Utah State University

The Dynamics of Duopoly

Gordon E. Johnson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd
Part of the Economics Commons

Recommended Citation

Johnson, Gordon E., "The Dynamics of Duopoly" (1966). All Graduate Theses and Dissertations. 2805. https://digitalcommons.usu.edu/etd/2805

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

THE DYNAMICS OF DUOPOLY

by
Gordon E. Johnson

A thesis submitted in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE
in
Economics

UTAH STATE UNIVERSITY
Logan, Utah
1966

TABLE OF CONTENTS

STATEMENT OF PROBLEM 1
METHODS OF ANALYSIS 9
Theoretical Derivation of Dynamic Reaction Curves 9
Measurement of Conjectural Variation 15
RESULTS AND DISCUSSION 35
Identical Cost Curves, Limited Information 35
Identical Cost Curves, Complete Information 36
Similar Cost Curves, Limited Information 37
Dissimilar Cost Curves, Limited Information 38
Dissimilar Cost Curves, Complete Information 40
Discussion 41
BIBLIOGRAPHY 43
APPENDIXES 44
Appendix I 44
Appendix II 50
Appendix III 52
Appendix IV 54
Appendix V 56
Appendix VI 58
Appendix VII 60
Appendix VIII 62
Appendix IX 64
Appendix X 66
Appendix XI 68

LIST OF TABLES

Table Page
1A. Conjectural variations for duopolists 1 with identical cost curves, limited information 21
1B. Conjectural variations for duopolists 2 with identical cost curves, limited information 23
2A. Conjectural variations for duopolists 1 with identical cost curves, complete information 25
2B. Conjectural variations for duopolists 2 with identical cost curves, complete information 26
3A. Conjectural variations for duopolists 1 with similar cost curves, limited information 27
3B. Conjectural variations for duopolists 2 with similar cost curves, limited information 28
4A. Conjectural variations for duopolists 1 with dissimilar cost curves, limited information 29
4B. Conjectural variations for duopolists 2 with dissimilar cost curves, limited information 31
5A. Conjectural variations for duopolists 1 with dissimilar cost curves, complete information 33
5B. Conjectural variations for duopolists 2 with dissimilar cost curves, complete information 34

A monopolist, knowing the demand curve for his product, can in a given period produce the quantity of this product which will maximize his profit. Any larger or smaller quantity will result in less profit. When another manufacturer starts producing the same or similar product, a duopoly results. The new manufacturer, in order to maximize his profit, according to Cournot (2), will choose a quantity that is derived on the assumption that the original manufacturer's quantity will remain fixed.

Cournot's treatment of competition between two producers, originally published in 1838, was translated into English in 1897. As an abstract example Cournot considers two proprietors who each own springs and who sell springwater to the same market with negligible costs of production. The profits of proprietors 1 and 2 are respectively expressed as $D_{1} f\left(D_{1}+D_{2}\right)$ and $D_{2} f\left(D_{1}+D_{2}\right)$ where $D_{1}+D_{2}$ is total production and where price is a function of total production.

Proprietor 1 can have no direct influence on the determination of D_{2}. But he can adjust his price for the value of D_{1} which is best for him according to the condition:

$$
\frac{\partial\left[D_{1} f\left(D_{1}+D_{2}\right)\right]}{\partial D_{1}}=0
$$

and proprietor 2 can determine D_{2} in terms of D_{1} by the analogous condition:

$$
\frac{\partial\left[D_{2} f\left(D_{1}+D_{2}\right)\right]}{\partial D_{2}}=0
$$

After the new manufacturer enters the market, with a quantity based on the assumption that his competitor's quantity will remain fixed, the original manufacturer must change his quantity of production in order to again maximize his profit since both duopolists share the same linear demand curve. This quantity is derived using the assumption that the new manufacturer won't change his quantity. One sets an output; this induces the first to readjust his, and so on. Each quantity adjustment by a manufacturer is smaller than his previous adjustment and in the opposite direction. Theoretically, an equilibrium will be reached only after an infinite number of adjustments. Practically, an equilibrium is reached with a finite number of adjustments because it is impossible for a manufacturer to produce and market fractions of a unit.

Only with production quantities at the Cournot equilibrium are the conditions on the previous page simultaneously satisfied, and with the conditions simultaneously satisfied neither duopolist has an incentive to change his production quantity. However, at the Cournot equilibrium the total income is less than the income received if either proprietor were a monopolist. With a collusive agreement to share the market and produce the monopoly output, each duopolist would receive greater income than if production were at the Cournot equilibrium. Without a collusive agreement the monopoly output is unstable because either duopolist could fix his
production at a higher or lower rate with a temporary benefit. The proprietor who adopts this course of action is soon punished because the other proprietor will then adopt a new scale of production. These successive reactions, instead of bringing both duopolists nearer to the condition of monopoly, separate them farther and farther from it.

Cournot further describes the path to equilibrium and shows mathematically why the monopoly quantity is unstable with two proprietors. This is also done for more than two proprietors and for proprietors that have limitations of productive capacity and varying production costs.

What Cournot explains mathematically is showed graphically by Chamberlin (1). Chamberlin also shows that with a linear demand curve and zero or identical constant costs of production a duopolist maximizes his profit by selecting a production quantity that is one-half the competitive output minus one-half the production quantity of the other duopolist. The competitive output is defined as the aggregate output that yields zero profits to each of the duopolists if the duopolists had no production costs. Therefore, if the current production of duopolist 1 is zero, the monopoly output for duopolist 2 is one-half the competitive output. If the current production of duopolist 2 is one-half the competitive output, duopolist 1 will enter the market with a production of one-quarter the competitive output. The next quantity for duopolist 2 will be three-eighths the competitive output, and the following quantity for duopolist 1 will be fivesixteenths of the competitive output. Both geometric series converge to one-third the competitive output so the aggregate output at the Cournot
equilibrium is two-thirds of the competitive output.
In real life it is doubtful that each duopolist readjusts his output with absolutely no expectation of retaliation. Thus Hicks (6) adds the concept of conjectural variation to the Cournot model in an effort to anticipate these expectations. The characteristic feature of the Hicksian model is that when there are only a few proprietors, the fear of retaliation is great. A duopolist, when changing his production quantity to maximize his profits, may attempt to predict the resulting quantity change of his competitor. Under these conditions marginal revenue to duopolist 1 becomes:

$$
\frac{\partial\left[D_{1} f\left(D_{1}+D_{2}\right)\right]}{\partial D_{1}}=f\left(D_{1}+D_{2}\right)+D_{1} f^{\prime}\left(D_{1}+D_{2}\right)+D_{1} f^{\prime}\left(D_{1}+D_{2}\right) \frac{\partial D_{2}}{\partial D_{1}}
$$

where $\frac{\partial D_{2}}{\partial D_{1}}$, hereafter referred to as conjectural variation, is the degree to which duopolist 1 expects duopolist 2 to expand or contract output, if he himself expands output by an increment ΔD_{1}.

A reaction curve can be constructed giving the profit maximizing output of duopolist 1 corresponding to each possible output of duopolist 2 when it is assumed that $\frac{\partial D_{2}}{\partial D_{1}}$ is invarient over time for each output of duopolist 2. Likewise a reaction curve giving the profit maximizing output of duopolist 2 corresponding to each possible output of duopolist 1 can be constructed. The intersection of these two reaction curves establishes a stable equilibrium. Movement away from this intersection
causes the output of one duopolist to rise and that of the other to fall. However, as pointed out by Fellner (3), equilibrium may not be at the intersection of these two reaction curves since the reaction curves may shift before equilibrium is achieved. This shifting occurs whenever original predictions, by both duopolists concerning their rival's behavior, are modified. An equilibrium is stable only as long as nobody realizes his notions are incorrect. It is extremely likely that these notions will be tested--particularly if previous quantity decisions by a duopolist had resulted in less than the maximum possible profit.

According to Stackleberg's duopoly analysis, if equilibrium is to be the outcome, it will not occur at the Cournot equilibrium. Rather the equilibrium will be at quantities near the monopoly output as achieved by a tacit or collusive agreement or else the equilibrium will be at the quantities where one duopolist succumbs to the leadership of the other. A follower adjusts his output level given the quantity decisions of the leader, and the leader knows it. A leader does not observe his own reaction curve. He assumes that the rival acts as a follower, and the leader proceeds to maximize his profit. Conjectural variation of the leader is the slope of the follower's reaction curve. This reaction function gives the profit maximizing output of the leader corresponding to each possible output of the follower. In this case the leader's conjectural variation is not necessarily zero, since the leader knows what the follower will do. It is possible that the follower will not react in
attempting to stop the leader short of complete leadership. A Cournot time path to equilibrium occurs when both duopolists act as followers. This equilibrium occurs at the intersection of the two reaction curves.

A Stackleberg profit-indifference map shows the combination of outputs by one proprietor on one axis and outputs by the other proprietor on the other axis which results in identical profits to the proprietor in question. The reaction function of the proprietor is then defined as the locus of tangency points of the family of curves to lines perpendicular to his rival's axis. The leadership equilibrium point of the proprietor is that point of the rival's (follower's) reaction curve where it becomes tangent to a profit-indifference curve of the leader. The followership point of a proprietor is the same as his rival's leadership point.

Microeconomic theory (5) shows with numerical examples profits to each duopolist at the Cournot equilibrium and profits to each duopolist when one has succumbed to the leadership of the other. Clearly the duopolist who becomes a leader receives the most profit. For this reason Stackleberg predicts both duopolists will strive to become leaders and that disequilibrium will be the outcome since both reaction curves will be constantly shifting.

Conjectural variation is the degree to which one duopolist expects the other to expand or contract output in retaliation for a quantity change; so if both duopolists exhibit a Cournot dynamic time path to equilibrium, the conjectural variation associated with each quantity
change is zero. A dynamic time path, that differs from the Cournot time path, to the Cournot equilibrium causes conjectural variations that originally are non-zero to approach zero. Stackleberg disequilibrium causes conjectural variations to vary randomly without a tendency to approach any fixed values. A leader-follower relationship causes conjectural variation of the follower to approach zero and the conjectural variations of the leader to approach a fixed negative value. Collusive agreements cause the conjectural variations of both duopolists to approach fixed positive values.

Duopoly bargaining situations are simulated in the laboratory to determine under what conditions one of the above outcomes is to be expected. Students are given actual cash payments according to production quantities selected. Following each selection the conjectural variation exhibited by the student in selecting that quantity is calculated. The empirical data from these simulations is used in developing models to predict conjectural variation for future time periods. Once these models are obtained and if Stackleberg disequilibrium is not the outcome, the complete equations for both reaction curves can be derived. Students play these games having either identical, similar, or dissimilar cost curves. Fixed and variable costs are such that with identical cost curves the Cournot equilibrium for both duopolists is 63 units of production. With similar cost curves the Cournot equilibrium is 66 and 56 respectively for duopolists 1 and 2 . With dissimilar cost curves the

Cournot equilibrium is 72 and 42 . On some games the players know the profit level of their opponent in addition to their own.

Empirical data obtained in the same manner by Lawrence E. Fouraker and Sidney Siegel (4) support the following conclusions:

1. Bargainers under incomplete information (knowing only their own profit levels but not the profit levels of their opponents) tend to negotiate transactions at the Cournot equilibrium.
2. Increasing the amount of relevant information available to bargainers decreases the tendency to the Cournot point.
3. Bargaining groups under complete information (knowing the profit level of their opponents in addition to their own), show no strong tendency or typical solution in their negotiated transactions, but rather show a multi-modal distribution of results. Under complete information some oligopolies show a tendency to the Paretian optima (outputs that result in the largest aggregate profit), some to the competitive point, and some to mixed solutions.

However, in the study by Fouraker and Siegel when students exhibited a tendency to negotiate to equilibriums, conjectural variation was not measured and no attempt was made to derive equations of the reaction cruves. Only payoff matrices were used that had the same Cournot equilibrium quantity for both duopolists, and zero cost curves were assumed.

METHODS OF ANALYSIS

Theoretical Derivation of Dynamic Reaction Curves

Equation (1) is the demand function for the combined output of two duopolists; equations (2) and (3) are cost functions for duopolists 1 and 2 respectively.

$$
\begin{align*}
& \mathrm{p}(\mathrm{t})=\mathrm{a}-\mathrm{b}\left[\mathrm{q}_{1}(\mathrm{t})+\mathrm{q}_{2}(\mathrm{t})\right] \tag{1}\\
& \mathrm{T}_{1}\left[\mathrm{q}_{1}(\mathrm{t})\right]=\mathrm{k}_{1}+\mathrm{c}_{1} \mathrm{q}_{1}(\mathrm{t})+\mathrm{d}_{1} \mathrm{q}_{1}^{2}(\mathrm{t}) \tag{2}\\
& \mathrm{T}_{2}\left[\mathrm{q}_{2}(\mathrm{t})\right]=\mathrm{k}_{2}+\mathrm{c}_{2} \mathrm{q}_{2}(\mathrm{t})+\mathrm{d}_{2} \mathrm{q}_{2}^{2}(\mathrm{t}) \tag{3}
\end{align*}
$$

Given that each duopolist has a two period planning horizon, the profit to duopolist 1 is :

$$
\begin{aligned}
\pi_{1} & =\left[a-b q_{1}(t)-b q_{2}(t)\right] q_{1}(t)-\left[k_{1}+c_{1} q_{1}(t)+d_{1} q_{1}^{2}(t)\right] \\
& +\left[a-b q_{1}(t+1)-b q_{2}(t+1) q_{1}(t+1)\right]-\left[k_{1}+c_{1} q_{1}(t+1)\right. \\
& \left.+d_{1} q_{1}^{2}(t+1)\right]
\end{aligned}
$$

The profit to duopolist 1 can then be maximized with respect to $\mathrm{q}_{1}(\mathrm{t})$ as follows :

$$
\begin{align*}
& \frac{\partial \pi_{1}}{\partial q_{1}(t)}=\left[a-b q_{1}(t)-b q_{2}(t)\right]+q_{1}(t)\left[-b-b \frac{\partial q_{2}(t)}{\partial q_{1}(t)}\right]-c_{1} \\
& \quad-2 d_{1} q_{1}(t)+\left[a-b q_{1}(t+1)-b q_{2}(t+1)\right] \frac{\partial q_{1}(t+1)}{\partial q_{1}(t)} \\
& \quad+q_{1}(t+1)\left[-b \frac{\partial q_{1}(t+1)}{1 q_{1}(t)}-b \frac{\partial q_{2}(t+1)}{\partial q_{1}(t)}-c_{1} \frac{\partial q_{1}(t+1)}{\partial q_{1}(t)}\right] \\
& \tag{5}\\
& \quad-2 d_{1} q_{1}(t+1) \frac{\partial q_{1}(t+1)}{\partial q_{1}(t)}=0 .
\end{align*}
$$

Since duopolist 1 does not expect duopolist 2 to react instantaneously to changes in $q_{1}(t), \frac{\partial q_{2}(t)}{\partial q_{1}(t)}=0$. However, $\frac{\partial q_{2}(t+1)}{\partial q_{1}(t)}$ is not necessarily zero;

$$
\frac{\partial q_{2}(t+1)}{\partial q_{1}(t)}
$$

the conjectural variation of duopolist 1 and designated by $\ell_{1}(t)$, is the degree to which duopolist 1 expects duopolist 2 to expand or contract output, if he himself changes output by an increment $\Delta \mathrm{q}_{1}$. Duopolist 1 will not alter output in the next period solely as a result of changes in output occurring during the present period; therefore

$$
\frac{\partial q_{1}(t+1)}{\partial q_{1}(t)}=0
$$

and equation (5) becomes:

$$
\begin{align*}
\frac{\partial \pi_{1}}{\partial q_{1}(t)} & =a-b q_{1}(t)-b q_{2}(t)-b q_{1}(t)-c_{1}-2 d_{1} q_{1}(t) \\
& -b q_{1}(t+1) \ell_{1}(t)=0 . \quad . \quad . \quad . \tag{6}
\end{align*}
$$

The profit to duopolist 1 can then be maximized with respect to $q_{1}(t+1)$.

$$
\begin{array}{r}
\frac{\partial \pi_{1}}{\partial q_{1}(t+1)}=\left[a-b q_{1}(t)-b q_{2}(t)\right] \frac{\partial q_{1}(t)}{\partial q_{1}(t+1)}+q_{1}(t)\left[-b \frac{\partial q_{1}(t)}{\partial q_{1}(t+1)}\right. \\
\left.-b \frac{\partial q_{2}(t)}{\partial q_{1}(t+1)}\right]-c \frac{\partial q_{1}(t)}{\partial q_{1}(t+1)}-2 d_{1} q_{1}(t) \frac{\partial q_{1}(t)}{\partial q_{1}(t+1)} \\
+\left[a-b a_{1}(t+1)-b q_{2}(t+1)\right]+q_{1}(t+1)\left[-b-b \frac{\partial q_{2}(t+1)}{\partial q_{1}(t+1)}\right] \\
 \tag{7}\\
-2 d_{1} q_{1}(t+1)=0 . \quad . \quad . \quad . \quad . \quad . \quad .(7)
\end{array}
$$

Since duopolists 1 and 2 do not anticipate any reaction occurring in the present time period as a result of action in subsequent time periods, $\frac{\partial q_{1}(t)}{\partial q_{1}(t+1)}$ and $\frac{\partial q_{2}(t)}{\partial q_{1}(t+1)}=0$. Since instantaneous reaction by either duopolist is not anticipated $\frac{\partial q_{2}(t+1)}{\partial q_{1}(t+1)}=0$. Now equation (7) becomes:

$$
\begin{equation*}
\frac{\partial \pi_{1}}{\partial q_{1}(t+1)}=a-b q_{1}(t+1)-b q_{2}(t+1)-b q_{1}(t+1)-c_{1}-2 d_{1} q_{1}(t+1)=0 \tag{8}
\end{equation*}
$$

Solving for $q_{1}(t+1)$:

$$
q_{1}(t+1)=\frac{a-c_{1}-b q_{2}^{\prime}(t+1)}{2\left(b+d_{1}\right)}
$$

The anticipated output by duopolist 1 of duopolist 2 in period $t+1$ is $q_{2}^{\prime}(t+1)$. (A primed quantity indicates the quantity is an anticipated output by the other duopolist rather than the actual output. This distinction is necessary in the following computations.)

By definition of conjectural variation $q_{1}(t+1)$ can be arrived at as follows:

$$
\begin{align*}
& q_{2}^{\prime}(t)=q_{2}(t-1)+\left[q_{1}(t-1)-q_{1}(t-2)\right] \frac{\partial q_{2}(t)}{\partial q_{1}(t-1)} . \tag{10}\\
& q_{2}^{\prime}(t+1)=q_{2}(t)+\left[q_{1}(t)-q_{1}(t-1)\right] \frac{\partial q_{2}(t+1)}{\partial q_{1}(t)} . \tag{11}
\end{align*}
$$

where $\frac{\partial q_{2}(t)}{\partial q_{1}(t-1)}$ and $\frac{\partial q_{2}(t+1)}{\partial q_{1}(t)}$ are conjectural variations for two successive period. Thus $q_{1}(t+1)$ becomes:

$$
\begin{equation*}
q_{1}(t+1)=\frac{a-c_{1}-b\left[q_{2}^{\prime}(t)+\left\{q_{1}(t)-q_{1}(t-1)\right\} \ell_{1}(t)\right]}{2\left(b+d_{1}\right)} \tag{12}
\end{equation*}
$$

where $\ell_{1}(t)=\frac{\partial q_{2}(t+1)}{\partial q_{1}(t)}$. Substituting equation (12) into (4):

$$
\begin{gather*}
\frac{\partial \pi_{1}}{\partial q_{1}(t)}=a-b q_{1}(t)-b q_{2}^{\prime}(t)-b q_{1}(t)-c_{1}-2 d_{1} q_{1}(t) \\
-\frac{b}{2\left(b+d_{1}\right)}\left(a-c_{1}-b\left[q_{2}^{\prime}(t)+\left\{q_{1}(t)-q_{1}(t-1)\right\}\right]\right. \\
\left.\quad \ell_{1}(t)\right) \ell_{1}(t)=0 \quad . \quad . \quad . \tag{13}
\end{gather*}
$$

Solving for $q_{1}(t)$:

By differentiating equations (1) and (2) with respect to $q_{1}(t)$ after multiplying equation (1) by $q_{1}(t)$, marginal revenue and marginal costs are obtained. Equating marginal revenue to marginal cost and solving for $q_{1}(t)$ yields:

$$
\begin{equation*}
q_{1}(t)=\frac{a-c_{1}-b q_{2}(t)}{2\left(b+d_{1}\right)} \tag{15}
\end{equation*}
$$

Equation (15) shows $q_{1}(t)$ that maximizes profit to duopolist 1 for any value $q_{2}(t)$ selected by duopolist 2 .

Let conjectural variation be defined as follows:

$$
\begin{equation*}
\ell_{1}(t)=\alpha_{1}+\beta_{1}\left(\frac{a-c_{1}-b q_{2}(t-1)}{2\left(b+d_{1}\right)}-q_{1}(t-1)\right)+\gamma_{1} \ell_{1}(t-1) \tag{16}
\end{equation*}
$$

The expression in parenthesis in equation (16) is the quantity by which duopolist 1 missed his profit-maximizing quantity on the last production decision; the expression satisfies the following conditions: (a) If duopolist 2 is not in the market and duopolist 1 is producing a profit maximizing quantity, the conjectural variation is zero; this is expected in real life because duopolist 1 does not expect any reaction from duopolist 2 until duopolist 2 is known to be in the market. (b) When both duopolists are at their respective Cournot equilibriums, conjectural variation defined as $\ell_{1}(t)$ is zero; this is so because duopolist 1 expects duopolist 2 to eventually produce a quantity specified by the Cournot equilibrium and maintain that quantity.

The constant β exists only when both duopolists fail to reach the Cournot equilibrium. If both duopolists reach the Cournot equilibrium α will be zero. If duopolist 2 becomes a follower, α_{2} will be zero and α_{1} for duopolist 1 will be negative; the degree of leadership by duopolist 1 is indicated by how negative α_{1} is. With Stackleberg disequilibrium, both α_{1} and α_{2} are negative. If duopolist 1 is attempting to reach a tacit agreement or has obtained one α_{1} is positive.

The constant γ exists only when a duopolist considers previous conjectural variations in making current decisions of production quantities.

$$
\begin{align*}
& \frac{q_{2}(t)=2\left[b+d_{2}\right]\left[a-c_{2}-b q_{1}^{\prime}(t)\right]-b\left[a-c_{2}-b q_{1}^{\prime}(t)+b q_{2}(t-1) \ell_{2}(t)\right] \ell_{2}(t)}{b^{2}\left[4-\ell_{2}^{2}(t)\right]+4 d_{2}\left(2 b+d_{2}\right)} \tag{17}\\
& q_{1}^{\prime}(t)=q_{1}(t-1)+\left[q_{2}(t-1)-q_{2}(t-2)\right] \ell_{2}(t-1) \ell_{2}(t-1) \\
& \cdot \cdot \cdot \cdot \cdot \cdot \cdot(17) \\
& \ell_{2}(t)=d_{2}+\beta_{2}\left(\frac{a-c_{2}-b q_{1}(t-1)}{2\left(b+d_{2}\right)}-q_{2}(t-1)\right)+\gamma_{2} \ell_{2}(t-1)
\end{align*}
$$

Measurement of Conjectural Variation

Solving equation (14) for $\ell_{1}(t)$:

$$
\begin{align*}
\ell_{1}(t)= & \frac{-b\left\{a-c_{1}-b q_{2}^{\prime}(t)\right\} \pm \sqrt{b^{2}\left[a-c_{1}-b q_{2}^{\prime}(t)\right]^{2}-4 b^{2}\left\{q_{1}(t-1)\right.}}{2 b^{2}\left[q_{1}(t-1)-q_{1}(t)\right]} \\
& \frac{\left.-q_{1}(t)\right\}\left\{q_{1}(t)\left[4 b^{2}+8 d_{1} b+4 d_{1}^{2}\right]-2\left[b+d_{1}\right]\right.}{\left.\left[a-c_{1}-b q_{2}^{\prime}(t)\right]\right\}}
\end{align*}
$$

where

$$
q_{2}^{\prime}(t)=q_{2}(t-1)+\left\{q_{1}(t-1)-q_{1}(t-2)\right\} \ell_{1}(t-1)
$$

To show that the desired root exists only when the square root in the above equation is $(+)$, it is necessary to evaluate limit $\ell_{1}(t)$ as $\mathrm{q}_{1}(\mathrm{t}) \rightarrow \mathrm{q}_{1}(\mathrm{t}-1)$ using a $(+)$ sign. Multiplying both numerator and denomenator of equation (20) by

$$
\begin{gathered}
-b\left\{a-c_{1}-b q_{2}^{\prime}(t)\right\}-\sqrt{b^{2}\left[a-c_{1}-b q_{2}^{\prime}(t)\right]^{2}-4 b^{2}\left\{q_{1}(t-1)-q_{1}(t)\right\}} \\
\frac{\left\{q_{1}(t)\left(4 b^{2}+8 d_{1} b+4 d_{1}^{2}-2[b+d]\left[a-c_{1}-b q_{2}^{\prime}(t)\right]\right)\right\}}{}
\end{gathered}
$$

and letting $q_{1}(t) \rightarrow q_{1}(t-1)$:

$$
\begin{equation*}
\operatorname{Lim}_{q_{1}(t) \rightarrow q_{1}(t)}(t-1)=\frac{-\left[4 b^{2}+8{d_{1}}_{1} b+4 d^{2}\right] q_{1}(t)+2\left[b+d_{1}\right]\left[a \cdots c_{1}-b q_{2}^{\prime}(t)\right]}{b\left[a-c_{1}-b q_{2}^{\prime}(t)\right]} \tag{21}
\end{equation*}
$$

Using a $(-)$ sign, $\lim _{q_{1}(t) \rightarrow q_{1}}(t-1)=\infty$

Equation (21) provides a method of evaluating conjectural variation when the production quantity of a producer remains constant from one period to the next. Of course equation (20) can only be used to evaluate conjectural variation when the production quantity changes.

Using identical calculations, the equations for measuring conjectural variation of duopolist 2 are obtained:

$$
\ell_{2}(t)=\frac{\left.-\mathrm{b}\left\{\mathrm{a}-\mathrm{c}_{2}-\mathrm{bq}_{1}^{\prime}(\mathrm{t})\right\}+\sqrt{\mathrm{b}^{2}\left[\mathrm{a}-\mathrm{c}_{2}-\mathrm{bq}\right.} \mathrm{q}_{1}^{\prime}(\mathrm{t})\right]^{2}-4 \mathrm{~b}^{2}\left\{\mathrm{q}_{2}(\mathrm{t}-1)\right.}{2 \mathrm{~b}^{2}\left[\mathrm{q}_{2}(\mathrm{t}-1)-\mathrm{q}_{2}(\mathrm{t})\right]}
$$

$$
\begin{equation*}
\left.\mathrm{q}_{2}(\mathrm{t})\right\}\left\{\mathrm{q}_{2}(\mathrm{t})\left[4 \mathrm{~b}^{2}+8 \mathrm{~d}_{1} \mathrm{~b}+4 \mathrm{~d}_{1}^{2}\right]-2\left[\mathrm{~b}+\mathrm{d}_{1}\right]\left[\mathrm{a}-\mathrm{c}_{1}-\mathrm{bq}_{1}^{1}(\mathrm{t})\right]\right\} \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{1}^{\prime}(t)=q_{1}(t-1)+\left\{q_{2}(t-1)-q_{2}(t-2)\right\} \ell_{2}(t-1) \\
& \lim _{q_{2}(t) \rightarrow q_{2}(t-1)} \ell_{2}(t)=\frac{-\left[4 b^{2}+8 d_{2} b+4 d_{2}^{2}\right] q_{2}(t)+2\left[b+d_{2}\right]\left[a-c_{2}-b q_{1}^{\prime}(t)\right]}{b\left[a-c_{2}-b q_{1}(t)\right]} \tag{23}
\end{align*}
$$

The conjectural variation for each decision of every game was computed with the aid of an IBM 1620 computer using equations (20) through (23).

Description of Games

Five empirical games were played; and in each game there were 10 to 21 players representing duopolist 1 and 10 to 21 players representing duopolist 2 for a total of approximately 160 players. The players were undergraduate students at Utah State University who volunteered and had completed Freshman Economics. As each student volunteered he was arbitrarily assigned a future game time that was not in conflict with a previously scheduled game or the student's class schedule.

Physical arrangements were such that a player did not know the identity of his opponent until after the game. It was felt that asking each player not to discuss the experiment with anyone would cause more discussion than if they were not asked. Also discussion probably could not bias the results since a player and any preceeding player had only one chance in eight of being assigned matricies with the same payoff levels.

When a bargaining pair first met with the administrator, each player was furnished with an instruction sheet (see Appendix I), a copy of one of various compatible payoff matricies (see Appendixes II through XI) and the starting production quantity of both duopolists. The starting point on all matricies was the quantity that results in maximum profit to a duopolist if his opponent is not in business. In other words the conjectural variation is zero for both duopolists when they first start production: theoretically, neither duopolist knows the other exists, and neither duopolist expects retaliation until he is aware of the competition.

Next each duopolist examined his payoff matrix and secretly marked the quantity of production on a slip of paper. The administrator examined both slips of paper, recorded $q_{1}(1)$ and $q_{2}(1)$ along with the payoff, and advised each player of his payoff and opponents move by returning the paper. After 9 more such moves the payoffs were totaled and paid. No conversation was permitted between participants during the session,

Calculation of Payoff Matricies

All payoff matricies contain 962 cells. (See Appendixes II through XI) In each cell the lower number is the payoff to duopolist 1 and the upper number is the payoff to duopolist 2. A cell is selected by duopolist 1 choosing a q_{1} on the abscissa and duopolist 2 simultaneously choosing a q_{2} on the ordinate. If duopolist 1 holds his q_{1} constant, duopolist 2 can select 31 cells by varying his q_{2} and visa versa. If a game is classified as limited information, as contrasted to full information, each player knows only his own payoff so there is just one payoff number in each cell.

Payoffs to duopolists 1 and 2 with identical cost curves (Cournot equilibrium of 63 for both duopolists) are calculated from the following equation:

$$
\begin{equation*}
\pi_{1}=\pi_{2}=\left\{117-0.5\left[q_{1}(t)+q_{2}(t)\right]\right\} q_{1}(t)-810-9.0 q_{1}(t)-0.1 q_{1}^{2}(t) \tag{24}
\end{equation*}
$$

Payoffs to duopolist 1 with similar cost curves (Cournot equilibrium of 66) are calculated from the following equation:

$$
\begin{equation*}
\pi_{1}=\left\{11.7-0.5\left[q_{1}(t)+q_{2}(t)\right]\right\} q_{1}(t)-1260-9.0 q_{1}(t)-0.1 q_{1}^{2}(t) \tag{25}
\end{equation*}
$$

Payoffs to duopolist 2 with similar cost curves (Cournot equilibrium of
56) are calculated from the following equation:

$$
\begin{equation*}
\pi_{2}=\left\{117-0.5\left[q_{2}(t)+q_{1}(t)\right]\right\} q_{2}(t)-880-5.0 q_{2}(t)-0.2 q_{2}^{2}(t) \tag{26}
\end{equation*}
$$

Payoffs to duopolist 1 with dissimilar cost curves (Cournot equilibrium of 72) are calculated from the following equation :

$$
\begin{equation*}
\pi_{1}=\left\{117-0.5\left[q_{1}(t)+q_{2}(t)\right]\right\} q_{1}(t)-1890-9.0 q_{1}(t)-0.1 q_{1}^{2}(t) \tag{27}
\end{equation*}
$$

Payoffs to duopolist 2 with dissimilar cost curves (Cournot equilibrium of 42) are calculated from the following equation :

$$
\begin{equation*}
\pi_{2}=\left\{117-0.5\left[q_{2}(t)+q_{1}(t)\right]\right\} q_{2}(t)-2.97-18.0 q_{2}(t)-0.25 q_{2}^{2}(t) \tag{28}
\end{equation*}
$$

Outcomes of Games

Table 1 lists $q_{1}(1)$. . . $q_{1}(10)$ for all players representing duopolist 2 with identical cost curves and limited information; below each quantity is listed the conjectural variation exhibited by the player in selecting that quantity. Table 2 contains the same information for all players with identical cost curves and complete information. Table 3 contains the same information for all players with similar cost curves and limited information. Table 4 contains the same information for all players with dissimilar cost curves and limited information. Table 5 contains the same information for all players with dissimilar cost curves and complete information.

Table 1A. Conjectural variations for duopolists 1 with identical cost curves, limited information.

$\begin{aligned} & 62 . \\ & -.4870 \end{aligned}$	$\begin{gathered} 64 . \\ -.2633 \end{gathered}$	$\begin{aligned} & 62 . \\ & .1470 \end{aligned}$	62. . 0239	$\begin{gathered} 64 \\ -.0576 \end{gathered}$	$\begin{gathered} 62 \\ -.0111 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.1419 \end{aligned}$	$\begin{gathered} 60 \\ -.1465 \end{gathered}$	$\begin{aligned} & 62 \\ & -.1148 \end{aligned}$	$\begin{aligned} & 66 \\ & -.1987 \end{aligned}$
$\begin{aligned} & 54 . \\ & -.0700 \end{aligned}$	$\begin{aligned} & 60 \\ & .1191 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.0993 \end{aligned}$	$\begin{aligned} & 68 \\ & -.3801 \end{aligned}$	$\begin{gathered} 66 . \\ -.0489 \end{gathered}$	$\begin{aligned} & 62 . \\ & -.0477 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0476 \end{aligned}$	$\begin{gathered} 68 \\ -.2094 \end{gathered}$	$\begin{gathered} 64 . \\ -.4138 \end{gathered}$	62. 0558
$\begin{aligned} & 64 . \\ & -.6000 \end{aligned}$	$\begin{aligned} & 44 . \\ & .5957 \end{aligned}$	$\begin{aligned} & 48 \\ & .8445 \end{aligned}$	$\begin{aligned} & 66 \\ & -.2572 \end{aligned}$	$\begin{gathered} 70 \\ -.1735 \end{gathered}$	$\begin{aligned} & 70 . \\ & -.1407 \end{aligned}$	$60 .$ 0954	$\begin{aligned} & 50 . \\ & .5461 \end{aligned}$	$56 .$ $.5285$	$64 .$ $.1370$
$\begin{aligned} & 60 . \\ & -.3766 \end{aligned}$	$\begin{aligned} & 54 . \\ & .2479 \end{aligned}$	$52 \text {. }$ $.4708$	$54 .$. 4456	$\begin{gathered} 68 . \\ -.0311 \end{gathered}$	$\begin{aligned} & 62 . \\ & .1729 \end{aligned}$	$56 .$ $\text { . } 2335$	$\begin{gathered} 66 \\ -.1432 \end{gathered}$	$\begin{aligned} & 60 . \\ & .0869 \end{aligned}$	$\begin{aligned} & 62 . \\ & -.0045 \end{aligned}$
$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{aligned} & 68 \\ & .0314 \end{aligned}$	$\begin{gathered} 80 \\ -.5375 \end{gathered}$	$\begin{aligned} & 68 \\ & -.2068 \end{aligned}$	$\begin{aligned} & 48 \\ & .4213 \end{aligned}$	$\begin{aligned} & 70 \\ & -.3366 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.2537 \end{aligned}$	$\begin{aligned} & 58 . \\ & .2038 \end{aligned}$	$\begin{gathered} 66 \\ -.4165 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.1368 \end{aligned}$
$\begin{aligned} & 64 . \\ & -.6000 \end{aligned}$	$\begin{gathered} 72 \\ -.3866 \end{gathered}$	$\begin{aligned} & 60 . \\ & .1694 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.1331 \end{aligned}$	$\begin{gathered} 74 . \\ -.3819 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.1945 \end{aligned}$	$\begin{aligned} & 64 \\ & -.0120 \end{aligned}$	$\begin{gathered} 68 \\ -.2109 \end{gathered}$	$\begin{aligned} & 66 \\ & -.0552 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.0078 \end{aligned}$
$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{aligned} & 54 \\ & .4433 \end{aligned}$	$\begin{aligned} & 58 . \\ & .3884 \end{aligned}$	$\begin{aligned} & 60 . \\ & .3249 \end{aligned}$	$\begin{aligned} & 64 \\ & .1713 \end{aligned}$	$\begin{aligned} & 62 . \\ & .2391 \end{aligned}$	$\begin{aligned} & 58 \\ & .2898 \end{aligned}$	$\begin{aligned} & 56 \\ & .4209 \end{aligned}$	64. .0497	$\begin{aligned} & 70 . \\ & -.1257 \end{aligned}$
$\begin{aligned} & 70 . \\ & -.9404 \end{aligned}$	$\begin{gathered} 56 . \\ -.3181 \end{gathered}$	$\begin{aligned} & 48 \\ & .6252 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0143 \end{aligned}$	$\begin{gathered} 70 . \\ -.0335 \end{gathered}$	$\begin{gathered} 56 . \\ -.0438 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.0881 \end{aligned}$	$\begin{gathered} 64 \\ -.0733 \end{gathered}$	$\begin{aligned} & 42 . \\ & .7100 \end{aligned}$	$\begin{aligned} & 72 . \\ & -.0732 \end{aligned}$
$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{gathered} 64 . \\ -.2427 \end{gathered}$	62. . 0105	$\begin{aligned} & 50 \\ & .3878 \end{aligned}$	$\begin{aligned} & 58 \\ & .1843 \end{aligned}$	$\begin{gathered} 62 . \\ -.0708 \end{gathered}$	$\begin{aligned} & 62 . \\ & -.0084 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0192 \end{aligned}$	$\begin{gathered} 64 \\ -.0253 \end{gathered}$	$\begin{aligned} & 66 . \\ & -.1001 \end{aligned}$
$\begin{aligned} & 64 . \\ & -.6000 \end{aligned}$	$\begin{aligned} & 90 . \\ & -1.1490 \end{aligned}$	$\begin{aligned} & 66 \\ & .2980 \end{aligned}$	$\begin{aligned} & 68 . \\ & .0568 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0045 \end{aligned}$	$\begin{aligned} & 64 \\ & .0372 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0253 \end{aligned}$	$\begin{aligned} & 40 . \\ & .6957 \end{aligned}$	$\begin{aligned} & 70 \\ & -.1371 \end{aligned}$	$\begin{aligned} & 62 \\ & -.1136 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.3766 \end{aligned}$	$\begin{gathered} 60 . \\ -.0563 \end{gathered}$	$\begin{aligned} & 70 . \\ & -.1505 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.5800 \end{aligned}$	$\begin{gathered} 62 . \\ -.0497 \end{gathered}$	$\begin{gathered} 64 . \\ -.1402 \end{gathered}$	58. 2325	$\begin{aligned} & 60 . \\ & .1174 \end{aligned}$	$\begin{aligned} & 66 \\ & -.0097 \end{aligned}$	64. .0071
$\begin{aligned} & 50 . \\ & .1104 \end{aligned}$	$\begin{gathered} 64 \\ -.0186 \end{gathered}$	54. $.3993$	60. . 0649	$\begin{gathered} 70 . \\ -.2552 \end{gathered}$	$\begin{gathered} 82 . \\ -.9335 \end{gathered}$	$\begin{aligned} & 52 . \\ & .4551 \end{aligned}$	$\begin{aligned} & 56 \\ & .4816 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1123 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0043 \end{aligned}$
$\begin{aligned} & 64 \\ & -.6000 \end{aligned}$	$\begin{gathered} 60 \\ -.4296 \end{gathered}$	$\begin{gathered} 62 \\ -.1098 \end{gathered}$	$\begin{aligned} & 58 \\ & -.0893 \end{aligned}$	58. . 0076	60. . 0649	$\begin{aligned} & 62 . \\ & .0485 \end{aligned}$	$\begin{gathered} 66 . \\ -.1024 \end{gathered}$	$62 .$ $.0568$	$\begin{aligned} & 62 . \\ & .0845 \end{aligned}$
46 $.2714$	$\begin{aligned} & 42 . \\ & .6346 \end{aligned}$	$56 .$ $\text { . } 3222$	$\begin{aligned} & 52 . \\ & .0867 \end{aligned}$	$\begin{gathered} 70 . \\ -.5593 \end{gathered}$	$70 .$ $.1100$	$\begin{aligned} & 62 . \\ & -.0130 \end{aligned}$	$\begin{gathered} 60 \\ -.0017 \end{gathered}$	$\begin{aligned} & 66 \\ & -.1007 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0287 \end{aligned}$

Table 1A. Continued

$\begin{gathered} 78 \\ -1.3356 \end{gathered}$	$\begin{gathered} 66 \\ -.2079 \end{gathered}$	$\begin{aligned} & 58 . \\ & .1034 \end{aligned}$	$\begin{aligned} & 58 . \\ & .0933 \end{aligned}$	$\begin{aligned} & 56 . \\ & .1902 \end{aligned}$	$\begin{aligned} & 58 . \\ & .1488 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.6557 \end{aligned}$	$\begin{aligned} & 58 . \\ & .3048 \end{aligned}$	$\begin{aligned} & 58 . \\ & .3960 \end{aligned}$	$\begin{aligned} & 58 . \\ & .1427 \end{aligned}$
$\begin{aligned} & 66 . \\ & -.7143 \end{aligned}$	$\begin{aligned} & 56 . \\ & .0081 \end{aligned}$	$\begin{aligned} & 54= \\ & .3794 \end{aligned}$	60. . 0770	$\begin{gathered} 70 \\ -.2907 \end{gathered}$	$\begin{gathered} 64 \\ -.0109 \end{gathered}$	$\begin{aligned} & 60 . \\ & .1249 \end{aligned}$	$\begin{gathered} 64 . \\ -.1160 \end{gathered}$	$\begin{gathered} 66 \\ -.1951 \end{gathered}$	$\begin{aligned} & 70 \\ & -\quad 3883 \end{aligned}$
$\begin{aligned} & 66 . \\ & -.7143 \end{aligned}$	$\begin{gathered} 58 . \\ -.2371 \end{gathered}$	$\begin{aligned} & 70 . \\ & .0015 \end{aligned}$	$\begin{aligned} & 72 \\ & -.1288 \end{aligned}$	$\begin{gathered} 76 \\ -.8862 \end{gathered}$	$68 .$ $.0339$	$\begin{aligned} & 72 . \\ & .0997 \end{aligned}$	$\begin{gathered} 66 . \\ -.0752 \end{gathered}$	$\begin{aligned} & 66 \\ & -.1085 \end{aligned}$	$\begin{gathered} 70 \\ -.0000 \end{gathered}$
$\begin{aligned} & 66 . \\ & -.7143 \end{aligned}$	$\begin{gathered} 66 \\ -.3378 \end{gathered}$	$\begin{gathered} 68 \\ -.0789 \end{gathered}$	60. 1278	$\begin{gathered} 64 \\ -.0091 \end{gathered}$	64. . 0068	$\begin{aligned} & 52 . \\ & .4158 \end{aligned}$	$\begin{aligned} & 52 \\ & .4921 \end{aligned}$	$\begin{aligned} & 52 . \\ & .4551 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0252 \end{aligned}$
52. . 0227	$\begin{aligned} & 64 \\ & .1379 \end{aligned}$	58. 3128	$\begin{aligned} & 66 . \\ & -.3501 \end{aligned}$	$\begin{aligned} & 56 \\ & .2837 \end{aligned}$	$\begin{gathered} 64 \\ -.0439 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.0197 \end{aligned}$	$\begin{array}{r} 54 . \\ .2926 \end{array}$	$\begin{gathered} 64 \\ -.0106 \end{gathered}$	$\begin{aligned} & 66 \\ & -.1324 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.3765 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0116 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1801 \end{aligned}$	60. . 0211	$\begin{aligned} & 60 . \\ & .1276 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1558 \end{aligned}$	$\begin{aligned} & 56 \\ & .2480 \end{aligned}$	$\begin{aligned} & 54 . \\ & .3385 \end{aligned}$	54. $.3079$	$\begin{aligned} & 58 . \\ & .1121 \end{aligned}$
$\begin{aligned} & 68 . \\ & -.8284 \end{aligned}$	$\begin{gathered} 64 \\ -.2779 \end{gathered}$	$\begin{aligned} & 66 \text { 。 } \\ & -.0864 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0225 \end{aligned}$	$\begin{gathered} 66 . \\ -.0068 \end{gathered}$	$\begin{aligned} & 64 \\ & -.0251 \end{aligned}$	62. . 0802	64. . 0087	$\begin{gathered} 66 . \\ -.1012 \end{gathered}$	$62 .$.0536

Table 1B. Conjectural variations for duopolists 2 with identical cost curves, limited information.

$\begin{aligned} & 64, \\ & -.6000 \end{aligned}$	$\begin{gathered} 58 \\ -.0139 \end{gathered}$	$\begin{aligned} & 66 . \\ & -.1019 \end{aligned}$	$\begin{aligned} & 66 \\ & -.0556 \end{aligned}$	$\begin{gathered} 68 \\ -.1431 \end{gathered}$	$\begin{aligned} & 80 \\ & -.5977 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.4590 \end{aligned}$	$\begin{gathered} 74 . \\ -.3367 \end{gathered}$	$\begin{aligned} & 70 \\ & -.2198 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.0829 \end{aligned}$
$\begin{aligned} & 62 . \\ & -.4870 \end{aligned}$	$\begin{aligned} & 54 . \\ & .2987 \end{aligned}$	$\begin{aligned} & 76 . \\ & -.3471 \end{aligned}$	$\begin{aligned} & 60 \\ & .1482 \end{aligned}$	$\begin{gathered} 70 \\ -.2763 \end{gathered}$	$\begin{gathered} 64 \\ -.0132 \end{gathered}$	66. -. 0698	$\begin{gathered} 86 \\ -.7422 \end{gathered}$	$\begin{aligned} & 62 . \\ & .2010 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1958 \end{aligned}$
$\begin{aligned} & 56 \\ & -.1676 \end{aligned}$	$\begin{aligned} & 52 . \\ & .3494 \end{aligned}$	$\begin{aligned} & 70 \\ & .0753 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1866 \end{aligned}$	$\begin{aligned} & 58 . \\ & .1879 \end{aligned}$	$\begin{gathered} 66 \\ -.1821 \end{gathered}$	60. .0561	$\begin{aligned} & 50 . \\ & .5392 \end{aligned}$	$\begin{aligned} & 50 \\ & .7196 \end{aligned}$	$\begin{aligned} & 68 \\ & -.0477 \end{aligned}$
$\begin{aligned} & 60 \\ & -.3766 \end{aligned}$	$\begin{gathered} 62 \\ -.0679 \end{gathered}$	58. . 3367	54. $.5125$	$\begin{aligned} & 56 . \\ & .4361 \end{aligned}$	$\begin{gathered} 68 . \\ -.2568 \end{gathered}$	$\begin{aligned} & 68 \\ & -.0935 \end{aligned}$	$\begin{gathered} 68 \\ -.0480 \end{gathered}$	$\begin{gathered} 68 \\ -.2112 \end{gathered}$	$\begin{aligned} & 68 \\ & -.1108 \end{aligned}$
42. .4145	$60 .$ $.4807$	$\begin{gathered} 72 \text { 。 } \\ -.5501 \end{gathered}$	$\begin{aligned} & 72 . \\ & -.5083 \end{aligned}$	$\begin{gathered} 78 \\ -.6201 \end{gathered}$	$\begin{aligned} & 50 . \\ & .6533 \end{aligned}$	66. . 0868	$\begin{gathered} 86 \\ -1.1001 \end{gathered}$	$\begin{aligned} & 74 . \\ & .0320 \end{aligned}$	$\begin{aligned} & 78 . \\ & -.5787 \end{aligned}$
52. . 0227	$\begin{gathered} 64 . \\ -.0116 \end{gathered}$	$\begin{gathered} 68 \\ -.3146 \end{gathered}$	$\begin{aligned} & 64 . \\ & .0558 \end{aligned}$	$\begin{gathered} 68 . \\ -.2062 \end{gathered}$	62. $-.1008$	$\begin{aligned} & 66 \text { 。 } \\ & -.1783 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0614 \end{aligned}$	58. .1459	$62 .$ $\text { . } 0284$
$\begin{aligned} & 48 . \\ & 1933 \end{aligned}$	$\begin{aligned} & 52 . \\ & .6058 \end{aligned}$	$\begin{aligned} & 48 \\ & .6566 \end{aligned}$	$\begin{aligned} & 50 . \\ & .6117 \end{aligned}$	$\begin{aligned} & 50 . \\ & .5393 \end{aligned}$	$\begin{aligned} & 58 . \\ & .2043 \end{aligned}$	$\begin{aligned} & 54 . \\ & .3553 \end{aligned}$	$\begin{aligned} & 60 . \\ & .2342 \end{aligned}$	$\begin{aligned} & 56 . \\ & .3628 \end{aligned}$	$\begin{aligned} & 54 . \\ & .3712 \end{aligned}$
$\begin{gathered} 78 \\ -1.3356 \end{gathered}$	54. . 0069	$\begin{aligned} & 52 . \\ & .5265 \end{aligned}$	50. . 6908	$\begin{gathered} 84 . \\ -.7523 \end{gathered}$	$\begin{aligned} & 58 . \\ & .4255 \end{aligned}$	$\begin{aligned} & 68 . \\ & .1110 \end{aligned}$	$\begin{gathered} 66 \\ -.1885 \end{gathered}$	$\begin{gathered} 64 . \\ -.0313 \end{gathered}$	72. . 0157
$\begin{aligned} & 68 . \\ & -.8284 \end{aligned}$	$\begin{gathered} 68, \\ -.4022 \end{gathered}$	$\begin{aligned} & 72 \\ & -.3256 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.1967 \end{aligned}$	$\begin{gathered} 70 \\ -.0347 \end{gathered}$	68. -. 0791	$\begin{aligned} & 66 . \\ & -.0712 \end{aligned}$	64. . 0040	$64 .$. 0064	$62 .$ $.0505$
$\begin{aligned} & 64 . \\ & -.6000 \end{aligned}$	$\begin{gathered} 64 . \\ -.3026 \end{gathered}$	$\begin{gathered} 56 . \\ -.1617 \end{gathered}$	$\begin{aligned} & 62 . \\ & -.0015 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0650 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0232 \end{aligned}$	$\begin{aligned} & 74 . \\ & -.3924 \end{aligned}$	$\begin{gathered} 74 . \\ -.3336 \end{gathered}$	$\begin{gathered} 78 . \\ -.1522 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.5145 \end{aligned}$
$\begin{aligned} & 64 . \\ & -.6000 \end{aligned}$	$\begin{aligned} & 58, \\ & .0205 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0388 \end{aligned}$	$\begin{aligned} & 76 . \\ & -.5759 \end{aligned}$	$\begin{gathered} 70 . \\ -.4291 \end{gathered}$	$\begin{aligned} & 62 \text {. } \\ & .0415 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.0954 \end{aligned}$	$\begin{aligned} & 58 . \\ & .2865 \end{aligned}$	$\begin{aligned} & 62 \\ & .1444 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0670 \end{aligned}$
$\begin{aligned} & 68 \\ & -.8284 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0611 \end{aligned}$	$\begin{aligned} & 72 \\ & -.3120 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1744 \end{aligned}$	$\begin{gathered} 80 . \\ -.5020 \end{gathered}$	$\begin{gathered} 70 \\ -.2208 \end{gathered}$	$\begin{aligned} & 62 \\ & -.3158 \end{aligned}$	$\begin{array}{r} 58, \\ .3284 \end{array}$	$\begin{aligned} & 62 . \\ & .1870 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0054 \end{aligned}$
$\begin{gathered} 78 . \\ -1.3356 \end{gathered}$	$\begin{gathered} 72 . \\ -.6698 \end{gathered}$	$\begin{aligned} & 82 . \\ & -.6775 \end{aligned}$	$\begin{aligned} & 76 \\ & -.3268 \end{aligned}$	$\begin{gathered} 68 \\ -.1108 \end{gathered}$	$\begin{aligned} & 64 . \\ & .0536 \end{aligned}$	64. . 0402	$\begin{aligned} & 64 . \\ & .0062 \end{aligned}$	$\begin{aligned} & 62 \text {. } \\ & .0192 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0068 \end{aligned}$
$\begin{aligned} & 90 . \\ & -1.7143 \end{aligned}$	$\begin{aligned} & 64 . \\ & .2239 \end{aligned}$	$\begin{aligned} & 82 \\ & -.2217 \end{aligned}$	$\begin{aligned} & 82 . \\ & -.4802 \end{aligned}$	$\begin{aligned} & 50 . \\ & .5786 \end{aligned}$	$68 .$ $.0192$	$\begin{aligned} & 72 . \\ & -.4419 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0333 \end{aligned}$	$\begin{gathered} 66 . \\ -.0327 \end{gathered}$	$\begin{aligned} & 74 \\ & -.4305 \end{aligned}$

Table 1B. Continued.

54. $-.0700$	$\begin{gathered} 68 . \\ -.4684 \end{gathered}$	$\begin{gathered} 72 \\ -.2474 \end{gathered}$	$\begin{aligned} & 70 \\ & -.1363 \end{aligned}$	$\begin{gathered} 68 \\ -.0834 \end{gathered}$	$\begin{gathered} 68 \\ -.0506 \end{gathered}$	$\begin{aligned} & 70 \\ & -.1516 \end{aligned}$	$\begin{aligned} & 56 . \\ & .0334 \end{aligned}$	$\begin{gathered} 68 \\ -.0713 \end{gathered}$	$\begin{aligned} & 66 \\ & .0069 \end{aligned}$
$\begin{aligned} & 64 \\ & -.6000 \end{aligned}$	$\begin{gathered} 62 \\ -.2581 \end{gathered}$	$\begin{gathered} 68 . \\ -.0558 \end{gathered}$	$66 .$ $.0581$	$\begin{gathered} 66 \\ -.0351 \end{gathered}$	$\begin{gathered} 64 . \\ -.1251 \end{gathered}$	$\begin{aligned} & 70 \\ & -.1596 \end{aligned}$	$\begin{gathered} 70 \\ -.1596 \end{gathered}$	$\begin{gathered} 72 . \\ -.3270 \end{gathered}$	$\begin{aligned} & 76 \\ & -.4991 \end{aligned}$
$\begin{gathered} 72 \\ -1.0485 \end{gathered}$	$\begin{aligned} & 46 \\ & .3545 \end{aligned}$	$52 \text {. }$ $.6227$	$\begin{aligned} & 84 . \\ & -.8417 \end{aligned}$	$\begin{aligned} & 54 \\ & .5309 \end{aligned}$	$\begin{aligned} & 36 \\ & .2498 \end{aligned}$	$\begin{aligned} & 62 \\ & -.2798 \end{aligned}$	$\begin{gathered} 64 \\ -.2798 \end{gathered}$	$\begin{aligned} & 48 \\ & .5334 \end{aligned}$	$\begin{aligned} & 52 . \\ & .5175 \end{aligned}$
$\begin{aligned} & 60 \\ & -.3766 \end{aligned}$	$\begin{gathered} 58 \\ -.0086 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.0577 \end{aligned}$	$\begin{aligned} & 62 . \\ & -.0850 \end{aligned}$	$\begin{aligned} & 64 \\ & .1106 \end{aligned}$	$\begin{gathered} 64 \\ -.0217 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.0246 \end{aligned}$	$\begin{aligned} & 62 . \\ & .2218 \end{aligned}$	$\begin{aligned} & 64 \\ & .1586 \end{aligned}$	$64 .$. 1478
$\begin{aligned} & 54 \\ & -.0700 \end{aligned}$	$\begin{aligned} & 54 \\ & .4738 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.5750 \end{aligned}$	$\begin{aligned} & 66 \\ & .1987 \end{aligned}$	$\begin{gathered} 68 \\ -.1633 \end{gathered}$	64. . 1004	$\begin{aligned} & 68 \\ & -.1693 \end{aligned}$	$\begin{gathered} 66 \\ -.0901 \end{gathered}$	66. 0507	$\begin{aligned} & 64 . \\ & -.0253 \end{aligned}$
$\begin{aligned} & 60 \\ & -.3766 \end{aligned}$	$\begin{aligned} & 50 . \\ & .3987 \end{aligned}$	$\begin{gathered} 70 \\ -.1185 \end{gathered}$	$\begin{aligned} & 64 \\ & .0119 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1117 \end{aligned}$	$\begin{gathered} 66 \\ -.0334 \end{gathered}$	$\begin{aligned} & 66 \\ & -.0348 \end{aligned}$	$\begin{gathered} 68 \\ -.0480 \end{gathered}$	$\begin{gathered} 70 \\ -.0873 \end{gathered}$	$\begin{aligned} & 72 \\ & -.1569 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.3766 \end{aligned}$	$\begin{gathered} 62 \\ -.2118 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.0185 \end{aligned}$	$\begin{aligned} & 58 \\ & .1722 \end{aligned}$	$\begin{gathered} 64 . \\ -.0089 \end{gathered}$	$62 .$. 0200	$\begin{aligned} & 62 . \\ & .0511 \end{aligned}$	$\begin{aligned} & 64 \\ & .0062 \end{aligned}$	$\begin{gathered} 64 \\ -.0255 \end{gathered}$	$\begin{aligned} & 62 . \\ & .0192 \end{aligned}$

Table 2A. Conjectural variations for duopolists 1 with identical cost curves, complete information.

$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{gathered} 58 \\ -.1825 \end{gathered}$	$\begin{gathered} 62 . \\ -.0460 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.2063 \end{aligned}$	$\begin{gathered} 86 . \\ -.9839 \end{gathered}$	64. . 0017	$\begin{aligned} & 60 . \\ & -.0580 \end{aligned}$	$\begin{gathered} 62 \\ -.1924 \end{gathered}$	$\begin{aligned} & 64 \\ & -.1529 \end{aligned}$	$\begin{aligned} & 62 . \\ & -.3424 \end{aligned}$
$\begin{gathered} 78 . \\ -1.3356 \end{gathered}$	$\begin{gathered} 62 . \\ -.3640 \end{gathered}$	$64 .$	$\begin{aligned} & 60 . \\ & .3213 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1429 \end{aligned}$	$\begin{gathered} 82 \\ -.8481 \end{gathered}$	$\begin{aligned} & 70 \\ & -.2713 \end{aligned}$	$\begin{gathered} 66 \\ -.2652 \end{gathered}$	$\begin{gathered} 62 . \\ -.0640 \end{gathered}$	$\begin{aligned} & 76 \\ & -.3966 \end{aligned}$
$\begin{aligned} & 70 \\ & -.9404 \end{aligned}$	$\begin{aligned} & 80 \\ & -1.1236 \end{aligned}$	$\begin{aligned} & 74 \\ & -.2458 \end{aligned}$	$\begin{aligned} & 82 . \\ & -1.2364 \end{aligned}$	$\begin{gathered} 76 \\ -.6162 \end{gathered}$	$\begin{aligned} & 86 \\ & -1.2298 \end{aligned}$	$\begin{aligned} & 84 . \\ & -.7850 \end{aligned}$	$\begin{gathered} 84 \\ -1.1464 \end{gathered}$	$\begin{aligned} & 40 . \\ & 8553 \end{aligned}$	$\begin{aligned} & 50 . \\ & 1.0543 \end{aligned}$
$\begin{aligned} & 50 . \\ & .1104 \end{aligned}$	$\begin{gathered} 68 \\ -.2664 \end{gathered}$	$\begin{gathered} 82 . \\ -6169 \end{gathered}$	$\begin{aligned} & 86 \\ & -.6001 \end{aligned}$	$\begin{gathered} 78 \\ -.5648 \end{gathered}$	$\begin{gathered} 74 \\ -.5801 \end{gathered}$	$\begin{aligned} & 76 . \\ & -.4830 \end{aligned}$	$\begin{gathered} 80 . \\ -.5285 \end{gathered}$	$\begin{gathered} 84 . \\ -.6494 \end{gathered}$	$\begin{aligned} & 60 . \\ & .2140 \end{aligned}$
$\begin{aligned} & 54 . \\ & -.0700 \end{aligned}$	$\begin{gathered} 70 . \\ -.1578 \end{gathered}$	$\begin{aligned} & 66 . \\ & .0317 \end{aligned}$	$\begin{aligned} & 78 . \\ & -.7974 \end{aligned}$	$\begin{gathered} 78 . \\ -.6445 \end{gathered}$	$\begin{gathered} 78 . \\ -.6773 \end{gathered}$	$\begin{aligned} & 70 . \\ & -.1864 \end{aligned}$	$\begin{gathered} 70 . \\ -.1762 \end{gathered}$	$\begin{aligned} & 70 \\ & .2323 \end{aligned}$	$\begin{aligned} & 78 . \\ & -.8170 \end{aligned}$
$\begin{aligned} & 30 . \\ & .7562 \end{aligned}$	$\begin{aligned} & 66 . \\ & .5473 \end{aligned}$	$\begin{gathered} 70 . \\ -.5080 \end{gathered}$	$\begin{gathered} 66 . \\ -.5323 \end{gathered}$	$\begin{gathered} 68 \\ -., 1786 \end{gathered}$	$\begin{aligned} & 62 . \\ & .0248 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.2357 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0511 \end{aligned}$	$\begin{gathered} 80 . \\ -.7374 \end{gathered}$	$\begin{aligned} & 74 \\ & -.1719 \end{aligned}$
$\begin{gathered} 88 . \\ -1.6670 \end{gathered}$	$\begin{aligned} & 52 . \\ & .0350 \end{aligned}$	54. . 6091	$\begin{aligned} & 64 . \\ & -.1447 \end{aligned}$	$\begin{gathered} 60 \\ -.0092 \end{gathered}$	$\begin{gathered} 62 . \\ -.0806 \end{gathered}$	$\begin{aligned} & 60 \\ & .0027 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0330 \end{aligned}$	$\begin{gathered} 62 . \\ -.0130 \end{gathered}$	$\begin{aligned} & 62 . \\ & .0196 \end{aligned}$
$\begin{aligned} & 50 . \\ & .1104 \end{aligned}$	$\begin{gathered} 80 \\ -.4066 \end{gathered}$	$\begin{gathered} 86 \\ -.6035 \end{gathered}$	$\begin{aligned} & 88 \\ & -.8892 \end{aligned}$	$\begin{gathered} 76 \\ -.5906 \end{gathered}$	$\begin{gathered} 70 . \\ -.3115 \end{gathered}$	$\begin{aligned} & 64 . \\ & -.0556 \end{aligned}$	$\begin{aligned} & 56 . \\ & .2694 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.4788 \end{aligned}$	$\begin{aligned} & 88 . \\ & -.6086 \end{aligned}$
$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{gathered} 74 \\ -.9405 \end{gathered}$	$\begin{aligned} & 54 . \\ & .2472 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0156 \end{aligned}$	$\begin{gathered} 80 \\ -.8393 \end{gathered}$	$\begin{gathered} 74 . \\ -.3960 \end{gathered}$	$\begin{aligned} & 76 . \\ & -.9132 \end{aligned}$	$\begin{array}{r} 58 \\ -.0240 \end{array}$	$\begin{gathered} 58 . \\ -.1392 \end{gathered}$	$\begin{aligned} & 86 \\ & -1.1337 \end{aligned}$
$\begin{gathered} 74 . \\ -1.1511 \end{gathered}$	$\begin{gathered} 78 \\ -.8448 \end{gathered}$	$\begin{gathered} 70 \\ -.2673 \end{gathered}$	$\begin{aligned} & 82 . \\ & -.9899 \end{aligned}$	$\begin{gathered} 72 . \\ -.2302 \end{gathered}$	$\begin{aligned} & 86 \\ & -1.3407 \end{aligned}$	$\begin{aligned} & 80 \\ & -.4746 \end{aligned}$	$\begin{gathered} 76 \\ -.7159 \end{gathered}$	$\begin{gathered} 72 . \\ -.5045 \end{gathered}$	$\begin{aligned} & 70 \\ & -.2191 \end{aligned}$
$\begin{aligned} & 60 \\ & -.3766 \end{aligned}$	$\begin{gathered} 60 \\ -.0218 \end{gathered}$	$\begin{aligned} & 58 . \\ & .2576 \end{aligned}$	$\begin{gathered} 62 . \\ -.0046 \end{gathered}$	$\begin{aligned} & 58 . \\ & .2570 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0495 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0313 \end{aligned}$	$\begin{aligned} & 60 . \\ & .0960 \end{aligned}$	$\begin{aligned} & 50 . \\ & .6404 \end{aligned}$	$\begin{aligned} & 60 . \\ & -.0269 \end{aligned}$
$\begin{gathered} 80 . \\ -1.4164 \end{gathered}$	$\begin{gathered} 86 \\ -1.4922 \end{gathered}$	$\begin{gathered} 86 . \\ -.5671 \end{gathered}$	$\begin{aligned} & 86 . \\ & -.7352 \end{aligned}$	$\begin{gathered} 86 . \\ -1.1383 \end{gathered}$	$\begin{aligned} & 88 \\ & -1.4660 \end{aligned}$	$\begin{aligned} & 88 \\ & -1.4713 \end{aligned}$	$\begin{gathered} 78 \\ -1.2278 \end{gathered}$	$\begin{gathered} 80 \\ -.9810 \end{gathered}$	$\begin{aligned} & 72 \\ & -.2281 \end{aligned}$
$\begin{gathered} 78 . \\ -1.3356 \end{gathered}$	$\begin{gathered} 78 . \\ -1.0567 \end{gathered}$	$\begin{gathered} 78 . \\ -.6773 \end{gathered}$	$\begin{aligned} & 78 \\ & -.5174 \end{aligned}$	$\begin{gathered} 78 \\ -.4800 \end{gathered}$	$\begin{gathered} 78 . \\ -.3065 \end{gathered}$	$\begin{aligned} & 78 . \\ & -.4435 \end{aligned}$	$\begin{gathered} 78 \\ -.4435 \end{gathered}$	$\begin{gathered} 78 . \\ -.4435 \end{gathered}$	$\begin{aligned} & 78 . \\ & -.5174 \end{aligned}$

Table 2B. Conjectural variations for duopolist 2 with identical cost curves, complete information.

$\begin{gathered} 78 \\ -1.3356 \end{gathered}$	$\begin{gathered} 70 \\ -.4515 \end{gathered}$	$\begin{gathered} 66 \\ -.0625 \end{gathered}$	$\begin{aligned} & 76 \\ & -.4349 \end{aligned}$	$\begin{gathered} 80 \\ -.6147 \end{gathered}$	$\begin{aligned} & 76 \\ & -.9311 \end{aligned}$	$\begin{aligned} & 78 \\ & -.6248 \end{aligned}$	$\begin{gathered} 72 . \\ -.2395 \end{gathered}$	$\begin{gathered} 86 \\ -.7897 \end{gathered}$	$\begin{aligned} & 76 \\ & -.2899 \end{aligned}$
$\begin{aligned} & 70 . \\ & -.9404 \end{aligned}$	$\begin{gathered} 70 \\ -.9828 \end{gathered}$	50. . 4977	$\begin{aligned} & 54 \\ & .4853 \end{aligned}$	$\begin{gathered} 74 \\ -.3508 \end{gathered}$	$\begin{aligned} & 80 \\ & -.4888 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.5681 \end{aligned}$	$\begin{gathered} 70 \\ -.4734 \end{gathered}$	$60 \text {. }$ $.0954$	$60 .$ $.1697$
$\begin{aligned} & 70 \\ & -.9404 \end{aligned}$	$\begin{gathered} 66 \\ -.6002 \end{gathered}$	$\begin{gathered} 88 \\ -1.1690 \end{gathered}$	$\begin{aligned} & 80 . \\ & -.3534 \end{aligned}$	$\begin{gathered} 80 \\ -1.1129 \end{gathered}$	$\begin{gathered} 76 \\ -.7426 \end{gathered}$	$\begin{aligned} & 78 \\ & -1.1172 \end{aligned}$	$\begin{gathered} 46 . \\ .3899 \end{gathered}$	$48 \text {. }$ $.4896$	$\begin{aligned} & 90 . \\ & -.5016 \end{aligned}$
$\begin{gathered} 74 . \\ -1.1511 \end{gathered}$	$\begin{gathered} 66 . \\ -.1776 \end{gathered}$	$\begin{aligned} & 60 . \\ & .0422 \end{aligned}$	66. -. 4237	$\begin{gathered} 68 . \\ -.5506 \end{gathered}$	$\begin{gathered} 62 \\ -.1686 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.0513 \end{aligned}$	$\begin{gathered} 60 . \\ -.0704 \end{gathered}$	$\begin{gathered} 60 \\ -.1412 \end{gathered}$	$\begin{aligned} & 60 \\ & -.2182 \end{aligned}$
$\begin{aligned} & 56 . \\ & -.1676 \end{aligned}$	$\begin{aligned} & 58 . \\ & .2635 \end{aligned}$	$\begin{gathered} 78 . \\ -.6333 \end{gathered}$	$\begin{aligned} & 78 . \\ & -.3620 \end{aligned}$	$\begin{gathered} 70 \\ -.5386 \end{gathered}$	$\begin{aligned} & 60 \\ & -.1877 \end{aligned}$	$\begin{aligned} & 58 . \\ & -.0543 \end{aligned}$	$\begin{gathered} 30 . \\ 1.0170 \end{gathered}$	$\begin{gathered} 78 . \\ -.1673 \end{gathered}$	$\begin{aligned} & 62 . \\ & .0808 \end{aligned}$
$\begin{aligned} & 62 . \\ & -.4870 \end{aligned}$	$\begin{aligned} & 58 . \\ & .4569 \end{aligned}$	$\begin{aligned} & 88 \\ & -.8092 \end{aligned}$	$\begin{aligned} & 62 . \\ & .2899 \end{aligned}$	$\begin{gathered} 66 . \\ -.0132 \end{gathered}$	$\begin{aligned} & 72 . \\ & -.3948 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1872 \end{aligned}$	$\begin{gathered} 72 . \\ -.3161 \end{gathered}$	$\begin{aligned} & 62 . \\ & .1070 \end{aligned}$	$\begin{aligned} & 60 \\ & -.1215 \end{aligned}$
$\begin{gathered} 86 \\ -1.6141 \end{gathered}$	$\begin{aligned} & 44 . \\ & .2865 \end{aligned}$	$\begin{aligned} & 70 . \\ & .1113 \end{aligned}$	$\begin{aligned} & 74 . \\ & -.2770 \end{aligned}$	$\begin{gathered} 72 \\ -.3099 \end{gathered}$	$\begin{gathered} 72 . \\ -.2691 \end{gathered}$	$\begin{aligned} & 70 \\ & -.2188 \end{aligned}$	$\begin{array}{r} 68 \\ -.1180 \end{array}$	$\begin{gathered} 66 \\ -.0406 \end{gathered}$	$\begin{aligned} & 68 \\ & -.1444 \end{aligned}$
$\begin{aligned} & 58 . \\ & -.2699 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0575 \end{aligned}$	$\begin{gathered} 66 \\ -.4000 \end{gathered}$	$\begin{aligned} & 70 . \\ & -.6689 \end{aligned}$	$\begin{gathered} 60 \\ -.2495 \end{gathered}$	$\begin{aligned} & 64 \\ & -.2787 \end{aligned}$	$\begin{aligned} & 64 \\ & -.1058 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1259 \end{aligned}$	$\begin{aligned} & 60 . \\ & .2468 \end{aligned}$	$\begin{gathered} 60 \\ -.1412 \end{gathered}$
$\begin{gathered} 84 . \\ -1.5552 \end{gathered}$	$\begin{gathered} 86 \\ -.9206 \end{gathered}$	$\begin{gathered} 76 \\ -.6750 \end{gathered}$	$\begin{aligned} & 78 \\ & -.4908 \end{aligned}$	$\begin{gathered} 80 \\ -.5318 \end{gathered}$	$\begin{aligned} & 82 . \\ & -1.0305 \end{aligned}$	$\begin{aligned} & 80 \\ & -.8077 \end{aligned}$	$\begin{gathered} 84 . \\ -1.0636 \end{gathered}$	$\begin{aligned} & 86 \\ & -.6478 \end{aligned}$	$\begin{aligned} & 90 \\ & -.8367 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.3766 \end{aligned}$	$\begin{gathered} 68 . \\ -.5764 \end{gathered}$	$\begin{gathered} 78 . \\ -.7146 \end{gathered}$	$\begin{aligned} & 70 \\ & -.2357 \end{aligned}$	$\begin{gathered} 88 \\ -1.2304 \end{gathered}$	$\begin{gathered} 74 . \\ -.1678 \end{gathered}$	$\begin{aligned} & 72 . \\ & -.8605 \end{aligned}$	$\begin{gathered} 70 . \\ -.6082 \end{gathered}$	$\begin{gathered} 60 . \\ -.0908 \end{gathered}$	$\begin{aligned} & 50 . \\ & .3774 \end{aligned}$
$\begin{aligned} & 62 . \\ & -.4870 \end{aligned}$	$\begin{gathered} 60 \\ -.0276 \end{gathered}$	$\begin{gathered} 68 \\ -.1110 \end{gathered}$	$\begin{aligned} & 60 . \\ & .2224 \end{aligned}$	$\begin{gathered} 70 \\ -.1861 \end{gathered}$	$\begin{gathered} 70 \\ -.1222 \end{gathered}$	$\begin{aligned} & 66 . \\ & -.0370 \end{aligned}$	$\begin{aligned} & 50 \\ & .5239 \end{aligned}$	$\begin{gathered} 80 \\ -.3772 \end{gathered}$	$\begin{aligned} & 70 . \\ & .1252 \end{aligned}$
$\begin{gathered} 78 \\ -1.3356 \end{gathered}$	$\begin{array}{r} 58 \\ -.4131 \end{array}$	$\begin{gathered} 58 . \\ -.3442 \end{gathered}$	$\begin{aligned} & 76 . \\ & -.8640 \end{aligned}$	$\begin{gathered} 86 \\ -.9423 \end{gathered}$	$\begin{aligned} & 88 \\ & -1.2144 \end{aligned}$	$\begin{aligned} & 88 . \\ & -1.4863 \end{aligned}$	$\begin{gathered} 68 \\ -.7472 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.4200 \end{aligned}$	$\begin{aligned} & 56 . \\ & -.0319 \end{aligned}$
$\begin{aligned} & 70 \\ & -.9404 \end{aligned}$	$\begin{gathered} 70 . \\ -.9828 \end{gathered}$	$\begin{gathered} 62 \text { 。 } \\ -.1899 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.1325 \end{aligned}$	$\begin{aligned} & 50 . \\ & .3024 \end{aligned}$	$\begin{aligned} & 58 . \\ & .0311 \end{aligned}$	$\begin{gathered} 58 \\ -.0252 \end{gathered}$	$\begin{gathered} 58 \\ -.0209 \end{gathered}$	$\begin{gathered} 62 . \\ -.1868 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.0910 \end{aligned}$

Table 3A. Conjectural variations for duopolists 1 with similar cost curves, limited information.

$\begin{aligned} & 60 . \\ & -.1459 \end{aligned}$	$\begin{gathered} 70 . \\ -.2214 \end{gathered}$	$\begin{gathered} 68 . \\ -.0757 \end{gathered}$	$\begin{aligned} & 48 \\ & .6595 \end{aligned}$	$\begin{aligned} & 66 \\ & .2615 \end{aligned}$	$\begin{gathered} 72 . \\ -.2345 \end{gathered}$	$\begin{aligned} & 72 \\ & -.2016 \end{aligned}$	$\begin{gathered} 70 . \\ -.0289 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.1990 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1925 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.1459 \end{aligned}$	$64 .$. 0908	$56 .$ $.2959$	$\begin{aligned} & 70 . \\ & -.1131 \end{aligned}$	$\begin{gathered} 80 \\ -.4735 \end{gathered}$	$\begin{aligned} & 60 . \\ & .1631 \end{aligned}$	$\begin{aligned} & 68 \\ & -.3652 \end{aligned}$	$\begin{gathered} 64 \\ -.3356 \end{gathered}$	$\begin{gathered} 64 . \\ -.0148 \end{gathered}$	$\begin{aligned} & 66 . \\ & -.0369 \end{aligned}$
$\begin{aligned} & 70 \\ & -.6215 \end{aligned}$	$\begin{aligned} & 60 \\ & .1189 \end{aligned}$	$62 .$ $.0380$	$\begin{aligned} & 58 . \\ & .2825 \end{aligned}$	$\begin{aligned} & 58 \\ & .2739 \end{aligned}$	54. .4020	$\begin{aligned} & 66 \\ & -.1730 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1403 \end{aligned}$	$\begin{aligned} & 58 \\ & .3168 \end{aligned}$	$\begin{aligned} & 66 \\ & -.1797 \end{aligned}$
$\begin{aligned} & 64 \\ & -.3316 \end{aligned}$	$\begin{gathered} 64 \\ -.1013 \end{gathered}$	$66 .$ $.0240$	$\begin{aligned} & 64 . \\ & .0362 \end{aligned}$	$\begin{aligned} & 66 \\ & .2415 \end{aligned}$	$\begin{gathered} 66 . \\ -.0135 \end{gathered}$	$58 .$ 1416	$\begin{aligned} & 64 . \\ & .0837 \end{aligned}$	$66 .$ $.0461$	$\begin{aligned} & 66 \\ & -.0384 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.1459 \end{aligned}$	$\begin{gathered} 62 . \\ -.0864 \end{gathered}$	$\begin{gathered} 64 \\ -.1566 \end{gathered}$	$\begin{aligned} & 60 . \\ & -.0285 \end{aligned}$	$\begin{aligned} & 58 \\ & .1098 \end{aligned}$	$\begin{aligned} & 52 . \\ & .5204 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.4281 \end{aligned}$	$\begin{gathered} 64 . \\ .1761 \end{gathered}$	$\begin{aligned} & 66 . \\ & .0361 \end{aligned}$	$\begin{aligned} & 68 . \\ & -.1118 \end{aligned}$
$\begin{aligned} & 62 . \\ & -.2375 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1164 \end{aligned}$	$\begin{aligned} & 54 \\ & .5407 \end{aligned}$	54. . 3703	$\begin{gathered} 70 \\ -.3483 \end{gathered}$	$\begin{aligned} & 58 \\ & .3245 \end{aligned}$	52. 5610	$\begin{gathered} 68 . \\ -.0574 \end{gathered}$	$\begin{aligned} & 56 \\ & .4528 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0452 \end{aligned}$
$\begin{aligned} & 80 . \\ & -1.0729 \end{aligned}$	$\begin{gathered} 80 \\ -.5677 \end{gathered}$	$\begin{aligned} & 62 . \\ & .2173 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.0013 \end{aligned}$	$\begin{gathered} 66 \\ -.0059 \end{gathered}$	66. .0236	66. .0240	$\begin{gathered} 68 \\ -.0178 \end{gathered}$	$\begin{gathered} 68 . \\ -.0475 \end{gathered}$	$\begin{gathered} 66 . \\ -.0369 \end{gathered}$
$\begin{aligned} & 52 . \\ & .1878 \end{aligned}$	$\begin{aligned} & 52 . \\ & .6700 \end{aligned}$	$\begin{aligned} & 56 . \\ & .4620 \end{aligned}$	$\begin{aligned} & 56 . \\ & .3075 \end{aligned}$	$\begin{aligned} & 60 . \\ & .1565 \end{aligned}$	$\begin{aligned} & 66 \\ & .2342 \end{aligned}$	$\begin{aligned} & 66 . \\ & -.0277 \end{aligned}$	$\begin{aligned} & 60 . \\ & .3145 \end{aligned}$	$68 .$ 0672	$\begin{aligned} & 68 . \\ & -.0258 \end{aligned}$
$\begin{aligned} & 60 . \\ & -.1459 \end{aligned}$	$\begin{gathered} 64 \\ -.0313 \end{gathered}$	$\begin{aligned} & 56 \\ & .1906 \end{aligned}$	$\begin{aligned} & 50 . \\ & .5598 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0874 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1505 \end{aligned}$	$\begin{aligned} & 64 \\ & .2102 \end{aligned}$	$\begin{aligned} & 60 \\ & .1778 \end{aligned}$	$\begin{aligned} & 58 . \\ & .1227 \end{aligned}$	$64 .$ $.0407$
$\begin{aligned} & 58 \\ & -.0572 \end{aligned}$	$\begin{aligned} & 62 \\ & .1427 \end{aligned}$	$60 .$ $.4054$	$\begin{aligned} & 58 . \\ & .2132 \end{aligned}$	$\begin{array}{r} 80 . \\ -.3829 \end{array}$	62. .4246	64. . 2276	$\begin{gathered} 70 \\ -.0065 \end{gathered}$	68. 0964	$\begin{aligned} & 70 . \\ & .0854 \end{aligned}$
$\begin{aligned} & 64 \\ & -.3316 \end{aligned}$	$\begin{aligned} & 54 \\ & .4820 \end{aligned}$	$\begin{aligned} & 56 . \\ & .2622 \end{aligned}$	$62 .$ $.0109$	64. .0052	$\begin{gathered} 68 . \\ -.0790 \end{gathered}$	$\begin{aligned} & 68 \\ & -.0131 \end{aligned}$	$\begin{gathered} 74 . \\ -.2944 \end{gathered}$	64. . 0631	$\begin{aligned} & 64 . \\ & .1051 \end{aligned}$
$\begin{aligned} & 70 . \\ & -.6215 \end{aligned}$	$\begin{gathered} 66 \\ -.4523 \end{gathered}$	$\begin{gathered} 68 . \\ -.0759 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.0766 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0240 \end{aligned}$	$\begin{gathered} 68 . \\ -.0472 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.0466 \end{aligned}$	$\begin{gathered} 68 . \\ -.0480 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.0480 \end{aligned}$	$\begin{aligned} & 68 . \\ & -.0480 \end{aligned}$
$\begin{aligned} & 62 . \\ & -.2375 \end{aligned}$	$\begin{aligned} & 40 . \\ & .7857 \end{aligned}$	$\begin{aligned} & 62 . \\ & .3557 \end{aligned}$	$\begin{aligned} & 62 . \\ & -.0770 \end{aligned}$	$\begin{gathered} 66 \\ -.0369 \end{gathered}$	$\begin{aligned} & 66 . \\ & .0555 \end{aligned}$	64. $\text { . } 0959$	$\begin{aligned} & 62 . \\ & .1134 \end{aligned}$	64. 0702	$\begin{aligned} & 66 \\ & -.0082 \end{aligned}$

Table 3B. Conjectural variations for duopolists 2 with similar cost curves, limited information

58.	60.	52.	52	54.	58.	50.	52.	60.	52.
-.6663	-.3482	.1633	.2084	.3963	-.0923	.2246	.1495	-.2570	.1182
52.	62.	58	58	66.	78.	84.	62.	60.	64.
-.2561	-.2939	.0093	.0939	-.5446	-1.2046	-.8652	-.2223	-.2334	-.3422
52.	66.	58.	60.	60.	70.	60.	56.	70.	68.
.-									

Table 4A. Conjectural variations for duopolists 1 with dissimilar cost curves, limited information.

$\begin{aligned} & 60 . \\ & .0942 \end{aligned}$	$\begin{aligned} & 66 . \\ & .1757 \end{aligned}$	$\begin{aligned} & 62 . \\ & .2843 \end{aligned}$	64. . 2717	$\begin{aligned} & 68 . \\ & .0611 \end{aligned}$	$\begin{aligned} & 66 . \\ & .1064 \end{aligned}$	70. .0030	68. . 0957	$\begin{aligned} & 66 . \\ & .1660 \end{aligned}$	$\begin{aligned} & 72 . \\ & -.0636 \end{aligned}$
$\begin{aligned} & 62 . \\ & .0191 \end{aligned}$	$\begin{gathered} 68 . \\ -.0704 \end{gathered}$	$\begin{aligned} & 74 \\ & -.1007 \end{aligned}$	$\begin{aligned} & 68 \\ & -.0388 \end{aligned}$	$\begin{gathered} 82 \\ -.2809 \end{gathered}$	$\begin{gathered} 68 . \\ -.0492 \end{gathered}$	$70 \text {. }$ $.0736$	$\begin{gathered} 72 \\ -.0132 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.3656 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1336 \end{aligned}$
60. . 0942	$\begin{aligned} & 68 . \\ & .1345 \end{aligned}$	$64 .$. 0802	66. $.1943$	$\begin{aligned} & 66 . \\ & .1045 \end{aligned}$	$\begin{gathered} 68 \\ -.0480 \end{gathered}$	$\begin{aligned} & 68 \\ & -.0465 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0558 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0543 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0828 \end{aligned}$
$\begin{aligned} & 60 . \\ & .0942 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0654 \end{aligned}$	$\begin{aligned} & 62 \\ & .3403 \end{aligned}$	40. . 6950	$\begin{gathered} 80 \\ -.0596 \end{gathered}$	$\begin{gathered} 90 . \\ -.6873 \end{gathered}$	$\begin{aligned} & 70 . \\ & .1912 \end{aligned}$	74. . 0814	$\begin{gathered} 76 \\ -.1497 \end{gathered}$	$\begin{aligned} & 78 \\ & -.1773 \end{aligned}$
$\begin{aligned} & 76 . \\ & -.5462 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1816 \end{aligned}$	$64 .$ $.1270$	68. .0405	$\begin{aligned} & 70 . \\ & .0260 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0586 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0136 \end{aligned}$	68. .0409	$\begin{gathered} 78 . \\ -.2132 \end{gathered}$	$\begin{aligned} & 72 . \\ & .0453 \end{aligned}$
$\begin{aligned} & 64 . \\ & -.0582 \end{aligned}$	$\begin{gathered} 74 . \\ -.0151 \end{gathered}$	$\begin{aligned} & 76 . \\ & .0228 \end{aligned}$	$\begin{aligned} & 78 \\ & -.1531 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0285 \end{aligned}$	$66 .$ $.0291$	$\begin{aligned} & 70 . \\ & -.0000 \end{aligned}$	$\begin{gathered} 66 \\ -.0061 \end{gathered}$	$\begin{gathered} 78 . \\ -.0158 \end{gathered}$	$\begin{aligned} & 78 . \\ & -.0130 \end{aligned}$
$\begin{aligned} & 60 . \\ & .0942 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1799 \end{aligned}$	$\begin{aligned} & 62 . \\ & .1906 \end{aligned}$	64. . 2575	$\begin{aligned} & 64 . \\ & .2249 \end{aligned}$	$66 \text {. }$ $.1902$	$66 .$ $.1849$	$\begin{aligned} & 68 \\ & .1492 \end{aligned}$	$70 \text {. }$. 0788	$\begin{aligned} & 70 . \\ & .0537 \end{aligned}$
$\begin{gathered} 66 \\ -.1374 \end{gathered}$	$\begin{gathered} 64 . \\ -.0141 \end{gathered}$	$\begin{aligned} & 74 . \\ & .1087 \end{aligned}$	68. . 0533	$68 .$.0450	68 $.1745$	$\begin{aligned} & 68 . \\ & -.0178 \end{aligned}$	$\begin{aligned} & 74 . \\ & 1088 \end{aligned}$	$68 .$. 0594	$\begin{aligned} & 70 . \\ & .1647 \end{aligned}$
$\begin{aligned} & 68 \\ & -.2182 \end{aligned}$	$\begin{gathered} 74 \\ -.3419 \end{gathered}$	$\begin{aligned} & 70 . \\ & -.3263 \end{aligned}$	$\begin{aligned} & 76 \\ & -.2556 \end{aligned}$	$\begin{gathered} 78 . \\ -.2808 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.1291 \end{aligned}$	$\begin{aligned} & 72 . \\ & -.0184 \end{aligned}$	$\begin{gathered} 78 \\ -.1525 \end{gathered}$	$\begin{aligned} & 68 . \\ & -.1980 \end{aligned}$	$\begin{aligned} & 62 . \\ & .4527 \end{aligned}$
$\begin{aligned} & 64 . \\ & -.0582 \end{aligned}$	$\begin{gathered} 78 . \\ -.4867 \end{gathered}$	66. . 0648	54. .4036	$\begin{aligned} & 60 . \\ & .2537 \end{aligned}$	$\begin{aligned} & 54 . \\ & .3809 \end{aligned}$	$64 .$ 0714	$\begin{aligned} & 70 . \\ & .0461 \end{aligned}$	$\begin{gathered} 74 . \\ -.0535 \end{gathered}$	$68 .$ $.0986$
$\begin{aligned} & 72 . \\ & -.3823 \end{aligned}$	$\begin{gathered} 74 \\ -.0621 \end{gathered}$	$\begin{aligned} & 76 . \\ & --225 \end{aligned}$	68. . 1215	54. . 4723	58. .5572	58. . 4993	$\begin{aligned} & 52 . \\ & .5834 \end{aligned}$	$\begin{aligned} & 50 . \\ & .7148 \end{aligned}$	50. . 6591
58. $.1669$	$\begin{aligned} & 64 . \\ & .2759 \end{aligned}$	$\begin{aligned} & 58 . \\ & .4095 \end{aligned}$	66. 0009	$\begin{aligned} & 62 . \\ & .2724 \end{aligned}$	$\begin{aligned} & 60 . \\ & .4462 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.0159 \end{aligned}$	$\begin{aligned} & 62 \\ & .1688 \end{aligned}$	$\begin{aligned} & 70 . \\ & -.2604 \end{aligned}$	$64 .$ $.1250$
$\begin{aligned} & 66 \\ & -.: 374 \end{aligned}$	$\begin{gathered} 62 . \\ -.0344 \end{gathered}$	66. . 0802	68. . 0070	$\begin{gathered} 70 \\ -.0002 \end{gathered}$	$\begin{aligned} & 70 . \\ & .0282 \end{aligned}$	68. 0685	$\begin{aligned} & 72 . \\ & .0184 \end{aligned}$	$\begin{aligned} & 72 . \\ & .0155 \end{aligned}$	72 . .0166
$\begin{aligned} & 70 . \\ & -.3000 \end{aligned}$	$\begin{gathered} 72 . \\ -.2576 \end{gathered}$	$\begin{aligned} & 60 . \\ & .1326 \end{aligned}$	62. . 0749	$\begin{aligned} & 62 . \\ & .1935 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0369 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0523 \end{aligned}$	$\begin{aligned} & 66 . \\ & .1084 \end{aligned}$	$\begin{aligned} & 66 . \\ & .0533 \end{aligned}$	$\begin{aligned} & 64 . \\ & -.0576 \end{aligned}$

Table 4A. Continued

54. .3042	$\begin{gathered} 40 \\ 1.0162 \end{gathered}$	$\begin{gathered} 80 \\ -.0991 \end{gathered}$	$\begin{aligned} & 72 \\ & -.1301 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0136 \end{aligned}$	$68 .$.0408	$68 .$ 1756	$70 \text {. }$. 0282	$\begin{aligned} & 68 . \\ & .1219 \end{aligned}$	$70 .$ $.0861$
$\begin{aligned} & 64 \\ & -.0582 \end{aligned}$	66. . 0604	$\begin{aligned} & 60 . \\ & .1816 \end{aligned}$	66. . 0692	$\begin{gathered} 64 . \\ .1462 \end{gathered}$	$\begin{aligned} & 68 \\ & .0447 \end{aligned}$	$\begin{aligned} & 70 \\ & -.0315 \end{aligned}$	70. . 0009	$\begin{gathered} 78 \\ -.2100 \end{gathered}$	$\begin{aligned} & 82 . \\ & -.2867 \end{aligned}$
$\begin{aligned} & 50 . \\ & .4306 \end{aligned}$	$\begin{aligned} & 58 . \\ & .4102 \end{aligned}$	$\begin{gathered} 80 . \\ -.7435 \end{gathered}$	$\begin{aligned} & 78 . \\ & -.2379 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0430 \end{aligned}$	$\begin{aligned} & 70 . \\ & .0923 \end{aligned}$	$\begin{aligned} & 78 . \\ & -.3138 \end{aligned}$	$\begin{gathered} 84 \\ -.4311 \end{gathered}$	$\begin{aligned} & 84 . \\ & -1.1950 \end{aligned}$	$\begin{aligned} & 88 . \\ & -.6435 \end{aligned}$
$\begin{aligned} & 74 \\ & -.4646 \end{aligned}$	$\begin{gathered} 68 . \\ -\quad .1684 \end{gathered}$	$\begin{gathered} 68 \\ -.0636 \end{gathered}$	$\begin{aligned} & 70 \\ & -.1198 \end{aligned}$	$\begin{gathered} 78 \\ -.3960 \end{gathered}$	$\begin{gathered} 78 \\ -.3535 \end{gathered}$	$\begin{aligned} & 68 \\ & -.0481 \end{aligned}$	$\begin{gathered} 68 \\ -.0554 \end{gathered}$	$\begin{gathered} 74 \\ -.0218 \end{gathered}$	$\begin{aligned} & 70 . \\ & .0575 \end{aligned}$
58. 1669	66. . 0728	66. . 1293	58. . 2279	$\begin{aligned} & 50 . \\ & .7193 \end{aligned}$	$\begin{aligned} & 70 . \\ & .1337 \end{aligned}$	$\begin{aligned} & 80 \\ & -.2849 \end{aligned}$	$\begin{aligned} & 64 . \\ & .1345 \end{aligned}$	74. . 0074	66. . 2836
$\begin{aligned} & 38 . \\ & .7472 \end{aligned}$	$\begin{aligned} & 74 . \\ & .3847 \end{aligned}$	$\begin{gathered} 66 . \\ -.0038 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.2290 \end{aligned}$	$\begin{gathered} 74 . \\ -.2338 \end{gathered}$	$\begin{aligned} & 50 . \\ & .5133 \end{aligned}$	$\begin{aligned} & 64 . \\ & .4357 \end{aligned}$	$\begin{gathered} 90 . \\ -.7505 \end{gathered}$	$\begin{aligned} & 70 . \\ & .2434 \end{aligned}$	$\begin{aligned} & 60 . \\ & .2984 \end{aligned}$

Table 4B. Conjectural variations for duopolists 2 with dissimilar cost curves, limited information.

$\begin{aligned} & 48 \\ & -1.2679 \end{aligned}$	$\begin{gathered} 46 \\ -.6007 \end{gathered}$	$\begin{gathered} 44 \\ -.0276 \end{gathered}$	$\begin{aligned} & 48 \\ & -.1768 \end{aligned}$	$\begin{gathered} 50 . \\ -.3389 \end{gathered}$	$\begin{gathered} 48 \\ -.3073 \end{gathered}$	$\begin{aligned} & 46 . \\ & -.1514 \end{aligned}$	$\begin{gathered} 46 \\ -.2420 \end{gathered}$	$\begin{gathered} 48 \\ -.3215 \end{gathered}$	44. . 0145
$\begin{aligned} & 58 \\ & -2.1879 \end{aligned}$	$\begin{gathered} 46 \\ -.5213 \end{gathered}$	$\begin{gathered} 56 \\ -.9932 \end{gathered}$	$\begin{aligned} & 40 . \\ & .3012 \end{aligned}$	$\begin{gathered} 60 \\ -.8883 \end{gathered}$	$\begin{aligned} & 42 . \\ & .1703 \end{aligned}$	44. .0240	$\begin{gathered} 62 \\ -1.1688 \end{gathered}$	$\begin{aligned} & 54 \\ & -.3105 \end{aligned}$	$\begin{aligned} & 54 \\ & -.9995 \end{aligned}$
$\begin{aligned} & 46 . \\ & -1.0297 \end{aligned}$	$\begin{gathered} 56 \\ -1.1752 \end{gathered}$	$\begin{aligned} & 44 . \\ & .2029 \end{aligned}$	$\begin{aligned} & 50 . \\ & -.2945 \end{aligned}$	$\begin{gathered} 56 \\ -.7430 \end{gathered}$	$\begin{gathered} 56 \\ -.6934 \end{gathered}$	$\begin{gathered} 44 \\ -.0464 \end{gathered}$	$\begin{gathered} 44 \\ -.0592 \end{gathered}$	$\begin{aligned} & 42 \\ & .0468 \end{aligned}$	42. . 0490
$\begin{aligned} & 56 \\ & -2.0593 \end{aligned}$	$\begin{gathered} 42 \\ -.2257 \end{gathered}$	$\begin{aligned} & 76 \\ & -1.6180 \end{aligned}$	$\begin{aligned} & 44 . \\ & .8154 \end{aligned}$	$\begin{gathered} 52 \\ .4673 \end{gathered}$	$\begin{gathered} 40 \\ -.1531 \end{gathered}$	$\begin{aligned} & 36 . \\ & -.0520 \end{aligned}$	$\begin{gathered} 44 \\ -.0982 \end{gathered}$	$\begin{gathered} 42 . \\ -.0290 \end{gathered}$	$40 .$ 0477
$\begin{aligned} & 42 . \\ & -.5729 \end{aligned}$	$\begin{gathered} 56 \\ -1.3018 \end{gathered}$	$50 .$ 0706	$\begin{aligned} & 46 \\ & -.0800 \end{aligned}$	$\begin{gathered} 66 \\ -1.3142 \end{gathered}$	$\begin{gathered} 66 . \\ -.8501 \end{gathered}$	$\begin{aligned} & 50 . \\ & -.3750 \end{aligned}$	$\begin{gathered} 44 \\ -.0463 \end{gathered}$	$42 .$ $.0860$	$\begin{aligned} & 50 . \\ & -.7110 \end{aligned}$
$\begin{aligned} & 38 . \\ & -.1746 \end{aligned}$	$\begin{gathered} 32 . \\ .7437 \end{gathered}$	$\begin{aligned} & 40 \\ & .2001 \end{aligned}$	$\begin{aligned} & 56 \\ & -1.0418 \end{aligned}$	$\begin{gathered} 56 . \\ -.6877 \end{gathered}$	$\begin{gathered} 48 \\ -.2774 \end{gathered}$	$\begin{aligned} & 58 . \\ & -.9523 \end{aligned}$	$\begin{gathered} 30 . \\ .8793 \end{gathered}$	$\begin{gathered} 30 . \\ 1.2761 \end{gathered}$	$\begin{aligned} & 46 \\ & -.4258 \end{aligned}$
$\begin{aligned} & 58 \\ & -2.1879 \end{aligned}$	$\begin{gathered} 54 \\ -1.0714 \end{gathered}$	44. $-.0065$	$\begin{gathered} 46 \\ -.0455 \end{gathered}$	$\begin{gathered} 44 \\ .0468 \end{gathered}$	44. . 0468	42. . 1361	$\begin{array}{r} 42 \\ .1423 \end{array}$	$\begin{gathered} 44 \\ -.0461 \end{gathered}$	$\begin{aligned} & 42 \\ & .0490 \end{aligned}$
$\begin{aligned} & 60 \\ & -2.2918 \end{aligned}$	$\begin{gathered} 30 \\ .6194 \end{gathered}$	$\begin{gathered} 48 \\ -1722 \end{gathered}$	$\begin{aligned} & 50 . \\ & -.7137 \end{aligned}$	$\begin{aligned} & 40 . \\ & .2559 \end{aligned}$	$\begin{aligned} & 54 . \\ & -.6250 \end{aligned}$	$\begin{aligned} & 30 . \\ & .9106 \end{aligned}$	$\begin{gathered} 48 . \\ .1581 \end{gathered}$	$\begin{aligned} & 36 \\ & .3158 \end{aligned}$	$\begin{aligned} & 44 \\ & .0402 \end{aligned}$
$\begin{aligned} & 56 . \\ & -2.0593 \end{aligned}$	$\begin{gathered} 70 \\ -2.1608 \end{gathered}$	$\begin{aligned} & 50 . \\ & .0818 \end{aligned}$	$\begin{aligned} & 50 . \\ & -.4712 \end{aligned}$	$\begin{gathered} 48 \\ -.5459 \end{gathered}$	$\begin{gathered} 44 . \\ -.3341 \end{gathered}$	$40 .$ $\text { . } 0650$	$\begin{gathered} 66 . \\ -1.3367 \end{gathered}$	$\begin{gathered} 30 . \\ 1.0154 \end{gathered}$	$\begin{aligned} & 30 . \\ & 1.3789 \end{aligned}$
$\begin{aligned} & 60 \\ & -2.2918 \end{aligned}$	$\begin{gathered} 60 \\ -1.4907 \end{gathered}$	$\begin{aligned} & 60 \\ & -1.5000 \end{aligned}$	$\begin{aligned} & 60 \\ & -1.0909 \end{aligned}$	$\begin{gathered} 60 \\ -.7500 \end{gathered}$	$\begin{gathered} 60 \\ -.9130 \end{gathered}$	$\begin{aligned} & 44 \\ & .2434 \end{aligned}$	$\begin{gathered} 42 . \\ .2578 \end{gathered}$	$\begin{gathered} 46 \\ -.2199 \end{gathered}$	$\begin{aligned} & 48 \\ & -.4560 \end{aligned}$
$\begin{aligned} & 36 . \\ & -.0000 \end{aligned}$	$\begin{aligned} & 32 . \\ & .6988 \end{aligned}$	$\begin{gathered} 44 \\ -.1217 \end{gathered}$	$\begin{aligned} & 54 . \\ & -.8745 \end{aligned}$	$\begin{aligned} & 42 \\ & .2693 \end{aligned}$	$\begin{aligned} & 38 . \\ & .6651 \end{aligned}$	$\begin{aligned} & 50 . \\ & -.1524 \end{aligned}$	$\begin{gathered} 48 \\ -.0460 \end{gathered}$	$\begin{gathered} 52 . \\ -.2063 \end{gathered}$	$\begin{aligned} & 56 . \\ & -.3826 \end{aligned}$
$\begin{aligned} & 48 . \\ & -1.2679 \end{aligned}$	$\begin{gathered} 46 \\ -.5381 \end{gathered}$	60. -. 9645	$\begin{aligned} & 48 \\ & .1831 \end{aligned}$	$\begin{gathered} 40 \\ .3116 \end{gathered}$	$\begin{gathered} 50 \\ -.2449 \end{gathered}$	$\begin{aligned} & 56 . \\ & -.5744 \end{aligned}$	$\begin{gathered} 66 \\ -1.3751 \end{gathered}$	$\begin{gathered} 56 \\ -.3750 \end{gathered}$	$\begin{gathered} 46 \\ -.3414 \end{gathered}$
$\begin{aligned} & 66 \\ & -2.5000 \end{aligned}$	$\begin{gathered} 52 . \\ -.5813 \end{gathered}$	$\begin{gathered} 52 . \\ -.6602 \end{gathered}$	$\begin{aligned} & 48 \\ & -.2750 \end{aligned}$	$\begin{gathered} 46 \\ -.2125 \end{gathered}$	$\begin{gathered} 48 \\ -.3839 \end{gathered}$	$\begin{aligned} & 42 . \\ & .0643 \end{aligned}$	$\begin{gathered} 42 \\ . \quad 1009 \end{gathered}$	$\begin{gathered} 42 \\ 0.0000 \end{gathered}$	$\begin{gathered} 42 \\ 0.0000 \end{gathered}$
$\begin{aligned} & 54 . \\ & -1.9019 \end{aligned}$	$\begin{gathered} 64 \\ -2.0693 \end{gathered}$	$\begin{gathered} 64 \\ -.9266 \end{gathered}$	$\begin{gathered} 54 \\ -.5431 \end{gathered}$	$\begin{gathered} 60 \\ -1.0820 \end{gathered}$	$\begin{gathered} 54 \\ -.4181 \end{gathered}$	$\begin{aligned} & 50 \\ & -.4278 \end{aligned}$	$\begin{array}{r} 54 \\ -.7145 \end{array}$	$\begin{gathered} 66 \\ -1.2627 \end{gathered}$	$\begin{gathered} 44 \\ .2958 \end{gathered}$

Table 4B. Continued

$\begin{aligned} & 50 . \\ & -1.5000 \end{aligned}$	$\begin{gathered} 46 \\ -.4570 \end{gathered}$	$\begin{gathered} 56 . \\ -.2240 \end{gathered}$	$\begin{aligned} & 46 \\ & -.4608 \end{aligned}$	$\begin{gathered} 50 . \\ -.6912 \end{gathered}$	$\begin{aligned} & 40 . \\ & .2425 \end{aligned}$	$\begin{aligned} & 46 \\ & -.1256 \end{aligned}$	$\begin{gathered} 44 \\ -.0286 \end{gathered}$	$42 \text {. }$.0455	$\begin{aligned} & 50 \\ & -.4468 \end{aligned}$
$\begin{aligned} & 52 . \\ & -1.7143 \end{aligned}$	$\begin{gathered} 60 . \\ -1.6991 \end{gathered}$	$\begin{gathered} 54 . \\ -.3429 \end{gathered}$	$\begin{aligned} & 52 . \\ & -.4456 \end{aligned}$	$\begin{gathered} 50 \\ -., 4352 \end{gathered}$	$\begin{gathered} 50 . \\ -.3802 \end{gathered}$	$\begin{aligned} & 48 \\ & -.3247 \end{aligned}$	$\begin{gathered} 44 \\ -.1099 \end{gathered}$	$\begin{aligned} & 42 . \\ & .0367 \end{aligned}$	$\begin{aligned} & 40 . \\ & .0018 \end{aligned}$
$\begin{aligned} & 66 . \\ & -2.5000 \end{aligned}$	$\begin{gathered} 70 \\ -1.2167 \end{gathered}$	$\begin{gathered} 62 . \\ -.8962 \end{gathered}$	$\begin{aligned} & 64 \\ & -2.1163 \end{aligned}$	$\begin{gathered} 42 \\ -.0430 \end{gathered}$	$\begin{gathered} 50 . \\ -.3257 \end{gathered}$	$\begin{aligned} & 48 \\ & -.3091 \end{aligned}$	$\begin{gathered} 84 \\ -2.0569 \end{gathered}$	$\begin{aligned} & 50 . \\ & .5519 \end{aligned}$	$\begin{aligned} & 46 \\ & -.1187 \end{aligned}$
$\begin{aligned} & 56 . \\ & -2.0593 \end{aligned}$	$\begin{gathered} 56 . \\ -1.8740 \end{gathered}$	$\begin{gathered} 56 . \\ -.8769 \end{gathered}$	$\begin{aligned} & 56 . \\ & -.8769 \end{aligned}$	$\begin{gathered} 56 \\ -.9375 \end{gathered}$	$\begin{aligned} & 56 \\ & -1.2000 \end{aligned}$	$\begin{aligned} & 56 \\ & -1.2000 \end{aligned}$	$\begin{aligned} & 40 . \\ & .2246 \end{aligned}$	$\begin{aligned} & 44 . \\ & .0358 \end{aligned}$	40. . 0931
$\begin{aligned} & 58 . \\ & -2.1879 \end{aligned}$	$\begin{gathered} 48 . \\ -.5515 \end{gathered}$	$\begin{aligned} & 62 . \\ & -1.2411 \end{aligned}$	44. .3354	$\begin{aligned} & 44 . \\ & .2884 \end{aligned}$	$\begin{aligned} & 42 . \\ & .4433 \end{aligned}$	$\begin{aligned} & 56 . \\ & -.8347 \end{aligned}$	$\begin{gathered} 40 . \\ .2182 \end{gathered}$	$\begin{aligned} & 36 . \\ & .6319 \end{aligned}$	$\begin{aligned} & 44 \\ & -.1287 \end{aligned}$
$\begin{aligned} & 46 \\ & -1.0297 \end{aligned}$	$\begin{aligned} & 44 . \\ & 1590 \end{aligned}$	$\begin{gathered} 54 \\ -.8511 \end{gathered}$	$\begin{aligned} & 56 . \\ & -.5821 \end{aligned}$	$\begin{gathered} 60 . \\ -1.2633 \end{gathered}$	42. . 0703	$\begin{aligned} & 50 \\ & -.0148 \end{aligned}$	$\begin{gathered} 48 \\ -.2218 \end{gathered}$	$\begin{gathered} 56 . \\ -.5152 \end{gathered}$	44. . 1714

Table 5A Conjectural variations for duopolists 1 with dissimilar cost curves, complete information.

$\begin{aligned} & 62 . \\ & .0191 \end{aligned}$	$\begin{gathered} 72 . \\ -.1502 \end{gathered}$	$\begin{aligned} & 78 \\ & -.3111 \end{aligned}$	$\begin{aligned} & 82 . \\ & -.3143 \end{aligned}$	$\begin{aligned} & 86 . \\ & -.3911 \end{aligned}$	$72 \text {. }$ $.0377$	$70 .$.0629	$\begin{aligned} & 70 \\ & .0300 \end{aligned}$	$\begin{aligned} & 72 . \\ & -.0112 \end{aligned}$	74. -. 0493
$\begin{gathered} 58 . \\ .1669 \end{gathered}$	$\begin{aligned} & 62 . \\ & .3181 \end{aligned}$	52. . 6229	$66 .$ $.1141$	62. . 0869	$\begin{aligned} & 64 . \\ & .1843 \end{aligned}$	66. . 0185	66. . 0234	$\begin{aligned} & 70 . \\ & .1352 \end{aligned}$	$\begin{aligned} & 64 . \\ & .0287 \end{aligned}$
$\begin{array}{r} 70 \\ -.3000 \end{array}$	$\begin{aligned} & 60 \text { 。 } \\ & 3822 \end{aligned}$	64. .3294	$\begin{aligned} & 64 . \\ & .2652 \end{aligned}$	64. . 2567	$66 .$ $.1902$	$\begin{aligned} & 64 . \\ & 2759 \end{aligned}$	$\begin{aligned} & 64 . \\ & .2636 \end{aligned}$	$\begin{aligned} & 64 . \\ & .2814 \end{aligned}$	$\begin{aligned} & 64 . \\ & .2567 \end{aligned}$
44. 6000	60. 5655	$\begin{aligned} & 60 . \\ & .1105 \end{aligned}$	$\begin{aligned} & 68 \\ & -.1752 \end{aligned}$	$\begin{aligned} & 66 . \\ & -0783 \end{aligned}$	$\begin{gathered} 70 . \\ -0312 \end{gathered}$	$\begin{array}{r} 82 . \\ -4298 \end{array}$	70. .0974	$\begin{aligned} & 70 . \\ & -.2674 \end{aligned}$	$\begin{gathered} 74 . \\ -.1070 \end{gathered}$
$\begin{gathered} 74 \\ -.4646 \end{gathered}$	$\begin{gathered} 78 \\ -.5373 \end{gathered}$	$\begin{aligned} & 90 . \\ & -.7549 \end{aligned}$	$\begin{aligned} & 72 . \\ & .1328 \end{aligned}$	$\begin{aligned} & 90 . \\ & -.5122 \end{aligned}$	$90 \text {. }$ $\text { . } 4294$	$\begin{gathered} 90 . \\ -.5793 \end{gathered}$	$\begin{gathered} 70 \\ -.1219 \end{gathered}$	$\begin{aligned} & 74 . \\ & -.0005 \end{aligned}$	$\begin{aligned} & 74 . \\ & .0320 \end{aligned}$
$\begin{gathered} 80 . \\ -7051 \end{gathered}$	$\begin{aligned} & 80 . \\ & -.1750 \end{aligned}$	$\begin{aligned} & 84 \\ & -.4746 \end{aligned}$	$\begin{aligned} & 80 . \\ & -.6867 \end{aligned}$	$\begin{aligned} & 78 \\ & -.1349 \end{aligned}$	$\begin{aligned} & 90 . \\ & -.9845 \end{aligned}$	$78 .$. 0575	$\begin{gathered} 80 \\ -.9106 \end{gathered}$	$\begin{aligned} & 84 . \\ & -.4445 \end{aligned}$	$\begin{gathered} 84 \\ -.3216 \end{gathered}$
$\begin{gathered} 80 . \\ -.7051 \end{gathered}$	56. . 4606	$\begin{aligned} & 70 \\ & -.1026 \end{aligned}$	$\begin{aligned} & 80 \\ & -.5812 \end{aligned}$	66. .0788	66. . 0692	$\begin{gathered} 68 . \\ -.0178 \end{gathered}$	$\begin{aligned} & 60 . \\ & .2277 \end{aligned}$	$66 .$ $.1634$	$\begin{gathered} 70 \\ -.0433 \end{gathered}$
$\begin{gathered} 64 . \\ -.0582 \end{gathered}$	$\begin{gathered} 78 \\ -.3864 \end{gathered}$	$\begin{aligned} & 80 \\ & -.1399 \end{aligned}$	$\begin{aligned} & 62 . \\ & .0236 \end{aligned}$	$58 .$. 1782	$\begin{aligned} & 90 . \\ & -.7522 \end{aligned}$	$\begin{aligned} & 70 \\ & .2495 \end{aligned}$	70 . 0141	68. .0117	$\begin{gathered} 72 \\ -\quad .1907 \end{gathered}$
$\begin{gathered} 76 \\ -\quad 5462 \end{gathered}$	$\begin{gathered} 74 . \\ -.2260 \end{gathered}$	$\begin{aligned} & 80 \\ & -.4450 \end{aligned}$	$\begin{aligned} & 76 \\ & -.43520 \end{aligned}$	$\begin{aligned} & 88 . \\ & -.9464 \end{aligned}$	$\begin{aligned} & 86 \\ & -.5637 \end{aligned}$	$\begin{gathered} 90 . \\ -1.0524 \end{gathered}$	$\begin{gathered} 80 . \\ -.6125 \end{gathered}$	$\begin{aligned} & 88 . \\ & -1.0605 \end{aligned}$	$\begin{gathered} 90 \\ -.8616 \end{gathered}$
$\begin{gathered} 72 . \\ -.3823 \end{gathered}$	$\begin{aligned} & 90 . \\ & -1.0385 \end{aligned}$	$\begin{aligned} & 86 \\ & -.1447 \end{aligned}$	$\begin{aligned} & 90 \\ & -.6852 \end{aligned}$	$\begin{aligned} & 80 \\ & -.4436 \end{aligned}$	$\begin{aligned} & 80 \\ & -.5621 \end{aligned}$	$\begin{aligned} & 68 . \\ & .1475 \end{aligned}$	$\begin{aligned} & 90 . \\ & -.9334 \end{aligned}$	$\begin{aligned} & 78 . \\ & .0170 \end{aligned}$	$\begin{aligned} & 70 \\ & .1112 \end{aligned}$

Table 5B. Conjectural variations for duopolists 2 with dissimilar cost curves, complete information.

$\begin{aligned} & 54 . \\ & -1.9019 \end{aligned}$	$\begin{aligned} & 52 . \\ & -1.1589 \end{aligned}$	44. -2045	$\begin{aligned} & 40 \\ & -.0415 \end{aligned}$	$\begin{aligned} & 42 . \\ & -.2621 \end{aligned}$	$\begin{aligned} & 44 . \\ & -.5145 \end{aligned}$	$\begin{aligned} & 46 \\ & -.2580 \end{aligned}$	44. -. 0814	$\begin{aligned} & 42 . \\ & .0431 \end{aligned}$	$44 .$ $\text { -. } 1404$
$\begin{aligned} & 50 . \\ & -1.5000 \end{aligned}$	$44 .$	$\begin{aligned} & 56 . \\ & -.7286 \end{aligned}$	$\begin{aligned} & 60 . \\ & -.4836 \end{aligned}$	$\begin{aligned} & 50 . \\ & -.3701 \end{aligned}$	56. $-.7818$	$\begin{aligned} & 56 . \\ & -.6340 \end{aligned}$	$\begin{aligned} & 38 . \\ & .3885 \end{aligned}$	$\begin{gathered} 60 . \\ -.7870 \end{gathered}$	$46 .$. 1489
$\begin{gathered} 38 . \\ -.1746 \end{gathered}$	$\begin{gathered} 42 . \\ -.0702 \end{gathered}$	$\begin{aligned} & 42 . \\ & .2664 \end{aligned}$	44 . 0448	$\begin{aligned} & 44 . \\ & .0428 \end{aligned}$	$\begin{aligned} & 42 . \\ & .1786 \end{aligned}$	$44 .$ $.0081$	$\begin{aligned} & 42 . \\ & .1783 \end{aligned}$	$44 .$ $.0527$	$42 .$ 1764
$\begin{aligned} & 58 . \\ & -2.1879 \end{aligned}$	$\begin{aligned} & 56 . \\ & -.6996 \end{aligned}$	$\begin{aligned} & 64 \\ & -1.1405 \end{aligned}$	64. $-.9151$	$\begin{aligned} & 50 \\ & -.4871 \end{aligned}$	$\begin{aligned} & 50 . \\ & -.5948 \end{aligned}$	$\begin{gathered} 46 \\ -.2361 \end{gathered}$	$\begin{aligned} & 66 \\ & -1.6750 \end{aligned}$	46. .4152	$32 .$. 8183
$\begin{aligned} & 56 . \\ & -2.0593 \end{aligned}$	$\begin{aligned} & 56 . \\ & -1.8740 \end{aligned}$	$\begin{aligned} & 42 . \\ & -.1527 \end{aligned}$	$\begin{gathered} 42 . \\ -.5707 \end{gathered}$	42. 0.0000	$\begin{gathered} 42 . \\ -.5000 \end{gathered}$	$\begin{aligned} & 56 . \\ & -1.4092 \end{aligned}$	36. . 4339	$36 .$ $.6295$	$\begin{aligned} & 36 . \\ & .3871 \end{aligned}$
$\begin{aligned} & 30 \\ & .4365 \end{aligned}$	48.	$\begin{aligned} & 68 . \\ & 1.5970 \end{aligned}$	36. 6789	$\begin{aligned} & 66 . \\ & -1.0255 \end{aligned}$	$\begin{aligned} & 36 . \\ & .7415 \end{aligned}$	$\begin{gathered} 78 \\ -1.5824 \end{gathered}$	$\begin{aligned} & 48 . \\ & .6211 \end{aligned}$	$\begin{aligned} & 40 . \\ & .3577 \end{aligned}$	$\begin{aligned} & 64 . \\ & -1.4794 \end{aligned}$
$\begin{aligned} & 40 . \\ & -.3655 \end{aligned}$	$\begin{aligned} & 66 \\ & -1.7451 \end{aligned}$	$\begin{gathered} 64 . \\ -.0742 \end{gathered}$	$\begin{aligned} & 58 . \\ & -1.1443 \end{aligned}$	$\begin{aligned} & 54 . \\ & -1.4486 \end{aligned}$	$\begin{gathered} 54 . \\ -.8509 \end{gathered}$	$\begin{aligned} & 56 . \\ & -.8083 \end{aligned}$	$\begin{gathered} 48 . \\ -.2873 \end{gathered}$	$\begin{aligned} & 50 \\ & -.3146 \end{aligned}$	$\begin{aligned} & 48 \\ & -.2582 \end{aligned}$
$\begin{aligned} & 54 . \\ & -1.9019 \end{aligned}$	$\begin{aligned} & 40 \\ & -.2457 \end{aligned}$	$\begin{aligned} & 66 \\ & -1.5560 \end{aligned}$	$\begin{gathered} 66 \\ -.7487 \end{gathered}$	$\begin{gathered} 58 . \\ -.8842 \end{gathered}$	$\begin{aligned} & 52 . \\ & -.5336 \end{aligned}$	$\begin{gathered} 52 . \\ -1.4657 \end{gathered}$	$\begin{gathered} 52 . \\ -.6563 \end{gathered}$	$\begin{aligned} & 56 . \\ & -9115 \end{aligned}$	$\begin{gathered} 54 . \\ -.6427 \end{gathered}$
$\begin{aligned} & 46 \\ & -1.0297 \end{aligned}$	$\begin{aligned} & 54 . \\ & -1.5925 \end{aligned}$	$\begin{aligned} & 64 . \\ & -1.1205 \end{aligned}$	$\begin{gathered} 66 \\ -1.5597 \end{gathered}$	$\begin{aligned} & 60 \\ & -1.4114 \end{aligned}$	$\begin{aligned} & 66 \\ & -2.4854 \end{aligned}$	$\begin{gathered} 66 . \\ -1.6804 \end{gathered}$	$\begin{aligned} & 66 \\ & -2.5000 \end{aligned}$	$\begin{aligned} & 66 \\ & -2.0339 \end{aligned}$	$\begin{gathered} 66 \\ -2.4000 \end{gathered}$
$\begin{aligned} & 64 \\ & -2.4439 \end{aligned}$	40. 0274	$\begin{gathered} 48 \\ -9143 \end{gathered}$	$\begin{gathered} 56 . \\ -1.1374 \end{gathered}$	$\begin{aligned} & 56 . \\ & -1.3040 \end{aligned}$	$\begin{aligned} & 42 . \\ & -.2086 \end{aligned}$	$\begin{aligned} & 68 . \\ & -1.6802 \end{aligned}$	48. . 4856	$\begin{aligned} & 40 \\ & -.0586 \end{aligned}$	$\begin{aligned} & 32 . \\ & .5689 \end{aligned}$

RESULTS AND DISCUSSION

Regression techniques were used to fit the conjectural variation models described by equations (16) and (19) to the measured conjectural variations of each game. The constants β and γ were evaluated and, when significant at the 1% level or better, included in the model for conjectural variation. The constant α can be considered the value of conjectural variation approached as the number of time periods become large. For each game α_{1} was substituted for $\ell_{1}(t)$ in equation (14) and α_{2} was substituted for $\ell_{2}(t)$ in equation (17), and the equations were solved by iterations to determine $\lim _{t \rightarrow \infty} q_{1}(t)$ and $\lim _{t \rightarrow \infty} q_{2}(t)$. The models for conjectural variation can be used to predict the dynamic time path of subsequent games with the same demand curve, cost curve, and knowledge about the rival's profit.

Identical Cost Curves, Limited Information

$$
\begin{aligned}
& \alpha_{1}=0.0082 \\
& \beta_{1}=0.0122 \text { at a significance level of } 0.1 \% \\
& \gamma_{1}=-0.0149 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{1}(t)=0.0082+0.0122\left(\frac{117-9-0.5 q_{2}(t-1)}{2(0.5+0.1)}-q_{1}(t-1)\right) \tag{29}
\end{equation*}
$$

$$
\begin{aligned}
& \alpha_{2}=-0.0163 \\
& \beta_{2}=0.0155 \text { at a significance level of } 0.1 \% \\
& \gamma_{2}=-0.1134 \text { at a significance level of } 25 \%
\end{aligned}
$$

Therefore, the model for conjectural variation becomes:

$$
\begin{equation*}
\ell_{2}(t)=-0.0163+0.0155\left(\frac{117-9-0.5 q_{1}(t-1)}{2(0.5+0.1)}-q_{2}(t-1)\right) \tag{30}
\end{equation*}
$$

at a significance level of 0.1%

$$
\lim _{t \rightarrow \infty} q_{1}(t)=\lim _{t \rightarrow \infty} q_{2}(t)=63
$$

which is the Cournot equilibrium of both duopolists.

Identical Cost Curves, Complete Information

$$
\begin{aligned}
& \alpha_{1}=-0.1558 \\
& \beta_{1}=0.01594 \text { at a significance level of } 0.1 \% \\
& \gamma_{1}=0.1991 \text { with no significance }
\end{aligned}
$$

Therefore the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{1}(t)=-0.1558+0.01594\left(\frac{117-9-0.5 q_{2}(t-1)}{2(0.5+0.1)}-q_{1}(t-1)\right) \tag{31}
\end{equation*}
$$

$$
\begin{aligned}
& \alpha_{2}=-0.1685 \\
& \beta_{2}=0.0195 \text { at a significance level of } 0.1 \% \\
& \gamma_{2}=-0.0670 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes:

$$
\begin{equation*}
\ell_{2}(t)=-0.1685+0.0195\left(\frac{117-9-0.5 q_{1}(t-1)}{2(0.5+0.1)}-q_{2}(t-1)\right) \tag{32}
\end{equation*}
$$

at a significance level of 0.1%

$$
\lim _{t \rightarrow \infty} q_{1}(t)=\lim _{t \rightarrow \infty} q_{2}(t)=67
$$

as compared with the Cournot equilibrium of 63. Since quantities of production of 67 are unstable, Stackleberg disequilibriums are centered about 67. With production at 67 both duopolists could fix their production at a lower rate with temporary benefits to both.

$$
\begin{aligned}
& \text { Similar Cost Curves, Limited Information } \\
\alpha_{1} & =0.0467 \\
\beta_{1}= & 0.01112 \text { at a significance level of } 0.1 \% \\
\gamma_{1}= & -0.0308 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes:

$$
\begin{equation*}
\ell_{1}(t)=0.0467+0.01112\left(\frac{117-9-0.5 q_{2}(t-1)}{2(0.5+0.1)}-q_{1}(t-1)\right) \tag{33}
\end{equation*}
$$

at a significance level of 0.1%

$$
\begin{aligned}
& \alpha_{2}=-0.01665 \\
& \beta_{2}=0.01701 \text { at a significance level of } 0.1 \% \\
& \gamma_{2}=0.08512 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{2}(t)=-0.01665+0.0171\left(\frac{117-5-0.5 q_{1}(t-1)}{2(0.5+0.2)}-q_{2}(t-1)\right) \tag{34}
\end{equation*}
$$

at a significance level of 0.1%

$$
\lim _{t \rightarrow \infty} q_{1}(t)=66,{\lim q_{2}(t)}_{t \rightarrow \infty}=56
$$

which is the Cournot equilibrium.

Dissimilar Cost đirves, Limited Information

$$
\begin{aligned}
& \alpha_{1}=0.03016 \\
& \beta_{1}=0.00472 \text { at a significance level of } 1 \% \\
& \gamma_{1}=0.2687 \text { at a significance level of } 1 \%
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{align*}
\ell_{1}(t) & =0.03016+0.00472\left(\frac{117-9-0.5 q_{2}(t-1)}{2(0.5+0.1)}-q_{1}(t-1)\right) \\
& +0.2687 \ell_{1}(t-1) \tag{35}
\end{align*}
$$

at a significance level of 0.1%

$$
\begin{aligned}
& \alpha_{2}=-0.1983 \\
& \beta_{2}=0.0309 \text { at a significance level of } 0.1 \% \\
& \gamma_{2}=0.00000642 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{2}(t)=-0.1983+0.0309\left(\frac{117-18-0.5 q_{1}(t-1)}{2(0.5+0.25)}-q_{2}(t-1)\right) \tag{36}
\end{equation*}
$$

at a significance level of 0.1%

$$
\lim _{t \rightarrow \infty} q_{1}(t)=71, \lim _{t \rightarrow \infty} q_{2}(t)=46 \text { as compared with the Cournot }
$$

equilibrium of 72 and 42. Since quantities of 71 and 46 are stable, duopolist 2 has become a price leader. With production at 71 and 46 duopolist 1 can not fix his production at a higher or lower rate with a temporary benefit.

Dissimilar Cost Curves, Complete Information

$$
\begin{aligned}
& \alpha_{1}=-0.0534 \\
& \beta_{1}=0.01445 \text { at a significance level of } 0.1 \% \\
& \gamma_{1}=-0.00834 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{1}(t)=-0.0534+0.01445\left(\frac{117-9-0.5 q_{2}(t-1)}{2(0.5+0.1)}-q_{1}(t-1)\right) \tag{37}
\end{equation*}
$$

at a significance level of 0.1%

$$
\begin{aligned}
& \alpha_{2}=-0.391 \\
& \beta_{2}=0.0221 \text { at a significance level of } 1 \% \\
& \gamma_{2}=0.0863 \text { with no significance }
\end{aligned}
$$

Therefore, the model for conjectural variation becomes :

$$
\begin{equation*}
\ell_{2}(t)=-0.391+0.0221\left(\frac{117-18-0.5 q_{1}(t-1)}{2(0.5+0.25)}-q_{2}(t-1)\right) \tag{38}
\end{equation*}
$$

at a significance level of 5%.

$$
\lim _{t \rightarrow \infty} q_{1}(t)=70, \lim _{t \rightarrow \infty} q_{2}(t)=50 \text { as compared with the Cournot }
$$

equilibrium of 72 and 42. Since quantities of 70 and 50 are stable, duopolist 2 has become a price leader.

Discussion

With the dissimilar cost curves used in this study, the Cournot equilibrium is 72 and 42 for duopolists 1 and 2 respectively. Limited information games resulted in equilibrium of 71 and 46 . Complete information games resulted in equilibrium of 70 and 50. Studies of Fouraker and Siegel (4) also showed that increasing the amount of relevant information available to bargainers decreases their tendency to the Cournot equilibrium. With the identical cost curves used in this study, the Cournot equilibrium is 63 for both duopolists. Limited information games resulted in equilibrium of 63. Complete information games resulted in disequilibrium centered about 67 .

Although a few bargaining pairs achieved a tacit agreement, more bargaining pairs were competitive. As a group only duopolists 1 with dissimilar cost cur ve, limited information considered previous conjectural variations in making current decisions of production as indicated by the only significant γ.

At the beginning of most games it appears the theoretical reaction curves did not coincide with the actual reaction curves because the participants used about three moves trying to maneuver or trick their opponents. After the next four moves most games that eventually ended at equilibrium were at equilibrium. A few players used moves 8 and 9 in an attempt to
" set their opponent up for a kill" on move 10. Therefore, the theoretical data fits the empirical data best during the middle moves of the game.

BIBLIOGRAPHY

1. Chamberlin, E. H. 1936. The theory of monopolistic competition. Harvard University Press, Cambridge, Mass. p. 30-55.
2. Cournot, Augustine. 1963. The mathematical principles of the theory of wealth. Richard D. Irwin, Inc. Homewood, Illinois. p. 65-74.
3. Fellner, William. 1949. Competition among the few. Alfred A. Knopf. New York. p. 55-116.
4. Fouraker, Lawrence E. and Sidney Siegel. 1961. Bargaining behavior: II. The Pennsylvania State University. University Park, Pennsylvania. p. 76.
5. Henderson, James M. and Richard E. Quandt. 1958. Microeconomic theory. McGraw-Hill Book Company, Inc. New York. p. 164-200.
6. Hicks, J. R. 1935. Annual survey of economic theory: the theory of monopoly. Econometrica 3:1-20. (Jan. 1935.)

APPENDIXES

Appendix I

Instruction Sheets

Instructions to Duopolist 1

The Ford Foundation has provided funds for research by the Utah State University Department of Economics regarding economic decisions. If you follow instructions carefully and make appropriate decisions, you may earn an appreciable amount of money. You may keep all the money that you earn. You cannot lose your own money but poor choices will result in small profit for you.

You will be paired at random with one other person hereafter called duopolist 2. You will not see this person or speak with him at any time. You will never know the identity of your competitor nor will he be aware of yours.

Imagine that you and duopolist 2 are the sole producers of some standardized commodity. You and duopolist 2 will engage in a series of transactions by written bids, the bids on each transaction representing the quantity of the commodity produced for that transaction. You must bid on each transaction.

You will be furnished with a payoff matrix which shows in red the various levels of profit or loss you can attain. You may or may not be given the level of profit of your competitor (duopolist 2). If you are given his profit levels, they will appear in green directly above your profit levels. The quantities you may produce from 30 to 90 are listed in red down the left hand margin; the quantities duopolist 2 may produce from

30 to 90 are listed in green across the top of the matrix. For any transaction, your profit, and maybe the profit of duopolist 2, is at the intersection of the row selected by you, and column selected by duopolist 2 . The actual cash payoff is scaled at 1 cent per 50^{1} points, so the objective of the game is to win for yourself the maximum number of points.

On your payoff matrix is encircled the profit resulting from your first quantity of production and the first quantity of production by duopolist 2. The process is continued by each player selecting and recording a quantity on a sheet provided for that purpose. You will select any quantity listed down the left hand margin, record it, and then give the sheet to the administrator. When the administrator returns your sheet, it will show for that transaction your quantity bid, your profit or loss from that transaction, and duopolist 2^{\prime} s quantity bid.

The process is repeated 10 times. You may select the same quantity each time; however you do not have to do so. Decisions will ordinarily be made every few minutes, but extra time will be granted when necessary.

For each production quantity of duopolist 2, you have one and only one corresponding quantity that maximizes your profit.

At the end of the session we will add up your profit and loss column and give you the resulting amount of money.

Are there any questions?
${ }^{1}$ With dissimilar cost curves, the actual cash payoff was scaled at 1 cent per $33-1 / 3$ points.

Instructions to Duopolist 2

The Ford Foundation has provided funds for research by the Utah State University Department of Economics regarding economic decisions. If you follow instructions carefully and make appropriate decisions, you may earn an appreciable amount of money. You may keep all the money that you earn. You cannot lose your own money, but poor choices will result in small profit to you.

You will be paired at random with one other person hereafter called duopolist 1. You will not see this person or speak with him at any time. You will never know the identity of your competitor nor will he be aware of yours.

Imagine that you and duopolist 1 are the sole producers of some standardized commodity. You and duopolist 1 will engage in a series of transactions by means of written bids, the bids on each transaction representing the quantity of the commodity produced for that transaction. You must bid on each transaction.

You will be furnished with a payoff matrix which shows in green the various levels of profit or loss you can attain. You may or may not be given the level of profit of your competitor (duopolist 1). If you are given his profit levels, they will appear in red directly below your profit levels. The quantities you may produce from 30 to 90 are listed in green across the top; the quantities duopolist 1 may produce from 30 to 90 are listed in red down the left hand margin of the matrix. For any transaction,
your profit and maybe the profit of duopolist 1 , is at the intersection of the column selected by you and the row selected by duopolist 1. The actual cash payoff is scaled at 1 cent per 50^{2} points, so the objective of the game is to win for yourself the maximum number of points.

On your payoff matrix is encircled the profit resulting from your first quantity of production and the first quantity of production by duopolist 1. The process is continued by each player selecting and recording a quantity on a sheet provided for that purpose. You will select any quantity listed across the top, record it, and then give the sheet to the administrator. When the administrator returns your sheet it will show for that transaction your quantity bid, your profit or loss from that transaction, and duopolist l's quantity bid.

The process is repeated 10 times. You may select the same quantity each time; however you do not have to do so. Decissions will ordinarily be made every few minutes, but extra time will be granted when necessary.

For each quantity of production by duopolist l, you have one and only one corresponding quantity that maximizes your profit.

At the end of the session, we will add up your profit and loss column and give you the resulting amount of money.

Are there any questions?

[^0]
Appendix II

Payoff Matrix for Duopolist 1
Identical Cost Curves
Limited Information

DUOPOLIST 1

Appendix III

Payoff Matrix for Duopolist 2
Identical Cost Curves
Limited Information

 2
2
y
y
2 0
30
y
or \&o 0

Appendix IV

Payoff Matrix for Duopolist 1

Identical Cost Curves
Complete Information

DUOPOLIST 2

Appendix V

Payoff Matrix for Duopolist 2
Identical Cost Curves
Complete Information

Appendix VI

Payoff Matrix for Duopolist 1

Similar Cost Curves
Limited Information

Appendix VII

Payoff Matrix for Duopolist 2
Similar Cost Curves
Limited Information

																												4	86	88	90
	100	150716			1795	80														2477										36	80
				16691		1840				,					2333									373	2					2148	2090
	1340	144×3	154	1633	171918	1800	1820	2	2	7			2209		2275	0				3		23312		2297	\%	22					2000
3	1310	411	1507	1597	16811	1760		1	19		2070		21552			2240				2275										972	1910
	1280	13791	1473	1561	16×31	1720	1791	18571	1917				12												14			1973		1884	1820
	1250	1347	1439	10		1680	9	181318	1871				2			0			2143			2	2095	2069	2036		6.			1796	1730
		13	'yar	1489	15671	15		1769	1825				19932	2021								2	1	1			1874		/769	as	1640
			1	1450	1529			,7251				1	19391	1965	1985			2013				1971	1947	1977	1880	1840	1792				150
	1160			-417		1560	1423	1681 ,	,										$19 \% 5$				3	1841	1802						1460
	11				3		1581			17311			183118		1869	18			1879			1827	97	1765	4	-	1408		1511		1370
	1100				14							'	17771	1	1811	1820		1			-	1	1725		1646						1280
5	1070	1	1235	1309	¢ 1377					1635		99	31	1	17e3	0						1	1	1613							1190
	1040	$1 / 23$	31201	1273	1339																1640						2		5		10
	1010	91	1	12.37	1301	1360		1461														1			12		1300				1010
		1059	1133		11263	1320	$13 \geqslant$	14		91	1520	1543																			920
	950	7	11699	$1 / 16$			/329	13	-	1440		1491							龶			-				12	1136			916	830
	920	95		1/129	1187		87													1391			1			1120					74
		96.3	1 1031	1093	3																1290	1251						90			6.50
		1)			1	11																				60		817	737	6	560
			99	10.21	10×3			11			12	83															8	733		5	470
		867	929	985			1119	16		1203		1231	1237	1234	1	g			5	1119		,	5 985		866			649	5		380
		835	5 F 5	4	7997	10\%		1109	1135	5	1170	1179	83	1181	73	0		1117	71087	1051		3	911	853	788		644	565			290
		9823	3	13	359		35	10 n	1089	1107		27	29		15				1021	983	940	891			10	640	56	481	39	3	200
		771	187		792	960	993	1021	$\times 3$	1059	1070	1075	1675	1069					1,955	80	870	819	76	01	63	560	480	397	3	,	110
	680	739	7783	8	883	720	251	977	99	$1 /$	1020	1023	1021	3	999	980		9	5889	847	800	747	689		55	480	398	313	2	12	20
		707	7×5	805	8k	880 840	909 867	933 889	957	963	70	971	967	957	941	2	8		823	779	230	675	625	549	47	400	316	229	13	36	70
	2		725		9,807	840	867	889	905	9N-		919	913	901	883		,				0	603	54	473	398	3.20			4		160
	560		ज7	697	7 731	760	783	801	8/3	819		85	Pa	189	767				625	W75		159	. 393	321	2	160	70	-2.3			
	530	0 577	423	661	693	720	741	757	767	771	770	763	75	733	709	480			5sy	507	360	387	319	245				10	-2		
	, 500	0.547	587	6	655	480	699	713	321	723	720	711	697	627	6.51	Lo	\checkmark	5	493	439	380	3,45	24/5	5^{-169}	8.6			-191		5-Hay	-520

Appendix VIII

Payoff Matrix for Duopolist 1

Dissimilar Cost Curves
Limited Information

Appendix IX

Payoff Matrix for Duopolist 2

Dissimilar Cost Curves

Limited Information

Appendix X

Payoff Matrix for Duopolist 1

Dissimilar Cost Curves
Complete Information

DUOPOLIST 2"

Appendix XI

Payoff Matrix for Duopolist 2

Dissimilar Cost Curves
Complete Information

DUOPOLIST $2^{\prime \prime}$

																								26			82			8.	
30			10921																												
		15\％，		17																										97	
			605.	3 x						cry				56																$x+6$	
				142	139	1763				M19	1930			1963				879													
															10																
								18						Tr7				170													
	a																														xeo
	み30																		176		Nis										80 361
											378								9	S_{6}											$\frac{362}{760}$
								1 127	100			1783	1782								Nas.										<0
																					H／1										0.0
								664	622												118										tan
			\％	$\begin{aligned} & 15 \\ & 9 . \end{aligned}$					afer											471	$1,4$	L209	1294					9	78		$\begin{aligned} & 560 \\ & 270 \\ & \hline \end{aligned}$
																				1×3				WYT							
											＜हर									2．4	198										
								ass			1580								6	12	－207			7					54.		
50																								$\begin{aligned} & 985 \\ & 110 \end{aligned}$	$9 / 2$						290
												7 Co					*							110	$\begin{aligned} & 60 \\ & 80 \end{aligned}$						2×0
																					－2\％	这		425	74						
										$8{ }^{81}$																					
																															20
																				$\begin{aligned} & 995 \\ & 305 \end{aligned}$	$\begin{aligned} & 931 \\ & 306 \end{aligned}$		276	$\begin{gathered} 697 \\ \text { is } \end{gathered}$				(q)		$\begin{aligned} & 50 \\ & 17 \end{aligned}$	
																														23	
																		370							10						
																		95	x－								＋36				
																		，													
																		5×6				$\begin{gathered} 677 \\ 260 \end{gathered}$	$\begin{gathered} 584 \\ 196 \end{gathered}$	$\begin{aligned} & 400 \\ & 132 \end{aligned}$	$\begin{aligned} & 366 \\ & 68 \end{aligned}$		2π				
								2ris										Ass								183	$7,2$				
	980，																														
					Ner．									，											25						
	$1 / 480$			103	1			寺			1												$\begin{aligned} & 332 \\ & 140 \end{aligned}$	$\begin{gathered} 20 \\ 70 \end{gathered}$	132						
	142										Yas		$\begin{aligned} & 9.8 \\ & 231 \end{aligned}$	$\begin{gathered} 879 \\ 359 \end{gathered}$	$\begin{aligned} & 834 \\ & 657 \end{aligned}$	$\left(\begin{array}{l} >83 \\ 605 \end{array}\right.$		$\begin{gathered} 663 \\ -4 \% \end{gathered}$	$\begin{aligned} & 574 \\ & 399 \end{aligned}$	$\begin{array}{r} 379 \\ 327 \end{array}$	$\begin{aligned} & Y 4 / \\ & 2.85 \end{aligned}$	$\left\lvert\, \begin{aligned} & 3.57 \\ & 183 \end{aligned}\right.$	2.5	32							$\begin{aligned} & 700 \\ & 7 \times 15 \end{aligned}$
	$\begin{aligned} & 8 y_{0} \\ & 1700 \end{aligned}$	163214								$\begin{gathered} 8 / \\ \text { iofre } \end{gathered}$	966					$576=$	$\begin{gathered} \text { cct } \\ \text { s.a2 } \end{gathered}$			$\omega \pi$	$\begin{aligned} & 371 \\ & 226 \end{aligned}$	79	$\begin{aligned} & 184 \\ & 78 \end{aligned}$	A							$\begin{aligned} & 790 \\ & 501 \end{aligned}$
	$\left\lvert\, \begin{aligned} & 860 \\ & 1>2 \mid 8 \end{aligned}\right.$	$\begin{aligned} & 887 \\ & 14 x< \end{aligned}$		$\begin{aligned} & 9.27 \\ & \text { crext } \end{aligned}$											$\begin{array}{r} 718 \\ 46 \times 8 \end{array}$	$\begin{aligned} & \angle \in 3 \\ & +>72 \end{aligned}$				$\begin{gathered} -388 \\ 2 \times 8 \\ \hline \end{gathered}$	$\begin{aligned} & 301 \\ & 182 \end{aligned}$	112	$\begin{gathered} 110 \\ \text { wo } \end{gathered}$								$\begin{aligned} & 88 \\ & 561 \end{aligned}$
	$\begin{array}{r} 8308 \\ 12124 \end{array}$				$\begin{gathered} 900 \\ 2404 \end{gathered}$			$\begin{gathered} 89 \\ 1167 \end{gathered}$	carg.	$\begin{aligned} & \text { Res } \\ & \text { Leve } \end{aligned}$					$\begin{aligned} & 660 \\ & 621 \end{aligned}$	$\begin{gathered} 600 \\ 580 \end{gathered}$			$\begin{array}{r} 396 \\ +309 \end{array}$	$\begin{aligned} & 30 \\ & 3.31 \\ & 2.31 \end{aligned}$	$\begin{aligned} & 231 \\ & 152 \end{aligned}$										$\begin{aligned} & 970 \\ & 627 \end{aligned}$
	$\begin{aligned} & 800 \\ & 1200 \end{aligned}$	$\begin{aligned} & 823 \\ & 1000 \end{aligned}$														$\begin{aligned} & 5 \times 3 \\ & 5 \times 10 \end{aligned}$			$\begin{aligned} & 330 \\ & 270 \end{aligned}$	$\begin{aligned} & 247 \\ & 190 \end{aligned}$	161	30									697
				819							$\frac{2 \times 0}{x=2}$		$6 \mathrm{~kg}$		ork	8			$26 x$	179								，			1×0
									1016	gele	248	764			$\begin{gathered} 486 \\ 512 \end{gathered}$	$\begin{aligned} & 4<2 \\ & k<8 \end{aligned}$	$2 K=$	64	$\begin{aligned} & 278 \\ & 176 \\ & \hline \end{aligned}$	$\begin{aligned} & 111 \\ & 92 \end{aligned}$											
	$\begin{gathered} 710 \\ 1400 \end{gathered}$	$1538<4$				$\begin{aligned} & 7<3 \\ & 1260 \end{aligned}$	1009		912	$\begin{gathered} 6 \omega \\ i \Psi 6 \\ \hline \end{gathered}$				$\begin{gathered} 487 \\ 50 x \end{gathered}$			$\begin{aligned} & 292 \\ & 294 . \end{aligned}$		132 $12 x$	$\begin{array}{r} 4,3 \\ -36 \\ \hline \end{array}$	-49										
	nekr		$\begin{gathered} 7 e 6 \\ 1+20 \end{gathered}$	$\begin{gathered} 711 \\ \text { Sase } \end{gathered}$		A2er		10.3	$\begin{array}{\|c} 6 \times c \\ \hline 9 \times 4 x \\ \hline \end{array}$	$\begin{aligned} & 615 \\ & -856 \end{aligned}$			$5 \begin{aligned} & \text { y. } 66 \\ & 5 \% 2 \end{aligned}$			$\begin{aligned} & 3+3 \\ & 3+25 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 2 \times 6 \end{aligned}$	122	$\begin{aligned} & 66 \\ & 6 x \end{aligned}$												
	Ke20	6		670			Com	627	600	567	530				3／2		168	87	－	93											

[^0]: ${ }^{2}$ With dissimilar cost curves games, the actual cash payoff was scaled at 1 cent per $33-1 / 3$ points.

