
Melton 1 30
th

 Annual AIAA/USU

 Conference on Small Satellites

SSC16-IX-03

Ball Aerospace COSMOS Open Source Command and Control System

Ryan Melton

Ball Aerospace & Technologies Corp.

1600 Commerce St., Boulder, CO 80301; 303-939-6771

rmelton@ball.com

ABSTRACT

Ball Aerospace COSMOS is a free and readily available open source command and control system for operations

and test. It brings a set of functionality to the small sat community that has previously only been available in

proprietary and expensive COTS solutions. A set of 15 applications provide automated procedures, realtime and

offline telemetry display and graphing, logged data analysis and CSV extraction, limits monitoring, command and

telemetry handbook creation, and binary file editing. COSMOS scripting offers the full power of the Ruby

programming language allowing operators to send commands, verify telemetry, read and write files, access the

network, and even send an email on completion. Advanced debugging functionality allows for single-stepping

through procedures, setting breakpoints, and complete logging of all script and user interaction with the system.

Detailed data visualization allows for custom screen creation, line and x-y plotting of data, and easy creation of

custom 3d visualizations. Offline data analysis and data extraction capabilities make narrowing down anomalies

easy. This presentation will discuss all the ways COSMOS can provide a superior, free, and open source command

and control system to the small sat community.

INTRODUCTION

Ball Aerospace COSMOS empowers satellite

developers of any size to easily create their own user

interface for commanding and controlling a satellite or

any other embedded system. COSMOS provides a fully

featured test and operations system that provides

commanding, automated test scripting, data

visualization and much more. This paper discusses the

huge amount of functionality available in Ball

Aerospace COSMOS and its applicability specifically

to small satellite developers.

TERMINOLOGY

The COSMOS system uses several terms that are

important to understand. Many may be obvious to

users within the aerospace industry, but the following

table attempts to define these terms clearly for

everyone.

Table 1: COSMOS Terminology

Term Definition

Target A COSMOS Target is an embedded

system that COSMOS can send

commands to and/or receive

telemetry from.

Command A packet of information telling a

target to perform an action.

Telemetry

Packet

A packet of information providing

status from a target. Telemetry

packets are either periodically

received or may be received in

response to a command.

Interface A Ruby class that knows how to send

commands to and/or receive

telemetry from a target. COSMOS

comes with interfaces that support

TCP/IP, UDP, and serial connections.

Custom interfaces are easy to add to

the system.

Ruby The powerful dynamic programming

language used to write COSMOS

applications and libraries. Also the

language used in COSMOS scripts

and test procedures.

Configuration

Files

COSMOS uses simple plain text

configuration files to define

commands and telemetry packets,

and to configure each COSMOS

application. These files are easily

Melton 2 30
th

 Annual AIAA/USU

 Conference on Small Satellites

human readable/editable and machine

readable/editable.

Packet Log

Files

Binary files containing either logged

commands or telemetry packets.

Message Log

Files

Text files containing messages

generated by a tool.

Tool Another name for a COSMOS

application.

INCLUDED TOOLS

Ball Aerospace COSMOS comes with the following set

of 15 applications that are directly available for use

with minimal to no configuration.

Command and Telemetry Server

Command and Telemetry Server acts as the hub of the

realtime portion of COSMOS. All commands and

telemetry packets pass through this tool ensuring

everything that happens is logged. It provides realtime

commanding, telemetry reception, logging, limits

monitoring, packet routing, and system status.

Figure 1: Command and Telemetry Server

Replay

Replay simulates the Command and Telemetry Server

for telemetry packet log file playback. This enables use

of any of the realtime tools with logged data. Replay is

great for playing back scenarios and viewing them on

telemetry screens.

Figure 2: Replay

Command Sender

Command Sender provides a graphical interface for

manually sending individual commands. Drop down

selection of every command and command parameter in

the system makes sending individual commands easy.

A history pane makes resending previous commands

easy.

Figure 3: Command Sender

Script Runner

Script Runner executes test scripts and provides

highlighting of the currently executing line. Scripts

pause if any error occurs, breakpoints can be added, and

lines can be reexecuted after a problem has been

corrected.

Figure 4: Script Runner

Test Runner

Test Runner provides a high level framework for

system level testing including automatic test report

generation. Test Runner brings the best features of

software unit level testing to system level integration

Melton 3 30
th

 Annual AIAA/USU

 Conference on Small Satellites

and test by breaking tests down into easy

understandable test cases. Users can execute entire test

procedures or just the specific test cases they need to

run for integration or regression tests.

Figure 5: Test Runner

Packet Viewer

Packet Viewer provides realtime visualization of every

telemetry packet that has been defined. Values within

packets are displayed in a simple key-value format that

requires no configuration. An autocomplete search bar

makes finding values easy.

Figure 6: Packet Viewer

Telemetry Viewer

Telemetry Viewer provides custom telemetry screen

functionality with advanced layout and visualization

widgets. Tabs, graphs, limits bars, and other animated

displays can be quickly created. Also, Telemetry

Viewer can autogenerate a base set of screens for every

telemetry packet that can be customized as needed.

Figure 7: Telemetry Viewer

Telemetry Grapher

Telemetry Grapher provides realtime and offline

graphing of telemetry data. Supports both line and x-y

style plotting, with multiple tabs, plots, and items per

plot. Includes built-in analysis functionality to graph

min, max, difference, and standard deviation.

Figure 8: Telemetry Grapher

Data Viewer

Data Viewer provides text based telemetry visualization

for items that don’t fit into other data visualization

paradigms. Great for scrolling log displays and memory

dumps.

Figure 9: Data Viewer

Limits Monitor

Limits Monitor monitors telemetry with defined limits

and shows items that are currently out of limits or have

Melton 4 30
th

 Annual AIAA/USU

 Conference on Small Satellites

violated limits since the tool was started. Expected

violations can be easily ignored.

Figure 20: Limits Monitor

Telemetry Extractor

Telemetry Extractor extracts telemetry packet log files

into CSV data. Highly configurable and supports batch

processing to output multiple files at once.

Figure 11: Telemetry Extractor

Command Extractor

Command Extractor extracts command packet logs into

human readable text.

Figure 12: Command Extractor

Table Manager

Table Manager is a binary file editor that can be used to

create or edit configuration tables or other binary data.

Figure 13: Table Manager

Handbook Creator

Handbook Creator creates html and pdf documentation

of available commands and telemetry packets.

Figure 14: Handbook Creator

Launcher

Launcher provides a graphical user interface for

launching each of the tools that make up the COSMOS

system. Supports launching any application that can be

started from the command line.

Figure 15: Launcher

Melton 5 30
th

 Annual AIAA/USU

 Conference on Small Satellites

SYSTEM ARCHITECTURE

The Figure 16 shows how the 15 applications that make

up the COSMOS system relate to each other and to the

targets that COSMOS is controlling.

On the next page, the key aspects that make up the

COSMOS System are discussed in detail.

Figure 16: COSMOS Architecture

Melton 6 30
th

 Annual AIAA/USU

 Conference on Small Satellites

Key Aspects

1. The COSMOS tools are grouped into four

broad categories

a. Realtime Command and Scripting

b. Realtime Telemetry Visualization

c. Offline Analysis

d. Utilities

2. COSMOS can interface with many different

kinds of targets. The examples shown in this

diagram include Flight Software (FSW),

Ground Support Equipment (GSE), Labview,

and a Commercial Off-The-Shelf (COTS)

target such as an Agilent Power Supply. Any

embedded system that provides a

communication interface can be connected to

COSMOS.

3. COSMOS ships with interfaces for connecting

over TCP/IP, UDP, and serial connections.

COSMOS also supports custom interfaces to

connect to anything that a computer can talk

to.

4. All realtime communication with targets flows

through the Command and Telemetry Server.

This ensures all commands and telemetry are

logged.

5. Every tool is configured with plain text

configuration files (if any configuration is

needed).

6. Project specific tools can be written using the

COSMOS libraries that can interact with the

realtime command and telemetry streams

through the Command and Telemetry Server

and can also do offline analysis of packet log

files.

7. Cross Platform – COSMOS supports

Windows, Linux, and Mac OSX.

KEY BENEFITS TO SMALL SATELLITES

Full Lifecycle System

Supports board level test, box level test, I&T, and on-

orbit operations providing a consistent user interface

throughout the full lifecycle of a product.

Logging

Everything is logged, and even more importantly, tools

are provided to easily interpret and use the logs.

Whenever an anomaly occurs there are tools already

written that are ready to dig into the logs and help

figure out what happened.

Superb Data Visualization

Anyone can create great telemetry displays, graph data

in realtime, and provide an excellent sense of

situational awareness – all without any programming

required.

Powerful Scripting

COSMOS comes with a simple API that makes sending

commands and checking telemetry easy. However, you

are not constrained by your scripting language.

COSMOS scripts are written in Ruby, a modern, fully

functional scripting language. This allows you to read

and write files, and perform live processing that most

other systems force you to run offline.

Powerful Test Reporting and Organization

COSMOS Test Runner can produce very reliable test

procedures that allow the user to easily execute the

entire procedure or only a subset needed for a

regression test. Automated test reports created at the

end of every run make it very clear that everything

passed successfully or where problems occurred.

HISTORY

COSMOS was first developed in 2006 and since then

has been used to develop and test more than 30 flight

programs at Ball including GMI, OLI, Kepler, WISE,

OMPS, Ares, Orion, and numerous defense programs.

Since being open sourced in January 2015 it is now

being used with at least 10 major corporations primarily

for small satellite development and future operations.

SUMMARY

Ball Aerospace COSMOS is a free and open source

command and control system that is immediately

available for use. It provides a wealth of functionality

much of which is not even available in expensive

proprietary tools. For more information and to get

started with Ball Aerospace COSMOS please see

http://cosmosrb.com.

REFERENCES

1. Melton, Ryan, “Ball Aerospace COSMOS”

Retrieved from http://cosmosrb.com June 3rd,

2016

