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Abstract. Research on long-lived iteroparous species has shown that reproductive success may increase

with age, until the onset of senescence, and that prior reproductive success may influence current

reproductive success. Such complex reproductive dynamics can complicate conservation strategies,

especially for harvested species. Further complicating the matter is the fact that most studies of

reproductive costs are only able to evaluate a single measure of reproductive effort. We systematically

evaluated the effects of climatic variation and reproductive trade-offs on multiple reproductive vital rates

for greater sage-grouse (Centrocercus urophasianus; sage-grouse), a relatively long-lived galliforme of

conservation concern throughout western North America. Based on over a decade of field observations, we

hypothesized that reproduction is influenced by previous reproductive success. We monitored hen

reproductive activity from 1998 to 2010, and used generalized linear mixed models to assess effects of

climate and previous reproductive success on subsequent reproductive success. Reproductive trade-offs

manifested as chronic effects on subsequent reproduction and were not apparent in all measures of

subsequent reproduction. Neither nest initiation nor clutch size were found to be affected by climatic

variables (either year t� 1 or t) or previous reproductive success. However, both nest and brood success

were affected by climatic variation and previous reproductive success. Nest success was highest in years

with high spring snowpack, and was negatively related to previous brood success. Brood success was

positively influenced by moisture in April, negatively associated with previous nest success, and positively

influenced by previous brood success. Both positive and negative effects of previous reproduction on

current year reproduction were observed, possibly indicating high levels of individual heterogeneity in

female reproductive output. Our results support previous research in indicating that climatic variability

may have significant negative impacts on reproductive rates.
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INTRODUCTION

Life history theory predicts trade-offs or costs
occur between competing demographic variables
(Reznick 1985). Cost of reproduction is one such
trade-off (Reznick 1985), where reduced current
reproductive capacity (Williams 1966, Røskaft
1985, Gustafsson and Sutherland 1988) or in-
creased mortality (Williams 1966, Erikstad et al.
1998, Blomberg et al. 2013) result from increased
resource allocation to previous reproduction.
Conversely, positive trade-offs between life his-
tory traits have also been documented (e.g., Cam
et al. 1998, Barbraud and Weimerskirch 2005),
and may be the consequence of the ‘‘heterogene-
ity in individual quality’’ hypothesis. Individual
heterogeneity in reproductive output and cost of
reproduction is common in avian taxa (e.g.,
Aubry et al. 2009, Aubry et al. 2011, Cam et al.
2013). Evaluation of trade-offs and costs associ-
ated with reproduction is vital to conceptualiza-
tion of the population ecology of a species, and
consequently species conservation. Species
evolve traits conducive to persistence under the
environmental conditions to which, over evolu-
tionary history, selective pressure was exerted
upon the species. As such, reproductive costs
likely vary in magnitude as a result of environ-
mental conditions (Erikstad et al. 1998, Barbraud
and Weimerskirch 2005, Bårdsen et al. 2011).
Identification and estimation of the linkage
between climatic variables and demographic
rates is vital to conservation, particularly for
species with limited dispersal opportunities in
the face of climate change (Norris 2004, Thomas
et al. 2004).

We evaluated the effect of previous reproduc-
tive success and climatic variation on subsequent
reproduction using a greater sage-grouse (Cen-
trocercus urophasianus; sage-grouse) population in
south-central Utah. Sage-grouse are relatively
long-lived (9 years maximum reported longevity;
Zablan et al. 2003) sagebrush (Artemesia spp.)
obligate galliformes (Patterson 1952, Dalke et al.
1963, Connelly et al. 2011). Currently, sage-
grouse are a species of conservation concern
throughout their endemic range in western
North America because of precipitous popula-
tion declines and habitat degradation (Schroeder
et al. 2004, Connelly et al. 2011, Garton et al.
2011, Miller et al. 2011; J. W. Connelly, S. T. Knick,

M. A. Schroeder, and S. J. Stiver, unpublished
manuscript). Consequently, sage-grouse were des-
ignated as endangered by the Canadian Com-
mittee on the Status of Endangered Wildlife and
a candidate for protection under the Endangered
Species Act (ESA) by the U.S. Fish and Wildlife
Service (USFWS) in 1998 and 2010, respectively
(Harris et al. 2001, USFWS 2010). Climatic related
parameters have been identified as affecting
reproduction in sage-grouse populations, where
increased moisture or decreased drought posi-
tively influenced brood success (Blomberg et al.
2013), nest success (Holloran et al. 2005), and
chick survival (Guttery et al. 2013). Furthermore,
increased snow depth has been found to be
associated with increased recruitment (Blomberg
et al. 2012).

Reproductive costs to survival exist in both
female (Blomberg et al. 2013) and male sage-
grouse (Boyko et al. 2004), and have also been
documented in black grouse (Tetrao tetrix; Angel-
stam 1984, Caizergues and Ellison 1997), lesser
prairie-chickens (Tympanuchus pallidicinctus; Ha-
gen et al. 2005, 2007), and willow ptarmigan
(Lagopus lagopus; Hannon et al. 2003). Further,
physiological reproductive costs have been de-
tected in male black grouse (Angelstam 1984,
Kervinen et al. 2012) and sage-grouse (Vehren-
camp et al. 1989). Trade-offs between past and
subsequent reproductive success have not been
evaluated in female sage-grouse, with the excep-
tion of the influence of past brood success on
subsequent brood success where positive trade-
offs were documented (Blomberg et al. 2013).

Knowledge of the factors affecting population
growth is vital to optimize the effectiveness of
conservation efforts, particularly for harvested
species. Taylor et al. (2012) concluded sage-
grouse conservation should focus on increasing
nest success, chick survival, and hen survival.
Many of these parameters and the factors
affecting them (e.g., habitat, environmental con-
ditions) have been reported (see Connelly et al.
2011; e.g., Lyon and Anderson 2003, Holloran et
al. 2005, Dahlgren et al. 2010, Guttery et al. 2013).
However, evaluation of reproductive trade-offs
and climatic effects are absent or rare in many
taxa, but are vital to the conceptualization of
natural systems and therefore population ecolo-
gy. Precise understanding of population ecology
is vital to conservation, particularly for declining
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and harvested species where repercussion of
direct (e.g., harvest) and indirect (e.g., habitat
manipulation or conservation) management ac-
tions have large effects on species conservation.

The purpose of our research was to estimate
the effects of past reproductive success and
climatic factors on subsequent reproductive
parameters. We hypothesize: (1) reproductive
costs manifest in sage-grouse nest success, brood
success, and clutch size, but do not influence nest
initiation; (2) positive trade-offs occur for com-
plete reproductive success (i.e., brood success)
due to the individual heterogeneity hypothesis;
(3) decreased drought positively influences the
likelihood of reproductive success.

METHODS

Habitat
Our study was conducted at the southern

extent of the sage-grouse range (Schroeder et al.
2004) on Parker Mountain in south-central Utah,
where elevation ranges 2,200–3,000 m. The area
received 40–50 cm of precipitation annually, most
during the winter as snow (60%), and the
remainder as rain in late summer (Jaynes 1982).
Parker Mountain typically experienced 65–80
frost-free days, and the mean maximum and
minimum temperatures for January and July
were 18C, �138C and 278C, 98C, respectively
(Jaynes 1982). The site is dominated by black
sagebrush (A. nova) flats and ridges with
mountain big sagebrush (A. tridentata tridentata)
and silver sagebrush (A. cana) in swales and at
higher elevations. Parker Mountain is predomi-
nately publicly owned, and private lands ac-
counted for 1% (1,363 ha) of the study area. The
primary land-uses are grazing by domestic
livestock and recreation (e.g., hunting, camping,
off-highway vehicles).

Field methods
Hens were captured at roost sites proximal to

leks using spotlights and long handled nets
(Giesen et al. 1982, Wakkinen et al. 1992) during
March and April 1998–2009. Once captured,
birds were fitted with 15–19 g necklace-style
radio transmitters (Advanced Telemetry Systems,
Isanti, MN, USA in 1998–2004; Holohil Systems,
Carp, Ontario, Canada in 2005–2009) equipped
with mortality sensors. Hens were classified as

second year (SY) or after second year (ASY)
based on condition of the outer primaries (Dalke
et al. 1963) and wing characteristics (Beck et al.
1975). Beginning in May, hens were located at
least once every 5 days to document the onset of
incubation. Nesting was confirmed visually, but
hens were not intentionally flushed due to the
species’ propensity to abandon nests if disturbed
(Holloran et al. 2005, Baxter et al. 2008), and
consequently clutch size was measured post-
hatch or after depredation. Nests were checked
every 1–2 days to determine fate. Once hatched,
broods were monitored using one of two
techniques. From 1998–2004 and in 2010 brood
hens were located every 3 days to determine
brood fate. Non-brood hens were located every
5–7 days. From 2005 to 2009 broods were
captured within 1 week of hatch (most within
48 hours of hatch), and chicks were marked with
suture-anchored 1.5-g backpack-style radio
transmitters (Burkepile et al. 2002) without
mortality sensors (Advanced Telemetry Systems,
Insanti, MN, USA in 2005; Holohil Systems,
Carp, Ontario, Canada in 2006–2008; American
Wildlife Enterprises, Monticello, FL, USA in
2009). Radio marked chicks were located every
other day. Broods were considered successful if
�1 chick survived to �50 days in 1998–2004 and
�42 days in 2005–2010. Brood success could be
slightly biased in years without marked chicks
(1998–2004) due to brood mixing (see Dahlgren
et al. 2010). Regardless, brood success in both
years with and without marked chicks was
measured using direct observations and apparent
success. Non-brood hens were not monitored
regularly during the breeding season 2005–2009.

Model covariates
We compiled year-specific covariate data for

drought and climate on our study area. We
included monthly and seasonal values of the
Palmer Z-index of drought severity (PZ). Winter,
early summer, late summer, and summer were
defined as 1 November to 31 March, 1 May to 30
June, 1 July to 31 August, and 1 May to 31 July,
respectively. PZ data were downloaded from the
National Oceanic and Atmospheric Administra-
tion’s National Climate Data Center (http://www.
ncdc.noaa.gov/temp-and-precip/time-series/
index.php). We included climatic variables on
average temperature and total precipitation
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accumulation for monthly and seasonal time
periods. Additionally, we include a proximate
measure of spring snowpack (wteq). By our
definition, wteq is the maximum snow water
equivalent measured in the spring of each year.
Climatic data was downloaded from the Natural
Resources Conservation Service SNOTEL web-
site (http://www.wcc.nrcs.usda.gov/snow/). All
SNOTEL covariate data were averaged across
the two proximal and representative stations to
our study site (Black Flat–U.M. Creek, site
number 348; Donkey Reservoir, site number 452).

Model implementation
We used generalized linear mixed models

implemented with the ‘‘glmer’’ function from
the lme4 package in program R 3.0.0 (R Core
Team 2013) for all analyses. Four separate
modeling procedures were implemented to eval-
uate the effects of climatic variation, previous
reproductive success, and hen age (in year t� 1)
on nest initiation, clutch size, nest success, and
brood success. Previous reproductive success
was defined as reproductive parameters (e.g.,
nest initiation, nest success, brood success) in the
immediately preceding year. In all analyses, the
unique identity for each individual hen was used
to specify an individual random effect (inter-
cept), to account for repeat observations within
each individual’s reproductive history. Individual
random effects aid in capturing differences in
individual quality by accounting for unobserved
variability in reproductive quality across indi-
viduals. Data for nest success and brood success
models was subset to isolate the direct effect of
each parameter (i.e., only individuals that actu-
ally attempted the reproductive stage in year t).
For nest initiation, nest success, and brood
success modeling procedures we used a binomial
distribution, a logit link, and fit models using an
adaptive Gaussian Hermite approximation pro-
cedure. For the clutch size modeling procedure,
we used a Poisson distribution, a log link, and fit
models using the Laplace approximation proce-
dure.

Model selection
We used a sequential approach to candidate

model set building for nest initiation, clutch size,
nest success, and brood success. We first evalu-
ated the effect of previous reproductive param-

eters (e.g., nest success year t � 1) on current
reproduction (e.g., brood success year t). Once
the best performing previous reproductive effects
models were selected, we then modeled the
effects of climatic variables (in year t and t � 1)
on reproduction in year t. Candidate models
were ranked using Akaike’s Information Criteri-
on adjusted for sample size (AICc; Akaike 1973,
Burnham and Anderson 2002), and models with
DAICc � 2 were considered equally supported
by the data (Burnham and Anderson 1998).
When calculating AICc we counted all fixed
effect parameters, and counted random effects
where the variance was greater than zero. Our
final candidate model set included the best
performing (DAICc � 2) parameter structures
for reproductive variables in year t � 1 and
climatic variables (in year t and t � 1), while
testing for their effects on reproductive output in
year t. We used likelihood ratio tests to evaluate
parameters in competing nested models.

RESULTS

We marked 248 hens, monitored 313 nests, and
tracked 142 broods from 1998 to 2010. Nest
initiation models were based on 123 two-year
observations (i.e., 246 nest initiation attempts) of
100 individuals (i.e., 23 individuals had �3 years
of data); clutch size models on 77 two-year
observations of 67 individuals; nest success
models on 97 two-year observations of 83
individuals; brood success models on 58 two-
year observations of 50 individuals.

Both the nest initiation models and clutch size
models in our candidate models set failed to
outperform the null model (intercept only).
Consequently, we could not detect a relationship
between either nest initiation rate or clutch size in
year t and reproductive success in year t � 1 or
climatic variables in year t � 1 or t. Further, we
found no evidence to support effects of hen age,
nest initiation in year t� 1, or time lag effects of
climatic variables in any of the models. Previous
reproductive success and climatic variation were,
however, found to affect both nest success and
brood success (Tables 1 and 2).

Our nest success modeling procedure (Table 1)
suggested the existence of one competing model
(DAICc � 2). However, this model (DAICc¼ 1.94)
only differed from the top model with the
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substitution of the wteq in year t parameter (top
model) for the May PZ in year t parameter. The
May drought index and snowpack index likely
reflect an effect of spring moisture on nest
success, and the snowpack index (wteq) also
contributes to explaining variation in our data
(wteq t, b¼ 0.455, SE¼ 0.214, p¼ 0.033). As such,
higher values of wteq in year t led to a higher
likelihood of nest success in year t (Table 3). In
addition to wteq, the top model included an
additive effect of brood success in year t � 1
(brood success t – 1, b ¼�0.954, SE ¼ 0.496, p ¼
0.056), indicating females with successful broods
in year t � 1 were less likely to successfully nest
in year t (Table 3).

From our brood success candidate model set
(Table 2), two models were less than 2 DAICc.
Both models included additive effects of brood
success and hatch success in year t� 1 on brood

success in year t, and the top ranked model
included an additive effect of April PZ in year t
on brood success in year t. Based on a likelihood
ratio test, we determined that the additive effect
of April PZ in year t (X2¼ 3.525, df¼ 1, p¼ 0.06)
was biologically meaningful and significantly
affected brood success in year t. We acknowledge
brood success and hatch success in year t are
both observed (correlation of fixed effects ¼
0.772) and logically correlated to some degree,
albeit less than the 0.80 cut-off recommended by
Zar (2010) for suspected collinearity. Regardless,
collinearity among predictors is directional in
that it overestimates standard errors and reduces
power to detect significance of estimated effects
(Zar 2010, Dormann et al. 2013). However, in the
presence of collinearity the coefficients (b) are
still estimated correctly (see Dormann et al.
2013). Thus, collinearity increases the likelihood

Table 1. Candidate models evaluating the effects of climate and past reproductive success on subsequent hatch

success of greater sage-grouse (Centrocercus urophasianus) on Parker Mountain, Utah, USA, 1998–2010.

Model� AICc DAICc xi Deviance np r2
R

BSt�1 þ WTEQt 108.55 0.00 0.32 102.29 3 0
BSt�1 þ May PZt 110.49 1.94 0.12 104.23 3 0
BSt�1 þ Winter PZt 111.17 2.62 0.09 104.91 3 0
BSt�1 111.52 2.97 0.07 107.39 2 0
BSt�1 þ Precipitation Wintert 111.90 3.35 0.06 105.64 3 0
BSt�1 þ Precipitation Wintert�1 112.73 4.18 0.04 106.47 3 0
BSt�1 þ Temperature Mayt 112.75 4.20 0.04 106.49 3 0
Null 112.75 4.20 0.04 110.71 1 0
BSt�1 þ Winter PZt�1 113.03 4.48 0.03 106.78 3 0
BSt�1 þ March PZt 113.23 4.68 0.03 106.97 3 0
BSt�1 þ Summer PZt�1 113.36 4.81 0.03 107.10 3 0
BSt�1 þ Temperature Aprilt 113.40 4.85 0.03 107.14 3 0
BSt�1 þ Precipitation Late Summert�1 113.55 5.00 0.03 107.29 3 0
BSt�1 þ April PZt 113.63 5.09 0.03 107.38 3 0
BSt�1 þ Temperature Wintert 113.64 5.09 0.03 107.38 3 0
BSt�1 þ Precipitation Early Summert�1 113.65 5.10 0.02 107.39 3 0

Notes: AICc¼Akaike’s Information Criterion adjusted for sample size; DAICc¼difference in AICc values between each model
and the best model; xi¼AICc weight; np¼number of parameters (fixed effectsþ random effects . 0); r2

R ¼ random individual
intercept variance.

� HS¼hatch success; BS¼brood success; PZ¼Palmer Z-index of drought; WTEQ¼ spring snowpack, t¼year t; t� 1¼year
t � 1.

Table 2. Candidate models evaluating the effects of climate and past reproductive success on subsequent brood

success of greater sage-grouse (Centrocercus urophasianus) on Parker Mountain, Utah, USA, 1998–2010.

Model AICc DAICc xi Deviance np r2
R

HSt�1 þ BSt�1 þ April PZt 48.62 0.00 0.52 39.87 4 0
HSt�1 þ BSt�1 50.04 1.42 0.26 43.60 3 0
Null 53.00 4.38 0.06 46.61 2 2.65
HSt�1 53.06 4.44 0.06 48.78 3 1.71
April PZt 53.11 4.49 0.06 46.67 3 2.97
HSt�1 þ April PZt 53.35 4.73 0.05 44.59 4 1.69

Note: Model parameters and column headings are as in Table 1.
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of a type 2 error, but not the likelihood of a type 1
error. Consequently, when both brood success
and hatch success are included in a model, our
standard error estimates and associated signifi-
cance values should be interpreted as maximum
values, and thus, conservative estimates of
underlying effects. We had a strong a priori
biological justification for including both param-
eters in the same model despite their relatedness.
The respective effects represented opposing
hypotheses for reproductive trade-offs, and as
such, we hypothesized that the parameter esti-
mates would have opposing signs, which was
supported by our analysis. Indeed, based on the
parameter estimates (brood success t – 1, b¼2.77,
SE ¼ 1.32, p ¼ 0.035) individuals that had
successful broods in year t � 1 were more likely
(Table 3) to have successful broods in year t,
given they hatched a brood in year t. Parameter
estimates for the effect of previous nest success
(hatch success t – 1, b¼�3.45, SE¼ 1.35, p¼ 0.01)
indicated individuals that failed to hatch a nest in
year t � 1 were more likely (Table 3) to have a
successful brood in year t. April PZ in year t
(April PZ t, b ¼ 0.655, SE ¼ 0.381, p ¼ 0.085)
suggests that brood survival is higher (Table 3)
with increased precipitation in April of year t
(i.e., decreased drought). Differential effects of
previous reproductive success (negative slope of
hatch success year t � 1 vs. positive slope of
brood success year t � 1) on subsequent
reproductive success could indicate individual
heterogeneity. Furthermore, when comparing the
models with additive effects of both brood and
hatch success in year t� 1 (second ranked model;
Table 2) to hatch success in year t� 1 only (third
ranked model; Table 2), the variance associated

with the individual random intercept was esti-
mated at 0 and 1.71, respectively.

DISCUSSION

Previous research has demonstrated acute
reproductive costs on survival of various species
(Williams 1966, Erikstad et al. 1998), including
some grouse species (Tetraoninae, Angelstam
1984, Caizergues and Ellison 1997, Hagen et al.
2007, Blomberg et al. 2013). We extend the
reproductive costs to a chronic effect on subse-
quent reproduction that, to our knowledge, has
not been shown for grouse, but has been shown
for other taxa (e.g., Røskaft 1985, Gustafsson and
Sutherland 1988). Additionally, we were able to
decompose the reproductive cycle into its various
components (nest initiation, clutch size, nest
success, and brood success), thereby allowing
us to evaluate the effects of various stages of
previous reproductive effort and climatic vari-
ability (in year t and t� 1) on current-year stage-
specific reproductive success while also control-
ling for repeat observations of individuals
throughout their known reproductive history.
For example, Blomberg et al. (2013) reported
positive effects of brood success in year t � 1 on
brood success in year t for sage-grouse. Our
detailed analysis indicated that previous repro-
ductive success had varying effects on the
likelihood of subsequent reproduction. Similar
to Blomberg et al. (2013) we demonstrate that
successful brood hens are more likely to have
successful broods in the following year (given
that a brood was attempted) than unsuccessful
brood hens; however, we were also able to detect
a negative association between nest success in

Table 3. Odds Ratios for parameters in the best models of climate and past reproductive success on subsequent

nest and brood success of greater sage-grouse (Centrocercus urophasianus) on Parker Mountain, Utah, USA,

1998–2010.

Model parameter� Odds ratio 95% CI

Brood success top model parameters
HSt�1 0.03 (32.12) 0.00–0.29 (3.5–295.06)
BSt�1 16.01 1.83–140.1
April PZt 1.93 1.03–3.6

Hatch success top model parameters
BSt�1 0.39 (2.6) 0.17–0.87 (1.15–5.87)
WTEQt 1.58 1.11–2.24

Notes: Model parameters are as in Table 1.Values in parentheses are the inverse of the odds ratio (i.e., odds of failure).
� April PZt and WTEQt are continuous variables and odds are per unit change (1 Palmer Z-index unit and 2.54 cm for each

parameter, respectively).
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year t � 1 and brood success in year t. Our
additional level of detail revealed that both cost
of reproduction and individual heterogeneity in
reproductive output may be influencing a par-
ticular measure of reproductive output (brood
success).

Individual heterogeneity in reproductive out-
put and cost of reproduction has been shown in
mammalian (Hamel et al. 2009) and avian
(Aubry et al. 2009, Aubry et al. 2011, Cam et al.
2013) taxa and could be present in our system as
evidenced by differential effects of previous
brood success on subsequent hatch success
(negative slope) and brood success (positive
slope). The differential effects lead us to conclude
that most individuals that produce a successful
brood subsequently fail to achieve complete
reproductive success in the following year (i.e.,
failed hatch success). However, successful brood
hens that attain subsequent hatch success are
more likely to achieve subsequent brood success.
Although individual heterogeneity in reproduc-
tive output appeared to be present in our system,
we believe our covariates largely described
variation within individuals as evidenced by
the individual random effect variance estimated
at zero for the top two brood success models
(Table 2) and all nest success models (Table 1).
The link of reproductive costs between seasons
could be tied to time and/or energy constraints
reproduction puts on molt, and in turn increased
energy expenditure in thermoregulation during
winter (Nilsson and Svensson 1996, Dawson et
al. 2000).

Our analysis, as hypothesized, did not reveal
reproductive costs for all estimated reproductive
parameters (e.g., nest initiation). However, in
contrast to our hypothesis, costs did not manifest
in clutch size. Reproductive costs can manifest as
completely forgoing reproduction or abandon-
ment of effort during a reproduction attempt
(Erikstad et al. 1998). Our results suggest that the
probability of a hen attempting to initiate a nest
in a given year is not associated with previously
accrued costs, but likelihood of reproductive
failure post-nest initiation (i.e., a form of aban-
donment) increases when reproductive costs
were incurred, which is consistent with grouse
ecology. Food is not typically a limiting factor for
grouse species during winter (Bergerud and
Gratson 1988), which is particularly apparent

for sage-grouse as evidenced by high winter
survival (see J. W. Connelly, S. T. Knick, M. A.
Schroeder, and S. J. Stiver, unpublished manuscript;
e.g., Caudill et al. 2014) and observations of
substantial weight gain during winter (Beck and
Braun 1978). A logical conclusion is that sage-
grouse generally enter the breeding season with
adequate resources to attempt reproduction.
However, ample high quality wintering habitats
on our study site (Caudill et al. 2013) could have
influenced hens’ body condition and mitigated
variability that has been reported in nest initia-
tion (see Connelly et al. 2011). Our results
demonstrate that multiple measures of previous
reproductive effort had varying effects on repro-
ductive trade-offs and trade-offs manifest in
multiple, but not all, measures of reproductive
output. Consequently, multiple measures of
reproductive effort and output should be as-
sessed when evaluating cost of reproduction and
trade-offs.

Evaluation of individual heterogeneity and
reproductive costs are vital to the conservation
of harvested species. If ‘‘superior’’ individuals are
removed by harvest from the population in non-
random fashion, a distinct dichotomy could
occur, where disproportionate removal is in-
versely related to effects on population size and
persistence due to disproportionate contribution
of ‘‘superior’’ individuals. For example, harvest
may appear compensatory at the population
level, but if ‘‘superior’’ individuals are removed
disproportionally, effects on population size
could be greater than expected. Both additive
(e.g., Van Kooten et al. 2007, Sedinger et al. 2010)
and compensatory (e.g., Connelly et al. 2000,
Gibson et al. 2011) harvest mortality have been
espoused for sage-grouse. However, harvest
mortality hypotheses, as currently conceptual-
ized, may be problematic when reproductively
successful groups have differential susceptibility
to harvest (Redfield 1975), contribute dispropor-
tionately to population growth rates (sensu
Taylor et al. 2012), and consistently contribute
to population growth (i.e., consistently successful
‘‘brood hens’’; e.g., Blomberg et al. 2013). In
many states, sage-grouse harvest seasons have
been trending later in the year to minimize the
susceptibility to harvest of reproductively suc-
cessful females and their offspring (see Hornaday
1916, Patterson 1952, Reese and Connelly 2011).
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Our results indicate this trend is warranted and
should likely continue as in some instances
harvest is still selective of juvenile birds (young
of the year) and successful hens (Caudill et al.
2014). Importance of segments of the population
(i.e., consistently successful ‘‘brood hens’’) to
population growth rates was not a parameter we
attempted to quantify, but is of paramount
importance in understanding the effects of
harvest and conceptualization of population
ecology.

Climatic variables in the same year as the
reproductive event influenced reproductive suc-
cess. For both nest success and brood success,
increased moisture resulted in increased likeli-
hood of reproductive success. We found limited
support for an effect of April drought on brood
success, where brood success increased with
moisture. The effect of moisture in April may
be associated with soil moisture and habitat
conditions during the brood-rearing period.
Drought negatively affects chick survival (Gut-
tery et al. 2013) and increased snow depth
positively affects recruitment in sage-grouse
(Blomberg et al. 2012). Furthermore, increased
moisture in sagebrush-steppe ecosystems is
positively related to abundance of insects (Wen-
ninger and Inouye 2008), which are an important
resource for sage-grouse chicks (Johnson and
Boyce 1990, Gregg and Crawford 2009, Dahlgren
et al. 2010). In addition, snowpack was the best
climatic predictor of nest success, showing a
positive relationship, and is likely linked to
habitat quality during the nesting season (e.g.,
grass cover at nest sites). Holloran et al. (2005)
also reported increased winter precipitation
positively affected sage-grouse nest success.
Our results suggest that reduced depth of
snowpack as a result of climate change (Mote et
al. 2005) could negatively affect nest success.
Similarly, Guttery et al. (2013) suggest that
reductions in snowpack may pose a major threat
to sage-grouse populations.
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