

The National Academies of SCIENCES • ENGINEERING • MEDICINE

SPACE STUDIES BOARD

Achieving Science with CubeSats: Thinking Inside the Box

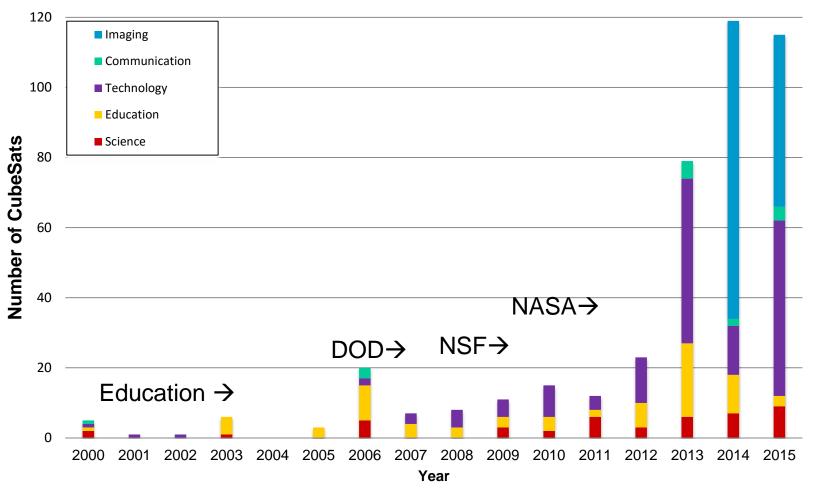
Committee Chair: Thomas H. Zurbuchen, University of Michigan Vice Chair: Bhavya Lal, IDA Science and Technology Policy Institute Study Director: Abigail Sheffer, Program Officer, SSB

Committee Membership

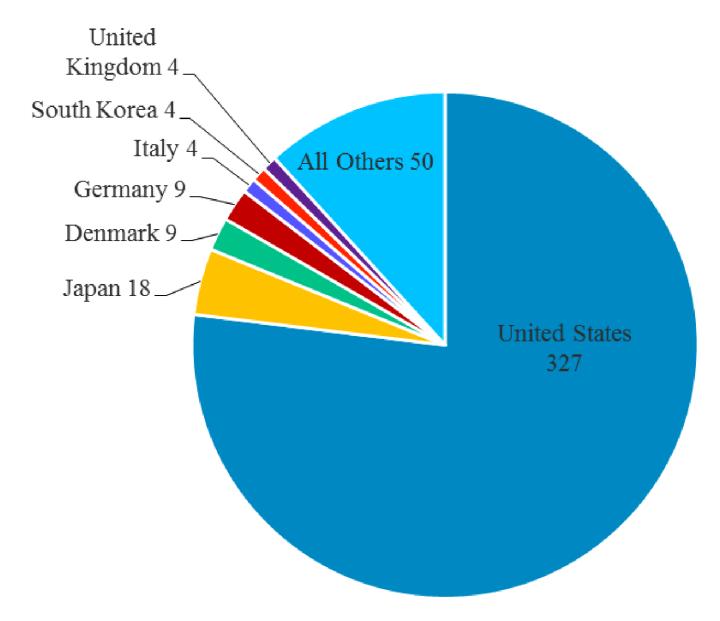
Julie Castillo-Rogez, Jet Propulsion Laboratory, Caltech Andrew Clegg, Google, Inc.

- Bhavya Lal, (Vice Chair), IDA Science and Technology Policy Inst.
- Paulo Lozano, Massachusetts Institute of Technology
- Malcolm Macdonald, University of Strathclyde
- Robyn Millan, Dartmouth College
- Charles D. Norton, Jet Propulsion Laboratory, Caltech
- William H. Swartz, Johns Hopkins University, Applied Physics Lab Alan M. Title, Lockheed Martin Space Technology Adv. R&D Labs
- Thomas N. Woods, University of Colorado Boulder
- Edward L. Wright, University of California, Los Angeles
- A. Thomas Young, Lockheed Martin Corporation [Retired]
- Thomas H. Zurbuchen (Chair), University of Michigan

Key Elements of Charge to Committee


- Develop a summary of status, capability, availability, and accomplishments in the government, academic, and industrial sectors
- Recommend potential near-term investments that could be made to improve the capabilities and usefulness of CubeSats for scientific return and to enable the science communities' use of CubeSats
- Identify a set of sample priority science goals that describe near-term science opportunities

Overview


- 1. Based on detailed analysis of available data
- 2. Recognized similarity to disruptive innovation
- Analysis of science publications: CubeSats can do high priority science
- 4. Science potential in all science divisions to varying degrees. However, not every application is appropriate for CubeSats.
- 5. Potential is materialized if a number of conditions are fulfilled
 - 1. Technology and connections to industry
 - 2. Policy issues
 - 3. Programmatic and management issues

US CubeSats Launched – by Mission Type

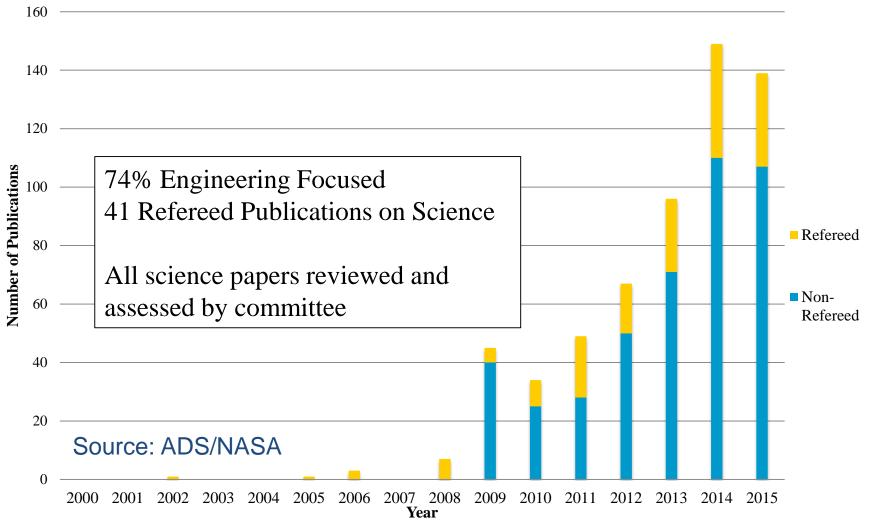
Commercial \rightarrow

International Participation

Concept of a Disruptive Innovation

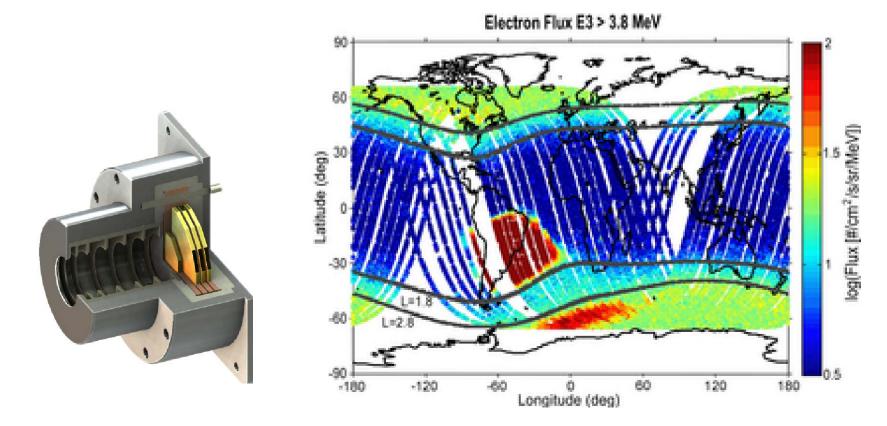
- Process by which a product or service takes root initially in simple applications at the bottom of a market and then relentlessly moves up market [...]." Clayton Christenson, 1995
- Has been used to describe many shifts in the economy
 - Personal computers (that disrupted the mainframe computer industry)
 - Cellular phones (that disrupted fixed line telephony)
 - Smartphones (that continue disruption of multiple sectors, computers, digital cameras, telephones, and GPS receivers)
- End-state and especially level of disruption is unclear at beginning

CubeSats Share Characteristics of Disruptive Innovations


- **Performance**. Early CubeSats were essentially "beepsats"
- Cost. Hardware for a basic CubeSat can be purchased for a few tens of thousands of dollars
- **Users**. CubeSats are introducing students and other participants to space technology; introducing the potential for new functionalities such as stop-and-stare and multi-hundred/thousand swarm systems
- **Speed**. CubeSats began as platforms for technology testing, and are being considered for advanced missions such providing real-time relay communication
- Origin. Introduced by educators not the stalwarts of aerospace
- Enabling technology. Propelled by advances in software, processing power, data storage, camera technology, compression and solar array efficiency
- **Development models**. Adopted by entrepreneurs using fly-test-refly and other lean manufacturing technology and business models

End-state and especially level of disruption CubeSats may create is unclear

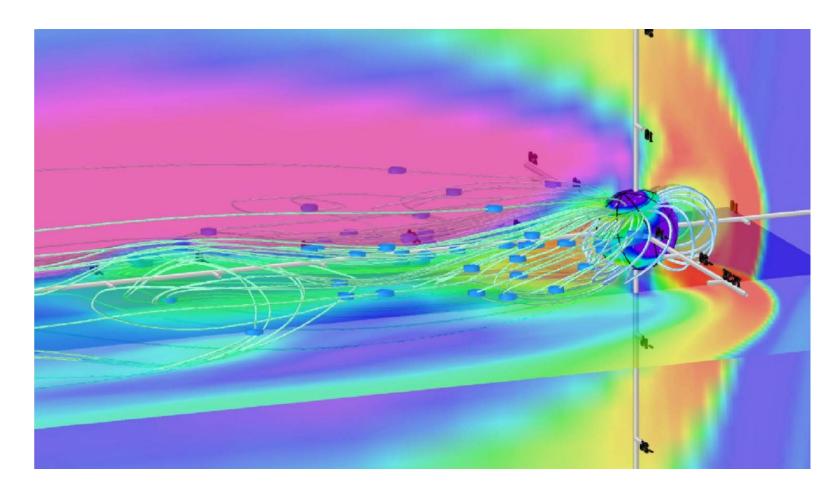
What CubeSats Can Enable


- They are standardized creation of supply chain
- They are cheaper conduct of higher risk activities, "fly-learn-refly" paradigm
- Enables new mission types, especially high-risk orbits and secondary lines of sights, as well as targeted science
- Enables creation of entirely new architectures, especially constellations and swarms

Number of CubeSat Publications

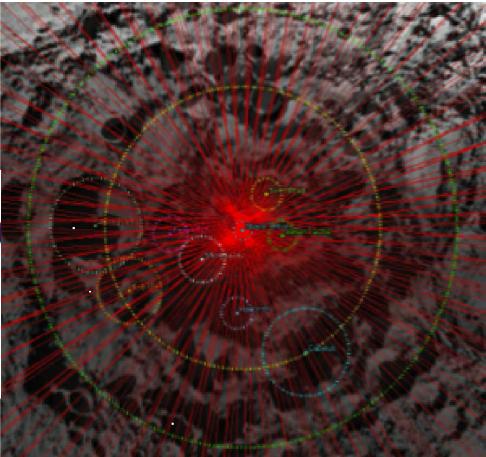
Conclusion: CubeSats have already produced high-value science, as demonstrated by peer-reviewed publications in high-impact journals. {...}

CubeSat Example for High-Risk Orbits, with other Mission


Colorado Student Space Weather Experiment (CSSWE)

Example: Constellations/Swarms

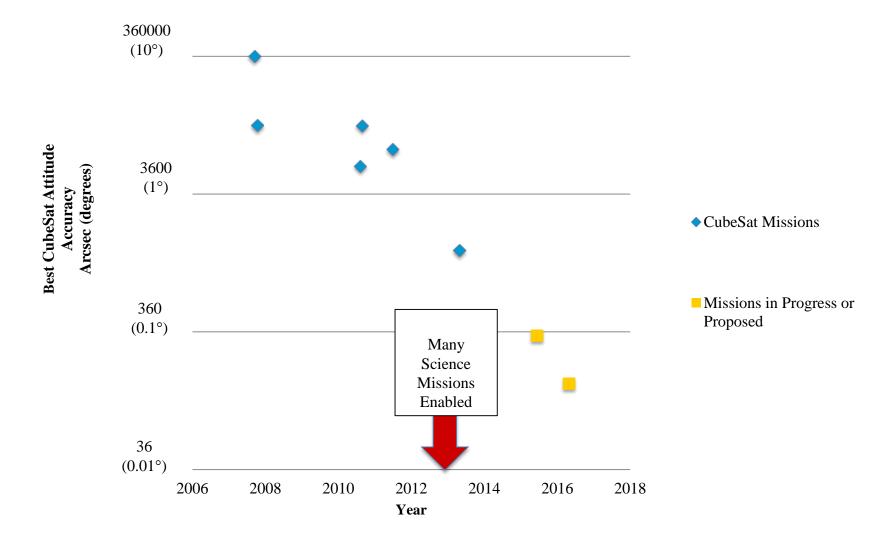
Cyclone Global Navigation Satellite System (CYGNSS)


Not a CubeSat, but CubeSat enabled

Constellations for Space Weather

"Instrumenting Space" through Distributed Architectures

Example: Targeted Science: 1 Instrument, 1 Question



Enabling Technology by Science Discipline

Science Discipline	Enabling Technology	Example Application
	Propulsion	Constellation deployment and maintenance,
Solar and Space Physics		formation flight
	Sub-arcsecond attitude control	High resolution solar imaging
	Communications	Missions beyond low Earth orbit
	Miniaturized field and plasma	In-situ measurements of upper atmosphere
	sensors	plasmas
Earth Science	Propulsion	Constellations for high-temporal resolution
		observation and orbit maintenance
	Miniaturized sensors	Stable, repeatable and calibrated datasets
	Communications	High data rate
	Propulsion	Orbit insertion
Planetary Science	Communications, Comm Infrastructure	Direct/indirect to Earth communications
	Radiation-tolerant electronics	Enhanced survival in planetary magnetospheres, long duration flight
	Deployables	Enhanced power generation beyond Mars
	Propulsion	Constellations for interferometry, distributed
		apertures
Astronomy and	Sub-arcsecond attitude control	High resolution imaging
Astrophysics	Communications	High data rate
	Deployables	Increase aperture and thermal control
	Miniaturized sensors	UV and X-ray imaging
Physical and Biological	Thermal control	Stable payload environment

Illustrating Speed of Development: Attitude Control

Policy Issues Considered

- Regulatory framework for CubeSats is nearly identical to that of large spacecraft
- Issues particularly affecting or potentially limiting the development of CubeSats as a science tool
 - Orbital debris
 - Communications
 - Launch vehicles
 - Other restrictions affecting the community, such as ITAR, etc.

Overview

- 1. Based on detailed analysis of available data
- 2. Recognized similarity to disruptive innovation
- Analysis of science publications: CubeSats can do high priority science
- 4. Science potential in all science divisions to varying degrees. However, not every application is appropriate for CubeSats.
- 5. Potential is materialized if a number of conditions are fulfilled
 - 1. Technology and connections to industry
 - 2. Policy issues
 - 3. Programmatic and management issues

Download full report at: goo.gl/osCSQ3 Full presentation: goo.gl/fQXXYp

Questions, Comments?

