

Energy-Cognizant Scheduling of Store-and-Forward Communications with Multiple Priority Levels in Nanosatellite Systems

Cherry Y. Wakayama, Peter J. Yoo and Zelda B. Zabinsky

GOAL

To provide network connectivity in hard-to-reach areas using a nanosatellite constellation

PROBLEM STATEMENT

How would nanosatellites schedule their message delivery effectively and efficiently considering nanosatellite limitations in terms of size, power onboard data storage, energy capacity and contact time windows?"

OPTIMIZATION MODELS

Nanosat Scheduling Decision Making for Single-hop Architecture

- Optimization model (P1) is a binary linear program that minimizes priority weighted delivery completion time
- Optimization model (P2) is a standard linear program with a very special structure that minimizes priority weighted mean busy times
- Optimization model (P2) has an equivalent minimum cost network flow representation, and thus the integer optimal solution is guaranteed with integer input parameters

$$\begin{array}{c} \min \qquad \sum_{j=1}^{J} w_j C_j \\ \text{subject to} \\ C_j \ge \tau_{k+1} u_{jk} \text{ for } j = 1, \dots, J, k = 0, \dots, K-1 \\ \sum_{j=1}^{J} u_{jk} \le 1 \text{ for } k = 0, \dots, K-1 \\ \sum_{k=0}^{J} u_{jk} \le 1 \text{ for } k = 0, \dots, K-1 \\ \sum_{k=0}^{K-1} u_{jk} = s_j, \text{ for } j = 1, \dots, J \\ e_{k+1} = e_k + \delta_k - \sum_{j=1}^{J} u_{jk} - h_k \\ \text{ for } k = 0, \dots, K-1 \text{ and } e_0 \text{ is given} \\ for k = 0, \dots, K-1 \text{ and } e_0 \text{ is given} \\ e_{min} \le e_k \le e_{max} \text{ for } k = 0, \dots, K \end{aligned}$$

 $e_{min} \le e_k \le e_{max}$ for k = 0, ..., K $h_k \ge 0$ for k = 0, ..., K - 1 $C_j \ge 0$ for j = 0, ..., J $u_{jk} = \{0,1\}$ for j = 1, ..., J, k = 0, ..., K - 1(P1) Weighted completion time model

 $h_k \ge 0$, for k = 0, ..., K $0 \le u_{jk} \le 1$ for j = 1, ..., J, k = 0, ..., K - 1

(P2) Weighted mean busy time model

NUMERICAL RESULTS

Weighted mean busy time strategy (P2) outperforms highest priority first strategy by 3 hours in total delivery time

Highest priority first strategy

Weighted mean busy time strategy (P2)

SD XXX • July 2016 • SSC Pacific, San Diego, CA 92152-5001 • Approved for public release; distribution is unlimited.