a number of 

agriculturally important livestock species.  The causative agent, RVF virus (RVFV), is primarily 

transmitted through mosquito bites, with transmission also occurring by exposure to infectious 

aerosols and direct contact with infected body fluids such as blood.  Presently, there are no 

licensed vaccines or medicines to prevent or treat severe RVFV infection in humans.  Favipiravir 

(T-705) is a novel compound licensed for the treatment of influenza in Japan and presently in 

Phase III clinical trials in the US, which has demonstrated favorable activity against an 

attenuated strain of RVFV, as well as other related viruses in cell culture.  Additionally, it has also 

demonstrated favorable activity in mouse and hamster models based on infection with the 

closely related, less biohazardous Punta Toro virus.  Although mouse models have been used 

extensively in RVFV research and are fairly well characterized, details regarding RVFV infection 

in hamsters are lacking.  The present studies were aimed at characterizing RVFV infection in 

hamsters to gain a better understanding of the disease model compared to human disease, and 

employing the hamster infection model to evaluate T-705 as a promising broadly active antiviral 

with potential for off-label use to treat severe RVF disease.  Herein, we describe the natural 

history of disease in hamsters challenged with low infectious doses of RVFV and demonstrate 

the efficacy of T-705 in preventing mortality and reducing viral loads in infected hamsters.  Our 

results support the future use of the RVFV hamster infection model for early stage antiviral drug 

and vaccine development studies, as well as further development of T-705 using more advanced 

nonhuman primate models of disease. 
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CHAPTER 1 
 

INTRODUCTION - LITERATURE REVIEW 

RIFT VALLEY FEVER VIRUS AND FAVIPIRAVIR 
 
 

Introduction 

 Rift Valley fever (RVF) is a zoonotic infectious disease responsible for multiple epidemics 

and epizootics throughout Africa and the Arabian Peninsula.  The etiologic agent, RVF virus 

(RVFV; Bunyaviridae, Phlebovirus) is principally transmitted by mosquitoes and typically 

manifests as an acute, self-limiting febrile illness; however, infection can lead to severe disease 

characterized by hemorrhagic fever, hepatitis, retinitis, and occasionally late-onset encephalitis 

[1-3].  Case-fatality rates in hospitalized patients are estimated to be 20%.  Many ungulates are 

highly susceptible to RVFV infection.  Mortality among young animals is especially high and 

gestating animals often experience spontaneous abortions.  Outbreaks have had devastating 

effects on public and veterinary health, animal agriculture and both regional and national 

economies.  Recent RVF outbreaks affecting both humans and ruminants have occurred in 

Mauritania (2012), South Africa (2010), Madagascar (2008), Sudan (2007-2008), Kenya (2006-

2007), Somalia (2007), Tanzania (2007), Yemen (2000), and Saudi Arabia (2000) underscore the 

importance of this neglected tropical disease [4].  

 
Molecular Biology of RVFV 

 RVFV is a spherical, enveloped virus containing a negative-sense RNA genome that is 

divided into three segments: small (S), medium (M) and large (L).  The S segment encodes in an 

ambisense manner the nucleocapsid protein (N), which encapsidates the viral genome and a 

nonstructural protein, NSs, which is involved in the inhibition of the host innate-immune 

response [2,5,6].  The M segment encodes two envelope glycoproteins, Gn and Gc, and a 
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nonstructural protein, NSm; the L segment encodes an RNA-dependent RNA-polymerase (RdRp).  

Virions enter a host organism via direct contact with infected fluids/tissues or inhalation of 

aerosolized infectious particulate.  RVFV is thought to gain entry into host cells by endocytosis 

and fusion with the plasma membrane is induced by a low pH [7,8].  Transcription and 

replication occur in the cytoplasm of host cells and require both RdRp and N, while Gn and Gc 

enter the secretory system [6,9].  The envelope glycoproteins form a complex which localizes in 

steady-state to the Golgi apparatus for virion maturation [10,11].  The assembled virus 

subsequently buds into the lumen of the Golgi apparatus, gets transported to, and then fuses 

with the plasma membrane, allowing virions to be released from the cell into the extracellular 

matrix [9-11] where they can gain access to neighboring uninfected cells and begin the 

replication process once again. 

 Light microscopy, electron microscopy, quantitative real-time PCR, in vivo and ex vivo 

imaging studies of RVFV infection and replication demonstrate a large tropism for a variety of 

tissues and cell types.  Upon infection, it is presumed the virus replicates at the exposure site 

and the draining lymphatics; subsequent viremia seeds the target organs.  During this stage of 

the infection, viral replication mainly targets the liver (particularly hepatocytes), spleen, thymus, 

brain and pancreas [12-14].  Utilization of a fluorescence-activated cell sorting analysis in 

recombinant GFP-expressing RVFV-infected mice  demonstrated macrophages, dendritic cells 

and granulocytes to be the main target cells for RVFV replication [12].  Viral antigens have been 

detected in lymph node macrophages, and mononuclear phagocytic cells and dendritic cells in 

the spleen, thymus and lymph nodes of rats and mice [12-14]. 
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RVFV Transmission 

 RVF outbreaks generally follow periods of heavy rainfall and flooding, which create an 

ideal breeding environment for mosquito vectors [15-18].  The virus is typically spread by a 

variety of mosquito species, mainly those in the Aedes and Culex genera, although sandflies and 

certain midge and tick species have also been identified as vectors [16].  Various Aedes 

subspecies have been identified as the primary vector for RVFV.  Of particular note, Aedes 

mcintoshi also has the ability to transmit the virus transovarially; RVFV persists in the infected 

mosquito eggs between epizootic periods, possibly representing the viral reservoir [19].  The 

cycle continues when the infected larvae hatch during periods of heavy rainfall emerging and 

feeding on nearby animals [20].  Amplification occurs mainly with Culex and other subspecies of 

mosquitos, which feed on the newly-infected animals and propagating the infection cycle 

through feeding on naïve animals.  Other studies have demonstrated the capability of RVFV to 

be preserved in an enzootic cycle involving both Aedes and Culex mosquitos [16,18,21,22]. 

 Transmission of the virus also occurs through direct contact with infected body fluids 

and tissues, and by aerosol transmission [23-26].  Past reports have documented the 

transmission of RVFV to slaughterhouse workers, animal handlers (including veterinary 

students) and laboratory staff which have come into contact with infected specimens/samples 

[15,26]. 

 
RVFV’s Increasing Geographic Distribution 
 
 In July 1930, farmers from the Great Rift Valley in Kenya reported gestating ewes 

spontaneously aborting and high mortality in newly-born lambs which prompted investigation 

and the subsequent identification of RVFV [26].  Since its discovery, the geographic distribution 

of RVFV has spread from this endemic region to neighboring countries, including Egypt, 

Madagascar, and regions in western Africa.  The identification of RVFV in the Arabian Peninsula 
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in 2000 was the first RVFV epidemic recognized outside the continent of Africa [24,27-29].  

These severe outbreaks have involved hundreds of thousands of people and animals and have 

caused substantial economic losses, particularly within livestock production [24,27,29].   

 A recent study published the genome sequence of 33 different strains of RVFV from past 

outbreaks throughout Africa and Saudi Arabia [17].  Phylogenic analysis of these samples 

suggests the emergence of the originating strain of today’s RVFV occurred in the late 1800’s.  

Coincidentally, this was also when an agricultural shift was occurring, where indigenous 

livestock populations were becoming replaced by imported European breeds.  It is speculated 

that the imported cattle and sheep, being highly susceptible to RVFV, were instrumental in 

endemic RVFV establishment; subsequent movement of these infected animals/herds and 

mosquitoes would conceivably propagate the dissemination of the virus throughout naïve 

regions [17].  Accordingly, should the virus be introduced, widespread transmission could readily 

occur in the United States and other Western countries where the vector species are endemic 

and susceptible hosts are present [6,30,31]. 

 
Clinical Pathology of RVF 
 
 RVF epizootics are usually marked by an unexplained sudden onset of abortions in 

pregnant animals and high mortality rates in neonates following seasonal heavy rains; human 

RVF epidemics generally arise during these epizootic episodes [32-34].  Susceptibility of 

ruminant animals to RVFV infection varies greatly depending on a host of factors such as the 

viral strain and the species and age of the infected animal [2,5].  Typically, RVF manifests with 

the sudden onset of abortions (“abortion storms”) in the majority of pregnant animals within a 

herd, coupled with a high incidence of mortality in the young.  Young sheep, particularly lambs 

(≤ 1 week old), appear to be the most susceptible to RVFV infection, with incidents of mortality 

reaching 90 – 100%; mortality of adult sheep in experimental RVFV infection is approximately 
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20% [35].  Goats display similar degrees of illness and mortality to that of sheep, whereas cattle 

experience comparable clinical symptoms, but mortality rates in adult animals are much lower 

(<10%) [35].  Infected animals clinically demonstrate a biphasic febrile reaction with severe 

prostration and collapse in young animals, agalactia in milk-producing females, nasal and (in 

cattle) lachrymal discharge, lymphadenitis, hemorrhagic diarrhea, debility with jaundice and 

death in older animals [1,26,36]. 

 The clinical pathology of RVF is usually marked by leukopenia, high levels of enzymes 

associated with liver damage (i.e. alanine aminotransferase [ALT], glutamate dehydrogenase 

[GLDH]) and thrombocytopenia [26,36].  Postmortem investigation of RVFV-infected animals 

find that the liver is the primary site of pathological change where hepatic lesions progress to a 

massive necrotic hepatitis [26,36].  Extensive hemorrhaging (petechial and ecchymotic 

hemorrhages and hemorrhagic gastroenteritis), generalized lymphadenopathy and pulmonary 

edema and emphysema have been identified as postmortem indications [36]. 

 In people, the virus has an incubation period of 2-6 days, after which flu-like symptoms 

appear and typically last 2-7 days after onset of illness.  Symptoms are generally described as an 

abrupt onset of fever, chills, and lethargy with 1-3% of cases progressing to more serious forms 

of the disease including hemorrhagic syndrome, acute-onset hepatitis, delayed-onset 

encephalitis with long-term neurologic deficits, and retinal vasculitis and macular lesions that 

can result in varying degrees of blindness [32,33].  In severe cases of RVF, the fatality rate is 10-

20%, but in recent outbreaks it has climbed as high as 40% [29].   

 
RVFV Infection Animal Models 
 
 Mouse models of RVFV infection are the most widely used for antiviral research and 

pathogenesis studies due to their susceptibility, similar disease pathology to newborn lambs and 

humans, and relatively low cost [2,37,38].  Typically, mice infected with the ZH501 strain die 
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within 3 to 7 days [13,39-41].  Clinical signs become apparent within 2 to 3 days post-infection 

(p.i.) indicated by ruffled fur, hunched posture and lethargy.  Mice generally succumb from 

acute hepatitis or delayed meningoencephalitis.  Although RVFV demonstrates diverse tissue 

tropism, as evidenced by high viral loads in a variety of tissues, histologic and 

immunohistochemical (IHC) examination of these tissues reveal the liver is the principle target 

organ.  An overwhelming infection of hepatocytes results in cell damage, thereby elevating 

serum ALT and bilirubin levels, and frequently resulting in death by day 3 p.i. [2,38].  

Interestingly, mice which survive the acute hepatic phase generally succumb to a late 

developing encephalitis, similar to that seen in human RVFV infection [13].  Additional histologic 

findings include congestion and hemorrhage of the liver, brain, spleen, lymph nodes, large 

intestine and the kidneys [2]. 

 RVFV infection by both sub-cutaneous (s.c.) and aerosol routes in different strains of 

inbred rats reveals marked differences in susceptibility, disease progression and lethality.  

Following parenteral infection, Fisher 344, Buffalo, DA and Lewis strains of rats are essentially 

resistant to RVFV infection, ACI and Maax strains are moderately susceptible and Wistar-Furth 

and Brown Norway strains are highly susceptible [2,42,43].  When challenged by s.c. route, the 

Wistar-Furth and Brown Norway animals succumb to a fulminant hepatitis characterized by 

severe hepatocellular necrosis.  To a lesser extent, necrotic lesions were also detected in the 

spleen, particularly the red pulp.  Additionally, viremia and high viral loads in a variety of tissues, 

including the liver, spleen, lungs and kidneys have been reported; these pathogenic 

characteristics are similar to those reported in RVFV infected mice.  In contrast, virus was not 

detected in the liver or blood of ACI and Maax strains; these animals succumbed to encephalitis.  

Aerosol challenge demonstrated that Wistar-Furth rats were the only strain to develop and 
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succumb to acute hepatic disease, whereas the ACI and Lewis rat strains both developed fatal 

encephalitis.     

 With death occurring 2 – 3 days post-RVFV infection, golden Syrian hamsters are one of 

the most susceptible rodent species [44-46].  Despite being one of the first laboratory animals to 

be challenged with the virus [26], very little work has been done characterizing the pathogenesis 

of RVFV infection in hamsters.  Similar to mice, pathological changes to the liver involve an 

overwhelming infection of hepatocytes [37].  In a subsequent study, the hamster model was 

used to determine a minimum protective titer after passive and active immunization [44].    

Immunized animals had a high variation in antibody response, more than any other tested 

rodents.  Additionally, it was discovered that the passive administration of low titers of 

neutralizing antibodies protected animals from fulminant hepatitis, yet animals ultimately 

succumbed from delayed-onset encephalitis.  As this study was aimed towards comparison of 

active and passive immunization, further investigations towards understanding the 

pathogenesis of encephalitis was not conducted [44]. 

 The gerbil represents a distinctive RVFV infection model, typically succumbing to fatal 

encephalitis in the absence of extraneural lesions and with minimal liver involvement, in 

contrast to other rodent systems [47].  Moderately susceptible to RVFV infection, animals 

typically die within 1 to 3 weeks in an infectious dose-dependent manner.  Remarkably, animals 

also exhibited age-dependent resistance to RVFV infection, where viral replication in the brain 

occurred in 4-week-old gerbils, but not in 10-week-old gerbils.  Histologic examination of the 

brain revealed a focal necrotizing encephalitis with neuronal necrosis [47]. 

 Recently, two distinct novel non-human primate (NHP) RVFV infection models utilizing 

marmosets and African Green monkeys (AGMs) were published.  As RVFV infection in the rhesus 

macaque NHP model is not uniformly lethal and variations in susceptibility when using different 
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strains of RVFV have been reported [38,48], the marmoset and AGM were evaluated as possible 

alternatives [49,50].  Regardless of the exposure route (s.c., i.v. and i.n.), marmosets were found 

to be more susceptible to infection than the rhesus macaque, as these animals quickly 

succumbed to a lethal hepatitis, characterized by robust infection of hepatocytes.  Additionally, 

signs of viral hemorrhagic fever (VHF), neurologic impairment and possible retinitis were 

observed [49].  When both marmosets and AGMs were infected via aerosol challenge, 

marmosets were found to be more susceptible to lower doses of RVFV than AGM (3.5 x 103 PFU 

vs. 1.17 x 105 PFU, respectively).   Despite this, clinical signs of encephalitis and mortality rates 

between the two species were comparable to each other and the data suggests that both AGMs 

and marmosets would be suitable disease models for human RVFV aerosol exposure [43].  

Furthermore, the ability of marmosets to reproduce lethal hepatitis and encephalitis can serve 

as a useful model towards evaluating promising antiviral compounds and vaccines. 

 
Vaccine and Therapeutic Development 
 
 Currently, two vaccines are approved for the prophylactic immunization of livestock.  

The Smithburn vaccine is a live attenuated vaccine, and although useful in rapidly providing 

long-term immunity after a single dose, its use has led to high abortion rates and/or teratology 

in a significant number of gestating animals [51-53].  The second vaccine is a formalin 

inactivated aluminum hydroxide-adjuvant vaccine based on a low passage wild-type RVFV strain.  

This type of vaccine is costly to produce and requires multiple inoculations with regular 

boosters, but is useful during outbreaks, particularly in non-endemic areas [54,55].   

 The only RVFV vaccine currently available for human use is TSI-GSD-200.  Derived from 

the RVFV vaccine NDBR-103 to reduce inter-lot variation, TSI-GSD-200 is a formalin-inactivated 

vaccine that is available to personnel working in high infectious risk and/or endemic areas.  

Unfortunately, the vaccine is costly and difficult to produce, requires a large dose volume 
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(relative to an attenuated vaccine), three initial inoculations, a 6-month booster and continual 

annual boosters [55-57].  A promising live-attenuated vaccine, MP-12, was generated via 

mutagenesis of an RVFV strain (ZH548) isolated from the 1977 outbreak in Egypt and grown in 

MRC-5 human diploid fibroblast cells [58,59].  The MP-12 vaccine has demonstrated efficacy in 

multiple livestock studies [60-62] and, more recently, it was evaluated in Phase II clinical trials 

with favorable results with confirmatory reports still pending [55,63].   

 While vaccines are the primary defense against viral diseases [64] the need for the 

development of effective antiviral therapeutics is another essential component towards fighting 

severe viral infections [65].  The antiviral compound ribavirin is the only licensed drug that can 

be used for emergency treatment of RVFV infection.  Acting as a purine nucleoside analog, 

ribavirin is a broad spectrum antiviral for which the principle mechanism of action in vivo 

remains undetermined.  Evidence reported in previous studies indicate direct (polymerase 

inhibition, RNA capping interference and lethal mutagenesis) and indirect (inosine 

monophosphate dehydrogenase inhibition and immunomodulatory effects) mechanisms may 

both play important roles in ribavirin’s antiviral activity [66,67].  Unfortunately, due to adverse 

side effects such as dose-related hemolytic anemia and teratogenic effects, ribavirin is only 

approved for compassionate use under investigational new drug protocols for the treatment of 

RVF, several other bunyaviral hemorrhagic fevers, and hemorrhagic fever of arenaviral origin 

[68,69].  Additionally, the use of emergency ribavirin therapy as the post-exposure treatment of 

RVFV exposure has been reported to have unforeseen negative consequences.  During the Saudi 

Arabia outbreak, ribavirin was used to treat patients suffering from hemorrhagic manifestation 

associated with RVFV infection.  Despite apparent success in resolving the hemorrhagic 

symptoms, patients later succumbed to a severe late-onset of meningoencephaltic 

complications [55].  The ribavirin molecule is too large to effectively bypass the blood-brain 
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barrier (BBB), therefore the development of safer and more effective antivirals that can gain 

access to the central nervous system are needed [55]. 

 Another promising antiviral compound is favipiravir (6-flouro-3-hydroxy-2-

pyrazinecarboxamine), also called T-705, which is a pyrazine derivative that is an RdRp inhibitor 

of the influenza virus and has demonstrated potent antiviral activity against multiple RNA 

viruses [70].  Evidence suggests host cell enzymes convert T-705 into T-705-4-ribofuranosyl-5-

triphosphate (T-705RTP), the active form of the drug that selectively inhibits the viral 

polymerase without affecting host cellular DNA or RNA synthesis [71]; this specificity is what 

likely contributes to its low toxicity. 

 T-705 has demonstrated robust activity against the MP-12 vaccine strain of RVFV in cell 

culture along with several other related bunyaviruses, including: several hantaviruses, La Crosse 

virus, and Punta Toro and sandfly fever phleboviruses [40,72-74].  Punta Toro virus (PTV), a 

more accessible and less biohazardous agent (biosafety level 2; BSL-2) belonging to the same 

genus as RVFV, has been used to model severe RVFV infection in mice and hamsters [75-77].  

Initial studies evaluating the efficacy of T-705 in the PTV infection models have yielded favorable 

results, demonstrating a drastic reduction in mortality, viral loads in the tissues and sera and 

liver disease [40,74].   

 
Bioterrorism  

 RVFV is categorized as a potential biological weapon due to its transmissibility by 

aerosol, ease of propagation in cell culture systems to very high titers, and its potential to be 

modified by reverse genetics technologies into a more virulent agent which could escape 

detection and/or prevention and control measures currently in development [32,78].  In 

addition to the above, the threat RVFV poses to public health and animal agriculture and the 

current lack of prophylactic countermeasures has resulted in the virus being classified as a 
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priority Category A pathogen by the National Institute of Allergy and Infectious Diseases (NIAID) 

and an overlap “Select Agent" by the Center for Disease Control (CDC) and the United States 

Department of Agriculture (USDA) [78-81].  Because RVFV can quickly gain footholds in naïve 

populations where competent vectors are abundant, the potential for expansion into other 

continents such as North America and Europe is feasible [82,83].  The vulnerability of these 

regions could result in worldwide spread and significant outbreaks of disease, further 

emphasizing the need to develop safe and efficacious vaccine or post-exposure therapeutic.    
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CHAPTER 2 

MODEL DEVELOPMENT 
 
 
 
Introduction 

  Rift Valley fever (RVF) is a zoonotic, arthropod-borne illness that typically manifests as 

an acute febrile and hepatic disease in ungulates and humans.  RVF is of notable public health 

importance due to its severity, recurrent outbreaks and progressive geographic distribution 

[6,10,17].  The etiological agent, Rift Valley fever virus (RVFV), is a member of the Bunyaviridae 

family and the genus Phlebovirus.  The virus has a tripartite single-stranded RNA genome which 

encodes 7 proteins using an ambisense coding strategy [6,32].  It can be transmitted by a variety 

of mosquito species, but is also spread via contact with infected fluids and tissues [26]. 

 Susceptibility of livestock to RVFV infection varies greatly depending on the viral strain, 

and the species and age of the infected animal [5].  Hepatic necrosis, an increase in liver 

enzymes, and high viremia are characteristic of severe acute lethal infection in ruminants.  In 

humans, the virus has an incubation period of 2-6 days, after which flu-like clinical signs appear 

and typically last 2-7 days after onset of illness [26,32,33].  Symptoms are generally described as 

an abrupt onset of fever, chills, and lethargy with 1-3% of cases progressing to more serious 

forms of disease including hemorrhagic syndrome, acute-onset hepatitis, delayed-onset 

encephalitis with long-term neurologic deficits, and retinal vasculitis and macular lesions which 

can result in varying degrees of blindness [2].  In severe cases of RVF, the fatality rate is 10-20%, 

but in recent outbreaks it has climbed as high as 40% [29].  Currently, no FDA approved vaccines 

or antiviral therapies for the prevention or treatment of RVF exist.  Consequently, the 

development of animal models to better understand the disease is of increasing importance 

when considering the threat RVFV presents to public and animal health and the potential for 
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importation into the US or other naïve regions of the world that harbor competent mosquito 

vector populations [21,30,31]. 

 The key pathological features of RVFV infection vary widely among animal species and 

humans.  Typically, RVFV infection that results in severe disease is characterized by 

hepatocellular necrosis [26,84].  Because of the greater biohazard risk and “Select Agent” status 

of RVFV, a surrogate hamster model for RVF is based on challenge with the related Punta Toro 

virus (PTV), a BSL-2 agent, has been used for pathogenesis and antiviral studies  [3].  Although 

the hamster PTV infection model has proved useful for reproducing certain features of severe 

human and animal RVFV infections where hepatic disease is a prominent pathological feature, 

the animals fail to develop encephalitis [75,76].  Recently, a detailed characterization describing 

the pathogenesis of RVFV infection in BALB/c mice reported hepatitis and encephalitis 

consistent with severe human RVFV infection [13].  Additionally, a study using three different 

inbred strains of rats infected with RVFV by both aerosol and sub-cutaneous (s.c.) routes 

demonstrated remarkable differences in disease progression and lethality [42].  Wistar-Furth 

rats were the only strain to develop and succumb to acute hepatic disease following aerosol 

exposure.  ACI and Lewis rat strains both developed fatal encephalitis after aerosol challenge, 

but with varying degrees of susceptibility to RVFV; remarkably, Lewis rats are refractory to s.c. 

challenge [42].  These differences are consistent with the varying clinical disease presentations 

observed in humans.  Although these murine and rat RVFV models are useful systems to 

evaluate most vaccine and antiviral drug candidates, certain therapeutic platforms, particularly 

those directed at host targets, may have little to no activity in mice or rats.  For example, 

consensus IFN, an FDA-licensed recombinant protein therapeutic, was evaluated in the hamster 

PTV model because it does not cross-react with the mouse system [85,86]. 
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 Hamsters models are becoming more widely used in infectious disease research with 

greatest increase in use in the field of virology [87].  We recently evaluated a promising broad-

spectrum antiviral drug candidate and adenovirus vectored human consensus IFN in a model of 

RVFV infection in hamsters [84,88].  Limited details describing RVFV infection and disease in 

hamsters have previously been reported [37,44,45,89-91].  Here, we present linked virologic, 

liver enzyme, and pathology findings during the course of RVFV infection in golden Syrian 

hamsters challenged s.c. with the pathogenic ZH501 strain of RVFV to gain insights into the 

natural history of disease in this small animal model of RVFV. 

 
Materials and Methods 

Virus and cells 

 The molecular clone of RVFV, strain ZH501, was obtained from Dr. Stuart Nichol (CDC, 

Atlanta, GA).  The virus stock (1.1 × 108 plaque-forming units (PFU/ml); 1 passage in BSRT7 cells, 

3 passages in Vero E6 cells) used was from a clarified cell culture lysate preparation and was 

inoculated by subcutaneous (s.c.) injection (ventral, right side of abdomen).  The African green 

monkey kidney cell line, Vero 76, was purchased from the American Type Culture Collection 

(ATCC) (Manassas, VA) and maintained in minimal essential medium (MEM) supplemented with 

10% heat-inactivated fetal bovine serum (FBS) (GE Healthcare HyClone Laboratories, Logan, UT).   

 
Animals and ethics regulation 
 
 Female 90-115 g golden Syrian hamsters (The Charles River Laboratory, Willimantic, CT) 

were quarantined for 7 days prior to challenge and fed standard Harlan lab block and tap water 

ad libitum.  All animal procedures complied with USDA guidelines and were conducted at the 

AAALAC-accredited Laboratory Animal Research Center at Utah State University under protocol 

2011, approved by the Utah State University Animal Care and Use Committee. 
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Titration of RVFV in hamsters 

 To determine the most appropriate RVFV challenge dose for the natural history study, 

hamsters (n=5-6/group) were challenged by s.c. injection with a 0.2 ml inoculum containing 

varying log10 dilutions of RVFV spanning 6 orders of magnitude.  The s.c. challenge was intended 

to simulate natural mosquito-borne transmission.  The animals were observed 15 days for 

morbidity and mortality, and weighed every 3 days starting on the day of challenge.   

 
Natural history of RVFV infection in hamsters 

 Based on the titration study, challenge doses of 10 PFU or 1 PFU were selected to 

evaluate the progression and tissue tropism of RVFV infection.  Hamsters (n=4-6/group) were 

selected for sacrifice on days 1 through 4 post s.c. challenge with RVFV.  Various tissue samples 

were collected (pancreas, spleen, liver, lung, brain, large intestine, kidney, adrenal gland, and 

eye) for virus titer determination, histopathology and immunohistochemistry (IHC) analysis, as 

described below.  Whole blood was collected for clinical chemistry analysis, and serum was 

assayed for viral load and kinetic alanine aminotransferase (ALT) levels. 

 
Virus titer determination 
 
 Virus titers were assayed using an infectious cell culture assay.  Tissue samples were 

homogenized in a fixed volume of MEM and the homogenate and serum were serially diluted 

and added to quadruplicate wells of Vero cell monolayers in 96-well microplates.  The viral 

cytopathic effect (CPE) was determined 3-4 days post-plating, and the 50% endpoints were 

calculated as described [92].  The lower limit of detection for serum samples was 1.75 log10 

CCID50/ml and the lower limit of detection for tissues was generally in the range of 2-3 log10 

CCID50/g. 
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Kinetic serum alanine aminotransferase (ALT) determinations 
 
 Detection of ALT in serum is an indirect method for evaluating liver dysfunction.  Serum 

ALT concentrations were measured using the ALT (SGPT) Reagent Set purchased from Pointe 

Scientific, Inc. (Lincoln Park, MI) per the manufacturer’s recommendations.  The reagent 

volumes were adjusted for analysis on 96-well microplates. 

 
Histopathology 

 Tissue samples of the pancreas, spleen, liver, lung, kidney, adrenal gland, large intestine, 

brain and eye were obtained at prescribed necropsy times and preserved for 3 weeks in 10% 

neutral buffered formalin.  The samples were subsequently sent to the Utah Veterinary 

Diagnostic Laboratory (Logan, UT) for blinded histopathology examination and analysis by a 

board certified veterinary pathologist. 

 
Immunohistochemical staining  

 Based on viral burden in the tissues and histopathology review, replicate tissue sections 

from a representative animal per sacrifice group were selected for immunohistochemical (IHC) 

staining.  The sections were deparaffinized and rehydrated by standard histological procedures 

with xylene-ethanol, descending grades of alcohol, and distilled water.  Briefly, sections were 

immersed in DakoCytomation Target Retrieval Solution (Dako Corp., Carpinteria, CA), boiled at 

125°C for 4 minutes in a decloaking chamber (Biocare Medical, Concord, CA), permeabilized with 

0.5% X-100 in PBS, and exposed to a peroxide block using 3% hydrogen peroxide.  Slides were 

then incubated in 10% normal goat serum (NGS) and 0.2% Triton X-100 in PBS for 1 hour, and 

subsequently incubated with a mouse anti-RVFV Ab (1:1000; RVF MP-12 mouse hyperimmune 

ascites fluid provided by Dr. Robert Tesh, World Reference Center for Emerging Viruses and 

Arboviruses, University of Texas Medical Branch, Galveston, TX) for 24 hours at room 
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temperature.  Secondary antibody using goat anti-mouse horseradish peroxidase (1:200; Sigma-

Aldrich, St. Louis, MO) was applied to the slides for 1 hour, then incubated for 15 minutes using 

Immpact™ NovaRed substrate (Vector Laboratories, Burlingame, CA),  and counterstained with 

hematoxylin QS nuclear counterstain (Vector Laboratories).  Lastly, sections were dehydrated in 

ascending grades of alcohol, passed in xylene and permanently mounted with non-aqueous 

mounting medium VectaMount (Vector Laboratories).  The stained slides were sent to the Utah 

Veterinary Diagnostic Laboratory for IHC/histopathology examination and analysis by a board 

certified veterinary pathologist. 

 
Results 

Susceptibility of hamsters to RVFV 

 The initial titration of the ZH501 strain of RVFV in golden Syrian hamsters revealed a 

rapid disease progression which was predominately lethal.  Clinical signs of illness including 

lethargy, ruffled fur, and hunched posture were observed in many of the animals by day 2 post-

infection (p.i.).  The virus was uniformly lethal within 2-3 days following s.c. route inoculation at 

doses of 10 PFU or greater (Figure 1A).  Only animals that received the lowest infectious dose of 

approximately 1 PFU (based on plaque titration in Vero 76 cells) survived the challenge.  

Although none of these animals succumbed to infection, the slow weight gain at the onset of 

the experiment, followed by the marked increase in weight beginning day 6 p.i. suggests that 

the animals were likely exhibiting some degree of illness (Figure 1B). 

 
Characterization of RVFV disease progression 

 Based on the titration experiment demonstrating high susceptibility of hamsters to s.c. 

RVFV infection, we next challenged animals with either 10 or 1 PFU of RVFV to assess the natural 
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Figure 1.  RVFV challenge of golden Syrian hamsters is rapidly lethal.  Groups of 5-6 hamsters 
were infected s.c. with 0.2 ml of viral inoculum containing the indicated PFU of RVFV.  Mortality 
was monitored over a 15-day period.  A) Percent survival and B) mean % change in weight of 
surviving animals relative to respective day 0 weights measured every 3rd day are shown. 
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history of disease.  Subsets of animals were sacrificed on day’s 1 - 4 p.i., to examine the 

development of viremia, tissue titers, ALT, and histopathology in a temporal fashion.  Because 

all animals receiving 10 PFU in the titration study succumbed by day 3 p.i., this portion of the 

study was designed to have only a day 1 and 2 sacrifice.   For the animals challenged with 1 PFU, 

several animals scheduled for sacrifice on day 3 (3 of 6 hamsters) and 4 (2 of 6 hamsters) 

succumbed prior to the time of sacrifice.  The threshold for lethality appears to be very close to 

1 PFU, and thus the lack of mortality with the 1 PFU challenge in the titration study is likely due 

to experimental variability in the preparation of the challenge stock. 

 In the 10 PFU challenge group, serum ALT was not elevated until day 2 p.i., 

demonstrated by a high level in one hamster, and slightly elevated concentrations in two others 

(Figure 2A).  In one animal, low level viremia and liver virus was detected as early as day 1 p.i. 

(Figure 2B, C).  In the day 2 p.i. cohort of animals two hamsters had virus in all tissues examined, 

with low-level or undetectable virus burden in the other two animals (Figure 2B-K).   

 When the RVFV challenge dose was reduced to 1 PFU, ALT concentration was 

dramatically elevated on day 3 (>2300 IU/L) in the only surviving hamster which also had 

significant liver virus titers (Figure 3A and C, half-filled triangle).  Despite substantial viral loads 

in the livers of 3 of the 4 animals in the day 4 group, ALT levels were not significantly elevated.  

Little to no virus was detected in the serum 24 h after challenge and only one of four hamsters 

had viremia in the 48 h cohort (Figure 3B).  By day 3 p.i., 2 of 3 surviving animals had measurable 

virus, and on day 4 p.i., 3 of 4 hamsters had remarkable viremia.  In general, the day 3 and day 4 

animals with high viremias had substantial viral loads in all tissues examined; the highest levels 

of virus were found in the liver, spleen, lung, kidney and adrenal gland (between 8.5-9.4 log10 

CCID50/g), and significant amounts were detected in the brain, pancreas, large intestine and the   
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Figure 2.  Temporal analysis of ALT levels and virus titers in hamsters challenged s.c. with 10 
PFU of RVFV.  Groups of 4 animals were sacrificed on the specified days post-infection for 
analysis of A) serum ALT concentration, and B) serum, C) liver, D) spleen, E) brain, F) lung, G) 
kidney, H) adrenal gland, I) pancreas, J) large intestine, and K) eye virus titers.  Unique symbols 
represent values for the same animal across all parameters assessed and the gray dotted lines 
represents the limits of detection for each tissue or serum.  DPI, day post-infection.  
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Figure 3.  Temporal analysis of ALT levels and virus titers in hamsters challenged with 1 PFU of 
RVFV.  Groups of 3-4 animals were sacrificed on the specified days post-infection for analysis of 
A) serum ALT concentration, and B) serum, C) liver, D) spleen, E) brain, F) lung, G) kidney, H) 
adrenal gland, I) pancreas, J) large intestine, and K) eye virus titers.  Several hamsters 
succumbed prior to their designated time of sacrifice (3 in the day 3 sacrifice group and 2 in the 
day 4 group) and thus were not included in the analysis.  The limits of detection are indicated by 
the grey dotted lines.  Unique symbols represent values for the same animal across all 
parameters assessed.  DPI, day post-infection  
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eye (between 5.9-7.9 log10 CCID50/g) (Figure 3C-K).  Due to the expiration of several hamsters 

prior to their designated time of sacrifice, it is important to note that data from these animals 

with the most severe disease are not represented in the day 3 and 4 data. 

 
 Histopathology and IHC analysis 

 Histopathology and subsequent IHC analysis was performed on all collected tissues, as 

described above.  Histologic examination of tissues from animals challenged with10 or 1 PFU 

identified the liver as the primary target organ of infection.  Overall, the main histologic lesion of 

the liver was randomly distributed multifocal acute hepatocellular necrosis with frequent 

eosinophilic intranuclear inclusions (Cowdry type A) bodies in hepatocytes surrounding the 

areas of necrosis during the acute infection (Figure 4D), which become apparent by day 2 and 3 

p.i. for the 10 and 1 PFU challenged animals, respectively. 

 In general, the spleens of hamsters from both 1 and 10 PFU challenge groups exhibited a 

mild increase in lymphocyte area, and cellularity of the periarteriolar lymphoid sheath and 

lymphoid follicle.  Erythrocyte depletion of the splenic red pulp, possibly due to splenic 

contraction, was detected in 2 of 4 animals in the 10 PFU group at day 1 p.i, with one animal 

also having white pulp (lymphoid) depletion (Figure 4E).  In the day 2 p.i. 10 PFU sacrifice group, 

3 of 4 animals began to exhibit multifocal hepatocellular necrosis; one animal also had 

discernable erythroid and lymphoid depletion (Figure 4F).  Comparatively, erythroid or lymphoid 

depletion was not observed in the 1 PFU challenge group until day 3 p.i. in 1 of the 3 surviving 

animals (Figure 4F).  Additionally, a significant amount of cell debris in the red pulp was 

observed, suggesting necrosis or apoptosis of lymphocytes and/or other circulating cells 

migrating through the splenic parenchyma.  Of the hamsters sacrificed on day 4 p.i. only one 

animal had detectable white pulp depletion (data not shown).  Little to no significant 
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microscopic lesions was observed in pancreas, lung, brain, large intestine, kidney, adrenal gland, 

or eye tissues. 

 Successive IHC staining and analysis of the collected tissues generally demonstrated 

increased immunoreactivity in the livers with the most severe lesions.  No immunoreactivity was 

observed in any of the animals challenged with 10 PFU at day 1 p.i., but by day 2 p.i. 

approximately 30-40% of hepatocytes examined showed diffuse to multifocal and mild to strong 

cytoplasmic staining for RVFV antigen (Figure 5B); positive hepatocytes are in small groups or 

randomly distributed individual hepatocytes.  The 1 PFU challenge group did not display any 

immunoreactivity until day 3 p.i., when IHC staining revealed most hepatocytes (approximately 

90%) in the liver sections having strong, diffuse, cytoplasmic immunoreactivity for RVFV antigen 

(Figure 5C).    Occasional multifocal RVFV positive cells were present in the sinusoids and were 

interpreted as likely infected Kupffer cells (data not shown).  On day 4 p.i. approximately 40-50% 

of hepatocytes exhibited a multifocal to diffuse, and mild to strong, cytoplasmic 

immunoreactivity for RVFV antigen (Figure 5D); positive hepatocytes are in larger areas/groups 

of hepatocytes.  The hepatocytes surrounding the areas of hepatocellular necrosis were positive 

for RVFV, but only rare cell debris was positive for viral antigen in the areas of necrosis (Figure 

5D).  Inclusion bodies in the nuclei of hepatocytes, endothelial cell lining blood vessels and 

sinusoids, and biliary cells were not immunoreactive.  As observed with the 10 PFU animals, no 

staining for RVFV antigen was observed in the spleen, brain, kidneys, lung, pancreas, adrenal 

gland, intestine, blood vessels, or eye in the hamsters challenged with 1 PFU. 

 
Discussion 

 Although previous studies have examined the susceptibility of hamsters to lethal RVFV 

infection [37,44,45,89-91], a more detailed description of the natural history is lacking.  Here, 
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Figure 4.  Histological findings in livers and spleens from RVFV-infected hamsters.  A) Hamster 
liver section from sham-infected control animal showing normal liver histology, 400X, bar = 50 
µm. B) Hamster spleen from sham-infected control showing normal red pulp, 200X, bar = 100 
µm and C) white pulp, 400X, bar = 50 µm. D) 1 PFU, day 3 p.i. hamster liver (Figure 3, half-filled 
triangle) showing acute hepatocellular necrosis and eosinophilic nuclear inclusions (arrows) in 
hepatocytes surrounding the area of necrosis, 600X, bar = 30 µm.  E) 10 PFU, day 2 p.i. hamster 
spleen (Figure 2, open triangle) displaying diffuse erythroid depletion of the red pulp and 
lymphoid depletion of the white pulp, 200X, bar = 100 µm. F) 1 PFU, day 3 p.i. hamster spleen 
(Figure 3, half-filled triangle) displaying diffuse lymphoid depletion of the white pulp. 
Heterochromatic cell fragments, indicative of apoptotic bodies and tingible body macrophages 
with cytoplasmic phagocytized apoptotic debris are scattered in the periarteriolar lymphoid 
sheath.  400X, bar = 50 µm.  Hematoxylin and Eosin stain. 
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Figure 5.  Immunohistochemistry analysis of liver tissues from RVFV-infected hamsters 
demonstrates presence of viral antigen.   A) Hamster liver section from sham-infected control 
animal, 400X, bar = 50 µm.  B) 10 PFU, day 2 p.i. hamster liver (Figure 2, open circle) with 30-
40% of hepatocytes exhibiting immunoreactivity for RVFV antigen, 20X, bar = 100 µm.  C) 1 PFU, 
day 3 p.i. hamster liver (Figure 3, half-filled triangle) with hepatocytes showing strong diffuse 
cytoplasmic immunoreactivity for RVFV antigen, 400X, bar= 50µm.  D) 1 PFU, day 4 p.i. hamster 
liver (Figure 3, open upside-down triangle) with hepatocytes positive for RVFV antigen, 400X, 
bar = 50 µm.  NovaRed stain with hematoxylin QS counterstain.  
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Table 1.  Comparison of RVFV animal models to the Syrian hamster model.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Strain dependent 
b Elevated body temperature prior to death 
c Ribavirin-treated animals  
d Aerosol challenge 
ND, not determined; NEI, not enough information. NEI. 
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we have characterized a model of s.c. RVFV infection in hamsters based on challenge with the 

ZH501 strain of the virus and discuss our findings in terms of other rodent RVFV models and 

severe cases of disease in humans.  Consistent with earlier studies reporting a high degree of 

susceptibility, hamsters succumbed to a 10 PFU challenge with the ZH501 strain of RVFV within 

2 to 3 days.  By comparison, C57BL/6J mice challenged with 100× more PFU of the same virus 

stock succumbed in 3 to 6 days [39], underscoring the heightened sensitivity of hamsters to 

acute RVFV-induced disease. 

 As described by Smith and colleagues [13],  we found that a wide variety of tissues 

supported RVFV infection in hamsters.  Moreover, previous hamster studies utilizing RVFV 

describe viremia and elevated viral loads in liver, brain, and spleen tissues similar to our findings 

[37,45,91].  Based on our viral titer, serum ALT, histopathology, and IHC data, the liver was 

clearly the primary target for RVFV infection.  The severe hepatocellular necrosis seen early 

during infection and the intense IHC staining of affected hepatocytes suggests that the hamsters 

were likely succumbing from fulminant hepatitis.  This is in contrast to the age-dependent gerbil 

RVFV infection model where liver involvement is minimal and encephalitis is believed to be the 

cause of death [47].  Marked elevation of serum ALT levels indicative of liver dysfunction was 

observed in several hamsters in the 10 PFU challenge group that had substantial liver viral titers.  

In contrast, despite considerably high viral loads on day 4 in the livers of most of the hamsters 

challenged with 1 PFU, the ALT levels were not elevated.  We suspect that delayed seeding of 

the liver may have resulted in slower replication of RVFV in the low-dose (1 PFU) challenge 

group, thereby affecting the kinetics of hepatocellular damage and subsequent release of ALT 

into the circulation.  In mouse RVFV infection models, substantial liver viral titers have been 

observed as early as day 2 p.i., yet increases in serum ALT levels lag behind by approximately 1 

day [13,39,41].  
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 Although infectious RVFV was present in many tissues, histopathology was restricted 

primarily to the liver and, to a lesser extent, the spleen.  The mild increase in lymphocyte area 

and cellularity of the periarteriolar lymphoid sheath and lymphoid follicle of the spleen, in 

conjunction with the observed red and white pulp depletion, is similar to the pathology 

documented in the PTV hamster infection model wherein splenic necrosis involving both the red 

pulp and the lymphoid zone [76].  In contrast, PTV-infected C57BL/6 mice present with lesions 

that are more prominent in the white pulp [77].  RVFV infection in BALB/c mice displayed 

depletion of red pulp and lymphocyte apoptosis [13].  Although apoptotic bodies were visually 

identified, we did not perform a TUNEL assay or electron microscopy to confirm cellular 

apoptosis of the splenic white pulp.   

 The lack of RVFV antigen staining in tissues which contain high infectious viral loads and 

limited cellular damage, as observed in the spleen, could be due to a delay in the accumulation 

of detectable levels of antigen which may have reduced immunoreactivity due to masking by 

prolonged exposure to the formalin preservative.  In the study by Smith et al., infectious RVFV 

was detected in the brain as early as day 3 p.i. yet antigen was not detected until day 6 p.i. and 

histological changes in the brain were not pronounced until day 8 p.i. [13].  A different study 

investigating chemotactic and inflammatory responses in mice reported that despite moderate 

amounts of necrotic debris observed in the spleen, viral antigen was not detectable in 20% of 

RVFV infected mice, and only very low level staining was observed in a small percentage of cells 

in the remaining 80% of the animals [41].  Additionally, in the related hamster PTV infection 

model, despite marked splenic necrosis, viral antigen was not detected [76]. 

 Due to the inherent challenges of collecting samples from lethal cases of RVFV infection 

in remote regions of Africa and neighboring regions where the virus is endemic and medical 

infrastructure is often lacking, detailed description of RVF is limited.  The development of non-
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human primates (NHP) models of RVFV infection has facilitated investigations into the 

pathogenesis of the disease and the evaluation of potential antiviral therapies [3].  During 

severe infections in rhesus macaques, hemolytic anemia, extensive liver necrosis and possible 

disseminated intravascular coagulation (DIC) have been reported [49,50,93].  Despite limited 

histologic and IHC data, viremia, elevated serum ALT levels, and increased viral titers in the livers 

and spleens of fatally infected monkeys are consistent with our findings in RVFV-infected 

hamsters.  Although both species develop significant lesions in the liver following RVFV 

challenge, the macaques exhibit a coagulative necrosis with cellular infiltrates not specifically 

observed in the hamster infection model [94].  Spleens from RVFV-infected rhesus macaque 

contained deposits of eosinophilic fibrin-like material in the red pulp of the spleen and a mild 

depletion of lymphocytes in the white pulp, similar to human infection, and our findings in 

hamsters infected with RVFV [93]. 

 Although NHP models are considered the gold-standard when modeling RVF, they are 

cost-prohibitive and require special handling facilities.  Thus, rodent models are better suited for 

initial stages of antiviral drug and vaccine development.  Unlike NHP models, challenge of 

commonly used rodent species produces peracute disease and uniform lethality.  The high 

mortality is favorable for antiviral and vaccine efficacy studies, but the often sublethal infection 

in NHPs is more representative of human infection wherein only a small percentage of those 

exposed progress to severe disease [10,95-97].  Table 1 provides a comparison of the principal 

RVFV infection animal models in terms of general aspects one may want to consider to assist in 

selecting the most appropriate model for their research needs.  These are only generalized 

guidelines as many factors such as the route of infection, dose and strain of challenge virus, and 

the age and strain of the animal species can affect the outcome of RVFV infection and 

associated disease.  
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 In summary, RVFV infection of hamsters most closely resembles the disease observed in 

mice, but with a more accelerated progression.  Although rapid lethality makes for an 

abbreviated therapeutic window and translation to the human condition difficult, the uniform 

lethality via low-dose inoculation with an acute, fulminant hepatic disease makes the hamster 

RVFV infection model a cost-effective system for evaluating experimental vaccines and antivirals 

to demonstrate initial proof-of-concept.  More specifically, the hamster model is most useful for 

the evaluation of host-targeted interventions that are not active in the mouse, but do cross-

react with the orthologous target in hamsters [88].  In addition, the ability to reliably produce a 

delayed neurologic disease when treating RVFV infection with ribavirin may prove useful for 

future studies investigating the role of ribavirin in late-onset neuroinvasion and associated 

encephalitis and the evaluation of potential neuroprotective countermeasures [84].  Infection by 

low volume intranasal or aerosol exposure should be evaluated to determine whether 

neurologic disease is favored under such exposure conditions, as has been demonstrated in 

mice [98].  This challenge route is highly relevant in terms of biodefense, as it would mimic 

respiratory route exposure that could occur through intentional release, and would likely 

produce a slower-progressing disease model.  
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CHAPTER 3 

FAVIPIRAVIR (T-705) EVALUATION STUDIES 
 
 
Introduction 

 Favipiravir (T-705; 6-flouro-3-hydroxy-2-pyrazinecarboxamine) is a promising pyrazine 

derivative that has demonstrated potent antiviral activity against multiple RNA viruses [70].  

Intracellular host enzymes act upon T-705 converting it to its active form, T-705-4-ribofuranosyl-

5-triphosphate (T-705RTP) [71].  T-705RTP functions as a purine nucleotide analog that 

selectively inhibits RNA-dependent RNA polymerase (RdRp) of the influenza virus [99-101].  T-

705 has demonstrated a 150-fold weaker inhibition of inosine monophosphate dehydrogenase 

than ribavirin, and unlike ribavirin it does not interfere with DNA or RNA synthesis.  The 

specificity of T-705 likely contributes to its low toxicity.  Recently, the compound has received 

approval as an influenza inhibitor in Japan (”AVIGAN®Tablet 200 mg”) and is presently in clinical 

development in the United States (Phase 3 clinical trial). 

 T-705 has demonstrated robust activity against the MP-12 vaccine strain of RVFV in cell 

culture [40,74].  Additionally, the antiviral activity of T-705 in vitro against several other related 

bunyaviruses (several hantaviruses, La Crosse virus, and Punta Toro and sandfly fever 

phleboviruses) have been reported [40,72,73].  Punta Toro virus (PTV), a more accessible and 

less biohazardous agent (biosafety level 2; BSL-2) belonging to the same genus as RVFV, has 

been used to model severe RVFV infection in different animal models [75-77].  Consequently, 

initial studies evaluated the efficacy of T-705 in PTV infection models [40,74].  Based on 

promising results demonstrating T-705 inhibition of PTV infection in established rodent models 

and in vitro activity of the compound against the MP-12 strain of RVFV, we next investigated the 

efficacy of T-705 against our newly established s.c. ZH501 RVFV infection model in golden Syrian 

hamsters. 
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Materials and Methods 

Virus and cells 

 RVFV, strain ZH501, was obtained from Dr. Stuart Nichol (CDC, Atlanta, GA).  The virus 

stock (1 passage in BSRT7 cells and 3 passages in Vero E6 cells) was derived from a clarified cell 

culture lysate and titrated to be at a concentration of 1.1 × 108 plaque-forming units (PFU)/ml.  

The African green monkey kidney cell line, Vero 76, was purchased from the American Type 

Culture Collection (ATCC) (Manassas, VA) and maintained in minimal essential medium (MEM) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific 

HyClone, Logan, UT).  For in vitro antiviral assays, the serum was reduced to 2% FBS and 

gentamicin (Sigma-Aldrich, St. Louis, MO) was added to the medium to a final concentration of 

50 µg/ml. 

 
Compounds 

 T-705 was provided by the Toyama Chemical Company, Ltd. (Toyama, Japan).  Ribavirin 

was from ICN Pharmaceuticals, Inc. (Costa Mesa, CA).  For in vivo studies, both compounds were 

suspended in 0.4% carboxymethylcellulose (CMC) (Sigma-Aldrich, St. Louis, MO) prior to 

administration.  For cell culture testing, T-705 and ribavirin were dissolved in MEM containing 

50 µg/mL gentamicin. 

 
In vitro antiviral testing 

 RVFV was titrated on Vero 76 cells (~80% confluent) plated in 96-well microplates in 

culture medium containing 2% FBS to a cell culture infectious dose (CCID) that produced 

maximal cytopathic effects (CPE) in 3 days.  Half-log dilutions of T-705 and ribavirin were added 

in triplicate to test wells at the time of infection with the highest test compound concentration 

of 1000 µM.  For toxicity determinations, drugs were added in the prior to virus challenge.  
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Plates were incubated at 37°C and 5% CO2 until virus-infected control wells were observed to 

have > 90% CPE (day 3).  The neutral red (NR) assay was performed using a modified method of 

Cavanaugh et al. [102] as described [103].  Briefly, the supernatants were removed for virus 

yield reduction (VYR) assays and infected cells and controls were subsequently stained with 

0.011% NR solution for 2 h at 37°C and 5% CO2.  After incubation, the NR solution was removed, 

the wells were rinsed with phosphate-buffered saline (PBS), and the incorporated dye extracted 

using ethanol buffered with Sorenson’s citrate.  The plates were read at 405 (primary) and 540 

(reference) nanometer wavelengths using a Opsys MRTM microplate reader (Dynex Technologies, 

Chantilly, VA) to quantitate the extracted NR.  The absorbance values were expressed as 

percentages of untreated, uninfected controls, which took up maximal dye.  The values obtained 

were converted to percentages of untreated, uninfected controls.  The 50% cell cytotoxic dose 

(CC50) and 50% effective concentration (EC50), representing the concentration at which 50% of 

the monolayers would show compound cytotoxicity or viral CPE, respectively, were estimated by 

regression analysis.  The selectivity index (SI) was calculated using the formula: SI = CC50/EC50.  

For the VYR assays, viral titers were determined by endpoint dilution [92].  The VYR data are 

presented as the concentration of drug that reduced the virus yield by 1 log10 unit (EC90) based 

on linear regression analysis, with SI values determined as the CC50/EC90. 

 
Animals and ethics regulation 

 Female 90-115 g golden Syrian hamsters (The Charles River Laboratory, Willimantic, CT) 

were quarantined for 7 days prior to challenge and fed standard Harlan lab block and tap water 

ad libitum.  All animal procedures complied with USDA guidelines and were conducted at the 

AAALAC-accredited Laboratory Animal Research Center at Utah State University under protocol 

1502, approved by the Utah State University Animal Care and Use Committee. 
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T-705 Dosing optimization for RVFV treatment 

 To determine the most appropriate dose for subsequent efficacy studies, hamsters 

(n=15/group) were challenged by subcutaneous (s.c.) injection (ventral, right side of the 

abdomen) with a 0.1 ml inoculum containing 30 PFU of RVFV and varying doses of oral (p.o.) T-

705 were evaluated for efficacy.  Treatments, including 75 mg/kg/day of ribavirin (positive 

control) or 0.4% CMC placebo, were initiated 1 h post-infection (hpi) and administered twice 

daily for 10 days.  Five animals from each treatment group were designated for sacrifice on day 

3 of infection for analysis of serum, liver and spleen viral titers.  The remaining animals were 

observed 28 days for morbidity and mortality.  Sham-infected normal animals were included as 

baseline controls for morbidity and mortality (n=3), and virus titer assays (n=3).  Serum, brain, 

liver and spleen samples were collected from two moribund animals with late-onset encephalitic 

disease for viral titer determination and histopathology.  

 
Extended post RVFV exposure T-705 efficacy study 

 Since hamsters begin to succumb to s.c. RVFV challenge within 48 h, we performed a 

follow-up experiment wherein treatments with the effective dose of T-705 were initiated 1, 6, 

and 24 hpi.  Hamsters (n=14 each for treatment and placebo groups) challenged with 30 PFU of 

RVFV were dosed orally, twice daily for 14 days, with T-705 (200 mg/kg/day), ribavirin (75 

mg/kg/day), or placebo starting 1, 6 or 24 hpi.  Four animals from each treatment group were 

sacrificed on day 2 of infection for analysis of viral titers.  The remaining animals were observed 

28 days for morbidity and mortality.  Sham-infected normal animals were included as baseline 

controls for survival (n=3) and virus titers (n=3).  As done in the first study, serum, brain, liver 

and spleen samples were collected from several moribund animals with late-onset encephalitic 

disease for viral titer determination and histopathology. 
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Combined post-exposure treatment of RVFV Infection with T-705 and ribavirin 

 The combined antiviral effects of T-705 and ribavirin were evaluated based on 

differences in their protective effects observed in the monotherapy studies.  Hamsters (n=14 for 

treatment groups, n=24 for placebo group) were challenged s.c. with 30 PFU of RVFV and T-705, 

ribavirin and placebo were dosed separately or in combination, as described in Table 1, starting 

24 hpi.  Four animals from each treatment group were sacrificed on day 2 of infection for 

analysis of viral titers.  The remaining animals were observed 28 days for morbidity and 

mortality.  Sham-infected controls were included for comparison. 

 
Serum, liver, spleen and brain virus titers 

 Virus titers were assayed using an infectious cell culture assay as previously described 

[39].  Briefly, a specific volume of tissue homogenate or serum was serially diluted and added to 

triplicate wells of Vero 76 cell monolayers in 96-well microtiter plates.  The viral CPE was 

determined 7 days after plating and the 50% endpoints were calculated as described [92].  The 

lower limits of detection for virus titers were 1.49 log10 CCID50/ml serum and 1.97 log10 CCID50/g 

of tissue, respectively. 

 
Histopathology   

 Several moribund animals were discovered between days 7-14 of the dose optimization 

and post-exposure T-705 efficacy study.  These animals were sacrificed for determination of 

serum, liver, spleen and brain virus titers.  In parallel, sections from these tissues preserved in 

10% neutral buffered formalin were sent to the Utah Veterinary Diagnostic Laboratory (Logan, 

UT) for blinded histopathology examination and analysis by a board certified veterinary 

pathologist. 

 



36 
 

Immunohistochemical staining 

 Based on viral burden in the tissues and histopathology review, replicate tissue sections 

from euthanized moribund animals were processed for immunohistochemical (IHC) staining, as 

described previously (Chapter 2, Materials and Methods).   

 
Statistical analysis   

 The Mantel-Cox log-rank test was used for analysis of Kaplan-Meier survival curves.  A 

one-way analysis of variance (ANOVA) with a Newman-Keuls posttest was performed to 

compare differences in viral loads.  All statistical evaluations were done using Prism (GraphPad 

Software, La Jolla, CA). 

 
Results 

In vitro antiviral activity of T-705 against the ZH501 strain of RVFV  

 The antiviral activity of T-705 was first evaluated in cell culture against the highly 

virulent ZH501 strain of RVFV, and ribavirin was included as a positive control for comparison.  

The CC50 was >1000 µM for both compounds.  The inhibitory activity (EC50) against RVFV was 31 

µM ± 18 for T-705 and 53 µM ± 22 for ribavirin by NR CPE reduction assay, with SI values of >32 

and >19, respectively.  The antiviral activity of T-705 was confirmed by measuring reduction in 

virus yield (Figure 6) by endpoint titration of the day 3 post-infection culture supernatants.  The 

EC90 of T-705 was 11 ± 27 µM and ribavirin’s was 12 ± 9 µM (SI >91 and >83, respectively), 

consistent with the activity detected by the NR uptake assay.  The data is consistent with the 

previously observed T-705 activity against the MP-12 strain of RVFV [40,74].  
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Figure 6.  In vitro activity of T-705 against the ZH501 strain of RVFV.  Vero 76 cell cultures were  
infected with RVFV, treated with various concentrations of T-705 or ribavirin, and A) the 
inhibition of viral replication was determined by endpoint titration of the culture supernatants.  
B) Cytotoxicity of the compounds was determined by neutral red dye uptake to measure cell 
viability in cultures of uninfected cells treated in parallel.  Cytotoxicity data represent the 
percent cell viability after a 3-day incubation compared to untreated controls.  The data are 
representative of 3 independent experiments and reflect the mean and standard deviations 
from triplicate samples.  

0
1
2
3
4
5
6
7
8

100101 10000.1
Concentration (μM)

Vi
ru

s 
tit

er
(lo

g 1
0 C

C
ID

50
/m

l)
Ribavirin
T-705

A

0
20
40
60
80

100
120
140

100101 10000.1
Concentration (μM)

C
el

l v
ia

bi
lit

y
(%

 o
f c

on
tr

ol
)

B

T-705
Ribavirin



38 
 

In vivo dose optimization of T-705 

 We next evaluated the antiviral activity of T-705 in hamsters challenged with the ZH501 

strain of RVFV.  In the initial study, we assessed oral treatments of 200, 60, and 20 mg/kg/day of 

T-705 administered starting 1 h post s.c. RVFV infection, dosing twice-daily for a duration of 10 

days.  Ribavirin, previously shown to have activity against RVFV infection [104], was included for 

comparison.  As shown in Figure 7A, treatment with 200 mg/kg/day T-705 was the most 

efficacious regimen, protecting 80% of the challenged animals from mortality.  This dose of T-

705 was significantly better than the ribavirin treatment (75 mg/kg/day), which only resulted in 

20% survival.  All the animals in the placebo and 20 mg/kg/day T-705 treatment groups 

succumbed to infection by day 3.  A slight protective effect was observed at a dose of 60 

mg/kg/day of T-705, with 20% survival and a slight delay in the mean day of death by 

approximately 1 day. 

 The effect of drug treatments on reducing viral titers was evaluated on day 3 in 

hamsters infected and treated in parallel to those observed for mortality.  Due to the peracute 

lethality of the RVFV challenge in hamsters, one animal in the 60 mg/kg/day T-705 group, and all 

animals in the low-dose T-705 and placebo-treated groups, expired prior to the time of sacrifice.  

Viral titers in the sera, livers, and spleens of hamsters treated with 200 mg/kg/day T-705 were 

significantly reduced when compared to titers in hamsters treated with 60 mg/kg/day T-705 (P < 

0.05) (Figure 7B-D).  Ribavirin had a similar effect on viral titers as the 200 mg/kg/day T-705 

treatment.  Although no virus was detected in the spleens of any RVFV-challenged hamsters 

treated with ribavirin, the difference was not significant compared to the high-dose T-705 group 

(Figure 7D).  
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Figure 7.  T-705 post-RVFV exposure treatment protects hamsters from lethal disease.  
Hamsters challenged s.c. with 30 PFU of RVFV-ZH501 received the indicated doses of T-705, 
ribavirin, or placebo (p.o., twice daily) beginning 1 h post-infection.  A) Survival outcome and day 
3 B) serum, C) liver, and D) spleen virus titers from animals infected and treated in parallel are 
shown.  All animals from the 20 mg/kg/day T-705 and placebo treatment groups, and one 
hamster from the 60 mg/kg/day T-705 treatment group, succumbed prior to sacrifice.  Unique 
symbols in each treatment group represent values for the same animal in B-D.  For percent 
survival, **P < 0.01 and ***P < 0.001 compared to placebo; bP < 0.01 compared to animals 
treated with ribavirin.  For viral titers, *P < 0.05 and **P < 0.01 compared to animals treated 
with 60 mg/kg/day T-705.  
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 In addition to the day 3 virus titer data, two animals in the ribavirin-treated group were 

found in a moribund state on day 9 post-infection and sacrificed for analysis of serum, liver,  

spleen, and brain virus titers, and histopathology.  Remarkably, there was no virus present in the 

serum, liver, or spleen; however, approximately 8.6 log10 CCID50/g of tissue was present in the 

brains of both animals (Figure 8A), indicating that these animals were deteriorating due to virus 

replication in the brain and the associated late-onset encephalitis.  This was corroborated by 

histopathologic analysis which revealed neutrophilic and lymphocytic meningoencephalitis of 

variable severity in the brains of both animals (Figure 8B, C). 

 
Extended T-705 post-exposure efficacy 

 Because most hamsters succumb to RVFV challenge within 48 hpi, we next evaluated 

the efficacy of the twice-daily 200 mg/kg/day T-705 treatments when delayed until 1, 6, and 24 

h post s.c. RVFV infection.  As in the initial experiment, animals receiving high-dose T-705 

treatments initiated 1 hpi fared significantly better compared to the ribavirin-treated animals (P 

< 0.001; 70% vs. 10% survival), which survived the acute infection but ultimately succumbed to a 

late-onset neurologic disease (Figure 9A).  T-705 treatment initiated at 6 hpi also demonstrated 

significant protection from mortality (60% overall survival), with 3 of the 10 animals succumbing 

from acute systemic infection, and a 4th from late-onset encephalitic disease.  Interestingly, 

ribavirin treatment delayed until 24 hpi performed similarly to treatments initiated at 1 or 6 hpi, 

suggesting combination therapy with T-705 starting as late as one day after challenge may be an 

effective strategy for the peracute RVFV hamster infection. 

 The effect of treatments on reducing viral titers on day 2 post-infection is shown in 

Figure 9B-D; however, many of the placebo animals ultimately expired prior to sacrifice, thereby 

limiting statistical comparison.  T-705 administered at 1 hpi was very effective at limiting viral 

replication as demonstrated by low or undetectable serum, liver, and spleen viral titers.  Most of 
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the animals in the 6 hpi T-705 group had titers considerably higher than the 1 hpi T-705-treated 

animals, which was remarkable considering 6 out of 10 animals in the observational group 

survived the challenge, and suggests even a slight reduction in titers or a delay in viral 

replication may be an important factor for a favorable outcome.  In general, a trend of 

diminished viral titers was observed in the 6 and 24 hpi T-705-treated animals compared to the 

few placebo animals that could be included in the analysis.  Consistent with survival data where 

ribavirin prevented death due to acute infection, ribavirin-treated animals had the lowest titers 

at the 6 and 24 hpi treatment groups (Figure 9B-D). 

 In addition to the day 2 virus titer data, four animals from the ribavirin-treated groups 

and one animal in the T-705 24 hpi group were found in a moribund state after the first week of 

the study (day 7-14).  These animals were sacrificed for determination of serum, liver, spleen, 

and brain virus titers, and histopathology.  Consistent with the previous experiment and the 

transition from a systemic hemorrhagic disease to a viral encephalitis disease in mice [13], there 

was no virus present in the serum or spleen and only one animal from the T-705 24 hpi group 

had detectable virus in the liver (5.97 log10 CCID50/g; data not shown), whereas analysis of brain 

tissue revealed viral loads between 7.72-9.47 log10 CCID50/g in all moribund animals (Figure 

10A).   

 Similar to the observations of the previous study, histopathologic analysis of tissues 

from the moribund animals suggests that the deterioration of the animals was likely due to a 

neutrophilic and lymphocytic meningoencephalitis of variable severity (Figure 10B-E).  Minimal 

to no lesions of hepatitis were present in most animals (data not shown).  Collectively, the 

histopathology data is consistent with the notion that death of animals beyond day 7 is primarily 

due to RVFV replication in the brain.  Central nervous system (CNS) infection and associated  
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Figure 8.  Sub-acute central nervous system RVFV infection in ribavirin-treated animals that 
survive the acute disease.  Hamsters were treated as described in Figure 7.  Two animals in the 
ribavirin-treated group were found to be moribund on day 9 post-infection and were sacrificed 
for analysis of serum, liver, spleen, and brain virus titers, and histopathology.  A) Analysis of viral 
titers in moribund RVFV-infected hamsters treated with ribavirin.  Histopathologic findings in 
the cerebrum display B) multifocal neuronal necrosis and neuronophagia and C) neuropil 
necrosis.  H&E staining, 400X, bars = 20 µm.   
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Figure 9.  T-705 intervention is effective out to 6 h post-RVFV exposure.  Hamsters were 
treated with T-705 (200 mg/kg/day), ribavirin (75 mg/kg/day), or placebo, twice-daily p.o. for 14 
days beginning 1, 6 or 24 h post-infection (hpi).  A) Percent survival and day 2 B) serum, C) liver, 
and D) spleen virus titers are shown.  Five animals from varying placebo groups and one animal 
from the T-705 24 hpi group succumbed prior to sacrifice.  Unique symbols in each treatment 
group represent values for the same animal in B-D.  *P < 0.05 and ***P < 0.001 compared to 
respective placebo groups; bP < 0.01 and cP < 0.001 compared to animals treated with ribavirin.  
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disease was likely the cause of death in the 29 ribavirin-treated animals that succumbed to the 

RVFV challenge. 

 
T-705 and ribavirin combination treatment of RVFV infection 

 Although ribavirin effectively protected hamsters from the acute disease when initiated 

24 hpi, most succumbed from late-developing brain infection and disease.  Considering 

ribavirin’s capacity to provide protection against lethality due to acute disease even when 

treatment is delayed until 24 hpi, and the encouraging efficacy of T-705 when given early during 

infection, we evaluated the two compounds as a combination therapy in an effort to provide 

optimal protection in hamsters challenged with RVFV.  Several T-705 and ribavirin regimens 

(Table 2) were tested with treatment initiated at 24 hpi.  Because ribavirin treatment courses 

commonly employ a “loading dose” strategy [68,105], we designed the combination study with 

this consideration in mind.  In addition, a lower dose of ribavirin was also evaluated to address 

concerns with toxicity [106], since effectively reducing the dose requirement would greatly 

benefit patients. 

 As shown in Figure 11A, all combination treatments resulted in significant benefit 

compared to either drug alone.  Treatments for G2 and G3 were the most effective, providing a 

40% protection, whereas the treatment for G1 resulted in only 10% survival.  Although G1 

received the highest effective concentration of both compounds, the G2 and G3 treatments 

(Table 2) appeared to be superior in that there were ultimately more survivors.  Notably, the 

combination treatment groups were the only ones to have any survivors, as all but one animal 

(which ultimately succumbed on day 23) from the individual drug treatment groups expired by 

day 11.  Overall, the G2 and G3 combination therapy groups trended towards hamsters surviving 

longer than the ribavirin 40 mg/kg/day monotherapy.  
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Figure 10.  Analysis of brain viral titers in moribund RVFV-infected hamsters treated with T-
705 or ribavirin.  Hamsters were treated as described in Figure 7.  Five animals were discovered 
moribund and euthanized on the indicated day (d) post-infection for analysis of virus titers and 
histopathology.  A) Brain viral titers in moribund RVFV-infected hamsters treated with T-705 
(blue symbol) or ribavirin (red symbols).  Histopathologic analysis of cerebrums displayed B) 
perivascular mixed inflammatory cell infiltration, C) neutrophilic choroiditis and ventriculitis, D) 
neutrophilic meningitis and E) neuropil vasculitis and hemorrhage.  H&E staining, 400X, bars = 
50 µm.  
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 The effect of the drug combinations on reducing viral titers on day 2 post-infection is 

shown in Figure 11B-D.  Consistent with the survival data, a general trend of diminished viral 

titers was observed in all of the T-705 and ribavirin combination treatment regimens.  The G2 

combination treatment appeared to be the most effective at reducing viral titers in the serum, 

liver and spleen when compared to the T-705 monotherapy and placebo treated groups, but it 

was not significantly better than the ribavirin monotherapy.  Collectively, the data indicates that 

combined oral treatment of T-705 and ribavirin significantly enhance post-exposure efficacy 

compared to monotherapy with either drug, but the challenge of preventing late-onset 

encephalitis is still problematic when treatment is postponed until 24 h after RVFV challenge. 

 
 IHC analysis of moribund T-705- and ribavirin-treated animals 

 From several experiments wherein several animals receiving T-705 or ribavirin 

treatment succumbed to CNS infection and associated disease in the absence of detectable 

levels of infectious virus in serum or liver and spleen samples, we performed IHC analysis on the 

collected tissues.  Collectively, histological examination of the brains from various moribund 

animals between days 7-13 p.i. showed acute multifocal random necrotizing neutrophilic and 

lymphocytic meningoencephalitis with neuronal necrosis, neuronophagia and vasculitis (Figure 

12A).  IHC staining these same sections, revealed multifocally, neurons adjacent to areas with 

neuronophagia displaying diffuse cytoplasmic immunoreactivity for RVFV antigen (Figure 12B). 

 Comparing the morphologic changes over the course of infection, we noted some 

interesting developments in the livers and spleens from the ribavirin-treated moribund animals.  

Concerning the spleen, despite the increase in lymphocyte area observed on days 3 and 4 p.i., 

the examined tissues (days 7-13) all showed granulopoiesis (extramedullary hematopoiesis) in 

the spleen with an increase in circulating neutrophils in the liver sinusoids, suggesting that these  
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Table 2.  Post-exposure T-705 plus ribavirin combination treatment regimens. 

Group Compounds High/Low 
Dosea 

Dosage (mg/kg/day)b 

Day 1 Day 2 Days 3-10 

G1 
T-705 H 200 200 200 

Ribavirin H (LD) 75 37.5 - 

G2 
T-705 H 200 200 200 

Ribavirin L (LD) 40 20 - 

G3 
T-705 L 100 100 100 

Ribavirin H (LD) 75 37.5 - 

G4 
T-705  - - - - 

Ribavirin L 40 40 40 

G5 
T-705 H (LD) 400 200 200 

Ribavirin  - - - - 

G6 
Placebo - - - - 

Placebo - - - - 

 

 
aH = high, L = low, LD = loading dose. 
bHamsters were treated p.o., twice per day, beginning 24 h post-infection.  
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Figure 11.  Combined T-705 and ribavirin therapies significantly improve survival outcome and 
reduce viral burden when starting treatment 24 h post-RVFV challenge.  Hamsters were 
treated p.o. with T-705, ribavirin, or a combination of both compounds starting 24 h post-
infection (see Table 2 for detailed description of the treatment regimens).  A) Percent survival 
and day 2 B) serum, C) liver, and D) spleen virus titers are shown.  One animal each in the T-705 
monotherapy and placebo-treated group succumbed prior to sacrifice on day 2.  Unique symbols 
in each treatment group represent values for the same animal for B-D.  *P < 0.05, **P < 0.01, 
and ***P < 0.001 compared to placebo-treated animals; aP < 0.05, bP < 0.01, cP < 0.001 
compared to animals receiving T-705 monotherapy; xP < 0.05, zP < 0.001 compared to hamsters 
treated only with ribavirin.  H (high dose), L (low dose), LD (loading dose). 
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hamsters had neutrophilia.  Diffusely, there was moderate depletion of the red and white pulps, 

moderate to marked lymphoid depletion of the marginal zones and lymphoid follicles, and to a 

lesser extent the periarteriolar lymphoid sheaths.  Examination of the liver showed minimal-to-

no lesions of hepatitis in half of the animals.  Moreover, one of the animals displayed an 

undulated liver capsular surface, increased number of bi/trinucelated hepatocytes, and the mild 

biliary hyperplasia/ductular reaction with prominent oval cell in the canal of Hering suggesting 

that the hepatic progenitor cell compartment was activated and that hepatic regeneration may 

have occurred (data not shown). 

 
Discussion 

 The present study demonstrates for the first time the antiviral activity of T-705 against 

pathogenic RVFV infection.  Despite similar inhibitory concentrations in the cell culture 

experiments, T-705 was superior to ribavirin in terms of overall survival and preventing late-

onset CNS infection in RVFV-infected hamsters.  The liver is the principal target with severe 

hepatic disease the likely cause of death during the acute infection with a delayed-onset 

encephalitic disease developing after the first week [13,44].  Hamsters generally succumb within 

2-3 days from acute disease, whereas mortality in mice occurs during the first 3-6 days [2].  

While both species are highly susceptible to RVFV, neither reproduces the hemorrhagic fever or 

ocular disease observed in human cases.  The rapid progression of disease in hamsters presents 

challenges in terms of the abbreviated therapeutic window; however, the model is very useful 

for evaluating experimental therapies in the context of post-exposure intervention and to 

demonstrate proof-of-concept in a robust small animal model. 

 It is possible that doses higher than 200 mg/kg/day of T-705 may have achieved 

complete protection against lethal RVFV challenge in hamsters.  The present dose of 200 

mg/kg/day is equivalent to a human dose of 27 mg/kg/day based on body surface area 
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conversion [107].  In the Phase 2 clinical trial evaluating T-705 as an anti-influenza drug, the high 

dose arm consisted of 2400 mg on day 1 and 1600 mg on days 2-5.  Assuming the average 

weight of the participants was 60 kg, the dosages received were in the range of 40 and 27 

respectively.  Although a 400 mg/kg/day loading dose with subsequent transition to 200 

mg/kg/day was evaluated in the third study, the therapeutic window for T-705 in the hamster 

model appears not to extend much further than beyond 6 h.  Considering the excellent 

tolerability of T-705 in hamsters (LD50 > 1500 mg/kg/day) [40], and the severity of the RVFV 

infection, it may be worthwhile to explore higher daily doses administered three times per day 

to obtain more consistent therapeutic levels systemically and in tissues.  

 One of the more remarkable findings from our studies was that although both ribavirin 

and T-705 had dramatic antiviral effects on RVFV-infected hamsters, their effects on survival 

were very distinct.  T-705 was more effective in terms of protecting the animals from both acute 

and late-onset CNS disease, but the window for successful post-exposure intervention was 

limited to approximately 6 h.  In contrast, ribavirin was highly effective at protecting all animals 

from the rapidly overwhelming effects of the acute infection, even when delaying treatment 

until 24 hpi, whereas only a slight beneficial effect could be observed with T-705 treatments.  

However, almost all ribavirin-treated animals ultimately succumbed to CNS infection and 

associated disease in the absence of detectable levels of virus in serum or liver and spleen 

samples.  This may be explained by the inability of ribavirin or its active metabolites to 

effectively cross the blood-brain barrier [108].  These findings are consistent with a well 

characterized mouse RVFV infection model wherein late-onset neuroinvasion and encephalitis 

was described in animals succumbing during the latter part of the infection [13].  This secondary 

disease observed in hamsters could serve as a model for human cases of delayed-onset 

encephalitis that occur weeks to months after acute RVFV infection [2]. 
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A 

 
 
B 
 

 
 
 
Figure 12.  Immunohistochemistry analysis of brain tissues from RVFV-infected hamsters 
demonstrates presence of viral antigen.  A) Hamster brain section from sham-infected control 
animal showing normal cells, 400X, bar = 30 µm. Brain tissue from a ribavirin treated moribund 
hamster at day 13 p.i. with RVFV demonstrating B) Acute neutrophilic encephalitis with necrosis 
and vasculitis, 200X, bar = 100 µm, H & E stain, and C)  Immunohistochemistry staining for RVFV.  
Multiple neurons surrounding foci of neutrophilic inflammation and necrosis show diffuse 
cytoplasmic immunoreactivity for RVFV antigen.  400X, bar = 50 µm.  NovaRed stain with 
hematoxylin counterstain.  
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 It is unclear why ribavirin is so effective at controlling viral replication and abrogating 

disease when initiating treatment at an advanced time point (24 hpi) in the peracute infection.  

Ribavirin may achieve higher concentrations and activation in the primary lymphatic tissues 

where the virus is likely to initially replicate before seeding the blood and secondary target 

organs including the liver.  We can only speculate as to why T-705 is able to prevent CNS 

infection, but has a narrower window for intervention.  The complexities with the 

biodistribution of the parent T-705 compound, the efficiency of its intracellular conversion to 

the active ribofuranosyl triphosphate in various cell types and tissues, and the rate of 

elimination all probably influence the observed efficacy and the shorter window for effective 

intervention.  T-705 is likely to specifically target the RVFV polymerase directly affecting the 

virus life cycle by inhibiting viral transcription and replication, whereas ribavirin has multiple 

modes of action and may prevent RVFV lethality through later acting cumulative effects from 

depletion of ribonucleotide pools [67]. 

 Our findings evaluating T-705 and ribavirin as monotherapies provided the rationale for 

combining the two antivirals with the goal of integrating the beneficial aspects of each 

independent treatment to extend the therapeutic window to 24 hpi.  The results of the drug 

combination study indicated oral treatment with T-705 and ribavirin significantly enhanced post-

exposure efficacy suggestive of synergy, as demonstrated by protection (up to 40% survival) 

against both the acute hepatic and late-onset encephalitic disease that would otherwise result 

in death in animals treated with either drug alone.  Despite this success, the challenge of 

preventing late-onset encephalitis when treatment is postponed until 24 h after RVFV infection 

in hamsters is still largely unmet.  Interestingly, our findings hint that the highest dose 

combination of T-705 and ribavirin was not necessarily optimal (only 10% survival), as 

treatments where the dose of one of the drugs was lowered resulted in improved (40%) survival 



53 
 

outcomes.  A comprehensive drug combination matrix would be needed to clearly demonstrate 

possible antagonism at higher doses, as well as synergy with suboptimal dosing regimens of T-

705 and ribavirin. 

 In summary, post-RVFV exposure treatment of hamsters with T-705 within 6 hpi, or T-

705 + ribavirin combination therapy within 24 hpi, significantly improved survival outcome and 

reduced viral loads in serum and tissues.  In fatal cases of RVF, severe hemorrhagic disease 

manifestations typically lead to death within 3-6 days of the onset of clinical signs of illness [2].  

Because hamsters succumb to the acute phase of the infection within a day of displaying initial 

clinical signs (lethargy, hunched posture, and ruffled fur), it is difficult to extrapolate to the 

human disease.  However, considering the rapid progression and lethality of RVFV infection and 

disease modeled in hamsters, the data presented are certainly encouraging.  In view of the 

failure of ribavirin to prevent CNS infection in mice challenged through the upper respiratory 

tract [98], future studies investigating the efficacy of T-705 against aerosol exposure in rodents 

is warranted.  Ultimately, investigational new drug-enabling efficacy studies in a nonhuman 

primate model of RVF will be required for advancing the compound towards clinical evaluation. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

  

  Rift Valley fever illness typically manifests as an acute febrile and hepatic disease in 

ruminant species and humans.  The need to better understand the more severe manifestations 

of RVF disease has led to the establishment of various animal models to study the pathogenesis 

of RVFV infection [3,49].  Hamsters are increasingly being used in infectious disease research, 

with the greatest increase in the field of virology [73].  Due to the increased biohazard risk 

associated with RVFV, a more accessible hamster model for RVF based on challenge with the 

related Punta Toro virus was established [75].  Although the hamster PTV infection model has 

proved useful for reproducing certain features of severe human and animal RVFV infections 

where hepatic disease is a prominent pathological feature, other features such as encephalitis 

are not observed.  Various murine and rat RVFV models are useful in evaluating most vaccine 

and antiviral drug candidates, yet certain therapeutic platforms may have little to no activity in 

these systems.   

 As previously reported details describing RVFV infection and disease in hamsters have 

been limited, we sought to more comprehensively characterize the RVFV infection model in 

golden Syrian hamsters and subsequently apply the model to evaluate the activity of the 

promising broadly-active compound, favipiravir.  In summary, RVFV challenge in hamsters 

resulted in peracute disease and lethality within 2 to 3 days of challenge.  High titer viremia and 

substantial viral loads were observed in most tissues examined and histologic analysis revealed 

marked hepatocellular necrosis consistent with fulminant hepatitis as the likely cause of death 

of RVFV-infected hamsters.  Collectively, our data shows that RVFV infection of hamsters most 

closely resembles the disease observed in mice, but with a more accelerated progression.   
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 Although we feel that RVFV infection in hamsters provides a robust challenge model 

suitable for early stage vaccine and antiviral drug efficacy studies, the model has its limitations 

(e.g. abbreviated therapeutic window) and additional analyses are required to better 

understand disease progression and make comparisons between hamster and the human 

condition.  For example, future investigations should evaluate the clinical chemistry, hematology 

and coagulation.  A drop in total white blood cell counts and serum glucose levels, increased ALT 

and bilirubin levels and an increase in clotting time have been reported in humans and various 

RVFV animal models [2,13,49,50].  We attempted to measure these and other clinical laboratory 

parameters in the present study; however, logistical and technical problems within the 

laboratory prevented the inclusion of such data in our analysis.  It would also be of interest to 

study the inflammatory response through the measurement of cytokines longitudinally during 

the course of infection, using previously described methodologies for mRNA expression analysis 

in hamsters [109].  This information would provide a more complete clinical evaluation of the 

RVFV hamster model, as well as the host immune response to infection.  Additionally, the 

insertion of implantable temperature transponders to continually monitor temperature would 

serve to determine whether RVFV-infected hamsters become febrile at any point during the 

acute infection or during the late-onset encephalitis that was observed with drug-treated 

animals that survive the systemic infection.  Harvesting additional tissues such as the heart, 

thymus, lymph nodes, bone marrow would provide additional details useful in comparisons with 

the mouse infection model [13,14].  More importantly, analysis of reproductive organs could 

provide insights into the abortion storms that are characteristic of RVF epizootics.   

 Studies comparing s.c. challenge to aerosol challenge in murine, rat and marmoset 

systems resulted in significant differences in lethality and disease progression.  Most notably, 

aerosol challenge typically resulted in a slower-progressing disease with an increase in 
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neuropathy [43,50,98].  Considering the rapid lethality in which RVFV overwhelms hamsters, 

aerosol challenge may provide a slower-developing disease process with an expanded 

therapeutic window.  Considering the potential for intentional release and weaponization 

[30,55,68], the development of an aerosol exposure model in hamsters is warranted for the 

evaluation of promising vaccine and antiviral drug candidates.  Future evaluation of the efficacy 

of T-705 and ribavirin in an aerosol exposure model is needed to confirm activity of these agents 

against respiratory route exposure.  Studies building on our success with T-705 for the 

treatment of RVFV infection are also warranted.  A comprehensive drug combination matrix 

should be examined to convincingly demonstrate synergy between the two compounds and 

possible antagonism at higher doses.  This work would be invaluable towards future 

investigational new drug-enabling efficacy studies in a NHP primate model of RVFV, thereby 

advancing the compound towards clinical evaluation.  Moreover, as of March 24, 2014, the 

Japanese Ministry of Health, Labour and Welfare approved T-705 (favipiravir) for the treatment 

of influenza in people.  This exciting development represents the cornerstone for off-label use 

for treatment of human RVFV infection pending encouraging efficacy results in NHP models. 
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