Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1961

An Inheritance and Linkage Study of Barley with Special Emphasis on Purple Pigmentation of the Auricle

Devon Lyle Doney Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Plant Breeding and Genetics Commons

Recommended Citation

Doney, Devon Lyle, "An Inheritance and Linkage Study of Barley with Special Emphasis on Purple Pigmentation of the Auricle" (1961). *All Graduate Theses and Dissertations*. 2746. https://digitalcommons.usu.edu/etd/2746

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

AN INHERITANCE AND LINKAGE STUDY OF BARLEY WITH SPECIAL

EMPHASIS ON FURFLE FIGMENTATION OF THE AURICLE

by

Devon Lyle Doney

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Flant Breeding

UTAH STATE UNIVERSITY Logan, Utah

378.2 D7171 0.2

AC KNOWLEDGMENT

I would like to express my sincere thanks and appreciation to the members of my thesis committee, Dr. Rollo W. Woodward, Dr. DeVere R. McAllister, and Dr. Eldon J. Gardner. Their interest, consideration and help is greatly appreciated.

I am deeply indebted to Dr. Rollo W. Woodward for his untiring help and for furnishing the materials for this study. His association the past two years has been very educational and inspiring.

Devon Lyle Doney

TABLE OF CONTENTS

			Page
Introduction			1
Review of literature			3
Inheritance of gene pairs			3
Reported linkages			8
Materials and methods			12
Experimental results			15
Inheritance of segregating characters			15
Dihybrid combinations showing linkage			32
Factor pairs showing independence .			142
Summary			46
Literature cited			49

LIST OF TABLES

lable		Page
1.	Correspondence of the various systems of designating chromosomes and linkage groups in barley	2
2.	Segregation of deficiens (Vt) versus two-rowed (V) in ${}^{\rm F_2}$ generation	16
3.	Segregation of deficiens (V ^t) versus two-rowed (V) in ${\rm F}_3$ generation	16
4.	Segregation of two-rowed (V) versus six-rowed (v) in ${\rm F}_2$ and ${\rm F}_3$ generation	16
5.	Segregation of normal (E) versus long awned outer (e) glumes in F_2 and F_3 generation	18
6.	Segregation of purple (Pr) versus non-purple (pr) straw in ${\rm F}_2$ generation .	18
7.	Segregation of purple (Pr) versus non-purple (pr) straw in \mathbb{F}_3 generation	19
8.	Segregation of purple (Re2) versus non-purple (re2) lemma and pericarp in ${\rm F}_2$ generation	19
9.	Segregation of purple (Re $_2$) versus non-purple (re $_2$) lemma and pericarp in F $_3$ generation	19
10.	Segregation of normal (Li) versus liguleless (li) in ${\rm F}_2$ generation .	21
11.	Segregation of normal (Tr) versus triple (tr) awas in \mathbb{F}_2 and \mathbb{F}_3 generations	21
12.	Segregation of lax (L) versus dense (l) spike in ${\rm F}_2$ generation	22
13.	Segregation of lax (L) versus dense (l) spike in ${\rm F}_3$ generation	22
14.	Segregation of early (Ea) versus late (ea) maturity in ${\rm F}_3$ generation	22
15.	Segregation of non-dehiscent (Da) versus dehiscent (da) awns in ${\rm F}_3$ generation	24

Table

		2.3
	20	C 3
		_

16.	Segregation of normal (Br) versus brachytic (Br) in $\rm F_2$ and $\rm F_3$ generations	24
17.	Segregation of covered (N) versus naked (n) caryopsis in \mathbb{F}_2 generation	24
18.	Segregation of long (k_1) versus short (k_2) awns in F_2 generation	25
19.	Segregation of normal (G1) versus glossy (g1) leaf in $\rm F_2$ and $\rm F_3$ generations	25
20.	Segregation of normal (Z) versus zoned (z) leaf in ${\rm F}_2$ and ${\rm F}_3$ generation	25
21.	Segregation of black (B) versus non-black (b) lemma and pericarp in ${\rm F}_2$ generation	27
22.	Segregation of rough (R) versus smooth (r) awns in F_2 and F_3 generations	27
23.	Segregation of rough (R) versus smooth (r) awas in ${\rm F}_3$ generation	28
24.	Segregation of long (S) versus short (s) rachilla hairs in ${\rm F}_2$ generation	28
25.	Segregation of purple (Fau) versus non-purple (pau) auricle in ${\rm F}_2$ generation	28
26.	Segregation of purple (Pau) versus non-purple (pau) auricle in ${\rm F}_3$ generation	29
27.	Segregation of normal (Rb) versus ribbongrass (rb) in F2 and F3 generations .	30
28.	Segregation of normal (Gp) versus grandpa (gp) in \mathbb{F}_2 and \mathbb{F}_3 generation	30
29.	Segregation of normal (Gs) versus glossy (gs) stem in $\rm F_2$ generation	30
30.	Segregation of normal (Gs) versus glossy (gs) stem in ${\rm F}_3$ generation	31
31.	Segregation of long (Gh) versus short (gh) glume hairs in ${\rm F}_2$ generation	31

Table		Page
32.	Segregation of long (Gh) versus short (gh) glume hairs in F3 generation \ldots	31.
33.	Purple (Pau) versus non-purple (pau) auricle in relation to other factor pairs	34
34.	Deficiens (V^t) versus two-rowed (V) spike in relation to other factor pairs	35
35.	Purple (Re_2) versus non-purple (re_2) lemma and pericarp in relation to other factor pairs .	35
36.	Purple (Pr) versus non-purple (pr) straw in relation to lax (L) versus dense (l) spike	37
37.	Two-rowed (V) versus six-rowed (v) spike in relation to normal (E) versus long awned (e) outer glumes .	37
38.	Normal (Z) versus zoned (z) leaf in relation to normal (G1) versus glossy (g1) leaf	38
39.	Rough (R) versus smooth (r) awns in relation to long (S) versus short (s) rachilla hairs	38
40.	Normal (Br) versus brachytic (br) habit in relation to other factor pairs	40
41.	Normal (Rb) versus ribbongrass (rb) leaf in relation to other factor pairs	40
42.	Normal (Gs) versus glossy (gs) stem in relation to early (Ea) versus late (ea) maturity	142

INTRODUCT ION

New and better adapted varieties of crop plants have resulted from the application of the principles of genetics. Fundamental research in the field of barley genetics has helped the plant breeder in developing better varieties for specific uses and adaptability.

Barley is one of the best cultivated crop plants for making genetic studies. It has a wide range of adaptability, exhibits a host of contrasting genetic characters, is a simple diploid with only seven pairs of chromosomes, and all the cultivated species are interfertile.

The mode of inheritance of nearly 200 characters has been studied, many of whose genes have been mapped and assigned to one of the seven chromosomes.

The inheritance and linkage of the factors responsible for anthocyanin pigmentation in the auricle of barley is the primary purpose of this study.

Other character pairs are included in this study for possible linkages with purple auricle or with each other. These linkages may help materially in mapping genes on their respective chromosome.

A new system of designating the linkage groups and chromosomes with Arabic numbers, adopted by the Fourth Annual Barley Research Worker's Conference, will be followed throughout this study. Comparison of the new and old systems is given in table 1.

New linkage group and chromosome No.	Frevious linkage groups	Key marker gene pairs
1	III - VII ^a	N n, Br br
2	I	V V
3	VI	Uz uz
4	IA	K k
5	II	Въ
6		0 0
7	V	R r

Table 1. Correspondence of the various systems of designating chromosomes and linkage groups in barley.

^a Kramer, Veryl, and Hanson (21) from translocation experiments found these two groups to be separate arms of the same chromosome.

REVIEW OF LITERATURE

The literature on genetic studies of barley has been reviewed by several workers. One of the most comprehensive reviews was made by Smith (37) who reviewed 1,400 articles, 900 of which are listed in his bibliography. Robertson and co-workers have also published several such reviews (31), (35).

This review will be confined to the gene pairs involved in this study.

Inheritance of Gene Pairs

Factors in chromosomes

Deficiens (V^t) versus two-rowed (V) versus six-rowed (v) spike. The complicated problem of number of kernel rows and fertility of lateral florets was given a reasonable explanation by Woodward (47). Harlan (12), (13) had previously classified cultivated barley into four species on the basis of the fertility of lateral florets. Woodward suggested the number of rows of kernels is determined by an allelic series of four genes. These are designated (V^t) deficiens, (V) weak two-rowed, (V^d) strong two-rowed and (v) six-rowed with dominance incomplete. The fertility of the lateral florets is determined by (i), (I), and (I^h) with dominance in decreasing order as listed.

The (I) series tend to modify the expression of the (V) genes, and sometimes confuse the classification.

Daave (5), Immer and Henderson (17), Tedin (41), Gillis (10), Buckley (4), Neatby (26), Leonard (23), and Robertson (29) have also substantiated Woodwards conclusions on the fertility of the lateral florets.

Normal (E) versus long awned outer (e) glumes. A number of workers have reported the dominance of normal versus long awned outer glumes by a simple Mendelian ratio. Among the workers reporting a single gene difference were Immer and Henderson (17), Robertson, Immer, Wiebe, and Stevens (34), Hor (15), Bose (3), Swenson (38), Heiner (14), Isom (19), Gill (9), Imam (16), and Woodward (48).

Normal (Tr) versus triple (tr) awned. A monofactorial inheritance for normal versus triple awned lemma with triple awns being recessive has been reported by Immer and Henderson (17), Imam (16), Isom (19), Heiner (14) and LeBaron (22). Kasha and Walker (20) reported finding another gene for triple awns in chromosome 3.

<u>Purple (Pr) versus non-purple (pr) straw</u>. A simple Mendelian ratio has been observed by Robertson (20) and Woodward (h6). A two factor mode of inheritance has also been suggested by the work of Gill (9), Al-Jibouri (1), Heiner (1h), and Imam (16). Woodward (personal communication) suggested that environmental influences can cause a considerable variation in the color expression of purple straw.

Furple (Re₂) versus non-purple (re₂) lemma and pericarp. Buckley (4) reported a single gene inheritance in some crosses but in other crosses he considered the possibility of two complementary genes that inhibit the expression of purple when both are dominant.

Woodward and Thieret (49) obtained 3:1 ratios from crosses in which one parent was purple and one non-purple. In other crosses in which both parents were non-purple 9:7 ratios were observed, indicating a two factor inheritance. Al-Jibouri (1) also obtained a 9:7 ratio from crosses between non-purple parents. Gill (9), Heiner (14), and Imam (16) reported both 3:1 and \$:7 ratios.

Normal (1) versus liguleless (11). Takashashi (40) obtained good 3:1 ratios in normal versus liguleless crosses. Heiner (14), Iman (16) and LeBaron (22) reported similar results.

Lax (L) versus dense (1) spike. Biffon (2) observed a wide range of spike densities and suggested a quantitative inheritance. Wexelsen (42), (43) classified five different factors that affect spike density and located them in several of the linkage groups. Hor (15), Neatby (26) and Heiner (14) reported monofactorial segregations for a spike density gene located in linkage group 2. Takahashi (40) suggested that there are a number of different factor pairs that affect spike density.

Early (Ea) versus late (ea) maturity. Time of maturity has been reported to be affected by several factors. Woodward (48) and Griffee (11) reported a monogenic inheritance for an early maturity factor pair found in group 2. Frey (7) found one factor for earliness in group 5, while Wexelsen (43) found evidence for one factor pair for earliness in group 1. Neatby (26) reported that several factors affect the expression of earliness.

Factors in chromosome 1

<u>Covered (N) versus naked (n) caryopsis</u>. Buckley (4), Daane (5), Gill (9), Heiner (14), Hor (15), Imam (16), and Neatby (26) have all reported a monogenic mode of inheritance for covered versus naked caryopsis.

<u>Normal (Br) versus brachytic (br) habit.</u> Swenson (38) conducted a very comprehensive study of the growth habit and genetics of the brachytic habit. His results indicated a single recessive gene was responsible for the brachytic habit. Powers (28) and Robertson (31) obtained similar Mendelian ratios.

Factors in chromosome 4

Long (k_1) versus short (k_2) awms. Myler (25) concluded that two gene pairs affected the awn length. Myake and Imai (Smith 37) suggested that in some crosses there were three genes responsible for awn length while in other crosses there was only one factor difference. LeBaron (22) found a 3:1 ratio in crosses between long and short awms.

<u>Normal (G1) versus glossy (g1) leaf</u>. Ratios of 3:1 have been reported by Immer and Henderson (17), Robertson and Coleman (32), Smith (37), Iman (16) and Heiner (14). Low probability values were obtained in several of these studies. Heiner (14) attributed this to the poor seedling vigor of the glossy leaf plants.

Normal (Z) versus zoned (z) leaf. Immer and Henderson (17) and Heiner (14) reported monogenic ratios for normal versus zoned leaf. Heiner concluded that low probability values often occur because of poor seedling vigor.

Factors in chromosome 7

Rough (R) versus smooth (r) awns. Simple Mendelian ratios for the rough versus smooth awn character have been reported by Daane (5), Wexelsen (43), Hor (15) and Griffee (11). Robertson, Deming and Koonce (33) suggested a two factor inheritance for rough versus smooth awns. Vavilov (Griffee 11) found varying degrees of smoothness on the awns. 7

Unassigned factor pairs

<u>Furple (Pau) versus non-curple (pau) auricle</u>. Ubisch (Smith 37) reported that red color in the auricle was dominant. Ratios of 3:1 and 10:6 for red to white color were found by Huber (Smith 37). Huber also stated that one gene was responsible for the formation of anthocyanin in the auricle; however, this gene would only express itself in the heterozygous condition or when another intensifier gene was also present in the dominant condition. Grassner and Straib (Smith 37) observed that anthocyanin development could be increased by a deficiency of nitrogen or a high concentration of CO₂. A 3:1 ratio for purple over white was reported by LeBaron (22), who also found close linkage of purple auricle with purple lemma and pericarp. A monogenic ratio was also reported by Lurty (24).

Normal (Rb) versus ribbongrass (rb) leaf. The inheritance of ribbongrass has been reported by Robertson, Wiebe, and Shands (35) and Heiner (14) to be influenced by a single recessive gene.

<u>Mormal (Gs) versus glossy (gs) stem</u>. Several workers including Immer and Henderson (17), Gill (9), Heiner (14), and LeBaron (22) have reported a monofactorial inheritance for glossy stem. <u>Normal (Da) versus dehiscent (da) awns</u>. Huber (Smith 37) reported that the dropping of awns at maturity was conditioned by one gene. Tavcar (Smith 37) suggested that while one gene controlled the dropping of awns at maturity in some crosses, two genes determined the deciduousness in other crosses.

8

Long (Gh) versus short (gh) glume hairs. Single factor pair ratios have been obtained by Hor (16), Al-Jibouri (1), Heiner (4) and Iman (16).

Reported Linkages

Linkages in chromosome 2

14.0 + 1.3

Two-rowed (V) versus six-rowed (v) in relation to other factor pairs. Recombination % Phase Authority (V v) in relation to (Fr pr) 20.5 ± 3.4 16.0 ± 2.6 9.0 ± 0.7 Heiner (14) coupling Woodward (48) coupling Robertson (30) 23.2 + 2.2 Iman (16) coupling 12.5 ± 3.3 13.0 ± 1.2 Gill (9) Gill (9) 0.00 Takahashi, Yamamoto, Jasuda and Itamo (40) (V v) in relation to (Re2 re2) 18.6 Buckley (4) 13.2 Woodward (49) 13.0 ± 1.2 12.5 ± 2.4 Gill (9) Al-Jouri (1) 17.1 + 0.7 coupling Woodward (48)

coupling

Woodward (48)

	(V v) in relation to (R	e ₂ re ₂)
10.0 ± 4.8 22.1 \pm 16.3 15.0 \pm 2.2 14.5 \pm 6.5	repulsion repulsion coupling repulsion	Woodward (48) Woodward (48) Heiner (14) Heiner (14)
	(V v) in relation to (E	e)
24.7 26.6 \pm 0.6 28.0 \pm 1.2 26.7 \pm 1.7 27.0 \pm 5.7 26.5 \pm 2.0 30.0 \pm 1.7 31.0 \pm 2.4 28.1	repulsion coupling repulsion coupling	Bose (3) Robertson (34) Immer and Henderson (17) Swenson (39) Woodward (48) Woodward (48) Hoiner (14) Heiner (14) Takahashi, Yamamoto, Jasuda and Itamo (40)
	(V v) in relation to (L	1)
40.0 Correlated 41.3 ± 2.6 33.5 ± 3.5 37.6 ± 3.0	coupling coupling coupling	Wexelsen (43) Neatby (26) Woodward (48) Heiner (14) Imam (16)
	(V v) in relation to (Tr	r tr)
30.0 41.0 39.0 <u>+</u> 3.0		Woodward (148) Woodward (148) Immer and Henderson (17)
	(V v) in relation to (Li	lli)
33.3 ± 2.9 39.5 ± 5.4 43.1 ± 2.7 39.3 ±	coupling repulsion repulsion	Woodward (48) Woodward (48) Imam (16) Takahashi, Yamamoto, Jasuda and Itamo (40)
	(V v) in relation to (Ea	ea)
13.5 ± 2.4 42.0 correlated	coupling	Woodward (48) Griffee (11) Wexelsen (43)

relation to other fa	ctor pairs.	
Recombination 5	Phase	Authority
	(Re2 re2) in relation	to (L 1)
41.3 ± 2.6 35.0 ± 5.8 36.0 ± 5.9 46.1 ± 7.2 43.1 ± 3.6	coupling coupling repulsion coupling coupling	Woodward (148) Heiner (114) Heiner (114) Imam (16) LeBaron (22)
	$(Re_2 re_2)$ in relation	to (Pr pr)
5.5 <u>+</u> 1.9		Heiner (14)
	(Re2 re2) in relation	to (Li li)
40.0 + 4.8	coupling	Woodward (48)
	(Re2 re2) in relation	to (Ea ea)
33.0 ± 3.0	coupling	Woodward (148)
Normal (E) vers	us long awned (e) outer	glumes in relation to
other factor pairs.		
Recombination \$	Phase	Authority
	(E e) in relation to	(L 1)
31.5 ± 4.0 21.2 ± 1.5 42.0 ± 5.9 18.1 ± 2.5 23.0 ± 2.0	repulsion coupling coupling coupling coupling	Woodward (48) Woodward (48) LeBaron (22) Imam (16) Heiner (14)
	(E e) in relation to	(Pr pr)
32.5 ± 9.0 13.0 ±19.7 34.1	repulsion	Gill (9) Heiner (14) Takahashi, Yamamot Jasuda and Itamo (
Lax (L) versus	dense (1) spike in rela	tion to normal (Li)
versus liguleless (1	<u>i)</u> .	
26.0 ± 6.0 27.5 ± 3.0	repulsion	Woodward (48) Woodward (48)

Furple (Rec) versus non-purple (rec) lemma and pericarp in

Purple (Pau) ver	sus non-purple (pau) aur	icle in relation to
other factor pairs.		
	(Pau pau) in relation t	o (V ^t V)
37.9 + 2.0	repulsion	LeBaron (22)
	(Pau pau) in relation (Re ₂ re ₂)
4.2 ± 0.5	repulsion	LeBaron (22)
Linkages in chromoson	ne 4	
Normal (G1) vers	sus glossy (gl) leaf in r	elation to normal (Z)
versus zoned (z) leaf		
Recombination %	Phase	Authority
33.0 <u>+</u> 0.05		Immer and
9.3 ± 0.51 14.0 ± 5.3	repulsion coupling	Woodward (48) Woodward (48)

MATERIALS AND METHODS

The crosses used in this study were furnished by Dr. R. W. Woodward. Several crosses involving purple versus non-purple auricle, and other contrasting characters were made in 1957. F_1 plants were grown in 1958 and the seed from each F_1 plant was space planted in 35 foot rows in 1959. Characters in F_2 which were identifiable only in immature plants were labeled by tying the recessives with an assigned colored string. Labeling was done when each character was best exhibited to facilitate classification at maturity. These characters included glossy stem, glossy leaf, zoned leaf, ribbongrass, grandpa, purple auricle, purple straw, and purple lemma and pericarp. Each family was pulled when mature and the plants classified separately.

Two crosses were carried through the F_3 in 1960. Each F_2 plant was represented by a five foot F_3 row. The characters were classified throughout the season as they were most readily identified with follow ups on each from time to time.

Two additional crosses of similar nature were made in 1959. The seed from these crosses was grown in California as F_1 's that winter and planted in F_2 the following spring. Classification of these crosses was performed the same as previously described for F_2 populations. Heads from each plant were saved, after being numbered for future reference.

The material was first analyzed for inheritance of individual factor pairs. Dihybrid combinations were then studied for independence or association. Chi-square values were calculated, as a test for goodness of fit, for each factor pair and for each dihybrid combination. The probability values for chi-square were taken from Ostle (27). Recombination values were computed for both F_2 and F_3 populations by the Fisher product method as described by Immer (18).

Characters used in this study and their gene symbol. Linkage Group 2

Two-rowed versus six-rowed	v v
Deficiens versus two-rowed	V ^t v
Normal versus triple awned	Tr tr
Normal versus long awned outer glumes	Ee
Purple versus non-purple straw	Pr pr
Furple versus non-purple lemma and pericarp	Re ₂ re2
Lax versus dense spike	Ll
Early versus late maturity	Ea ea
Normal versus liguleless	Li li
Non-dehiscent versus dehiscent awns	Da da
Linkage Group 1	
Covered versus naked caryopsis	N n
Linkage Group 4	
Long versus short awns	k _l k ₂
Normal versus zoned leaf	Zz
Normal versus glossy leaf	Gl gl
Linkage Group 5	
Black versus non-black lemma and pericarp	Въ

Linkage Group 7

Rough versus smooth awns	R r
Long versus short rachilla hairs	Ss
Factor pairs unassigned	
Purple versus non-purple auricle	Pau pau
Normal versus glossy stem	Gs gs
Long versus short glume hairs	Gh gh
Normal versus ribbongrass	Rb rb
Normal versus grandpa	Gp gp

*Symbol suggested by author

Barley crosses, parents and segregating factor pairs used in this

study

Cross	Farents	Segregating factor pairs
B1747	T942	V - e - z - gl - Tr - R - rb - Gp
	B1257-21	$\mathbf{v} = \mathbf{E} = \mathbf{Z} = \mathbf{GL} = \mathbf{tr} = \mathbf{r} = \mathbf{Rb} = \mathbf{gp}$
B1753	P #100	pr - pau - k ₂ - n - e
	T188	$Pr = Pau = k_1 = N = E$
B1755	T957	Pr = Pau = Gs = N = S
	B1239-25	pr - pau - gs - n - s
B1757	T957	da-Pr- Pau-Br-Gs-V-R-Gh-re2-1-Ea
	T119	Da-pr- pau-br-gs-Vt-r-gh-Re2-L-ea
B1769	T357	$Li - b - V - E - L - Pr - Re_2 - Pau$
	T945	li - B - Vt - e - 1 - pr - re2 - pau
B1.840	T357	$Li - b - V - E - L - Pr - Re_2 - Pau$
	T945	li - B - ∇^t - e - l - pr - re ₂ - pau

EXPERIMENTAL RESULTS

The experimental results from this study are presented in the following sequence: The inheritance of independent segregating factor pairs, factor pairs showing linkage, and factor pairs showing independence. Special emphasis was placed on the purple auricle character in an attempt to determine the inheritance and position of the gene conditioning it.

Inheritance of Segregating Characters

Factors in linkage group 2

<u>Deficiens</u> (v) versus two-rowed (v) versus six-rowed (v). These three genes (v), (v) and (v) have been shown to be allels of the same loci, and will be considered in this section although the results will be presented in separate tables.

Data from table 1 and 2 indicate a monofactorial mode of inheritance for deficient versus two-rowed spikes. Cross B1757 was grown in F_3 because of classification difficulty in F_2 . The good fit in F_3 shown in table 2 indicates the low P value in F_2 was due to misclassification.

Two-rowed versus six-rowed has been reported as due to a single gene difference. Cross E1747 was grown in F_3 because of classification difficulties, but low P values were obtained in both F2 and F3. The data for two-rowed versus six-rowed are in table 3. No explanation seems evident for the excess of six-rowed plants although this cross was observed to have some seeding mortality.

Cross No.	Vt	V	Total	x ²	P
B 1757 B 1840 B 1769	329 699 333	152 238 103	481 937 436	10.67 .04 .44	< .01 .78 .56
Sum of 3 chi-s	quares			12.114	.01
Total	1361	493	1854	2.587	.1020
Interaction				9.527	< .01
Industry where the same state of	the statement is an other	And and the state of the state of the state	and the second se	and the second sec	the second second second second

Table 2. Segregation of deficients (V^{t}) versus two-rowed (V) in F_{2} generation. Chi-square and P values are based on a 3:1 ratio.

Table 3. Segregation of deficiens (V^t) versus two-rowed (V) in F₃ generation. Chi-square and P values are based on a 1:2:1 ratio.

B 1757 113 238 129 480 1.085 .57	Gross No.	0-00	VCV	VV	Total	X ²	P
	B 1757	113	238	129	480	1.085	.57

Table 4. Segregation of two-rowed (V) versus six-rowed (V) in F_2 and F_3 generation. Chi-square and P values are based on 3:1 ratio.

Cross No.	V	v	Total	x ²	P
B 1747 (F ₂)	399	203	602	23.00	<.01
B 1747 (F ₃)	367 ^a	203	570	33.585	<.01

^a Segregation F₃ rows were combined in this total.

<u>Normal (E) versus long awned outer (e) glumes</u>. The segregation of normal versus long awned outer glumes is shown in table 4. Data from individual crosses support a single factor difference. Every cross is low for the expected recessive character, resulting in a low P value for the combined total. In some previous crosses the heterozygous plants have shown a tendency for long awned outer glumes.

<u>Furple (Fr) versus non-purple (pr) straw</u>. Data shown in table 5 indicates a single factor pair responsible for the inheritance of purple versus non-purple straw. The higher interaction and better fit for the total than for individual crosses suggest that this character varies considerable. Cross B1757 segregated in a 3:1 ratio in F₂ but when grown in F₃ purple pigmentation was observed in varying intensities in all the plants. F₃ rows from cross B1757 were classified according to color intensity and a 1:2:1 ratio was obtained as recorded in table 6. It has been noted by Woodward (personal communication) that environmental conditions, especially extreme heat, soil or fertility spots can cause a marked variation in the color expression.

<u>Furple (Reg) versus non-purple (reg) lemma and pericarp.</u> The inheritance of purple versus non-purple lemma and pericarp appears to be controlled by a single gene as the data from table 7 and 8 indicate. Two genes have been found to be involved in some crosses when two shite parents gave a purple F_1 (h9).

<u>Normal (Li) versus liguleless (li)</u>. The data in table 9 suggests a monofactorial inheritance for normal versus liguleless. This is supported by the previously reported literature.

Table 5. Segregation of normal (E) versus long-awned (e) outer glume in ${\rm F}_2$ and ${\rm F}_3$ generations. Chi-square and P values are based on a 3:1 ratio.

Cross No.	E	е	Total	x ²	Р
B 1747 (F_2) B 1747 (F_3) B 1753 (F_2) B 1769 (F_2) B 1840 (F_2)	481 441ª 434 332 726	125 126 95 104 211	606 567 529 436 937	5.964 2.118 13.830 .305 2.508	.0102 .1020 .01 .5060 .1020
Sum of 4 chi-	squares			22.607	<.01
Total	1973	535	2508	18.000	<.01
Interaction				4.607	.0105

F₃ segregating rows were combined with F₃ homozygous dominant rows. F₃ was not included in totals.

Table 6. Segregation of purple (Pr) versus non-purple (pr) straw in F₂ generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Pr	pr	Total	x ²	P
B 1753 B 1755 B 1757 B 1757 B 1769 B 1840	362 117 386 337 654	167 32 95 99 286	529 149 481 436 940	12.366 .898 6.940 1.223 14.757	.01 .3040 .00501 .2030 .01
Sum of 5 chi	-squares	36.184	<.01		
Total	1856	679	2535	4.259	.0205
Interaction		31.925	<.01		

Table 7. Segregation of purple (Pr) versus non-purple (pr) straw in F₃ generation. Chi-square and P values are based on a 1:2:1 ratio.

ar a	rpr	prpr	lotal	Y _C	P
1414	224	112	480	6.400	.0205
	.1414	144 224	144 224 112	44 224 112 480	144 224 112 480 6.400

Table 8. Segregation of purple (Re2) versus non-purple (re2) lemma and pericarp in F_2 generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Re2	re2	Total	x ²	P
B 1757 B 1769 B 1840	391 326 701	90 110 237	481 436 938	9.330 .012 .028	<.01 .9095 .8090
Sum of 3 chi-squares				9.370	.0205
Total	1418	437	1855	2.095	.1020
Interaction				7.275	<.01

Table 9. Segregation of purple (Re2) versus non-purple (re2) lemma and pericarp in F₃ generation. Chi-square and P values are based on a 1:2:1 ratio.

Cross No.	Re2Re2	Re2re2	re2re2	Total	x ²	Р
B 1757	120	236	124	480	.200	.9095

<u>Normal (Tr) versus triple (tr) awms</u>. The segregation of normal versus triple awms is found in table 10. These data support a monogenic mode of inheritance for this character.

Lax (L) versus dense (1) spike. The segregation data for lax versus dense spike are shown in tables 11 and 12. Cross B1747 was classified as lax, medium and club for spike density, but when the medium was combined with the lax class a 3:1 ratio was obtained. The F3 data found in table 12 indicate a single factor pair to be responsible for this character.

Early (Ea) versus late (ea) maturity. Cross B1757 was the only cross segregating for early versus late maturity. Both monogenic (48) (45) and multigenic (26) modes of inheritance have been reported for this character. The data in table 13 indicate a single factor pair was responsible in this cross. This character is extremely variable depending on the latitude elevation and time of seeding.

<u>Non-dehiscent (Da) versus dehiscent (da) awns</u>. The classification of decidious awns was made from F_3 rows of cross E1757. The proportion of awns dropped at maturity varied considerable from row to row. Rows in which a large majority of the awns had fallen at maturity were classified as dehiscent and the remaining rows as non-dehiscent even though some of the plants within a row had shed their awns. The data are recorded in table lk. From this classification the data suggest a complementary type of inheritance in which two genes are involved, each contributing to the decidiousness.

Table 10. Segregation of normal (Li) versus liguleless (li) in F_2 generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Li	li	Total	x ²	Р
B 1769 B 1840	321 742	115 196	436 938	.440 8.226	.0560 <.01
Sum of 2 ch:	i-squares			8.666	.0102
Fotal	1063	311	1374	4.233	.0205
Interaction				4.433	.0205

Table 11. Segregation of normal (Tr) versus triple (tr) awas in F2 and F3 generations. Chi-square values are based on a 3:1 ratio.

Cross No.	Tr	tr	Total	x ²	Р
B 1747 (F ₂)	309	90	399	1.33	•20-•30
B 1747 (F ₃)	436	132	568	.938	•30-•40

Cross No.	L	1	Total	x ²	Р
B 1747 B 1769 B 1840	447 ^a 340 709	125 96 228	572 1436 937	3.021 2.067 .215	.0510 .1020 .6070
Sum of 3 c	hi-squares	5.303	.1020		
Total	1496	449	1945	3.756	.0510
Interactio	n			1.547	.2030

Table 12. Segregation of lax (L) versus dense (1) spike in F₂ generation. Chi-square and P values are based on a 3:1 ratio.

a Plants classified as having a medium spike density were included in this total.

Table 13. Segregation of lax (L) versus dense (1) spike in \mathbb{F}_3 generation. Chi-square and P values are based on a 1:2:1 ratio.

Cross No.	LL	Ll	Total	X 2	P
B 1757	120	236	480	.200	.9095

Table 14. Segregation of early (Ea) versus late (ea) maturity in F3 generation. Chi-square and P values are based on a 1:2:1 ratio.

Cross No.	Ea.Ea	Eaea	Total	Х2	Р
B 1757	104	261	480	4.178	.1020

Factors in linkage group 1

<u>Normal (Dr) versus brachytic (br) habit.</u> The data for normal versus brachytic habit are presented in table 15. These data suggest a monofactorial mode of inheritance although the probability value is low in both F_2 and F_3 crosses. No explanation is available for this low value.

<u>Covered (N) versus naked (n) caryopsis.</u> Table 16 contains the data for the segregation of covered versus naked caryopsis. These data support others who have suggested a single gene inheritance hypothesis. The small number of plants in cross E1755 could be responsible for the low probability value obtained.

Factors in linkage group 4

Long (k_1) versus short (k_2) awns. A single gene difference for long versus short awns is suggested by the data found in table 17.

<u>Normal (G1) versus glossy (g1) leaf</u>. The results of the segregation of normal versus glossy leaf are presented in table 18. A very low probability value is obtained for the expected 3:1 ratio. High seedling mortality of homozygous recessives might serve as an explanation for the low P value.

<u>Normal (Z) versus zoned (z) leaf</u>. The expected 3:1 ratio for normal versus zoned leaf was not observed as shown in table 19. Zoned leaf not only reduces the vigor of the plants but also results in high seedling mortality for homozygous recessives. Thus, many plants that are homozygous for zoned leaf are lost and this could explain the poor fit.

		awns in based or	F ₃ gen n a 15:	eration l ratio	. Chi-squa	are and P value	es are
Cross	No.	Da		da	Total	x ²	Р
B 1757	7	448	20.5 2 12	32	480	.142	.7080
Table	16.	Segregat F_2 and I F_2 are 1 on a 1:2	tion of 3 gene based o 2:1 rat	normal rations n a 3:1 io.	(Br) versu . Chi-squa ratio. Th	us brachytic (1 are and P value mose for F ₃ are	or) in es for e based
Cross	No.	Br		br	Total	x ²	P
B 1757	(F ₂) 389		92	481	8 - 7	<.01
Cross	No.	BrBr	Brbr	brbi	r Total	x ²	Р
B 1757	' (F ₃) 127	257	96	480	6.412	.0205
Table	17.	Segregat F ₂ gener 3:1 rati	ion of ation. .0.	covered Chi-so	d (N) versu quare and P	s naked (n) ca values are ba	ryopsis in used on a
Cross	No.	N		n	Total	x ²	Р
B 1753 B 1755		395 102		134 47	539 149	.040 3.595	.8090 .0510
Sum of	2 c1	n i-s quare				3.635	.1020
lotal		497		181	678	.920	.3040
Intera	ction					2.715	.10

Table 15. Segregation of non-dehiscent (Da) versus dehiscent (da)

Table 18.	Segregation of long (k1) versus short (k2) awns in F2 generation. Chi-square and P values are based a 3:1 ratio.					
Cross No.	kl	k2	Total	x ²	Р	
B 1753	408	121	529	1.22	.2030	

Table 19. Segregation of normal (G1) versus glossy (g1) leaf in F_2 and F_3 generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Gl	gl	Total	x ²	P
B 1747 (F ₂)	572	65	637	74.09	<.01
B 1747 (F ₃)	531 ^a	38	569	58.08	<.01

^a Segregation F_3 rows are included in this total.

Table 20. Segregation of normal (Z) versus zoned (z) leaf in F_2 and F_3 generations. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Z	Z	Total	X ²	Р
B 1747 (F2)	559	53	612	86.57	<.01
B 1747 (F3)	556a	26	582	130.00	<.01

^a Segregation F₃ rows are included in this total.

Factors in linkage group 5

<u>Black (B) versus non-black (b) lemma and pericarp</u>. Table 20 presents data suggesting a single gene difference between black versus non-black lemma and pericarp. This is in agreement with findings of numerous other workers.

Factors in Linkage group 7

Rough (R) versus smooth (r) awns. A good 3:1 ratio suggesting a single factor pair difference was found for rough versus smooth awns. The data are presented in tables 21 and 22.

Long (S) versus short (s) rachilla hairs. A single gene difference is suggested for the inheritance of long versus short rachilla hairs as shown in table 23.

Unassigned factor pairs

<u>Purple (Pau) versus non-purple (pau) auricle</u>. The data for the segregation of purple versus non-purple auricle are shown in tables 24 and 25. These data suggest a single factor pair inheritance for purple versus non-purple auricle. Cross E1755 had a low P value, but the small population may be the contributing cause. Cross E1757 had a low probability value in F_2 but the F3 gave a good fit for a monogenic mode of inheritance, indicating misclassification of the F_2 progeny.

<u>Normal (Rb) versus ribbongrass (rb) leaf</u>. Table 26 shows the data for the segregation of normal versus ribbongrass. A single factor pair is suggested although a very poor fit was obtained in the F2 progeny.

<u>Normal (Gp) versus grandpa (gp)</u>. Data on segregation of normal versus grandpa are presented in table 27. High seedling

and perica are based	rp in F ₂ ge on a 3:1 ra	eneration. atio.	Chi-square an	d P values
В	b	Total	X ²	Р
330 694	106 244	436 938	.110 .569	.7080 .4050
hi-square			.679	.7080
1024	350	1374	.164	.6070
m			.515	.4050
	and perica are based B 330 694 chi-square 1024 m	and pericarp in F ₂ ge are based on a 3:1 re B b 330 106 694 244 chi-square 1024 350 m	and pericarp in F ₂ generation. are based on a 3:1 ratio. B b Total 330 106 436 694 244 938 chi-square 1024 350 1374 m 1024 350 1374	and pericarp in F_2 generation. Chi-square an are based on a 3:1 ratio. B b Total X^2 330 106 436 .110 694 244 938 .569 chi-square .679 1024 350 1374 .164 m .515

Table 21. Segregation of black (B) versus non-black (b) lemma

Table 22. Segregation of rough (R) versus smooth (r) awns in ${\rm F}_2$ and ${\rm F}_3$ generations. Chi-square and P values are based on a 3:1 ratio.

Cross No.	R	r	Total	X2	Р
B 1747 (F ₂) B 1757 (F ₂) B 1747 (F ₃)	358 360 431 ^a	125 121 137	483 481 568	.176 .008 .235	.67 .9095 .67
Sum of 2 chi	-square			.184	.8090
Total	718	246	964	.136	.7080
Interaction				.048	.8090

^a Segregation F₃ rows were combined in this total. F₃ was not included in totals.

Table 23. Segregation of rough (R) versus smooth (r) awns in F₃ generation. Chi-square and P values are based on a 1:2:1 ratio.

Cross No.	RR	Rr	rr	Total	x ²	P
B 1757	120	248	112	480	.80	.67

Table 24. Segregation of long (S) versus short (s) rachilla hairs in F₂ generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	S	s	Total	x ²	Р
B 1747	368	115	483	.298	.67
B 1755	108	41	149	.575	.45
Sum of 2 ch	i-square			.873	.67
Total	476	156	632	.0337	.89
Interaction				.839	.34

Table 25. Segregation of purple (Pau) versus non-purple (pau) auricle in F₂ generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Pau	pau	Total	x ²	Р
B 1753 B 1755 B 1757 B 1757 B 1769 B 1840	393 123 384 246 565	136 26 97 75 179	529 149 481 321 744	.16 4.35 5.87 .4162 .3512	.6070 .0205 .0102 .56 .56
Sum of chi-s	quare			11.474	.0205
Total	1711	513	2224	4.433	.0205
Interaction				7.041	<.01

mortality, late maturity and poor seed set were observed for the homozygous recessive plants. Only the homozygous dominant and segregating F3 rows were classified for the grandpa character to determine its inheritance. The inheritance and chi-square values were therefore computed on a 2:1 ratio. A monofactorial mode of inheritance was suggested from this analysis, while no such relationship was observed in F_2 . Many previous crosses fit the monofactorial hypothesis fairly well.

<u>Mormal (Gs) versus glossy (gs) stem</u>. The data on tables 28 and 29 indicate a single gene difference for the inheritance of normal versus glossy stem.

Long (Gh) versus short (gh) glume hairs. The data for the segregation of long versus short glume hairs are presented in tables 30 and 31. Cross B1747 indicates a two factor mode of inheritance, while the data from cross B1840 sheds very little light on the mode of inheritance. A great deal of difficulty was encountered in the classification of glume hairs in B1840 and B1757. B1757 was grown in F3 of which the data found in table 31 indicates that a single factor pair is responsible.

Table 26. Segregation of purple (Pau) versus non-purple (pau) auricle in F₃ generation. Chi-s quare and P values are based on a 1:2:1 ratio.

Cross No.	Pau Pau	Pau pau	pau pau	Total	X ²	Р	
B 1757	119	243	118	480	.079	.95-97	

TADIO 21.	F ₂ and F _{3 f} on a 3:1 ra	generation	s. Chi-squar	re and P value	es are based
Cross No.	Rb	rb	Total	x2	Р
B 1747 (F2 B 1747 (F3) 5142) 430ª	93 139	6 3 5 569	35.65	<.01 .78

Table 27 Segregation of normal (III) versus ribbongrass (rb) in

a Segregation F3 rows were included in this total.

Segregation of normal (Gp) versus grandpa (gp) in ${\rm F}_2$ and ${\rm F}_3$ generation. Chi-square and P values for ${\rm F}_2$ are based on a 3:1 ratio. Those for ${\rm F}_3$ are based on a 2:1 ratio. Table 28.

Cross No.	Gp	gp	Total	X2	Р
B 1747 (F2)	528	109	637	20.96	<.01
Cross No.	GpGp	Gpgp	Total	X2	P
B 1747 (F3)	184	307	491	2.71	<.10

Table 29. Segregation of normal (Gs) versus glossy (gs) stem in $\rm F_2$ generation. Chi-square and P values are based on a 3:1 ratio.

Cross No.	Gs	gs	Total	X2	Р
B 1755 B 1757	116 373	33 108	149 481	.575 1.67	.45 .2
Sum of 2 ch	i-squares			2.245	.253
Fotal	489	141	630	2.17	.12
Interaction				.075	.78

Table 30.	Segregation of normal (Gs) versus glossy (gs) stem in F_3 generation. Chi-square and P values are based on a 1:2:1 ratio.										
Cross No.	GsGs	Gsgs	gsgs	Total	X2	P					
B 1757	113	250	117	480	.899	.67					

Table 31. Segregation of long (Gh) versus short (gh) glune hair in F₂ generation. Chi-square and P values are based on 3:1 ratio.

Cross No.	Gh	gh	Total	x ²	Р	
B 1747 B 1757	292 321	189 160	481 481	3.73 ^a 16.89	05.0.10	
B 1840	472	244	716	30.33	<.01	

a Chi-square based on a 9:7 ratio.

Table 32. Segregation of long (Gh) ve rsus short (gh) glune hair in F₃ generation. Chi-square and P values are based on a 1:21 ratio.

Cross No.	GhGh	Ghgh	ghgh	Total	X2	Р
B 1757	129	219	132	480	3.712	.1020

Dihybrid Combinations Showing Linkage

The inheritance of gene pairs showing linkage is the main concern of this section. The linkage of purple auricle with other factor pairs receives special attention. Recombination percentages for F₃ populations were computed by combining the F₃ segregation with the homozygous dominant progeny, and using the product method to calculate the percentages.

Linkages found in chromosome 2.

<u>Furthe (Fau) versus non-purple (pau) auricle in relation to</u> <u>other factor pairs</u>. The linkage of purple versus non-purple auricle in relation to other factor pairs is found in table 33. This table gives data that suggest the association of (Fau pau) in relation to (Fr pr), (Re₂ re₂) and (∇^{t} V). Some relationship was found with purple auricle and lax versus dense spike, however, (L1) segregated independent of (Re₂ re₂) and (∇^{t} V).

Four crosses with similar recombinations value were combined to give a total recombination value of 13.0 \pm .895 for (Fau pau) in relation to (Fr pr). One of these crosses was tested for classification accuracy by growing F₃'s of genotype (pau pau pr pr). The F₃ progeny verified the F₂ classification with only one exception. Some degree of expression of purple straw was found in every F₃ row of cross B1757, hence very little confidence can be placed in the associations of the purple straw character in this cross.

The relation of (Pau pau) to $(\text{Re}_2 \text{ re}_2)$ ranged in recombination values from 15.5 \pm 4.43 to 33.5 \pm 1.94. A better fit was obtained

from cross B1757 in F₃ than in F₂, therefore, more confidence could be placed on the F₃ data. The F₃ recombination value in B1757 was 15.5 ± 4.43 for (Pau pau) in relation to (Pr pr).

The F_3 results of (Pau pau) and (Vt V) in cross B1757 gave a recombination value of 28.0 \pm 4.15 which was very close to that obtained for the F_2 . Two other crosses, however, gave independent segregation for the same gene pairs. No explanation seems apparent for these two rather contradictory associations except for the fact that the color expression for purple auricle was much better in cross B1757.

<u>Deficients (Vt) versis two-rowed (V) spike in relation to other</u> <u>factor Fairs</u>. Table 34 presents the data to support linkage of deficients versus two-rowed spike in relation to (Re₂ re₂) and (Li li). The recombination values are in agreement with that obtained by other workers. More confidence could be placed in the F₃ which gave a recombination value for (∇ t V) in relation to (Re₂ re₂) of 15.0 ± 1.79.

<u>Furple (Re₂) versus non-purple (re₂) lemma and pericarp in</u> <u>relation to other factor pairs.</u> The data found in table 35 suggest purple versus non-purple lemma and pericarp to be in the same linkage group as (Pr pr), (Ee) and (Li li). The recombination values for the relation of (Re₂ re₂) to (Ee) and (Re₂ re₂) to (Li li) are in agreement with previous findings.

Cross B1757 gave independent segregation for the relation of (Re2 re2) to (Pr pr) in both the F2 and F3 generations.

C	ross		Phase	X¥	Xy	xÿ	ху	Total	x ²	Р	Recomb. Percent
_				(Pau,	pau) in :	relation	to (P:	. pr)			
4	crosses	F2	Coupling	1172	165	63	343	1743	831.0	<.01	13.0 + .895
B	1757	Fo	Coupling	333	51	53	44	481	44.12	<.01	28.5 + 2.51
B	1757	F3	Coupling	287	73	76	45	480	13.96	<.01	38.5 ± 2.96
				(Pau,	pau) in :	relation	to (R	e, re2)			
В	1757	Fo	Repulsion	298	86	93	4	481	25.7	<.01	25.0 + 4.23
B	1757	Fa	Repulsion	240	121	115	3	480	28.5	<.01	15.5 + 4.43
2	crosses	F2	Coupling	699	112	162	90	1065	63.57	<.01	37.5 ± 1.94
				(Pau,	pau) in	relation	to (L	1)			
2	crosses	F2	Coupling	678	133	130	112	1065	104.57	<.01	30.0 + 1.74
B	1757	F3	Repulsion	258	104	98	20	480	6.75	.0510	40.5 ± 3.76
				(Pau.	pau) in	relation	to (V	t, V)			
2	crosses	Fa	Repulsion	605	206	158	94	1065	28.3	<.01	58.0 + 2.09
B	1757	F	Repulsion	243	141	86	11	481	43.8	<.01	29.7 + 4.10
B	1757	F3	Repulsion	245	119	108	10	480	16.6	<.01	28.0 ± 4.15

Table 33. Purple (Pau) versus non-purple (pau) auricle in relation to other factor pairs. Chi-square and P values are based on a 9:3:3:1 ratio.

-	Cross		Phase	XY		Xy	xΥ	xy	Total	x ²	Р	Recomb. Percent
2 BB	crosses 1757 1757	F F2 F3	Repulsion Coupling Coupling	(v ^t , 719 303 319	V)	in rela 313 26 32	tion to 307 88 37	(Re ₂ , 34 64 92	re ₂) 1373 481 480	57.13 88.1 205.6	<.01 <.01 <.01	32.0 + 2.39 24.0 + 2.29 15.0 + 1.79
2	crosses	F ₂	Repulsion	(V ^t , 760	♥)	in rela 2 7 2	tion to 302	(L1, 39	11) 1373	17.42	<.01	36.0 ± 2.32

Table 34. Deficiens (V^t) versus two-rowed (V) spike in relation to other factor pairs. Chi-square and P values are based on a 9:3:3:1 ratio.

Table 35. Purple (Re₂) versus non-purple (re₂) lemma and pericarp in relation to other factor pairs. Chi-square and P values are based on a 9:3:3:11 ratio.

_	Cross		Phase	XY	Xy	хĭ	х'n	Total	x ²	P	Recomb. Percent
2 B B	crosses 1757 1757	F A AM	Coupling Repulsion Repulsion	(Re ₂ , 838 316 278	re ₂) in 189 75 78	relation 151 70 90	to (Pr, 196 20 24	pr) 1376 481 480	207.7 18.1 3.04	<.01 <.01 .34	$\begin{array}{r} 28.0 \pm 1.47 \\ 52.5 \pm 3.32 \\ 49.5 \pm 3.44 \end{array}$
2	crosses	F2	Coupling	(Re ₂ , 836	re ₂) in 190	relation 222	to (E, 125	e) 1373	45.2	<.01	37.8 ± 1.74
2	crosses	F ₂	Coupling	(Re ₂ , 857	re ₂) in 170	relation 206	to (Li, 141	11) 1373	83.9	<.01	33.5 ± 1.67

Two other crosses gave a combined recombination value of 28.0 ± 1.47 for the same two gene pairs. Here again the relationship of (Fr pr) in B1757 could not be considered to be reliable.

Purple (Pr) versus non-purple (pr) straw in relation to lax (L) versus dense (l) spike. Purple versus non-purple straw in relation to lax versus dense spike as shown in table 36 gave a recombination value of 30.0 ± 1.53 . Other workers have reported similar results.

<u>Two-rowed (V) versus six-rowed (v) spike in relation to normal</u> (E) versus long awned outer (e) glumes. The relation of two-rowed versus six-rowed spike to normal versus long awned outer glumes is shown in table 37. These two gene pairs have been reported to be linked. A recombination value of 23.5 ± 3.93 was obtained, which is in agreement with other workers.

Linkages found in chromosome 4

<u>Normal (Z) versus zoned (z) leaf in relation to normal (G1)</u> <u>versus glossy (g1) leaf.</u> The data for the relation of (Z z) to (G1 g1) are presented in table 38. Close linkage was found in both F_2 and F_3 generations. Recombination values of 8.5 \pm 1.16 for F_2 and 12.5 \pm 1.55 for F_3 were obtained.

Linkages found in chromosome 7

Rough (R) versus smooth (r) awas in relation to long (3) versus short (s) rachilla hairs. Table 39 gives the data for the relation of rough versus smooth awas to long versus short rachilla hairs. Recombination values of 21.0 \pm 2.13 for F₂ and 16.5 \pm 4.13 for F₃ were obtained, indicating linkage between these two factor pairs.

Cross	Phase	Pr L	Pr 1	pr L	pr 1	Total	x ²	P	Redomb. Percent
2 crosses F ₂	Coupling	838	150	211	174	1373	148.3	<.01	30.0 <u>+</u> 1.53

Table 36. Purple (Pr) versus non-purple (pr) straw in relation to lax (L) versus dense (1) spike. Chi-square and P values are based on a 9:3:3:11 ratio.

Table 37. Two-rowed (V) versus six-rowed (v) spike in relation to normal (E) versus long awned (e) outer glumes. Chi-square and P values are based on a 9:3:3:1 ratio.

Cross	Phase	VE	Ve	ΨE	ve	Total	x ²	Р	Recomb. R Percent
B 1757 F3	Repulsion	395	62	46	64	567	86.2	<.01	23.5 ± 3.92

Table 38. Normal (Z) versus zoned (z) leaf in relation to normal (G1) versus glossy (g1) leaf. Chisquare and P values are based on a 9:3:3:1 ratio.

Cross	Phase	ZG1	Zgl	zGl	zgl	Total	x ²	Р	Recomb. Percent
B 1747 F ₂	Coupling	561	23	11	42	637	288.6	<.01	8.5 ± 1.16
B 1767 F ₃		282 -	29	44	180	535	370.6ª	<.01	12.5 ± 1.55

a Based on a 4:2:2:1 ratio

Table 39. Rough (R) versus smooth (r) awns in relation to long (S) versus short (s) rachilla hairs. Chi-square and P values are based on a 9:3:3:1 ratio.

Cross	Phase	RS	Rs	rS	rs	Total	x ²	Р	Recomb. Percent
B 1747 F ₂	Coupling	248	34	120	81	482	133.3	<.01	21.0 ± 2.13
B 1747 F ₃	Coupling	69	2	17	10	98	20.5	<.01	16.5 ± 4.13

Linkages found in chromosome 1

<u>Normal (Br) versus brachytic (br) habit in relation to other</u> <u>factor pairs</u>. The data in table 40 show the relation of normal versus brachytic habit to other factor pairs. These data suggest a possible linkage between the factor pairs (Br br) to (Gh gh) and (Br br) to (Ea ea). (Br br) has been placed in chromosome 1, but (Gh gh) is still unassigned. The recombination value for (Br br) in relation to (Gh gh) was 38.0 ± 2.94 . Earliness genes have been reported to be in several of the chromosomes. The recombination value of 30.0 ± 2.60 for (Br br) and (Ea ea) suggests the possibility of this earliness gene to be in chromosome 1.

New linkages suggested

<u>Normal (Rb) versus ribbongrass (rb) in relation to other factor</u> <u>pairs.</u> Table 41 gives the data for the relation of normal versus ribbongrass leaf to other factor pairs. A recombination value of 22.0 ± 2.17 was obtained for (Rb rb) and (Gp gp), suggesting a linkage between these two factor pairs. It was difficult to detect the ribbongrass character when the grandpa character was present, so these data were computed from F₃ segregating and homozygous dominant rows. A possible relationship was suggested for (Rb rb) and (Tr tr) by a recombination value of 35.5 ± 3.67 .

Normal (Gs) versus glossy (gs) stem in relation to early (Ea) versus late (ea) maturity. The data for the relation of normal versus glossy stem to early versus late maturity are given in table 42. These two characters gave a recombination value of 36.5 ± 2.87, which suggests linkage.

Table 40. Normal (Br) versus brachytic (br) habit in relation to other factor pairs in F₃ generation. Chi-square and P values are based on a 9:3:3:1 ratio.

Cross	Phase	XY	Х	y	¥x		ху		Total	x ²	P	Recomb. Percent
B 1757	Coupling	(Br, 293	br) 1 9	n :	relation 55	to	(Gh, 41	gh)	480	12.93	<.01	38.0 <u>+</u> 2.94
B 1757	Coupling	(Br, 316	br) i 6	n : 8	relation 49	to	(Ea, 47	ea)	480	41.1	<101	30.5 ± 2.60

Table 41. Normal (Rb) versus ribbongrass (rb) leaf in relation to other factor pairs in F₃ generation. Chi-square and P values are based on a 6:2:3:1 ratio.

Cross	Phase	XY	Xy	хĭ		ху		Total	x ²	Р	Recomb. Percent
B 1747	Repulsion	(Rb, 273	rb) in 82	relation 34	to	(Gp, 10	gp)	491	134.8	<.01	22.0 ± 2.17
B 1747	Repulsion	(Rb, 313	rb) in 117	relation 123	to	(Tr, 16	tr)	569	15.94	<.01	35.5 <u>+</u> 3.67

Cross	Phase	GsEa	Gsea	gsEa	gsea	Total	x ²	Р	Recomb. Percent
Br 1757 F 3	Coupling	294	69	71	46	480	19.58	<.01	36.5 + 2.87

Table 42. Normal (Gs) versus glossy (gs) stem in relation to early (Ea) versus late (ea) maturity. Chi-square and P values are based on a 7:3:3:1 ratio.

Factor Pairs Showing Independence

The following dihybrid combinations were found to show independent recombinations:

Furple (Pau) versus non-purple (pau) auricle in relation to:

	Rough versus smooth awns	R, r
	Normal versus brachytic habit	Br, br
	Normal versus glossy stem	Gs, gs
	Long versus short glume hairs	Gh, gh
	Normal versus long awned outer glumes	E, e
	Early versus late maturity	Ea, ea
	Covered versus naked caryopsis	N, n
	Long versus short rachilla hairs	S, s
	Black versus non-black lemma and pericarp	B, b
Norm	al (Gs) versus glossy (gs) stem in relation to	:
	Purple versus non-purple straw	Pr, pr
	Normal versus brachytic habit	Br, br
	Long versus short glume hairs	Gh, gh
	Purple versus non-purple lemma and pericarp	Rez, re
	Lax versus dense spike	L, 1
	Deficiens ve rsus two-rowed spike	V ^t , V
	Rough versus smooth awns	R, r
Long	(Gh) versus short (gh) glume hairs in relation	on to:

Furple versus non-purple strawFr, prFurple versus non-purple lemma and pericarpRe2, re2Lax versus dense spikeL, 1Early versus late maturityEa, eaDeficiens versus two-rowed spikeV^t, VRough versus smooth awmsR, r

Rough (R) versus smooth (r) awas in relation to:

	Deficiens versus two-rowed spike	V ^t , V
	Two-rowed versus six-rowed spike	V, v
	Purple versus non-purple straw	Pr, pr
	Normal versus brachytic habit	Br, br
	Purple versus non-purple lemma and pericarp	Re2, re2
	Lax versus dense spike	L, 1
	Early versus late maturity	Ea, ea
	Normal versus long awmed outer glumes	E, e
	Normal versus triple awns	T, t
Norm	al (Br) versus brachytic (br) habit in relation	to:
	Deficiens versus two-rowed spike	vt, v
	Purple versus non-purple straw	Pr, pr
	Purple versus non-purple lemma and pericarp	Re2, re2
	Lax versus dense spike	L, 1
Black	(B) versus non-black (b) lemma and pericarp in	n relation to:
	Deficiens versus two-rowed spike	V ^t , V
	Normal versus long awned outer glume	Е, е
	Purple versus non-purple lemma and pericarp	Re2, re2
	Lax versus dense spike	L, 1
	Normal versus liguleless	Li, li
over	red (N) versus naked (n) caryopsis in relation t	:0:
	Normal versus long awned outer glumes	E, e
	Long versus short rachilla hairs	S, s
lorma	l (Tr) versus triple (tr) awns in relation to:	
	Normal versus long awned outer glumes	E, e

Normal (Gp) versus grandpa (gp) in relation to:

Two-rowed versus six-rowed spike	V, v
Rough versus smooth awns	R, r
Normal versus long awned outer glumes	Е, е
Normal versus triple awns	Tr, tr

Normal (G1) versus glossy (g1) leaf in relation to:

Two-rowed versus six-rowed spike	V, v
Rough versus smooth awns	R, r
Normal versus long awned outer glumes	Е, е
Normal versus triple awns	Tr, ti
Normal versus grandpa	Gp, g

Normal (Z) versus zoned (z) leaf in relation to:

Two-rowed versus six-rowed spike	V, v
Rough versus smooth awns	R, r
Normal versus long awned outer glumes	E, e
Normal versus triple awms	Tr, tr
Normal versus grandpa	Gp, gp

The two crosses in which (Pau pau) and (1 n) were segregating gave very low probability values. The recombination values for these two crosses were 60.0 ± 3.60 and 32.0 ± 4.60 , but when the two were combined a recombination value of 59.5 ± 3.17 was found. The great variation between these two crosses suggests misclassification or differential mortality.

The gene pairs (Tr tr) and (E e) have been placed in the same linkage group by other workers. From the data in this study (Tr tr) was found to segregate independently of (E e). A plausable

explanation might be the fact that their position might be well over 50 crossover units apart, which would show independent segregation.

Gene pairs (L 1), (Ea ea) and (Tr tr) were found to segregate independently of $(\text{Re}_2 \text{ re}_2)$, (V^{t}, V) and (Li li), all of which have been reported to be in linkage group 2. However, (L 1), (Ea ea) and (Tr tr) have also been reported in other linkage groups. These three gene pairs involved in this study do not appear to be in linkage group 2.

Contrary to the results of other workers (Fr pr) showed independence to (Li li), (E e) and ($V^{t} V$). These have all been previously placed in chromosome 2. However, some degree of coloration appeared in most of the progeny as was previously pointed out. Thus, the relationship of (Pr pr) to other factor pairs could not be considered too reliable.

SUMMARY

Six F_2 crosses, two of which were grown in F_3 , were studied for the inheritance of character pairs. These were in turn studied for their independence or associations with each other.

The following characters showed simple Mendilian inheritance: Pau, Pr, Re₂, L, Ea, Br, Vt, Tr, E, Gh, Gs, K₁, N, B, S, R, Gp, Ro, Z, and Gl.

A two factor pair difference was suggested for Da. One cross indicated a two factor pair difference for Gh.

The following factor pairs showed independence: Pau in relation to R, Br, Gs, Gh, E, Ea, N, S and B. Gs in relation to Pr, Br, Gh, Re2, L, Vt, R, N and S. Gh in relation to Pr, Re2, L, Ea, Vt and R. R in relation to Vt, Pr, Br, Re2, L, Ea, E and Tr. Br in relation to Vt, Fr, Rep and L. B in relation to V^t, E, Pr, Re2, L and Li. N in relation to E and S. Tr in relation to E. Vt in relation to Pr, L, Ea, and Tr. Reg in relation to L and Ea. Pr in relation to Li and E. Z in relation to V, R, E, Tr and Gp. L in relation to Ea, E, and Li. Rb in relation to R, V, E, Tr, Z and Gl. Gp in relation to V, R, E and Tr.

Linkages

Linkages found in chromosome 2

Gene Pairs	Recom. percent	Phase		Progeny	
(in relation to) Pau pau : Pr pr	13.0 <u>+</u> .895	coup.	(F ₂)	1743	
Pau pau : Re ₂ re ₂ Pau pau : Re ₂ re ₂ Pau pau : Re ₂ re ₂	25.0 + 4.23 15.5 + 4.43 37.5 + 1.94	rep. rep. coup.	(F ₂) (F ₃) (F ₂)	481 480 1065	
Pau pau : L l Pau pau : L l	30.0 + 1.74 40.5 <u>+</u> 3.67	coup. rep.	(F ₂) (F ₃)	1065 480	
Pau pau : V ^t V Pau pau : V ^t V	29.7 + 4.10 28.0 ± 4.15	rep. rep.	(F ₂) (F ₂)	481 480	
v^t V : Re ₂ re ₂ V ^t V : Re ₂ re ₂ V ^t V : Re ₂ re ₂	32.0 <u>+</u> 2.39 24.0 <u>+</u> 2.29 15.0 <u>+</u> 1.79	rep. coup. coup.	$(F_2) (F_2) (F_3) $	1373 481 480	
Vt V : Li li	36.0 + 2.32	rep.	(F ₂)	1373	
Re2 re2 : Pr pr	28.0 + 1.47	coup.	(F ₂)	1376	
Re ₂ re ₂ : E e	37.8 + 1.74	coup.	(F ₂)	1373	
Re2 re2 : Li li	33.5 ± 1.67	coup.	(F ₂)	1373	
Pr pr : L l	30.0 ± 1.53	coup.	(F ₂)	1373	
Vv:Ee	23.5 + 3.92	rep.	(F3)	567	
Linkages found in chromosor	me 4				
Zz:Glgl Zz:Glgl	8.5 ± 1.16 12.5 ± 1.55	coup.	(F ₂) (F ₃)	639 535	
Linkages found in chromosor	ne 7				
Rr:Ss Rr:Ss	21.0 ± 2.13 16.5 ± 4.13	coup. coup.	(F_2) (F_3)	482 98	
Linkages found in chromosor	ne l				
Br br : Gh gh Br br : Ea ea	38.0 + 2.94 30.5 + 2.60	coup.	$(F_3) (F_3) (F_3)$	48 0 480	
New linkages suggested					
Rb rb : Gp gp Rb rb : Tr tr Gs gs : Ea ea	22.0 ± 2.17 35.5 ± 3.67 36.5 ± 2.87	rep.	(F_3) (F_3) (F_2)	491 569 480	

Furple auricle was found to located in chromosome 2 associated with (Pr pr), (Re₂ re₂) and (V^t V). The exact position of this gene was not determined. The (tr) character involved in this study failed to show linkage with other factors of chromosome 2. The gene responsible for triple awns has been previously assigned to chromosome 2.

LITERATURE CITED

- Al-Jibouri, H. A. Inheritance of ten characters in barley crosses. (M. S. Thesis. Dept. of Agronomy) Utah State University, Logan, Utah, 1953.
- (2) Biffen, R. H. The hybridization of barley. Jour. Agr. Sci. 2:183-206. 1907.
- (3) Bose, R. D., Aziz, M. A., and Bhatangar, M. F. Studies in Indian barley, IV. The inheritance of some anatomical characters responsible for lodging and some ear hear characters in an interspecific cross between pusa barleys. Indian Jour. Agr. Sci. 7:48-88. 1937.
- (4) Buckley, G. G. H. Inheritance in barley with special reference to color of caryopsis and lemma. Sci. Agr. 10:460-492. 1930.
- (5) Daane, A. Linkage relations in barley. Minn. Agr. Exp. Sta. Tech. Bul. 78. 1931.
- (6) Fraser, J. G. C. The dominant Mendelian characters in barley breeding. Sci. Agr. 2:113-116. 1921.
- (7) Frey, K. G. Inheritance and heritability of heading date in barley. Agron. Jour. 46:226-228. 1954.
- (8) Gaines, E. F. Inheritance in wheat, barley, and oat hybrids. State College of Wash. Agr. Exp. Sta. Bul. 135. 1917.
- (9) Gill, T. S. Inheritance of 16 barley characters and their linkage relationships. (M. S. Thesis. Dept. of Agronomy) Utah State University. Logan, Utah. 1951.
- (10) Gillis, M. C. Genetical study of the lateral florets of the barley spike. Jour. Agr. Res. 32:367-390. 1926.
- (11) Griffee, F. Correlated inheritance of botanical characters in barley and manner of reaction to <u>Helminthosporium Sativum</u>. Jour. Agr. Res. 30:915-935. 1925.
- (12) Harlan, H. V. The identification of varieties of barley. U. S. D. A. Bul. 622. 1918.
- (13) Harlan, H. V., and Martini, M. L. The lateral flowers of two-rowed barley. Jour. Hered. 26:109-113. 1935.

- (14) Heiner, R. E. Linkage and inheritance studies in barley.
 (M. S. Thesis. Dept. of Agronomy) Utah State University. Logan, Utah. 1958.
- (15) Hor, K. S. Interrelation of genetic factors in barley. Genetics 9:151-180. 1924.
- (16) Imam, A. I. Inheritance and linkage studies in selected crosses of cultivated barley. (M. 5. Thesis. Dept. of Agronomy) Utah State University. Logan, Utah. 1959.
- (17) Immer, F. R. and Henderson, M. T. Linkage studies in barley. Genetics 28:419-440. 1943.
- (18) Immer, F. R. Formulae and tables for calculating linkage intensities. Genetics 15:81-98. 1930.
- (19) Isom, W. H. Inheritance and linkage relationships in twentyone barley characters. (M. S. Thesis. Dept. of Agronomy) Utah State University. Logan, Utah. 1951.
- (20) Kasha, K. J. and Walker, G. W. R. Several recent barley mutants and their linkages. Canadian Jour. of Genetics and Cytology. 2:397-415. 1960.
- (21) Kramer, H. H., Veryl, R., and Hanson, W. D. The association of two genetic linkage groups in barley with one chromosome. Genetics 39:159-168. 1954.
- (22) LeBaron, F. C. An inheritance and linkage study of nineteen factor pairs in barley. (M. S. Thesis. Dept. of Agronomy) Utah State University. Logan, Utah. 1959.
- (23) Leonard, W. H. Inheritance of fertility in the lateral spiklets of barley. Genetics 27:299-316. 1942.
- (24) Murty, G. S. and Jain, K. B. L. Genetic studies in barley. Inheritance of pigmentation in various plant parts. Jour. Indian Bot. Soc. 38:561-574. 1960.
- (25) Myler, J. L. Awn inheritance in barley. Jour. Agr. Res. 65:405-412. 1942.
- (26) Neatby, K. W. An analysis of the inheritance of quantitative characters and linkage in barley. Sci. Agr. 9:701-718, 1929.
- (27) Ostle, B. Statistics in research. Iowa State College Press. Ames, Iowa. pp 487-488. 1956.
- (28) Powers, L. The nature of the interaction of genes affecting four quantitative characters in a cross between Hordeum deficiens and Hordeum vulgare. Genetics 21:398-420. 1936.

- (29) Robertson, D. W. Linkage studies in barley. Genetics 14:1-36. 1929.
- (30) . Genetics of barley. Jour. Amer. Soc. Agron. 31:273-283. 1939.
- (31) . Inheritance in barley. Genetics 18:148-159.
- (32) and Coleman, O. H. Location of glossy and yellow seedlings in two linkage groups. Jour. Amer. Soc. Agron. 34:1028-1034. 1942.
- (33) , Deming, G. W., and Koonce, D. Inheritance in barley. Jour. Agr. Res. 14:145-1466. 1932.
- (34) , Imer, F. R., Wieve, G. A. and Stevens, N. The location of two genes for mature plant characters in barley linkage group I. Jour. Amer. Soc. Agron. 36:66-72.1944.
- (35) , Wieve, G. A. and Shands, R. S. A summary of linkage studies in barley: Supplement I (1940-1946) Jour. Amer. Soc. Agron. 39:464-473. 1947.
- (36) Sigfussen, S. J. Correlated inheritance of glume color, barbing of awns and length of rachilla hairs in barley. Sci. Agr. 9:662-674. 1929.
- (37) Smith, L. Genetics and cytology of barley. Bot. Rev. 17:1-355. 1951.
- (38) Swens on, S. P. Genetics and cytologic studies of a brachytic mutation in barley. Jour. Agr. Res. 60:687-713. 1940.
- (39) Swenson, S. P. and Wells, D. G. The linkage of four genes in chromosome I of barley. Jour. Amer. Soc. Agron. 36:429-435. 1944.
- (40) Takahashi, R., Yamamoto, T., Jasuda, S. and Itamo, Y. Inheritance and linkage studies in barley. Ohara Inst. F. Landw. Frasch. Bev. 10 (I): 29-52. 1953.
- (41) Tedin, H. and Tedin, O. Contributions to genetics of barley. I type of spike, nakedness and height of plant. Hered. 7:151-160. 1926.
- (42) Wexelsen, H. Linkage of a quantitative and a qualitative character in barley. Hered. 17:323-341. 1933.
- (43) . Quantitative inheritance and linkage in barley. Hered. 18:307-348. 1934.

- (14) Woodward, R. W. Inheritance of melanin-like pigment in the glumes and caryopsis of barley. Jour. Agr. Res. 63-21-28. 1941.
- (45) Linkage relationships between the allelomorphic series, B, B^{mb}, Bg, and Atat factors in barley. Jour. Amer. Soc. Agron. 34:659-661. 1942.
- (46) . The I^h, I, i allels in <u>Nordeum deficiens</u> genotypes of barley. Jour. Amer. Soc. Agron. 39:474-482. 1947.
- (47) . The inheritance of fertility in the lateral florets of the four barley groups. Agron. Jour. 41:317-322. 1949.
- (48) . Linkage in barley. Agron. Jour. 49:28-32.
- (49) and Thieret, J. W. A genetic study of complementary genes for purple lemma, palea and pericarp in barley. Agron. Jour. 45:182-185. 1953.