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ABSTRACT 

Molecular Systematics, Historical Biogeography, and Evolution of Spider Wasps 

(Hymenoptera: Pompilidae) 

 
by 

 
Juanita Rodriguez, Doctor of Philosophy 

Utah State University, 2014 

 
Major Professors: James P. Pitts and Carol D. von Dohlen 
Department: Biology  
 
 

Spider wasps are solitary parasitoids that use one spider to lay a single egg. Even 

though their behavior seems homogeneous, the features pertaining to nesting and hunting 

behavior are diverse for different species. There are approximately 5,000 described 

species, in 120 genera, but there are probably many undescribed species. The systematics 

of Pompilidae has been studied in recent years, but only morphological data have been 

used for this purpose. Because of the morphological homogeneity of spider wasps, 

molecular data may prove promising for understanding the systematics of the group. 

Furthermore, dated molecular phylogenies calibrated with fossil data may allow studying 

the historical biogeography and evolution of the group. I used the nuclear molecular 

markers elongation factor–1 α F2 copy (EF1), long–wavelength rhodopsin (LWRh), 

wingless (Wg), RNA polymerase II (Pol2), the D2–D3 regions of the 28S ribosomal 

RNA (28S), and the mitochondrial Cytochrome C Oxidase I (COI) in a Bayesian and 

Maximum Likelihood framework, to reconstruct the phylogenies of four main 
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Pompilidae groups: the subfamily Pompilinae, the tribe Aporini, the genus Psorthaspis, 

and the genus Drepanaporus. I also studied the fossil Pompilidae, and used those results 

to produce time-calibrated phylogenies of Pompilinae, Aporini, and Psorthaspis. 

Molecular phylogenetic results support the utility of the use of molecular markers for 

species delimitation and sex-associations in Pompilidae. In addition, the use of dated 

phylogenies supports the correlation of host use with diversification rate-shifts, the 

coevolution of mimicry between pompilids and velvet ants, and various biogeographical 

hypotheses never tested before for spider wasps.  

(240 pages) 
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PUBLIC ABSTRACT 

Molecular Systematics, Historical Biogeography, and Evolution of Spider Wasps 

(Hymenoptera: Pompilidae) 

 
by 
 
 

Juanita Rodriguez, Doctor of Philosophy 

Utah State University, 2014 

 
Major Professors: James P. Pitts and Carol D. von Dohlen 
Department: Biology  
 

 
The study of the diversity and classification of any group of organisms provides a 

foundation for further scientific studies in ecology, evolution, and conservation. Insects 

are among the most diverse organisms that inhabit the planet, but knowledge of their 

diversity and classification is still limited. One understudied group of insects is spider 

wasps. These are solitary parasitoids that use one spider to lay a single egg. There are 

approximately 5,000 described species, and many more to be described. Unfortunately, 

fewer than 10 scientists worldwide study these insects. One reason the group has not been 

very well studied is the difficulty in telling species apart. This makes their classification 

troubling. With the advent of molecular genetics methods, the use of molecular data to 

understand the classification and evolution of various groups is now possible. My 

dissertation uses molecular data to understand the classification of spider wasps, as well 

as their evolutionary relations. The evolutionary trees produced by these analyses are 

helpful to study the causes of current distributions of species, the diversification and the 
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evolution of the group. Molecular phylogenetic results support the utility of the use of 

molecular markers for species delimitation and sex-associations in Pompilidae, the 

correlation of host use with diversification rate-shifts, the coevolution of mimic 

pompilids with velvet ants, and various biogeographical hypotheses never tested before 

for spider wasps.  

(240 pages) 
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CHAPTER 1 
 

INTRODUCTION 

 
Spider wasps (Hymenoptera: Pompilidae) are a widespread group with about 

5,000 described species (Pitts et al. 2006) in 120 genera (Wasbauer 1995). Most 

pompilids are recognized by their continuous wing flicking (Harris 1987). Female 

pompilids fly short distances searching for prey, but spend most of the time foraging on 

the ground (Wasbauer 1995). Pompilids are solitary wasps characterized by laying a 

single egg on one paralyzed spider. For this behavior, they have been classified as 

predatoids (Evans 1963), or parasitoids (Godfray 1994). The spider wasp hunting and 

nesting sequence is usually as follows: they hunt and paralyze their prey, carry it to a 

nesting site, conceal it in a single-celled nest, oviposit on it, and seal the nest (Malyshev 

1966). The prey is normally deposited in a nest built by the female or modified from a 

pre-existing cavity (O'Neill 2001). Even though most of the larvae feed on paralyzed 

spiders, some species are ectoparasites of active spiders, or cleptoparasites (i.e. they take 

spiders already captured or prepared by other wasps) of other pompilids (Goulet and 

Huber 1993).  

Males are usually only involved in reproduction, but mating behaviors are not 

well understood. Males are smaller and emerge before the females, spending their time 

near the ground looking for mates (Wasbauer 1995). The male and female adults are 

short-tongued and feed on internal or external flower nectaries (Evans 1966; Wasbauer 

1995). Females have been observed feeding on spider haemolymph (Wasbauer 1995). 

Although the biology of Pompilidae seems uniform in some respects, there is 

great diversity in several aspects of prey handling and nesting behaviors, such as prey-
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carrying mechanisms, choice of nesting habitat, nest structure, and nesting sequences. 

Prey carrying mechanisms involve pushing, pulling, or flying (Evans and Yoshimoto 

1962). In the most extreme cases, the spider’s legs are amputated before carrying it in 

flight (Malyshev 1966).  

The location of the nest may vary from underground to aerial, and the number of 

cells per nest also varies among species. Many pompilids nest in the ground by making 

their own burrow or using a preexisting one. When a new burrow is dug, excavation by 

the female is often performed by scraping soil backwards with her forelegs, and the nest 

is then sealed by using the tip of the abdomen (Evans 1953). A few species nest above the 

ground in protected places, or by building thick mud walls. Nest building above the 

ground could have been a pre adaptation for multicellular construction and communal 

occupation of nests (Evans and Shimizu 1996).  

Nesting sequences refer to the order in which behaviors are performed in the 

hunting and nesting sequence. Many female pompilids prepare the nest cavity after 

capturing the prey. Other spider wasps prepare the nest before hunting the spider. This 

last strategy has been proposed as an advantage to reduce the need for prey protection 

from other predators or cleptoparasites (Evans 1953).  

Even though all pompilids use spiders exclusively, many species of Pompilidae 

use spiders of different, distantly related, spider families. Nonetheless, host use seems to 

have a pattern when host families are grouped into guilds. This grouping often results in 

ecological rather than taxonomic specificity. The evolution of host shifts in Pompilidae 

has not been addressed, but results from various recent studies on parasitoids suggest that 
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host shifts are correlated with increase in diversification rates (McKenna and Farrell 

2006; McLeish et al. 2007; Wheat et al. 2007; Winkler et al. 2009; Fordyce 2010). 

Even though taxonomic studies in Pompilidae are scarce, recent advances have 

been made in the study of localized faunas. Worldwide taxonomical studies, however, are 

limited and there is a large amount of synonymy at the generic and infra-generic level 

(Wasbauer 1995). The fauna of North America has been widely addressed, but most of 

the Central and South American taxa are in need of revision. Few studies have been 

focused in Neotropical Pompilidae (e.g. Bradley 1944; Evans 1966, 1968; Colomo de 

Correa 1991, 1998; Snelling and Torres 2004). The South American fauna has not been 

studied in depth, and the existing studies are mainly focused on species descriptions, 

which is probably is a result of the lack of reference bibliography, and the difficulty in 

identifying pompilids (Elliott 2007).  

The phylogeny of Pompilidae has been studied using morphological data. 

Analyses of the whole family began with Shimizu (1994). The phylogeny produced by 

these data gave the first insight into relationships of spider wasps, but many relationships 

remained unresolved, and the relations between upper-level groups were not clear (Pitts 

et al. 2006). Pitts et al. (2006) reanalyzed data from Shimizu (1994) and provided a better 

understanding of the relationships between these wasps. Further studies that include a 

greater number of taxa, morphological characters, and DNA sequences are needed to 

obtain a well-resolved Pompilidae phylogeny. 

In light of the lack of knowledge in the systematics of Pompilidae, this 

dissertation research focused on the use of phylogenetic reconstructions at various 

taxonomic levels to address evolutionary, biogeographical, and taxonomic questions in 
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spider wasps. The aims of my dissertation were: 1) to study of fossil Pompilidae in order 

to establish accurate calibration points for time divergence studies; 2) to study the utility 

of molecular data for species delimitations and sex-associations in the genus 

Drepanaporus; 3) to test various biogeographic hypotheses using Aporini as a model; 4) 

to understand the influence of codivergence in the evolution of Müllerian mimicry 

between velvet ants and Psorthaspis spider wasps; and 5) to study the correlation 

between diversification rate-shifts and host shifts in Pompilinae.  

The knowledge of the evolution of any group of organisms involves studying its 

fossil specimens. Fossil dates are an important tool to use for evolutionary studies, 

because fossil ages are the most reliable source of calibration points in dating molecular 

phylogenies (Donoghue and Benton 2007). Studies in fossil Pompilidae are scattered and 

mostly were done in the 1800s. Therefore they do not fit current classification schemes. 

Recently, a fossil from Burmese amber was described as the oldest Pompilidae fossil 

(Engel and Grimald 2006). This is the only amber fossil described to date. Engel and 

Grimaldi (2006) provided a list of known Pompilidae fossils, but the entire Pompilidae 

fossil record has never been studied. 

Chapter 2 of my dissertation focused on the study of amber fossils from the 

Oregon State Arthropod Collection. I also studied the previously described Bryopompilus 

interfector Engel and Grimaldi (2006), which placed Pompilidae in the Cretaceous. 

Through the analysis of these fossils, I added two genera to the extinct pompilid fauna: 

Tainopompilus gen. nov., and Paleogenia gen. nov. I described three new species of 

fossil spider wasps: Anoplius planetarius sp. nov., from Dominican amber (Burdigalian 

to Langhian); Paleogenia wahisi sp. nov., from Baltic amber (Lutetian to Priabonian); 
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and Tainopompilus argentum sp. nov, from Dominican amber (Chattian to Langhian). 

Through the morphological examination of the holotype of Bryopompilus interfector, 

from Burmese amber (mid-Cretaceous), I determined that this species does not fit the 

diagnostic characters of Pompilidae. Moreover, it does not fit the diagnosis of any other 

extant Hymenoptera family. Therefore, I placed it in the new family Bryopompilidae. My 

results suggest that pompilids originated in the Eocene, not the mid-Cretaceous as 

previously proposed. This is consistent with a recent estimate based on molecular data, 

which dated the origin of crown-group Pompilidae to the early Paleogene (Wilson et al. 

2013). The sole hosts of Pompilidae, spiders (Araneae), originated in the Carboniferous 

(Selden et al. 2013), with extant suborders and many sub-lineages diversifying by the 

Lower Jurassic, ca. 175 Ma (Vollrath and Selden 2007). Thus, the origin and 

diversification of Pompilidae occurred long after the diversification of their prey. The 

comparison between the origin of Pompilidae and previous spider diversification studies 

suggests that spider wasp diversification is probably correlated with an increase in spider 

familial diversity in the Cenozoic. Chapter 3 of this dissertation was intended to be a 

thorough taxonomic revision of all the fossil spider wasps. Through this taxonomic study 

I described a new species of fossil Pompilidae: Dipogon (Deuteragenia) catalanicus 

Rodriguez, Waichert and Pitts. There were various taxonomic changes as follows: 

Ceropalites infelix Cockerell, from the Florissant Fossil Beds (Priabonian), is no longer 

recognized as Pompilidae. Agenioideus saxigenus (Cockerell), from the Florissant Fossil 

Beds (Priabonian); and Dipogon wettweri (Statz), from the Rott deposits (Chattian) are 

new combinations. This revision studied 21 fossil species of spider wasps. Because of the 
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lack of morphological characters preserved in compression fossils, ten of the described 

Pompilidae fossil species had to be declared nomen dubia. 

Chapter 4 of this dissertation sought to explore the utility of molecular markers 

for species delimitation and sex-associations in Pompilidae using the genus 

Drepanaporus as a model. Drepanaporus Bradley is a genus of dimorphic spider wasps, 

comprising three species found only in the Antilles. Two of these species had been 

described previously; the third species, Drepanaporus bachata Rodriguez and Pitts sp. 

nov, was identified and described in this work. Drepanaporus females are brightly 

colored, share a color pattern, and have a higher degree of morphological variation than 

males. Male external morphology is highly uniform, which makes the taxonomy of 

Drepanaporus complicated, and suggests the need to apply molecular characters for 

taxonomic purposes. The most widely molecular marker for species delimitation, 

mitochondrial Cytochrome c Oxidase (COI), has been proposed as the standard molecular 

barcode for animals (Folmer et al. 1994). This marker has also been used to establish 

species boundaries (Hou and Li 2010; Dombroskie and Sperling 2012; Navia et al. 2013), 

and sex-associations (Kurina et al. 2011; Zhang et al. 2013) in various taxa. However, 

there have been some problems with heteroplasmy (multiple, divergent sequences) in 

bees (Magnacca and Danforth 2006). Recent studies have used long–wavelength 

rhodopsin (LWRh), for assessing species boundaries (Derocles et al. 2012). This 

molecular marker is commonly used in Hymenoptera systematics, and shows high 

variability at the species level (Hines et al. 2006; Blaimer 2012; Rightmyer et al. 2013). 

We amplified both molecular markers for both females and males, and reconstructed the 

phylogeny of Drepanaporus. Sequences obtained for COI showed unusually high 
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divergences and putative introgression, and thus were not used for taxonomic decisions. 

Taxonomic changes were made based on the LWRh phylogenetic results. 

When calibrated phylogenies are produced, there are various research questions 

that can be asked. One of them is the study of the historical processes that may be 

responsible for the contemporary geographic distributions of individuals, which is known 

as historical biogeography. Several pompilid groups have interesting distributions that 

can be used to test historical biogeography theories. The tribe Aporini is found in the 

Americas, the Antilles, and the Palearctic, making it an ideal candidate to study dispersal 

events between these regions. Chapter 5 of my dissertation sought to study the historical 

biogeography of Aporini spider wasps.  

Aporini contains 10 valid genera and 105 species (Table 1.1) (Bradley 1944; 

Evans 1966). It includes wasps with a characteristic morphology related to the 

specialization for entering subterranean nests of spiders (Evans 1966). The little 

information available on the behavior of the group suggests that Aporini is predaceous on 

various species of trap-door spiders (Ctenizidae) (Snelling and Torres 2004), and uses 

the spider’s burrow as a nest. 

Aporini are mostly found in the New World. Their distribution ranges from the 

northeast of the United States to Chile and Argentina, and includes the Antilles (Table 

1.1) (Bradley 1944; Evans 1966; Colomo de Correa 1998). Only Aporus is found in the 

Palearctic. The location of geographical areas in the Aporini phylogeny is interesting, 

giving rise to biogeographic question about disjunct distributions, and its distribution in 

the Americas, including the Antilles. 
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Evans (1966) presented an overview of the distribution patterns in Pompilinae, 

giving some insights into the possible explanations for aporine biogeography. He 

speculated that the fauna of Mexico and Central America was largely of North American 

origin. The North American Pompilinae were proposed to belong to an “old North 

American” (Sonoran) fauna and “new North American” fauna. Also, some of the 

elements of the West Indies were suggested to have entered through Central America.  

Using Aporini as a model, I aimed to test the fit of several hypotheses concerning 

the putative processes underlying the widespread distribution of this group. My molecular 

data produced a phylogeny of 44 Aporini specimens using four nuclear molecular 

markers, and a lognormal relaxed molecular clock, calibrated with ages from three fossils 

studied in Chapter 3, was used to estimate lineage divergence times. Biogeographic 

processes were studied using ancestral area reconstructions. My results suggest that the 

dispersal from the Nearctic region to the Palearctic occurred through the Bering Land 

Bridge in the early Miocene, 15–18 Ma (CI = 11.14,23.52). This is consistent with results 

from previous studies for insects (von Dohlen et al. 2002; Hundsdoerfer et al. 2005; 

Ohshima et al. 2010; Ren et al. 2013), but is the first time reported for stinging wasps. 

There were three dispersal events to South America from Mesoamerica, which took place 

independently. All of these occurred after 18 Ma through the Isthmus of Panama, and are 

consistent with recent studies that suggest an age for the formation of the Isthmus of 

Panama ca 15 Ma (Montes et al. 2012a, 2012b) and recent studies for various taxa that 

dispersed through this area before 7 Ma (Perini et al. 2010; Carvalho and Renner 2012; 

Pinto-Sanchez et al. 2012; Colston et al. 2013). The Antillean taxa have a Nearctic and 

Mesoamerican origin. There were three independent over–water dispersal events to the 
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Antilles from Mesoamerica, and probably the Nearctic, for two genera of the tribe. 

Recent molecular divergence dating analyses support the over–water dispersal hypothesis 

for various taxa (Hedges et al. 1992; Lavin et al. 2003; McDowell et al. 2003; Davalos 

2007; Colston et al. 2013), including insects (Oneal et al. 2010). Many of Evans’ (1966) 

hypotheses on the origin of Aporini fauna have been proved in this study. 

Dated molecular phylogenies also allow for the study of coevolution by 

comparing the dates of origin, and the branching patterns of the groups involved in 

ecological interactions. Some Pompilidae have been found to be putatively involved in 

Müllerian mimicry systems because of their aposematic coloration. One of the 

explanations is that their painful sting is a deterrent to predation. Psorthaspis spider 

wasps exhibit a similar coloration to Dasymutilla velvet ants, and are found in the same 

areas where Dasymutilla mimics are found. This last group was recently described as part 

of North America’s largest Müllerian mimicry system (Wilson et al. 2012). Chapter 6 of 

this dissertation sought to study the fit and possible evidence of coevolution between 

Psorthaspis and Dasymutilla velvet ants, for which Müllerian mimicry rings have been 

recently described by Wilson et al. (2012). 

Psorthaspis includes 28 valid species (Table 1.2) found from the northeastern 

United States to the northern South America, including the Antilles (Table 1.2). Only one 

species has been reported for South America, and is located in the northern Sierra Nevada 

de Santa Marta, Colombia (Bradley 1944; Rodriguez et al. 2010). 

The genus is easily identified, showing a characteristic morphology with long 

pronotum and rounded clypeus for both males and females. The males are very 

homogeneous morphologically. The identification of North American males is difficult 
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without the use of genitalia (personal observations). Evans (1966) studied the Central 

American fauna in detail and provided good keys for the species. The group is in need of 

revision especially because of the difficulty in male identification and the matching 

between sexes.  

Using Psorthaspis molecular data I aimed to determine the fit of Psorthaspis 

spider wasps to the Dasymutilla velvet ant Müllerian mimicry rings by performing human 

perception tests and ordination plots of morphological characters. I also aimed to test for 

coevolution between Psorthaspis and Dasymutilla by comparing the branching patterns 

and date of origin of both groups. For this, I obtained four molecular markers from 

Psorthaspis species and performed a Bayesian divergence dating analysis using a single 

calibration point for the crown group of Psorthaspis obtained from results of Chapter 5. 

For dates and branching pattern comparison, I used a dated phylogeny of Dasymutilla 

from Williams (2012). The results obtained suggest that Psorthaspis belongs to the 

Dasymutilla mimicry ring, but with a low mimetic fidelity. My results also suggest that 

there is evidence of codivergence between Psorthaspis and Dasymutilla, therefore there 

is evidence of coevolution. This large mimicry complex is an intriguing system that 

should be the focus of further investigations into the evolution of predator avoidance 

strategies in the temperate regions, the evolution of aposematic coloration, and the 

evolution of Müllerian mimicry involving unrelated taxa. 

Diversification rate-shifts can also be studied with time-calibrated phylogenies, 

and can be used to correlate to ecological traits such as host shifts. Pompilids use a 

variety of spider families as hosts, but there is some specificity at the ecological level. 

Host switching events in parasitoids have been shown to result in rapid species 
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diversification (Ehrlich and Raven 1964; Cocroft et al. 2008) by environmental 

differentiation, competition, and specialization, and also antagonistic interactions with 

hosts (Thompson 1999). One of the most diverse pompilid subfamilies is Pompilinae 

(Pitts et al. 2006). Members of this family use a variety of spider guilds as hosts, and are 

an excellent model for the study of the correlation of diversification rate-shifts and host 

shifts. 

The phylogenetic analysis of Pompilinae is also useful to determine the correct 

classification of the group. This subfamily includes about 2,000 species (almost half of 

Pompilidae described species). Pompilinae has been established as monophyletic by 

Shimizu (1994) and Pitts et al. (2006), but the taxonomy of the group has not been 

explored taking into account the world fauna. The tribal classification of the subfamily 

has been problematic because many entities have been established for different 

geographic regions (Evans 1949). The Neartic Pompilinae are still divided in two tribes: 

Pompilini and Aporini, as suggested by Evans (1949). According to Evans (1949) a 

comprehensive revision of the world fauna needs to be performed in order to produce an 

accurate tribal division that corresponds to natural groups. From this fact emerges the 

necessity of studying the world fauna from a phylogenetic perspective.  

Chapter 7 of my dissertation studied effect of host shifts in diversification in 

Pompilinae. The classification of the subfamily was also discussed. Diversification rate-

shifts have been attributed to niche differentiation in a process known as adaptive 

radiation (Schluter 2000). This has been shown to have an effect on diversification rates 

when parasitoid host shifts occur (McKenna and Farrell 2006; McLeish et al. 2007; 

Wheat et al. 2007; Winkler et al. 2009; Fordyce 2010). In this chapter I aimed to 
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determine if there is a correlation between host shifts and diversification rate-shifts in 

pompiline spider wasps. I also aimed to determine if the tribal classification proposed by 

past authors (Arnold 1937; Priesner 1969; Day 1981) is supported by the phylogeny of 

the group. To answer these questions I performed a Bayesian molecular phylogenetic 

analysis of 77 taxa in 36 genera of Pompilinae using four molecular markers. I used a 

single calibration point obtained by Waichert et al. (submitted) for the Pompilinae crown 

group and performed a divergence time estimation analysis. I also mapped the host guild 

use onto the phylogeny using a parsimony and ML approach. Finally I performed two 

diversification rate shift analyses onto the Pompilinae chronogram. My results suggest 

that there were multiple host guild shifts throughout the evolutionary history of 

Pompilinae and that one of them is probably correlated with a switch to the use of ground 

hunters as hosts. Moreover, none of the tribes previously proposed for the classification 

of Pompilinae are monophyletic, and neither are some of the genera. 
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Table 1.1. Aporini genera showing number of valid species and distribution. 

 
Genus Number of 

valid species 
Distribution 

Allaporus 10 Southern Mexico to Southern 
United States 

Aporus 41 Paleartic, Neartic and 
Neotropical 

Aspidaporus 1 Brazil 
Drepanaporus 2 Cuba 
Rhabdaporus 2 Brazil 
Chelaporus 1 Eastern and central Mexico 

to Texas 
Euplaniceps 16 South America 
Notoplaniceps 3 Costa Rica to eastern Brazil 
Odontaporus 3 Antilles 
Psorthaspis 38 Southern United States to 

eastern Colombia 
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Table 1. 2. Valid species of Psorthaspis and their distributions. 

 
Species Distribution 
Psorthaspis connexa Northern Mexico to 

Colombia 
P. brimleyi Eastern United States 
P. coelestis Southern Mexico 
P. macronotum Southern United States to 

northern Mexico 
P. conocephala Southern United States 
P. guatemalae Costa Rica to Guatemala 
P. australis Southern United States 
P. avinoffi Jamaica 
P. laevifrons Panama to Northern Mexico 
P. bequaerti Northern Colombia 
P. bradleyi Mexico 
P. colombiae Colombia 
P. legata Eastern United States 
P. portiae Arizona to northern Mexico 
P. mariae Eastern to southern United 

States 
P. elegans  Cuba 
P. eubule Costa Rica to Guatemala 
P. formosa Costa Rica to Mexico 
P. hispaniolae Dominican Republic 
P. luctuosa Eastern United States 
P. magna Eastern United States 
P. legata Eastern United States 
P. nigriceps Southern United States 
P. purpuripennis Antilles 
P. regalis Costa Rica to Mexico 
P. sanguinea Eastern United States 
P. texana Texas 
P. vicina Texas 
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CHAPTER 2 

 
TWO NEW GENERA AND THREE NEW SPECIES OF FOSSIL POMPILIDAE 

FROM AMBER AND THEIR EVOLUTIONARY IMPLICATIONS1 

 
ABSTRACT 

We add two genera to the extinct pompilid fauna: Tainopompilus gen. nov., and 

Paleogenia gen. nov. Three new species of fossil spider wasps are described: Anoplius 

planetarius sp. nov., from Dominican amber (Burdigalian to Langhian); Paleogenia 

wahisi sp. nov., from Baltic amber (Lutetian to Priabonian); and Tainopompilus argentum 

sp. nov, from Dominican amber (Chattian to Langhian). Bryopompilus interfector Engel 

and Grimaldi, 2006, from Burmese amber (mid-Cretaceous) is no longer recognized as 

Pompilidae and is placed in the new family Bryopompilidae. Pompilidae probably 

originated in the Eocene, not in the mid-Cretaceous as previously proposed. The origin of 

the spider wasps is probably correlated with an increase in spider familial diversity in the 

Cenozoic. 

 
Introduction 

Spider wasps (Hymenoptera: Pompilidae) are solitary ectoparasitoids that show a 

wide variety of hunting, nesting, and prey-carrying behaviors as adults. Females 

specialize in hunting spiders, which they typically paralyze permanently, then lay a single 

egg on their body. The resulting larva consumes the spider host. In several lineages of 

spider wasps the spider is only temporarily paralyzed and the spider wasp larva feeds on 

                                                
1 This manuscript is formatted for submission to Acta Paleontologica Polonica. The 
authors of the journal article are: Juanita Rodriguez, Cecilia Waichert, Carol D. von 
Dohlen, George Poinar Jr, and James P. Pitts. 
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it as the spider behaves normally. Cleptoparasitoid pompilids, like Evagetes (Wasbauer 

and Kimsey 1985) and Poecilagenia (Shimizu 2000), take the host of another spider wasp 

and use it as their own host. Although behavior is not recorded for all spider wasp 

species, a certain degree of ecological or taxonomical host specificity has been reported 

(Evans and Yoshimoto 1962). 

Approximately 5,000 species of Pompilidae are described and are currently 

classified into four subfamilies (Pitts et al. 2006). Presently there are 21 species of fossil 

Pompilidae described. The taxonomy of extinct spider wasps is challenging, because 

many of the descriptions (mostly published from Tertiary compression fossils in the late 

1800s and early 1900s) lack necessary details and figures that could facilitate the 

placement of specimens in appropriate genera (Engel and Grimaldi 2006).  

Until recently, the age of Pompilidae was based on the description of a fossil in 

Burmese amber, which dates from the Albian (mid-Cretaceous) (Engel and Grimaldi 

2006). This date conflicts with a recent estimate based on molecular data, which dated the 

origin of crown-group Pompilidae to the early Paleogene (Wilson et al., 2013). Here we 

describe two new genera and three new species of spider wasps and provide a discussion 

on the evolutionary implications of these new fossils. 

Institutional abbreviations.— Amber fossils from the following collections were studied: 

AMNH, American Museum of Natural History, New York, New York, USA; OSAC, 

Oregon State Amber Collection, Oregon State University, Corvallis, Oregon, USA. 

Terminology.— Abbreviations used in the descriptions are the same as those used by 

Wasbauer and Kimsey (1985). They are defined as follows: LA3, length of third antennal 

segment, LC, maximum height of clypeus, WA3, width of third antennal segment, and 
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WC, width of clypeus, measured between the widest points. Wing venation terminology 

follows that of Huber and Sharkey (1993, figs. 19–20).   

 
Material and methods 

The Dominican amber fossils studied derive from deposits found in mines 

between the cities of Santiago and Puerto Plata (Dominican Republic). One of the Baltic 

amber fossils derives from the Kaliningrad region (Russia). The specimens newly 

described here were preserved in Baltic and Dominican amber. The holotypes are 

deposited in the Oregon State Arthropod Collection (OSAC), as assigned. The amber 

fossil of Bryopompilus interfector was obtained on loan from the American Museum of 

Natural History (AMNH). 

The species treated here were assigned to the family Pompilidae based mainly on 

wing venation features, which are relatively uniform for the family (Day 1988). These 

were placed in the family Pompilidae based on the following combination of characters: 

presence of ten closed cells in the forewing, the hind wing with the veins C+Sc+R+Rs 

fused basally, and the second abscissa of 1A lost. Marginal cell with vein Rs rounded and 

attached to anterior margin of wing. Vein Rs of cell 1Rs attached to the base of cell 2R1. 

Costal cell ending on the anterior margin of the wing. 

 
Systematic palaeontology 

Order Hymenoptera Linnaeus, 1758 

Family Pompilidae Latreille, 1804 

Subfamily Pompilinae Latreille, 1804 

Genus Anoplius Dufour, 1834 
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Type species: Sphex fusca Linnaeus, 1751 (Latreille, 1803), type by subsequent 

designation; Recent, England.  

 
Anoplius planetarius Rodriguez and Pitts sp. nov. 

Fig. 2.1. 

Etymology: This species was named in honour of Iomara Arrieta and Francisco 

Manuel Rodriguez, parents of the first author.  

Type material: Holotype, complete male inclusion, OSAC Hy–10–45. 

Type locality: Cordillera Septentrional, between Puerto Plata and Santiago, 

Dominican Republic. 

Type horizon: Dominican amber; early Miocene. 

Diagnosis.— Wings hyaline; maximum width 0.18X its length; 2Rs cell as long as 

1Rs; 2m-cu vein slightly curved, meeting 2Rs cell 0.70X distance from base to apex of 

cell; and 2M cell with an inflection at the base of the vein Cu. 

Description.— Male. Body length 6.20 mm. Forewing 4.80 mm. Integument dark 

on head and mesosoma, light on metasoma. Body pubescence short and scattered on 

entire body. Mandible glabrous. Erect, long setae, present on second half of mandible. 

Pygidium bare, polished. Punctation inconspicuous. Antenna elongate; ratio of length of 

segments two to four 6:15:16; WA3 0.40X LA3; WA4 0.26 LA4. Pronotum short, width 

2.35X length, posterior margin slightly angulate; pronotal disc well defined. Length of 

2R1 cell 0.71X distance from its margin to wing apex; 2Rs cell as long as 1Rs; 2m-cu 

slightly curved, meeting 2Rs cell 0.70X distance from base to apex of cell. Tibiae and 

tarsi with few spines present, short, acute, sparse; pulvillar comb strong; metasoma 1.33X 

as long as mesosoma. 
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Remarks.— This is the first species of Anoplius described from Dominican amber. 

We are confident about the placement of this species into Anoplius due to the good 

preservation of the specimen. The characters that place this specimen in Anoplius are: the 

postnotum is a transverse band with parallel anterior and posterior margins, the 2m-cu 

vein arises on the Cu less than half the distance from the base of the 2M cell to the outer 

wing margin, the clypeus is emarginated, the strong pulvillar combr, and the claws bifid. 

The only other genus with which it could be confused is Arachnospila Kincaid, 1900, 

which occurs in the Nearctic region, but Arachnospila does not have a strong pulvillar 

comb. Anoplius planetarius sp. nov. does not fit the diagnosis of any of the Anoplius 

subgenera; on the contrary, it shows a combination of characters that belong to many of 

them. The two subgenera that Anoplius planetarius sp. nov. best fits are Anoplioides 

Banks, 1939 and Arachnophroctonus Howard, 1901. In the first case, members of the 

subgenus have a 2Rs cell wider anteriorly than 1Rs, but A. planetarius sp. nov. lacks this 

character. Also, extant members of Anoplioides do not show light colouration on the 

metasoma as does A. planetarius sp. nov. The light orange colouration on the metasoma 

could place A. planetarius sp. nov. in the subgenus Arachnoprochtonus. Nevertheless, 

members of this subgenus have a fifth tarsomere in the front leg with the inner margin 

slightly produced, while in A. planetarius sp. nov. it is parallel sided.  Given these 

reasons, we are not placing this species in an extant subgenus, rather, this is considered a 

desiomorph species, i.e., a fossil that possesses morphological characters found in two or 

more fossil or extant groups. Desiomorphs have been found in amber, and are known in 

species of Coleoptera, Diptera, Hemiptera, Hymenoptera, and Neuroptera (Poinar 2012). 
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Stratigraphic and geographic range.— This fossil was collected from amber 

mines in the northern region of Dominican Republic. The age of Dominican amber is 

controversial, with published dates ranging from 45–30 Ma (Cepek in Schlee 1990) to 

20–15 Ma (Iturralde-Vinent and MacPhee 1996). Amber from the northern region of 

Dominican Republic (where this specimen was collected) has been found to be from 40 

to 26 Ma (Lambert et al. 1985), but Iturralde-Vinent and MacPhee (1996) argue that all 

Dominican amber should be dated to the same age as the deposits bearing it, because 

evidence suggests that the fragments have not been emplaced by re-deposition. 

Therefore, Iturralde-Vinent and MacPhee (1996) proposed an age of 20–15 Ma for all 

Dominican amber, based on biostratigraphic and palaeogeographic data from Hispaniola.  

Insect inclusions have also been observed in Dominican copal (Brown 1999). This 

material is similar to amber in appearance and composition, and for this reason has 

sometimes been mistakenly reported as Pliocene/Pleistocene amber. Radiocarbon dating 

has suggested ages of less than 50,000 years for copal, while ambers are not within the 

radiocarbon age range (Burleigh and Whalley 1983). 

 
Genus Tainopompilus Rodriguez and Pitts gen. nov. 

Etymology: The root name comes from Tainos, a pre-columbian indigenous 

culture that populated the Dominican Republic. The suffix comes from the Latin–

pompilus, widely used for Pompilidae taxa, which means pilot fish. The gender is 

masculine.  

Type species: By monotypy.  

Species included: Tainopompilus argentum Rodriguez and Pitts sp. nov. 
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Diagnosis.— Antennal flagellum crenulate; postnotum is a narrow band, with 

parallel anterior and posterior margins; metatibia with apical spine-like setae of uniform 

length, the setae not splayed; 2M cell with an inflection on the base of vein Cu; 2m-cu 

vein arising on the Cu less than half the distance from the base of the 2M cell to the outer 

wing margin. 

Remarks.— This genus resembles Priochilus Banks, 1943 in its general 

morphology. Nevertheless, the presence of spine-like setae of uniform length on the 

metatibia, and the presence of an inflection at the base of vein Cu of the 2M cell, separate 

the two genera. Tainopompilus gen. nov. is placed in the subfamily Pompilinae by the 

presence of an inflection at the base of the Cu vein on 2M cell. This is the only genus in 

the subfamily that has spine-like setae of uniform length on the metatibia. 

Stratigraphic and geographic range.— The type species specimen was collected 

in the Dominican Republic from amber mines located between the cities of La Plata and 

Santiago. The age of Dominican amber is controversial, as discussed previously. 

 
Tainopompilus argentum Rodriguez and Pitts sp. nov.  

Fig. 2.2. 

Etymology: The epithet argentum comes from the Latin and means silver. This 

species was named in honor of the city Puerto Plata (silver port), close to where the 

holotype was collected. 

Type material: Holotype, complete male inclusion, OSAC Hy–10–45.  

Type locality: Cordillera Septentrional, between Puerto Plata and Santiago, 

Dominican Republic. 

Type horizon: Dominican amber; early Miocene 
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Diagnosis.— Wing hyaline; maximum width 0.31X its length; 2Rs cell as long as 

1Rs; 2m-cu vein curved, meeting 2Rs cell 0.55X distance from its base to apex of cell; 

and 2M cell with an inflection at the base of Cu vein. 

Description.— Male. Body length 3.95 mm. Forewing 2.50 mm. Pubescence 

sparse and short on entire body including the mandible. Pygidium covered with short 

pubescence. Punctation conspicuous on mesosoma. Antennae elongate, crenulate; ratio of 

segments two to four 6:9:10; WA3 0.8X LA3; WA4 0.4X LA3. Pronotum short, width 

8.3X length, posterior margin concave; pronotal disc well defined. Wing long; length of 

2R1 cell 0.50X distance from its edge to wing apex; 2Rs cell as long as 1Rs; 2m-cu vein 

curved, meeting 2Rs cell 0.55X distance from base to apex of cell. Tibiae and tarsi with 

few short, sharp, sparse spines; metasoma 0.78X as long as mesosoma. 

Remarks.— This is the only described species of Tainopompilus gen. nov.  

Stratigraphic and geographic range.— The fossil was collected from amber 

mines in the Dominican Republic. The age of Dominican amber is controversial, as 

discussed above.  

 
Subfamily Pepsinae Lepeletier, 1845 

Genus Paleogenia Waichert and Pitts gen. nov. 

Etymology.— The generic epithet has the Greek root Paleo, which means ancient. 

The suffix comes from Agenia (an epithet derived from a proper name) widely used for 

Pepsinae taxa. The gender is feminine.  

Type species: By monotypy. 

Species included: Paleogenia wahisi Waichert and Pitts sp. nov. 
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Diagnosis.— Antennal segments short; propodeum smooth, with a lateral carina; 

tibia with apical spine-like setae short, regular; fore, mid and hind tibia not spinose; first 

metasomal segment with a lateral carina; wing hyaline; forewing with cells short, 2M cell 

without an inflection on the base of Cu vein; 1Rs and 2Rs about the same size; 1R1 and 

1M about the same size; 1M 1/3 as wide as long; 2m-cu vein arising on the Cu more than 

half the distance from the base of the 2M cell to the outer wing margin. 

Remarks.— This genus is morphologically similar to the cosmopolitan genus 

Minagenia Banks, 1934. These genera resemble each other by having cells 1Rs and 2Rs 

small and about the same size, a short clypeus, straight stinger, and bulging eyes. 

However, Paleogenia gen. nov. differs from Minagenia by having dentate claws, short 

antennal segments, and subgenital plate S6 not laterally compressed. Additionally, the 

2R1 cell in Paleogenia gen. nov. is large, with length 2.5X its width, and it almost 

touches the apical margin of the forewing. Usually in pompilids, the 2R1 cell ends 

somewhere in the anterior margin of the wing, never the apical margin. 

Paleogenia gen. nov. is assigned to the subfamily Pepsinae due to the absence of 

an inflection at the base of the Cu vein in 2M cell and the presence of regular, apical 

spine-like setae on the tibia. Additionally, Paleogenia gen. nov. has the metasomal 

sternum 2 with a distinct sharp transverse groove. This genus is placed in the tribe 

Pepsini, because it has a defined carina on the first metasomal segment. This is the only 

genus in the tribe with short antennal segments. The wing venation also resembles that of 

Poecilagenia and Nipponodipogon Ishikawa, 1965 species. However, Poecilagenia has 

an elongated body and punctuated integument that differs from the short body and 

polished integument shown on P. wahisi sp. nov. Besides, P. wahisi sp. nov. has a 
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transversal carina on the first metasomal segment, which is absent on Poecilagenia 

species. Paleogenia gen. nov. cannot be placed on Nipponodipogon, because it has two 

apical mandibular teeth, whereas in Nipponodipogon three teeth are present. Moreover, 

Paleogenia has hyaline wings, lacking basal or apical fascia on forewing, as present on 

Nipponodipogon.   

Stratigraphic and geographic range.— Specimens were collected from the 

Kaliningrad region of Russia, which is the westernmost part of the country, located 

between Poland and Lithuania along the southeastern coast of the Baltic Sea. Baltic 

amber deposits have been obtained for more than 100 years, and their age is 

controversial. Microfaunistic dating of the deposits containing the largest amount of 

amber suggest they are from the Priabonian, Eocene (37.7 Ma) (Kaplan et al. 1977), 

whereas radiometrically dated glauconite dates them as Lutetian, Eocene (47.0 to 44.1 

Ma) (Ritzkowski 1997). Perkovsky et al. (2007) considered the Ritzkowski (1997) data 

insufficient to disprove Kaplan et al. (1977), because the former was based on two 

samples and the latter on seven samples. Novel data indicate that the age of Baltic Amber 

can be narrowed to 34 to 38 Ma (Aleksandrova and Zaporozhets 2008; Kosmowska-

Ceranowicz 2012). 

 
Paleogenia wahisi Waichert and Pitts sp. nov. 

Fig. 2.3. 

Etymology: This species was named in honor of Raymond Wahis who has greatly 

contributed to our knowledge of Pompilidae biodiversity. 

Type material: Holotype, complete male inclusion, OSAC Hy–10–80. 

Type locality: Kaliningrad Region, Baltic Sea, Russia. 
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Type horizon: Baltic amber; late Eocene 

Diagnosis.— Wing hyaline; maximum width 0.45X its length; cells short and 

rounded; 2Rs cell about the same size as 1Rs; 2m-cu vein slightly curved, meeting 2Rs 

cell 0.5X distance from base to apex of cell; 2R1 ending on apex of the forewing instead 

of anterior margin; mid and hind tarsi pale brown with apex black; and 2M cell without 

an inflection at the base of the Cu vein. 

Description.— Male. Body length 2.55 mm. Forewing 2.04 mm. Integument 

black; tarsomeres, fore and mid tibia brown; mid and hind tarsi pale brown, apex black; 

metasoma black. Punctation inconspicuous. Head with sides convergent ventrally, vertex 

much broader than frons; clypeus short, trapezoidal; mandible with two sharpened apical 

teeth. Antennae short; ratio of first four segments 7:5:6:7; WA3 0.8X LA3; WA4 0.8X 

LA4. Pronotum short, width 2.0X length, posterior margin concave; pronotal disc well 

defined. Tibiae and tarsi with short sparse spines, almost smooth. Wing long; length of 

2R1 cell 0.8X distance from edge to apex of wing; 2Rs as long as 1Rs; 2m-cu vein 

curved, meeting 2Rs cell 0.4X distance from base to apex of cell. Metasoma 0.9X as long 

as mesosoma. 

Alotype. — Female. Body length 3.8 mm. Forewing ~2.5 mm (forewing is 

folded). Integument black; front and mid tibia and tarsi, hind tarsi pale brown; palpi pale 

brown. Clypeus, antennae, mesosoma and wing as described for male. Metasoma 1.2X as 

long as mesosoma; stinger straight. 

Remarks.— This species was probably a cleptoparasitoid pompilid. It shares 

characteristics of other pompilid cleptoparasitoids, such as short antennal segments with 

thick conspicuous setae. No extant species of Pepsini are known to act as cleptoparasites; 
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the only representatives of the subfamily with this behaviour recorded or suspected are 

placed within Ageniellini (Poecilagenia), Deuterageniini (Nipponodipogon) and within 

Psoropempulini (Psoropempula Evans, 1974).  

Stratigraphic and geographic range.— Five specimens of P. wahisi sp. nov. were 

preserved in Baltic amber. Exemplars were collected from the Kaliningrad region of 

Russia. The age of Baltic amber is discussed above. 

 
Discussion 

Accuracy of fossil identification.— The accuracy of identification of Pompilidae 

fossil is tenuous at best, especially for compression fossils, for which a thorough revision 

is needed. Compared to compression fossils, amber-preserved fossils are much easier to 

identify to genus and even to species. All of the new species from amber described herein 

are taxonomically determined with confidence. All amber fossils, except one, have been 

recovered from Eocene or younger deposits. The single known specimen from Burmese 

amber, Bryopompilus interfector Engel and Grimaldi, 2006, is unusual as it is so much 

older than all other described Pompilidae fossils. Upon re-examining this specimen, we 

discovered that it does not have the diagnostic characters of Pompilidae (see Engel and 

Grimaldi 2006, figs. 1–5). The specimen exhibits a conspicuous, angularly protruding, 

rounded lobe on the posterior margin of the pronotum, which is absent in Pompilidae. 

Moreover, the jugal lobe is absent from the wing of this specimen, while present in 

Pompilidae, and the wing venation greatly differs from that of Pompilidae. In 

Bryopompilus interfector the Rs vein is not rounded and is attached to the distal wing 

margin, the costal vein reaches the wing distal margin, and the vein Rs of the cell 1Rs is 

not attached to the base of the cell 2R1 but to the base of 1R1. The presence of a 
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mesepisternal groove in Bryopompilus interfector could be confused with the same 

structure that defines Pompilidae. Nevertheless, the mesepisternal groove covers the 

whole mesopleuron in Pompilidae, while in B. interfector it does not reach the 

mesopleural margin. The placement of this fossil in extinct or extant Hymenoptera 

families is dubious. Bryopompilus interfector is considered herein as member of a new 

fossil family: Bryopompilidae. This fossil has a rounded posterior lobe on the pronotum, 

which could be confused with the lobe observed in Apoidea. Nevertheless, this lobe is 

deeply incised and overlaps the wing base both above and below, whereas in Apoidea it 

is entire, rounded and somewhat inflated and extremely rarely reaches the wing base and 

never overlaps it from above. The diagnosis of the family Bryopompilidae is as follows: 

presence of an angularly protruding, rounded lobe on the posterior margin of the 

pronotum; the lobe is  deeply incised, overlapping the anterior and posterior margins of 

the wing base. The mesepisternal groove is interrupted, not reaching the mesopleural 

margin. The fore wing has the Rs vein straight and attached to the distal wing margin; the 

costal vein reaches the wing distal margin, and the Rs vein of cell 1Rs is attached to the 

base of 1R1. 

The age and diversification of Pompilidae. — Given that the Burmese amber 

specimen dating Pompilidae to the mid-Cretaceous is no longer recognised as a member 

of the family, we reconsider the age of Pompilidae. The oldest fossils assigned with 

confidence to the family are from Baltic amber, which is dated from the Eocene; these 

taxa can be attributed to extant lineages and, thus, represent crown-group Pompilidae. 

Therefore, the common ancestor of extant (crown-group) Pompilidae must have existed 

prior to 38 Ma, but more recently than the Cretaceous (because no Cretaceous crown-
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group fossils are known). This conclusion is consistent with results from a molecular 

dating analysis of Aculeata phylogeny, which recovered a maximum age of 55 Ma for 

crown-group Pompilidae and a mean age of 85 Ma for the divergence of Pompilidae from 

its sister group (Wilson et al. 2013). Compared to the fossil record of other Hymenoptera 

(Grimaldi and Engel 2005), crown-group Pompilidae diversified more than 140 Myr after 

the origin of Hymenoptera and more than 100 Myr after the origin of Aculeata. The sole 

hosts of Pompilidae, spiders (Araneae), originated in the Carboniferous (360-290 Ma) 

(Selden et al. 2013), with extant suborders and many sub-lineages diversifying by the 

Lower Jurassic, ca. 175 Ma (Vollrath and Selden 2005). Thus, the origin and 

diversification of Pompilidae occurred long after the diversification of their prey. 

Pompilidae are unique among Hymenoptera as a diverse, Palaeogene-aged lineage 

in which all members prey solely on spiders. These wasps most generally attack hunting 

spiders and sheet-web spiders. Use of spiders occurs only sporadically in younger 

hymenopteran taxa, e.g., Trypoxylon  Latreille, 1796 (Crabronidae) wasps. The closest 

relatives of Pompilidae, Mutillidae and Sapygidae (Pilgrim et al. 2008; Wilson et al. 

2013), are predatoids (following the terminology of Evans 1963) of solitary wasp and bee 

larvae, and occasionally other insects. The ancestral prey type of Aculeata as a whole 

may have been beetle larvae and probably other concealed insect larvae. Thus, at some 

point after their divergence from Mutillidae and Sapygidae, pompilids shifted their prey 

specialization to spiders exclusively.  This shift must have been accompanied by 

specialized behaviour to deal with potentially dangerous (venomous) prey capable of 

defense, which are often much larger than their attackers (Evans 1953; Evans and 

Shimizu 1996).  
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The fossil record of spiders documents an exponential increase in family-level 

diversity (Penney 2003) since the origin of Araneae in the Carboniferous (Selden et al. 

2013). Family-level diversity shows episodes of diversification in both the Mesozoic and 

Paleogene, and appears to have been unaffected by the Cretaceous-Paleogene extinction 

event (Penney et al. 2003). Diversity nearly doubled between 65 and 45 Ma. Thus, 

spiders constituted a ubiquitous, diverse, and abundant source of prey after pompilids 

diverged from their sister group in the Upper Cretaceous. Once stem-group pompilids 

evolved the skills to prey on spiders, the continued increase in spider diversity may have 

played a role in radiation of their pompilid predators in the early Paleogene.  
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FIGURE 2.1. Anoplius planetarius sp. nov. holotype, sp. nov. holotype, OSAC Hy–10–45, 

male specimen, from early Miocene Dominican amber, Cordillera Septentrional, between 

Puerto Plata and Santiago, Dominican Republic. A, B. Photographs of the holotype. A. 

Habitus, lateral view. B. mesosoma dorsal view. C, D, E, F, G, Camera lucida 

illustrations based on the holotype. Lateral view (C), mesosoma dorsal view (D), 

forewing (E), pulvillus (F), hindwing (G). 

 



	
   42 

 

FIGURE 2.2. Tainopompilus argentum sp. nov. holotype, sp. nov. holotype, OSAC Hy–

10–45, male specimen, from early Miocene Dominican amber, Cordillera Septentrional, 

between Puerto Plata and Santiago, Dominican Republic. A. Photograph in lateral view. 

B, C. Camera lucida illustrations based on the holotype. Lateral view (B), forewing (C). 
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FIGURE 2.3. Paleogenia wahisi sp. nov. holotype, OSAC Hy–10–80, male specimen, 

from late Eocene Baltic amber, Kaliningrad Region, Baltic Sea, Russia. A, B. 

Photographs of the holotype. A. Habitus, lateral view. B. Head. C, D, E. Camera lucida 

illustrations based on the holotype. Lateral view (C), forewing (D), head (E). 
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CHAPTER 3 

 
REVIEW OF FOSSIL SPIDER WASPS (HYMENOPTERA: POMPILIDAE) WITH 

THE DESCRIPTION OF A NEW SPECIES2 

 
ABSTRACT 

 
The known spider wasp (Hymenoptera: Pompilidae) fossils are revised. A new 

species of fossil spider wasp is described: Dipogon (Deuteragenia) catalanicus 

Rodriguez, Waichert and Pitts. Ceropalites infelix Cockerell, from the Florissant Fossil 

Beds (Priabonian), is no longer recognised as Pompilidae. Agenioideus saxigenus 

(Cockerell), from the Florissant Fossil Beds (Priabonian); and Dipogon wettweri (Statz), 

from the Rott deposits (Chattian) are new combinations. Twenty-one fossil species of 

spider wasps are now recognised in twelve genera, three of which are extinct.  

 

INTRODUCTION 
 
 

SPIDER wasps (Hymenoptera: Pompilidae) are a widespread group with about 

5,000 described species (Pitts et al. 2006) in 120 genera (Wasbauer 1995). They are 

solitary parasitoids wasps characterized by laying a single egg on one paralyzed spider. 

The resulting larva consumes the spider host. In several lineages of spider wasps the 

spider is only temporarily paralysed and the spider wasp larva feeds on it as the spider 

behaves normally. Pompilids show a variety of hunting, nesting, and prey-carrying 

                                                
2 This manuscript is formatted for submission to Journal of Paleontology. The authors of 
the journal paper are: Juanita Rodriguez, Cecilia Waichert, Carol D. von Dohlen, and 
James P. Pitts.  
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behaviours as adults. There are also cleptoparasitoids, which use the host of another 

spider wasp as their own hosts. There is ecological or taxonomical host specificity in 

some species (Evans and Yoshimoto, 1962). 

Currently there are 21 species of fossil Pompilidae described (Table 3.1). The 

taxonomy of extinct spider wasps is challenging, because many of the descriptions 

(mostly published from Tertiary compression fossils in the late 1800s and early 1900s) 

are from compression fossils, and lack detail and figures that could facilitate the 

placement of specimens in appropriate genera (Engel and Grimaldi, 2006).  

Until recently, the age of Pompilidae was based on the description of a fossil in 

Burmese amber, which dates from the Albian (mid-Cretaceous) (Engel and Grimaldi, 

2006). However, recent studies place it in the family Bryopompilidae (see Chapter 2). 

Therefore, spider wasps are not from the mid-Cretaceous, as Engel and Grimaldi (2006) 

suggested, but are likely younger, possibly originating in the Eocene. This is consistent 

with recent estimates of the age of spider wasps based on molecular data (Wilson et al., 

2013). Here we provide a revision of the existing Pompilidae fossils. 

 

MATERIAL AND GEOLOGICAL SETTING 

Compression and amber fossils from various natural history collections were 

studied. The compression fossils studied belong to six main deposits: the Florissant fossil 

beds (Florissant, Colorado, USA), the Oeningen deposits (Baden-Württemberg, 

Germany), the Aix-en-Provence deposits (Bouches-du-Rhône, France), the Rott deposits 

(Landsberg, Germany), the Terrains sannoisiens du Gard deposits (Gard, France), and the 
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Bellver deposits (Lleyda, Spain). The Dominican amber fossils studied derive from 

deposits found in mines between the cities of Santiago and Puerto Plata (Dominican 

Republic). One of the Baltic amber fossils derives from the Kaliningrad region (Russia). 

The locality of the second Baltic amber fossil is unknown. 

 

SYSTEMATIC PALEONTOLOGY 

Terminology.— Wing venation terminology follows that of Huber and Sharkey 

(1993, figs 19–20). The kind of material studied is summarised in Table 3.1. 

The species treated here were assigned to the family Pompilidae based mainly on 

wing venation features, which are relatively uniform for the family (Day, 1988). All of 

the specimens studied have a preserved forewing, and most of them have the hind wing 

also preserved (Table 3.1). These were placed in the family Pompilidae based on the 

following combination of characters: presence of ten closed cells in the forewing, the 

hind wing with the veins C+Sc+R+Rs fused basally, and the second abscissa of 1A lost. 

Marginal cell with vein Rs rounded and attached to anterior margin of wing. Vein Rs of 

cell 1Rs attached to the base of cell 2R1. Costal cell ending on the anterior margin of the 

wing.  

Specimen repositories.— The collections housing the material used in this study 

are the following: AMNH, American Museum of Natural History, New York, New York, 

USA; LACMIP, Los Angeles County Museum of Invertebrate Paleontology, Los 

Angeles, California, USA; MCZC, Museum of Comparative Zoology, Harvard 

University, Cambridge, Massachusetts, USA; MGMM, Museo Geominero de Madrid, 
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Madrid, Spain; MHNM, Muséum d'histoire naturelle de Marseille, Marseilles, France; 

MHNN, Muséum d'Histoire naturelle – Nîmes, Nimes, France; MNHN, Muséum 

National d'Histoire Naturelle, Paris, France; OSAC, Oregon State Arthropod Collection, 

Oregon State University, Corvallis, Oregon, USA; SMNK, Staatliches Museum für 

Naturkunde Karlsruhe, Karlsruhe, Germany; UCMC, University of Colorado Museum of 

Natural History, Boulder, Colorado, USA; USNM, Smithsonian National Museum of 

Natural History, Washington, District of Columbia, USA.  

Remarks.— We revised a total of 21 species, of which 17 are compression fossils 

and five are preserved in amber.  

 

Family POMPILIDAE Latreille, 1804 

Subfamily POMPILINAE Latreille, 1804 

Genus POMPILUS Latreille, 1796 

POMPILUS depressus (Statz, 1936)  

1936 Psammochares depressa STATZ, p. 283, pl. 12, fig. 34. 

1945 Pompilus depressus (Statz); ICZN, opinion 166. 

Diagnosis.— Wing hyaline; maximum width 0.31X its length; 1Rs cell 1.10X as 

long as 2Rs; 2m-cu slightly curved, meeting 2Rs cell 0.40X distance from base to apex of 

cell; and Cu vein of 2M cell with an inflection at its base.  

Material.—  Not available.  

Occurrence.— This specimen was found in the Rott deposit, in Germany. The 

matrix of this deposit consists mainly of fine–grained paper shales, and thus contains very 
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well preserved fossils. Its age is controversial, ranging from the Chattian, Oligocene to 

the Aquitanian, Miocene (Grimaldi and Engel, 2005). Modern publications establish the 

Chattian as the correct age for these deposits (Fikacek et al., 2010). 

Remarks.— The generic position of this species is equivocal. We have only 

examined the wing venation illustrations in Statz (1936, pl. 12, fig. 34), and the 

characters observed are dubious for determining its taxonomic status. Wing venation 

characters are not enough to determine the genus of this specimen. An inflection at the 

base of the Cu vein in the 2M cell is present, which places the species in the subfamily 

Pompilinae.  Further inference would lead to an inaccurate taxonomic placement. We 

declare Psammochares depressa a nomen dubium. The original description of this species 

does not indicate the location of the holotype and none of the natural history museums 

contacted claimed to have it in their collection. 

 

Genus AGENIOIDEUS Ashmead, 1902 

AGENIOIDEUS saxigenus (Cockerell, 1908) comb. nov. 

Figures 3.1.1, 3.1.2, 3.5.1 

 

1908 Agenia saxigena COCKERELL, pp. 229–230, fig. 3. 

1912 Dipogon (Deuteragenia) saxigenus (Cockerell); SUSTERA, p. 191. 

Diagnosis.— Forewing hyaline, with two bands that cover 1Rs and 2Rs cells; 

maximum width 0.31X its length; 1Rs cell almost as long as 2Rs; 2m-cu vein slightly 
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curved, meeting 2Rs cell 0.95X distance from base to apex of cell; and 2M cell with an 

inflection at the base of Cu. 

Material.— Lectotype: USA, Colorado, Florissant Tertiary Shales (UCMC No. 

4541A) (Figure 3.1.1). Paralectotype: USA, Colorado, Florissant Tertiary Shales (UCMC 

No. 4541B) (Figure 3.1.2). 

Occurrence.— This fossil was collected in the Florissant Lake Beds of Colorado. 

The formation is a heterolithic accumulation of shale, tuffaceous mudstone and siltstone, 

tuff, and arkosic, volcaniclastic sandstone and conglomerate (Evanoff et al., 2001). The 

formation is dated from the Priabonian, Eocene. Epis and Chapin (1975) dated the 

formation from 34.9 Ma. Later, Evanoff et al. (2001) analyses yielded a range of ages 

from 34.3 to 33.5 Ma. The most recent study (Prothero and Sanchez, 2004) dated the 

formation from 33.7 to 34.7 Ma. 

Remarks.— Two specimens collected from the same locality are found on the type 

series of this species. Agenia is a synonym of Dipogon (Deuteragenia) Sustera, 1912. 

This species was placed in that subgenus probably due to the double dark bands on the 

wings, which entirely covers the 1Rs and 2Rs cells (Fig. 3.1.1, 3.1.2). Nevertheless, the 

inflection in the vein Cu at the base of the 2M cell identifies this specimen as Pompilinae. 

We place the species in Agenioideus, because the 2m-cu vein of the forewing arises on 

the Cu vein much more than half the distance from the origin of 2M to the outer wing 

margin (Fig. 3.5.1). Other genera share this character (i.e. Priocnemis Schiodte, 1837; 

Balboana Banks, 1944; Aplochares Banks, 1944; and Tachypompilus Ashmead, 1902); 

this specimen, however, differs from them in other respects. It differs from Priocnemis 

and Balboana by the presence of an inflection at the base of the Cu vein in 2M cell; and 
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from Tachypompilus by the absence of irregular contours on the propodeum. Finally, this 

specimen has a large stigma, whereas in Aplochares the stigma is reduced.  

 

Genus ANOPLIUS Dufour, 1834 

ANOPLIUS induratus (Heer, 1849)  

Figure 3.1.3 

1849 Pompilus induratus HEER, pp. 165–166, pl. 13, fig. 10. 

1909 Anoplius induratus (Heer); Rohwer, p. 28.  

Diagnosis.— Wing hyaline, maximum width 0.29X its length; 1Rs triangular, 

small; and 2M cell and 2m-cu vein not visible. 

Material.— Holotype: Germany, Baden-Württemberg, Wangen im Allgäu, 

Oeningen (SMNK). 

Occurrence.— This fossil was collected in the Oeningen region, which had first 

been reported as belonging to Switzerland. Cockerell (1915) corrected this mistake and 

located the region in Baden-Württemberg, Germany. Oeningen is one of the richest insect 

fossil deposits known in the world. It is composed of freshwater limestone deposits that 

date from the Messinian, Miocene (Grimaldi and Engel, 2005). 

Remarks.— We are doubtful about the subfamilial and generic classification of 

this species, because of the poor preservation of the specimen (Fig. 3.1.3). Rohwer (1909) 

transferred this species to Anoplius, but made no comments on the reasons for this 

decision. Characters that would place it in the subfamily Pompilinae, such as the 

inflection on the base of Cu vein in the 2M cell or the spines of different lengths on the 
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apex of the metatibia, cannot be observed. We declare Anoplius induratus a nomen 

dubium. 

 

ANOPLIUS planetarius Rodriguez and Pitts  

Figures 3.1.4, 3.1.5 

Diagnosis.— Wings hyaline; maximum width 0.18X its length; 2Rs cell as long as 

1Rs; 2m-cu vein slightly curved, meeting 2Rs cell 0.70X distance from base to apex of 

cell; and 2M cell with an inflection at the base of the vein Cu. 

Material.— Holotype: DOMINICAN REPUBLIC, Cordillera Septentrional, 

between Puerto Plata and Santiago (OSAC Hy–10–45). 

Occurrence.— This fossil was collected from amber mines in the northern region 

of Dominican Republic. The age of Dominican amber is controversial. According to 

Rodriguez et al. (see Chapter 2), there are various proposed dates for Dominican Amber 

(Schlee, 1990; Iturralde-Vinent and MacPhee, 1996). But the age proposed by Iturralde-

Vinent and MacPhee (1996) should be used as accurate, because it is based on reliable 

biostratigraphic and palaeogeographic data from Hispaniola.  

Insect inclusions have also been observed in Dominican copal (Brown, 1999), and 

sometimes been confused with Pliocene/Pleistocene amber. Copal has been dated to 

50,000 years (Burleigh and Whalley, 1983). 

Remarks.— Rodriguez et al. (see Chapter 2) discussed the reasons for placing this 

species in Anoplius with confidence, but mention the impossibility of placing it within 

any of the extant subgenera.  
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Genus TENTHREDINITES Meunier, 1915 

TENTHREDINITES bifasciata Meunier, 1915 

1915 Tenthredinites bifasciata MEUNIER, p. 11, fig. 10. 

Diagnosis.— Forewing with two dark bands, maximum width 0.30X its length. 

The wing venation characters are not visible. 

Material.— Not available. 

Occurrence.— This fossil was collected from the Oligocene fossil deposits of 

Aix-en-Provence. The Aix-en-Provence basin is filled mainly with detritic sediments as 

well as limestone and gypsum (Hippolyte et al., 1993).  

Remarks.— The holotype of this specimen could not be located. The original 

description of this species does not mention its location and none of the museums 

contacted claimed to have it in their collection. Our only source of information is the 

species description and a blurry photograph included in the original publication. Meunier 

(1915) mentioned the presence of this specimen in the Natural History Museum of 

Marseille. However, the curator did not respond to our inquiries concerning this 

specimen. Theobald (1937) suggested a resemblance of this species to the extant 

Pompilus maculipes Smith, 1870, which is now placed in Anoplius (Shimizu and Wahis, 

2009). We have no morphological evidence to place this species in Anoplius and we keep 

its original name. 

 

 

 



	
   53 
Genus POMPILUS Fabricius, 1798 

POMPILUS coquandi Theobald, 1937  

Figure 3.2.1, 3.5.2 

1937 Pompilus coquandi THEOBALD, p. 320, pl. 24, fig. 13,pl. 25, fig. 18. 

Diagnosis.— Wing hyaline, maximum width 0.37X its length; 2Rs cell as long as 

1Rs; 2m-cu vein straight, meeting 2Rs cell 0.50X distance from base to apex of cell; and 

2M cell with an inflection at the base of the Cu vein. 

Material.— Holotype: FRANCE, Bouches-du-Rhône, Aix-en-Provence (MNHN). 

Occurrence.— This species was collected in the Aix-en-Provence deposits, which 

dates from the Oligocene (Hippolyte et al., 1993).  

Remarks.— This species is unquestionably Pompilinae due to the presence of an 

inflection at the base of the Cu vein on the 2M cell (Fig. 3.5.2). The low quality of 

specimen preservation hinders an accurate identification to generic level. We declare 

Pompilus coquandi a nomen dubium. 

 

POMPILUS fasciatus Theobald, 1937  

Figure 3.2.2, 3.5.3 

1937 Pompilus fasciatus THEOBALD, p. 320, pl. 24, fig 14, pl. 25, fig. 14.  

Material.— Holotype: FRANCE, Bouches-du-Rhône, Aix-en-Provence (MNHN). 

Diagnosis.— Wing hyaline, maximum width 0.35X its length; 2Rs cell 1.20X 

longer than 1Rs; 2m-cu vein slightly curved, meeting 2Rs cell 0.60X distance from base 

to apex of cell; and 2M cell with an inflection at the base of Cu vein. 
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Remarks.— The general morphology of the specimen is very similar to the 

description of extant cleptoparasitic Pompilidae by Shimizu et al. (2010). Pompilidae 

cleptoparasites typically have shortened antennal segments (Fig. 3.2.2), such as in 

Aridestus Banks, 1947, or Poecilagenia Haupt, 1927 (Shimizu et al., 2010). Nevertheless, 

its accurate generic placement is not possible due to the lack of detail in preserved 

structures. We declare Pompilus fasciatus a nomen dubium. 

Occurrence.— This specimen was found in the Oligocene Aix-en-Provence fossil 

deposits.  

 

Genus TAINOPOMPILUS Rodriguez and Pitts 

TAINOPOMPILUS argentum Rodriguez and Pitts  

Figure 3.2.3 

Diagnosis.— Wing hyaline; maximum width 0.31X its length; 2Rs cell as long as 

1Rs; 2m-cu vein curved, meeting 2Rs cell 0.55X distance from its base to apex of cell; 

and 2M cell with an inflection at the base of Cu vein. 

Material— Holotype, Cordillera Septentrional, between Puerto Plata and 

Santiago, Dominican Republic (OSAC Hy–10–45).  

Occurrence.— The fossil was collected from amber mines in the Dominican 

Republic. The age of Dominican amber is controversial, as discussed above.  

Remarks.— This is the only described species of Tainopompilus. Rodriguez et al. 

(submitted) placed it in the subfamily Pompilinae based on the presence of an inflection 

at the base of the vein Cu on 2M cell (Fig. 3.2.3), but mention that this is the only 
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Pompilinae genus that has metatibial spine-like setae of equal length and not splayed, and 

suggest it might belong to a new subfamily. 

 

Subfamily PEPSINAE Lepeletier, 1845 

Genus POMPILUS Fabricius, 1798 

POMPILUS scelerosus Meunier, 1917 

1917 Pompilus scelerosus MEUNIER, pp. 181–184. 

Diagnosis.— Wing hyaline, maximum width 0.26X its length; 2Rs cell 1.29X 

longer than 1Rs; 2m-cu vein straight, meeting 2Rs cell 0.40X distance from base to apex 

of cell; and 2M cell without an inflection at the base of Cu vein. 

Material.— Not available. 

Occurrence.— This specimen was found in Baltic amber. The exact locality is 

unknown. Baltic amber deposits have been obtained for more than 100 years, and their 

age is controversial. Microfaunistic dating of the deposits containing the largest amount 

of amber suggest they are from the Priabonian, Eocene (37.7 Ma) (Kaplan et al., 1977), 

whereas radiometrically dated glauconite dates them as Lutetian, Eocene (47.0 to 44.1 

Ma) (Ritzkowski, 1997). Perkovsky et al. (2007) considered the Ritzkowski (1997) data 

insufficient to disprove Kaplan et al. (1977), because the former was based on two 

samples and the latter on seven samples. Novel data indicate that the age of Baltic Amber 

can be narrowed to 34 to 38 Ma (Aleksandrova and Zaporozhets, 2008).  

Remarks.— This is a very small specimen from Baltic amber that does not have an 

inflection at the base of the Cu vein of the 2M cell, which excludes it from Pompilus. The 



	
   56 
description and drawings provided by Meunier (1917, figs. 1–3) suggest that this 

specimen should be placed in Pepsinae. The location of the holotype of this species was 

not mentioned in the original description and none of the museums contacted claimed to 

have it in their collection. Because we could not locate the holotype, and the published 

drawing is inadequate, we cannot make further taxonomic conclusions about this taxon. 

This name is herein declared a nomen dubium. 

 

Genus CHIRODAMUS Haliday, 1837 

CHIRODAMUS avitula (Cockerell, 1941) 

Figure 3.2.4, 3.5.4 

1941 Pepsis avitula COCKERELL, pp. 355–356, pl. 1, fig. 3. 

2005 Chirodamus avitula (Cockerell); VARDY, p. 285, fig. 688. 

Diagnosis.— Wing hyaline, banded; maximum width 0.35X its length. Other wing 

venation characters are not visible. 

Material.— Holotype: USA, Colorado, Florissant Tertiary Shales (UCMC No. 

19166). 

Occurrence.— This species was found in the fossil beds of Florissant Colorado 

(Eocene) (vide Agenioideus saxigenus section).  

Remarks.— Vardy (2005) studied this specimen, and mentioned a number of 

characters that differentiate it from Pepsis. He also mentioned the lack of Pepsis species 

that possess banded wings. Vardy (2005) suggested the proximity of this species to 

Chirodamus Haliday, 1837 and established the new combination. We did not find enough 
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wing venation characters to place this species in Chirodamus (Fig. 3.5.4). Therefore we 

declare this species a nomen dubium. 

 

Genus CRYPTOCHEILUS Panzer, 1806 

CRYPTOCHEILUS florissantensis (Cockerell, 1906) 

Figure 3.2.5 

1906 Hemipogonius florissantensis COCKERELL, pp. 52–53. 

1914 Cryptocheilus florissantensis (Cockerell); COCKERELL, p. 719. 

Diagnosis.— Wing hyaline with two dark bands, and apex darkened; maximum 

width 0.20X its length; 2Rs cell slightly shorter than 1Rs; 2m-cu vein slightly curved, 

meeting 2Rs cell 0.70X distance from base to apex of cell; 2M cell without an inflection 

at the base of Cu; and hind wing with cu-a ending distinctly before the juncture of M with 

CU. 

Material.— Holotype: USA, Colorado, Florissant Tertiary Shales (MCZC No. 

2023). 

Occurrence.— This species was found in Florissant Colorado Fossil Beds, which 

are dated from the Eocene (vide Agenioideus saxigenus section). 

Remarks.— Unfortunately, the specimen was preserved with wings overlapping 

(Fig. 3.2.5), which precluded accurate description and illustration of wing venation 

characters. Nevertheless, Cockerell (1906) provided a good description and several 

measurements of hind wing cells. The placement of C. florissantensis in Hemipogonius 

Cockerell, 1906 was not justified by Cockerell (1906). The same author later placed the 
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species within Cryptocheilus (Cockerell, 1914). The generic position of this species 

cannot be certain because wing venation characters are not entirely visible. It certainly 

belongs to Pepsinae, because of the absence of an inflection at the base of the Cu vein in 

2M cell. We declare this name nomen dubium. 

  

CRYPTOCHEILUS laminarum (Rohwer, 1909) 

Figure 3.2.6 

1909 Salius laminarum ROHWER, pp. 26–27. 

1914 Cryptocheilus laminarum (Rohwer); COCKERELL, p. 718. 

Diagnosis.— Wing hyaline with apex darkened; maximum width 0.26X its length; 

2Rs cell almost as long as 1Rs; and 2m-cu and 2M cell not observable. 

Material.— Holotype: USA: Colorado: Florissant, Tertiary shales, Station 14, 

1908 (S. A. Rohwer) (UCMC No. 8597). 

Occurrence.— This species was found in Florissant Colorado Fossil Beds, which 

are dated from the Eocene (vide Agenioideus saxigenus section).  

Remarks.— Cockerell (1914) placed this species in Cryptocheilus. The wing 

venation is not well preserved, but the robust body, flat metasoma, and the absence on an 

inflection at the base of the Cu vein of 2M cell likely places it in the tribe Pepsini (Fig. 

3.2.6). Characters that might assign it to a particular genus within the tribe are not visible. 

We declare Cryptocheilus laminarum a nomen dubium.  
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CRYPTOCHEILUS senex (Rohwer, 1909) 

Figure 3.3.1 

1909 Salius senex ROHWER, pp. 25–26. 

1914 Cryptocheilus senex (Rohwer); COCKERELL, p. 718. 

Material.— Holotype: USA, Colorado, Florissant, Tertiary shales, Station 14, 

1908, collector unknown (UCMC. No. 8594). 

Diagnosis.— Wing hyaline, darkened apically; maximum width 0.30X its length; 

2Rs longer than 1Rs; 2m-cu slightly curved, meeting 2Rs slightly before the middle; and 

2M cell not observable. 

Occurrence.— This specimen was collected in the fossil deposits of Florissant 

Colorado. These deposits are from the Eocene (vide Agenioideus saxigenus section). 

Remarks.— Even though Rohwer (1909) mentions the affinity of C. senex with 

Anoplius species, the poor wing preservation precludes a confident designation of this 

species to Anoplius. It is possible, however, that C. senex is a junior synonym of C. 

florissantensis (Cockerell) due to the overall body shape, wing colouration, and 

collection site. Nevertheless, given the poor preservation of the wing venation and 

absence of legs (Fig. 3.3.1), it is not possible even to assign a subfamily for C. senex. A 

synonymy cannot be well justified and we abstain from taxonomic decisions for now. 

Herein we declare C. senex a nomen dubium.  
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CRYPTOCHEILUS hypogaeus Cockerell, 1914 

Figure 3.3.2, 3.5.5-3.5.6 

1914 Cryptocheilus hypogaeus COCKERELL, pp. 718–719. 

Diagnosis.— Wings hyaline with two transverse dark spots; maximum width 

0.33X its length; 2Rs cell longer than 1Rs; 2m-cu vein quite straight, meeting 2Rs 

slightly after middle; 1m-cu large and long, and 2M cell without an inflection at the base 

of the Cu vein. 

Material.— Holotype: USA, Colorado, Miocene (sic) shales of Florissant, Wilson 

Ranch (H. F. Wickham) (USNM No. 90385). 

Occurrence.— This fossil was collected in the Florissant shales of Colorado. This 

deposit dates from the Eocene (vide Agenioideus saxigenus section). 

Remarks.— The wing venation is well preserved in this specimen. The absence of 

an inflection at the base of the Cu vein in 2M cell places it in the subfamily Pepsinae 

(Fig. 3.5.5). Furthermore, the robust body and absence of a petiolate appearance in the 

first metasomal segment suggests that it belongs to the tribe Pepsini (Fig. 3.3.2). Finally, 

because the 2r-m vein is straight, and the cu-a ends distinctly before the juncture of M 

with Cu in the hind wing (Fig. 3.5.6), this species can be placed with confidence in the 

genus Cryptocheilus. Venation on forewing fades at the apex, probably because of poor 

preservation. 
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CRYPTOCHEILUS contentus Theobald, 1937 

1937 Criptochilus contentus (sic) THEOBALD, pp. 129–130. 

Diagnosis.— Wing hyaline; maximum width 0.31X its length; 2Rs cell 1.5X 

longer than 1Rs; 2m-cu vein straight, meeting 2Rs cell 0.33X distance from base to apex 

of cell; and 2M cell without an inflection at the base of the Cu vein. 

Material.— Holotype: FRANCE, Gard, Célas (MHNN). 

Occurrence.— This fossil was collected in the terrains sannoisiens du Gard, 

France. These are fossil deposits dated from the Rupelian, Oligocene (Keen, 1972). 

Remarks.— This species was described as “Criptochilus contentus”, with a 

misspelling in the generic name, and was not mentioned by Engel and Grimaldi (2006) in 

their revision. The venation of the hind wing was not illustrated by Theobald (1937), but 

based on the forewing it belongs unquestionably to Pepsinae. However, the lack of 

information on the hind wing venation does not allow its accurate generic placement. We 

declare Cryptocheilus contentus a nomen dubium. 

 

Genus DEUTERAGENIA Fox, 1897 

DEUTERAGENIA catalanicus Rodriguez, Waichert and Pitts new species 

Figure 3.3.3 

2001 Dipogon (Deuteragenia) sp. ARILLO, pp. 80–82, fig. 5. 

Diagnosis.— Wing hyaline, with two bands covering cells 1Rs, 2Rs, 2M and most 

of 2R1; maximum width 0.31X its length; 2Rs cell as long as 1Rs; 2m-cu vein almost 
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straight, meeting 2Rs cell 0.40X distance from base to apex of cell; and 2M cell without 

an inflection at the base of Cu vein. 

Types.— Holotype: SPAIN, Lleyda, Bellver de Cerdanya, deposit of Barranco de 

Salanca (MGMM No. 2927M). 

Etymology.— This species is named after the ‘catalanes’, people who inhabit the 

autonomous community of Catalonia, where the fossil was found. 

Occurrence.— This species was found in the lacustrine deposits of Bellver, Spain, 

which are dated from the Messinian, Miocene (Arillo, 2001). 

Remarks.— This species was first studied by Arillo (2001), who described it, but 

did not name it. We compared the holotype with the extant and extinct species of 

Dipogon, and name the new species herein. Because this species was found in Miocene 

deposits (younger than 11 Myr), the specimen was compared to all extant Deuteragenia 

species (Wahis, 1986; Wolf, 1999) to confirm that it is a new species. Characters from 

wing venation were compared against all the other species. The most conspicuous 

difference found was the width of the 2R1 cell. Deuteragenia catalanicus n. sp. has a 

2R1 cell that is 4X as long as wide (Fig. 3.3.3), while in all other species it is less than 3X 

as long as wide (Arillo, 2001, fig. 2). There are also differences in the distance from the 

beginning of the 1Rs where the 1m-cu vein is received at the base of 1Rs. Most of the 

described species do not receive this vein at 0.4X from the beginning of the 1Rs. Also, 

the distance where the 2m-cu vein is received by 2Rs is not 0.3X its length from the 

beginning of the cell in most species, as it is in D. catalanicus (e.g., 0.2X in D. vechti 

Day, 1979). Moreover, the extent to which the 2R1 cell is covered by dark banding, 

which in D. catalanicus is covered by 0.9X its length, is less in most other species (e.g. 
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0.3X its length in D. monticolus Wahis, 1972, 1.0X its length in D. subintermedius 

[Maggretti, 1886]). Finally, the 1cu-a vein of the forewing meets the M+Cu slightly 

beyond the origin of the M, while in some species it meets M+Cu well beyond the origin 

of M (e. g., D. austriacus Wolf, 1964). This species can be distinguished from 

Priocnemis fossil species because in Deuteragenia the dark region covers the 1Rs and 

2Rs cells completely, whereas in Priocnemis these are covered only partially (Arillo, 

2001). 

 

DEUTERAGENIA cockerellae (Rohwer, 1909) 

Figure 3.3.4 

1909 Agenia cockerellae ROHWER, pp. 24–25. 

1912 Dipogon (Deuteragenia) cockerellae (Rohwer); SUSTERA, p. 191. 

2012 Deuteragenia cockerellae (Rohwer); LELEJ, p. 7. 

Diagnosis.— Wing hyaline, with two dark bands; maximum width 0.16X its 

length; and 2M cell without an inflection at the base of the Cu vein. 

Material.— Holotype: USA, Colorado, Florissant Tertiary Shales, Station No. 11 

(North End of Stump Hill) (UCMC No. 8598). 

Occurrence.— This specimen was found in Florissant shales of Colorado. This 

deposit is dated from the Eocene (vide Agenioideus saxigena section). 

Remarks.— This species was placed in the genus Deuteragenia based on the 

wing-banding patterns (Fig. 3.3.4). Many pompilid genera (e.g. Priochilus and Ageniella 

Banks, 1912) possess dark areas on the wings, which makes it an ambiguous character. 
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We conclude that the current generic position of this species is equivocal, and the 

preservation of the fossil does not allow us to draw any further conclusions. We declare 

D. cockerellae a nomen dubium. 

 

DIPOGON wettweri (Statz, 1938) comb. nov.  

Figures 3.3.5, 3.3.6, 3.5.7 

1938 Priocnemis wettweri STATZ, pp. 108–109. 

Diagnosis.— Wing with two bands; maximum width 0.39X its length; 2Rs 1.2X 

longer than 1Rs; 2m-cu vein straight, meeting 2Rs cell 0.45X distance from base to apex 

of cell; and 2M cell without an inflection at the base of the Cu vein. 

Material.— Holotype: GERMANY, Landsberg, Rott (LACMIP No. 3973, 

LACMIP locality number 2533). 

Occurrence.— This fossil was collected in the Rott deposits, dated from the 

Chattian, Oligocene to the Aquitanian, Miocene (Grimaldi and Engel, 2005). 

Remarks.— The wing venation (Fig. 3.3.5, 3.5.7) of this specimen resembles that 

of Dipogon species rather than Priocnemis. The 3r-m vein is curved in Dipogon (Fig. 

3.5.7), whereas in Priocnemis it is straight. Therefore, we propose to include this species 

in the genus Dipogon. We were unable to place the species in a subgenus because of the 

lack of visible, diagnostic characters. 
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Genus PALEOGENIA Waichert and Pitts 

PALEOGENIA wahisi Waichert and Pitts  

Figures 3.4.1-3.4.3 

Diagnosis.— Wing hyaline (Fig. 3.4.3); maximum width 0.45X its length; cells 

short and rounded; 2Rs cell about the same size as 1Rs; 2m-cu vein slightly curved, 

meeting 2Rs cell 0.5X distance from base to apex of cell; 2R1 ending on apex of the 

forewing instead of anterior margin; and 2M cell without an inflection at the base of the 

Cu vein. 

Material.— Holotype: RUSSIA, Kaliningrad Region, Baltic Sea (OSAC Hy–10–

80). 

Occurrence.— Exemplars were collected from the Kaliningrad region of Russia. 

The age of Baltic amber is discussed above (vide Pompilus scelerosus section). 

Remarks.— Rodriguez et al. (submitted) mention the affinity of this species with 

other pompilid cleptoparasitoids, and the absence of extant Pepsini cleptoparasitoids.  

 

Genus PRIOCNEMIS Schiodte, 1837 

PRIOCNEMIS aertsii Statz, 1936 

Figures 3.4.4, 3.5.8 

1936 Priocnemis aertsii STATZ, pp. 283–284. 
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Diagnosis.— Wing hyaline; maximum width 0.27X its length; 2Rs cell 1.20X 

longer than 1Rs; 2m-cu vein rounded, meeting 2Rs cell 0.33X distance from base to apex 

of cell; and 2M cell without an inflection at the base of the Cu vein. 

Material.— Holotype: GERMANY, Landsberg, Rott (LACMIP No. 3972, 

LACMIP locality number 2533). 

Occurrence.— This specimen was collected in Germany, on Rott fossil deposits. 

These are dated from the Chattian, Oligocene to Aquitanian, Miocene (Grimaldi and 

Engel, 2005). 

Remarks.— The original description of this species contained drawings of the 

wing venation and the entire specimen (Statz, 1936, pl. 12, figs 33-34). This species was 

placed in Priocnemis probably due to the presence of the 1cu-a vein extending beyond 

the M vein by about 0.70 to 1.30 of its length (Fig. 3.5.8), which in other related Pepsini 

is closer to the M vein. Nevertheless, other Pepsini genera, such as Entypus Dahlbom, 

1843, Pepsis, and Calopompilus Ashmead, 1900 also possess this character. The wing 

venation in Priocnemis, however, is distinguished from Pepsis by having the 2R1 cell 

ending straight, not separated apically from the costal margin of the wing; and from 

Calopompilus and Entypus by having the 2r-m vein slightly curved. In addition, it can be 

separated from Dipogon by the straight 3r-m, which is curved in Dipogon. Schoberlin 

(1888) mentioned the presence of Priocnemis in the Oeningen deposits. However, the 

author did not provide a species description, or the location of the specimen mentioned. 
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Subfamily CTENOCERINAE 

Genus CAPUTELUS Waichert and Pitts  

CAPUTELUS scudderi (Cockerell, 1906)  

Figure 3.4.5 

1906 Hemipogonius scudderi COCKERELL, p. 53. 

Diagnosis.— Wing with two dark bands; maximum width 0.28X its length; 2Rs 

cell slightly longer than 1Rs; 2m-cu vein curved, meeting 2Rs slightly after its middle; 

and 2M cell without an inflection at the base of Cu vein. 

Material.— Holotype, Colorado, Florissant Tertiary Shales, USA (MCZC No. 

2024). 

Occurrence.— This fossil was collected in the Florissant shales of Colorado. This 

deposit dates from the Eocene (vide Agenioideus saxigenus section). 

Remarks.— This species was placed in Ctenocerinae by Rodriguez et al 

(submitted), based on the presence of a large antennal pit, and a prolonged vertex, a 

carinate propodeum and absence of spines on legs. Extant members of this subfamily are 

found only throughout the Southern Hemisphere (Waichert and Pitts, 2011); therefore, 

this fossil suggests that the Tertiary distribution of the subfamily extended to the 

Northern Hemisphere. 
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TABLE 3.1—Species of Fossil Pompilidae 

Subfamily Species name after this revision Material  Type of fossil Parts not 

preserved 

Occurrence Age  

Pompilinae Agenioideus saxigenus (Cockerell, 1908) 

comb. nov. 

Holotype Compression Hind wing, 

antennae 

Florissant Fossil 

Beds 

Priabonian  

 Anoplius induratus (Heer, 1849) nom. 

dub. 

Holotype Compression  Oeningen Messinian  

 Tenthredinites bifasciata Meunier, 1915) Literature Compression  Aix-en-

Provence 

Chattian  

 Anoplius planetarius Rodriguez and Pitts  Holotype Amber  Dominican 

amber 

Burdigalian 

to Langhian  

 Psammochares depressa (Statz, 1936) 

nom. dub. 

Literature/  

holotype lost 

Compression  Rott deposits Chattian  

 Pompilus coquandi (Theobald, 1937) 

nom. dub. 

Holotype Compression Part of hind 

wing 

Aix-en-

Provence 

Chattian  

 Pompilus fasciatus (Theobald, 1937) 

nom. dub. 

Holotype Compression Mid and fore 

legs 

Aix-en-

Provence 

Chattian  

 Tainopompilus argentum Rodriguez and 

Pitts  

Holotype Amber  Dominican 

amber 

Burdigalian 

to Langhian  

Pepsinae Chirodamus avitula Cockerell, 1941 

nom. dub. 

Holotype Compression Part of hind 

wing 

Florissant Fossil 

Beds 

Priabonian  

 Cryptocheilus florissantensis (Cockerell, 

1906) nom. dub. 

Holotype Compression  Florissant Fossil 

Beds 

Priabonian  

 Cryptocheilus laminarum (Rohwer, 

1909) nom. dub. 

Holotype Compression Hind wing Florissant Fossil 

Beds 

Priabonian  

 Cryptocheilus senex (Rohwer, 1909) Holotype Compression Hind wing Florissant Fossil 

Beds 

Priabonian  

 Cryptocheilus hypogaeus Cockerell, 

1912 

Holotype Compression  Florissant Fossil 

Beds 

Priabonian  

 Cryptocheilus contentus (Theobald, 

1937) nom. dub. 

Literature Compression Hind wing Terrains 

sannoisiens du 

Gard 

Rupelian  
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 Deuteragenia catalanicus Rodriguez, 

Waichert and Pitts sp. nov. 

Holotype Compression  Bellver deposits Messinian  

 Deuteragenia cockerellae (Rohwer, 

1909) nom. dub. 

Holotype Compression Part of fore 

and hind 

wings 

Florissant Fossil 

Beds 

Priabonian  

 Dipogon wettweri (Statz, 1938) comb. 

nov. 

Holotype Compression  Rott deposits Chattian  

 Paleogenia wahisi Waichert and Pitts  Holotype Amber  Baltic amber Lutetian to 

Priabonian  

 Pompilus scelerosus Meunier, 1919 

nom. dub. 

Literature Amber  Baltic amber Lutetian to 

Priabonian  

 Priocnemis aertsii Statz, 1936 Holotype Compression Hind wing, 

part of head 

Rott deposits Chattian  

Ctenocerinae Caputelus scudderi (Cockerell, 1906) 

comb. nov. 

Holotype Compression  Florissant Fossil 

Beds 

Priabonian  
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FIGURE 3.1–– Pompilidae fossils. 1, 2, Agenioideus saxigenus (Cockerell, 1908) from 

Florissant Tertiary shales, Colorado, US (UCMC No. 4541): 1, Holotype habitus, 2, 

Paratype dorsal view; 3, habitus of Anoplius induratus (Heer, 1849) from Oeningen, 

Germany (SMNK); 4, 5, Anoplius planetarius Rodriguez and Pitts n. sp. from Dominican 

amber, Dominican Republic (OSAC Hy–10–45): 4, habitus, E5, dorsum.  
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FIGURE 3.2–– Pompilidae fossils. 1, dorsal view of Pompilus coquandi Theobald, 1937 

from Aix-en-Provence deposits (MNHN); 2, dorsal view of Pompilus fasciatus Theobald, 

1937 from Aix-en-Provence, France (MNHN); 3, habitus of Tainopompilus argentum 

Rodriguez and Pitts n. sp. in Dominican amber, Dominican Republic (OSAC Hy–10–45); 

4, dorsal view of Chirodamus avitula (Cockerell, 1941) from Florissant Tertiary shales, 

Colorado, US (UCMC No. 19166); 5, habitus of Cryptocheilus florissantensis (Cockerell, 

1906) from Florissant Tertiary shales, Colorado, US (MCZC No. 2023); 6, habitus of 

Cryptocheilus laminarum (Rohwer, 1909) from Florissant Tertiary shales, Colorado, US 

(UCMC No. 8597). 
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FIGURE 3.3–– Pompilidae fossils. 1, habitus of Cryptocheilus senex (Rohwer, 1909) from 

Florissant Tertiary shales, Colorado, US (UCMC. No. 8594); 2, habitus of Cryptocheilus 

hypogaeus Cockerell, 1914 from Eocene shales of Florissant, Colorado, US (USNM No. 

90385); 3, dorsal view of Dipogon catalanicus Rodriguez, Waichert and Pitts n. sp. from 

lacustrine deposits of Bellver, Spain (MGMM No. 2927M); 4, habitus of Dipogon 

cockerellae (Rohwer, 1909) from Florissant Tertiary shales, Colorado, US (UCMC No. 

8598); 5, 6, Dipogon wettweri (Statz, 1938) from Rott deposits, Germany (LACMIP No. 

3973): 5, fore and hind wings, 6, habitus.
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FIGURE 3.4–– Pompilidae fossils. 1–3, Paleogenia wahisi Waichert and Pitts n. sp. from 

Baltic Amber, Kaliningrad region of Russia (OSAC Hy–10–80): 1, habitus, 2, head, 3, 

fore wing; 4, habitus of Priocnemis aertsii Statz, 1936 from Rott deposits, Germany 

(LACMIP No. 3972); 5, dorsal view of Caputelus scudderi (Cockerell, 1906) from 

Florissant Tertiary shales, Colorado, US (MCZC No. 2024). 
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FIGURE 3.5–– Wing drawings. 1, fore wing Agenieoideus saxigenus; 2, fore wing 

Pompilus coquandi; 3, fore wing Pompilus fasciatus; 4, fore wing Chirodamus avitula; 5, 

6, Cryptocheilus hypogaeus: 5, fore wing, 6, hind wing; 7, fore wing Dipogon wettweri; 

8, fore wing Priocnemis aertsii. 
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CHAPTER 4 

 
ASSESSING SPECIES BOUNDARIES AND SEX-ASSOCIATIONS IN THE GENUS 

DREPANAPORUS (HYMENOPTERA: POMPILIDAE), WITH COMPARISON OF 

THE UTILITY OF CYTOCHROME C OXIDASE I AND A NUCLEAR MOLECULAR 

MARKER, AND THE DESCRIPTION OF A NEW SPECIES OF DREPANAPORUS3 

 
ABSTRACT 

The taxonomy of the Antillean genus Drepanaporus Bradley (Pompilidae) is 

problematic, due to sexual dimorphism and nearly uniform morphology of males across 

species. Species limits are not well understood, and sexes are not properly associated in 

all species. In this study, we reassessed morphology and collected novel molecular data 

for the purpose of determining species boundaries and establishing sex–associations for 

all species. Two genes, cytochrome C oxidase (COI) and long–wavelength rhodopsin 

(LWRh) were amplified for 20 specimens of Drepanaporus, from both females and 

males. Using LWRh (including both introns and exons) and COI sequences the 

relationships of Drepanaporus samples were reconstructed. Sequences obtained for COI 

showed unusually high divergences and putative introgression, and thus were not used for 

taxonomic decisions. Taxonomic changes were made based on the LWRh phylogenetic 

results. A new species of Drepanaporus —D. bachata sp. nov.— is described herein 

based on both molecular and morphological characters for both male and female 

specimens, and a key is provided for the genus for the three species now recognized. We 

                                                
3 This manuscript is formatted for submission to Annals of the Entomological Society of 
America. The authors of the journal article are: Juanita Rodriguez, Carol D. von Dohlen, 
and James P. Pitts. 
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also discuss the usefulness of mitochondrial and nuclear markers in Pompilidae for 

species delimitations and sex–associations. 

 
Introduction 

Drepanaporus Bradley is a genus of dimorphic spider wasps (Pompilidae), 

comprising three species found only in the Antilles. Two of these species have been 

described previously; the third species is identified and described here. The monophyly 

of Drepanaporus has been established by morphological and molecular data (unpublished 

data). Drepanaporus females are brightly colored, share a color pattern, and have a 

higher degree of morphological variation than males. The uniformity in male external 

morphology makes the taxonomy of Drepanaporus complicated, and suggests the need to 

apply molecular characters for taxonomic purposes.  

One of the most commonly used molecular markers for species delimitation 

studies is mitochondrial cytochrome c oxidase (COI). More specifically, a 658-bp long 

fragment of the COI gene, proposed as the standard molecular barcode for animals 

(Folmer et al. 1994), has been used to establish species boundaries (Hou and Li 2010, 

Dombroskie and Sperling 2012, Navia et al. 2013) and sex-associations (Kurina et al. 

2011, Zhang et al. 2013) in various taxa. However, problems with COI and other 

mitochondrial genes for such uses have surfaced in certain taxa, in the form of duplicate 

copies transposed to the nuclear genome, and heteroplasmy (multiple, divergent 

sequences) among mitochondrial copies. For example, heteroplasmy in COI genes of 

bees resulted in unusually high divergence distances (Magnacca and Danforth 2006), and 

even produced different haplotypes for different tissues within the same organism 
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(Magnacca and Brown 2012). Such anomalies can render COI and other mitochondrial 

sequences unreliable for species delimitation studies. 

In light of the possible problems associated with COI sequences, highly variable 

nuclear markers have been proposed as potential alternatives. Recent studies have 

suggested the utility of the nuclear molecular marker, long–wavelength rhodopsin 

(LWRh), for assessing species boundaries (Derocles et al. 2012). This molecular marker 

is commonly used in Hymenoptera systematics, and shows high variability at the species 

level (Hines et al. 2006, Blaimer 2012, Rightmyer et al. 2013).  

In this study, we collected molecular data from both COI and LWRh to establish 

species boundaries and make sex associations in Drepanaporus. The COI sequences 

obtained for Drepanaporus showed high divergence levels and evidence of introgression; 

thus, we ultimately used only LWRh sequences and morphological data to address the 

taxonomy of the group.  

 

Materials and Methods 

Taxon sampling 

Females of the two described Drepanaporus species were sampled, as well as a 

female from a putative new species, which was initially recognized with the molecular 

data presented here (Table 4.1). Males of Drepanaporus from various locations in the 

Dominican Republic were also sampled (Table 4.1). Prior to this study, the only male 

known was that of D. collaris (Cresson 1865). During this study, two other male 

morphospecies were established using wing venation characters. Waichert et al. (2012) 

described one of these morphospecies as the male of D. antillarum (Bradley 1944). The 
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other morphospecies is herein described as D. bachata. Specimens of D. collaris and D. 

antillarum were sampled widely throughout the Antilles, and D. bachata was sampled 

from Dominican Republic.  Specimens of a closely related species of spider wasp, 

Euplaniceps quadrimaculata (Smith 1873), were included as an outgroup. The outgroup 

was chosen as the sister group of the genus as determined by a phylogenetic analysis of 

the tribe Aporini (unpublished data). 

 
Molecular methods 

DNA was extracted from 20 Drepanaporus specimens and a single specimen of 

E. quadrimaculata (Table 4.1). PCR took place in 20 µL reactions, using 6 µL GoTaq 

Green mastermix (Promega, Madison, WI), 10 µL of nuclease free water, 1 µM of each 

primer and approximately 20 ng of template. PCR program included an initial step of 

94°C for 150 sec, followed by 35 cycles of 94°C for 30 sec, 46°C (LWRh) or 48°C (COI) 

for 60 sec, and 72°C for 60 sec, with a final step of 72°C for 10 min. Primers from 

previous studies were used (Table 4.2). The amplified fragments were visualized, purified 

and sequenced following the protocol described in Pilgrim and Pitts (2006). All PCR 

products were sequenced with forward and reverse primers, and were assembled into 

complete contigs using Sequencher 4.1 (Genecodes, Ann Arbor, MI). All sequences were 

deposited in GenBank (Table 4.1). 

 
Phylogenetic reconstruction 

LWRh (including introns) and COI sequences were aligned in Geneious Pro 5.4 

(Drummond et al. 2011, available from http://www.geneious.com/). LWRh introns within 

Drepanaporus had no length variation, and thus were easily aligned. Alignment of 
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introns when the outgroup was included produced gaps in the Drepanaporus sequences, 

but homology of sites was straightforward to infer. Models of molecular evolution were 

evaluated using PartitionFinder v1.0.1 (Lanfear et al. 2012) for different codon positions 

and introns. The models used were: GTR+I+G for LWRh 1st codon position and introns, 

K80+I for LWRh 2nd codon position, SYM+I+G for LWRh 3rd codon position, 

HKY+I+G for COI 1st codon position, JC for COI 2nd codon position, and HKY+G for 

COI 3rd codon position. 

A Bayesian phylogenetic analysis was performed with MrBayes v3.2.1 (Ronquist 

et al. 2012) for each gene tree separately, and a distance phylogenetic analysis was 

performed in PAUP v4.0 (Swofford 2003) through the tree builder plugin in Geneious 

Pro 5.4 (Drummond et al. 2011). The Bayesian analysis was run with two separate 

MCMC chains for 30,000,000 generations; convergence diagnostics were assessed with 

Tracer v1.5 and 10% of the samples were discarded as burn-in. Bayesian and distance 

trees were visualized in FigTree v1.4.0. Because topologies of the two gene trees 

conflicted, only the results from LWRh were used further for species delimitation (see 

Results). 

The species delimitation plug-in of Geneious (Masters et al. 2011) was used to 

determine whether members of different clades should be considered different species. 

We calculated inter- and intraspecific genetic distances based on the K2P model, and 

compared these to previous studies. We calculated the probability of reciprocal 

monophyly P (AB) (Rosenberg 2007), which determines the probability that monophyly 

of the lineages occurs by chance as an outcome of the random branching of lineages 

within a single taxon. We also calculated the liberal probability of identification [P 
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ID(liberal)], which is the mean probability of making a correct identification of an 

unknown specimen of the focal species using BLAST (best sequence alignment), DNA 

Barcoding (closest genetic distance), or placement on a tree, with the criterion that it falls 

sister to or within a monophyletic species. This value is based on simulations, we did not 

use the strict version of this value given the low sample size of our new putative species.  

 
Taxonomic methods 

All the holotypes of the species treated were studied, except for the holotype of 

Planiceps cubensis Cresson 1867 (see D. collaris remarks section). Abbreviations used in 

the descriptions are the same as those used by Wasbauer and Kimsey (1985). They are 

defined as follows: FD = facial distance; LA3 = length of third antennal segment; MID = 

middle interocular distance; OOL = ocellocular length; POL = postocellar length; TFD = 

transfacial distance; UID = upper interocular distance; and WA3 = width of third 

antennal segment. Measurements of the clypeus are as follow: WC, width of clypeus, 

measured from the widest points; and LC, highest length of clypeus. Male genital terms 

follow the terminology by Wasbauer and Kimsey (1985). Wing venation terminology 

follows that of Huber and Sharkey (1993, figs 19–20). Images were taken with a Jenoptik 

camera coupled to a dissecting microscope Leica Mz7.5; processed by Auto-MontageTM 

software; and treated in Adobe Photoshop Elements 9. 

The acronyms for the collections used in this study are as follows: 

AEIC American Entomological Institute, Gainesville, Florida, USA. 

CMNH Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA. 

EMUS Utah State University Entomology Collection, Utah State University, Logan, 

Utah, USA 
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FSCA Florida State Collection of Arthropods, Division of Plant Industry, Gainesville, 

Florida, USA.  

MCZC Museum of Comparative Zoology, Harvard University, Cambridge, 

Massachusetts, USA. 

MPEG Museu Paraense Emilio Goeldi, Belém, Pará, Brazil. 

PMAE Provincial Museum of Alberta, Edmonton, Alberta, Canada. 

UCFC University of Central Florida – Entomology, Orlando, Florida, USA 

USNM National Museum of Natural History, Smithsonian Institution, Washington, USA. 

 

Results 

 
Phylogenetic results 

COI sequences. From the 20 specimens extracted, only 7 amplified successfully 

for COI. Pairwise Kimura 2-parameter distances (K2P) ranged from 11%–23% between 

intraspecific samples (Fig. 4.1A). The alignment and translation revealed no insertions, 

deletions, or stop codons to suggest the possibility of pseudogenes. The topology 

obtained with this marker differed for certain samples from the nuclear gene phylogeny 

(Fig. 4.2). One of the D. collaris specimens was recovered as a member of the D. 

antillarum clade. Moreover, D. bachata was included in the D. collaris clade, albeit with 

a low posterior probability. This pattern suggests the possibility of mitochondrial gene 

introgression or incomplete lineage sorting. Given these results, the COI data were not 

used further for taxonomic purposes. 

LWRh sequences. All 20 specimens yielded LWRh PCR products and 

sequences. Intraspecific K2P distances ranged from 0–3.4%, and interspecific distances 
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from 4.1–7.9% (Fig. 4.1B). The Bayesian MCMC analysis for LWRh produced a 

consensus tree with three major lineages supported by high posterior probabilities (Fig. 

4.2). These lineages corresponded to D. collaris, D. antillarum, and a third lineage that 

comprised specimens with distinctive morphology, which we designate as a new species 

of Drepanaporus (see Taxonomic results). LWRh K2P distances have been studied in 

Hymenoptera, where interspecific distances range from 0–34% and intraspecific 

distances from 0–1% (Derocles et al. 2012). These results were based on sequences 

where the 5’ -end intron was removed. Moreover, the species evaluated by Derocles et al. 

(2012) were determined a priori with morphology. Our results for interspecific distances 

fall within the range reported by Derocles et al. (2012), but our results show a gap 

between inter and intraspecific distances (Fig. 4.1B). Rosenberg’s P(AB) (Rosenberg 

2007) was 0.02 for the lineage of the putative new species. Using the critical values 

proposed by Rosenberg (2007), the hypothesis that reciprocal monophyly could have 

been a product of random branching is rejected. The P ID (liberal) of 0.80 for the new 

putative species suggests a high probability of correctly identifying a specimen to the 

correct species using molecular data. These results, along with morphological evidence, 

suggest that samples composing the third lineage should be considered a new species of 

Drepanaporus. 

 

Taxonomic results 

 
Drepanaporus Bradley 1944 

(Fig. 4.3 – females, Fig 4.4 – males) 

Type species Planiceps collaris Cresson 1865, by original designation and monotypy. 
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Diagnosis. The female is black except for the following regions: a red band 

crossing on the streptaulus, and a red band on the posterior margin of the pronotum and 

the abdomen (Fig. 4.3I). The mandible has a tooth in the inferior margin (Fig. 4.3J).  The 

males have the basal half of parameres forming a broad lamina, where the part beyond 

the elbow forms a narrow appendage (Figs 4.4A–C). 

Remarks. This genus was originally separated from other Aporini genera by the 

presence of a cleft tarsal claw with a truncate tooth. This character is present only in 

some specimens of D. collaris as discussed by Waichert et al. (2012). The male genitalia, 

(including the subgenital plate) in this genus have high morphological variability. 

Differences observed in Figs. 4.4A–F (e.g. apex of parameres, shape of digiti) are not 

consistent across species. The only reliable character is the presence or absence of long 

setae on the margin of the basal lamina of the paramere, which separates D. bachata n. 

sp. from the other two. D. collaris and D. antillarum can only be separated using wing 

venation characters.  

Distribution. This genus is found in the Bahamas, Cuba, Hispaniola, Puerto Rico 

and the Virgin Islands. 

 

Key to the species of Drepanaporus 

Females  

1 Eyes clothed with dense, rather long setae (Fig. 4.3A); frons with short, coarse upward–

directed setae (Fig. 4.3C) … 2 
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- Eyes without dense setae (Fig. 4.3B); frons without coarse upward–directed setae (Fig. 

4.3D) (Bahamas, Cuba, Haiti, Dominican Republic and Puerto Rico)… Drepanaporus 

collaris (Cresson)  

2 Basal third of clypeus transversally concave (Fig. 4.3F); antennal segments 1–4 covered 

or not with short, coarse, apressed setae (Fig. 4.3H) (Cuba, Dominican Republic and 

Virgin Islands) … Drepanaporus antillarum (Bradley)  

- Basal third of clypeus not transversally concave (Fig. 4.3E); antennal segments 1–8 

covered with short, coarse, apressed setae (Fig. 4.3G) (Dominican Republic)… 

Drepanaporus bachata Rodriguez and Pitts, sp. nov. 

 
Males  

1 2m-cu vein of fore wing interstitial or slightly basad or distal (less than 0.15 × height of 

1Rs cell) to 2r-m vein (Fig. 4.4G) … 

- 2m-cu vein of fore wing strongly distal (at least 0.25 × height of 1Rs cell) to 2r-m vein 

(Fig. 4.4I)… Drepanaporus collaris (Cresson) 

2 Paramere with long setae on the edge of basal half lamina (Figs 4.4C–D) … 

Drepanaporus antillarum (Bradley) 

Paramere without long setae on the edge of the basal half lamina (Figs 4.4A–B)… 

Drepanaporus bachata Rodriguez and Pitts, sp. nov. 
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Drepanaporus antillarum (Bradley 1944) 

(Figs. 4.4C, 4.4D, 4.4H, 4.4K) 

Planiceps antillarum Bradley 1944, Transactions of the American Entomological Society, Philadelphia, 

vol. 70, p. 107–108 [Holotype: female, HAITI: Port Au Prince or vicinity (MCZC)]. 

Diagnosis. The female has the basal third of the clypeus concave (Fig. 4.3F), 

setose eyes, frons with short, coarse upward–directed setae, and antennae with short, 

coarse setae that never surpass segment four. The male is black with silvery pubescence 

(Fig. 4.4K), has the 2m-cu vein of fore wing interstitial or slightly distal (less than 0.15 × 

height of 1Rs cell) of the 2r-m vein (Fig. 4.4G), and the basal half of the paramere forms 

a broad lamina with long setae (Figs 4.4C–D). 

Material examined. CUBA: Mts. N. of Imias eastern Oriente: 1 female paratype 

of Planiceps antillarum 25–VII–1936 to 28–VII–1936, Darlington, MCZC–26770; 

DOMINICAN REPUBLIC: Elias Pina: 1 male allotype Drepanaporus antillarum, Sierra 

de Neiba, 9.0 km WSW Hondo Valle, 18˚ 41’ 34’’ N, 71˚ 46’ 52’’ W, 1843 m, 25–VI–

2003, disturbed montane woodland with pine, malaise trap, sample 31382, Rawlins et al., 

CMNH–370,370; Independencia: 13 females, 10 males, Sierra de Bahoruco, Loma del 

Toro, 18˚ 17’ 16’’ N, 71˚ 42’ 46’’ W, 2310 m, 7–8–XI–2002, meadow, pine woods, 

yellow pan trap, sample 40169, Zanol et al., CMNH–371,199/ 370,984/ 370,856/ 

370,114/ 370,577/ 370,012/ 369,464/ 370,089/ 370,963/ 371,963/ 371,020/ 370,800/ 

370,411, 369,807/ 369,379/ 369,818/ 371,070/ 369,942/ 370,083/ 370,792/ 369,428/ 

369,468/ 370,940; Independencia: 3 females, Sierra de Bahoruco, Loma del Toro, 18˚ 17’ 

16’’ N, 71˚ 42’ 46’’ W, 2310 m, 7–XI–2002 to 8–XI–2002, meadow in pine woods, 

malaise trap, sample 40189, CMNH–369,819/ 370,167/ 370,587; Independencia: 1 
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female, Sierra de Neiba just south of crest, 5 km NNW Angel Feliz, 1780 m, 18˚ 41’ N, 

71˚ 47’ W, 13–X–1991 to 15–X–1991, cloud forest, J. Rawlins et al., CMNH–370,461; 

Independencia: 2 females, Sierra de Neiba near crest, 5.5 km NNW Angel Feliz, 18˚ 41’ 

N, 71˚ 47’ W, 1750 m, 21–VII–1992 to 22–VII–1992, dense cloud forest, J. Rawlins et 

al., CMNH–369,777/ 370,091/ 370,142/ 370,485; Independencia: 1 male, Sierra de 

Bahoruco, Loma del Toro, 5.3 km SW El Aguacate, 18˚ 17’ 16’’ N, 71˚ 42’ 46’’ W, 2316 

m, 29–III–2004 to 30–III–2004, Pinus, Garrya montane forest, yellow pan trap, sample 

43263, CMNH–370,280; Independencia: 3 males, Sierra de Bahoruco, north slope, 13.5 

km SE Puerto Escondido, 18˚ 12’ 24’’ N, 71˚ 30’ 54’’ W, 1807 m, 24– III–2004 to 25–

III–2004, dense broadleaf forest , pine, yellow pan trap, sample 42262, J. E. Rawlins et 

al., CMNH–370,950/ 370,472/ 369,921; Independencia: 3 males, Sierra de Bahoruco, 

north slope, 13.5 km SE Puerto Escondido, 18˚ 12’ 18’’ N, 71˚ 31’ 08’’ W, 1789 m, 24–

III–2004 to 26–III–2004, ecotonal Pinus grassland, yellow pan trap, sample 41163, R. 

Davidson et al., CMNH–371,122/ 369,691/ 370,092; Independencia: 1 male, Sierra de 

Bahoruco, Loma del Toro, 5.3 km SW El aguacate, 18˚ 17’ 16’’ N, 71˚ 42’ 46’’ W, 2316 

m, 29– III–2004 to 30–III–2004, Pinus, Garrya montane forest, yellow pan trap, sample 

43263, C. Young et al., CMNH–369,989; Pedernales:  4 males, 26 km N Cabo Rojo, 18˚ 

06’ N, 71˚ 38’ W, 730 m, 19–VII–1990 to 25–VII–1990, wet deciduous forest, intercept 

trap, L. Masner et al., CMNH–370,037/ 370,177/ 370,117/ 369,911; La Altagracia: 4 

males, Punta Cana, Ecological Foundation, Biodiversity Center, old fruit tree grove, 18˚ 

30.847’ N, 68˚ 22.822’ W, 11–IX–2008 to 14–IX–2008, MT residue, SEL Hymenoptera, 

HYM Course, EMUS; La Altagracia: 5 males, Punta Cana, 13– IX–2008 to 14–IX–2008, 

Sand Hill, M[alaise]T[rap], EMUS; La Altagracia: 1 male, Parque del Este, Caseta 
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Guaraguao, 4.4 km SE Bayahibe, 18˚ 19’ 59’’ N, 68˚ 48’ 42’’ W, 3 m, 26–V–2004 to 27–

V–2004, semihumid forest near sea, limestone, malaise trap, sample 51184, C. Young et 

al., CMNH–369,898; Pedernales: 2 females, 4 males, Sierra Bahoruco, 730 m, Cabo 

Rojo, 26 km W., L. Mesner, PMAE; Duarte: 3 males, 20 km NE San Francisco de 

Macoris, Loma Quitaespuela, M[alaise]T[rap], 800 m, VI–1991, PMAE; Pedernales: 2 

males, 37 km N Cabo Rojo, 1500 m, 18˚ 09’ N, 71˚ 35’ W, 23–IX–1991, grassland with 

pines, J. Rawlins et al., CMNH–370,112/ 370,401; Pedernales: 1 male, La Abeja, 38 km 

NNW Cabo Rojo, 18˚ 09’ N, 71˚ 38’ W, 1350 m, 15–VII–1987, J. Rawlins, R. Davidson, 

CMNH–370,670; Pedernales: 1 male, Upper Las Abejas, 38 km NNW Cabo Rojo, 18˚ 

09’ N, 71˚ 38’ W, 1250 m, 22–VII–1990, Davidson R., Rawlins, J., CMNH–370,938; 

Pedernales: 1 male, 37 km N Cabo Rojo, 18˚ 09’ N, 71˚ 35’ W, 1500 m, 11–VII–1987, 

Davidson R., Rawlins, J., CMNH–366,651; Pedernales: 1 male, 3.3 km NE Los Arroyos, 

18˚ 15’ N, 71˚ 45’ W, 1450 m, 16–VII–1990 to 18–VII–1990, wet montane forest, sweep 

samples, L. Masner et al., CMNH–370,437; Pedernales: 1 male, Sierra de Bahoruco, 

Aceitillar, 23.6 km NE Pedernales, 18˚ 09’ 23’’ N, 71˚ 34’ 09’’ W, 1560 m, 14–VI–2003, 

open pine forest with grassland, malaise trap, sample 42182, CMNH–370,080; HAITI: 

Port au Prince or vicinity, 1 female holotype, MCZC; VIRGIN ISLANDS: St. Johns: 1 

female, Cinnamon Bay, Oven Trail, 27–VII–1981 to 7–VII–1981, L. Masner, PMAE. 

Distribution. Cuba, Dominican Republic and Virgin Islands. 

Remarks. This species was originally described in the genus Planiceps Latreille 

by Bradley (1944). It was placed in the genus Drepanaporus by Waichert et al. (2012). 
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Drepanaporus collaris (Cresson 1865) 

(Figs. 4.3B, 4.3F, 4.3H, 4.3J, 4.4E, 4.4F, 4.4H, 4.4L) 

Planiceps collaris Cresson 1865, Proceedings of the Entomological Society of Philadelphia, vol. 4, p. 132. 

[Holotype: female (ANSP)]. 

Planiceps cubensis Cresson 1867, Transactions of the American Entomological Society Philadelphia, vol. 

1, p. 136 [Holotype: male, CUBA (IZAC)]. 

Pompilus falco Dalla Torre 1897, Catalogus Hymenopterorum, vol. 8, p. 288 [proposed as new name for 

Planiceps cubensis Cresson 1867, nec Cresson 1865]. 

Pompilus troglodytes Dalla Torre 1897, Catalogus Hymenopterorum, vol. 8, p. 328 [proposed as new name 

for Planiceps collaris Cresson 1867, nec Sphex collaris Fabricius 1775]. 

Odontaporus simulatrix Bradley 1944, Transactions of the American Entomological Society Philadelphia, 

vol. 70, p. 113 [Holotype: female, PUERTO RICO, Jayuya, (USNM)]. 

Diagnosis. The female has the basal third of the clypeus convex (Fig. 4.3J), 

glabrous eyes, sometimes with vestigial setae (Fig. 4.3B), frons with sparse, long setae 

(Fig. 4.3D), and antennae glabrous. The male is black with silvery pubescence (Fig. 

4.4L), has the 2m-cu vein of fore wing strongly distal (at least 0.25 X height of 1Rs cell) 

of the 2r-m vein (Fig. 4.4I), and long setae on the base of the widening of the paramere 

(Figs 4.4E–F).  

 Material examined. BAHAMAS: Eleuthera Rainbow Bay: 5 males, 1–VII–

1987, D. B. and R. W. Wiley, malaise trap, EMUS; Eleuthera Rainbow Bay: 2 females, 4 

males, 1–VII–1987, D. B. and R. W. Wiley, malaise trap, EMUS; Gorda Cay: 3 males, 

26˚ 05’ N, 77˚ 32’ W, 7–VII–1998 to 16–VII–1998, T. Peak, FSCA; Gorda Cay: 1 

female, 2 males, 26˚ 05’ N, 77˚ 32’ W, 10–X–1997 to 15–X–1997, Z. Pruzak, FSCA; 

Gorda Cay: 1 female, 1 male, 26˚ 05’ N, 77˚ 32’ W, 20– VI–1998 to 26–VI–1998, Crew 

beach mangrove/dune mix, malaise trap, S. Glasscock, UCFC; San Salvador Is[land]: 1 
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female, 9–V–1982 to 15–V–1982, B. Bowen, PMAE; CUBA: 1 female holotype, ANSP–

432; Jaronu: 1 female paratype of Odontaporus simulatrix, 27–V–1931, collected on 

weeds, L. L. Scaramuzza, MCZC–26769; San Blas and vic[inity]: 1 female paratype of 

O. simulatrix, Trinidad m[oun]t[ain]s, 24–IV–1931, MCZC–26769; Santiago Prov.[ince]: 

1 female, Gran Piedra, 1100m, 14–XII–1995 to 17–XII–1995, L. Masner, EMUS; 

Soledad: 1 female paratype of O. simulatrix, 16–II–1925, MCZC–26769; DOMINICAN 

REPUBLIC: Azua: 1 female, east side of crest, Sierra Martin Garcia, 7 km WNW 

Barrero, 18˚ 21’ N 70˚ 58’ W, 860m, 25–VII–1992 to 26–VII–1992, C. Young et al., 

CMNH–370,271; La Vega: 1 female, Cordillera Central, Loma Casabito, 16 km NW 

Bonao, 19˚ 02’ 21’’ N, 70˚ 31’ 05’’ W, 1487 m, 28–V–2003, J. Rawlins et al., CMNH–

370,555; Hato Mayor: 1 female, Parque Los Haitises, 3 km W Cueva de Arena, 19˚ 04’ N 

69˚ 29’ W, 20m, 7–VII–1992 to 9–VII–1992, CMNH–370,730;  Independencia: 1 

female, 3 males, Sierra de Bahoruco, north slope, 13.5 km SE Puerto Escondido, 18˚ 12’ 

24’’ N, 71˚ 30’ 54’’ W, 1807 m, 24–III–2004 to 25–III–2004, dense broadleaf forest , 

pine, yellow pan trap, sample 42262, J. E. Rawlins et al., CMNH–370,142/ 370,817/ 

370,097/370,252; Independencia: 1 male, Sierra de Bahoruco, north slope, 13.3 km SE 

Puerto Escondido, 18˚ 12’ 33’’ N, 71˚ 30’ 47’’ W, 1812 m, 24–XI–2004 to 25–XI–2004, 

Pinus rubus, Garrya, open, malaise trap, sample 41385, J. Rawlins et al., CMNH–

366,389; Independencia: 1 female, Sierra de Neiba, south slope near summit, 4 km N 

Angel Feliz, 18˚ 40’ 21’’ N, 71˚ 46’ 05’’ W, 1825 m, 1– IV–2004 to 2–IV–2004, 

broadleaf cloud forest without pine, yellow pan trap, sample 34263, J. Rawlins et al., 

CMNH–370,296; La Altagracia: 1 female, Parque del Este, 2.9 Km SW Boca de Yuma, 

18˚ 21’ 51’’ N 68˚ 37’ 05’’ W, 11m, 28–V–2004, J. Rawlins et al. CMNH–370,945; La 
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Altagracia: 1 female, 2 km N Bayahibe, 18˚ 23’ N, 63˚ 51’ W, 10m, 3–VII–1992, 

CMNH–370,471; Pedernales: 1 female, Sierra de Baoruco, Aceitillar, 23.6 km NE 

Pedernales, 18˚ 09’ 23’’ N, 71˚ 34’ 09’’ W, 1569 m, 14–VI–2003, open pine forest with 

grassland, malaise trap, sample 42182, C. Young et al., CMNH–369,993; La Vega: 2 

females, 2 males, P.N. Armando Bermudez, 1000 m, 17–I–1989, L. Masner, AEIC; 

Duarte: 4 males, 10 km NE San Francisco de Macoris, Loma Quita Espuela, 

M[alaise]T[rap], 800 m, VI–1991, PMAE; La Vega: 10 females, 1 male, Cordillera 

Central Loma Casabito, 15.8 km NW Bonao, 19˚ 02’ 12’’ N, 70˚ 31’ 08’’ W, 1455 m, 

28–V–2003, evergreen cloud forest, east slope, yellow pan trap, sample 21262, CMNH–

370,630/ 370,799/ 370,268/ 370,161/ 370,994/ 370,387/ 369,505/ 367,265/ 

370,310/370,405; Pedernales: 2 males, 37 km N Cabo Rojo, 18˚ 09’ N, 71˚ 35’ W, 1500 

m, 11–VII–1987, Davidson R., Rawlins, J., CMNH–370,056/ 371,324; Pedernales: 2 

males, 23.5 km N Cabo Rojo, 18˚ 06’ N, 71˚ 38’ W, 540 m, 13–VII–1990 to 19–VII–

1990, Masner, L., Rawlins, J., Young, C., CMNH–370,715/ 369,757; Pedernales, 1 male, 

26 km N Cabo Rojo, 18˚ 06’ N, 71˚ 38’ W), 730 m, 19– VII–1990 to 25–VII–1990, 

Masner, L., Rawlins, J., Young, C., CMNH–371,144; Pedernales: 1 female, 1 male, 

Sierra de Bahoruco, Aceitillar, 25.4 km ENE Pedernales, 18˚ 05’ 27’’ N, 71˚ 31’ 08’’ W, 

1270 m, 14–VI–2003, open pine forest with grassland, yellow pan trap, sample 42162, E. 

Young et al., CMNH–370,397/370,980; La Vega: 2 females, 1 male, Cordillera Central, 

4.1 km SW El Convento, 18˚ 50’ 37’’ N, 70˚ 42’ 48’’ W, 31–V–2003, dense secondary 

evergreen forest with pine, yellow pan trap, sample 22262, CMNH–369,529/ 370,333/ 

370,639; Pedernales: 2 females, Sierra de Bahoruco, Aceitillar, 25.4 km ENE Pedernales, 

dense broadleaf forest , pine, yellow pan trap, sample 42262, C. Young et al., CMNH–
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371,096/ 370,704/ 369,827; Pedernales: 1 female, Along Rio Mulito, 13 km N 

Pedernales, 18˚ 09’ N, 71˚ 46’ W, 230 m, 17–VII–1992, riparian woodland, J. Rawlins et 

al., CMNH–370,849; Pedernales: 1 female, 9.5 km N Cabo Rojo, 18˚ 02’ N, 71˚ 39’ W, 

35 m, 13–VII–1990 to 19–VII–1990, desert scrub, intercept trap, L. Masner et al., 

CMNH–369,623; La Vega: 5 males, Cordillera Central, Loma Casabito, 16 km NW 

Bonao, 19˚ 02’ 21’’ N, 70˚ 31’ 05’’ W, 1487 m, 28–V–2003, J. Rawlins et al., CMNH–

370,908/ 370,272/ 370,356/ 371,474/ 370,359; Pedernales: 1 female, 1 km S Los 

Arroyos, 1125m, 18˚ 14’ N 71˚ 45’ W 18–X–1991, R. Davidson et al., CMNH–371,066; 

Santiago: 1 male, Cordillera Central, Loma Casabito, 16 km NW Bonao, 19˚ 02’ 21’’ N, 

70˚ 31’ 05’’ W, 1487m, 28–V–2003, J. Rawlins et al., CMNH–370,069; Pedernales: 2 

females, 19 males, Sierra Bahoruco, 15 km W Cabo Rojo, VIII–1990, 540 m, L. Masner, 

PMAE; Pedernales Prov[ince]: 1 female, 2 males, 21 km N Cabo Rojo, 19– VI–1976 to 

20–VI–1976, R.E. Woodruf and E.E. Grissell, FSCA; HAITI: Kenscoff: 1 female, 1949, 

G. N. Wolcott, USNM; Trou Forban: 1 female, 9–iv–1944, A. curtiss, USNM; PUERTO 

RICO: Jayuya, 1 female holotype of Odontaporus simulatrix, USNM; Luquillo 

Nat[iona]l For[est]: 1 female, 1male, El Verde, 4–X–1968 to 17–X–1968, USNM; El 

Verde: 3 females, 1 male, Km. 17.5, ruta 186, 14–VII–1993 to 24–VII–1993, C. Porter, 

FSCA; El Yunque: 1 female, 2000–2100 ft, 15– II–1969 to 24–II–1969, T. and B. 

Hlavac, L. Herman Jr., MCZC.  

Distribution. Bahamas, Cuba, Haiti, Dominican Republic and Puerto Rico. 

Remarks. As mentioned by Waichert et al. (2012) Odontaporus simulatrix was 

originally separated from D. collaris by the presence of a cleft tarsal claw in D. collaris 

and a dentate claw in O. simulatrix (Bradley 1944). However, tarsal claw shape is 
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variable and specimens with each of the two types of tarsal claws are found in sympatry 

throughout both species’ distribution. These tarsal claw types are not a synapomorphic 

character when mapped onto the molecular phylogeny of Drepanaporus. All holotypes 

were examined except for the holotype of Planiceps cubensis Cresson 1867, which was 

revised by Bradley. Bradley provided illustrations of the genitalia of D. collaris (1944, 

plate IV, fig 23), and included P. cubensis in the synonym list of D. collaris as a result of 

his revision. We are confident that this belongs to D. collaris given the detailed 

descriptions and illustrations of wing venation and genitalia provided by Bradley (1944).  

 

Drepanaporus bachata Rodriguez and Pitts, sp. nov. 

(Figs. 4.3A, 4.3C, 4.3E, 4.3G, 4.3I, 4.4A, 4.4B, 4.4G, 4.4J)  

Diagnosis. The female has a convex clypeus (Fig. 4.3E), setose eyes (Fig. 4.3A), 

frons with short, coarse upward–directed setae (Fig. 4.3C), and antennae with short, 

coarse setae that cover up to segment eight (Fig. 4.3G). The male is black with silvery 

pubescence (Fig. 4.4J), has the 2m-cu vein of fore wing interstitial to the 2r-m vein (Fig. 

4.4G), and the half base lamina of the paramere is glabrous (Fig. 4.4A–B). 

Female. Holotype. Body length 8.5 mm. Fore wing 6.5 mm; maximum wing 

width 1.6 mm. 

Coloration. Head black; clypeus black with dark brown apical margin; 

mandibular and maxillary palpi pale brown; mandible black from base to half of its 

length, pale brown apically; antenna black; pronotum black with red spot on anterior 

margin, and red band on the posterior margin; scutellum black; postnotum black; 
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propodeum black; metasoma red, except for last segment black; wing translucent brown; 

veins dark brown; legs black. 

Head (Fig. 4.3A). Head wide; TFD 1.05 × FD; MID 0.70 × FD. Ocelli in acute 

angle; lateral ocelli closer to compound eyes than to each other; POL 1.42 × OOL. 

Mandible wide, with long, sharp apical teeth, and tooth in the inferior margin (Fig. 4.3J); 

pubescence on mandible short, abundant on first half of length. Clypeus a short band, 

round, convex; LC 0.10 × WC; anterior margin polished. Antenna short; width of fourth 

segment 0.40 × its length; ratio of the first four antennal segments 34:10:22:25; WA3 

0.45 × LA3; LA3 0.55 × UID; short thick pubescence abundant on first eight segments 

(Fig. 4.3G). 

Mesosoma. Short, silvery pubescence sparse on entire body, pubescence more 

abundant on propodeum; punctation inconspicuous. Pronotum elongated, width 1.23 × 

length, posterior margin semi-angulated; pronotal collar inconspicuous. Notauli present 

from beginning of mesonotum to scutellum. Postnotum polished. Propodeal disc with 

long silvery setae, more abundant on lateral and inferior corner. Forewing long, with two 

Rs cells; length of 1Rs cell 0.45 × distance from its origin to wing apex; 2Rs cell 3 × 

longer than first; 2m-cu vein bent, slightly curved, interstitial with 2r-m vein. Front tibia 

with three spines on posterior margin; spines on mid tibia, sparse, short, sharp. 

Metasoma. Metasoma polished, covered by short, abundant setae; pygidium well 

defined, bare, polished; terminal metasomal sternum with sparse, long setae; metasoma 

1.26 × as long as mesosoma.  
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Allotype, Male (Figs. 4.4A–B, G, J). Body length 3.2 mm. Fore wing 2.2 mm; 

maximum wing width 1.1 mm. 

Coloration. Head and mesosoma entirely black; metasoma dark brown; 

mandibular and maxillary palpi pale reddish brown; mandible black from base to half of 

its length, light brown apically; antenna dark brown; wing translucent; veins light brown; 

legs dark reddish brown. 

Head. Head wide; TFD 1.1 × FD; MID 0.70 × FD. Lateral ocelli as close to each 

other as to compound eyes; POL 1 × OOL. Mandible wide, with long, sharp apical teeth; 

silvery pubescence short, abundant on first 0.20 of length. Clypeus wide, rounded; 

anterior margin somewhat truncate, punctured; LC 0.78 × WC. Antenna short; width of 

fourth segment 1.28 × its length; ratio of first four antennal segments 15:5:5:7; WA3 1.00 

× LA3; LA3 0.15 × UID. 

Mesosoma. Pubescence silvery on entire body, more abundant on propodeum. 

Pronotum elongated, width 1.60 × length, posterior margin not straight; pronotal collar 

not differentiated from disc. Postnotum striated. Posterior margin of propodeum with 

abundant setae at base. Wing long; length of first radial 2 cell 0.48 × distance from its 

origin to wing apex; two Rs cells; 2Rs cell 2.00 × 1Rs cell; 2m-cu vein bent, slightly 

curved, meeting 2Rs cell 0.90 × distance from base to apex of cell. Front tibia with spines 

absent on anterior and posterior margins; middle and hind tibiae with sharp, sparse spines 

present. 

Metasoma. Metasoma covered by short, abundant pubescence; metasoma 1.33 × 

as long as mesosoma.  
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Genitalia (Fig. 4.4A–B). Parapenial lobe split; lobes with finger-like shape, 

broad, short, its length 0.44 × total genitalia length; apical lobe semi-angulated, curved; 

basal portion wider. Digitus narrow, rod-shaped; length 0.47 × paramere length; setae 

long, thin, abundant on external surface. Aedeagus thin, long, shorter than parapenial 

lobes, bilobed apically. Paramere length 0.80 × total genitalia length; expanded on 0.50 

of length from base; apex rounded; setae long, thick, covering 0.33 of length apically. 

Subgenital plate narrow, rectangular; apex acute; setae apically abundant, short, thick. 

Etymology. Named in honor of Bachata, a traditional music genre developed in 

the Dominican Republic. The name is used as a noun in apposition. 

Material examined. HOLOTYPE: 1 female, La Altagracia, South of Bahahibe 

[Bayahibe], Dominican Republic, 18.3433˚ N 68.8155˚ W, 15–III–2012, S. W. Droege, 

USGS-DRO, EMUS; ALLOTYPE: 1 male. Pedernales, Sierra de Baoruco, Aceitillar, 

25.2 km ENE Pedernales, Dominican Republic, 18˚ 05’ 29’’ N 71˚ 31’ 16’’ W, 1272m, 

17–vi–2003, dense broadleaf forest, pine, yellow pan trap, C. Young et al., sample 42262, 

CMNH–371,443; PARATYPE: 1 female, la Altagracia, Parque del Este, Caseta 

Guaraguao, 4.4 km SE Bayahibe, Dominican Republic 18˚ 19’ 59’’ N, 68˚ 48’ 42’’ W, 3 

m, 26– V–2004 to 27–V–2004, semihumid forest near sea, limestone, yellow pan trap, 

sample 51164, C. Young et al., CMNH–370,259. 

Distribution. Dominican Republic. 

Remarks. This species shares several morphological similarities with 

Drepanaporus antillarum. Females of the two species have short setae on the eyes, share 

a common color pattern, and have abundant short setae in the first antennal segments. 

Differences between the females of these species are the shape of the clypeus and the 
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amount of setae present on the antenna. Males have almost indistinguishable genitalia, 

with the only difference being the presence of setae on the base of the parameres in D. 

bachata.  

 
Discussion 

The usefulness of molecular data for species delimitation and sex-associations had 

not been studied before in Pompilidae. Szafranski (2009) examined COI sequences for a 

few species in the family, and inferred a high substitution rate from pairwise distances 

compared to other Hymenoptera (Derocles et al. 2012). However, neither intraspecific 

comparisons, nor inter- to intraspecific comparisons were studied. Our study shows that 

the use of universal primers to amplify and sequence the COI barcoding region in 

Pompilidae may produce misleading phylogenetic results. Given the high sequence 

variability among individuals within species, and the discordance with the nuclear 

marker, we were unable to use the COI gene with confidence to establish species 

boundaries. 

The COI phylogeny has very low support values; therefore, it is difficult to make 

solid conclusions about the unexpected clustering of certain samples. It is important to 

note, however, that the specimen of D. collaris (PO703), which is clustering within D. 

antillarum, was collected in the same locality as one of the D. antillarum (PO701) that it 

is clustering with. This could be evidence of geographic structure within COI. On the 

other hand, the clustering of D. bachata within D. collaris in the COI phylogeny and 

within D. antillarum in the LWRh phylogeny is not an unexpected result, given that the 
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relationship between D. bachata with any of the two other species is not supported with 

high posterior probabilities for any of the two phylogenies (Figure 4.2). 

The nuclear gene, LWRh, proved easy to amplify with previously published 

primers. The sequences were variable between closely related species, and a clear gap 

between intraspecific versus interspecific pairwise species divergences was observed. 

This aided in establishing species boundaries, as well as associating sexes within taxa 

where morphological differences are subtle. Thus, this molecular marker has proved 

useful for informing taxonomic studies in Pompilidae, as it has in other hymenopteran 

taxa (Derocles et al. 2012).  

Pompilidae contain many groups of closely related species with very similar 

morphology and confusing intraspecific variation, which are difficult to distinguish on 

the basis of characters provided in older, published descriptions. Our study demonstrates 

that the application of molecular data to such cases can help to assign samples to distinct 

lineages. This greatly facilitates the search for informative, discriminating morphological 

characters, which can be more effective for species identifications. 

Future work in Pompilidae molecular systematics should include the comparison 

of a wider sample of COI and LWRh sequences in additional genera, in order to 

determine more broadly their usefulness separately and in conjunction. 

 

References Cited 

 
Blaimer, B. B. 2012. Untangling complex morphological variation: taxonomic revision of 

the subgenus Crematogaster (Oxygyne) in Madagascar, with insight into the 

evolution and biogeography of this enigmatic ant clade (Hymenoptera: Formicidae). 



	
   103 
Syst. Entomol. 37: 240–260. 

Bradley, J. C. 1944. A Preliminary revision of the Pompilinae (Exclusive of the Tribe 

Pompilini) of the Americas (Hymenoptera: Pompilidae). T. Am. Entomol. Soc. 70: 

23–157. 

Cresson, E. T. 1865. On the Hymenoptera of Cuba. Proc. Entomol. Soc. Phil. 4: 1–200. 

Cresson, E.T. 1867. Notes on the Pompilidæ of North America, with descriptions of new 

species. Trans Am Entomol Soc (Phila): 1: 858–150. 

Dalla Torre, C. (1897) Catalogus Hymenopterorum hucusque descriptorum synonymicus 

et systematicus, vol. 8, Leipzig, Germany. 

Derocles, S. A. P., A. Le Ralec, M. Plantegenest, B. Chaubet, C. Cruaud, A. Cruaud, 

and J. Y. Rasplus. 2012. Identification of molecular markers for DNA barcoding 

in the Aphidiinae (Hym. Braconidae). Mol. Ecol. Resour. 12: 197–208. 

Dombroskie, J. J., and F. A. H. Sperling. 2012. Phylogeny of Nearctic Pandemis 

(Lepidoptera: Tortricidae), with focus on species boundaries in the P-limitata 

group. Ann. Entomol. Soc. Am. 105: 768–780. 

Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, C. Duran, M. Field, 

J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. 

Thierer, and A. Wilson. 2011. Geneious v5.4. Available from 

http://www.geneious.com/. 

Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. DeWaard. 2003. Biological 

identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270: 313–321. 

Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs. 2004. 

Ten species in one: DNA barcoding reveals cryptic species in the neotropical 



	
   104 
skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U. S. A. 101: 14812–

14817. 

Hines, H. M., S. A. Cameron, and P. H. Williams. 2006. Molecular phylogeny of the 

bumble bee subgenus Pyrobombus (Hymenoptera : Apidae : Bombus) with insights 

into gene utility for lower-level analysis. Invertebr. Syst. 20: 289–303. 

Hou, Z. G., and S. Q. Li. 2010. Intraspecific or interspecific variation: delimitation of 

species boundaries within the genus Gammarus (Crustacea, Amphipoda, 

Gammaridae), with description of four new species. Zool. J. Linn. Soc. 160: 215–

253. 

Huber, J. T., and M. J. Sharkey. 1993. Structure, pp. 13-59. In H. Goulet and J. T. Huber 

(ed.), Hymenoptera of the World: An Identification Guide to Families. Ottawa. 

Kurina, O., E. Ounap, and G. Ramel. 2011. Baeopterogyna mihalyii Matile (Diptera, 

Mycetophilidae): association of sexes using morphological and molecular 

approaches with the first description of females. Zookeys: 15–27. 

Lanfear, R., B. Calcott, S. Y. W. Ho, and S. Guindon. 2012. PartitionFinder: combined 

selection of partitioning schemes and substitution models for phylogenetic analyses. 

Mol. Biol. Evol. 29: 1695–1701. 

Magnacca, K. N., and M. J. F. Brown. 2012. Mitochondrial heteroplasmy and DNA 

barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). 

BMC Evol. Biol. 10: 174. 

Magnacca, K. N., and B. N. Danforth. 2006. Evolution and biogeography of native 

Hawaiian Hylaeus bees (Hymenoptera : Colletidae). Cladistics 22: 393–411. 

Mardulyn, P., and S. A. Cameron. 1999. The major opsin in bees (Insecta: 



	
   105 
Hymenoptera): A promising nuclear gene for higher-level phylogenetics. Mol. 

Phylogenet. Evol. 12: 168–176. 

Masters, B. C., V. Fan, and H. A. Ross. 2011. Species delimitation - a Geneious plugin 

for the exploration of species boundaries. Mol. Ecol. Resour. 11: 154-157. 

Navia, D., R. S. Mendonca, F. Ferragut, L. C. Miranda, R. C. Trincado, J. Michaux, 

and M. Navajas. 2013. Cryptic diversity in Brevipalpus mites (Tenuipalpidae). 

Zool. Scr. 42: 406–426. 

Pilgrim, E. M., and J. P. Pitts. 2006. A molecular method for associating the dimorphic 

sexes of velvet ants (Hymenoptera : Mutillidae). J. Kans. Entomol. Soc. 79: 222–

230. 

Pilgrim, E. M., C. D. Von Dohlen, and J. P. Pitts. 2008. Molecular phylogenetics of 

Vespoidea indicate paraphyly of the superfamily and novel relationships of its 

component families and subfamilies. Zoologica Scripta 37: 539-560. 

Rightmyer, M. G., T. Griswold, and S. G. Brady. 2013. Phylogeny and systematics of 

the bee genus Osmia (Hymenoptera: Megachilidae) with emphasis on North 

American Melanosmia: subgenera, synonymies and nesting biology revisited. Syst. 

Entomol. 38: 561–576. 

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. 

Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: 

Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model 

Space. Systematic Biology 61: 539–542. 

Rosenberg, N. A. 2007. Statistical tests for taxonomic distinctiveness from observations of 

monophyly. Evolution 61: 317–323. 



	
   106 
Smith, F. 1873. Descriptions of new species of fossorial Hymenoptera in the collection of 

the British Museum. Annals and Magazine of Natural History 4: 1–30. 

Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other 

Methods). Version 4. Sinauer Associates, Sunderland, MA. 

Szafranski, P. 2009. The mitochondrial trn-cox1 locus: rapid evolution in Pompilidae and 

evidence of bias in cox1 initiation and termination codon usage. Mitochondrial 

DNA 20: 15–25. 

Waichert, C., J. Rodriguez, C. D. Von Dohlen, and J. P. Pitts. 2012. Spider wasps 

(Hymenoptera: Pompilidae) of the Dominican Republic. Zootaxa 3353: 1–47. 

Wasbauer, M. S., and L. S. Kimsey. 1985. California spider wasps of the subfamily 

Pompilinae (Hymenoptera: Pompilidae). Bull. of the California Insect Survey 26: 

1–130. 

Zhang, D., M. Zhang, T. Pape, C. W. Gu, and W. Wu. 2013. Sarcophaga (Hoa) 

flexuosa Ho (Diptera: Sarcophagidae): association of sexes using morphological 

and molecular approaches, and a redefinition of Hoa Rohdendorf. Zootaxa 3670: 

71–79. 



	
   107 
Table 4.1. Identity, voucher code, collection location and GenBank accession numbers 

for the specimens analyzed for molecular data. 

 

Species Sex Voucher ID Locality Collection 

COI 

Accession 

# 

LWRh  

Accession  

# 

Outgroup        

Euplaniceps quadrimaculata            PO832  MPEG KJ440514 KJ440504 

Ingroup taxa       

Drepanaporus bachata n. sp Male PO466 
DOMINICAN REPUBLIC: 

Pedernales, Sierra de Bahoruco 
CMNH–371,443 -------------- KJ440502 

Drepanaporus bachata n. sp Female PO711 
DOMINICAN REPUBLIC: La 

Altagracia, Parque del Este 
CMNH–370,259 KJ440511 KJ440503 

Drepanaporus antillarum  Female PO687 

DOMINICAN REPUBLIC: 

Independencia, Sierra de 

Bahoruco 

CMNH–370,587 ------------- KJ440493 

Drepanaporus antillarum Male PO722 
DOMINICAN REPUBLIC: Elias 

Pina, Sierra de Neiba 
CMNH–370,370 ------------- KJ440492 

Drepanaporus antillarum Male PO707 

DOMINICAN REPUBLIC: 

Independencia, Sierra de 

Bahoruco 

CMNH–370,280 KJ440509 KJ440491 

Drepanaporus antillarum Male PO723 
DOMINICAN REPUBLIC: 

Pedernales, Sierra de Bahoruco 
PMAE ------------- KJ440494 

Drepanaporus antillarum Male PO701 

DOMINICAN REPUBLIC: 

Independencia, Sierra de 

Bahoruco 

CMNH–369,468 KJ440508 KJ440490 

Drepanaporus antillarum Male PO706 

DOMINICAN REPUBLIC: 

Duarte, 20 km NE San Francisco 

de Macoris 

PMAE ------------- KJ463567 

Drepanaporus collaris Female PO686 

DOMINICAN REPUBLIC: Hato 

Mayor, Parque Los Haitises, 3 

km W Cueva de Arena 

CMNH–370,730 ------------- KJ440505 

Drepanaporus collaris Female PO688 

DOMINICAN REPUBLIC: La 

Vega, Cordillera Central, Loma 

Casabito 

CMNH ------------- KJ440506 

Drepanaporus collaris Female  PO471 BAHAMAS: Gorda Cay UCFC ------------- KJ463569 

Drepanaporus collaris Female PO439 BAHAMAS: San Salvador Island PMAE ------------- KJ463568 

Drepanaporus collaris Male PO468 

DOMINICAN REPUBLIC: 

Independencia, Sierra de 

Bahoruco 

CMNH–366,389 KJ440513 KJ440496 

Drepanaporus collaris Male PO705 
DOMINICAN REPUBLIC: 

Santiago, Cordillera 
CMNH–370,069 ------------- KJ440499 
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Septentrional 

Drepanaporus collaris Female PO715 

DOMINICAN REPUBLIC: 

Independencia, Sierra de 

Bahoruco 

CMNH–370,252 ------------- KJ440501 

Drepanaporus collaris Male PO467 
DOMINICAN REPUBLIC: 

Pedernales, Sierra de Bahoruco 
CMNH–369,827 KJ440512 KJ440495 

Drepanaporus collaris Male PO703 
DOMINICAN REPUBLIC: La 

Vega, Cordillera Central 
CMNH–370,639 KJ440507 KJ440497 

Drepanaporus collaris Male PO704 
DOMINICAN REPUBLIC: La 

Altagracia, Parque del Este 
CMNH–370,945 ------------- KJ440498 

Drepanaporus collaris Male PO709 
DOMINICAN REPUBLIC: La 

Vega, Cordillera Central 
CMNH–370,405 KJ440510 KJ440500 
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Table 4.2. Primers used for PCR amplification and sequencing 

Marker Primer name Primer sequence (5’–3’) Reference 

LWRh PompOps1F ATTCGACAGATACAACGTAATCG Pilgrim et al. (2008) 

 LwRhR ATATGGAGTCCANGCCATRAACCA Mardulyn and Cameron (1999) 

COI LEP-F1 ATTCAACCAATCATAAAGATAT Herbert et al. (2004) 

 LEP-R1 TAAACTTCTGGATGTCCAAAA Herbert et al. (2004) 

 HCO TTCAGGGTGACCAAAAAATCA Herbert et al. (2003) 

 LCO TCAACAAATCATAAAGATAT Herbert et al. (2003) 
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Fig. 4.1. Intraspecific and interspecific distance distribution among Drepanaporus 

species for (A) cytochrome c oxydase I (COI) and (B) long wavelength rhodopsin 

(LWRh). 
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Fig. 4.2. Consensus phylogenetic reconstruction for Drepanaporus resulting from 2 

Bayesian MCMC runs performed in MrBayes. Nodes with posterior probability of 1.0 are 

indicated with an asterisk. Left: LWRh reconstruction. Right: COI reconstruction. Blue 

lines connect identical samples whose positions were incongruent in the COI 

reconstruction. 
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Fig. 4.3. (A) Drepanaporus bachata sp. nov.: head, dorsal view, female. (B) 

Drepanaporus collaris: head, dorsal view, female. (C) Drepanaporus bachata sp. nov.: 

head, lateral view, female. (D) Drepanaporus collaris: head, lateral view, female. (E) 

Drepanaporus bachata sp. nov.: clypeus, dorsal view, female. (F) Drepanaporus 

collaris: clypeus, dorsal view, female. (G) Drepanaporus bachata sp. nov.: antenna, 

female. (H) Drepanaporus collaris: antenna, female. (I) Drepanaporus bachata sp. nov.: 

habitus, lateral view, female. (J) Drepanaporus collaris: mandible, female. 
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Fig. 4.4. (A–B) Drepanaporus bachata sp. nov.: genitalia, male: (A) ventral view; (B) 

dorsal view. (C–D) Drepanaporus antillarum: genitalia, male: (C) ventral view; (D) 

dorsal view. (E–F) Drepanaporus collaris: genitalia, male: (E) ventral view; (F) dorsal 

view. (G) Drepanaporus bachata sp. nov.: forewing, male. (H) Drepanaporus 

antillarum: forewing, male. (I) Drepanaporus collaris: forewing, male. (J) Drepanaporus 

bachata sp. nov.: habitus, lateral view, male. (K) Drepanaporus antillarum: habitus, 

lateral view, male. (L) Drepanaporus collaris: habitus, lateral view, male. 
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CHAPTER 5 

HISTORICAL BIOGEOGRAPHY OF THE WIDESPREAD SPIDER WASP TRIBE 

APORINI (HYMENOPTERA: POMPILIDAE)4 

 
ABSTRACT 

Aim We studied the historical biogeography of Aporini spider wasps. Our aim was to 

determine the age and area of origin of Aporini and of all its genera. We also aimed to 

test the fit of several hypotheses concerning the putative processes underlying the 

widespread distribution of this group.  

Location The Holarctic and Neotropical areas. 

Methods A phylogeny of 44 Aporini specimens was produced through Bayesian 

inference using four nuclear molecular markers (elongation factor–1 α F2 copy, long–

wavelength rhodopsin, wingless and the D2–D3 regions of the 28S ribosomal RNA). A 

lognormal relaxed molecular clock, calibrated with ages from three fossils, was used to 

estimate lineage divergence times. Biogeographic processes were studied using three 

methods: i) Statistical–Dispersal–Vicariance Analysis (S–DIVA), ii) Dispersal Extinction 

Cladogenesis (DEC) Analysis, and iii) Bayesian Binary MCMC (BBM) Analysis. 

Results Our data suggest an origin of the most recent common ancestor of extant Aporini 

in the Nearctic region in the Early Miocene, 22.6 Ma (CI= 17.40,28.83). All genera 

originated in the Miocene, four in the Nearctic region. A constrained DEC analysis, 

where only dispersal to adjacent regions was allowed, produced the highest likelihood 

and was mostly congruent with the results from the BBM method. 

                                                
4 This manuscript is formatted for submission to Journal of Biogeography. The authors of 
the journal article are: Juanita Rodriguez, James P. Pitts, and Carol D. von Dohlen. 
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Main Conclusions Dispersal from the Nearctic region to the Palaearctic region occurred 

through the Bering Land Bridge in the early Miocene, 15–18 Ma (CI = 11.14,23.52), and 

three dispersal events to South America from Mesoamerica took place independently. All 

of these occurred after 18 Ma through the Isthmus of Panama. Three independent over–

water dispersal events to the Antilles occurred from Mesoamerica, and probably the 

Nearctic, for two genera of the tribe. The dispersal patterns inferred within the 

biogeographic history of Aporini agree with several scenarios proposed for other, 

unrelated taxa. 

 
INTRODUCTION 

Widely separated, disjunct distributions of related taxa often have been attributed 

to vicariance models, which interpret modern distribution patterns as subdivisions of 

ancestral areas resulting from climatic, physiographic, physical, or tectonic processes 

(Rosen, 1975; Nelson & Platnick, 1981; Cooper et al., 2001). The importance of 

vicariance as the cause of disjunctions, however, has been reconsidered with the 

increasing use of dating methods in biogeography. Widely separated distributions of 

recently diverged taxa cannot be attributed to continental drift; thus, models that give a 

higher weight to these older tectonic events might not be suitable to analyze such cases. 

Several recent studies of diverse taxa find that vicariance might not be the dominant 

process behind current distributions; rather, they conclude that dispersal events might 

explain better the patterns of distribution between closely related organisms (Ree & 

Smith, 2008; Lomolino et al., 2009). 

Spider wasps (Hymenoptera: Pompilidae), are a widespread group with a 

common ancestor in the Eocene (Wilson et al., 2012). The pompilid tribe Aporini is 



	
   116 
widespread, and includes endemic species from the Nearctic, Mesoamerica, South 

America, the Antilles, and the Palaearctic (Fig. 5.1). Its current distribution allows study 

of the history of disjunctions between the Old and New World, and between North and 

South America. Because some taxa are endemic to the Antilles, Aporini is also a good 

group to study the biogeographic processes accounting for the origins of fauna on this 

archipelago. Based on the age of Pompilidae, we assume that Aporini could not have 

originated earlier than approximately 50 Ma and, therefore, major continental drift events 

are unlikely to have driven the diversification of the group. However, formation and 

disruption of land bridges in the Tertiary could have been important influences on 

Aporini biogeography.  

 
The origin of Old World–New World disjunct distributions 

The events underlying Old World–New World disjunct distributions of recently 

diverged taxa —i.e., those too young to fit the continental drift vicariance model— have 

been recently studied (Sanmartín et al., 2001). Two probable Nearctic-Palaearctic 

dispersal routes for groups that radiated in the Cenozoic have been hypothesised: the 

Bering Land Bridge (BLB) and the North Atlantic Land Bridge (NALB) (Sanmartín et 

al., 2001). These corridors have been available for dispersal at different and sometimes 

overlapping times (Tiffney, 1985; Condamine et al., 2013). 

The BLB fluctuated with climate changes that occurred over the last 40 Myr. This 

corridor allowed dispersal in the Early Tertiary (Tiffney, 1985), and was interrupted in 

the Eocene–Oligocene, causing vicariance of widespread taxa (Sanmartín et al., 2001). 

Some interchange of cold–adapted taxa, however, was likely until the terminal Eocene 

event (Tiffney, 1985). Between 14–3.5 Ma only the dispersal of boreal elements was 
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likely. More recently, glacial cycles in the Pleistocene allowed the dispersal of tundra–

adapted groups (Sanmartín et al., 2001).  

Although Nearctic–Palaearctic disjunctions have usually been explained as the 

result of vicariance events splitting ancestral distributions extending across the BLB 

(Darlington, 1957), trans-Atlantic dispersal-vicariance may have played a more important 

role in this type of disjunctions (Tiffney, 1985). Palaeozoologic evidence for this 

connection has been known for some time for mammals (McKenna, 1975) and plants 

(Tiffney, 1985). The NALB route opened in the Late Cretaceous, but connections existed 

between the Holarctic areas until the Early Eocene (50 Ma) (Sanmartín et al., 2001). 

Three North Atlantic land connections have been proposed to exist at different times: the 

Thulean bridge (55–50 Ma) (McKenna, 1983), the DeGeer Bridge (39 Ma), and the 

Greenland–Faroes Bridge. This last one was probably present in the Miocene, but has 

never been considered to be an important dispersal route (Sanmartín et al., 2001) because 

it probably only allowed the dispersal of tropical elements between 26–23 Ma (Zachos et 

al., 2001). 

 
The origin of Nearctic–South America disjunct distributions 

The geological history of Central America is very complex. Earlier studies 

proposed that the connection between North and South America through the Isthmus of 

Panama was established ca. 3–7 Ma (e.g. Keigwin, 1978, 1982; Bacon et al., 2013). 

However, more recent research shows that this connection formed earlier, through a 

narrowing of the Panama seaway ca. 23–25 Ma (Early Miocene) (Farris et al., 2011; 

Montes et al., 2012a,b), and a complete closure as early as ca. 15 Ma (Montes et al., 

2012a,b).  
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The Antilles has been proposed as a probable pathway for dispersal between 

North and South America (Rosen, 1975; Ramirez et al., 2010; Condamine et al., 2013). 

Rosen (1975) proposed the South American–Caribbean track as a pattern observed in 

groups that diversified in South America, dispersed to the Antilles through the Aves 

Ridge, and then dispersed to Central America with the closure of the Isthmus of Panama. 

 
The origin of Antillean taxa 

The origins and patterns of diversification are unclear for most Caribbean groups 

(Dávalos, 2004). However, hypotheses have been formulated to explain the origin of 

Antillean endemic taxa. The three main processes suggested are: vicariance of the 

Protoantilles (Rosen, 1975, 1985), land bridges (land dispersal) (Iturralde-Vinent & 

MacPhee, 1999), and over-water dispersal (Iturralde-Vinent & MacPhee, 1999). The 

vicariance model proposes that the Antillean fauna arose in the Late Cretaceous (80–70 

Ma) by the fragmentation of the protoantilles, a continuous landmass located between 

North and South America ca. 65 Ma (Rosen, 1975, 1985). Some ancient and relictual 

groups are hypothesised to fit this hypothesis, but most Antillean taxa prove too young to 

fit (Hedges, 2006). Several pieces of evidence reject the Protoantilles hypothesis. The 

most remarkable are the substantial emergence of the Antillean landmass that occurred 

after the mid–Eocene (37–49 Ma) (Iturralde-Vinent & MacPhee, 1999), and the asteroid 

impact in the Yucatan peninsula ca. 65 Ma, that could have removed all the Caribbean 

fauna (Hedges et al., 1992).  

Recently, another vicariance model was proposed for younger Antillean groups, 

for which taxa from Northern South America are sister to taxa from the Lesser Antilles. 

This vicariance model asserts a land connection between the Greater Antilles and 
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northern South America around the Early Oligocene (Iturralde-Vinent & MacPhee, 

1999), which allowed continental South American fauna to reach the islands (Dávalos, 

2004). This land bridge has been called the Gaarlandia (Greater Antilles and Aves Ridge) 

land span. Gaarlandia created a 1–2 Myr passage ca. 32 Ma that later fragmented and 

separated the Antillean and South American fauna once again (Iturralde-Vinent & 

MacPhee, 1999). 

Vicariance models for Antillean biogeography have been challenged mainly by 

Hedges’s (1996) model of dispersal. Many studies —mainly for mammals— have 

supported the hypothesis of dispersal from South America throughout the Cenozoic (e.g. 

Hedges et al., 1992). Moreover, over–water dispersal has been proposed to apply to taxa 

whose divergence dates tend to be younger, spread out, and fit no particular pattern 

(Hedges, 2006). Another dispersal route suggested for Antillean biota is from 

Mesoamerica in the middle Eocene (49 Ma), when the Yucatan peninsula and the Antilles 

coalesced (Pindell, 1994). This hypothesis has been refuted by recent studies (Iturralde-

Vinent & MacPhee, 1999). 

The analysis of morphological data has yielded various possible models of 

diversification. The Late Cretaceous vicariance event was supported for leafhoppers 

(Felix & Mejdalani, 2011), but a post-Gaarlandia vicariance model fit best for weevils 

and Carabidae (Ball and Shpeley, 2009; Girón & Franz, 2010). Molecular studies also 

yield different results for different insect groups (Seal et al., 2011; Condamine et al., 

2013). Swallowtail butterfly data, for example, suggested over–water dispersal from the 

Nearctic to the Antilles approximately 20–23 Ma (Condamine et al., 2013). 
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Many hypotheses used to explain diversification were proposed before the 

development of divergence–time–estimation methods. To understand the processes 

producing widespread taxon distributions, a well–resolved, robust phylogeny of the group 

under study is needed (Ree & Smith, 2008). The phylogeny should also be calibrated in 

real time to allow comparison of lineage divergence with geological and climatic data 

(Lomolino et al., 2009). In addition, the data should be analyzed under an event–based 

method that not only specifies the events, but also their relative or absolute timing to 

evaluate the histories of ancestral areas (Sanmartin, 2012). 

Here, we undertake a study of the historical biogeography of the widespread 

spider wasp tribe Aporini. We reconstruct a time-calibrated phylogeny using four 

molecular markers and three fossil calibrations. We further analyze this phylogeny under 

an event–based method in order to test the hypotheses concerning the processes 

underlying the widespread distribution of this lineage. 

 
MATERIALS AND METHODS 

Taxon sampling 

We sampled 44 specimens from six out of nine Aporini genera from all possible 

geographic distributions. We followed the classification of Bradley (1944) and Evans 

(1966, 1973) (Table 5.1). Five species from other tribes and subfamilies were used for 

outgroups. These included taxa from clades that could be calibrated to geological age 

using the fossil record. Outgroup taxa were: Anoplius (Lophopompilus) aethiops, 

Allochares azureus, Cryptocheillus idoneum birkmanni, Dipogon sp. and Agenioideus sp. 

Dates for calibrations were based on the revision of Pompilidae fossils by Rodriguez 
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(unpublished data). Vouchers were deposited at the Department of Biology Insect 

Collection, Utah State University, Logan, Utah (EMUS).  

 
Molecular methods 

DNA extraction, amplification and sequencing of elongation factor–1 α F2 copy 

(EF1), long–wavelength rhodopsin (LWRh), wingless (Wg) and the D2–D3 regions of 

the 28S ribosomal RNA (28S) followed methods in Pilgrim & Pitts (2006). Primers from 

previous studies were used, and a reverse primer for a more accurate sequencing of 

Aporini LWRh was developed (Table 5.2). All PCR products were sequenced with 

forward and reverse primers and were assembled into complete contigs using Sequencher 

4.1 (Gene Codes Corp., Ann Arbor, MI). 

 
Phylogenetic and dating analyses 

Sequences were aligned using Geneious Alignment (Geneious 6.1) and 

subsequently refined manually. Intron data was eliminated from the alignment for LWRh. 

The model of molecular evolution was determined for each gene and by codon position 

using Partitionfinder 1.01 (Lanfear et al., 2012). Intron data was analyzed as a separate 

partition for EF1. Single-gene phylogenies were produced through a Bayesian framework 

implemented in MrBayes 3.2 (Huelsenbeck & Ronquist, 2001) to check for topological 

incongruence. Single-gene matrices were then concatenated using Geneious 6.1 to 

produce a combined matrix. Single-gene and combined matrices were run for 10,000,000 

generations, with sampling every 1,000 generations. Effective sample size (ESS), trees to 

remove as burn-in, and graphical examination of chain convergence were examined in 

Tracer 1.5. 
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A chronogram was inferred in a Bayesian framework using Beast 1.7.5 

(Drummond et al., 2012) under an uncorrelated lognormal relaxed molecular clock model 

(Drummond et al., 2006; Drummond & Rambaut, 2007). Substitution models were 

unlinked among partitions with the underlying clock and trees linked. Four calibration 

points were used for the analysis. Three were obtained from fossil data of Pompilidae 

species (see Chapter 3), and one from the age of the crown group of Pompilidae inferred 

by a divergence dating analysis of all stinging wasps (Wilson et al., 2012). The common 

ancestor of Anoplius and Allochares was given a normal prior of (mean) 25 Ma (SD=10), 

based on the fossil of Anoplius sp. from Dominican amber, which belongs to the stem 

group of Anoplius. The common ancestor of Cryptocheilus and Dipogon, as well as the 

common ancestor of Agenioideus and Allochares + Anoplius, were given a lognormal 

prior with a mean (in real space) of 33 Ma (LogSD=0.5), based on the fossils of 

Cryptocheilus hypogaeus and Agenioideus saxigena found in the Colorado Florissant 

beds (see Chapter 3). The crown group node of all taxa included in the analysis (family 

Pompilidae) was assigned a normal prior of (mean) 43 Ma (SD=10), based on Wilson et 

al. (2012). Two separate Markov Chain Monte Carlo (MCMC) searches were performed 

for 10,000,000 generations. Effective sample size (ESS) and graphical examination of 

chain convergence were examined in Tracer 1.5. Independent runs were assembled with 

LogCombiner 1.7.5. Ten percent of generations were discarded as burn–in. 

 
Ancestral area reconstruction 

Distribution areas for Aporini were modified from Olson’s (2001) areas of 

endemism. The Neotropical Area was split according to Morrone (2006) into 

Mesoamerica and South America. The Antilles was considered a separate area given the 
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high endemicity of the Aporini species present there. The areas established were: 

Nearctic, South America, Mesoamerica, Palaearctic and Antilles (Fig. 5.2). This area 

delimitation scheme conforms to the distribution of extant Aporini. Each of the taxa 

studied is distributed in only one of the areas established for this study. 

Three event–based methods were implemented to estimate ancestral areas: 

Statistical–Dispersal–Vicariance Analysis (S–DIVA), Bayesian Binary MCMC (BBM), 

and Dispersal Extinction Cladogenesis (DEC). S–DIVA (Nylander et al., 2008; Yu et al., 

2010), and the BBM algorithm (Yu et al., submitted) were implemented using the 

program RASP (Yu et al., 2013). These two methods use the DIVA —dispersal–

vicariance method that estimates ancestral areas in a parsimony context using a three–

dimensional cost matrix (Ronquist, 1996) — method in a statistical context, calculating 

the probability of ancestral areas over a Bayesian posterior distribution of tree topologies. 

This method minimises the cost of vicariance events compared to dispersal–extinction 

events. The estimation of ancestral area marginal probabilities, taking into account 

phylogenetic uncertainty, has been suggested to reduce uncertainty in the biogeographic 

reconstruction (Nylander et al., 2008). The DEC method was implemented in the 

program Lagrange (Ree et al., 2005; Ree & Smith, 2008). This method estimates the 

maximum likelihood parameters for the rates of dispersal and local extinction, and 

determines the ancestral areas with a highest-likelihood score in the context of bifurcating 

range inheritance scenarios, and dispersal constraints set by the researcher. Because 

Lagrange allows the specification of an instantaneous transition-rate matrix between 

geographical ranges (Ree et al., 2005; Ree & Smith, 2008; Ree & Sanmartín, 2009), two 

types of analyses were performed under the DEC method. First, a general analysis (L1) 
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allowed all dispersal routes with equal probability. Second, a constrained analysis (L2) 

allowed dispersal from any area other than the Nearctic to the Palaearctic, and vice versa, 

with probability set to 0.1; the direct dispersal from Nearctic to South America was set to 

0.1; ancestral areas that included the Old World must also include the Nearctic, in case a 

two–area combination was optimised at a node; the area formed by the Nearctic and 

South America was not allowed. For all analyses, ancestral ranges were assumed to 

include no more than three areas. 

The justification for these settings in the constrained analysis is as follows. 

Because of the age of crown-group Pompilidae (Wilson et al., 2012), we assumed 

dispersal between the Palaearctic and any other area to be improbable given the 

configuration of the continents, which at 43 Ma was similar to the present. Recent 

dispersals from or to the Palaearctic have been suggested to be through a Northern route, 

either through the NALB or through the BLB (Sanmartín et al., 2001). The reason for not 

allowing some ancestral area combinations is that areas younger than 43 Ma cannot 

include disjunct distributions, because the areas in question have been isolated from each 

other since the origin of the group. 

 
RESULTS 

Phylogenetic and dating analyses 

The best partitioning strategy for our dataset included five partitions. Overall, we 

recovered high posterior probabilities (PP) for all nodes (PP>0.95). Our analyses 

recovered the monophyly of all genera. The genus Chelaporus is sister to the rest of 

Aporini. Allaporus and Psorthaspis are sister genera, and Drepanaporus + Euplaniceps 

is sister to Aporus (Fig. 5.1).  



	
   125 
Divergence-time estimation 

Our results suggest that Aporini had an origin in the Aquitanian, 22.66 Ma (CI= 

17.40,28.83). All the genera had origins in the Miocene (Fig. 5.2). Mean ages of nodes 

and their 95% confidence intervals are shown in Table 5.3. 

 
Historical biogeography 

The constrained DEC analysis (L2) produced higher likelihood scores than the 

unconstrained analysis (L1); its results are summarised in Fig. 5.2, along with the BBM 

results. The S–DIVA and BBM results did not recover the same areas as the DEC for all 

nodes. All analyses recovered an origin for Aporini in the Nearctic. The Nearctic was 

recovered as the ancestral area for Allaporus in all analyses. Psorthaspis probably 

originated in the Nearctic as well, as supported by DEC and BBM analyses. S–DIVA 

recovered a widespread ancestor for Psorthaspis, which lived in the Nearctic and Central 

America. The remaining genera have a more ambiguous ancestral area reconstruction 

because they are present in more areas, and form sister relationships with lineages 

comprising multiple areas. The ancestor of Aporus + (Euplaniceps + Drepanaporus) 

probably lived in the Nearctic, as recovered by DEC and BBM methods. Results for S-

DIVA are equivocal for this node. Aporus probably had an origin in the Old World, as 

supported by DEC and BBM. S-DIVA suggests an ancestral area composed of the 

Nearctic and Palaearctic regions. The ancestor of Euplaniceps + Drepanaporus was 

probably in a widespread area comprising Central America and the Antilles, as recovered 

by DEC. The BBM method suggests an ancestor in the Antilles. Aporus ancestors were 

widespread in the Nearctic and Central America, according to DEC; other methods 
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recovered Central America, but not necessarily the Nearctic. Euplaniceps probably had 

an origin in a widespread Central–South America area (Fig. 5.2). 

 
DISCUSSION 

The origin of New World–Old World disjunct distributions 

Both the BLB and NALB have been concordant with results from recent 

divergence time estimation studies, but a comprehensive study of global patterns in 

diversification in the Holarctic shows a greater frequency of dispersal events between 

Western Nearctic and Eastern Palaearctic through the BLB (Sanmartín et al., 2001). 

According to our analyses, the New World–Old World disjunct distributions in 

Aporini are the product of a single dispersal event through the BLB. The only aporine 

genus present in the Palaearctic region is Aporus (Fig. 5.2). Because our results suggest a 

Nearctic origin for Aporini, a dispersal event to the Palaearctic is suggested as the 

process underlying Old World–New World Aporus distribution. The results from the 

BBM method propose that this event took place 18–15 Ma (CI= 23.52,11.14). Results 

from the DEC method suggest a more recent dispersal event that occurred 15–12 Ma 

(CI=20.64,7.83). Taking both results into account, our analyses provide a window of 18–

12 Ma (23.52,7.83) for colonization of the Palaearctic, which suggests a dispersal event 

through the BLB land connection, before it was interrupted in the Late Miocene. Recent 

studies have proposed the BLB as a dispersal route for plants (e.g. Zhu et al., 2013), 

fungi (Jeandroz et al., 2008), birds (e.g. Moore et al., 2011; Xu et al., 2010), reptiles (Le 

& McCord, 2008), amphibians (Carranza et al., 2008), and mammals (Hope et al., 2013). 

Old World–New World disjunct distributions have been studied for some insect taxa. 

Various earlier studies that did not include the use of molecular data suggested BLB as a 
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dispersal route, and subsequent isolating factor, for some Plecoptera (Hynes, 1988), 

Coleoptera (Liebherr & Schmidt, 2004), and Hymenoptera (Liu et al., 2007). Insect 

molecular data have also revealed this pattern (Hundsdoerfer et al., 2005; Ohshima et al., 

2010; Ren et al., 2013; von Dohlen et al., 2002). To our knowledge, our study is the first 

to provide evidence for use of this route by stinging wasps (Hymenoptera: Aculeata).  

 
Dispersal routes between the Nearctic and South America 

Our analyses suggest two independent dispersal events to South America at 

similar times, involving Euplaniceps and Aporus (Fig. 5.2). Combined results from the 

BBM and DEC analyses show that Aporus dispersed to South America between 11 and 5 

Ma (CI=2.85,13.65). This date is consistent with recent data suggesting the Isthmus of 

Panama formed earlier than 7 Ma (Montes et al., 2012a,b). The dispersal of Euplaniceps 

to South America could have occurred through two different routes, according to our 

results. The BBM analysis suggests dispersal from the Nearctic to the Antilles. The fauna 

from the Antilles then dispersed back to Central America and then to South America 11 

to 9 Ma (CI=15.61,6.60). The DEC method suggests dispersal to South America from 

Mesoamerica between 18–15 (CI=23.52,11.79) Ma. Because there are no extant relatives 

of Euplaniceps present in the Antillean area, and the BBM results include a lower 

probability that the ancestral node of Euplaniceps + Drepanaporus was Mesoamerican 

rather than Antillean, we propose that the DEC results better explain the distribution of 

this group. If we take into account both analyses, the time frame of the dispersal event 

from Mesoamerica to South America would be 18–11 Ma (23.52,6.60). These results are 

consistent with new data indicating the complete formation of the Isthmus of Panama at 

15 Ma (Montes et al., 2012a,b).  
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Even though recently published molecular phylogenetic studies in insects suggest 

dispersals at the time of the great biotic interchange (ca. 3 Ma) (Ramirez et al., 2010; 

Husemann et al., 2013), our data are consistent with accumulating studies suggesting that 

a number of biotic groups, including plants (Carvalho & Renner, 2012), mammals (Perini 

et al., 2010), reptiles (Colston et al., 2012), and amphibians (Pinto-Sanchez et al., 2011) 

dispersed through this area before 7 Ma.  

 
The origin of Antillean taxa 

Aporini includes four separate Antillean lineages. Two of these lineages are 

Psorthaspis clades, and all Drepanaporus constitutes the third. An additional a group of 

Antillean taxa for which we were unable to obtain molecular data, might be included in 

Aporus; however, their taxonomic placement is ambiguous, and needs to be studied 

further in order to be able to make biogeographic conclusions. According to the BBM 

results, Drepanaporus dispersed from the Nearctic region. As discussed earlier, we do 

not think these results are consistent with the current evidence, because Euplaniceps, 

which is sister to Drepanaporus, does not have Antillean relatives, and so we embrace 

the second-highest probable result for this discussion. The BBM and DEC results 

combined suggest a dispersal of Drepanaporus from Mesoamerica to the Antilles 18–7 

Ma (CI=23.52,4.43). This dispersal event is too young to be a result of vicariance via the 

Protoantilles, which is proposed to have occurred in the Late Cretaceous (Rosen, 1975, 

1985). Moreover, the dispersal through Gaarlandia is not supported by our divergence 

time estimation or ancestral area reconstruction. This land connection existed between 

South America and the Antilles in the Early Oligocene, approximately 20 Ma earlier than 

the dispersal event proposed for Drepanaporus, which in addition dispersed from 
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Mesoamerica. The dispersal events that produced the distribution of Drepanaporus were 

probably over–water, from a Mesoamerican ancestor. Recent molecular divergence 

dating analyses support the over–water dispersal hypothesis for amphibians (e.g. Hedges 

et al., 1992), reptiles (e.g. Hedges et al., 1992; Colston et al., 2012), bats (Dávalos, 

2007), plants (e.g. Lavin et al., 2003; McDowell et al., 2003), and insects (Oneal et al., 

2009). 

The dispersal of Antillean Psorthaspis was probably later, and occurred twice 

independently. Psorthaspis elegans could have dispersed from the Nearctic (BBM 

method) or Mesoamerica (BBM and DEC methods). Because of its sister relationship to 

the Mesoamerican P. variegata, we conclude that the dispersal was probably from 

Mesoamerica. The dispersal date obtained for this event is 5–2 Ma (CI=6.63,0.44). The 

DEC and BBM methods suggest that the same route was taken by P. hispaniolae. This 

dispersal event probably occurred between 7 and 1 Ma (CI=11.02,0.22). Similar to the 

situation with P. elegans, the sister relationship of P. hispaniolae to Mesoamerican P. 

laevifrons supports the idea of a dispersal from Mesoamerica. This dispersal pattern had 

been suggested by earlier studies that proposed a land bridge between Yucatan and 

western Cuba ca. 49 Ma (Pindell, 1994). This connection, however, is too old to explain 

the dispersal of Antillean Psorthaspis spp. The dispersal of these species occurred mostly 

in the Pliocene, but could have occurred in the Pleistocene. There is evidence for 

Pleistocene dispersal for plants from the Nearctic or Mesoamerican region when water 

levels were low (Gugger & Cavender-Bares, 2011). Ants might have also dispersed via 

this route in the Pleistocene (Seal et al., 2011). Because there were no land connections to 

the Antilles from the Nearctic and Mesoamerican regions, Psorthaspis dispersal probably 
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occurred over–water. To our knowledge, there are no other published accounts 

suggesting biotic dispersal to the Antilles from Mesoamerica in the Pliocene. 

 
CONCLUSIONS 

This is the first study to address biogeographical processes that produced the 

current distributions of Pompilidae lineages encompassing Old World–New World and 

Nearctic–South American-Antillean disjunct distributions. In general, our results fit 

previously suggested hypotheses for the processes underlying these distributions. 

Dispersal, and subsequent vicariance, over a BLB land bridge in the early Miocene best 

fits our results for the Old World–New World distribution. The Nearctic–South America 

distribution is best explained by dispersal through the Isthmus of Panama, and supports 

recent data that suggest an older age for the formation of this land bridge than the 

previously accepted late-Miocene-Pliocene age. Over–water dispersal from Mesoamerica 

appears to explain the diversification of Antillean Aporini. This last route has not been 

widely reported in the literature. 
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Table 5.1. Species studied, distribution, molecular markers amplified, and GenBank 

accession numbers. 

 

Species 
Voucher 

ID Locality 

28S 
Accession 

# 

EF1 
Accession 

# 

LWRh 
Accession 

# 

Wg 
Accession 

# 
Outgroup Taxa    

  
 

Anoplius 
(Lophopompilus) 
aethiops 

PO8 USA: AR, Little 
Rock  

  
 

Allochares azureus PO387 USA: AZ 14     

Dipogon 
(Deuteragenia) sp. PO348 

HUNGARY: 
Borzony Mts, 70 
km N Budapest 

 
  

 

Cryptocheillus 
idoneum 
birkmanni 

PO62 
USA: AZ, 
Coconino co., N 
side Mormon Lake 

 
  

 

Agenioideus sp. PO356 Madagascar 19  
  

 

Ingroup Taxa    
  

 

Aporus (Aporus) 
idris PO192 MEXICO: Jalisco, 

Careyes  
  

 

Aporus (Aporus) 
idris PO449 MEXICO: Sonora, 

30 km NE Alamos  
  

 

Aporus (Aporus) 
concolor PO435 

USA: CA, Luyo 
Co, White Mts., 
Wyman Canyon 

 
  

 

Aporus (Aporus) 
luxus PO6 

USA: UT, Cache 
Co., Blacksmith 
Fork Canyon 

 
  

 

Aporus 
(Neoplaniceps) 
umbratilis 

PO459 PERU: Cajamarca  
  

 

Aporus 
(Neoplaniceps) 
umbratilis 

PO480 PERU: Cajamarca  
  

 

Aporus (Aporus) 
planiceps PO473 ITALY: Liguria, 

Ortovero  
  

 

Aporus (Aporus) 
unicolor PO434 ITALY: Fauglia, 

Pisa  
  

 

Aporus (Aporus) 
bicolor PO311 SPAIN: Taradell  

  
 

Aporus (Aporus) 
sp. PO310 SPAIN: 

Barcelona, Vidra  
  

 

Aporus (Aporus) 
sp. PO333 ISRAEL: Negev  

  
 

Drepanaporus 
collaris PO467 

DOMINICAN 
REPUBLIC: 
Pedernales, Sierra 
de Bahoruco 

    

Drepanaporus 
collaris PO688 

DOMINICAN 
REPUBLIC: La 
Vega, Cordillera 
Central 

    

Drepanaporus 
collaris PO468 

DOMINICAN 
REPUBLIC: 
Independencia, 
Sierra de 
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Bahoruco 

Drepanaporus 
antillarum PO687 

DOMINICAN 
REPUBLIC: 
Independencia, 
Sierra de 
Bahoruco 

    

Drepanaporus 
bachata PO466 

DOMINICAN 
REPUBLIC: 
Pedernales, Sierra 
de Bahoruco 

    

Euplaniceps 
saussurei PO162 CHILE:13 

F.PARKER  
  

 

Euplaniceps 
saussurei PO145 CHILE: 15 F. 

PARKER  
  

 

Euplaniceps  sp. PO477 BOLIVIA: Santa 
Cruz  

  
 

Euplaniceps 
evansi PO290 ARGENTINA: 

Catamarca  
  

 

Euplaniceps 
ornatula PO460 BRAZIL: Minas 

Gerais  
  

 

Euplaniceps sp. PO261 

PERU: Rio 
Tambopata, 
Explorer’s Inn, 
Rio Tower 

 

  

 

Euplaniceps sp. PO484 NICARAGUA: 
Refugia, San Juan  

  
 

Psorthaspis 
connexa PO64 

COSTA RICA: 
San Juan, San 
Isidro General 

 
  

 

Psorthaspis legata PO33 USA: AL, 
Escambia Co.  

  
 

Psorthaspis 
sanguinea PO455 

USA: AZ, North 
Little Rock Camp 
Robinson 

 
  

 

Psorthaspis 
mariae PO197 USA: FL, Alachua 

Co., Gainesville  
  

 

Psorthaspis 
variegata PO72 

COSTA RICA: 
Guanacaste, Finca 
Montezuma, 3 km 
SE Rio Naranjo 

 

  

 

Psorthaspis 
elegans PO830 CUBA: 

Guantanamo Bay  
  

 

Psorthaspis 
elegans PO823 CUBA: 

Guantanamo Bay  
  

 

Psorthaspis 
planata PO366 

USA: CA, San 
Bernardino Co., 5 
mi S Barstow 

 
  

 

Psorthaspis 
portiae PO456 USA: AZ, Cochise 

Co.  
  

 

Psorthaspis 
formosa PO457 MEXICO: Sonora  

  
 

Psorthaspis 
formosa PO60 

COSTA RICA: 
Guanacaste, Finca 
Montezuma 

 
  

 

Psorthaspis 
hispaniolae PO474 

DOMINICAN 
REPUBLIC: 
Barahona, Eastern 
Sierra Bahoruco 

 

  

 

Psorthaspis 
hispaniolae PO465 

DOMINICAN 
REPUBLIC: 
Independencia, 
Sierra de 
Bahoruco 
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Psorthaspis 
laevifrons PO56 

COSTA RICA: 
Alajuela, Bijagua, 
20 km S Upala 

 
  

 

Psorthaspis magna PO9 USA: AR, Little 
Rock  

  
 

Psorthaspis 
brimleyi PO195 USA: AR, Little 

Rock  
  

 

Allaporus 
pulchellus PO432 

MEXICO: Sonora, 
Rancho San 
Bernardino 

 
  

 

Allaporus 
aurulentus PO433 

MEXICO: Sonora, 
Rancho San 
Bernardino 

 
  

 

Allaporus 
rufiventris PO464 MEXICO: Sonora  

  
 

Chelaporus 
anomalus PO931 USA: TX, Val 

Verde Co.  
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Table 5.2. Primers used for PCR amplification and sequencing 

Marker Primer name Primer sequence (5’–3’) Reference 

EF1 F2for1 GGT TCC TTC AAA TAT GCT 

TGG G 

Pilgrim et al., 2008 

 F2rev1 A ATC AGC AGC ACC TTT 

AGG TGG 

Danforth & Ji, 1998 

LWRh PompOps1F ATT CGA CAG ATA CAA CGT 

AAT CG 

Pilgrim et al., 2008 

 LwRhR ATA TGG AGT CCA NGC CAT 

RAA CCA 

Mardulyn & Cameron, 

1999 

 LwRhRApor GAG RGA GAT CGT CAT CAA 

GGC GAC C 

This study 

Wg LepWg1for GAR TGY AAR TGY CAY GGY 

ATG TCT GG 

Brower & DeSalle, 1998 

 modLepWg2rev ACT ICG CRC ACC ART GGA 

ATG TRC A  

Brower & DeSalle, 1998 

28S CF2 TGG TAA CTC CAT CTA AGG 

CTA AAT A 

Pilgrim et al., 2008 

 D5–4625 R 

(D5R) 

CCC ACA GCG CCA GTT CTG 

CTT ACC  

Schulmeister, 2003 

 

 



	
   145 
Table 5.3. Nodes recovered by BEAST analysis, their posterior probabilities, their ages, 

and 95% confidence intervals (highest posterior density (HPD)). 

 

Node PP Age Height 95 HPD range Taxonomic group 

A 1.00 22.66 17.40,28.83 Aporini 

B 0.95 20.91 15.89,26.58  

C 1.00 18.22 13.81,23.52  

D 0.99 15.57 11.14,20.64 Aporus 

E 1.00 11.19 7.11,15.47  

F 1.00 0.66 0.075,1.80  

G 0.95 9.64 5.82,13.65  

H 1.00 1.30 0.29,3.04  

I 1.00 5.35 2.85,8.58  

J 1.00 0.31 0.010,1.01  

K 0.99 12.31 7.83,17.57  

L 1.00 7.21 4.43,10.85  

M 1.00 2.53 0.75,5.29  

N 0.99 4.66 2.14,8.02  

O 1.00 15.81 11.79,20.74  

P 1.00 7.61 4.43,11.34 Drepanaporus 

Q 1.00 2.601 1.03,4.85  

R 1.00 1.72 0.59,3.36  

S 1.00 4.86 2.43,8.00  

T 1.00 11.49 8.17,15.61 Euplaniceps 

U 0.99 9.55 6.60,13.06  

V 1.00 6.13 3.12,9.35  

W 1.00 0.43 0.053,1.15  
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X 0.67 8.75 5.92,12.12  

Y 1.00 2.89 1.37,4.92  

Z 0.98 18.14 13.28,23.71  

AA 1.00 12.97 8.76,18.02 Psorthaspis 

BB 1.00 6.36 4.17,9.18  

CC 0.97 4.68 2.34,7.43  

DD 1.00 0.82 0.065,2.29  

EE 0.97 5.28 3.33,7.65  

FF 1.00 3.40 1.81,5.38  

GG 0.64 4.37 2.51,6.63  

HH 1.00 1.40 0.44,2.79  

II 1.00 3.40 1.81,5.38  

JJ 0.99 1.75 0.75,3.09  

KK 1.00 8.86 5.92,12.55  

LL 0.92 7.21 3.97,11.02  

MM 1.00 3.01 5.46 × 104,0.0028  

NN 1.00 0.91 0.22,2.06  

OO 1.00 1.18 0.29,2.66  

PP 1.00 9.19 5.03,14.63 Allaporus 

QQ 0.99 1.28 0.023,4.06  
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Figure 5.1. Consensus phylogenetic reconstruction for Aporini resulting from two 

Bayesian MCMC runs perfomed in BEAST. The bottom left box represents the genera 

sampled, and their colour-coded distribution. Distribution of each genus is shown in the 

map (Aitoff projection). Numbers refer to nodes in Table 5.3. All nodes were supported 

at PP > 0.95; nodes with PP=1.0 are indicated with asterisks. 
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Figure 5.2. Reconstruction of the historical biogeography of Aporini using a dispersal–

extinction–cladogenesis (DEC) method, and a Bayesian Binary MCMC (BBM) method. 

The bottom left box represents the 5 areas assigned in the palaeogeographical model 

shown in the map (Aitoff projection). For each node, a coloured circle corresponds to the 

area with highest probability resulting from the BBM analysis, and two coloured 

semicircles correspond to the daughter areas with highest probability inferred by the DEC 

method. The time-scale is in millions of years, spanning epochs since 22 Ma. 
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CHAPTER 6 
 

MÜLLERIAN MIMICRY AS A RESULT OF CODIVERGENCE BETWEEN VELVET 

ANTS AND SPIDER WASPS5 

 
ABSTRACT 

Recent studies have delineated the largest Nearctic Müllerian mimicry complex in 

Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry 

complex is found and have similar morphology to Dasymutilla. We tested the idea that 

Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that 

they codiverged with Dasymutilla to do so. We performed morphometric analyses and 

human perception tests, and tabulated distributional records to determine the fit of 

Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using 

nuclear molecular markers (28S, EF1, opsin and wg) for Psorthaspis species and 

compared it to a dated phylogeny of Dasymutilla. We tested for codivergence using two 

statistical analyses; we further compared divergence dates in the two phylogenies. Our 

results show that Psorthaspis spider wasps are morphologically similar to the 

Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and 

Dasymutilla codiverged, and coloration patterns were likely produced through advergent 

evolution. The origin of mimicry in Dasymutilla is estimated to be ca. 5 Ma earlier than 

that of Psorthaspis. This study expands the breadth of the Dasymutilla Müllerian 

mimicry complex and provides insights about how codivergence influenced the evolution 

                                                
5 This manuscript is formatted for submission to Evolution. The authors of the journal 
article are: Juanita Rodriguez, James P. Pitts, Carol D. von Dohlen, and Joseph S. 
Wilson. 
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of mimicry in these groups. 

 
INTRODUCTION 

Müllerian mimicry refers to the phenomenon in which sympatric, harmful species 

share a similar warning signal for mutual benefit (Muller 1879; Benson 1972). This kind 

of mimicry has been well documented for several tropical groups, such as Heliconius 

butterflies (Benson 1972; Sheppard et al. 1985; Nijhout 1994; Flanagan et al. 2004; Jones 

et al. 2013) and poisonous Dendrobatidae and Mantellidae frogs (Symula et al. 2001; 

Toledo and Haddad 2009; Chouteau et al. 2011). Recently, a large Nearctic Müllerian 

mimicry complex was described in diurnally foraging Dasymutilla velvet ants 

(Hymenoptera: Mutillidae) (Wilson et al. 2012). These aposematic solitary wasps have 

wingless females that inflict a painful sting, which likely evolved as a defense against 

predators (Wilson et al. 2012). Although several Batesian mimics of velvet ants have 

been reported (Edwards 1984; Nentwig 1985; Acorn 1988; Mawdsley 1994; Lanteri and 

Del Rio 2005), the possibility that other harmful species might be Müllerian mimics of 

velvet ants has not been investigated.  

Various spider wasps in the genus Psorthaspis (Pompilidae) closely resemble 

velvet ant color patterns (Evans 1968), and thus might be participating in the velvet ant 

mimicry complex. Furthermore, because spider wasps are defended with a sting that 

invokes some of the most intense, instantaneous pain among stinging insects (Schmidt 

2004), these wasps could be Müllerian mimics of velvet ants. However, the resemblance 

of Psorthaspis spider wasps to velvet ants, and the potential fit of these spider wasps to 

the velvet ant mimicry complex have never been quantified.  

In the well-studied Heliconius Müllerian mimicry systems, codivergence, or the 
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parallel divergence of ecologically associated, but unrelated, lineages, has been a major 

contributor to the development of numerous mimicry rings (Cuthill and Charleston 2012). 

Codivergence has been proposed as some of the strongest evidence for coevolution 

(Futuyma and Slatkin 1983; Gilbert 1983; Page 2003; Cuthill and Charleston 2012). 

Codivergence patterns alone, however, are not enough to demonstrate coevolution in the 

strict sense (i.e., evolution that occurs in populations of at least two species as the result 

of reciprocal selective influence) because selective pressures are often not measured 

between the two groups (Cuthill and Charleston 2012).  

As seen in Heliconius butterflies, codivergence can sometimes be associated with 

convergent evolution, with both groups converging on a single phenotype (Cuthill and 

Charleston 2012). Such phenotypic convergence can occur uniformly between species 

when traits in each species evolve as a response to traits in the other species, resulting in 

intermediate convergent phenotypes (Futuyma and Slatkin 1983; Wright 2011). 

Alternatively, phenotypic convergence can take place in a more linear, unidirectional 

fashion (often referred to as advergent evolution) when selective pressures cause the 

convergence of one species on another, but not vice versa (Brower and Brower 1972; 

Johnson et al. 2003; Wright 2011). Although codivergence and the associated phenotypic 

convergence has been tested in some mimicry systems, investigations into the evolution 

of mimetic patterns in other systems, such as spider wasps and velvet ants, have the 

potential to better illuminate the role of coevolution in the development of large 

Müllerian mimicry complexes. 

Here, we investigate the phenotypic and phylogenetic similarities of Dasymutilla 

velvet ants and Psorthaspis spider wasps to address the following questions. 1) How well 
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do Psorthaspis spider wasps fit in the described velvet ant mimicry rings? 2) Are the 

color pattern similarities between these wasp groups a result of codivergence—either 

through reciprocal change in both groups or through advergent evolution?  

 
METHODS 

Study system 

Velvet ants and spider wasps are both classified as stinging wasps (Aculeata: 

Hymenoptera), and are both solitary parasitoids. Insect parasitoids are a special case of 

parasitic organisms because they ultimately kill their hosts during development (Tschopp 

et al. 2013). Velvet ants are usually external parasitoids on the larvae or pupae of bees 

and solitary wasps. Their females are wingless, while males are typically winged and 

capable of flight (Williams 2012). Spider wasps (Pompilidae) are parasitoids of spiders. 

Both males and females are winged. Psorthaspis spider wasps use trapdoor spiders of the 

family Ctenizidae as hosts (Jenks 1938). Even though the venom is primarily used to 

paralyze the host, the sting of both spider wasps and velvet ants could also be a deterrent 

to predation (Schmidt 2004; Wilson et al. 2012). 

 
Morphometric analysis of color patterns  

We quantified the color patterns of seven Psorthaspis species using digital images 

following the procedure described by Wilson et al. (2012), with the exception of setal 

characters, as they are not comparable between velvet ants and spider wasps. Characters 

included the percent black of the metasoma, integument color, and non-black metasomal 

color measured in red, green and blue. All area and percentage measurements were made 

using the program ImageJ (http://rsb. info.nih.gov/ij/). Morphological characters were 
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analyzed together with the data from Wilson et al. (2012) using resemblance matrices, 

nonmetric multidimensional scaling (NMDS) based on a Bray-Curtis distance matrix, and 

permutational multivariate analysis of variance (PERMANOVA: Anderson 2005) in R (R 

development core team 2010) using the adonis function in the vegan package. The data 

gathered for this analysis are deposited in Dryad. 

 
Human perception of mimetic fidelity 

Mimetic fidelity in Müllerian mimicry systems represents how well a given 

species matches a group of species (i.e., the mimicry ring). To measure mimetic fidelity 

of spider wasps involved in described Müllerian mimicry rings (Wilson et al. 2012), we 

used methods outlined by Wilson et al. (2013). We presented slides showing an 

individual Psorthaspis species compared to all members of the velvet ant mimicry ring to 

which the species was most similar. Volunteers (N = 35) were directed to rank each 

Psorthaspis species on how well it fit into the associated mimicry ring. Rankings were 

based on a scale of 1 (very poor mimic) to 10 (excellent mimic). All images were 

presented at magnifications such that all wasps had the same projected body length. The 

mimetic fidelity of each spider wasp was estimated based on the mean score of a wasp 

compared to its assigned mimicry ring. 

All volunteers participating in this study were students in lower division Biology 

courses at Utah State University–Tooele. Students were presented with a short 

presentation introducing the concepts of Batesian and Müllerian mimicry and were then 

given the option to participate in a survey designed to rank mimetic fidelity of wasps. If 

students agreed to participate, they were given a link to the website containing the survey. 

To our knowledge, the volunteers were not experts in insect identification. This 
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effectively resulted in mimetic fidelity scores that were based on overall resemblance of a 

mimic to a mimicry ring rather than on preconceived ideas of what specific parts of a 

mimic should match the ring. All participants were over the age of 18, and no data 

relating to the volunteers were gathered. No approval from the university was requested 

for this research because no information about living individuals was collected (i.e., the 

research did not involve human subjects as per the Code of Federal Regulations 45 CFR 

part 46). Because of the need to protect the anonymity of our volunteers, no questions 

were asked regarding any physical characteristics that would affect ranking mimics and 

models (e.g., colorblindness). While this potentially could influence the reported mimetic 

fidelity scores, we think any influence of colorblindness would be minimal, due to the 

nature of aposematic signals in spider wasps and velvet ants. These warning signals 

primarily result from contrasting black and red or yellow patterns, which would still be 

visually distinct to colorblind individuals. 

 
Estimation of geographical distribution  

To determine the distribution of each of the Psorthaspis color patterns identified 

in this study we geo-referenced 1,032 Psorthaspis specimens from 13 natural history 

collections and downloaded data on geo-referenced Psorthaspis specimens in the 

Southwest Collections of Arthropods Network (SCAN 2013). We manually plotted the 

collection localities of each species on a map using the software Google Earth 5.0 

(http://earth.google.com) and estimated geographic distributions by drawing a line 

encompassing all of the collection localities. These estimated distributions were visually 

compared to the distributions of velvet ant mimicry rings published by Wilson et al. 

(2012). The datapoints used for this analysis are deposited in Dryad. 
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Molecular data and phylogenetic inference 

We compiled a data set of four genes (28S, elongation factor 1-alpha, wingless, 

and long-wavelength rhodopsin) for the 13 Psorthaspis species and one outgroup (Aporus 

idris), which were obtained previously by Rodriguez et al. (see Chapter 5). Sequences 

were aligned using Geneious Alignment (Geneious 5.4: Drummond et al. 2011) and 

manually refined. The model of molecular evolution used for each gene and by codon 

position was the same used by Rodriguez et al. (see Chapter 5) except for introns from 

long-wavelength rhodopsin, for which the model was determined in MrModelTest 

(Nylander 2004). Single-gene phylogenies were estimated through a Bayesian framework 

implemented in MrBayes 3.2 (Huelsenbeck and Ronquist 2001) to check for potential 

conflict between gene trees. Single-gene matrices were then concatenated using Geneious 

5.4 to produce a combined matrix, using the best partition scheme used by Rodriguez et 

al. (see Chapter 5), and an additional partition including long-wavelength rhodopsin 

introns with the model GTR+I+G. MCMC chains were run for 10,000,000 generations, 

with sampling every 1,000 generations. Effective sample size (ESS), burn-in, and 

graphical examination of chain convergence were examined in Tracer 1.5 (Rambaut et al. 

2013). 

A chronogram of Psorthaspis was inferred from the combined matrix in a 

Bayesian framework using BEAST 1.7.5 (Drummond et al. 2012) under an uncorrelated 

lognormal relaxed-clock model (Drummond et al. 2006; Drummond and Rambaut 2007). 

Substitution models were unlinked among partitions; the underlying clock and trees were 

linked. The crown-group node of all Psorthaspis was assigned a normal prior of mean = 

12.9 Ma (SD = 10), based on results of Rodriguez et al. (see Chapter 5). Two separate 
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Markov Chain Monte Carlo (MCMC) searches were performed for 10,000,000 

generations. Effective sample size (ESS) and graphical chain convergence were 

examined in Tracer 1.5. Independent runs were assembled with LogCombiner 1.7.5. and 

10% of the generations was discarded as burn-in. Divergence time estimations of 

Dasymutilla were obtained from Williams (2012).  

 
Codivergence test 

To determine if there was codivergence between Dasymutilla and Psorthaspis 

mimicry rings we performed two permutation analyses in R using the phylogenetic trees 

of both groups. First, an analysis that calculates the Pearson’s correlation coefficient 

(Hommola et al. 2009) was implemented using the correlation between the distances of 

the two phylogenies. Second, we applied an analysis that calculates the ParaFitGlobal 

statistic (Legendre et al. 2002), which uses transformed distances derived from the 

phylogenetic trees into matrices of principal coordinates. Both analyses test the null 

hypothesis that the two groups are evolving independently. We performed 100,000 

simulations for both tests. Additionally, we constructed a tanglegram linking 

phenotypically similar species between the phylogenies of Dasymutilla and Psorthaspis. 

 
RESULTS 

Morphological results 

The NMDS and PERMANOVA analyses indicate that Psorthaspis spider wasps 

are morphologically similar to the Dasymutilla mimicry rings to which they were 

assigned a priori (Figs. 6.1 and 6.2). The overall effect of the mimicry ring as a 

categorical variable was F = 22.503, R2 = 0.616, P < 0.001. Despite the overall similarity, 
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the plot of the NMDS shows that Psorthaspis often do not fit tightly with Dasymutilla in 

morphospace, but rather fall out near the periphery of the velvet ant clusters. The sole 

exception was the Eastern mimicry ring, which fell within the middle of the velvet ant 

distribution (Fig. 6.2).  

Mimetic fidelity reported by volunteers was more variable for spider wasps 

(Table 6.1) than for velvet ants (Wilson et al. 2013). Although some spider wasps 

received mimetic fidelity scores comparable to the velvet ants (e.g., the Tropical, 

Madrean and Eastern mimicry rings), others received much lower scores (e.g., the 

Western and Texan mimicry rings).  

 
Geographical overlap between Psorthaspis and Dasymutilla mimicry rings 

Distributions of Psorthaspis spider wasp and Dasymutilla velvet ant species 

putatively involved in the same mimicry rings are largely congruent (Fig. 6.1). In general, 

Dasymutilla mimicry rings have a more widespread distribution than that of spider 

wasps, particularly in northern latitudes. Distributions of Psorthaspis mimicry rings show 

much greater overlap with each other than do those of Dasymutilla velvet ants (Fig. 6.1). 

This is particularly apparent in the distribution of the Psorthaspis Madrean mimicry ring, 

which is geographically larger than the Madrean ring in Dasymutilla. Similarly, the 

Western Psorthaspis ring extends farther south than the Western Dasymutilla ring, 

resulting in a larger overlap between Psorthaspis Western and Madrean rings. In 

addition, the Texan Psorthaspis ring seems to be more restricted than its Dasymutilla 

counterpart (Fig. 6.1). 
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Phylogenetic relationships, divergence times and codivergence results  

The phylogeny of Psorthaspis suggests that mimetic species do not compose a 

monophyletic group. Divergence time estimates suggest that the common ancestor of 

extant Psorthaspis species arose ca. 12.9 Ma (CI = 8.76,18.02). Because taxa composing 

the sister group to Psorthaspis (i. e. species of Allaporus) are non-mimics (see Chapter 

5), it is probable that mimicry arose in Psorthaspis after it diverged from its sister group 

ca. 18.14 Ma (CI = 13.28,23.71). The origin of Dasymutilla was ca. 21 Ma (CI = 18,23), 

and the divergence from its sister group was 23 Ma (CI = 21,27) (Williams 2012); 

therefore, the origin of mimicry in Dasymutilla was 23 Ma or later. The codivergence 

tests suggest topological concordance between the phylogenies of Psorthaspis and 

Dasymutilla (Pearson’s p = 0.0027, ParaFitGlobal p = 0.047). The tanglegram of 

Psorthaspis and Dasymutilla, although somewhat complicated by the random order of 

mimetic color patterns in Dasymutilla (Wilson et al. 2012), reveals some similar patterns 

(Fig. 6.3). For example, the Tropical mimicry ring originates early in both phylogenies, 

and the Eastern mimicry ring is more phylogenetically conserved in both groups (Fig. 

6.3). 

 
DISCUSSION 

Fit of Psorthaspis to the velvet ant mimicry rings 

Results of the morphometric analyses and human perception tests indicate that 

Psorthaspis spider wasps likely participate in the Dasymutilla velvet ant mimicry 

complex, albeit with a lower mimetic fidelity than the velvet ant participants. This lower 

fidelity of the spider wasps is not surprising, given the many morphological differences 

between the two groups (e.g., wings, setae, etc.). The lower mimetic fidelity might also 
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be explained by the broad geographic overlap in some Psorthaspis mimicry rings. Such 

overlap between adjacent mimicry rings is correlated with lower mimetic fidelity in 

velvet ants (Wilson et al. 2013), and likely accounts for lower mimetic fidelity in spider 

wasps as well.  

 
Evidence for coevolution  

While not tested directly in this study, our results suggest that coevolution played 

a role in the development of the large velvet ant and spider wasp mimicry complex. 

Several lines of evidence support this assertion. First, while it is not immediately evident 

from the topologies of the Dasymutilla and Psorthaspis phylogenies (Fig. 6.3), statistical 

tests show evidence of codivergence between the two wasp families. This suggests that 

the evolution of mimicry between these wasp groups must have involved convergence at 

the genetic and phenotypic level, such as has been found for Neotropical butterflies 

(Hines et al. 2011; Reed et al. 2011).  

Furthermore, our results indicate that Psorthaspis spider wasps and Dasymutilla 

velvet ants are phenotypically similar, suggesting that either convergent evolution or 

advergence has taken place. Convergent evolution in Müllerian mimicry complexes 

produces a shared, intermediate phenotype. Advergent evolution produces phenotypic 

convergence without reciprocal change, therefore producing a more relaxed pattern 

(Brower and Brower 1972; Johnson et al. 2003). Distinguishing between convergent and 

advergent evolution can be difficult, however. Advergence is considered more likely 

when one species’ aposematic signal is established before the arrival of a second species 

(Gilbert 1983; Chouteau et al. 2011). 

Molecular dating estimates suggest that Dasymutilla likely evolved approximately 
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5 Ma earlier than Psorthaspis, although there is some overlap in the CI estimates of the 

two groups. This would suggest that the similar color patterns between Psorthaspis spider 

wasps and Dasymutilla velvet ants likely is the result of codivergence through advergent 

evolution, with the spider wasps converging onto the color patterns of the velvet ants 

(Fig. 6.1). When Müllerian mimicry evolves via advergence, we expect to find evidence 

that some members of mimicry rings are models, while others are mimics that adverge to 

them, similar to the evolution of Batesian mimics (Mallet 1999; Hines et al. 2011). This 

might explain the low fit, as measured both from morphometrics and mimetic fidelity 

tests, of Psorthaspis mimics compared to Dasymutilla models. Interestingly, the low 

fidelity of spider wasps is not equal across all mimicry rings. For example, Psorthaspis 

participating in the Tropical mimicry ring received higher fidelity scores than many of 

the mimicry rings in higher latitudes (Table 6.1). This supports the hypothesis that 

tropical mimics converge on precise mimicry, whereas temperate mimics seem to 

converge on an “impressionistic” or more relaxed pattern (Merrill and Jiggins 2009). 

Coevolution involves reciprocal selective pressures between two groups. While 

not tested directly, reciprocal selective pressures between Psorthaspis spider wasps and 

Dasymutilla velvet ants may indeed be taking place. While Dasymutilla velvet ants likely 

evolved aposematic coloration before Psorthaspis spider wasps, once spider wasps 

converged phenotypically through advergent processes, the aposematic signal of velvet 

ants would be strengthened because of the presence of harmful, aposematic co-mimics 

(spider wasps). Likewise, the spider wasp aposematic coloration would also be 

strengthened through the presence of their harmful aposematic co-mimics (velvet ants). 

Thus, both groups would be imposing coevolutionary selective pressures on each other, 
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strengthening the aposematic signal of the mimicry complex as a whole.  

 
SUMMARY 

We provide evidence that Psorthaspis spider wasps participate in velvet ant mimicry 

rings. Furthermore, we find evidence that the two groups codiverged through advergent 

evolution. This study expands the breadth of the largest known North American 

Müllerian mimicry complex to include spider wasps as well as velvet ants. This large 

mimicry complex is an intriguing system that should be the focus of further 

investigations into the evolution of predator avoidance strategies in the temperate regions, 

the evolution of aposematic coloration, and the evolution of Müllerian mimicry involving 

unrelated taxa. 
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Table 6.1. Human perception tests of mimetic fidelity of Psorthaspis species reported by 

volunteers (N = 35). Average mimetic fidelity of each spider wasp species indicates how 

well each species matches the velvet ant mimicry ring it was phenotypically and 

geographically most similar to. Scores are based on a scale of 1 (very poor mimic) to 10 

(excellent mimic).  

Spider wasp species 

Average mimetic 

fidelity score SD Assigned mimicry ring 

P. formosa 4.60 2.19 Madrean 

P. texana 4.71 3.18 Texan 

P. connexa 8.74 1.52 Tropical 

P. variegata 6.29 2.53 Tropical 

P. legata 8.83 1.69 Eastern 

P. mariae 6.74 2.17 Eastern 

P. sanguinea 6.63 2.17 Eastern 

P. portiae 5.26 2.13 Western 

P. nigriceps 5.89 1.91 Western 
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Figure 6.1.  (a) Five velvet ant mimicry rings described by Wilson et al. (2012). (b) 

Geographic distribution of the five velvet ant mimicry rings. (c) Nine Psorthaspis species 

placed into five velvet ant mimicry rings. Numbers under each Psorthaspis species 

correspond to their positions on the phylogenetic tree and in Fig. 2. Species number 2 

[Psorthaspis texana] did not yield usable DNA samples and was therefore not included in 

the phylogenetic analysis. (d) Geographic distributions of the Psorthaspis spider wasp 

mimicry rings. (e) Psorthaspis spider wasp chronogram. Bayesian posterior probabilities 

are displayed on nodes. 
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Figure 6.2. NMDS ordination plot based on morphological characters from each 

Psorthaspis and Dasymutilla mimicry ring. Circles denote velvet ant data (from Wilson 

et al. 2012) and squares represent Psorthaspis data. Numbers represent Psorthaspis 

species numbered in Figure 6.1. 



	
   170 

 

 

Figure 6.3. Tanglegram of Psorthaspis (left topology) and Dasymutilla (right topology). 

Lines connect between members of the same mimicry rings in the two groups. 
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CHAPTER 7 

 
MOLECULAR PHYLOGENY OF POMPILINAE (HYMENOPTERA: POMPILIDAE): 

EVIDENCE FOR RAPID DIVERSIFICATION AND HOST SHIFTS IN SPIDER 

WASPS6 

 
ABSTRACT 

Pompilinae are one of the largest groups of spider wasps. Their phylogeny has 

never been studied with molecular data. Most pompilines are generalist at the spider host 

family level, but there is some specificity at the ecological level (i. e. host guild). We 

aimed to test the monophyly of Pompilinae tribes and genera. We also aimed to test 

whether changes over time in the rate of diversification are associated with host shifts. 

The first molecular phylogenetic analysis concentrating on Pompilinae spider wasps is 

presented based on the analysis of five nuclear loci (28S, EF1, LWRh, Wg, Pol2) for 77 

taxa in 36 genera. Data were analyzed using maximum likelihood (ML) and Bayesian 

inference (BI) phylogenetic frameworks. The phylogenetic results were compared with 

previous hypotheses of tribal classification and generic relationships in the subfamily. 

The classification of Pompilus and Agenioideus was also discussed. A Bayesian relaxed 

molecular clock analysis was used to examine divergence times. Ancestral host family 

and host guild were reconstructed using parsimony and ML methods. Diversification 

rate-shifts were tested taking into account taxon sampling bias using ML and BI 

approaches. None of the tribes proposed by previous authors are monophyletic. Several 

genera (e.g., Pompilus, Microphadnus, Arachnospila, Schistonyx and Agenioideus) are 

                                                
6 This manuscript is formatted to be submitted to Molecular Phylogenetics and Evolution. 
The authors of the journal article are: Juanita Rodriguez, James P. Pitts, and Carol D. von 
Dohlen. 
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not monophyletic. Divergence dating analyses produced a well-supported chronogram 

consistent with the BI and ML reconstructions. Ancestral host use reconstructions 

inferred the use of a guild of spider hunters (other hunters) as the ancestral state for 

Pompilinae; various switching events to other guilds occurred throughout the evolution of 

the group. The diversification of Pompilinae shows one main rate-shift that coincides 

with the use of ground hunters as hosts.  

 
1. Introduction 

Spider wasps (Hymenoptera: Pompilidae) are solitary wasps that use paralyzed 

spiders to feed their offspring. It has long been debated whether pompilids should be 

considered predators or parasitoids (Smit et al., 2002). From a developmental 

perspective, the ecological niche of the spider wasp larva is that of a parasitoid: the larva 

needs a single arthropod host to feed on, which is killed at the end of larval development 

(Godfray, 1994). With respect to host breadth, in a broad sense most pompilids are 

generalists even at the host family level. Pompilid females’ preference for particular 

spider taxa seems to be related more to ecological factors rather than taxonomic 

categories.  

 
1.1. Systematics of Pompilinae 

The subfamily Pompilinae includes approximately 2,000 species. This subfamily 

is one of the most species-rich and ecologically diverse of Pompilidae (Pitts et al., 2006). 

Pompilinae has been established as monophyletic by Shimizu (1994) and Pitts et al. 

(2006); in the latter study Chirodamus, Notocyphus, and Priochilus were included in the 

subfamily. However, a recent molecular phylogenetic analysis demonstrates that a 
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monophyletic Pompilinae should exclude Priochilus, Balboana, Sericopompilus, 

Chirodamus, Cordyloscelis and Notocyphus (Waichert et al., submitted). The monophyly 

of some genera within the subfamily has been established by molecular methods (see 

Chapter 5), but more extensive sampling is needed to draw conclusions about the 

relationships between genera and tribes, as well as their monophyly (Pitts et al., 2006).  

The classification within Pompilinae had been poorly understood long before the 

development of modern phylogenetic analyses. Many erroneous arrangements have been 

proposed as a result of the difficulties with identification of these wasps, whose 

morphology displays a considerable degree of inter-specific variation (Evans, 1949). The 

tribal classification has been particularly problematic. Many names have been proposed 

but only two have been regularly used, based on species of the New World (Evans, 

1949). Ashmead (1902) was the first to propose the subdivision of the subfamily into 

tribes. Evans (1949) revised the Nearctic fauna, and divided it in two tribes: Pompilini 

and Aporini. Arnold (1937) divided the Ethiopian Pompilinae into ten tribes. These tribes 

have never been compared to the Nearctic fauna and remain unused except for classifying 

the African genera. Bradley (1944) divided the American fauna into seven tribes. Banks 

(1947) discussed the difficulty of dividing the subfamily into tribes at all. The only tribe 

that Bradley (1944) and Arnold (1937) have in common is Pompilini. From the tribes 

proposed in the literature, only Aporini sensu Evans (1949) is monophyletic according to 

the latest morphological phylogeny (Pitts et al., 2006). A comprehensive revision of the 

world fauna needs to be performed in order to produce an accurate tribal division that 

corresponds to natural groups (Evans, 1949).  

 
 



	
   174 
1.2. Systematics of Pompilus 

Pompilus sensu lato is a diverse pompiline genus found in the Americas and the 

Palearctic region. Its taxonomy has long been conflicting because of the large number of 

species assigned to it solely by their placement in Pompilidae. The first revision of the 

genus was by Wilcke (1942), who placed many Pompilus species in other genera. Evans 

(1951) divided the genus in seven subgenera: Xenopompilus Evans, Perissopompilus 

Evans, Xerochares Evans, Hesperopompilus Evans, Arachnospila Kincaid, Anoplochares 

Banks, Ammosphex Wilcke, and Pompilus sensu Wilcke (1942). Evans’s (1951) scheme 

was followed for some time until Priesner (1969) referred to Arachnospila as a genus 

containing the European subgenera proposed by Evans (1951), excluding Pompilus sensu 

stricto. Day (1981) discussed the taxonomic history of Pompilus, restricting it to seven 

species only found in the Old World, and giving generic status to the subgenera proposed 

by Evans (1951). Arachnospila, Anoplochares and Ammosphex were suggested to be 

included in the Arachnospila genus-group (Day, 1981). The classification of Evans 

(1951) has been retained by authors because evidence is lacking to support the new 

classifications of Priesner (1969) and Day (1981) (Wasbauer and Kimsey, 1985). 

 
1.3. Host use in Pompilinae 

The spiders used by Pompilinae spider wasps are diverse at the taxonomic level, 

but they are even more diverse at an ecological level. They belong to 21 families, which 

can be classified into 7 out of the 8 ecological guilds established by Cardoso et al. (2011). 

Pompilinae are mostly generalist at the host family level. Few species use a single spider 

family as host. When grouped into ecological guilds, however, pompilines show a greater 

specificity. Pompilines use the following spider guilds as hosts: ground hunters, other 
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hunters, ambush hunters, orb web-weavers, sheet web-weavers, space web-weavers and 

sensing web-weavers. 

Spider guilds were determined by Cardoso et al. (2011) using a posteriori 

quantitative methods. The data used to establish guilds was based on ecological 

characteristics (i.e. foraging strategy, prey range, vertical stratification, and circadian 

activity). The largest guild generated by these data was ground hunters (26 families) and 

the smallest was ambush hunters (6 families). 

Ground hunter spiders are active hunters that do not build a web, forage on the 

ground, and are nocturnal. Other hunters also forage on the vegetation in addition to 

having all the traits found in ground hunters. Ambush hunters have all the traits of other 

hunters, but they can both be diurnal, or nocturnal, and have an ambush strategy for 

hunting. Within web-weavers, the main differentiation is the kind of capture web they 

build, either orb web, space web (tri-dimensional webs), or sheet web. Sensing web-

weavers are characterized by the kind of web they build, which usually alerts them on 

prey movement. 

 
1.4. Evolution of host use in Pompilinae and its correlation with species diversification 

Diversification rate-shifts have been attributed to niche differentiation, in a 

process known as adaptive radiation (Schluter, 2000). Environmental differentiation (e.g. 

climate, topography, vegetation), competition, and specialization drive adaptive 

radiations (Schluter, 2000; Simpson, 1944). Host switching in parasitoids may involve 

adapting to a new environment, changing the dynamics or avoiding competition, and 

possibly, specialization, thus providing conditions for adaptive radiations to occur. 

Similarly, the interactions between hosts and parasitoids have been proposed as 
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influential in parasitoid diversification processes (Cronin and Abrahamson, 2001). Recent 

molecular phylogenetic studies have shown a significant increase in the diversification 

rate with parasitoid host shifts (Fordyce, 2010; McKenna and Farrell, 2006; McLeish et 

al., 2007; Wheat et al., 2007; Winkler et al., 2009).  

Host switching in insect parasitoids can have various ramifications. Parasitoids 

are a special case of parasitic organisms because they ultimately kill their hosts during 

development (Tschopp et al., 2013). Idiobionts prevent further development of the host, 

while koinobionts allow the host to continue development (Quicke, 1997). Pompilids are 

classified as idiobionts, which tend to be less specialized and more plastic than 

koinobionts (Shaw, 1994). Therefore, one would expect a relatively high number of host 

shifts, and low concordance between host and parasitoid phylogenies over the course of 

their evolutionary history (Althoff, 2008).  

In parasitoid wasps, our knowledge of host range evolution is very limited due to 

a lack of reliable host records in many groups and sound species-level phylogenies 

(Quicke, 1997; Quicke, 2012). Recent molecular studies have advanced our knowledge of 

host-use evolution in a phylogenetic framework (Symonds and Elgar, 2013; Taekul et al., 

2014; Tschopp et al., 2013), but few studies have specifically addressed the 

diversification of parasitoids. 

Using pompilines as a model, this paper aims to study the correlation between 

diversification rate-shifts and the evolution of host use. Therefore, our goals were to (1) 

develop a robust phylogeny of Pompilinae and discuss the classification of the subfamily, 

and (2) test whether host-guild switches are correlated with diversification rate-shifts. 
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2. Materials and Methods 

2.1. Taxon sampling 

We sampled 70 specimens from 34 Pompilinae genera (Table 7.1). We used the 

taxonomy of Pompilus established by Day (1981). Seven Pompilidae species were used 

for the out-group, namely, a sample from the probable sister lineage, Priochilus + 

Balboana (Waichert et al., submitted) (Table 7.1). 

 
2.2. Molecular methods 

DNA extraction and amplification of the nuclear genes elongation factor–1 α F2 

copy (EF1), long–wavelength rhodopsin (LWRh), wingless (Wg), RNA polymerase II 

(Pol2) and the D2–D3 regions of the 28S ribosomal RNA (28S) was performed following 

Pilgrim and Pitts (2006). Primers from previous studies were used (Table 7.2). All PCR 

products were sequenced with forward and reverse primers and were assembled into 

complete contigs using Sequencher 4.1 (Gene Codes Corp., Ann Arbor, MI). 

 
2.3. Phylogenetic analysis 

Sequences were aligned using Geneious Alignment in Geneious 5.4. (Drummond 

et al., 2011) and then manually refined. Intron data was eliminated from the alignment for 

LWRh and EF1. The model of molecular evolution was determined for each gene and by 

codon position using Partition Finder 1.01 (Lanfear et al., 2012). Single-gene phylogenies 

were produced under Bayesian inference (BI) as implemented in MrBayes 3.2 

(Huelsenbeck and Ronquist, 2001). Single-gene matrices were then concatenated using 

Geneious 5.4 to produce a combined matrix. The model of molecular evolution was 

determined for the combined matrix using Partition Finder 1.01. The combined matrix 
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was analyzed in MrBayes 3.2 with partitions by codon position and gene (Table 7.3). 

Bayesian analyses included four independent runs with three heated chains and one cold 

chain in each run. The MCMC chains were set for 100,000,000 generations and sampled 

every 10,000 generations. Convergence diagnostics (e.g., trace plots for visualizing 

mixing and stationarity; effective sample sizes) were assessed with Tracer 1.5. Trees 

from the first 10% of the samples were removed as burn-in. The resulting 50% consensus 

tree was visualized in FigTree 1.4. 

A maximum likelihood (ML) analysis was performed using GARLI 2.0 (Genetic 

Algorithm for Rapid Likelihood Inference; Zwickl, 2006), through the CIPRES gateway 

(Miller et al., 2010)). The data were partitioned as in BI, above, and bootstrap support 

levels were calculated by sampling 100 replicates. A 50% consensus tree was generated 

from the best tree produced by each bootstrap replicate using Ml (M-sub-L) methods 

(Margush and McMorris, 1981) through Consense (Felsenstein, 1989). 

 
2.4. Divergence-time estimation 

A chronogram was inferred in a BI framework using Beast 1.7.5 (Drummond et 

al., 2012) under an uncorrelated lognormal relaxed-clock model (Drummond et al., 2006; 

Drummond and Rambaut, 2007). Substitution models were unlinked among partitions 

with the underlying clock and trees linked. One calibration point was used for our 

analysis, based on the age of the subfamily obtained by Waichert et al. (submitted). The 

crown-group node of all Pompilinae taxa included in the analysis was assigned a normal 

prior of (mean) 27 Ma (SD=10). Two separate Markov Chain Monte Carlo (MCMC) 

searches were performed for 10,000,000 generations. Convergence diagnostics were 
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examined in Tracer 1.5, and independent runs were assembled with LogCombiner 1.7.5. 

Ten percent of the generations were discarded as burn–in. 

 
2.5. Ancestral state reconstruction of spider host use 

Spider host guild (Cardoso et al., 2011) was mapped onto the Pompilinae 

chronogram as a multistate character. The list of known host species of Pompilinae used 

in our analyses was adopted from data from all published host records (Table 7.4).  

We used a ML and a maximum parsimony approach (MP) to map the evolution of 

host use onto the Pompilinae phylogeny. The ML approach was implemented using the 

rayDISC command in the package corHMM (Beaulieu et al., 2014) in R (R Development 

Core Team, 2010). This method allows for multistate characters, unresolved phylogenies, 

and ambiguities (polymorphic taxa or missing data). Two models of character evolution 

were evaluated under the ML method; these were: equal rates (ER), and all rates different 

(ARD). A likelihood-ratio test was performed to determine the significance of the 

difference in likelihood values for different models of character evolution. Parsimony 

character mapping was performed in Mesquite ver. 2.7.5 (Maddison and Maddison, 

2011) with all character-state changes weighed equally. 

 
2.7. Diversification rate-shift analysis 

To determine the best-fit model for Pompilinae diversification, we calculated the 

Akaike information criterion (AIC) for various models of constant-rate and rate-variable 

diversification through time with the package laser (Rabosky, 2006) in R. A pure-birth 

and a birth-death model with constant-rate were tested, as well as pure-birth models with 

different numbers of rate-shifts: yule2rate, yule3rate. Two models incorporating density-
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dependent diversification rates (DDX and DDL) were also tested. To account for bias in 

taxon sampling we divided the Pompilinae chronogram into two main clades, as indicated 

in Figure 7.1. The division was based on the time of missing of speciation events within 

each clade as follows: i) the majority of missing species in clade 1 belong to Agenioideus, 

which had an origin ca. 20.4 Ma (CI = 17.23,23.55) and ii) the majority of missing 

species in clade 2 belong to Anoplius and the clade composed of Arachnospila, Evagetes 

and Aridestus, which had origins ca. 10.5 (CI=7.85,13.44) and 9.2  (CI=6.08,13.43) Ma, 

respectively. Missing speciation events equal to the number of missing species were 

simulated onto both clades 1,000 times starting at the time of origin of the genera 

containing most species. This simulation generated a dataset of 1,000 trees for each clade, 

which we refer to as “semi-empirical dataset.” Simulations were performed using the 

function corsim (Cusimano et al., 2012) in the package TreeSim (Stadler, 2011) in R. A 

null distribution was generated separately by simulating 1,000 trees with the total 

expected number of taxa for each clade individually; we refer to this as the “null 

distribution”. The difference between the semi-empirical dataset and the null distribution 

is that the semi-empirical contains information on the “real topology” and the time of 

missing branching times, whereas the null distribution is a dataset birth-death trees with 

the same number of taxa generated at random. 

We calculated the AIC and deltaAICrc for the semi-empirical and null 

distribution datasets. The deltaAICrc was obtained by subtracting the AIC of the best 

rate-constant model (AICrc) from the AIC of the best rate-variable model (AICrv). The 

deltaAICrc is positive when the data best fit a rate-variable model. We then calculated the 

mean and standard deviation of AIC and deltaAICrc. We used these values to determine 
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the model of diversification that best fit our data (lowest AIC), and the fit of our data to a 

rate-variable versus rate-constant model (deltaAICrc), according to criteria suggested by 

Rabosky (2006). We performed a t-test to determine if the deltaAICrc from the null 

distribution was significantly different that the semi-empirical data (trees with simulated 

branching events). Our diversification rates results will be expressed in units of 

speciation events per million years (sp/Myr). 

We also performed a Bayesian analysis of diversification in BAMM (Bayesian 

Analysis of Macroevolutionary Mixtures) (Rabosky, 2014). BAMM uses reversible jump 

Markov Chain Monte Carlo to explore various models of lineage diversification in order 

to detect and quantify heterogeneity in evolutionary rates (Rabosky, 2014; Rabosky et al., 

2013). We accounted for non-random missing speciation events by quantifying the 

percentage of taxa sampled per genus and incorporating it into the analysis. The MCMC 

chain was set for 100,000,000 generations, with sampling every 10,000 generations. 

Convergence diagnostics were examined using coda (Plummer et al., 2013) in R. Ten 

percent of the runs were discarded as burn-in. The 95% credible set of shift 

configurations was plotted in the R package BAMMtools (Rabosky et al., 2014).  

 
3. Results 

3.1. Phylogenetic results 

Pompilinae is a well-supported subfamily within Pompilidae, and can be divided 

in two major clades (Figure 7.1). Within these two clades, various sub-clades were well 

supported in one or both ML and BI analyses. Clade 1 includes three main sub-clades: 

Batozonellus + Episyron, Poecilopompilus + Austrochares, and the largest clade 

including Agenioideus, Tachypompilus, Ferreola, Homonotus, and Spuridiophorus. 
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Major sub-clades within clade 2 are: Kyphopompilus + Tastiotenia; Aporini; Schistonyx, 

Microphadnus, Atelostegus and Atopompilus; Apareia + Paracyphononyx; Aporinellus, 

Ctenostegus, Turneromyia, Pompilus); Anoplius (including Dicranoplius), and a clade 

composed of Xerochares, Allochares, Arachnospila, Evagetes and Aridestus. Within 

clade 2, Kyphopompilus + Tastiotenia, Telostegus, and Microphadnus compose the 

earliest branching lineages, although the exact positions of the former two lineages is 

uncertain. 

Our results show that none of the tribes previously proposed is monophyletic, 

except for Aporini sensu Evans (1949) (Figure 7.1). Some of the tribes proposed by 

Arnold (1937) are monophyletic by definition because they contain only one genus (i. e. 

Cordyloscelini, Spuridiophorini and Tachypompilini). Nevertheless, a previous study 

concludes that Cordyloscelis is not included in Pompilinae (Waichert et al., submitted).  

Our results reject the monophyly of various pompiline genera and subgenera. The 

following genera are not monophyletic: Pompilus sensu Evans (1951), Arachnospila, 

Schistonyx, Microphadnus, and Agenioideus. The three subgenera of Arachnospila, 

Arachnospila, Ammosphex, and Anoplochares, are recovered in the same clade; however, 

this clade also includes Aridestus and Evagetes, whose positions render Arachnospila 

paraphyletic. Further analyses are needed to determine the circumscription of this genus, 

considering the possibility of synonymizing Evagetes and Aridestus with Arachnospila. 

Agenioideus is also paraphyletic, and might best be redefined by elevating its subgenera 

to generic status. An expanded analysis with more extensive taxon sampling is also 

needed to clarify the taxonomy of Agenioideus. 
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3.2. Evolution of host use 

Our results suggest that pompiline wasps are not specialists at the level of host 

family. Most of the genera parasitize more than one spider family. Nevertheless, when 

the host family is grouped into guilds, various pompiline genera appear to be specialists 

at the ecological level (Table 7.4). 

The likelihood-ratio test performed on host-guild ancestral-state reconstruction 

suggests that this character is evolving under the ARD model (p = 0.376). The ancestral 

condition for Pompilinae was the use of other hunters as hosts. The reconstruction of host 

shifts is consistent between parsimony and ML reconstructions, but the ancestral state of 

many nodes is equivocal for the parsimony reconstruction (Figure 7.2). From the 

ancestral use of other hunters there was a shift to use of orb-web weavers in clade 1. In 

clade 2, there was a shift to ground hunters and then to sensing web-weavers, as well as a 

reversal back to use of other hunters from ground hunters (Figure 7.2). 

 
3.3. Diversification rate-shift analysis 

DeltaAICrc for semi-empirical versus null hypothesis data for clade 1 were 

significantly different (t = 3.50, df = 1997.13, p = 0.00048), signifying that the 

diversification of clade 1 deviates from a null hypothesis of rate-constancy. The best-fit 

model for clade 1 data is a yule3rate model (two rate-shifts; Table 7.5). Clade 2 also 

deviates from a null hypothesis of rate-constancy (t = 23.8082, df = 1969.167, p-value 

=2.2e-16). The best-fit model for clade 2 data is a yule3rate model (Table 7.6).  

For clade 1, the model suggests a shift from a rate of 0.27 (sp/Myr) to 0.78 

(sp/Myr) ca 12.80 Ma, and a shift from 0.78 (sp/Myr) to 0.14 (sp/Myr) ca 8.80 Ma. For 
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clade 2 the model suggests a shift from a rate of 0.12 (sp/Myr) to 0.41 (sp/Myr) ca 10.47 

Ma, and from 0.41 (sp/Myr) to 0.20 (sp/Myr) ca 5.16 Ma.  

The 95% credibility set of shift configurations of the BAMM analysis shows a 

higher diversification rate within the clade containing two of the most diverse genera, 

Arachnospila and Anoplius, for the two configurations with the highest probability. Both 

of these show a rate-shift at the node of the MRCA of Anoplius and Arachnospila (Figure 

7.3). 

 
4. Discussion 

4.1. Pompilinae phylogeny and tribal classification 

Pompilinae is one of the largest subfamilies of Pompilidae. Its monophyly has 

been supported by molecular data (Waichert et al., submitted). Pompilinae is divided into 

two main clades (Figure 7.1). Within these clades, there are various well-supported sub-

clades, but the relationships between many of these are not well supported, especially for 

clade 2 (Figure 7.2). It is possible that more extensive sampling, and a greater number of 

molecular loci could improve the phylogenetic resolution, but it is also probable that the 

ambiguities observed in Pompilidae phylogenies are the result of “hard” polytomies. 

Hard polytomies are produced when a rapid radiation occurs (Whitfield and Lockhart, 

2007), and can not be resolved through phylogenetic methods. Supporting evidence for a 

rapid radiation of Pompilidae is the morphological homogeneity even at the subfamily 

level, and the appearance of all subfamilies in a relative short period of time (Waichert et 

al., submitted). 

The topology recovered for Pompilinae is consistent with certain clades 

reconstructed in previous morphological analyses. For example, Pitts et al. (2006) and 
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Shimizu (1994) recovered a clade composed of Episyron, Batozonellus, Poecilopompilus 

and Austrochares. The close relationship of Episyron and Poecilopompilus had also been 

discussed by Evans (1949). Pitts et al. (2006) also supported the relationship of 

Arachnospila to Evagetes and Xerochares, along with other genera not recovered for this 

clade by our analysis. Shimizu (1994) also supported the grouping of Homonotus and 

Ferreola. Most of the patterns observed in morphological analyses, however, differ from 

the results obtained with molecular data. 

The tribal classification of Pompilinae has been historically problematic, because 

of the absence of worldwide revisions. Our data suggest a need for a new tribal 

classification taking into account the world fauna. This task, however, can only be 

performed in a phylogenetic framework, incorporating morphological data to assess the 

synapomorphies of each tribe. This will allow for the inclusion of taxa lacking molecular 

data in the new tribal classification. 

 
4.2. Pompilinae generic-level classification 

At the generic level there are many taxonomic problems to be solved, such as the 

definition of Agenioideus and Arachnospila. These are in need of revision at the sub-

generic level, for which broader sampling coupled with molecular phylogenetic analyses 

should be informative. Our results show that the definition of Pompilus by Priesner 

(1969) and Day (1981) was correct. The subgenera established by (Evans, 1951) (i.e. 

Xenopompilus, Perissopompilus, Xerochares, Hesperopompilus, Arachnospila, 

Anoplochares, Ammosphex, and Pompilus), which continued to be used after 1981, are 

not members of a single clade, and thus should be considered separate genera. Here we 

give phylogenetic evidence to establish Xenopompilus, Perissopompilus, Xerochares, 
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Hesperopompilus, and Pompilus sensu Day (1981) as valid genera. The morphological 

similarity and probable phylogenetic closeness of Pompilus had been discussed by Day 

(1981). Our analyses show that Pompilus and Aporinellus are sister taxa, nevertheless, 

this assemblage does not include Pompilus (Hesperopompilus) as suggested by Day 

(1981). Pompilus (Hesperopompilus) is more closely related to Pompilus (Xenopompilus) 

and Aporini. 

 
4.3. Evolution of host use and diversification in Pompilinae 

Our results suggest that pompilines are mostly generalists at the host family level, 

while tending to be specialists at the spider guild level. This can be explained by the host-

ecology hypothesis, which assumes that parasitoids can broaden their host range by 

recruiting new hosts that exist within their own searching niche. Specialization thus takes 

place on the level of the host’s niche instead of its taxonomic or phylogenetic identity 

(Tschopp et al., 2013; Zaldivar-Riveron et al., 2008). 

The diversification rate-shift analysis shows that Pompilinae did not diversify at a 

constant rate. There is a significant rate-shift in clade 2 supported by both analyses. The 

rate-shift found in clade 1 was not supported by the BAMM results, which show a slow 

diversification rate for that clade (Figure 7.3). This result, together with the higher 

robustness of BAMM, makes the shift in clade 1 not significant for our discussion. The 

stepwise AIC-based analyses are limited, because they look for a single best model, when 

many distinct combinations of evolutionary shift regimes could be probable. Rather than 

identifying a single best model, BAMM samples rate-shift configurations in proportion to 

their posterior probability. This method is more successful when accounting for non-

random species sampling bias (Rabosky, 2014). 
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The diversification rate-shift supported by both analyses occurs close to the shift 

of the use of ground hunters as hosts. Other host-shifting events did not show a 

significant change in diversification rate. The use of other hunters as hosts, however, was 

maintained in other clades such as the Apareia + Paracyphononyx and Pompilus clade 

where an increase in diversification rate was not observed (Figure 7.2). The main 

difference between these two clades is the number of host species used by a single wasp 

species. Species from the Anoplius and Arachnospila clade use more than 20 host 

species, while Paracyphononyx and Pompilus seem to be specialists at the species level. 

The ground hunters are the most family-diverse of the guilds (Cardoso et al., 2011). The 

ability to exploit a greater number of spider species could have made more niches 

available for the Anoplius and Arachnospila lineage and spurred a shift in the 

diversification rate. This may occur through genetic divergence of populations that shift 

to novel hosts, ultimately leading to reproductive isolation and the formation of new 

species (Baer et al., 2004). 

Host switching has been shown to result in rapid species diversification (Cocroft 

et al., 2008; Ehrlich and Raven, 1964) by environmental differentiation, competition, and 

specialization, as well as antagonistic interactions with hosts (Thompson, 1999). In the 

pompiline scenario, environmental differentiation and competition are the most likely 

drivers, because specialization does not seem to be the norm in the subfamily. The 

availability of new niches, along with the capability of using a higher diversity of hosts, 

probably increased diversification rate in the Anoplius and Arachnospila clades. 

With respect to competition, the only other wasps that use spiders exclusively are 

various genera of Sphecidae and Crabronidae wasps (Gonzaga and Vasconcellos-Neto, 
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2005). Sphecids often specialize on older araneid lineages with two-dimensional web-

building spiders over derived araneoids with three-dimensional web-building spiders 

(Blackledge et al., 2003; Uma, 2010), whereas most pompilines specialize on hunter 

spiders. According to Wilson et al. (2013), the origin of Sphecidae and Crabronidae was 

earlier than Pompilinae. Therefore, it is possible that Pompilinae diversification was 

triggered by an ability to use spider guilds not already exploited by other wasps. Our 

results suggest that the low diversity of the (Batozonellus + Episyron)+ (Poecilopompilus 

+ Austrochares) clade, which uses orb-web weavers (Figure 7.1), may be explained by 

competitive exclusion by sphecid wasps. This could have selected for multiple shifts in 

spider guild use and subsequent diversification of the subfamily.  

 
5. Conclusions 

Molecular and morphological data yield conflicting phylogenies for Pompilinae. 

The tribal classification of Pompilinae is in need of thorough revision, especially to 

circumscribe tribes that apply to all the world fauna and that form monophyletic entities. 

This is also the case for some genera like Schistonyx, Microphadnus, Agenioideus and 

Arachnospila, for which more extensive sampling, and a phylogenetic framework is 

needed to understand their taxonomy. 

The evidence presented here suggests that, for Pompilinae spider wasps, the 

interactions with their spider hosts, and occasional shifts among spider ecological guilds, 

have played an important role in pompiline diversification patterns.  
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TABLE 7.1. Outgroups and ingroup species sampled, voucher ID and Genbank accession 

numbers. 

 

Species 
Voucher 

ID 

28S 
Accession 

# 

EF1 
Accession 

# 

LWRh 
Accession 

# 

Pol2 
Accession 

# 

Wg 
Accession 

# 
Outgroup Taxa   

   
 

Balboana sp. PO394      

Balboana sp. PO395      

Priochilus sp. PO398  
   

 

Priochilus splendidum. PO385  
   

 

Priochilus sericeifrons PO260  
   

 

Priochilus sp. PO264  
   

 

Ingroup Taxa   
   

 

Agenioideus 
(Agenioideus) humilis PO141 

 
   

 

Agenioideus 
(Gymnochares) 
birkmanni PO191 

 
   

 

Agenioideus (Ridestus) 
biedermani PO189 

 
   

 

Agenioideus decipiens PO136 
 

   
 

Agenioideus sp. PO340 
 

   
 

Allochares azureus PO387 
 

   
 

Anoplius (Anopliodes) 
parsonsi PO187 

 
   

 

Anoplius 
(Arachnophroctonus) 
apiculatus PO76 

 
   

 

Anoplius 
(Arachnophroctonus) 
subfasciatus PO202 

 
   

 

Anoplius 
(Lophopompilus) 
aethiops PO8 

 
 

 
 

 

Anoplius sp. PO120 
 

 
 

 
 

Apareia bellicosa PO205 
 

 
 

 
 

Apareia labialis PO176 
 

 
 

 
 

Aporinellus atristylus PO43 
 

 
 

 
 

Aporinellus fuscatus PO148 
 

   
 

Aporinellus sinuatus PO42 
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Aporus (Aporus) 
concolor PO435 

 
   

 

Aporus (Aporus) niger PO11 
 

   
 

Aporus (Aporus) sp. PO310 
 

   
 

Arachnospila 
(Ammosphex) eximia PO147 

 
   

 

Arachnospila 
(Ammosphex) 
occidentalis PO7 

 
   

 

Arachnospila 
(Ammosphex) 
smaragdina PO153 

 
   

 

Arachnospila 
(Ammosphex) sp. PO13 

 
   

 

Arachnospila 
(Anoplochares) apicatus PO171 

 
   

 

Arachnospila 
(Arachnospila) scelestus PO158 

 
   

 

Arachnospila sp. PO211 
 

   
 

Aridestus jaffueli PO144 
 

   
 

Atelostegus thrinax PO342 
 

   
 

Atopompilus sp. PO281 
 

   
 

Austrochares sp. PO105 
 

   
 

Batozonellus fuliginosus PO204 
 

   
 

Batozonellus madecassus PO169 
 

   
 

Ctenostegus hilli PO131 
 

   
 

Dicranoplius cujanus PO199 
 

   
 

Dicranoplius diphonicus PO151 
 

   
 

Episyron viduus PO203 
 

   
 

Euryzonotulus 
nigeriensis PO356 

 
   

 

Evagetes nitidulus PO400 
 

   
 

Evagetes padrinus PO315 
 

   
 

Ferreola erythrocephala PO339 
 

   
 

Ferreola saussurei PO26 
 

   
 

Ferreola sp. PO343 
 

   
 

Ferreola symmetria PO22 
 

   
 

Hesperopompilus 
serrano PO129 

 
   

 

Homonotus sp. PO224 
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Kypopompilus atriventris PO36 
 

   
 

Microphadnus sp. PO159 
 

   
 

Microphadnus sp. PO278 
 

   
 

Paracyphononyx 
consimilis PO219 

 
   

 

Paracyphononyx 
consimilis PO132 

 
   

 

Paracyphononyx 
funereus PO285 

 
   

 

Perissopompilus phoenix PO70 
 

   
 

Perissopompilus sp. PO121 
 

   
 

Poecilopompilus algidus PO49 
 

   
 

Poecilopompilus sp. PO100 
 

   
 

Pompilus cinereus PO270 
 

   
 

Pompilus sp. PO407 
 

   
 

Psorthaspis connexa PO64 
 

   
 

Psorthaspis magna PO9 
 

   
 

Schistonyx aterrimus PO257 
 

   
 

Schistonyx brevispinis PO346 
 

   
 

Schistonyx nyassae PO353 
 

   
 

Spuridiophorus capensis PO337 
 

   
 

Tachypompilus 
ferrugineus PO38 

 
   

 

Tastiotenia festiva PO102 
 

   
 

Telostegus masrensis PO329 
 

   
 

Turneromyia ahrimanes PO222 
 

   
 

Xenopompilus nugador PO119 
 

   
 

Xenopompilus 
tarascanus PO116 

 
   

 

Xerochares expulsus PO54 
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TABLE 7.2. Primers used for PCR amplification and sequencing 

Marker Primer name Primer sequence (5’–3’) Reference 

EF1 F2for1 GGT TCC TTC AAA TAT GCT 

TGG G 

Pilgrim et al., 2006 

 F2rev1 A ATC AGC AGC ACC TTT 

AGG TGG 

Danforth & Ji, 1998 

LWRh PompOps1F ATT CGA CAG ATA CAA 

CGT AAT CG 

Pilgrim et al., 2006 

 LWRhR ATA TGG AGT CCA NGC 

CAT RAA CCA 

Mardulyn & Cameron, 

1999 

 LWRhRApor GAG RGA GAT CGT CAT 

CAA GGC GAC C 

Rodriguez et al. 2014 

Wg LepWg1for GAR TGY AAR TGY CAY 

GGY ATG TCT GG 

Brower & DeSalle, 1998 

 modLepWg2re

v 

ACT ICG CRC ACC ART GGA 

ATG TRC A  

Brower & DeSalle, 1998 

28S CF2 TGG TAA CTC CAT CTA 

AGG CTA AAT A 

Pilgrim et al. 2006 

 D5–4625 R 

(D5R) 

CCC ACA GCG CCA GTT 

CTG CTT ACC  

Schulmeister, 2003 
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Table 7.3. Best partitioning scheme determined by PartitionFinder, the model of 

molecular evolution and the loci included in each.  

 

 

Subset  Best model Subset partitions 
1 SYM+I+G 28S, 3rd codon position LWRh 
2 K80+I+G 1st codon position EF1, 2nd codon position EF1, 

2nd codon position LWRh 
3 SYM+G 3rd codon position EF1 
4 K80+G 1st codon position LWRh 
5 GTR+I+G 1st codon position Pol2 
6 F81 2nd codon position Pol2 
7 K80+I+G 3rd codon position Pol2 
8 K80+I 1st codon position Wg 
9 JC 2nd codon position Wg 
 HKY+G 3rd codon position Wg 
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Table 7.4. Host family and guild for all Pompilinae taxa studied. 

Species 
Voucher 

ID Host family 
Host guild 

 
Reference 

Batozonellus 
madecassus PO169 Araneidae Orb web-weavers  Endo, 1994 

Batozonellus 
fuliginosus PO204 Araneidae Orb web-weavers  Endo, 1994 

Episyron viduus PO203 Araneidae 

Orb web-weavers  Kurczewski & 
Kurczewski 
1968; 
Kurczewski & 
Kurczewski 
1973;  
Kurczewski et al. 
1987; 
Kurczewski  & 
Spofford 1986; 
Wasbauer & 
Powell 1962, 
Kurczewski 
1963, Krombein 
1955, Krombein 
1953a, 1953b; 
Peckhams 1898; 
Rau 1922; Evans 
1951 

Austrochares sp. PO105 unknown    

Poecilopompilus 
algidus PO49 Araneidae, Nephilidae 

Orb web-weavers  Cambra et al. 
2004; 
Kurczewski 
1981;Kurczewski 
& Kurczewski 
1968; Martins 
1991; Krombein 
1979 

Poecilopompilus sp. PO100 Araneidae, Nephilidae 

Orb web-weavers  Cambra et al. 
2004; 
Kurczewski 
1981;Kurczewski 
& Kurczewski 
1968; Martins 
1991; Krombein 
1979 

Tachypompilus 
ferrugineus PO38 Lycosidae, Pisauridae  

Ground hunters, 
sheet web-
weavers 

 Evans and 
Yoshimoto 1962; 
Martins, 1991 

Agenioideus 
decipiens PO136 unknown 

   

Agenioideus 
(Ridestus) 
biedermani 

PO189 Theridiidae, Amaurobiidae 
Space web-
weavers, sheet 
web-weavers 

 Shimizu 1997 

Agenioideus 
(Gymnochares) 
birkmanni 

PO191 Lycosidae, Gnaphosidae, 
Salticidae 

Ground hunters, 
other hunters 

 Wilson & Pitts 
2007; Krombein 
1979; 
Kurczewski & 
Spofford 1986 

Euryzonotulus 
nigeriensis PO356 unknown 

   

Agenioideus 
(Agenioideus) 
humilis 

PO141 Segestriidae, Salticidae, 
Thomisidae, Araneidae 

Sensing web-
weavers, other 
hunters, ambush 
hunters, orb web-
weavers 

 Shimizu 1997 
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Agenioideus sp. PO340 unknown 

   

Spuridiophorus 
capensis PO337 unknown 

   

Homonotus sp. PO224 Clubionidae 
Other hunters  Richards & 

Hamm, 1939; 
Day, 1988 

Ferreola 
erythrocephala PO339 unknown 

   

Ferreola sp. PO343 unknown 
   

Ferreola saussurei PO26 unknown 
   

Ferreola symmetria PO22 unknown 
   

Kypopompilus 
atriventris PO36 unknown 

   

Tastiotenia festiva PO102 Theridiidae 
Space web-
weavers 

 
Evans 1961 

Telostegus masrensis PO329 Thomisidae, Philodromidae; 
Argiopidae 

Ambush hunters, 
other hunters, orb 
web-weavers 

 Gros 1995 

Microphadnus sp. PO159 Lycosidae, Salticidae 
Ground hunters, 
other hunters 

 Ferton 1897 

Perissopompilus 
phoenix PO70 unknown 

   

Perissopompilus sp. PO121 unknown 
   

Hesperopompilus 
serrano PO129 unknown 

   

Xenopompilus 
nugador PO119 unknown 

   

Xenopompilus 
tarascanus PO116 unknown 

   

Psorthaspis connexa PO64 Ctenizidae 
Sensing web 
weavers 

 Davidson 1915 

Psorthaspis magna PO9 Ctenizidae 
Sensing web 
weavers 

 Davidson 1915 

Aporus (Aporus) sp. PO310 Idiopidae, Ctenizidae 
Sensing web-
weavers 

  

Aporus (Aporus) 
concolor PO435 Idiopidae, Ctenizidae 

Sensing web-
weavers 

  

Aporus (Aporus) 
niger PO11 Idiopidae, Ctenizidae 

Sensing web-
weavers 

  

Schistonyx 
brevispinis PO346 Ctenizidae, Lycosidae 

Sensing web-
weavers, ground 
hunters 

 Wahis, 2000 

Microphadnus sp. PO278 unknown 
   

Atelostegus thrinax PO342 unknown 
   

Atopompilus sp. PO281 unknown 
   

Schistonyx aterrimus PO257 Ctenizidae, Lycosidae 
Sensing web-
weavers, ground 
hunters 

 Wahis, 2000 

Schistonyx nyassae PO353 Ctenizidae, Lycosidae 
Sensing web-
weavers, ground 
hunters 

 Wahis, 2000 

Apareia bellicosa PO205 unknown 
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Apareia labialis PO176 unknown 

   

Paracyphononyx 
funereus PO285 Lycosidae, Miturgidae 

Ground hunters, 
other hunters 

 Grout and 
Brothers 1982; 
El Hennawy 
1998 

Paracyphononyx 
consimilis PO219 Lycosidae, Miturgidae 

Ground hunters, 
other hunters 

 Grout and 
Brothers 1982; 
El Hennawy 
1998 

Paracyphononyx 
consimilis PO132 Lycosidae, Miturgidae 

Ground hunters, 
other hunters 

 Grout and 
Brothers 1982; 
El Hennawy 
1998 

Aporinellus 
atristylus PO43 Thomisidae, Salticidae, 

Oxyopidae 

Ambush hunters, 
other hunters 

 Kurczewski & 
Kurczewski 
1968; 
Kurczewski & 
Kurczewski 
1973; Wilson 
and Pitts 2007; 
Kurczewski et al. 
1989 

Aporinellus sinuatus PO42 Thomisidae, Salticidae, 
Oxyopidae 

Ambush hunters, 
other hunters 

 Kurczewski & 
Kurczewski 
1968; 
Kurczewski & 
Kurczewski 
1973; Wilson 
and Pitts 2007; 
Kurczewski et al. 
1988 

Aporinellus fuscatus PO148 Thomisidae, Salticidae, 
Oxyopidae 

Ambush hunters, 
other hunters, 

 Kurczewski & 
Kurczewski 
1968; 
Kurczewski & 
Kurczewski 
1973; Wilson 
and Pitts 2007; 
Kurczewski et al. 
1987 

Ctenostegus hilli PO131 Lycosidae 
Ground hunters  Evans and 

Mathews 1974 

Turneromyia 
ahrimanes PO222 unknown 

   

Pompilus sp. PO407 Lycosidae, Pisauridae, 
Clubionidae 

Ground hunters, 
sheet web-
weavers, other 
hunters 

  

Pompilus cinereus PO270 Lycosidae, Pisauridae, 
Clubionidae 

Ground hunters, 
sheet web-
weavers, other 
hunters 

  

Anoplius 
(Arachnophroctonus) 
apiculatus 

PO76 Lycosidae 
Ground hunters  Wasbauer & 

Kimsey 1989 

Anoplius 
(Lophopompilus) 
aethiops 

PO8 Lycosidae 
Ground hunters  Kurczewski & 

Kurczewski 1968 

Anoplius sp. PO120 unknown 
   

Anoplius 
(Arachnophroctonus) 
subfasciatus 

PO202 Agelenidae, Lycosidae 
Sheet web 
weavers, ground 
hunters 

 Wasbauer & 
Kimsey 1988 

Anoplius 
(Anopliodes) 
parsonsi 

PO187 Ctenidae 
Other hunters  Cambra et al 

2004 
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Dicranoplius 
diphonicus PO151 unknown 

   

Dicranoplius 
cujanus PO199 unknown 

   

Xerochares expulsus PO54 unknown 
   

Aridestus jaffueli PO144 unknown 
   

Arachnospila sp. PO211 unknown 
   

Arachnospila 
(Ammosphex) eximia PO147 unknown 

   

Arachnospila 
(Ammosphex) 
smaragdina 

PO153 unknown 
   

Evagetes nitidulus PO400 Cleptoparasite 

  Evans & 
Mathews 1973, 
Kurczewski & 
Kurczewski 
1968, 
Kurczewski et al. 
1987, 
Kurczewski & 
Kurczewski 1975 

Evagetes padrinus PO315 Cleptoparasite 

  Evans & 
Mathews 1973, 
Kurczewski & 
Kurczewski 
1968, 
Kurczewski et al. 
1987, 
Kurczewski & 
Kurczewski 1975 

Arachnospila 
(Ammosphex) 
occidentalis 

PO7 Lycosidae 
Ground hunters  Powell 1957 

Arachnospila 
(Arachnospila) 
scelestus 

PO158 Lycosidae, Salticidae 
Ground hunters 
other hunters 

 Kurczewski et al 
1987, 
Kurczewski 2010 

Arachnospila 
(Anoplochares) 
apicatus 

PO171 Lycosidae 
Ground hunters  Adlerz 1910 

Arachnospila 
(Ammosphex) sp. PO13 Thomisidae, Gnaphosidae, 

Salticidae 

Ambush hunters, 
ground hunters, 
other hunters 

  

Allochares azureus PO387 Filistatidae 
Sensing web 
weavers 
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Table 7.5. AIC and deltaAIC values for different diversification models for clade 1 

AIC (Akaike Information Criterion) DeltaAICrc (AICrc-AICrv) 

Empirical Simulation Empirical Simulation 

Model 

Mean SD Mean SD Mean SD Mean SD 

yule constant -739 22.33 -578.53 25.57 13.24 5.12 14.03 5.02 

bd constant -737 22.34 -576.53 25.57 15.23 5.13 16.03 5.02 

DDL -747 18.50 -587.27 22.01 5.69 3.95 4.58 3.82 

DDX -742 20.02 -582.29 23.78 10.56 4.87 10.27 4.58 

yule2rate -750 18.64 -590.05 22.75 2.20 2.28 2.51 2.14 

yule3rate -752 19.14 -592.30 22.43 0.15 0.42 0.26 0.63 
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Table 7.6. AIC and DeltaAIC values for different diversification models for clade 2 

AIC (Akaike Information Criterion) DeltaAICrc (AICrc-AICrv) 

Empirical Simulation Empirical Simulation 

Model 

Mean SD Mean SD Mean SD Mean SD 

yule constant -3,946.59 30.45 -2,945.91 43.02 52.85 9.32 43.48 8.25 

bd constant -3,944.59 30.45 -2,943.91 43.02 54.85 9.32 45.48 8.25 

DDL -3,955.18 27.28 -2,980.37 37.09 44.26 6.84 9.02 6.96 

DDX -3,971.40 24.70 -2,958.303 40.25 28.04 6.83 31.09 9.71 

yule2rate -3,977.13 25.17 -2,980.51 38.47 22.31 4.61 8.88 4.23 

yule3rate -3,999.45 24.65 -2,989.16 36.57 0 0 0.23 0.90 
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Figure 7.1. Consensus phylogenetic reconstruction for Pompilinae resulting from two 

Bayesian MCMC runs performed in MrBayes and 100 Bootstrap replicates through a ML 

search. Bayesian posterior probabilities (PP) are shown below nodes and ML bootstrap 

support values (BS) are shown above nodes. Nodes with PP>0.99 or BS>99 are indicated 

with asterisks. Outgroups and support values for nodes with PP or BS <50 are not shown.  
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Figure 7.2. Consensus chronogram for Pompilinae resulting from two Bayesian MCMC 

runs performed in BEAST. Ancestral character mapping by ML is shown on the left with 

circle areas corresponding to probability of ancestral states. Ancestral character mapping 

by parsimony is shown on the right with colored lines corresponding to ancestral state.  
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Figure 7.3. Set of distinct diversification rate-shift configurations sampled by BAMM 

during simulation of the posterior. These are the nine most commonly sampled 

configurations. Warm colors indicate high diversification rates. Cold colors indicate low 

diversification rates. Red or blue dots indicate diversification rate-shifts. Larger dots 

indicate larger diversification rate-shift. The sampling frequency of each diversification 

scheme is shown over each plot 

f = 0.43 f = 0.18 f = 0.095

f = 0.07 f = 0.068 f = 0.054

f = 0.024 f = 0.019 f = 0.011
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

 
Pompilids are a diverse group of wasps, with an understudied taxonomy, that have 

a great potential as models for answering compelling evolutionary and biogeographical 

questions. Some limitations like the lack of knowledge of their natural history, 

classification and phylogenetics hinder the advancement in these fields. Recently 

published phylogenetic studies have been based solely of morphological data (Pitts et al., 

2006; Shimizu, 1994), which have not proven to be highly informative. In light of the 

lack of knowledge about the systematics of Pompilidae, this dissertation research focused 

on the use of molecular data to generate phylogenetic reconstructions at various 

taxonomic levels to address evolutionary, biogeographical, and taxonomic questions in 

spider wasps. Chapters 2 and 3 aimed at studying fossil Pompilidae in order to establish 

accurate calibration points for time divergence studies. Chapter 4 aimed to study the 

utility of molecular data for species delimitations and sex-associations in the genus 

Drepanaporus. Chapter 5 aimed to test various biogeographic hypotheses using Aporini 

as a model. Chapter 6 aimed to understand the influence of codivergence in the evolution 

of Müllerian mimicry between velvet ants and Psorthaspis spider wasps. Chapter 7 aimed 

to study the correlation between diversification rate-shifts and host shifts in Pompilinae. 

This study expanded our knowledge of the phylogenetics, classification, and 

evolution of Pompilidae at various hierarchical levels and geological ages. This 

dissertation revealed, in the first place, that the accurate study of the fossil record is a 

valuable step for the understanding of the evolutionary history of any group. The results 

of Chapters 2 and 3 established the correct age of Pompilidae based on the fossil record, 
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which is almost 50 Myr younger than had been established by previous analyses (i. e. 

Engel and Grimald, 2006). Moreover, the thorough taxonomic study of Pompilidae 

fossils established accurate calibration points to be used for divergence time estimation 

studies. 

Molecular studies presented in this work also established the utility of nuclear 

molecular makers, specifically intron data from LWRh, for species delimitation and sex-

associations in pompilids of the genus Drepanaporus. Moreover, it was determined that 

the use of COI for species delimitation and sex associations should be taken with caution, 

because the sequences can sometimes produce misleading results.  

I also established the utility of molecular data to produce time-calibrated 

phylogenies suitable for the study of biogeographical and evolutionary processes in 

spider wasps. With the use of molecular data, I tested various biogeographical hypotheses 

that had never been tested before for Pompilidae. I also expanded North America’s 

largest Müllerian mimicry complex and determined the effect of coevolution in its 

development. Finally, I tested the hypothesis that host switches have an influence in 

diversification rate shifts. 

Spider wasps are still an understudied group with great potential for evolutionary 

studies. Because of this, the usage of molecular phylogenetics to understand the diversity 

and evolution of this group proves promising as a contribution to the knowledge of the 

diverse insect fauna of the world. 
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