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ABSTRACT 

 

A Study of the Variability Versus the Assumed 

Constancy of Manning’s n 

 

by 

 

Tyler G. Allen, Doctor of Philosophy 

Utah State University, 2014 

 

Major Professor: Blake P. Tullis 

Department: Civil and Environmental Engineering 

 

Quantifying hydraulic roughness coefficients is commonly required in order to calculate 

flow rate in open channel applications.  An assumption typically coupled with the use of 

Manning’s equation is that a roughness coefficient (n) that is solely dependent upon a boundary 

roughness characteristic (k) may be applied.  Even though Manning reported unique values of n 

and x’ (the exponent of the hydraulic radius in Manning’s equation) for each of the different 

boundary roughness materials he tested, he chose x’ = 2/3 as representative, assumed a constant n 

value, and suggested that it was sufficiently accurate. 

More recent studies have suggested that in addition to k; Rh, Se, and Fr can influence n.  

While research points to situations where n may vary, it is always a temptation to simply apply 

the constant n assumption especially in the case of more complicated channels such as composite 

channels where different roughness materials line different parts of a channel cross section.   

This study evaluates the behavior of n as a function of Re, Rh, k, So, and Fr for four 

different boundary roughness materials ranging from smooth to relatively rough in a rectangular 

tilting flume.  The results indicate that for the relatively rough materials n is best described by its 

relationship with Rh where it varies over a lower range of Rh but approaches and at a point 
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maintains a constant value as Rh increases.  The constant value of n is attributed to both the 

physically smooth boundary materials and a quasi-smooth flow condition in the rougher boundary 

materials.  The study shows that an x’ = 2/3 (the basis of Manning’s equation) correlated to the 

assumption of a constant n value only applies to smooth boundary roughness materials and a 

quasi-smooth flow condition in the rougher boundary materials; otherwise, either n or x’ must 

vary.   

These findings are then applied to compare 16 published composite channel relationships.  

The results identify the importance of applying a varying n where applicable due to the potential 

for error in assuming and applying a constant n.  They also indicate that the more complicated 

predictive methods do not produce more accurate results than the simpler methods of which the 

most consistent is the Horton method. 

 (103 pages) 
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PUBLIC ABSTRACT 

 

A Study of the Variability Versus the Assumed 

Constancy of Manning’s n 

 

Tyler G. Allen 

 

 Culverts have traditionally been designed to a minimal size to pass a specific design 

flood.  The traditional culvert designs may result in a localized increase in velocity which can 

result in a blockage of animal or fish movement across a barrier effectively changing the 

ecosystem surrounding a number of affected species.  While hydraulic loss coefficients are 

relatively well defined for such traditional culverts, the National Cooperative Highway Research 

Program (NCHRP) identified a need for further study of these coefficients for culverts more 

conducive to fish and animal passage.   

A research team headed by Dr. Blake Tullis of Utah State University was contracted by 

the NCHRP to conduct physical, numerical, and computer modeling to conduct research to be 

used to refine the methods used to define hydraulic coefficients involved in the design of culverts 

more sensitive to the surrounding environment.  This dissertation was conducted as a portion of 

that overall program and focuses on the hydraulic coefficient Manning’s (n) which is used to 

quantify the reaction of flow characteristics to the friction caused by the roughness of the 

surrounding channel.  A project was conducted at the Utah Water Research Lab (UWRL) in order 

to better define Manning’s n specifically for open channel applications which would be found in 

fish passage culverts as part of an overall $575,000 project. 
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NOTATION 

 

 

A  =  sectional flow area of channel [L
2
] 

 

a  =  empirical coefficient to power law equation 

 

Ai  =  component flow area resulting from the partitioning of a composite-channel 

into subareas between the boundary roughness materials [L
2
] 

 

b  =  empirical coefficient to power law equation 

 

C  =  boundary roughness coefficient 

 

Cc  =  boundary roughness coefficient (Chezy’s Equation) 

 

D  =  pipe diameter [L] 

 

Dr  =  representative particle diameter of the channel boundary where r indicates the 

percentage of particles that are smaller than Dr [L] 

 

F =  function of 

 

f  =  hydraulic roughness coefficient (Darcy-Weisbach Equation) 

 

Fr  =  Froude Number 

 

g  =  acceleration due to gravity [L/t
2
] 

 

k  =  equivalent roughness height [L] 

 

Kn  =  1 for SI units and Kn = 3.281
(1-x’)

 (=1.486 when x’ = 2/3) for ES units 

 

L  =  length 

 

n  =  hydraulic roughness coefficient [Manning’s Equation (x’ = 2/3)] 

 

naverage  =  average n from experimental data 

 

nc  =  equivalent n value for Chezy and Darcy-Weisbach equations (x’ = 1/2) 

 

ne =  composite Manning’s n  

 

neq  =  boundary roughness coefficient (dependent on x’ in Equation 4-6) 

 

ni  =  component n values of individual boundary roughness materials 

 

nopt  =  equivalent n value where x’ of Equation 4-6 is optimized 
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P  =  wetted perimeter [L] 

 

PE  =  predictive error [%] 

 

Pi  =  component wetted perimeter resulting from the partitioning of a composite-

channel into subareas between the boundary roughness materials [L] 

] 

Q  =  volumetric flow rate [L
3
/t] 

 

r
2
  =  coefficient of determination 

 

Re  =  Reynolds number 

 

Rh  =  hydraulic radius [the flow area (A) divided by the wetted perimeter (P)] [L] 

 

Rhi  =  componenet hydraulic radius (Ai/Pi) [L] 

 

RMS  =  Root Mean Square [%] 

 

samples  =  number of data points sampled which contribute to the RMS 

 

Se  =  energy grade line slope or friction slope 

 

So  =  channel slope 

 

T  =  width of the channel at the free water [L] 

 

t  =  time 

 

V =  Mean channel velocity [L/t] 

 

V
*
  =  Shear velocity = (gRhSe)

1/2
 [L/t] 

 

x’ =  exponent applied to Rh in basic uniform-flow equation 

 

y  =  flow depth [L] 

 

y’  =  exponent to Se in basic uniform-flow equation 

 

yaverage  =  average channel profile flow depth [L] 

 

ycalculated  =  flow depth calculated by a gradually varied flow computer program [L] 

 

ymeasured  =  measured flow depth [L] 

 

yn  =  normal depth [L] 

 

v  =  ...................................................................................................... kinematic viscosity [L
2
/t] 

 



CHAPTER 1 

INTRODUCTION 

 

GENERAL INFORMATION 

Uniform flow head-discharge relationships for open channel applications correlate flow 

rate (Q) or mean channel velocity (V) to an energy gradient, taking into account the flow 

resistance associated with the channel cross sectional shape and boundary roughness.  Most open 

channel head-discharge or uniform-flow equations are in the general form of Equation 1-1 (Chow 

1959). 

 
'' y

e

x

h SCRV 
 

(1-1) 

In Equation 1-1, Rh is the hydraulic radius [the flow area (A) divided by the wetted 

perimeter (P)], Se is the energy grade line slope or friction slope, C is a flow resistance or 

hydraulic roughness coefficient, and x’ and y’ are exponents.  Under uniform flow conditions in 

open channel flow, Se is equal to the channel slope (So). 

The Chezy (Equation 1-2), Darcy-Weisbach (Equation 1-3), and Manning (Equation1-4) 

equations represent three common open channel flow head-discharge relationships derived from 

Equation 1-1. 

 ehc SRCV    (1-2) 

 
ehSR

f

g
V

8
  (1-3)  

 

2/13/2

eh
n SR

n

K
V   (1-4) 

In Equations 1-2 through 1-4, g is the acceleration due to gravity; Kn = 1 for S.I. and Kn = 

3.281
(1-x’)

 for ES units; and Cc, f, and n are equation-specific hydraulic roughness coefficients.  

Equations 1-2 and 1-3 are identical (i.e., same x’ and y’ values), with the exception of how the 
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hydraulic roughness for flow resistance is presented and a gravitational constant. Manning’s 

equation (Equation 1-4) is unique from the other two relationships in that x’ = 2/3 instead of 1/2.   

Manning (1889) based the change from x’ = 1/2 to 2/3 (Equation 1-4) on empirical data 

with the intention that the roughness coefficient (n) would behave as a constant value dependent 

only on the roughness boundary of the channel.  He applied this equation to over 100 data points 

and found the equation coupled with the constant n assumption was “sufficiently accurate” for his 

needs.  Manning was conscious of the empirical nature of his equation (Equation 1-4) and 

cautioned that the use should only be applied to situations where it has been properly tested. 

Chow (1959) indicated that Manning’s equation (Equation 1-4) is the most widely used 

uniform-flow equations due in part to its simple form.  Streeter and Wylie (1979) and Yen (2002) 

agree that the simplicity and the popularity of Manning’s equation over Equations 1-2 and 1-3 is 

due to the fact that Manning’s n is often considered to be a constant value specific to a particular 

channel lining material type; whereas, Cc and f are generally considered to vary with stage and 

discharge.  A committee organized by the American Society of Civil Engineers (ASCE) in 1957 

called The Task Force on Friction Factors in Open Channels recommended that a nearly constant 

n value may be applied to open channels if the flow condition is found to be in the fully rough 

turbulent range defined by whether or not the hydraulic roughness coefficient is independent of 

Reynolds Number (Re), where Re=V4Rh/v (v represents the fluid kinematic viscosity), leaving it 

to be solely dependent on relative submergence.  Relative submergence (Rh/k) is the ratio of the 

hydraulic roughness to the  boundary material roughness height (k) (ASCE 1963).  Chow (1959) 

described additional necessary conditions associated with a constant n as follows: the wetted 

perimeter of the channel must be lined with a material of uniform boundary roughness and the 

slope of the channel bottom must be uniform.  However, consistent with Manning’s warnings on 

the empirical nature of Manning’s equation, the assumption of a constant n does not always 

apply.  Limerinos (1970), Bray (1979), Jarrett (1984), Bathurst (2002), and Ugarte and Madrid 
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(1994) for example, all found specific situations for which Manning’s n varies and determined the 

constant n assumption was not “sufficiently accurate” for their needs.  While these researchers 

agree that n is variable, the conclusions are widespread in how best to apply the head-discharge 

relationships.  Some have predicted varying n values using various empirical equations to be 

applied to Manning’s equation (Equation 1-4) based on different combinations of n = F(Rh, k, Fr, 

and Se).  Fr is known as the Froude Number where Fr = V/(2gA/T)
1/2

 (T is the top width of the 

free water surface).  Others, such as Jarrett (1984), have suggested changes to x’ and/or y’ of the 

fundamental equation (Equation 1-1) to predict uniform flow.   

These equations are specific to a certain type of roughness, e.g., gravel (Limerinos 1970, 

Bray 1979) or channel type, e.g., steep mountain streams with relatively shallow flows compared 

to the height of the roughness elements which make up the boundary roughness (Bathurst 2002, 

Jarrett 1984, Ugarte and Madrid 1994); however, they may be considered broad in that they 

suggest a single equation is suitable for a range of size of gravel or any number of streams that 

are relatively different but are determined to be steep mountain streams as described by different 

parameters in each of the individual studies.  Comparisons between the resulting Manning’s n 

predicted values and the experimental data for these studies produced significant scatter and 

relatively low correlation values.  Bathurst (2002) addressed this issue and found that by further 

segregating data according to a certain parameter (channel slope in his 2002 study) within a 

certain channel type (steep mountain streams) and using a different equation for each data set, a 

separate equation may be used with more accuracy to predict n values, i.e., the correlation values 

increased. 

The interest in the application of Manning’s n, when it might be appropriate to assume 

constant n value versus applying varying n values, and how that varying n values might be 

determined, spurred this study because of a specific need to predict the effects of resistance in 

composite channels.  Yen (2002) describes a composite channel as a channel where the wetted 
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perimeter is made up of more than one roughness material.  Manning’s n has been shown to vary 

in composite channels; however, the variable nature of n has generally been attributed to the 

differing resistance effects of each of the multiple roughness materials in the channel.  To 

compensate for this, relationships have been developed to predict an effective n value (ne), a 

weighted average of the n values associated with each of the boundary roughnesses segments that 

make up the wetted perimeter.   

The application of the constant n assumption to the individual roughness materials within 

the ne relationships is not uncommon. Yen (2002) presented 16 different ne relationships with 

potential application to composite channels.  Yen stated that due to the limited data available, the 

level of appropriateness of any of the relationships to engineering practice has yet to be 

determined.  Of the research discovered for the literature review for this dissertation, only one 

took into consideration the effect of applying a varying n versus the constant n assumption to the 

individual roughness materials and, as stated by Yen (2002), the data were limited.   

The purpose of this dissertation is to study the behavior of Manning’s n in uniformly 

lined channels specifically addressing the underlying assumption of a constant n (the principle 

reason for the development of Manning’s equation) and the seemingly conflicting data that shows 

n to vary.  Included in this study are data that provide support for both the assumption of a 

constant n and use of a predictive equation for a varying n within the same channel lined with 

uniform roughness depending on the parameters of the flow condition in the channel.  This 

finding is evaluated with respect to the original derivation of Manning’s equation itself and the 

relationship between Manning’s equation and the use of varying n predictive equations.  The 

knowledge obtained on n values in uniform channels is then applied to composite channel 

relationships in order to not only compare these relationships but to also determine how to best 

apply Manning’s n to the individual roughness materials to optimize the results of these 

relationships.     
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RESEARCH OBJECTIVES 

Chow (1959) indicates that quantifying Manning’s n for use in the field is the most 

difficult part in applying Manning’s equation describing the process as anywhere from guesswork 

for beginners and sound engineering judgment for seasoned engineers.  The main overlying 

objective of this dissertation is to help bridge the gap between the constant n assumption and the 

research showing n variability, thus aiding in the quantifying of Manning’s n.  A list of sub-

objectives intended to contribute to the main objective are listed below. 

 Collect laboratory data for a relatively wide range of boundary roughness materials 

(smooth to rough and diverse in roughness type) in a uniformly lined channel quantify n 

for each roughness material. 

 Compare the experimental laboratory data to known and accepted roughness coefficient 

theory developed primarily in closed conduit pressurized flow (usually presented as 

Darcy-Weistbach f).  This is accomplished by determining the behavior of both n and f 

(from laboratory data) with respect to Re, Rh, k, So, and Fr. 

 Determine a relationship for satisfactorily quantifying n for each material where 

appropriate. 

 Determine the conditions under which n behaves as a constant versus a variable in a 

uniformly roughened channel as described by Chow (1959). 

 Compare the experimental data from this study to those used by Manning in the 

development of Equation 1-4 to better understand the appropriate application of the 

constant n assumption versus a variable n. 

 Explore other research that reported variable n behavior and compare their findings to the 

current study. 
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 Collect laboratory data for composite channel situations using combinations of the same 

roughness materials to quantify Manning’s n in composite roughness channels. 

 Determine how to best apply the n values of each of the individual roughness materials to 

a composite channel configuration (e.g. should n be quantified differently for a roughness 

lining the wall of a channel versus a roughness lining the base of the channel) through the 

use of the composite channel relationships proposed by Yen (2002).   

 Compare the results from applying the constant n assumption and a varying n value to the 

composite roughness channel relationships and the laboratory data. 

 Using the laboratory data, determine which of the 16 composite channel relationships is 

the most suitable for use, if any. 

ORGANIZATION 

This dissertation has been written based on the multi-paper format, with each paper 

representing a separate chapter (Chapters 3 to 5) specifically intended for publication in peer-

reviewed journals.  Chapter 2 addresses the experimental method used in determining Manning’s 

n for each of the channel configurations evaluated in the study.  Gradually varied flow 

computations have been previously used at the Utah Water Research Laboratory to determine n 

values; however, these computations were based on the assumption that n is a relatively constant 

value.  A major component of this dissertation addresses the fact that n is variable.  Chapter 2 

discusses how the GVF profile computations were used to appropriately determine n with the 

consideration that n may vary.  This provides a basis for the experimental setup used to collect the 

data which were applied in each of the subsequent Chapters 3, 4, and 5.   In Chapter 3, the 

behavior of f and n with respect to Re, Rh, k, So, and Fr is addressed with a focus on a variable n 

versus a constant n.  The examination of these relationships is important regarding the 

consideration of when Manning’s n should be applied as a constant or should be applied as a 
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variable.  The information in Chapter 3 sets up the discussion in Chapter 4 which examines the 

behavior of x’ [determined to be 2/3 by Manning (1889)] in Equation 1-1 with respect to constant 

n assumptions for the boundary roughness materials examined in this study and the roughness 

materials analyzed by Manning (1889).  A better understanding of the behavior of x’ coupled with 

the behavior of n (or the equivalent of an n value when x’ is anything other than 2/3) leads to a 

better understanding of Manning’s Equation in general and its relationship with n.  The intention 

of Chapter 4 is to better equip the reader to make decisions regarding the use of the variable n 

equations when available versus using constant n values.  Chapter 5 applies the results of 

Chapters 3 and 4 to a practical situation (composite channels) to show the potential impact of the 

decision to use a variable n equation (including which equation to apply) versus assuming a 

constant n while at the same time fulfilling the need as described by Yen (2002) to compare 

composite channel ne relationships   Chapter 5 evaluates the application of the n values for each 

of the individual roughness materials studied to the composite channel relationships and 

compares these relationships based on their performance.  The final chapter (Chapter 6) provides 

a brief summary of Chapter 2 and presents a brief summary and conclusions of each of the other 

chapters. 
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CHAPTER 2 

EXPERIMENTALLY DETERMINING MANNING’S n 

 

BACKGROUND 

Listed in the objectives to this study is the collection of laboratory data from which 

Manning’s n can be quantified for both uniformly lined channels and composite channels.  

Manning’s n can be directly calculated via Equation 1-4 when uniform flow exists in the channel 

when the flow depth (y) and Q = VA are known.  The laboratory flume used for this study is 

relatively short at 48-ft in length, and previous work completed in this flume showed that uniform 

depth is not achieved for all test conditions assuming the flow is allowed a free over-fall at the tail 

end of the flume.  In laboratory practice, a tailgate is often used to help establish uniform flow by 

increasing the downstream flow depth, truncating part of the gradually-varied flow (GVF) profile, 

and facilitating the establishment uniform flow depth in the channel.  According to Yen (2003), 

however, establishing a uniform flow depth via a gate-controlled backwater curve does not 

guarantee the establishment of uniform flow in the channel.  In addition to a constant depth, 

uniform flow also requires uniformity in the velocity distribution, pressure, and turbulence 

characteristics.  Yen (2003) states that even though a constant depth may be forced in a short 

channel with the use of a tailgate, the flow conditions associated with the channel inlet and 

tailgate may affect the other flow characteristics, resulting in a flow condition that is not truly 

uniform.  It was apparent that collecting data to demonstrate the existence of uniform flow in the 

laboratory flume or in the field could prove to be very time consuming and costly.   

Instead of a tailgate-controlled backwater curve approach, this study adopted the practice 

a free-overfall downstream boundary condition.  For flow conditions where uniform depth was 

not established naturally, Manning’s n values were determined using a computational GVF 

profiling technique.  Traditional GVF profiling techniques, however, typically apply the constant 
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n value assumption, where n is independent of both stage and discharge.  As addressed by the 

results of this study, this assumption may not always apply depending on the type of roughness 

material and the flow conditions in the channel.  Not only is Manning’s n typically determined 

based on a constant n assumption, but other important parameters such as Re, Rh, V, and Fr are 

also determined based on the n-dependent, calculated normal depth (yn).  This chapter describes 

the GVF profile experimental method and how this method was used and adapted to account for 

for variable n conditions. 

 

EXPERIMENTAL METHOD 

For each steady state flow condition, a measured GVF profile was determined by 

measuring flow depths (ymeasured) at 33 different locations along the length of the flume (due to 

entrance effects, on average, only the downstream 22 measured points were used in the GVF 

profile calculations).  By using Equation 2-1, which calculates the change in flow depth (dy) 

relative to a specified change in distance along the length of a channel (dx), a computed GVF 

profile may be predicted. 
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In Equation 2-1  So is the slope of the channel and Fr is the Froude Number as defined by 

Equation 2-2. 
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In Equation 2-2, T is the cross sectional water surface top-width in a channel.  The energy grade 

line slope (Se) is calculated using Equation 1-4 through which Manning’s n is introduced into the 

process.   A spreadsheet was developed which allows the user to adjust Manning’s n until the 
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computed water surface profile best matches the measured profile.  To determine the “best fit” of 

the data, the Coefficient of Determination (r
2
), Equation (2-3), was maximized. 
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(2-3) 

In Equation (2-3), ycalculated is the flow depth calculated by the GVF computer program and yaverage 

is the average value of ymeasured. 

Figure 2-1 shows the resulting Manning’s n data for a channel uniformly lined with the 

block roughness used in this study (see Chapter 3 for a full description of the block roughness).  

In Figure 2-1 two sets of data are featured: Manning’s n determined directly by Equation 1-4 

from experiments where the flow conditions were such that uniform flow occurred naturally in 

the flume (represented by the solid squares) and Manning’s n determined from experiments 

where flow depths were not uniform using the GVF profile method (represented by the hollow 

squares).  The uniform flow data clearly indicates that Manning’s n varies with stage.  Figure 2-

1(A) shows the data based on calculations where yn was calculated using the constant n 

assumption.  The data in Figure 2-1(A) are scattered and the n data calculated using the GVF 

method are not consistent with the n data calculated based on naturally occurring uniform flow. 

However, there are a few points that are relatively close.  These n values were determined from 

data where the GVF profile either reached or came very close to reaching yn within the length of 

the flume. 

Three assumptions were made in order to justify the use of the GVF profile method for 

calculating Manning’s n values and to correctly correlate those n values with the parameters that 

are also dependent on depth (Re, Rh, V, and Fr).  These assumptions included: 

 Because the GVF profiles used in determining Manning’s n were relatively short 

(maximum of 28-ft), the assumption of a constant n value may be applied through that  



 

 

Figure 2-1: Comparison of Manning’s n values determined using the uniform flow depth and the 

GVF technique (non-uniform flow conditions) vs. y (data from Block lined channel). 
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(A)

(B) 
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length and the resulting n value may be assumed to be an average n value over the range 

of depths making up the water surface profile. 

 This average n value corresponds to the average measured depth over the length of GVF 

profile. 

 The basis for the justification of this method is the experimental data associated with test 

conditions where uniform flow occurred naturally in the flume. 

Figure 2-1(B) shows the results of the experiments based on these 3 assumptions and the 

data show that Manning’s n values calculated by the GVF profile method are relatively consistent 

with the data from the naturally occurring uniform flow data.  Based on these results, the GVF 

profile method was used for each flow condition tested where uniform flow did not occur 

naturally and the calculated Manning’s n values were paired with the yaverage values for each 

condition. 
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CHAPTER 3 

THE BEHAVIOR OF HYDRAULIC ROUGHNESS COEFFICIENTS 

IN OPEN CHANNEL FLOW
1
 

 

ABSTRACT 

Quantifying hydraulic roughness coefficients is commonly required in order to calculate 

flow rate in open channel and closed conduit applications.  Much of the theory of resistance on 

open channel flow is derived from studies on pressurized circular pipe, which features the 

Darcy-Weisbach roughness coefficient, f, which is dependent upon Re, Rh, and/or k.  Relative to 

full-pipe flow, however, the behavior of open channel flow resistance is more complicated 

because of the presence of a free surface and because the flow area does not remain constant. 

A primary objective behind the development of Manning’s equation was to create a 

simple open channel flow equation with a roughness coefficient (n) that was solely dependent 

upon the boundary roughness characteristic (e.g., roughness height, k).  Currently, hydraulic 

engineering handbooks publish singular representative n values (or a small range to account for 

variations in material surface finish) per boundary material type (e.g., concrete, cast iron, clay, 

etc.).  More recent studies, however, have suggested that Rh, k, Se, and Fr can influence n.   

The behavior of f and n as a function of Re, Rh, k, So, and Fr for open channel flow was 

evaluated for four different boundary roughness materials, ranging from smooth to relatively 

rough, by conducting stage-discharge tests in a rectangular tilting flume.  The test results showed 

that when plotting f or n vs. Re, a family of curves resulted, with each curve corresponding to a 

specific channel slope (So).  For a given So, both f and n decrease with increasing Re.  The So-

specific family of f curves converges to a bounding curve, unique to each boundary roughness 

material tested, with increasing Re, which represents a quasi-smooth flow boundary condition.  

                                                      
1
 Coauthored by Tyler G. Allen, P.E.; Blake P. Tullis, Ph.D., P.E. 
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For the n data, the quasi-smooth flow condition caused the n values to converge to a constant-n 

value at larger Re values. A quasi-smooth flow boundary condition describes a condition where a 

boundary layer develops adjacent to the channel boundary that consists of a layer of flow eddies.  

The boundary layer thickness exceeds the material roughness height, reducing the influence of the 

boundary roughness elements of flow resistance.  

f and n also decrease with increasing Rh, with n eventually approaching a constant value.  

The constant n assumption (n is independent of Re and Rh) is most appropriate for smoother 

boundary materials or rough boundary materials where a quasi-smooth flow boundary condition 

exists.  Where a quasi-smooth condition does not exist, the constant n assumption is less 

appropriate for rougher boundary roughness materials. 

 

INTRODUCTION 

Quantifying hydraulic roughness coefficients is commonly required for discharge 

calculations for both closed conduit and open channel flow applications.  Common open channel 

discharge equations include the Darcy-Weisbach equation, Equation 3-1, and Manning’s 

equation, Equation 3-2, which include the friction factor (f) and Manning’s n, respectively, as 

hydraulic roughness coefficients. 
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  (3-1) 

 
2/13/2

eh
n SR

n

K
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In Equations 3-1 and 3-2, V is the mean velocity, g is acceleration due to gravity, Kn is 1.0 (SI) 

units and 1.486 (ES), Rh is the hydraulic radius [the cross sectional area (A) divided by the wetted 

perimeter (P), Rh = D/4 for a pipe of diameter D], and Se is the slope of the energy grade line or 
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the friction slope.  Under uniform flow conditions in open channel flow, Se is equal to the channel 

slope (So). 

According to Streeter and Wylie (1979), Manning’s equation has been continually and 

with great popularity applied to open channel calculations because n is thought to be an absolute 

roughness coefficient, i.e., dependent upon surface roughness only.  Representative Manning’s n 

values for common channel lining materials are typically presented in hydraulic handbooks, many 

of which refer to Chow (1959), as singular values or as a high, average, and low value to account 

for surface variations.  In contrast to the constant n assumption, Streeter and Wylie (1979) go on 

to state that n actually depends upon the size and shape of the channel cross section in some 

unknown manner.  This dependency and others have been described by researches with equations 

where n = F(Rh, k, Fr, and Se) (Limerinos 1970, Jarrett 1984, Bathurst 2002, Bray 1979, Griffiths 

1981, Ugarte and Madrid 1994).   

A committee set up by ASCE in 1957, being assigned the task to evaluate friction factors 

in open channels, suggested that n may be applied as a constant value so long as the flow 

condition could be described as turbulent and fully rough.  They defined a fully rough turbulent 

flow as one where f and n are independent of Reynolds Number (Re), where Re=V4Rh/v (v 

represents the fluid kinematic viscosity), leaving f and n to be solely dependent on relative 

submergence, quantified as Rh/k, where k is a representative value for the boundary material 

roughness height.  The equations proposed by Bathurst (2002), Griffiths (1981), Bray (1979), and 

Limerinos (1970) all show f as a function of relative submergence and independent of Re, yet the 

result of these equations is a variable Manning’s n suggesting that the assumption of a constant n 

value even in fully rough turbulent flow, as defined by the committee, is not always valid.  This 

leads to possible confusion as to when a constant n is appropriate and when a variable n might 

need to be applied. 
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The current study uses both Equations 3-1 and 3-2, per suggestion of the ASCE 

committee, to evaluate the seemingly contradictory results of the assumption of a constant n 

versus a variable n comparing this behavior to what has been learned through past research 

involving both open channel and full pipe flow.  The behavior of the friction factors f and n are 

evaluated with respect to Re, Rh, k, So, and Fr.  The analysis was based on open channel flow 

testing conducted in a rectangular tilting flume featuring boundary roughness materials ranging 

from smooth to relatively rough. 

 

BACKGROUND 

Darcy-Weisbach f 

The Darcy-Weisbach equation, Equation 3-1, dates back to the mid 1800’s (Rouse and 

Ince, 1957).  Nikuradse (1933) performed tests on turbulent flow in artificially roughened pipes 

(pipe walls roughened with uniformly-sized sand grains) flowing full to investigate the behavior 

of f.  Nikuradse made two important conclusions.  At low Re for pipe with relatively small sand 

grains (high Rh/k values), the values of f were similar to smooth-pipe values [f = F(Re) only and 

the flow condition is known as smooth turbulence or smooth-wall pipe flow].  At relatively low 

Rh/k values and high Re values, f is solely a function of Rh/k, and the flow condition is known as 

fully rough turbulence.  A transitional turbulence Re range also exists where f is a function of 

both Re and Rh/k. Colebrook (1939), using commercial pipe data, developed an empirical 

equation that describes the dependencies of f on Rh/k and Re.  From Colebrook’s equation, the 

Moody Diagram was developed and has become a common source for assigning a value to f for 

smooth-wall, full-pipe flow under turbulent conditions. 

Chow (1959) compiled data from various open channel flow tests performed in rough 

channels with turbulent flow and made the following observations.  Some of the data show that, 

at relatively high Re, f becomes independent of Re and is solely dependent on Rh and k.  He also 
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observed for some data that f decreased with increasing Re, with the minimum f values bounded 

by an equation in the form of Equation 3-3, where f is a function of Re and the coefficients a and 

b are boundary roughness (k) specific.  

 















b

f
a

f

Re
log

1

 

(3-3) 

In Equation 3-3, a and b are empirical coefficients specific for a given channel shape and 

boundary roughness.  Prandtl developed an equation (commonly referred to as the Prandtl-von 

Kármán equation) in the form of Equation 3-3, which reasonably describes f data for smooth-

walled pipe, with a and b equal to 2 and 2.51, respectively (Crowe et al. 2001). The open channel 

flow stage-discharge data presented by Chow (1959) suggest that a and b will vary with boundary 

roughness type, i.e., f values increase with increasing boundary roughness or increasing k values.   

Chow (1959) also suggests that when the behavior of f for a given boundary roughness material 

can be described by Equation 3-3 with a constant set of empirical coefficients (a and b), a quasi-

smooth flow condition exists.  The idea of a quasi-smooth boundary flow condition was 

introduced by Morris (1955) and describes a flow state where the areas between the roughness 

elements are filled with stable eddies, creating a pseudo wall flow boundary similar to a smooth 

wall (see Figure 3-1).  The results from this study confirm that Equation 3-3 is a relative limiting 

boundary to f and also show that this limiting boundary has relevance to the assumption of a 

constant n. 

 

Manning’s n 

Equation 3-4 relates the Manning’s n roughness coefficient and f.   
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Figure 3-1.  Illustration of the quasi-smooth flow boundary theory  

 

In Equation 3-4, V
*
 is the shear velocity [V

*
 = (gRhSe)

1/2
].  Manning (1889) developed Equation 

3-2 with the expressed intent of providing a simplified open channel flow equation where, 

contrary to existing equations, the empirical coefficients (including the roughness coefficient) 

would remain constant for a given channel boundary type, independent of Q and Rh variations. 

Manning applied Equation 3-2 with river-reach-specific constant n values to more than 100 data 

points taken from various rivers and concluded it was “sufficiently accurate.”   

Chow (1959) states that, if the bed and banks of a channel are equal in roughness and the 

slope is uniform, then n is usually assumed constant for all flow depths (y).  Chow (1959) 

presents Manning’s n data (constant values) and photographs for a number of different channel 

types as a reference for designers.  More recent studies, however, have shown that n is not 

necessarily a constant even under the conditions described by Chow (1959).  A number of 

relationships have been developed, based on the results of these studies in order to predict the 

behavior of n.  For example, Limerinos (1970), Bray (1979), Griffiths (1981), and Bathurst 

(2002) have presented relationships suggesting that n is a function of Rh/k.  Jarrett (1984) 

suggested that n is dependent upon Se and Rh.  Ugarte and Madrid (1994) proposed relationships 

for n involving Rh, k, Se, and the Froude Number (Fr).  These relationships were developed based 

on studies where Manning’s equation was applied to a specific type of channel.  The Limerinos, 
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Bray, and Griffith relationships were developed for rivers with gravel beds; the Bathurst, Ugarte 

and Madrid, and Jarrett relationships were specific to “mountain streams” characterized as steep 

with relatively small Rh/k values.  Yen (2002) maintains, however, that for a given boundary 

roughness, n should be relatively constant, independent of Re, and Rh, provided that the 

equivalent f value per Equation 3-4 is in the fully turbulent range [i.e., f = F(Rh and k)]. 

 

Froude Number Effects 

Open channel flow state is commonly characterized by the value of the Froude number 

(per Equation 3-5), which represents the ratio of inertial to gravitational forces. In Equation 3-5, T 

is the channel top width.  When Fr < 1, gravitational forces are dominant, flow velocities are low, 

and the flow condition is referred to as subcritical.  When Fr > 1, the inertial forces are dominant, 

the velocity is high, and the flow condition is referred to as supercritical.  

 

T

gA

V
Fr   (3-5) 

Chow (1959) states that when Fr < 3, the influence of Fr on open channel roughness 

coefficients is negligible.  Chow concedes, however, that as more data becomes available, the 

influence of Fr on open channel roughness coefficients may need to be reconsidered.  Ugarte and 

Madrid (1994) concluded that n has Fr dependencies; however, it is important to note that their 

study was generally limited to relatively small Rh/k values.  Bathurst et al. (1981) also found that 

Fr was a factor in quantifying n; however, instead of using the traditional Fr definition, A/T in 

Equation 3-5 was replaced with Rh. 

 

OBJECTIVES 

The objectives of this study are to investigate the relationships of the open channel 

roughness coefficients f and n with Re, Rh, k, So, and Fr in a controlled laboratory setting in an 
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effort to better understand the appropriateness of the constant n value assumption for a given 

boundary roughness.  Comparisons are made for four different roughness materials ranging from 

smooth (acrylic sheeting) to relatively rough (block and trapezoidal corrugated roughness 

elements). 

 

EXPERIMENTAL METHOD 

The behavior of Manning’s n for four different boundary roughness materials was 

investigated by conducting flow tests in a 4-ft wide by 3-ft deep by 48-ft long adjustable slope 

rectangular laboratory flume. The four channel boundary materials tested include smooth acrylic 

sheeting (see Figure 3-2); a low-profile, commercially available expanded metal lath adhered to 

the acrylic walls and floor of the flume (see Figure 3-3); regularly spaced wooden blocks (see 

Figure 3-4 and 3-5); and trapezoidal corrugations oriented normal to the flow direction (see 

Figures 3-6 and 3-7).  The wooden blocks, measuring 4-inches wide (normal to flow direction) by 

3.5 inches long by 1.5 inches tall, with the top edges rounded (1-inch radius round-over), featured 

a painted exterior and were assembled in a closely spaced, uniform pattern.  The wooden 

trapezoidal corrugation elements were 1.5 inches tall, had a 1.5-inch wide top width and a 4.5-

inch wide base, and were spaced 1.5 inches apart.  The blocks and trapezoidal corrugation 

elements were attached to sheets of painted marine grade plywood, which were attached to the 

flume floor and walls. 

Assigning a k value to various types of roughness materials is not an exact process.  For 

gravel-lined channels, the mean grain size diameter is often used.  In this study, all roughness 

materials, save the acrylic sheeting, have more than one geometric dimension that influences the 

hydraulic roughness (e.g., the block height, width, length, and spacing).  Chow (1959) explains 

that while k represents a measure of a boundary’s roughness, it is an empirical parameter that  
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Figure 3-2.  Acrylic boundary roughness material 

 

Figure 3-3.  Metal Lath boundary roughness material 
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Figure 3-4.  Block boundary roughness material 

 
Figure 3-5.  Schematic of block boundary roughness material (dimensions shown in inches) 
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Figure 3-6.  Trapezoidal corrugation boundary roughness material 

 
Figure 3-7.  Schematic of trapezoidal corrugation boundary roughness material (dimensions 

shown in inches) 
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doesn’t necessarily correspond to a specific geometric dimension of the roughness element that 

can be measured using a linear scale and that k is influenced by many factors such as roughness 

element shape, orientation, and distribution.  In this study, k was assumed equal to the physical 

height of the roughness elements, for lack of a more appropriate alternative. The acrylic sheeting 

k value was selected to be consistent with published values (k = 0.00006 inches). 

Water was supplied to the flume from a reservoir located adjacent to the laboratory and 

was metered using calibrated orifice flow meters.  Flow depths were measured using a precision 

point gage, readable to 0.008-in, attached to a movable carriage located above the flume.  At each 

measurement location, the channel invert was measured and recorded.  Subsequent flow depths 

were determined by subtracting the difference between the measure water surface and invert 

elevations.   

Manning’s n can be directly calculated via Equation 3-2 when uniform flow exists in the 

channel and y and Q are known.  Due to the limited length of the laboratory flume, uniform flow 

depth could not be achieved for all test conditions.  In laboratory practice, a tailgate is often used 

to help establish uniform depth in a flume by increasing the downstream flow depth and 

truncating part of the gradually varied flow (GVF) profile.  According to Yen (2003), this method 

does not guarantee the presence of a uniform flow condition.  In addition to a constant flow 

depth; the velocity distribution, pressure, and turbulence characteristics must also be uniform for 

uniform flow to exist. Yen (2003) states that even though a constant depth may be forced in a 

short channel with the use of a tailgate, the flow conditions associated with the channel inlet and 

tailgate may affect the characteristics of the flow, resulting in a flow condition, which is not 

“uniform.”   

In the current study, all tests featured a free-over fall downstream boundary condition.  

For flow conditions that did not achieve normal depth naturally, Manning’s n values were 

determined using a computational GVF profiling technique.  For each steady state flow condition, 
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the GVF profile was determined by measuring flow depths (ymeasured) at 33 different locations 

distributed along the length of the flume.  The Manning’s n coefficient was determined for each 

flow condition by adjusting the Manning’s n value in a GVF computer program until the 

computed water surface profile best matched the measured profile.  To determine the “best fit” of 

the data, a coefficient of determination (r
2
), Equation 3-6, was maximized. 
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(3-6) 

In Equation 3-6, ycalculated is the flow depth calculated by the GVF computer program and yaverage is 

the average of ymeasured. 

The data collection proceeded as follows.  For each slope and discharge, the water 

surface was measured in relation to the flume floor at 2-ft intervals over the upstream half of the 

flume and at 1-ft intervals over the downstream half.  Due to the nature of the block and 

trapezoidal corrugation roughness materials, no single channel invert datum was present.  

Consequently, a representative datum was determined by calculating the total volume of the 

roughness elements (blocks or trapezoidal corrugations) divided by the total flume floor area and 

adding the resulting height to the elevation of the plywood floor upon which the roughness 

elements were installed.  This artificial boundary was used as the channel invert reference for the 

block and corrugated roughness tests. 

Using this GVF method, a separate Manning’s n value was determined for each flow 

condition.  Early in the data collection process, however, it became apparent that, for the 

relatively rough boundary materials (blocks and trapezoidal corrugations), Manning’s n exhibited 

variability with flow depth for a common flow rate.  Figure 3-8, for example, shows Manning’s n 

data for a number of flow conditions in the block-lined channel. With steeper channel slopes, 

where uniform flow conditions were more prevalent, n values were determined using the 

measured normal depth (yn), Q, and Equation 3-2.  For milder sloping channels, where uniform  
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Figure 3-8.  Comparison of Manning’s n values determined using the directly measured uniform 

flow depth and the GVF technique using the water surface profile yaverage (data from Block lined 

channel) 

 

flow profiles were less common, n values were determined using the GVF profile method.  A 

comparison of the block-lined Manning’s n values determined using both techniques is presented 

in Figure 3-8, which plots n vs. the average channel profile flow depth (yaverage).  The uniform 

flow depth data in Figure 3-8 show that for the block roughness, n varies (0.087 ≥ n ≥ 0.048) with 

changes in uniform flow depth (0.13 ≥ y ≥ 0.9).  Analysis of various truncated sections of a single 

GVF profile, using the GVF n method, also produced different predictive values for n, suggesting 

that n is also variable with depth throughout a GVF profile.  Based on the variable nature of n 

with flow depth in GVF profiles, the predicted normal depths associated with the variable n 

values should also vary.  Consequently, based on the good correlation between the uniform flow 

and GVF n data presented in Figure 3-8, yaverage was selected as the representative flow depth 

parameter for calculating Rh, Re, V, etc. when using the GVF method. 
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Manning’s n data for the acrylic boundary were collected at three different slopes (i.e., 

0.0002, 0.0003, and 0.0022) with the number of flow conditions at each slope ranging from 6 to 

17.  The metal lath boundary was tested at four different slopes (i.e., 0.0066, 0.0118, 0.0179, and 

0.022) with 4 to 29 flow conditions tested at each slope.  The block and trapezoidal corrugation 

boundaries were each tested at five slopes (i.e., 0.0004, 0.0018, 0.0095, 0.0237, and 0.05) with 7 

different flow conditions per slope.  The channel discharges ranged from 0.24 to 23 cfs.   

 

DISCUSSION AND ANALYSIS 

f Relationships 

Figure 3-9 plots the Darcy-Weisbach f versus Re data for each of the roughness materials 

in a uniformly lined channel.  The data from the acrylic-lined channel generally follow the 

Prandtl-von Kármán smooth-wall pipe flow curve.  Though not necessarily discernible in Figure 

3-9 due to the scale of the y-axis, the acrylic experimental f values exceed the Prandtl-von 

Kármán curve values at higher Re values. At a given Re value, f increases with increasing  

boundary roughness (i.e., f of the blocks is greater than the metal lath, which is greater than the 

acrylic) as expected. 

At first glance, there appears to be considerable scatter in the data for the two larger 

roughness materials (block and trapezoidal roughness materials) in Figure 3-9; however, a closer 

look reveals families of curves segregated by So.  The data show that, for a prismatic channel 

where So is held constant, f decreases as Re increases.  For a constant Re, f increases with 

increasing So.  As Re increases, the roughness-element-specific, slope-dependent family of curves 

converges to a single curve.  There is no singular Re value, however, at which the individual 

curves converge.  The Re value at which a slope-specific curve converges to the bounding curve 

for an individual roughness material increases with increasing So.   
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Figure 3-9.  f vs. Re data for acrylic, metal lath, trapezoidal corrugation (A), and block (B) 

roughness materials 
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The bounding curve to which the acrylic, metal lath and trapezoidal corrugation data 

converge is consistent with Equation 3-3, which, as described by Chow (1959), becomes a 

limiting boundary to the decreasing effect of the boundary roughness on the total resistance to the 

flow.  Figure 3-9 shows that the block slope-specific data curves do not fully converge to a single 

curve within the range of Re tested; however, the trend lines appear to be converging toward a 

single bounding curve with increasing Re. The convergence of the metal lath and the trapezoidal 

corrugation roughness data to a single bounding f vs. Re curve indicates that the conditions in the 

channel have reached a quasi-smooth boundary flow conditioning consistent, in theory, with the 

illustration in Figure 3-1. 

 

n Relationships 

If n were constant (as is often assumed) and solely dependent on k, four horizontal lines, 

one for each roughness material tested, should result when plotting n versus Re. The results in 

Figure 3-10 show relatively constant n values for the smooth acrylic data and over most of the Re 

data range for the metal lath.  There is a small range of relatively small Re values over which n  

for the metal lath varies.  n varies significantly for the two rougher materials (block and 

corrugation roughness) over the range of Re tested.  The data for these roughness materials show 

trends similar to the f data presented in Figure 3-9: there is a family of curves segregated by So, n 

decreases with increasing Re, n increases with an increasing slope (at a constant Re value), and 

the So-specific curves converge as Re increases.  An inspection of the data in Figures 3-9 and 3-10 

reveals a subtle but important difference between the behavior of n and f with Re.  In Figure 3-10, 

the slope-dependent Manning’s n data curves converge to a constant (minimum) value as Re 

increases, indicating that n is solely dependent upon k at higher Re values. In contrast, the So-

specific f curves in Figure 3-9 converge to a bounding curve in the form of Equation 3-3 as Re 

increases. Though the slopes of the bounding curves become relatively small at higher Re values,  
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Figure 3-10.  n vs. Re data for acrylic, metal lath, trapezoidal corrugation (A), and block (B) 

roughness materials 

 

  



31 

 

the bounding curves do not reach a zero slope, indicating that f remains a function of Re and k 

over the range of Re numbers tested.   

The data in Figure 3-10 also suggest that the appropriateness of a constant-n value 

assumption increases as the relative smoothness of the channel boundary increases.  The n values 

for the acrylic and metal lath channels are constant over the majority of the Re range tested.   As 

the relative roughness increases (e.g., the blocks and trapezoidal corrugations), the range of Re 

over which n is constant diminishes.  Based on the data presented in Figure 3-10, the constant-n 

assumption, commonly used when applying Manning’s equation (Equation 3-2), is appropriate 

for smooth-wall channel lining materials (e.g., smooth acrylic sheeting) or for “rougher” 

boundary materials when a quasi-smooth boundary condition is present (e.g., metal lath and 

trapezoidal corrugation roughness material n vs. Re data becomes constant).  Under these 

conditions, n is a function of k and is no longer dependent on Re, So, or Rh/k.   

The behavior of the block roughness n data in Figure 3-10 is similar to that of the f data 

in that the n data do not fully converge to a constant value (a bounding curve for the f data) due to 

the limited range of experimental Re values.  It is assumed, however, that, similar to the 

trapezoidal corrugations, the block data will converge to a constant n value at higher Re values. 

Figure 3-11 presents n vs. Rh/k for the block and trapezoidal corrugations.  The block data 

show a strong dependence on Rh/k (n decreases with increasing Rh/k) and are relatively 

independent of So, as the data essentially collapse to a single curve.  The fact that the n vs. Rh/k 

data are essentialy independent of So means that, for the rectangular flume used in this study, n 

was solely a function of flow depth.  n will be the same for two different channel slopes, provided 

that flow depths are the same, independent of the differences in Q, V, and Re for the two slope 

conditions. As a result, when correlating n vs. Rh/k, n is essentially independent of V and Re. The 

trapezoidal corrugation data in Figure 3-11 also show a strong dependence on Rh/k; but a slight 

data segregation (family of curves) associated with So exists (more than with the block data). 
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Figure 3-11.  n vs. Rh/k for Block and Trapezoidal Corrugation roughness materials 

 

The reason for the variation in the behavior of n vs. Rh/k between the block and 

trapezoidal corrugation materials isn’t clear, but it may be related to the nature of the flow paths 

near the boundaries.  With the blocks, flow passes over and around the individual roughness 

elements.  With the trapezoidal corrugations, the flow only passes over the roughness elements, 

making the velocity profile near the boundary primarily two-dimensional rather than three-

dimensional like the blocks. The disparity between the So-specific n vs. Rh/k curves in Figure 3-

11, however, is significantly reduced relative to the n vs. Re data in Figure 3-10.   

It is also interesting to note that, despite the fact that the block and trapezoidal 

corrugation roughness elements are the same height, the n vs. Rh/k data trend differently in Figure 

3-11.  At smaller flow depths (e.g., Rh/k =1.0), the flow resistance of the blocks is larger (larger n) 

than the trapezoidal corrugations.  For the trapezoidal corrugations, n decrease more rapidly with 

increasing Rh/k than the blocks, and the point at which n becomes constant occurs at a lower Rh/k 
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value.  This suggests that equating k to the height of the roughness element does not adequately 

characterize the influence of the roughness elements on flow resistance.  Though perhaps not a 

general conclusion, it is interesting to note that the trapezoidal corrugations and the block, which 

were approximately the same height, both approach approximately the same constant n value at 

high Rh/k values (n~0.033).  More research is recommended to investigate the characteristic 

differences between the flow resistance behavior of two-dimensional and three-dimensional 

boundary roughness element types.   

With respect to the data presented in Figure 3-11, the quasi-smooth flow boundary 

condition occurs for rougher boundary materials when a sufficiently high Rh/k condition, referred 

to as relative submergence or the boundary roughness elements, is reached and n becomes 

constant.  For Rh/k values below the quasi-smooth flow limit, the constant-n assumption is not 

appropriate.  According to the data presented in Figure 3-11, the level of relative submergence 

required to produce a quasi-smooth flow condition varies with the boundary roughness 

characteristics, which are partially described by k and Rh/k.   Manning (1889) reported relatively 

constant n values for numerous river channel sections.  The river channel sections most likely 

featured sufficiently high Rh/k values to validate a constant n assumption. 

 

Subcritical vs. Supercritical Flow 

Nineteen of 35 metal lath lining data points featured supercritical flow conditions and 

were dispersed over the range of Re tested.  Three of 7 flow conditions corresponding to the 

steepest channel slope for the block and trapezoidal roughness produced supercritical flow.  

Although the data are not specifically identified as sub- or supercritical flow in Figure 3-11, the 

consistent trends in the data sets indicate that n is relatively independent of Fr over the range of 

Fr values tested.  For the entire data set (all four boundary roughness data sets) Fr ranged from 
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0.33 to ~1.54.  These results concur with Chow (1959), who stated that for small Fr (Fr < 3), the 

effect of gravity on flow resistance is negligible.   

 

CONCLUSIONS 

The behavior of Manning’s n (and f) in a prismatic (rectangular) open channel flow as a 

function of Re, Rh, k, So, and Fr was evaluated in the laboratory in a effort to characterize their 

constant and/or variable nature for various uniform channel lining roughnesses ranging from 

smooth to relatively rough.  The results of this study are intended to provide additional insight 

into the appropriateness of the constant Manning’s n assumption, relative to the specific 

roughness materials tested. Based on the results of this study, the following conclusions are made:  

 

1. In relation to Re, the f and n data from this study have similar characteristics to the data 

presented by Chow (1959).  At a constant So, both f and n decrease with increasing Re.  

The Re-dependent f data were bound by a material roughness-specific limiting curve 

consistent with Equation 3-3; the corresponding n data were bound by a limiting constant 

n value.  Chow (1959) suggested that the f-data bounding curves are consistent with a 

smooth surface condition, analogous to the Prandtl-von Kármán smooth pipe wall 

boundary condition, or a quasi-smooth boundary flow condition, which describes a 

condition where the voids between boundary roughness elements are filled with stable 

eddies, reducing the influence of the boundary roughness elements on flow resistance. 

The constant-n assumption is appropriate for smooth and quasi-smooth flow conditions.   

For rougher boundary materials, n can vary considerably for non-quasi-smooth flow 

conditions, which if not appropriately accounted for, could significantly increase the level 

of uncertainty associated with open channel flow stage-discharge calculations.  

2. For a single boundary roughness material (characterized by k), flow resistance testing 

over a range of channel slopes produced a family of So-dependent curves (see Figures 3-9 
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and 3-10).  The families of f and n data curves in Figures 3-9 and 3-10 do not necessarily 

confirm So as a significant parameter influencing flow resistance behavior, but rather they 

serve as an indicator that there are likely additional system parameters that influence 

open channel flow resistance, which are not appropriately accounted for in an f or n vs. 

Re analysis.  The differences between the So-dependent curves for a single boundary 

roughness material increased as k increased (i.e., the metal lath family of curves is more 

closely spaced than the curves for the block or trapezoidal corrugation boundary 

materials in Figures 3-9 and 3-10).  Figures 3-9 and 3-10 also show that f and n increase 

with increasing S for a given boundary roughness material.  

3. Figure 3-11 shows that the So-dependent family of curves collapse relatively well to a 

single curve when n is plotted with respect to Rh/k.  This suggests that for two channels 

with a common cross sectional shape and boundary roughness material but differing 

slopes, the value of n will be equal in both channels for flow conditions that produce the 

same Rh values (i.e. same flow depth) and is also independent of the differences in Q, V, 

and Re for the two slope conditions.  The trapezoidal corrugations show a greater scatter 

in the n data than do the blocks when plotted with respect to Rh/k; however, the Rh/k 

relationship represents a significant improvement relative to the Re relationship with 

respect to collapsing the data to a single curve.  More research is needed to fully explain 

the scatter shown in the data. 

4. According to Figures 3-10 and 3-11, the appropriateness of the constant Manning’s n 

assumption or the existence of a quasi-smooth flow condition is dependent upon the 

boundary roughness and a specific value of Rh/k.  There exists a minimum Rh/k value for 

each boundary roughness material tested above which n is essentially constant.  The 

constant-n minimum values of Rh/k decrease as k decreases (as the boundary becomes 

smoother).  It is interesting to note that, despite the fact that the trapezoidal corrugation 
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and block elements had similar height dimensions (1.5 inches) used to quantify their k 

values, the constant-n minimum Rh/k values differed appreciably (as shown in Figure 3-

11).  This suggests that simply using the vertical dimension or height of a boundary 

roughness element, particularly for relatively rough boundary materials, does not 

sufficiently characterize their equivalent roughness height (k).  The height, width, length, 

spacing, uniformity and surface texture, etc. will all influence the behavior of n.  It is also 

interesting to note that, despite the fact that the block and trapezoidal corrugations reach 

the constant n condition at differing values of Rh/k, the block and trapezoidal corrugation 

boundary roughness materials converge to approximately the same constant n values.   

5. Consistent with the findings of Chow (1959), n was found to be independent of Fr for Fr 

< 3 (all test data from this study were less than Fr = 3).  Ugarte and Madrid (1994) 

reported that n was Fr-dependent, but their test conditions were limited to relatively small 

values of Rh/k (large roughness elements and/or shallow flow depths) relative to the 

current study.  

 

In developing Equation 3-2 Manning’s (1889) primary objective was a simple open 

channel flow equation with a roughness coefficient (n) that was solely dependent on k.  Currently, 

hydraulic engineering handbooks publish singular representative n values (or a small range to 

account for variations in material surface finish) per boundary material type (e.g., concrete, cast 

iron, clay, etc.).  Manning concluded that the constant n assumption was “sufficiently accurate” 

after applying Equation 3-2 to numerous data taken from rivers.  The Task Force on Fiction 

Factors in Open Channels organized by ASCE in 1957 recommended that this assumption can be 

used with certain stipulations.  One of which is that the flow condition must be designated as fully 

rough where the friction factor is independent of Re; however, later studies (Limerinos 1970, 

Jarrett 1984, Bathurst et al. 1981, Ugarte and Madird 1994) suggest that n can be influenced by 
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Rh, k, Se, and Fr indicating it is not constant even under flow conditions where the friction factor 

is independent of Re (or “fully rough”) as described by the committee. 

Based on the findings of this study, an engineer that desires to use Manning’s Equation 

for open channel calculations should take into consideration that the appropriateness of assuming 

material-specific constant Manning’s n values for all stage and discharge conditions is not only 

limited to whether the flow is “fully rough” but is limited even further to smooth (physically 

smooth or quasi-smooth) boundary flow conditions.  Additional research is needed to provide 

engineers with more comprehensive Manning’s n data that better characterize the flow resistance 

behavior of common channel lining materials for design purposes to aid in the decision to apply a 

constant n or some other method to determine a variable n.   
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CHAPTER 4 

OPEN CHANNEL FLOW RESISTANCE: THE HYDRAULIC RADIUS  

DEPENDENCE OF MANNING’S EQUATION AND MANNING’S N
2
 

 

ABSTRACT 

Manning’s equation, which is used to estimate head-discharge relationships in open 

channel flow applications, states that the mean channel flow velocity is inversely proportional to 

the Manning’s n hydraulic roughness coefficient and proportional to the hydraulic radius raised to 

an exponent (x’) of 2/3 (i.e., Rh
2/3

).  n and x’ represent empirical coefficients used to correlate 

Manning’s equation with experimental data.  In developing Manning’s equation, Manning 

evaluated the stage-discharge characteristics of various boundary roughness materials ranging 

from smooth cement to course gravels and reported unique values of n and x’ for each boundary 

type.  The x’ values ranged from approximately 0.65 (smoothest boundary tested) to 0.84 

(roughest boundary tested).   Manning chose x’ = 2/3 as representative, compared it with field 

data, and suggested that it was sufficiently accurate.  He also offered the caveat that the use of 

Manning’s equation should be limited to cases where its accuracy has been validated.   

Chapter 3 of this document showed that Manning’s n is not constant for all boundary 

materials and all stage-discharge conditions.  This chapter evaluates the behavior of x’ with 

respect to constant n-assumptions for the four boundary roughness materials discussed in Chapter 

3 (smooth acrylic sheeting, metal lath, trapezoidal corrugations, and blocks) and the boundary 

roughness materials analyzed by Manning (1889).  Consistent with the results reported by 

Manning (1889), the result of this study found that the x’=2/3 assumption is appropriate for 

smooth boundaries (e.g., acrylic and pure cement) and for rougher boundary materials when a 

quasi-smooth boundary condition exists.  The quasi-smooth boundary condition describes a 

                                                      
2
 Coauthored by Tyler G. Allen, P.E.; Blake P. Tullis, Ph.D., P.E. 
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condition where the voids between the boundary roughness elements are filled with stable eddies, 

which effectively reduces the influence of the boundary roughness elements on flow resistance.  

For rougher boundary materials not in the quasi-smooth boundary flow condition, applying the 

constant Manning’s n assumption results in x’ values in excess of 2/3.  In order to accurately 

predict the stage-discharge relationship for rougher boundary conditions using Manning’s 

equation, either the x’=2/3 or a constant n value assumption can be applied but not both; the other 

variable (x’ or n) must be treated as non-constant. 

 

INTRODUCTION 

Uniform flow head-discharge relationships for open channel applications correlate flow 

rate (Q) or mean channel velocity (V) to an energy gradient, taking into account the flow 

resistance associated with the channel cross-sectional shape and boundary roughness.  Most open 

channel head-discharge or uniform-flow equations are in the form of Equation 4-1 (Chow, 1959). 

 
'' yx

h eSCRV 
 

(4-1) 

In Equation 4-1, Rh is the hydraulic radius [the flow area (A) divided by the wetted perimeter (P)], 

Se is the friction slope (equal to the channel slope So for uniform flow conditions), C is a flow 

resistance coefficient, and x’ and y’ are exponents.  The Chezy (Equation 4-2), Darcy-Weisbach 

(Equation 4-3), and Manning (Equation 4-4) equations represent three common open channel 

flow head-discharge relationships derived from Equation 4-1. 
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In Equations 4-2 through 4-4, g is the acceleration due to gravity; Kn = 1 for S.I. and Kn = 3.281
(1-

x’)
 for ES units; and Cc, f, and n are equation-specific hydraulic roughness coefficients.  Equations 

4-2 and 4-3 are identical (i.e., same x’ and y’ values), with the exception of the way the hydraulic 

roughness for flow resistance is quantified.  Manning’s equation is significantly unique from the 

other two, with x’ = 2/3 instead of 1/2.  Manning (1889) made this change with the hope of 

developing a simplified open channel equation where the roughness coefficient (n) would be 

constant for a given channel lining material (i.e., independent of stage and discharge).  Equation 

4-4 is commonly applied in practice with the assumption that n remains constant for a given 

boundary roughness material. 

Chow (1959) stated that if the boundary roughness in a channel is uniform (i.e., the 

roughness is the same for the entire wetted perimeter over the length of the channel section) and 

the slope of the channel bottom is also uniform, then there is a possibility that Manning’s n could 

remain constant for all flow stages.  The Task Force on Friction Factors in Open Channels (1963) 

organized by the American Society of Civil Engineers (ASCE) in 1957 indicates that a nearly 

constant n is applicable to channels where the friction factor is independent of Reynolds Number 

(Re=V4Rh/v, where v represents the kinematic viscosity) (the flow is designated as “fully rough” 

turbulence).  More recently, Yen (2002) suggested that the constant n assumption is appropriate 

under certain conditions, and makes Equation 4-4 more convenient to use than Equations 4-2 and 

4-3.  Data have also shown (Limerinos 1971, Bray 1979, Bathurst et al. 1981, Jarrett 1984, Ugarte 

and Madrid 1994), however, that n is not always constant with stage and discharge even in 

channels where the stipulations listed by Chow (1959), the ASCE Task Force (1963), and Yen 

(2002) are met.  These studies were performed in gravel bed streams or “steep” mountain streams 

with relatively rough natural channel boundaries [in some cases, the height of the roughness 

elements exceeded the flow depth (y)].  The seemingly conflicting results of Bathurst et al. 

(1981), Jarrett (1984), and Ugarte and Madrid (1994) and the statements of Yen (2002), Chow 
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(1959), and the ASCE Task Force (1963) are all somewhat supported by the discussion in 

Chapter 3, which documents both variable and constant n flow regimes in a rectangular channel 

with a uniform boundary roughnesses.   

In this chapter, the appropriateness of the constant n assumption, relative to the behavior 

of the other empirically-determined fitting parameter in Manning’s equation, x’, is evaluated by 

applying a similar analysis method to that used by Manning (1889) in the development of 

Equation 4-4 to the data sets used by Manning (1889) and the Manning’s n data presented in 

Chapter 3 (acrylic, metal lath, trapezoidal corrugation, and the block channel boundary roughness 

materials).  The results give the engineer further guidance as to the potential limitations of the use 

of Manning’s Equation (Equation 4-4) coupled with the assumption of a constant n value. 

 

BACKGROUND 

Chezy and Darcy-Weisbach Equations 

The Chezy equation (Equation 4-2) was developed circa 1769 for uniform open channel 

flow.   Two basic assumptions contributed to its derivation: (1) the force resisting the flow per 

unit area of the streambed is proportional to the square of the velocity and (2) the flow 

gravitational force is equal and opposite to the flow resistance force (Chow, 1959). 

The Darcy-Weisbach equation was developed for pressurized pipe flow via dimensional 

analysis.  f values, which vary with k/D (k is defined as an boundary material equivalent 

roughness height and D is the pipe diameter) and Re, are presented for smooth-walled (non-

profiled-wall) pipe in the Moody Diagram, which can be found in most hydraulic handbooks. 

Chow (1959) stated that if Se represents the head loss per unit length of pipe or channel and if D 

were replaced by 4Rh, then Equation 4-3 could be applied to open channel flow. The relationship 

between Cc and f are shown in Equation 4-5. 
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Manning’s Equation 

Aware of the variable nature of hydraulic roughness coefficient behavior with most open 

channel flow equations, including Equations 4-2 and 4-3, Manning (1889) presented an alternate 

open channel flow head-discharge relationship (Equation 4-4) intended to produce constant 

hydraulic roughness coefficients for given channel boundary materials (i.e., the roughness 

coefficient is independent of flow conditions).  He assumed this equation would take the form of 

Equation 4-1 with y’ = 1/2 as shown in Equation 4-6. 

 
2/1'

e

x

h SCRV   (4-6) 

The empirical basis for Equation 4-4 came from experimental data published by Bazin (1865), 

who hydraulically tested four different flow boundary materials [pure cement and 2-to-1 mix 

ratios of cement and fine sand, cement and small gravel (particle sizes ranging from 0.36 to 0.84 

inches), and cement and large gravel (particle diameters ranged from 1.2 to 1.6 inches)]. After 

determining boundary roughness-specific constant values for C in Equation 4-6, Manning 

reported that the boundary roughness-specific average exponent x’ values ranged from 0.6499 to 

0.8395, with x’ generally increasing with increasing boundary roughness.  Manning assumed 

x’ = 2/3 (a value most consistent with smoother boundary roughness materials) to be 

representative and considered the resulting equation, Equation 4-4, to be “sufficiently accurate” 

after applying the equation to numerous experiments. Recognizing the potential limitations of 

Equation 4-4, Manning (1889) suggested, that due to its empirical nature, the application of 

Equation 4-4 should be limited to situations where it has been tested and proven. 
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Equations for Variable Roughness Coefficients 

Bathurst (2002) stated that some researchers have found success in using empirical 

formulas based on a power law relationship in the form of Equation 4-7 to describe hydraulic 

roughness coefficient variations. 

 

b

h

k

R
a

V

V










*
 (4-7)  

In Equation 4-7, V
*
 (shear velocity) = (gRhSe)

1/2
, a and b are empirical coefficients, and k is the 

equivalent roughness height, which Chow (1959) suggested is not necessarily equal to the height 

or even the average height of the roughness elements.  k characterizes the effect of the roughness 

elements on the hydraulic roughness coefficient; however, it has limited physical meaning and its 

definition can vary by user.  It is therefore another empirical coefficient, and its physical meaning 

depends on how it is defined for a particular equation.  For example, in equations involving 

gravel beds, k is often defined as a representative Dr (the representative particle diameter of the 

channel boundary where r indicates the percentage of particles that are smaller than Dr).  V/V* is 

related to the standard hydraulic roughness coefficients as shown in Equation 4-8. 
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It is important to note that Equation 4-7 is not a function of Re indicating that the data fit 

by the equation may be considered independent of Re and dependent only on relative 

submergence (Rh/k) which is indicative [according to the ASCE Task Force (1963)] of a “fully 

rough” turbulent flow regime.     

Bray (1979) and Griffiths (1981) published power law relationships consistent with 

Equation 4-7 for rigid boundary gravel-bed rivers.  Bathurst (2002) observed that, even though 

mountain streams may be characterized as gravel-bed rivers, these equations were relatively 

inaccurate when applied.  Mountain streams are characterized by steep slopes and relatively low 
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Rh/k values.  According to Bathurst, one reason for these inaccuracies is that the relationships 

were developed by compiling data from many different river sites, fitting one curve to all the 

data, and then extrapolating these relationships to predict behaviors outside of the experimental 

data set.  By gathering data for different flow conditions from the same river section and 

methodically grouping the data from similar sites, Bathurst (2002) showed that for the same type 

of channel (mountain streams), the data were best described by two significantly different 

relationships, suggesting that a and b are fairly site-specific parameters and are not solely 

dependent on a single channel type.  He concluded that the differences between the coefficients in 

mountain streams were primarily related to variations in channel slope.  Table 4-1 presents the 

coefficients for Equation 4-7 published in the referenced studies.   

If Equation 4-7 is simplified and solved for V, as shown in Equation 4-9, the equation 

takes on the form of Equation 4-6 (x’ = b + 1/2 and C = ag
1/2

/k
b
),

 
which suggests a constant 

exponent x’ and a constant roughness coefficient C for a given boundary roughness, provided that 

a and b are constant.     
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Applying the coefficients from Table 4-1 to Equation 4-9 shows that the x’ = 2/3 

assumption made by Manning (1889) is not necessarily “sufficiently accurate” for all open 

channel flow conditions since the value of x’ can be boundary roughness specific, as illustrated by 

the data in Table 4-1.  Manning (1889) warned of this himself in stating that empirical equations 

should be used with caution when they are applied outside of the boundaries of the data from 

which they are created.  This study investigates the variation in x’ related to different boundary 

roughness types in a laboratory setting, where parameters are more easily controlled, to gain a 

better understanding of the appropriateness of the constant n assumption applied to Manning’s 

equation. 
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Table 4-1.  Published coefficients for power-law equation (Equation 4-7) 

Study a b x’ k 

Bray (1979) 5.03 0.268 0.768 D90 

Griffiths (1981) 3.54 0.287 0.787 D50 

Bathurst (2002) 3.84 0.547 1.047 D84 

Bathurst (2002) 3.10 0.93 1.43 D84 

 

EXPERIMENTAL METHOD 

The behavior of Manning’s n for four different boundary roughness materials was 

investigated by conducting flow tests in a 4-ft wide by 3-ft deep by 48-ft long adjustable-slope, 

rectangular laboratory flume. The four boundary roughness materials tested included acrylic 

sheeting (see Figure 3-2); a low profile, commercially available expanded metal lath adhered to 

the acrylic flume walls and floor (see Figure 3-3); regularly spaced wooden blocks (see Figures 3-

4 and 3-5); and trapezoidal corrugations oriented normal to the flow direction (see Figures 3-6 

and 3-7).  The wooden blocks, measuring 4 inches wide (normal to flow direction) by 3.5 inches 

long by 1.5 inches tall, with the top edges rounded (1-inch radius round-over), featured a painted 

exterior, and were assembled in a closely spaced, uniform pattern.  The wooden trapezoidal 

corrugation elements were 1.5 inches tall, had a 1.5-inch wide top width and a 4.5-inch wide 

base, and were spaced 1.5 inches apart.  The blocks and trapezoidal corrugation elements were 

attached to sheets of painted marine grade plywood that were attached to the flume floor and 

walls. 

Water was supplied to the flume from a reservoir located adjacent to the laboratory and 

was metered using calibrated orifice flow meters located in the supply piping.  Flow depths were 

measured using a precision point gage, readable to 0.008 inches, attached to a movable carriage 

located above the flume. 

Manning’s n can be directly calculated via Equation 4-4 when uniform flow exists in the 

channel and the flow depth (y) and flow rate (Q) are known.  Due to the limited length of the 
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laboratory flume and the wide range of discharges and boundary roughness tests, uniform flow 

depths could not be achieved for all test conditions.  For non-uniform flow conditions, a gradually 

varied flow (GVF) profile analysis technique was used, as discussed in Chapter 2.  Figure 2-1 

shows a plot of the n data calculated using the uniform flow and the GVF methods vs. y for the 

block boundary roughness.  The plotted data show good agreement between the two methods.  

The uniform flow data in Figure 2-1 show that, for the block roughness, n varies (0.087 ≥ 

n ≥ 0.048) with changes in uniform flow depth (0.13 ≤ y ≤ 0.9).  Analysis of various truncated 

sections of a single GVF profile using the GVF n method also produced different predictive 

values for n, suggesting that n is also variable with depth (and velocity) throughout a GVF 

profile.  Based on the variable nature of n with y in the GVF profiles, the predicted normal depths 

(yn) associated with the variable n values would also vary.  Consequently, based on the good 

correlation between the uniform flow and GVF n data presented in Figure 2-1, yaverage, the average 

value of y in the measured GVF profile, was selected as the representative flow depth parameter 

in this analysis for calculating Rh, Re, V, etc.  For flow conditions where uniform flow developed, 

yaverage = yn.  The four boundary roughness materials were tested over a range of channel slopes 

and discharges.   

 

DISCUSSION AND RESULTS 

For Manning’s n coefficient to remain constant for a given channel lining material, 

independent of stage and discharge, the following two conditions must be met: 

1. The mean flow velocity can be represented by an equation in the form of Equation 4-6. 

2. x’ will equal 2/3, independent of the channel lining material. 

If these conditions are not met, then n must vary in order to match Equation 4-4 with the 

actual head-discharge relationship.  Conditions 1 and 2 were tested by plotting log(V/Se
1/2

) vs. 

log(Rh) using data from Bazin (1865) and the current study.  To satisfy Condition 1, the data  
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Table 4-2.  Optimal x’ values 

Boundary 

Roughness 

Material 

Description x’ r
2
 

Bazin Study (1865) 

Pure Cement Pure cement lining 0.676 0.998 

Cement-Sand mix 2/3 cement, 1/3 fine sand mix 0.684 0.994 

Small Gravel Diameters ranging from 0.36-in to 0.84-in 0.721 0.997 

Large Gravel Diameters ranging from 1.2-in to 1.56-in 0.822 0.999 

Laths of Wood 

(Corrugations) 

0.36-in tall, 1.1-in wide, spaced 1.92-in apart, oriented normal to 

flume centerline 
0.732 0.997 

 

Current Study 

Acrylic Acrylic lining of flume boundary (see Figure 6-2) 0.644 0.982 

Metal Lath Commercially available expanded metal lath with a thickness of 

0.125-in (see Figure 6-3) 
0.795 0.989 

Trapezoidal 

Corrugations 

1.5-in in height, top width of 1.5-in, and bottom width of 4.5-in, 

spaced 1.5-in apart, oriented normal to flume centerline (see Figure 

6-6)  

0.968 0.968 

Blocks 4.5-in by 3.5-in by 1.5-in tall, with the top edges rounded (1-in 

radius round-over) (see Figure 6-4) 
1.16 0.997 

 

should be well represented by a linear trendline of the form of Equation 4-10.  In Equation 4-10, 

C is equal to the y-intercept on the plot, and x’ is the slope.  The corresponding x’ values are 

presented in Table 4-2. 
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The x’ values corresponding to Bazin’s data in Table 4-2 are consistent with those 

calculated and reported by Manning (1889) for the same data sets. The r
2 
values [coefficient of 

determination applied to the linear relationship of log(V/Se
1/2

) vs. log(Rh)] in Table 4-2, which are 

all ≈1.0, indicate that V is relatively well represented by Equation 4-6 and that Condition 1 is 

satisfied.  

Condition 2, however, is not met according to the x’ data presented in Table 4-2, which 

varied with boundary roughness type.  The smoother roughness boundary x’ values (e.g., pure 

cement, cement/sand mix, and acrylic) are approximately equal to the 2/3 value used by Manning  
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Figure 4-1.  Equivalent Manning’s n coefficients (nc, n, and nopt) for Pure Cement (Bazin, 1865 

data) (A), Large Gravel (Bazin, 1865 data) (B), and Block (C) roughness data 
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(Equation 4-4).  x’ increased for the rougher boundaries (up to 1.16 for the blocks). The relevance 

of the different x’ values associated with Equation 4-6 to the assumption of a constant roughness 

coefficient is illustrated in Figure 4-1. 

Figure 4-1 compares the roughness coefficients from three different versions of Equation 

4-6: the Chezy (Equation 4-2) or Darcy-Weisbach (Equation 4-3) equation (where x’ = 1/2),  

Manning’s equation (Equation 4-4) (x’ = 2/3), and Equation 4-6 using the material roughness-

specific x’ values presented in Table 4-2 that correspond to a constant n value (nopt).  For 

convenience, the hydraulic roughness coefficient results in Figure 4-1 are all presented in terms 

of an equivalent n value (neq).  This was done by replacing C in Equation 4-6 with Kn/neq and 

noting that Kn = 3.281
(1-x’)

 for the individual boundary roughness materials. 

Figure 4-1(A) presents neq vs. Rh for the pure cement lining data reported by Bazin 

(1865).  The data show a variable nc; n and nopt are relatively constant and equal.  The constancy 

of n and nopt is due to the fact that Conditions 1 and 2 are both satisfied.  The Manning’s n data 

for the acrylic and the cement-sand mixture boundary conditions (not presented) had similar x’ 

values to the pure cement and behaved similarly. 

Figures 4-1(B) and (C) present the data for the large gravel (Bazin, 1865) and the block 

roughnesses, respectively.  These figures show examples where Condition 2 is not met and, 

therefore, Manning’s equation requires a variable n value to match the results of the experimental 

data.  While Manning’s equation (Equation 4-4) improves upon Chezy’s Equation (Equation 4-2) 

[i.e. the difference between the maximum and minimum neq values decreases from 0.0124 (nc 

curve) to 0.008 (n curve)], the roughness coefficient is not constant unless x’ of Equation 4-6 is 

optimized for these specific boundary roughness materials as evidenced in the nopt curve. 

The results clearly indicate that either x’ or the boundary roughness coefficient (n, f, or C) 

must vary to accurately describe the hydraulic behavior of the stage-discharge relationship as Rh 

varies.  Although some research has suggested correcting Manning’s equation by changing x’ 
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(Blench, 1939), more recent research has focused on variable roughness coefficient predictive 

techniques (Limerinos 1970, Bray 1979, Griffiths 1981, Bathurst et al. 1981, Jarrett 1984, Ugarte 

and Madrid 1994, Bathurst 2002) for use in Equations 4-2, 4-3, and/or 4-4.  Equation 4-9 shows 

that using the power law equation to determine a variable hydraulic roughness coefficient is 

basically the equivalent of changing the x’ value of Equation 4-6 and applying a constant 

roughness coefficient. 

These power law equations are generally developed for a specific boundary roughness 

type with the underlying assumption that the equation applies to a range of roughness element 

sizes (generally characterized by k).  For example, Bray (1979) and Griffiths (1981) present 

equations developed for channels with rigid gravel beds; Bathurst (2002) presents an equation for 

mountain streams.  Each of these equations uses a k value defined by specific gravel Dr values. 

They assume that a single x’ value may apply to a range of roughness element sizes whose size 

can be characterized by a common Dr value for a certain type of boundary roughness. 

The r
2
 value reported for the Bray (1979) and Griffiths (1981) equations are 0.355 and 

0.591, respectively, suggesting that a considerable amount of scatter exists in the data. 

Griffiths (1981) attributes the scatter to inadequate descriptions of the channel reach and 

hydraulic variables, restrictions and errors in data collection procedures, irregularities in the 

alignments and channel cross sections, and the rugged bed topography.   

Bathurst (2002) found that if the data were divided into groupings based on channel 

similarities, the scatter decreased significantly (increased r
2
 values).  This resulted in two 

equations with x’ values of 1.047 and 1.43, respectively.  The difference in these two x’ values 

was attributed to differences in the channel slope: 1.047 for slopes < 0.8% and 1.43 for 

slopes > 0.8%. 

The results from the current study (Table 4-2) suggest that roughness element size may 

have a significant effect on the value of x’.  The Bazin (1865) gravel data produced x’ values 
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equal to 0.721 and 0.822 for the small and large gravel tests.  The block data, which is somewhat 

representative of a rigid gravel or small cobble bed (flow can pass over and around the projecting 

roughness elements), produced an x’ = 1.16, suggesting that x’ increases with increasing gravel or 

roughness element size.   The smoothest boundary materials (acrylic, pure cement, and cement-

sand mix) produced the smallest and relatively constant x’ values of 0.644, 0.676, and 0.684, 

respectively).  The corrugated boundary roughness materials produced increasing x’ values with 

increasing corrugation size (x’ = 0.732 for Bazin’s “laths of wood” and x’ = 0.968 for the 

relatively larger trapezoidal corrugations).   

For the roughness materials evaluated in this study, channel slope was not a significant 

factor of the x’ value (i.e., the data in Figure 4-1(C), which include multiple channel slopes, fall 

on a single curve).  Although Bathurst (2002) points out differences between the channel 

geometries and typical boundary roughness materials used in flume studies and those found in 

natural mountain streams, both the Bathurst (2002) results and the current study indicate that x’ is 

dependent on more than simply the roughness material type or channel geometry.  Therefore, an 

equation in the form of Equation 4-6, with a constant hydraulic roughness coefficient, will not 

accurately describe the stage-discharge relationship for a general boundary type classification 

such as gravel channels.  x’ will vary with the size, density, spacing, and alignment of the 

boundary roughness elements. 

The prospect of developing equations specific to the boundary roughness type as well as 

the size, density, and distribution of the individual roughness elements is a somewhat daunting 

task.  Manning’s (1889) original intent was a single simple equation that would produce 

“sufficiently accurate” results considering the information available.  It is interesting that 

Manning’s x’ = 2/3 and his boundary-specific, constant n assumption have withstood the test of 

time for so long considering the resulting range of required x’ values determined in this and other  
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Figure 4-2.  Plot of log(V/Se
1/2

) versus log (Rh) data for acrylic, metal lath, block, and trapezoidal 

corrugation boundary roughness materials 

 

 

studies required to support a constant n value.  A closer look at the data gives insight to the 

longevity and relative reliability of Manning’s equation.   

The x’ values reported in Table 4-2 represent the data with a single optimized head-

discharge curve.  Figure 4-2 presents log(V/Se
1/2

) vs. log(Rh) plots for the acrylic, metal lath, 

blocks, and trapezoidal corrugation channel lining material data.  With the exception of the data  

for the smooth acrylic, the data in Figure 4-2 are better represented by two linear trend lines, each 

with a different slope (x’), as described by Equation 4-10.  Consistent with Manning’s equation 

(Equation 4-4), the acrylic data correlated well with the x’ = 2/3 trend line slope represented on 

the plot by a dashed line.  The metal lath and the trapezoidal corrugation data sets both exhibit 

variable dependence on Rh as shown by the two distinct trend lines of differing slope 

corresponding to the “higher” and “lower” Rh data ranges.  x’ values for the higher Rh data ranges 
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(metal lath and trapezoidal corrugation data) are reasonably represented by x’ = 2/3 (Manning’s 

equation).  The smaller Rh data ranges for both data sets require x’ > 2/3 to match the 

experimental data (e.g., x’ = 0.9 for the metal lath and x’ = 1.25 for the trapezoidal corrugations 

are required to better match the larger Rh experimental data). The block data correspond to a 

single linear trend line with x’ = 1.2.  This result, however, may be due only to the fact that 

sufficiently high Rh values could not be achieved in the test facility to identify a range of Rh 

where the x’=2/3 is appropriate.  Note that the higher Rh block data (top 7 to 8 data points) are 

beginning to deviate slightly from the trend line.   In summary, the acrylic boundary (over the full 

range of Rh) and the metal lath and trapezoidal corrugation channel lining materials at larger Rh 

values produced an x’ = 2/3. For all other conditions, including the block channel lining material, 

alternate x’ values were required in order to fit the data for each of the roughness materials.  

These results suggest that Conditions 1 and 2 are met when either the roughness 

boundary itself is smooth (e.g. the acrylic and cement boundaries) or at higher Rh values for 

rougher boundaries.  This finding is consistent with the quasi-smooth boundary condition theory 

discussed in Chapter 3, where stable eddies form between the roughness elements of the rougher 

boundaries, creating a quasi-smooth flow condition above the roughness elements, and reducing 

the effect of the specific boundary roughness geometry on the flow resistance.  The acrylic and 

cement boundaries represent smooth-flow boundary conditions.  When x’ for the rougher 

boundary materials is equal to 2/3 (larger Rh values), the flow condition is consistent with the 

quasi-smooth boundary condition.  When channels lined with rougher boundary materials operate 

outside of the quasi-smooth flow condition, then Conditions 1 and 2 are no longer met, x’≠ 2/3, 

and/or n cannot be considered constant. The longevity and relative reliability of the use of 

Manning’s equation (Equation 4-4) with boundary-specific constant n values suggests that many 

of the channels used in practice have relatively smooth flow boundaries (e.g., cement-lined 

channels) or that they may commonly operate in the quasi-smooth flow condition. 
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CONCLUSIONS 

When applying Manning’s equation, the assumption is often made that n is a constant 

value, independent of flow depth and discharge for a given channel lining material.  An 

inspection of the experimental data from the current study and from Bazin’s (1865) showed that 

the applicability of the constant n assumption diminishes as the roughness of the boundary 

increases.  To produce a constant n value for a given boundary roughness material at all flow 

conditions, the mean velocity must be well represented by an equation in the form of Equation 4-

6 and the representative x’ coefficient must equal 2/3.  This study evaluated these two conditions 

for a range of boundary roughness materials and produced the following conclusions: 

1. The data showed that Equation 4-6 provided a relatively good overall fit to the data for 

each of the lining materials tested.   

2. Only the smooth boundary materials (e.g., acrylic sheeting and pure cement) produced an 

x’= 2/3, based on the Equation 4-6 relationship for the entire range of Rh tested.   x’ was 

found to be a unique value for each boundary material tested, ranging from 0.644 (acrylic 

sheeting) to 1.16 (blocks), with the x’ value increasing with increasing boundary 

roughness.  

3. Relative to the other hydraulic roughness coefficients (Cc and f), Manning’s n exhibited 

less variability with respect to changes in Rh (see Figure 4-1).  n approaches or becomes 

constant as Rh increases.  Based on the range of flow conditions tested (in a rectangular 

flume), the range of Rh values over which n is constant decreases as the roughness of the 

boundary material increases. For very smooth boundaries (e.g., acrylic sheeting), n was 

approximately constant over the entire range of Rh tested. 

4. The value of x’ that corresponds to Equation 4-6 not only varied with boundary 

roughness material type as reported in conclusion 2, it also varied with Rh for a given 

boundary roughness material. The metal lath and trapezoidal corrugation data in Figure 
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4-2 show that two separate linear curves that correspond to different x’ (Equation 4-6) 

values are required in order to best match the experimental data.  This means that over 

the range of Rh values tested, a constant n value cannot be applied to these boundary 

roughness materials when using Manning’s equation (Equation 4-4) with x’ = 2/3.  

Manning’s equation with a constant n value gives a good representation of the data at 

larger Rh values where quasi-smooth-type flow conditions exist.  The block data also 

showed evidence that at larger Rh values there would be a shift in the x’ value.  

Sufficiently high Rh data for the blocks were not obtainable with the experimental test 

setup to confirm the high Rh block x’ value.  

5. The results of this study show that Manning’s n will not likely be a constant value for 

canals, streams, and rivers with rough boundaries such as large gravels and cobbles 

unless the Rh is sufficiently large.  The limiting Rh above which quasi-smooth flow 

conditions exist and n becomes constant will be specific for each boundary roughness 

type and must be determined by testing. 

 

In summary, Manning’s Equation (Equation 4-4) coupled with a constant n assumption 

has its place and as suggested by the ASCE Task Force on Friction Factors in Open Channels 

(1963) should continue to be used by Engineers who prefer it; however, the engineer should 

consider additional stipulations as laid out by the conclusions of this study.  Not only should the 

flow in the channel be considered to be of “Fully Rough” turbulence (friction factor is 

independent of Re) but the flow condition should also be such that it has reached a quasi-smooth 

flow condition as described in Chow’s Open Channel Hydraulics (1959).  More data is required 

to define exactly when that condition might occur and it is stipulated that this condition will be 

dependent on the roughness in the channel. 
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Otherwise, the engineer may need to consider other methods or the use of sets of 

equations to determine the relationship between discharge and head in open channels.  For 

example Manning’s equation might still be applied but must be accompanied by an equation 

which would determine a variable n value like that of the form of Equation 4-7.  The engineer 

should also take into consideration that the accuracy of any such equation of this nature is most 

likely dependent on a relatively narrow set of parameters describing the roughness boundary for 

which it was prescribed. 
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CHAPTER 5  

OPEN CHANNEL FLOW RESISTANCE:  COMPOSITE CHANNELS
3
 

 

ABSTRACT 

A composite channel in open channel flow describes a condition where different 

roughness materials line different parts of a channel cross section.  Some examples of composite 

channels include concrete rectangular or trapezoidal channels where the channel invert has been 

covered with sand and/or gravel as a result of sediment transport; vegetation can also be present 

in the channel invert.  Fish passage culverts, where the culvert invert is typically representative of 

the natural channel (e.g., bottomless culverts) and the walls are fabricated from concrete or 

corrugated metal, are another example of composite roughness channels.  Most open channel 

flow problems are solved using Manning’s equation.  Estimating the head-discharge relationship 

for composite channels poses a unique challenge due to the fact that Manning’s equation is a one-

dimensional head-discharge relationship that is being applied to what are very likely three-

dimensional flow problems.  Ideally, a representative Manning’s n hydraulic roughness 

coefficient would be defined that accounts for the three-dimensional nature of the composite 

channel flow condition.    

A literature search produced a list of 16 different relationships that have been proposed 

for estimating representative composite channel n values, referred to as ne, which are dependent 

upon the n values of the individual channel lining materials, referred to as ni, comprising the 

composite channel boundary geometry.  The degree to which these relationships have been 

evaluated against experimental composite channel data is limited.  In this study 12 different 

composite channel configurations were tested in a rectangular laboratory flume, using 

combinations of the boundary roughness materials evaluated in Chapters 3 and 4 (acrylic 

                                                      
3
 Coauthored by Tyler G. Allen, P.E.; Blake P. Tullis, Ph.D., P.E. 
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sheeting, metal lath, blocks, and trapezoidal corrugations).  The composite roughness 

configurations were categorized into three different channel types: Type I featured rougher walls 

and a smoother floor, Type II featured smoother walls and a rougher floor, and Type III featured 

rough walls and floor.  The 16 different ne relationships, which use a weighted average of the ni 

values based on a corresponding flow subarea and/or wetted perimeter to each roughness material 

comprising the composite roughness boundary, were evaluated along with different methods for 

evaluating ni.  It was determined that for hydraulically rougher boundary roughness materials 

where n varies with flow conditions (e.g., n varied with Rh/K for all of the materials tested except 

for the smooth acrylic sheeting) the variation in ni should be applied to the ne relationships.  In 

general, some of the relationships performed worse than the others, but no relationship proved to 

be consistently more accurate than the other predictive relationships for all composite channel 

configurations.  The predictive error, which was represented by the root-mean-square (RMS), 

ranged from approximately 5 to 90%, with the majority of the methods producing RMS values in 

the range of 5 to 20%.  

Based on the fact that the more complicated ne predictive methods did not produce more 

accurate results than the simpler ne predictive methods, the simpler ne predictive methods are 

recommended, namely the Horton method, keeping in mind that the level of uncertainty can still 

be significantly high.  It should also be noted that, even though the range of hydraulic roughness 

boundary materials (ni) was broader, the number of composite roughness geometries tested (12) 

was larger, and the number of ne relationships evaluated was significantly larger than previous 

studies.  The applicability of the test results to channels with cross sections that are different from 

the one tested in this study, as well as to composite roughness geometries that feature irregular 

roughness element patterns (the individual boundary roughness elements used in this study all 

feature uniform roughness element patterns) has not been determined.  Until such time as more 

accurate data are available, the results from this study are recommended as a first-order 
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approximation for composite roughness problems in practice.  The inclusion of a reasonable 

factor of safety is also recommended. 

 

INTRODUCTION 

It is not uncommon in open channel flow field applications for the wetted perimeter of a 

cross section to be made up of more than one roughness material (e.g., concrete channels with the 

invert covered with sediment, gravel, and/or vegetation, or buried-invert culverts).  Yen (2002) 

referred to such channels as composite channels.  The composite channel flow resistance will be a 

function of the combined effects of the individual flow boundary roughness materials. The most 

commonly used open channel flow equations (Manning, Chezy, Darcy-Weisbach), however, are 

one-dimensional and are limited to a single, representative hydraulic roughness coefficient.  Yen 

(2002) published 16 different composite Manning’s n (ne) relationships (see Table 5-1) as 

possible candidates for use with Manning’s Equation (Equation 8-1) to predict flow resistance in 

composite channels.   

 
2/13/2

eh
n SR

n

K
V   (5-1) 

In Equation 5-1, V is the mean velocity, Kn = 1.0 (1.49 for ES), Rh is the hydraulic radius 

[the ratio of the flow area (A) to the wetted perimeter (P)], and Se is the friction slope, which at 

uniform flow is equal to the channel slope (So).  The ne relationships published by Yen (2002) are 

based on various techniques for weighting the resistance of the individual boundary roughness 

materials in the channel cross section.  This is accomplished by partitioning A and/or P (resulting 

in component Ai and/or Pi values) between the boundary roughness materials and applying the 

individual n values of the boundary roughness materials, referred to as component n values (ni), 

to each partitioned section.  The result is a single, representative ne value that then is applied to 

Equation 5-1. 
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Previous studies compared relatively small subsets of the ne relationships listed in Table 

5-1 (Pillai 1962, Cox 1973, Flintham and Carling 1992); in total, the performances of 5 of the 16 

ne relationships presented by Yen (2002) have been evaluated using experimental data. Yen 

(2002) stated that the amount of published data available for composite channels is limited and 

therefore it is yet to be determined which of the 16 predictive ne relationships is best suited for 

use.  The current study provides an expanded experimental data set for evaluating the 

performance of the 16 ne relationships using combinations of the four boundary roughness 

materials (acrylic sheeting, metal lath, trapezoidal corrugations, and blocks) discussed in Chapter 

3.  

The ni values for the individual boundary roughness materials of the current study range 

from ni = 0.0096 for the smooth acrylic sheeting to ni = 0.033 to 0.086 (Rh or Rh/k dependent) for 

the blocks.  This range of ni values exceeds the range of hydraulic roughness values evaluated in 

the previous studies (Pillai 1962, Cox 1973, Flintham and Carling 1992).  The composite-channel 

flow resistance testing of the current study includes 12 different composite-channel lining 

combinations of the individual lining materials. 

According to Flintham and Carling (1992), the accuracy of ne relationships should be 

dependent upon two factors: (1) the method used to partition the channel cross-sectional flow area 

into the subareas directly influenced by each roughness material lining the boundary and (2) an 

accurate determination of the ni values.  The influence of the flow area partitioning technique on 

ne was found by Flintham and Carling (1992) to be relatively negligible when compared to the 

significance of the ni values selected.  This study examines the behavior of ni (the dependence of 

ni on Rh in a uniformly lined channel) and the influence of ni on the ne relationships. 
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Table 5-1  Composite Channel ne Relationships  

 Name  ne 

 

Secondary Assumptions Equation 

Mean velocity assumption 

Horton  [
∑(  

  ⁄
  )

 
]

  ⁄

 Sei = Se (5-2) 

Colebatch  [
∑(  

  ⁄
  )

 
]

  ⁄

  
Same as Horton but adjusted by a factor of 

C = Rhwall/Rhbase 
(5-3) 

Total force assumption 

Pavlovski  √
∑(  

   )

 
 

Yen (2002):  Vi/V =  (Rhi/Rh)
1/6

 or 

Flintham & Carling (1992): Vi = V and Rhi = Rh 
 (5-4) 

Total F2  √
∑(  

   )

 
 Vi/V =  (Rhi/Rh)

2/3
  (5-5) 

Total F3  √
  
  ⁄

 
∑

  
   

   
  ⁄  Vi = V  (5-6) 

Total F4  √
∑(  

      
  ⁄

)

   
  ⁄  Vi/V =  (Rhi/Rh)

1/2
  (5-7) 

Total flow assumption 

Lotters  
   

  ⁄

∑(     
  ⁄

  ⁄ )
 Sei = Se  (5-8) 

Lotters II  
∑(     

  ⁄
)

∑(     
  ⁄

  ⁄ )
 -  (5-9) 

Total Q1  
 

∑(    ⁄ )
  Sei/Se =  (Rh/Rhi)

4/3
  (5-10) 

Total Q2  
 

∑(    ⁄ )
  Sei/Se =  (Rhi/Rh)

10/3
  (5-11) 

Total Q3  
   

  ⁄

∑(     
  ⁄

  ⁄ )
  Sei/Se=  (Rhi/Rh)  (5-12) 

Total shear velocity assumption 

LAD  
∑(    )

 
 Vi/V =  (Rhi/Rh)

7/6
  (5-13) 

HDM  
∑(    )

 
  Vi/V =  (Rhi/Rh)

1/6
  (5-14) 

Total U*1  
∑(       

  ⁄⁄ )

   
  ⁄⁄

  Vi = V  (5-15) 

Total U*2  
∑(    √   )

 √  
  Vi/V =  (Rhi/Rh)

2/3
  (5-16) 

Total U*3  
∑(       

  ⁄⁄ )

   
  ⁄⁄

  

 

Vi/V =  (Rhi/Rh)
1/2

  (5-17) 
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BACKGROUND 

Component n Values (ni) 

Chow (1952) stated that the most difficult task in the use of Equation 5-1 is assigning a 

roughness coefficient (n) value and that the inexact methods for doing so range from guesswork 

to empirical relationships.  Although the ne relationships in Table 5-1 are fundamentally based on 

the channel geometry and the distribution of the hydraulic roughness boundary materials over the 

wetted perimeter, ne has an inherent level of uncertainty due to the uncertainty associated with 

specifying ni.  The relationship between n (or ni) and Re, Rh/k, and other factors was discussed in 

Chapters 3 and 4. 

Manning’s objective in developing the one-dimensional, open channel flow equation 

(Equation 5-1) was to find a relationship where the hydraulic roughness coefficient (n) would be 

constant (dependent only on k and independent of the flow conditions).  After evaluating 

Equation 5-1 (using the boundary roughness-specific constant n assumption) using numerous 

experimental data sets, Manning (1889) concluded that the equation is “sufficiently accurate.”  

Chow (1952) stated that, in general, n is not constant but rather decreases with increasing stage 

for most streams, a fact that was confirmed in Chapters 3 and 4.  Other studies have shown that n 

can vary with stage, discharge, and slope in certain uniformly lined channel applications 

(Limerinos 1970, Bray 1979, Bathurst et al. 1981); Yen (2002) recommended that n may be 

considered nearly a constant and almost independent of flow conditions.  These apparent 

contradictions suggest that some level of uncertainty still exists regarding the appropriateness of 

the constant n assumption and Manning’s Equation.   

The n (or ni) data for this study are determined in the rectangular test flume, uniformly 

lined with each boundary material separately.  The ni data, the constant and/or variable nature of 

which depends in part upon the boundary roughness (k) and Rh, are presented in Figure 5-1 for the 

smooth acrylic sheeting, metal lath sheeting, blocks, and trapezoidal corrugations. 
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The acrylic sheeting Manning’s n data in Figure 5-1, which represents the smoothest 

boundary roughness material tested, remain relatively constant over the full range of Rh tested.  

The metal lath and trapezoidal corrugation n values vary with Rh over the lower 20-30% of the 

data range and are relatively constant above that limit.  The block data varies over the full range 

of Rh tested; however, the fact that the block n data appears to be approaching a constant value 

suggests that the absence of a constant n range in the experimental data set is likely due more to 

flow capacity limitations than boundary roughness characteristics. These same boundary 

roughness materials are used to create the composite channel linings in the current study; the data 

in Figure 5-1 are used to generate the ni values used in evaluating the ne relationships in Table 5-

1.  The boundary roughness materials are identified in this chapter as follows:  A (acrylic  

 

Figure 5-1.  Manning’s n data from channels with uniform roughness materials 
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sheeting), B (metal lath), D (blocks), and E (trapezoidal corrugations).  For all composite 

roughness test configurations, common roughness materials are used for the walls and a different 

roughness material is used on the floor. 

 

Composite Mannging’s n (ne) Equations 

The 16 ne relationships listed in Table 5-1 are divided into four groups based on the main 

assumption used in their derivation.  These assumptions are as follows:  

 The Mean Velocity assumption: The mean velocity in the cross-sectional flow subarea 

associated with each boundary roughness material is equal to the mean velocity of the 

entire channel cross section.  

 The Total Force assumption: The sum of the forces resisting the flow in each subarea is 

equal to the total force resisting the flow in the channel. 

 The Total Discharge assumption: The sum of the subarea discharges is equal to the total 

channel discharge. 

 The Total Shear Velocity assumption: The weighted sum of the shear velocities of each 

subarea is equal to the total shear velocity of the channel.  

 

Secondary assumptions are also typically required for the derivation of these equations.  The 

secondary assumptions for each relationship, where applicable, are also listed in Table 5-1.   

The ne relationships in Table 5-1 are dependent on the way in which subareas of the 

channel cross-sectional flow area are apportioned to each boundary roughness material 

comprising the composite wetted perimeter. In Equations 5-2 through 5-17, Rhi is equal to the 

ratio of Ai to Pi (Rhi = Ai/Pi) and the subscript “i" denotes the different subareas of the channel 

cross section associated with each roughness material comprising the wetted perimeter.  
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Komora (1973) recommended that the cross-sectional flow area of a composite-channel 

be subdivided by curves that intersect the cross-sectional velocity contours at right angles as 

depicted in Figure 5-2.  This requires detailed velocity data that for most practical applications 

will likely not be available.  To avoid this complication, Colebatch (1941) recommended using a 

straight line to bisect the angle at the point of the boundary roughness change (e.g., In Figure 5-2, 

the 45º-angled lines from the corner separate the flow subareas in the rectangular channel 

featuring different boundary roughness materials on the floor and walls).  Flintham and Carling 

(1992) compared both methods to their data set and concluded that there were no obvious 

advantages with either subarea delineation method.  For convenience, the angle bisection method 

is used throughout this study for the ne equations. 

Wherever the subarea dividing line is drawn, it is assumed that shear stress is equal to 

zero along that boundary (though not necessarily true).  Consequently, only wetted perimeters 

corresponding to physical channel boundaries (Pi) are included in flow resistance calculations, as  

 

 

Figure 5-2.  Cross sectional area partitioning of subareas 
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shown in Figure 5-2.  Flow boundaries between adjacent subareas are not included as part of the 

Pi dimension (Yen, 2002). 

 

Previous Studies 

Three published studies that evaluated the effectiveness of various subsets of the ne 

relationships in Table 5-1 are reviewed for this study.  Each study featured a unique set of 

composite channel boundary roughness materials and configurations.  The experimental 

composite-channel results were compared with the predictive ne relationships. 

Pillai (1962) studied composite roughness flow resistance in both rectangular and 

trapezoidal channels and evaluated the Horton (1933), Pavlovskii (1931), and Lotter (1933) ne 

relationships using two different boundary roughness materials described as (1) smooth cement 

with fine sand and (2) cement plastered with gravel that passes a 1/2-inch sieve and was retained 

on a 1/4-inch sieve.  Pillai (1962) selected ni as the average experimental n value (naverage) for each 

boundary roughness material, whose values were reported as 0.009836 (cement and fine sand 

mix) and 0.0178 (cement and gravel).  Of the three relationships evaluated by Pillai, the Lotter 

relationship was the only one requiring subarea delineation.  Lotter’s relationship was only 

applied to the trapezoidal channel data where the subareas were divided using vertical lines 

originating at the corners of the channel cross-section. Pillai (1962) concluded that the Horton 

relationship performed the best and that the Lotter relationship gave inconsistent results.   

Cox (1973) conducted composite roughness testing in a rectangular channel using the 

bisecting angle method for subarea delineation. Two roughness materials were tested, a plastic 

coated plywood (n = 0.0095) and crushed limestone particles that passed a No. 4 sieve and were 

retained on a No. 8 sieve (naverage = 0.0165).  Cox compared the Horton (1933), Colebatch (1941), 

and LAD relationships and recommended the LAD and Colebatch relationships over the Horton.   
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Flintham and Carling (1992) studied composite roughness in a trapezoidal channel using 

the bisecting angle method for subarea delineation. Three roughness materials were tested: 

plywood, 0.24-inch diameter gravel, and 0.55-inch diameter gravel.  The reported average 

Manning’s n values for the 0.24-inch and 0.55-inch gravels were 0.019 and 0.022, respectively 

(the plywood n was not published).   Flintham and Carling (1992) were the only ones to use 

boundary material-specific variable ni values in their analysis.  They concluded that, with respect 

to the boundary roughness materials tested, using the varying ni values improved the accuracy of 

the predictive relationships relative to using average n values.  Their study was limited, however, 

to channel roughness configurations where the floor roughness exceeded the sidewall roughness.  

Flintham and Carling (1992) evaluated the Horton (1933), Colebatch (1941), Pavlovski (1931), 

and Lotter (1933) methods.  They concluded that the Pavloski relationship is the most accurate, 

the Horton and Colebatch relationships are satisfactory, and the Lotter relationship performs 

poorly. 

Four of the five relationships that are evaluated in the three different studies were 

identified at least once as a “best performer,” but consensus was not achieved regarding an 

overall best method.  The Lotter relationship, on the other hand, was singled out in each study as 

“not recommended for use.”  In the current study, all 16 predictive ne relationships are compared 

against the experimental data set developed in this study.  The number of boundary roughness 

materials tested in the current study (four), exceed the number of roughness materials tested in 

any of the three previous studies.  The diversity in composite roughness channel lining 

configurations and the hydraulic roughness characteristics of the boundary roughness materials 

used in the current study are also broader than those used in the previous studies.   
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EXPERIMENTAL SETUP 

All composite roughness testing was conducted in a 4-ft wide by 3-ft deep by 48-ft long 

rectangular flume.  Flow was supplied to the flume through either an 8-inch or a 20-inch diameter 

supply pipe, each containing a calibrated orifice flow meter.   

Four boundary roughness materials were used in this study: the acrylic flume walls and 

floor were used as a smooth surface (see Figure 3-2), a commercially available metal lath 

sheeting material measuring 1/8-inch in height (see Figure 3-3), wooden blocks measuring 3.5-

inches long (in the flow direction) by 4.5-inches wide by 1.5-inches tall with a 1-inch radius 

rounded top edge (Figures 3-4 and 3-5), and 1.5-inch tall trapezoidal corrugations measuring 4.5-

inches wide at the base and 1.5-inches wide at the top (Figures 3-6 and 3-7).  The blocks were 

attached to a plywood base in a staggered pattern with a 1.85-inch spacing between blocks as 

shown in Figure 3-5.  The trapezoidal strips were also attached to a plywood base and oriented 

perpendicular to the flow direction at a spacing of 1.5 inches as shown in Figure 3-7. The acrylic, 

metal lath, block, and trapezoidal corrugation roughness materials are hereafter identified as 

boundary roughness materials A, B, D, and E, respectively. 

Manning’s n data for each boundary roughness material were determined as described in 

Chapter 2. The n data for Material A was relatively constant (naverage =0.0096), as shown in Figure 

5-1.  The n data for materials B, D, and E varied with Rh (see Figure 5-1) and trend line functions 

were used to represent ni in the ne calculations.   

Twelve different composite channel geometries were created through various 

combinations of the materials A, B, D, and E.  In all cases, the channel sidewalls featured 

common boundary roughness materials while the floor featured another.  The three-letter notation 

for the composite roughness configurations represents the sidewall, floor, and sidewall boundary 

roughness materials. The following combinations were tested: ABA, BAB, ADA, DAD, BDB, 

DBD, AEA, EAE, BEB, EBE, EDE, and DED.  An example of the BDB composite roughness 
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configuration (metal lath on the sidewalls and wooden blocks on the floor) is shown in Figure 

5-3(A). The same procedure discussed in Section 6-4 to determine ni for the uniform channel 

roughness lining tests was also used to determine the experimental composite ne.   

The composite roughness channel configurations were also categorized into three channel 

types.  A Type I channel represents a channel where the floor roughness exceeds the wall 

roughness (e.g., ABA, ADA, BDB, AEA, BEB); Type II represents a channel where the wall 

roughness exceeds the floor roughness (e.g., BAB, DAD, DBD, EAE, EBE); and Type III 

represents a channel where the walls and floor both featured “large roughness element” boundary 

materials of different types (e.g., EDE, DED). 

 

EXPERIMENTAL RESULTS 

Optimization of the ne Relationships 

The results of the comparison between the experimental ne data and the 16 ne 

relationships in Table 5-1 are quantified using the root mean square (RMS) (Equations 5-18 and 

5-19).  Doubling the RMS represents a 95% confidence interval.  

 

 

Figure 5-3:  Examples of composite roughness channel types: Type I (BDB) (A), Type II (DAD), 

and Type III (EDE) 
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In Equations 5-18 and 5-19, PE is the percent predictive error and “samples” represents the total 

number of data points in the set.  The bias is the mean value of PE.  RMS values of each equation 

were calculated for both the individual composite channel configurations (EAE, BDB, etc.) and 

each of the composite channel types (Types I, II, and III).  The bias of each equation is also 

determined. 

Flintham and Carling (1992) emphasized the sensitivity of the specific ni values assigned 

to represent the individual roughness boundaries in a composite roughness channel when 

calculating ne.  Three different methods for determining ni are used in the current study in an 

effort to investigate the influence of the Rh dependence of ni on ne.  Method 1 assumes a constant 

ni value for each material that corresponds to the large-Rh constant ni values shown in Figure 5-1 

instead of the average ni value as used by Flintham and Carling (1992).  The constant ni value for 

material D is estimated by extrapolating the experimental data trend to larger Rh values (ni = 

0.0335).   Method 2 assumes that the ni=F(Rhi) relationships for the composite channel subareas 

are equal to the n=F(Rh) relationships for the uniformly lined channel data (i.e., ni for each 

subarea is calculated based on Rhi for that subarea). Method 3 is similar to Method 2 except that ni 

for each subarea is calculated using Rh (the total channel hydraulic radius) rather than Rhi [i.e., 

ni=F(Rh)].  The RMS values for the trend line functions used to predict the variable ni  

relationships for the n vs. Rh data presented in Figure 5-1 for each boundary roughness material 

(A, B, D, and E) are 4.5%, 2.43%, 3.04%, and 4.29%, respectively. 

The resulting total RMS values based on a combined data set from all composite channel 

configurations (e.g., ADA, BEB, etc.) in each channel type (Channel Types I, II, or III) of the 
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individual relationships in Table 5-1 are presented in Table 5-2 according to channel type and 

method, or combination of methods, applied to determine ni.   Similar to the findings of previous 

studies, the Lotter relationship preforms inconsistently with respect to its ability to match the 

experimental data from the current study. The inconsistent results are shared by all the 

relationships within the Total Flow Assumption ne group and, as a result, the outcome for the 

Total Flow Assumption relationships will be discussed separately from the other relationships.  

It is clear that a significant improvement is made to the predictive abilities of the ne 

relationships by applying variable ni (Method 2 or Method 3) where appropriate (see Table 5-2 

and Figure 5-4 (A, B, and C).  This was a somewhat obvious or a foregone conclusion, given the 

results of the analysis presented in Chapters 3 and 4.  Not so obvious, however, are the results of 

the Type II channel, where the accuracy of the relationships decrease when accounting for ni 

variability via Method 2 or Method 3.  Figure 5-4 (C) shows that at lower Rh values, too much 

emphasis is given to the channel wall roughness when calculating ne.  The reasons for this are 

likely related to the way the channel is divided into subsections (the values of Pi, Ai, and/or Rhi) 

and the net effect of the assigned subsection parameters, along with ni, on predicting the 

contribution of the sidewall hydraulic roughness on the overall composite flow resistance of the 

channel.  It is also possible that the hydraulic roughness characteristics of boundary roughness 

elements are location dependent.  Even for a uniformly lined channel, the flow resistance 

associated with the walls may well differ from the flow resistance produced by the channel floor. 

It is important to note that, regardless of the technique used to estimate ne based on ni, an 

empirically-based one-dimensional equation [Manning’s equation (Equation 5-1)] is still being 

used in an attempt to solve a three-dimensional flow problem. As shown in Figure 5-4 (B), 

applying Method 1 to the floor and the walls of the channel under-predicted ne values; applying



 

Table 5-2.  Summary of RMS Values Based on Combined Data Sets for all 12 Composite Roughness Test Configurations 

Total RMS values for ne equations 

ni method* Mean Velocity Total Force Total Flow Total Shear Velocity 

Walls Floor Horton Colebatch Pavlovski 
Total 

F2 
Total 

F3 
Total 

F4 Lotter 
Lotter 

II 
Total 

Q 
Total 
Q2 

Total 
Q3 LAD HDM 

Total 
U* 

Total 
U*2 

Total 
U*3 

                              

CHANNEL TYPE I 

1 1 25.6% 24.5% 24.8% 26.3% 25.2% 24.4% 25.5% 24.6% 27.9% 27.1% 29.1% 33.3% 28.7% 26.5% 25.6% 25.8% 

2 2 7.8% 6.9% 7.3% 7.2% 7.6% 7.0% 13.6% 12.5% 16.3% 23.3% 15.5% 6.9% 9.2% 9.5% 7.9% 8.3% 

1 2 7.9% 6.9% 7.3% 7.2% 7.6% 7.0% 13.7% 12.6% 16.5% 23.7% 15.7% 6.9% 9.2% 9.6% 7.9% 8.3% 

3 3 6.5% 6.5% 6.3% 7.1% 6.4% 6.6% 12.4% 11.4% 15.3% 22.7% 14.4% 6.1% 7.5% 7.9% 6.5% 6.8% 

1 3 6.5% 6.5% 6.3% 7.1% 6.4% 6.6% 12.5% 11.4% 15.4% 22.8% 14.5% 6.1% 7.5% 7.9% 6.5% 6.8% 

                                    

CHANNEL TYPE II 

1 1 13.0% 12.9% 14.4% 12.3% 15.9% 12.4% 18.7% 12.9% 22.3% 21.4% 20.3% 18.1% 20.8% 12.3% 13.2% 12.8% 

2 2 52.0% 29.1% 88.0% 55.4% 102% 64.8% 20.7% 19.9% 18.6% 16.1% 19.1% 15.5% 27.1% 30.5% 19.6% 21.7% 

1 2 11.9% 11.4% 15.1% 11.0% 18.2% 11.6% 21.2% 20.4% 19.2% 17.0% 19.7% 13.0% 11.0% 11.1% 11.8% 11.4% 

3 3 32.3% 18.9% 53.6% 32.7% 62.9% 38.6% 20.9% 20.1% 18.9% 16.5% 19.4% 13.6% 18.6% 20.6% 14.9% 15.8% 

1 3 11.9% 11.4% 15.1% 11.0% 18.2% 11.6% 21.1% 20.3% 19.2% 16.9% 19.6% 13.0% 11.0% 11.1% 11.8% 11.4% 

                                    

CHANNEL TYPE III 

1 1 24.3% 24.2% 24.2% 24.3% 24.3% 24.2% 24.1% 24.3% 25.1% 24.2% 24.2% 24.3% 24.4% 24.0% 24.5% 24.5% 

2 2 7.5% 5.5% 8.3% 5.9% 9.8% 6.4% 6.3% 5.5% 5.4% 5.7% 5.5% 5.4% 6.8% 7.3% 5.8% 6.1% 

1 2 6.9% 6.6% 6.8% 6.6% 6.7% 6.8% 7.7% 6.5% 6.7% 7.4% 6.9% 6.6% 6.9% 6.8% 7.0% 7.1% 

3 3 5.3% 5.0% 5.4% 5.1% 5.9% 5.1% 5.5% 5.1% 4.9% 5.08% 5.0% 4.99% 5.19% 5.4% 4.99% 5.0% 

1 3 5.5% 5.5% 5.5% 5.5% 5.3% 5.5% 6.1% 5.3% 5.3% 5.74% 5.4% 5.43% 5.45% 5.3% 5.58% 5.6% 

* Method 1: ni = constant, Method 2: ni = f(Ri), and Method 3: ni = f(R)                    

 

7
2
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Figure 5-4.  Examples of experimental and Horton-relationship ne vs. Rh data for Type I, II, and 

III composite roughness channel along with the corresponding experimental ni vs. Rh data [(A) 

Type I (DBD), (B) Type II (DBD), (C) Type III (DED) 
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either Method 2 or Method 3 to both the floor and the walls of the channel produces ne values that 

over-predict the measured values.  As a result, the analysis is repeated with Method 1 applied to 

the channel walls and either Method 2 or 3 to the floor of the channel.  Figure 5-4 (B) shows that, 

by applying Method 3 to the floor and Method 1 to the walls, the predicted ne values more closely 

follow the trend of the experimental data over the range of Rh tested.  They do not, however, 

provide a relatively good estimate of the measured ne data.  For some of the equations, the RMS 

values increase when using a combination of methods approach.  For cases where the 

combination of methods result in an improvement (i.e., reduction in RMS values), the 

improvements are only modest [e.g., Type I and III channels as in Table 5-2 and Figure 5-4 (A 

and C)].  With respect to the Type II channel, the combination of methods provides an 

improvement only for the lowest Rh values tested, relative to Method 1.  In general, it can be 

concluded that where data are available, a variable Manning’s n should be applied to the ni of the 

floor of the channel.  A constant ni may be applied to the walls of the channel with little change in 

predictive error; in fact in most cases it improves ne predictions. 

 

Comparison of ne Relationships 

A comparison of the predictive accuracies of the various composite roughness ne 

relationships listed in Table 5-2 shows that no single composite roughness ne relationship 

performs appreciably better than the rest.  Table 5-3 also shows that there is moderate scatter in 

the accuracy of each of the predictive ne relationships over the range of composite roughness 

boundary configurations tested.  For example, Colebatch (RMS = 3.27%) performs better than 

Horton (RMS = 5.98%) in the ADA composite channel; the opposite is true in the AEA composite 

channel where Horton (RMS = 5.87%) performs better than Colebatch (RMS = 8.80%).  The RMS 

values based on the collective data from all the channel configurations (“Total RMS” reported in 

Table 5-3) show that, from a broad perspective, neither relationship (Horton nor Colebatch) is 



 

 

Table 5-3.  Total RMS and Bias for ne Relationships Using Method 3 on the Walls and Method 1 on the Floor 

 

Config.  Horton Colebatch Pavlovski 
Total 

F2 
Total 

F3 
Total 

F4 
Lotters 

Lotters 
II 

Total Q 
Total 
Q2 

Total 
Q3 

LAD HDM 
Total 
U* 

Total 
U*2 

Total 
U*3 

CHANNEL TYPE I 

ABA Bias -7.6% -5.1% -6.9% -4.6% -7.5% -5.4% -8.4% -7.0% -9.0% -13.0% -8.7% -5.7% -8.4% -8.7% -7.3% -7.7% 

 RMS 8.2% 6.0% 7.5% 5.6% 8.1% 6.3% 9.0% 7.7% 9.6% 13.5% 9.3% 6.5% 9.0% 9.3% 7.9% 8.3% 
ADA Bias -4.9% -0.2% -2.3% 1.6% -3.6% 0.2% -20.7% -19.3% -26.0% -37.0% -24.5% -2.7% -8.5% -9.3% -5.8% -6.7% 

 RMS 6.0% 3.3% 3.9% 3.6% 4.7% 3.1% 21.3% 20.0% 26.4% 37.1% 25.0% 4.5% 9.4% 10.2% 6.9% 7.7% 

BDB Bias -3.4% 0.4% -1.9% 1.5% -2.9% 0.3% -7.9% -6.3% -10.4% -17.8% -9.6% -0.9% -5.3% -5.9% -3.4% -4.1% 
 RMS 4.6% 3.0% 3.6% 3.4% 4.2% 3.0% 8.4% 6.9% 10.8% 18.1% 10.0% 3.1% 6.2% 6.7% 4.5% 5.1% 

AEA Bias 0.6% 5.2% 3.0% 6.9% 1.8% 5.5% -10.2% -8.8% -14.5% -24.4% -13.2% 3.1% -2.4% -3.2% 0.1% -0.8% 

 RMS 5.9% 8.8% 7.4% 10.5% 6.6% 9.3% 11.2% 9.9% 15.1% 24.6% 13.9% 6.9% 5.5% 5.8% 5.5% 5.3% 
BEB Bias 0.6% 3.8% 1.6% 4.6% 0.8% 3.5% -1.2% 0.4% -2.5% -8.0% -2.0% 2.9% -0.7% -1.1% 0.8% 0.3% 

 RMS 7.1% 8.7% 7.6% 9.3% 7.2% 8.6% 6.7% 6.9% 7.0% 10.1% 6.9% 8.0% 6.8% 6.8% 7.1% 7.0% 

Total Bias -3.0% 0.8% -1.3% 2.0% -2.3% 0.8% -9.7% -8.2% -12.5% -20.0% -11.6% -0.7% -5.1% -5.6% -3.1% -3.8% 
 RMS 6.5% 6.5% 6.3% 7.1% 6.4% 6.6% 12.5% 11.4% 15.4% 22.8% 14.5% 6.1% 7.5% 7.9% 6.5% 6.8% 

CHANNEL TYPE II 

BAB Bias 4.8% 0.7% 6.3% 1.7% 8.6% 2.9% -5.3% -4.0% -3.0% -0.6% -3.5% -0.3% 3.5% 4.6% 1.0% 1.7% 

 RMS 6.5% 5.2% 7.6% 5.2% 9.6% 5.5% 9.3% 8.3% 7.4% 5.9% 7.8% 5.5% 5.8% 6.4% 5.2% 5.2% 
DAD Bias 2.4% -7.3% 10.0% -1.5% 15.1% 1.8% -23.8% -22.9% -21.7% -18.8% -22.2% -12.0% -4.2% -2.3% -8.8% -7.4% 

 RMS 17.9% 19.7% 20.5% 17.5% 24.0% 17.4% 34.2% 33.5% 32.3% 29.8% 32.7% 23.0% 18.9% 18.4% 20.9% 20.2% 

DBD Bias -4.5% -8.7% -2.8% -7.3% -0.6% -6.1% -15.8% -14.6% -13.4% -10.9% -14.0% -9.9% -6.0% -5.0% -8.5% -7.8% 
 RMS 9.1% 12.5% 7.9% 11.2% 7.2% 10.1% 19.9% 18.9% 17.7% 15.2% 18.2% 13.8% 10.4% 9.7% 12.5% 11.8% 

EAE Bias 14.1% 3.0% 22.6% 9.5% 28.3% 13.2% -16.2% -15.2% -13.7% -10.2% -14.3% -2.4% 6.7% 9.0% 1.4% 3.0% 

 RMS 15.4% 7.5% 23.6% 11.3% 29.4% 14.6% 21.8% 20.9% 19.3% 16.0% 19.9% 8.6% 9.5% 11.1% 7.5% 7.7% 
EBE Bias 3.1% -1.4% 4.8% -0.1% 7.1% 1.2% -8.9% -7.5% -6.2% -3.5% -6.9% -2.6% 1.5% 2.7% -1.1% -0.4% 

 RMS 5.2% 4.3% 6.7% 4.3% 8.7% 4.6% 10.3% 8.9% 7.6% 5.1% 8.2% 4.7% 4.1% 4.7% 4.0% 3.9% 

Total Bias 4.0% -2.8% 8.2% 0.5% 11.7% 2.6% -14.0% -12.9% -11.6% -8.8% -12.2% -5.4% 0.3% 1.8% -3.2% -2.2% 
 RMS 11.9% 11.4% 15.1% 11.0% 18.2% 11.6% 21.1% 20.3% 19.2% 16.9% 19.6% 13.0% 11.0% 11.1% 11.8% 11.4% 

CHANNEL TYPE III 

EDE Bias -1.2% 0.4% -0.9% 0.6% -1.1% 0.02% -1.5% 0.07% -1.1% -3.6% -1.1% 0.2% -1.6% -1.6% -1.0% -1.3% 

 RMS 5.2% 5.5% 5.3% 5.6% 5.2% 5.4% 5.2% 5.0% 4.8% 5.3% 4.9% 5.4% 5.1% 5.1% 5.2% 5.2% 
DED Bias -4.7% -4.5% -4.7% -4.5% -4.4% -4.7% -6.0% -4.5% -4.7% -5.1% -4.9% -4.5% -4.8% -4.5% -5.0% -5.0% 

 RMS 5.7% 5.5% 5.7% 5.5% 5.5% 5.6% 6.8% 5.6% 5.7% 6.1% 5.9% 5.5% 5.8% 5.6% 5.9% 5.9% 

Total Bias -3.0% -2.0% -2.8% -1.9% -2.8% -2.3% -3.8% -2.2% -2.9% -4.3% -3.0% -2.2% -3.2% -3.1% -3.0% -3.2% 
 RMS 5.5% 5.5% 5.5% 5.5% 5.3% 5.5% 6.1% 5.3% 5.3% 5.7% 5.4% 5.4% 5.5% 5.3% 5.6% 5.6% 

7
5
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notably better than the other for any of the channel types (I, II, or III).  The Total Velocity 

assumption group has a slight advantage over the other groups based on consistency of predictive 

accuracy for the three different composite channel types.  The Total Discharge assumption group 

gives inconsistent results.  The results for the individual relationships fluctuate, to a certain 

extent, with both the channel configuration and channel type, as shown in Table 5-3. 

Based on the total RMS values for Channel Type I, on average the LAD, Horton, 

Colebatch, Pavloski, Total F3, Total F4, Total U*2, and Total U*3 predictive relationships 

perform the best (all within 1% of one another), with the LAD relationship producing a slightly 

smaller RMS value than the others. For the Type II channel, the Total F2, Horton, Colebatch, 

Total F4, HDM, Total U*1, Total U*2 and Total U*3 predictive relationships perform the best 

(all within 1.0% of one another), with Total F2 being slightly better than the others.  For the Type 

III channel, all of the predictive ne relationships perform essentially the same, with the Total Q 

relationship producing a slightly smaller RMS than the other relationships. 

The results of the data presented in Table 5-3 show that no obvious advantage exists in 

using the more complicated subarea dividing-based ne relationships over the simpler to use 

relationships that only use Pi as the weighting parameter for the ni in the channel.  Because Pi is 

the sole weighting parameter in these relationships and Method 3, which uses the total hydraulic 

radius (Rh) of the channel instead of Rhi, has been shown to work as well as or better than the 

other methods, there is no need to divide the cross section of the channel into subareas.  There is 

one such relationship per assumption group: the Horton relationship (Mean Velocity assumption 

group), Pavlovski’s relationship (Total Force assumption group), Total Q2 (Total Flow 

assumption group), and the HDM relationship (Total Shear Velocity assumption group).  Of those 

relationships, Horton is the most consistent when considering all three channel types (I, II, and 

III).   
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It is important to remember that the data in this study were collected in a channel with a 

simple and uniform cross section (rectangular).  In addition, although the range or boundary 

roughness materials are varied appreciably in this study, it should be noted that a high level of 

roughness element uniformity existed for each composite roughness boundary material (no 

random roughness elements within a given boundary roughness material) in relation to itself.  The 

extent to which these results can be applied to other types of composite roughness channels that 

feature different channel cross sections and variation in the degree of component boundary 

roughness element uniformity has yet to be determined.  In the absence of better information, 

however, the data from this study can be used as a first-order approximation for other composite 

roughness channel applications. It is also important to note that, based on the variability in the 

RMS values in Table 5-3 for the individual composite roughness geometries (e.g., ADA, etc.), the 

predictive ne values associated with any of the relationships listed in Table 5-2 should be 

considered approximate.  This is especially true when looking at the Total RMS (presented in 

Tables 5-2 and 5-3), which is based on a compilation of all of the data from composite channel 

configurations in a single channel type (Type I, II, or III channels). 

 

CONCLUSIONS 

The conclusions associated with composite roughness open channel flow resistance in a 

rectangular flume that result from this study include the following: 

1. It is important to note that, regardless of the technique used to estimate ne based on ni, in 

general, composite roughness open channel flow conditions represent three-dimensional 

flow problems that we are attempting to solve with the empirically-based one-

dimensional Manning’s equation (Equation 5-1).  The likelihood of finding a robust ne 

prediction method that will work with Equation 5-1 for solving a wide range of 
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composite roughness channel configurations is low due to the complex nature of the 

problem.  

2. Where data are available, a variable Manning’s n (the appropriate n value for a given 

flow condition) should be used on the channel floor.  A constant ni related to larger flow 

depths in the channel may be applied to the walls of the channel with little negative 

impact to the predictive error; in fact, in most cases it improves ne predictions. 

3. The Total Velocity assumption relationships, as a group, perform more consistently than 

the other groups as a whole; however, there are only two equations in the Total Velocity 

group compared to the four or five equations of the others.  The Total Flow assumption 

relationships, as a group, perform inconsistently relative to the other relationships. 

4. Based on the data obtained for this study, there is no evidence that a single ne equation 

has a clear advantage over the rest.  Taking into consideration the results from all three 

channel types, the most consistent equations (those which were within 1% of the lowest 

RMS of each channel type) are Horton, Colebatch, Total F4, Total U*2, and Total U*3. 

5. Of these equations, there is no conclusive evidence that the more complex ne equations 

will produce better results than the most simple equation (Horton’s equation). 

6. Due to the inconsistent results of the ne equations in their ability to predict ne for channels 

where the wall is relatively rough in comparison to the floor of the channel (Type II 

channels), it is recommended that further studies be conducted to examine the difference 

between the resistance provided by a specific roughness material, whether it be on the 

wall of the channel or on the floor of the channel.  Relating to this study, it would be of 

worth to study the difference between a rectangular channel and channels of other shapes 

where the flow would interact with non-vertical sidewalls. 
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In summary, for those who wish to use any of the composite roughness ne relationships 

presented by Yen (2002), while a constant ni associated with larger flow depths in the channel 

may be used for the walls of a channel, when data are available, a variable ni value should be used 

for the roughness comprising the floor of a channel (this generally applies to channels where the 

boundaries are lined with larger roughness elements along the boundary).  When data are not 

available describing a variable ni value (probably the case in most applications), the user should 

recognize the considerable error that may occur in predicting ne values; although, the error will 

decrease relative to an increasing flow depth in the channel.   

Also, while this study does not specifically single out an ne relationship and recommend 

it for use in all channels due to the specific nature of the channel used in the study (rectangular 

channel of a single size), it does point out that there is no evidence that the more complex 

relationships perform at a consistently higher level than simplest relationships (the equations 

which weight ni based solely on Pi).  As pointed out in conclusion 5, the Horton relationship 

(Table 5-1) performs better than the rest of the simple Pi based relationships and is also included 

among the best overall performers of the 16 relationships (based on the data presented in this 

study). 
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CHAPTER 6 

SUMMARY OF CONCLUSIONS 

 

Chapter 5 illustrates examples of when practicing engineers may need to determine when 

Manning's n may be applied as a constant value and when it needs to be considered variable with 

respect to composite roughness considerations.  This is accomplished through a practical 

application of Manning’s equation to composite roughness relationships coupled with the 

comparison of 16 such relationships (see Table 5-1) compiled by Yen (2002) which he declared 

have not been decisively compared due to a lack of data.  Regarding the comparison of the 

equations themselves, the more complex of the 16 equations presented by Yen used to determine 

ne produce no greater level of accuracy than the most simple of the relationships (those where 

only the wetted perimeter is used as the parameter from which the individual Manning’s n values 

are weighted for each individual roughness material).  The most consistent relationships are 

Horton, Colebatch, Total F4, Total U*2, and Total U*3.  Of these, the Horton Equation (Equation 

5-2) is the most simple to apply.  The comparison of these equations, however, is only a portion 

of applicable knowledge that this study provides to those who wish to use Manning’s equation in 

open channel applications. The results of the comparison of these relationships also highlight the 

fact that to achieve the best results, where applicable and where data are available, the variability 

of ni should be accounted for.   

The qualifying statement in the sentence above, “where applicable,” is important as is 

stressed through the conclusions of Chapters 3 and 4.  In order to determine n values for the 

different boundary roughness materials used in this study for the composite roughness 

relationship comparisons, the study channel was uniformly lined (the same roughness was 

installed on the floor and channel sidewalls) and tested.  According to the ASCE Task Force on 

Friction Factors in Open Channels (1963) a constant n is applicable in a channel if the friction 
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factor is independent of Re for a given boundary roughness. The results in this study show that 

even though the data meet the criteria set by the ASCE Task Force (1963), Manning’s n varies 

over lower ranges of Rh with values of n decreasing as Rh increases.  Also with increasing Rh, n 

approaches and at some point becomes constant over a range of higher Rh values (see Figure 5-1).  

The data (see Table 5-2) clearly show that the composite roughness equations yield the best 

results when a variable n was applied to the roughness on the floor of the channel within the 

range of Rh where a variable n is applicable.  It was different for the walls of the channel where 

relatively equal or better results are achieved by applying a constant n value equivalent to the 

constant n at the higher Rh values rather than varying the n value with respect to Rh.  This is 

highlighted in the relationship comparisons for channels where the roughness is greater on the 

walls of the channel than on the floor (designated as Type II channels in Chapter 5). 

 In order to apply Manning’s n coupled with Manning’s Equation (Equation 1-4) to 

specific applications such as the composite roughness equations, a method had to be established 

with which to predict n values.  Several different studies have produced n predicting equations 

where n = F(Rh, k, Fr, and S) (Limerinos 1970, Bray 1979, Griffiths 1981, Jarrett 1984, Bathurst 

2002, Ugarte and Madrid 1994).  These relationships are explored in Chapter 3 leading to the 

conclusion that the data in this study is best represented by a relationship including Rh and k, 

ruling out Re, Fr, and S as significant factors.  Chapter 4 gives insight by way of x’ of Equation 4-

4 into how Manning’s n might be predicted and stresses important factors for consideration.  The 

use of x’ and Equation 4-4 is one of convenience to simplify comparisons between Bray (1979), 

Griffiths (1981), and Bathurst (2002) relationships; Bazin’s (1865) data; and the data collected for 

this study.  The connection between Equation 4-4 and the Power Law Relationship (Equation 4-7) 

(used to predict n values intended for use in conjunction with Manning’s Equation where x’ = 

2/3) is laid out in Chapter 4.  The Power Law Relationship was found to be a good predictor of 

Manning’s n for both Bazin’s data and this studies data.   
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The conclusions from Chapter 4 indicate that the prediction of Manning’s n values may 

be more specific than previously thought.  Bray (1979), Griffiths (1981), and Limerinos (1970) 

each give a singular equation to be used on a whole range of sizes of a particular boundary 

roughness type (gravel roughness); however, the r
2
 values reported for the Bray (1979) and 

Griffiths (1981) equations are relatively low (0.355 and 0.591 respectively).  The k value in these 

equations is represented by a single parameter representing the size of the gravel Dr.  The data in 

this study coupled with Bazin’s (1865) data show that x’ is different with relatively high r
2
 values 

not only for different roughness types but also differs within the same boundary roughness 

material type depending on the size of the roughness elements within each roughness type (see 

Table 4-2 and its corresponding discussion in Chapter 4).  For instance, the x’ of the small gravel 

of Bazin’s data is different than the x’ of the large gravel of Bazin’s data.  The same comparison 

might also be made with the block data (blocks were intended to simulate the same types of flows 

as gravel data with larger roughness elements) which yield a much higher x’ value than the 

gravels of Bazin’s data.  The different x’ values indicate that for the best results a separate 

equation is needed for different sizes of roughness material even within a particular roughness 

element type.  Other parameters of the boundary roughness not explored in this study such as 

spacing, uniformity and surface texture, etc. of the individual roughness elements may also have 

an effect and require separate equations.  More research is needed on these parameters and their 

effect on Manning’s n relationships. 

The differences in x’ for each of the roughness materials studied brings the discussion 

back to a variable n versus a constant n.  Figure 4-2 shows that at some point the data for the 

metal lath and the trapezoidal roughness data are best fit by two separate lines, one with an x’ 

specific to the roughness (smaller Rh) and the other being x’ = 2/3 (larger Rh).  The acrylic data 

are all relatively well described by a line where x’ = 2/3 and the block data shows a deviation 

towards higher Rh values from a single x’ value to a separate line that is assumed may eventually 
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reach an x’ = 2/3 value as well if more data were attainable.  This gives insight as to why even 

though Manning (1889) saw the differences in x’ values himself in Bazin’s (1865) data he was 

able to us x’ = 2/3 for his equation, use a constant n assumption, apply it to 170 different 

experiments, and achieve results that were “sufficiently accurate”.  Manning even stated that the 

greatest errors in these experiments were found at relatively small Rh values, which is in 

agreement with the findings of this study.  In chapter 3, the differences in x’ from an optimal 

value for the individual roughness materials to an x’ of 2/3 is tied to a theory described in Chow 

(1959).  The theory describes a “quasi smooth” state of flow where the voids between the 

individual roughness elements are filled with stable eddies providing a relatively smooth 

boundary over which the flow above the elements moves relatively freely decreasing the 

resistance incurred by the individual roughness elements themselves.  The conclusions from 

Chapter 3 tie the “quasi smooth” state of flow to the larger roughness materials where x’ = 2/3 

only at higher Rh values, therefore, Manning’s equation may be applied assuming a constant n 

value when the channel is relatively physically smooth (acrylic and cement lined channels) and 

when the flow in the channel has reached a “quasi smooth” state. 

Robert Manning (1889) was well aware of the empirical nature of the equation, which 

now carries his name (Equation 1-4).  He cautioned against applying Manning’s Equation outside 

of the range of data for which it had been tested.  Chow (1959) indicates that the most difficult 

part of applying Manning’s equation [Equation (1-4)] is quantifying the roughness coefficient (n), 

describing the process as anywhere from guesswork to sound engineering judgment.  While it is 

not the intention of this study to give exact parameters, it is the intention to further enhance the 

decision making abilities of an engineer who intends to apply Manning’s Equation (Equation 1-

4).  Especially in regards as to when the constant n assumption might be appropriate versus some 

other method to predict a varying n.  Any potential user should be aware that: 
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 Manning’s n is not necessarily a constant value even if the flow is as described by the 

ASCE Task Force on Friction Factors in Open Channels as “fully rough.” 

 Manning’s n may be considered relatively constant, however, if the boundary of the 

channel is relatively smooth physically or if the flow in channel has reached a “quasi 

smooth” state. 

 Otherwise, Manning’s n will vary to varying degrees depending on the specific boundary 

roughness material for which it is intended to represent. 

 For best results regarding the prediction of varying Manning’s n values a separate 

equation should be used not only for a boundary roughness type, but for other parameters 

as well, size being an example of such a parameter as directly pointed out in this study. 

 Where no data are available it should be recognized that Manning’s n may be relatively 

large at lower Rh values but will decrease with increasing Rh until at some point it reaches 

a constant value (the channel has reached a “quasi smooth” flow condition). 

 

In regards to the specific practical application of these principles, the composite 

roughness relationships:  

 There is not a single relationship which stands out as “the best” relationship in 

comparison to the others tested;  

 however, it was discovered that the most complex of the equations is no better than the 

most simple to apply.  The most simple equation with the most consistent performance is 

Horton’s Equation (Equation 5-2) 

 For the best results, a varying Manning’s n should be applied, where applicable, to the 

boundary roughness of the floor of the channel, while a constant n consistent with the n 

value of a roughness at relatively high Rh values may be applied to the boundary 
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roughness of the walls (the channel tested was rectangular and further testing is needed to 

see what would apply to channels of a different shape). 
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