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ABSTRACT 

A MESOSCALE RAD IATION STUDY OF THE CACHE VALLEY 

by 

Nolasco G. Baldazo, Master of Science 

Utah State University, 1970 

Major Professor: Dr . Inge Dirmhirn 
Depar tment: Soils and Me teoro logy 

The radiation climate of Cache Valley was es tablished f rom the 

con tinuous recordings of global and diffuse sky r adiation at Utah 

State University campus from June 1968 to July 1969 and August 1968 

to July 1969, respec t ively. The influence of topographic features 

during summer and winter conditions a t seven representative locations 

running on an east-west direction across the valley were dete rmined 

by making shor t t erm measurements on clear days. 

A comparison of the clear day average global radiation on 

app r oximate dates of the same solar declination shows higher values 

during late winter and spring than t he values during late summer and 

autumn. This is mainly the influence of the higher atmospheric water 

vapor during the wa rmer months. An interesting fact is, that not only 

the direct , but also the scattered radiation shows higher values 

during t he spring months . This is caused by additional reflection 

from the snow-covered mountain slopes . In the curve showing th e distri-

bution of the diffuse sky radiation on completely cloudy days, t he 

effect of the mul t iple reflection between the ground surface and t he 

bases of clouds is very prominent in the period when there is snow on 

the gr ound. 
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sky radiation a t Utah State University campus and to study the local 

influences of local topography on the r eceipt of global and diffuse sky 

radiation at various locations across the valley on an east-west direc­

tion by making short term measurements under summer and winter conditions . 

In a mountain val ley like Cache Valley, the difference in c limate 

between the two opposite sides can largely be attributed to differences 

in the amounts of radiation received. This study was conduc ted on a 

scale where the incoming solar radiation may be influenced by topographic 

features. 
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REVIEW OF LITERATURE 

The solar radiation reaching the ear th's surface consis t s of two 

componen t s: direc t solar and diffuse sky radiation. The su~ of these 

t wo componen t s is t ermed as the global radiation. The amount and 

di stribution of global radiation reaching a particular point on t he 

earth's surface depends upon sever al f ac t ors s uch as latitude, alti t ude, 

and orientation of t he place, condition of the a t mosphere (turbidity and 

degree of cloudiness) , obstructions due t o local t opography , and t he 

kind of surface present (whether vegetation , snow or plain bare ground). 

Solar constan t 

The rate a t which t he so l ar energy i s received on a unit surface 

perpendicular to t he sun's direction outside the gaseous atmosphere at 

the earth ' s mean distance from the s un is known as the so l ar cons t ant. 

It is usually expressed in gram-calories per square centime t er per 

minute (gm- cal cm- 2min- 1) or milliwats per square cent i meter (mW cm- 2) . 

The first direct measurement of solar constant was obtained on an 

aircraf t a t an al titude of 38 , 000 feet a nd the va lue so established is 

1.936 ± 0.041 gm- cal cm- 2min-l (Thekaekara, 1968) . Another direct 

measurement of the solar constant was obtained on a rocke t aircraft a t 

an al titude of abou t 82 kilome t ers and t he value established is 1.952 

gm-cal cm- 2min-l (Drummond et al. , 1968, Drummond and Hickey , 1968). 

Both values obtained are about 2 .5 per cent lower than t he estimate 

made by Johnson (1954). 



Direct solar radiation 

The basic formula for computing the amount of solar radiation 

Io incident upon a horizontal surface at t he top of the earth's 

atmosphere in time t is: 

cos z 

4 

(1) 

where So is the solar constant, r the radius vec t or of the earth, and 

z the sun 's zenith angle. The value of z for any given place and time 

may be computed from the relation : 

cos z cos~cosocos<+sin~ sino (2) 

where ~ is the latitude, a the sun's declination and T the sun's hour 

angle. 

The radiation that reaches the surface is attenuated exponentially 

by atmospheric gases and dusts according to wavelength. For example, 

the ultraviolet portion of the solar spectrum is absorbed by ozone in 

the s tratosphere while the infrared by carbon dioxide and wa ter vapor 

in the troposphere. In addi tion, there is also at t enuation due to 

sca ttering by air molecules, water droplets, aerosols,and dusts. The 

comp l exi ties of the spectral adsorption and scattering fits a mathe­

matical model of the type am in which a is the transmission coefficient 

for total radiation passing through the atmosphere and m = secz is 

referred to as the optical air mass. The intensity of solar radiation 

received on a horizontal surface in time t is obtained by multiplying 
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Equation (1) by t he a t mospheric transmission asecz t o give : 

asecz cos·Z. (3) 

The op ti ca l air mass, secz, i s the ratio of the actual path leng th 

through the a tmosphere t o the zenith path leng th and is the r efore a 

funct i on of latitude, de clina t ion, and hour angle of t he sun (List, 1968) . 

Diffuse sky radiation 

Part of t he direc t solar radiation scattered in t he a t mosphere on 

clear days reaches the earth ' s surface as diffuse sky radia tion. The 

complex mechanism of scattering such as t he Ray leigh and Mie s cattering 

is discussed in mos t phys i cs t ex t s and is not appropriate to be dealt 

with in t his paper. 

The intensity of diffuse sky radia tion in cloudless condi tions 

decreases with he i gh t because the density of t he air producing the 

scattering effec t i s less . In overcas t condi t ions, t his component in-

creases s trong ly with heigh t a nd is also influenced by the type of 

clouds . More de t ails can be found in a study by Dirmhirn (1951) and 

Sauberer and Dirmhirn (1958). No other mountain range has been so 

thoroughly inves tigated from the-p-lains to the summits as the Eas t ern 

Al ps in Aus tria by the above inves tigators. 

Relationship between direct and 
diffuse sky radiation 

Di rec t solar radiation increases with height since t he atmosphere, 

wi t h i t s t urbidi t y, scattering and absorbing properties, decreases in 

mass with height. In o ther words , t he transmission coefficients are 
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functions of the solar altitude, a tmospheric wa t er vapor, dust , ozone and 

any other radiation depleting fac tors. 

At Mount Evans and Pikes Peak , Colorado, the diffus e sky radiation 

might not exceed 4 per cent of the global, whereas in ci t ~es whe r e soft 

coal is burned in quantity, the diffuse component might comprise 40 per-

cen t or even more in extreme cases (Hand, 1954). 

A re la t ionshi p between global and diffuse sky radiation according 

t o the amoun t of cloudiness was shown by Sauberer and Di rrnhirn (1958), 

and Hand (1947) . Liu and Jordan (1960) derived an emperical equation 

for es tima ting the intensi t y of diffuse sky radiation on a hor izonta l 

surface under a cloudless atmosphe r e when t he in t ensi ty of direct solar 

radiation a t normal incidence is known . 

Geographi cal distribution of 
solar radiation 

Since solar radiation is not used in daily wea ther fo recasting, 

its measuremen t in many synoptic s tat ions of the Weather Bureau is no t 

being undertaken. Besides the relative ly higher cost of radiation in-

struments compared to other meteorological instruments, difficulty i s 

e ncount ered in their maintenance and calibration schedule. Today, 

t here are less than 90 coopera tive and Weather Bureau radiation stations 

in the United States for wh ich data are published. Hand (1937) gave a 

historical review of the solar radiation investigations of the U. S. 

Weather Bureau. 

In spi t e of the inadequacy of radiation data both in areal cover-

age, length of records , and quali ty of measurements, studies on the 

distribuUon of global radiatJ.on in this country t;ere conduc ted by 

several inves tigator s , among them are Fritz ' (1~49), Fritz and MacDona l d 



(1949) , Hand (1953), Bennett (1965), and Hall (1967). The lack of data 

was supplemented by estimating global radiation using emperical equa tions 

derived f rom relationships between insolation and the more commonly 

observed climatic elements, foremost among which is duration of bright 

sunshine. The first one to use this kind of a .derived relationship was 

Angstrom (1924). 

Maps showing the world-wide distrib~tion of global radiation have 

been drawn by Black (1956), Landsberg (1961), and Budyko and Kondratiev 

(1964). 

While the maps drawn showing the monthly mean daily insolation over 

t he entire United States show the general radiation pattern, they do not 

show local variations which may be very large. It must be realized that 

any chart showing the distribution of global radiation over the country 

treats large areas only and that individual stations might vary as much 

as 100 percent or more from the surrounding areas (Hand, 1953). 



8 

INSTRUMENTS AND METHODS 

Location and duration of study 

Radiation instruments were installed on the roof of t he Fores try­

Zoology Building at Utah State Univers ity campus (41 °45'N ; lll 0 50'W). 

This site offers an unobs tructed view of the natural horizon and is 

readily accessible . Recorders were located in a laboratory room on 

the third floor of the building where a metal ladder was provided for 

climbing to the roof. Con t inuous measurements of global and diffuse 

sky radiation were obtained from these instruments f rom June 1968 to 

July 1969 and August 1968 t o July 1969, respectively. 

Short time measurements of global and diffus e sky radia tion were 

made at seven points across Cache Valley o n an east-west direction. 

Re l a tive position in a north-south direction would not influence the 

intensity of solar· radiat ion on a mescoscale basis except during s unrise 

and sunse t due to diffe rences in the horizon. 

The measurement s were made by placing a Star py ranome t er properly 

levelled on top of t he car. A recorder, powered by the car battery 

t hrough an inverter, was used to record the output of the pyranometer. A 

5- to 10-minute recording was made at each of t he seven points by driv­

ing back and forth across t he val l ey. This was repeated th ro ughout t he 

period be tween ·sunrise and s unset dur ing clear days and during part of 

the day on a cloudy day . 

The shor t time measurements were made on clear days when th e r e was 

snow on t he grour,d o" ~arch 21•, 1969 aCid on June 30 , 1969 ·•her. the sno•• 

was complete l y mel ted in the val ley and in the mountains. The dif f use 
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Figure 1. Map of Cache Valley showin~he various locations 
whe re the natura l horizons we re de t ermined\25) and Points 1 t o 7 
where short time measurements of global and diffuse sky radia tion 
were made . R indicates the reference point where the continuous 
measurement s were made. 
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Figure 2 . The na tural horizon at the roof of the Forestry­
Zoology Building at Utah Sta t e Universi t y campus and the apparent 
path of the s un during summer and winter solstices and au tumna l and 
vernal eq uinoxes. 
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Figure 3 . The natural horizon at Point l a nd the apparent 
parh of t he sun during s ummer and win t e r solstices and autumna l and 
vernal equinoxes. 
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Figure 4 . The natural horizon at Point 2 and the apparent 
path of the s ur. duri:1.g summer and t·1i!lt er so:stices and autumnal and 
verna l equinoxes. 

13 

Eas t 



Wes t 

North 

10° -
·.~ 

.~-
60° .--. 
70° ------.. .. 

Sout h 

Figure 5. The natural horizon at Point 3 and the apparent 
pa·ch of the s un ciur ing s ummer and 'tYinter sols cice s and autumnal and 
vernal equinoxes. 
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Figure 6. The na t ural horizon at Point 5 and the apparent 
path of t he sun dut·ing sunaner and winte r sols t ices and au t umna l and 
vernal eq ui noxes. 
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Figure 7. The natural horizon at Point 7 and the apparent 
path of t he sun during surraner and wint er solstices and autumnal and 
vernal equinoxes. 

16 

East 



Description of instruments 

A Moll-Gorczynski and an Eppley pyranometer were used in the 

continuous measurements of global and diffuse sky radiation . A 

shadow band (also known as an occulting device) was used to shield 

17 

the Eppley pyranometer from the direct solar radia tion. A Star pyrano­

meter was used in the short time measurements across the valley . 

Moll-Gor czynski pyranometer. The receiver of the Mol l­

Gorczynski pyranometer (Figure 8) is a Moll thermopile consisting of 

alternate thin strips of manganin and constantan arranged in a zig-zag 

pattern forming a series of 14 thermojunctions which is approximately 

a square , 10 mm x 14 mm in diameter (Figure 8b). The s trips are in 

thermal contact but electrically insulated from the copper plate which 

has a large thermal capacity. A black varnish of low thermal capacity 

fill s the space between the strips and thi s results in a poor thermal 

contact so that each thermojunc tion can be treated separately as far 

as heat trans fer is concerned . The thermopile is enclosed in two 

concentric glass hemispheres, 2 rnm thick, and may be dismantled as 

shown in Figure Be. A ring of synthetic rubber is inserted between 

the outer dome and the mounting which keeps the interior sea l ed air­

tight. The flat surface is maintained on a horizontal pos ition and 

the solar radiation falling on it causes heat to be absorbed by the 

receiver. The heat absorbed is then transferred to the air by con­

vec t ion, to the copper plate by conduction, and to the surroundings 

by r adia tion . The effect of the double hemispherical glass dome is 

to reduce convective heat losses . A t emperature gradient, between the 

center cf the strip and its ends, results due to the greater thermal 

capaci t y of the s upport s and the copper plates. The central junctions 



(b) 

(c) 

Figure 8. Holl-Gorczynski pyranometer (so l arimeter) . (a) 
Top: cross-sectional drawing. Bottom right: unmounted (from 
Robinson, 1966). Bottom left: mounted. (b) Holl thermopile 
(from Robinson, 196C.) (~ cl;L.amantled solarimeter (from Kipp and 
Zonen, Cat. No, em z-- em 3). 

18 
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are the hot junctions and the ends of the thermopiles are the cold 

ones. 

Gorczynski (1924) discussed the development and construction of 

the Moll-Gorczynski pyranometer which is now manufactured by Kipp and 

Zonen in Holland. This instrument is commonly used in Europe and 

according t o Sellers (1965) is considered more accurate than the 

Eppley pyranometer which is the standard in the United States. The 

properties of the Moll - Gorczynski pyranometer was discussed by 

Robinson (1966) and also in IGY Instruction Manual, Part VI. Collins 

and Walton (1967) developed a thermistor compensati on for this instru­

ment which reduces the temperature coefficient considerably . 

Eppley pyranometer (50-junction). The Eppley pyranometer (Figure 

9a) was primarily designed for the measurement of intensity of solar 

radiation on a horizontal surface. Kimball and Hobbs (1923) discussed 

the development and construction of a similar instrument. The Eppley 

pyranometer is manufactured in the United States by Eppley Laboratory, 

Inc. , Newport , Rhode Island. The receiving element consists of two 

thin and flat concentric silver rings. This is hermetically sealed in 

a lamp bulb of soda lime glass filled with dry air to prevent any 

condensation of water on its inner surface due to exposure to low 

'-! temperature, which is an advantage over the Moll- Gorczynski pyranom­

eter . The inner or hot ring is painted with lampblack and the outer 

or cold ring is smoked with magnesium oxide. A marked t emperature 

difference results when the two rings are exposed to incoming solar 

radiation. The resulting current shows an elect romotive fot-ce (emf) 

w~ich is n~t strictly proportional to the differeccc between the 

temperature of the junctions attached to the black and the white 



(a) 

(b) 

Figur e 9 . ( a) The Epp l ey pyranome t er. Fr om Handbook of 
Meteoro l ogical I ns t ~~nents, ~art l. (Brit ish Me t eorological 
Office, 1956). (b) Eppley pyranometer with shadow band. 

20 
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rings, respectively , but the voltage is nearly proportional to th e 

intensi ty of the received solar radiation. A complete description of 

this instrument is contained in the Eppley Bulletin No. 2. 

MacDonald (1951) made several tests on the effect of temperature , 

angle of incidence, exposing the receiver on a vertical plane, a com­

plete inversion from the horizontal, and the effect of a few wa ter 

drop lets on the glass on the response of the Eppley pyranometer. The 

tests showed that: (1) the output increased with decreasing ambient 

temperature; (2) the output varied with angle of incidence of colli­

mated radiation; (3) the output decreased about 5 percent when the 

rece iver was exposed in the vertical plane, but complete inversion from 

the horizontal had no signif ican t effect; and (4) a few water droplets 

on the glass hemisphere did not influence output. 

Woertz and Hand (1941) made t ests using different techniques 

but analysis of their data indicates s imilar results except for one 

pyranometer. Other possible defects were pointed out such as: (1) 

the black and whi te rings not all in the same plane; (2) the black 

surface, especially, appears t o be coated to a varying thickness; and 

(3) orientation may have small effect and therefore pyranometer should 

be oriented the same as during calibration. 

Fuquay and Buettner (1957) also made laboratory investigations 

of some characteristics of the Eppley pyranometer. Experime nts and 

theories were given t o explain and show ways to avoid the following 

errors: (1) variable temperature coef ficient; (2) variation of 

thermopile output wi t h. direction of gravity , and effect caused by 

1nternal air convection; (3) errors caus e d by radia tion coming f rom 

the back side and being reflected by the glass cover; and (4) errors 
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from specular reflectivity of the black receiver ring and the result­

ing deviation of response from the cosine law. According to Fuquay and 

Buettner, in its present form (i.e., present absorbing s urface , sing l e 

calibration constant, etc.), t he Epp l ey py ranometer does not appear 

suitab le for radiation measurements at high latitudes. For middle­

latitude measurements, extensive calibration of the present units 

should considerably improve the accuracy of the instrument. Minor 

modifica tions of cover design and surface coatings could lead t o a 

great ly improved instrument. 

The shadow band was constructed to shield the pyranometer from 

direct solar radiation, thus the pyranome t er de t ected only diffuse 

sky radiation. The shadow band was made of aluminum sheet and was 

8 em wide , 1.5 mm thick, and 180 em long. The aluminum band was 

painted a dark gray to reduce possible reflection on the pyranometer. 

The shadow band was formed into an arc which has a diame t er of about 

81 em and could be adjusted by sliding two clamps on two brass pipe 

legs mounted on a base screwed on the t able. The l egs are inclined 

in a south-north direction to an angle equal to the geographical 

latitude of Logan City by a vert ical me tal support fixed at the 

middle of the 71 em crosspipe which joins the t wo legs on its upper 

ends. The Eppley pyranometer was fixed on a metal stand between the 

legs. 

A similar device built by Hand (1946) for the U.S , Weather 

Bureau involves a ring arrangement. The ring has a radius of 20 

inches and a cross-sectional diameter of 2 inches. The shading is 

modified in accordance with the date by a parallel displacement of 

the ring on a frame which is inclined to an angle equal to the 
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geographical latitude of the station. This type of shadow b and as we ll 

as the one used in this study involves a change in the distance between 

the receiver and the shadow band. Robinson (1955) describes an occult­

ing device which ensures a fixed shading-receiver distance throughout 

the yea r . 

Star pyranometer. Dirmhirn (1958) discussed in detail t he develop­

ment, construction, and operation of the Star pyranometer (Figure 10). 

The receiver consists of 32 small copper plates which are 0.05 mm thick 

and are alternately painted black and white. These are attached to two 

poorly conducting materials about 3 mm thick. The rings are mounted on 

a heat-insulating plate and spaced at a cer tain distance. The thermo­

pile consists of manganin-constantan or copper-constantan junctions which 

are so lde red t o the plates. The junctions in thermal contact with the 

black plates are the ho t junctions while those in contact with the white 

plates are the cold junc tions . The receiver is covered by a polished 

glass hemisphere about 2 to 3 mm thick and is 7 em in diamete r . 

Dirmhirn also showed that the effect of the short-wave radiation 

in the spectral range between 0.3 and 3 microns is nearly independent 

of the waveleng th and that it can be measured according to the cosine 

law, up to 75° angles of incidence or better. It was also shown that 

the position of the Star pyranometer and the t<7eather conditions do not 

influence the output. There is a direct proportionality bet,;een the 

amount of current and the intensity of the received solar radiation. The 

time of reaction until 99 percent of the output is reached is 20 seconds 

and the study showed that the accuracy is sufficient l y high. This instru­

ment is useful for momentary and cont inuous measurements of global and 

diffuse sky radiation as well as albedo. It was also tested in the 
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Figure 11. Shading disk. Figure 10. Star pyranome ter. 

(a) (b) 

Figure 12. (a) Angstrom compensation pyrheliometer. (b) Electronic 
galva:1ometer. 
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labora tory in the Department of Soils and Me teorology for temperature 

effect and was found to have no effect within the range -6 to 64 C. 

Angstrom pyrhelimeter and calibration method. Al l the pyranometers 

used in this study were calibrated regularly with the use of the Angstrom 

compensation pyrheliometer (Figure 12a). In this instrument, a thin 

blackened shaded manganin strip is heated elec trically until it is at 

the same temperature as a similar strip which is exposed to solar radia-

tion. Under steady state condition, the ener gy used for heating is equal 

to the absorbed solar energy. The thermocouples on t he back of the t wo 

strips are used t o test for the equali t y of the temperature. These are 

connected in opposition through an electronic galvanometer (Figure 12b) . 

The energy I of the direct solar radiation is calculated by means of the 

formula : 

I (4) 

whe re i is the heating current in amperes and k , a dimensional and 

instrument constant typica l of each Angstrom pyrheliometer. A complete 

description of this instrument may be obtained upon request from the 

Eppley Laboratory, Inc., Newport, Rhode Island. 

During calibration, the global radiation is measured first and 

then the diffuse sky radiation by shading t he pyranome t er with a disk 

mounted at the end of a slender rod shown in Figure 11, held about a 

meter away . The shading disk has a diameter slightly greater than 

the diameter of the receiver. The vertical component of ·the direct 

solar radiation is then obtained by subtraction, 

I cos z k (R - R ) 
g d 

(5) 
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where I is the observed direct so lar radiation, z the sun's zenith angle 

which may be computed from Equa tion (2) , Rg the pyranometer output without 

the shade and Rd the output in the shaded condi tion. The constant re­

quired for each pyranome t er is k. The information obtained in all the 

calibrations made on the Moll-Gorczynski pyranometer which was used as 

the standard in this study are listed in Tab le 1. 

Ot her methods of calib rating pyranometers are discussed by Hill 

(1966) , Latimer (1964; 1966) , and Drummond and Greer (1966). 

Units, IPS and standard time for 
radiation 

The unit used is the cal cm-
2
min-l which is also specified by the 

l<orld Meteorological Organization (WNO) and for totals of so lar radia­

tion, cal cm- 2 pe r hour , day , month , and year as the case may be. I n 

some meteorological se rvices , the unit used is milliwat cm- 2 

(cal cm- 2min-l = 69 . 7 mW cm- 2). In some countries , a cal cm- 2 is desig-

nated a langley and the corresponding unit of flux density is langley 

. -1 m1n 

All the solar radiation measurements were referred to in what is 

known in s ome countries as Local Apparen t Time (L. A. T.) and in others 

as True Solar Time (T. S. T.) . 

Care of instruments 

The pyranomete rs used for continuous measuremen t of global and 

diffuse sky radiation were inspected at least once a day and additional 

times when necess ary during the winte r months, especially on days when 

there was snowfall. The glass hemispheres were wiped clean and dry 

and in t he case of the Moll-Gorczynski pyranomete r, whose outer glass 



Table 1. Information on the calibrations made on the Moll-Gorczynski pyranometer using an 
Angstrom compensation pyrheliometer 

Solar Radiation (Horizontal) 

Year Declina- Solar 
and tion angle Angstrom Moll-Gorczynski 

Month (degrees) (degrees) 
I sin h Recorder Deviation 

h gm-cal em 2 gm-cal em 2 % 

1968 

Ju ly 26 +20° 30' 52° 23 ' 0.998 0 . 988 +1.1 
28 +19° 00' 65° 22 ' 1.180 1.145 -3.0 

Aug 12 +15° 00' 43° 46 ' 0 . 848 0.826 -2.6 
29 + 9 ° 39 ' 55° 02 ' 1.127 1.083 -3.7 

Sep 5 + 7° 07 ' 40° 45 ' 0.866 0.849 -2.0 
24 - 0° 32 ' 46° OS ' 0.969 0 . 952 -1.8 

Oct 8 - 5° 35' 42° 34 ' 0.946 0.937 - 1.0 
17 -8° 58 ' 38° 58' 0 . 878 0 . 862 -1.8 

1969 

Jan 10 -22° 04 ' 25° 56 ' 0 .543 0 . 552 +1.7 
Mar ll - 4° 11' 41° 29 ' 0.897 0.890 +0.8 
Apr 30 +14° 32 ' 59° 26' 1.192 1.180 -1.0 
June 4 +22° 20 ' 69° 22 ' 1. 270 1.243 -2.1 
July 2 +23° 06' 73° 22 ' 1.330 1.295 -2.6 

30 +18° 43' 64° 21' 1.173 1.151 -1.8 
Aug 19 +13° 02' 60° 57' 1.150 1.120 -2.6 
Sep 5 + 7° 07 ' 55° 18' 1.120 1.102 -2.1 N ..... 

15 + 3° 20' 51° 44 ' 1.012 0.992 -2.0 
25 - 0° 32 ' 47° 23 ' 1.012 0.980 -3.0 
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hemisphere is not hermetically sealed, condensation inside the glass was 

always removed whenever present. Deposits of snow , fros t or rime were 

removed ca re fully from the outer s ur face of the glass hemisphe r es during 

extremely cold mornings . The trace on the automatic recorders we re marked 

when measurements were interrupted for cleaning the bulbs and for calibra­

tions. When the records were evaluated, app ropriate corrections were 

made . These problems were no t encountered in the Star pyranometer in as 

much as it was only used for short time measurements on clear days where 

wip i ng the glass hemisphere clean and dry is enough. 

Analysis of data 

Continuous global and diffuse sky radiation . The global and diffuse 

sky radiation were analyzed on an hourly, daily, and monthly basis . The 

charts we re removed from the respective recorders every Monday. The time 

was adjusted to the True Solar Time and the corrections made whenever 

necessary as regards to any possible interruptions previously mentioned 

including power failure . The hourly values were integrated using 

especially made mechanical integrators for both charts. 

At the end of the period of study, l year and 2 months fo r the global 

radiation and 12 months for the diffuse sky radiation, the daily values 

were corrected based on the calibrations made. The corrections made on 

the global radiation were based on Figure 13. A different procedure was 

fol l owed in determining the correction factor for correcting the diffuse 

sky radiation although calibrations we re made on the Eppley pyranometer 

just the same . 

The Eppley pyranometer was installed f or a few days without the 

shadow band. Shor t period records (30-minutes) during completely cloudy 
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days were compared to the Moll-Gorczynski record for the same period. 

Figure 14 indicates that no cor rec tion was necessary under this condi­

tion. When the shadow band was installed, shor t period values were 

again compared . A dec rease of 9 pe r cent was noted in the Epp ley pyrano­

meter ou tput (Figure 15). Corrections on the daily values of diffuse 

sky radiation were therefore made based on this comparison, 

Short-term global and diffuse sky radiation. The hourly march of 

t he global radiation on a perfectly clear day under summer and win t e r 

conditions was established on all seven points se le c t ed in the valley. 

This was based on the short t ime measurements made at each point at 

ce rtain intervals from sunr ise to sunse t on March 24 , 1969 when there 

was s now on the ground and on June 30, 1969 when the snow was completely 

mel ted i n t he val ley and in the mountains . 

To avoid any discrepancy that may be due to the possible difference 

in the response of the pyranometer used in the valley and the one used 

at the reference point, comparisons ~e re made a t the reference point on 

the output of both instruments on a clear day. Th i s was done as close 

as possible t o the day the shor t time measurements were made , M~rch 29 , 

1969 when there was snow on the ground and, July 4, 1969 when the snow 

was melted . Based on these comparisons, the measuremen t s at t he seven 

points we re properly adjusted. 

The diffuse sky radiation was measured during par t of a comple t ely 

cloudy day on June 24 , 1969. 

In all short time measurements, care was taken to s ynchronize the 

time, such that when comparisons were made, the accuracy with regards 

to the time was as close as possible to t he nearest minute. The aver­

age for the period was always taken so that the error which may be due 
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Fi gure 14 . Comparison between the Mol l-Gorczynski and the Eppley 
pyranometers without the shadow band during comple t ely 
cloudy days. 
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to a difference in the time in the order of one minute or so was 

minimized . 



RESULTS AND DISCUSSION 

Continuous global and diffuse sky 
radiation 

The actual daily and mon t hly totals of global and diffuse sky 

34 

radiation are listed in Tables 2 and 3, while Figures 16 and 17 show 

their graphical distribution over the entire period of t his study. 

These values reflect weather conditions during the period and can not 

be taken as climatic averages for the area. However, some implicit 

wea t he r patterns can be deduced in Figure 16. Distinct depletion of t he 

global radiation during certain days of the months are apparently a 

result of cloudiness associated with weather phenomena such as fronts and 

thunderstorms. The lower global radiation in the se periods is usua lly 

associated with higher diffuse sky radiation, as for example, in August 

1968 and June 1969 (Figures 16 and 17) . During some days clouds reduced 

the amount of global radia tion to as low as 14 percent of the possible. 

In Figure 16 we could draw, without too much effort, a ceiling 

curve along the maximum daily va lues during the year. This maximum pos-

sible global radiation is a good means for comparison of a station wi th 

other locations. It also provides an idea of the maximum total energy 

which can be expected for the area by solar radiation processes . We wi ll, 

therefore, discuss this maximum possible global radiation undisturbed by 

clouds. 

Global and diffuse sky radiation (cloudless sky) . Figure 18a shows 

the distribution of t he global radiation based on the re cords on clear 

days. The intensity of solar radiati on fal ling on a horizontal surface 



University , Logan, Utah, June 1968 t o Ju ly 1969 

---
1969 

Jan Feb Mar Apr May Jun Jul 

105.8a 172.3 21o.oa 552.7 464.2 775.2 b 772. 6b a 108.5 234.\ 300 . 4 572.7 636.6 716.2 . 779.2 
213 . 6 316.6 398.6b 297 .ob 565.5 735 . 3b 764 . 6b 

56 . 8a 311.8 446.2 582.3 601.8 740.4 777 . 6 
97 .6a 237.7 423.3 513.8 646 . 0 659.4 734.2 

196.4 90.3a 320.0 213.3 698 . 1 618.0 718 . 3 
171.8 230 . 5 401.7 206 .2a 678.lb 491.3 742.6b 

465 .6b a 200.1 330 . 9 316 .4b 697 . 8 602.3 745.\ 
242 . 7 265 . 8 485 .0b 593. 1 700.7~ 203 . 4 750.3 
213.4 268.3 502.6b 575.7 705.3 730.9 749.2 a 82.7a 299.9 498.5 573.9 587.0 564.8 689.8 
127.8 209.1 426.2 497 . 4 712 . o 429.1 702. 5 

88 .7 226.2a 507.5 219 . sa 651.7 667.0 680.0 a 
60.2 219.4 509.9 514 . 7 700.9 381.0 518 . 8 a 159.1 l55.8a 497.4 l57.2a 519.8b 305 . 9 709.4 a 103 . 5a 167.1 491.1 454.1 737 .\ 606.4 719.3 

216.3 377 .6 397.8 632.2a 731.5 729 . 0 687 . 2 a 
243.5 379.6 458.7 150.6 538.9 655.5 689.8 a 16.7a 224.3a 400.3 650.\ 696.6 615.0 679.4 
l7.9a 230 . 8a 536.7 648 .3 644.0b 401.9 672.8 
29 .7a 258 .0 451.2 648.5 738.3b 569.2 702.8 
39 .5a 344. 9 538 . 1 549.0 750.8b 477.4 659.9 

a 198. 3 285 .5 284.4b 640 . 3 741.5 237.5 442 . 9 
- '~- 176.9 240.0 554. 2b 257 .7 722.8 376 . 7 675.\ a 79 . 7a 134.2a 558.1 528.0 717.3 535.3 723.7 

82.4 289 . 2 549.1 482 . 3b 695.3 528.1 706.3 a 
206 .3 339. 4 480. 0 681 . 9 743 . 4 537. 7 610 . 9 a 145.7a 418.5 565.0 664.0 765.6 762.5 473.lb 
238 . 7 544.3 582.1 722.1 781.1 b 690.6 
221.8 505.7 112.oh 566.7 670 . 3 w 
306.2 395.8 768 .8 "" 

4448.3 7258.1 14103. 4 14667.5 20846 . 4 17138.6 21166 . 6 



Table 3 . Ac tual diffuse sky radia tion (gm- cal cm- 2day- 1) , at Utah State University , Logan , Utah , 
August 1968 t o July 1969 

1968 1969 
Day 

Aug Sep Oct Nov Dec J an Feb Mar Apr May Jun Jul 

1 143 . 5 78.7 62 . 4 98 . 1 140. 1 105 . 8 172. 3 210 . 0 139.4 277 . 8 135.5 92.3 
2 261.3 186.3 51.4 109.1 113.6 108 . 5 226 . 4 249 . 6 106.4 198 . 3 161.6 80 . 3 
3 159 . 4 99.3 50 . 6 109 . 0 146.2 62 . 6 66.2 209.7 155.3 292 . 5 145 . 0 98 . 8 
4 124.6 91.0 140 . 8 60.5 117. 4 56.8 134.5 88.8 79 . 5 250.3 80 . 9 120 . 8 
5 117.9 54 . 1 63.4 139.0 96 . 9 97 . 6 185 . 4 147 .8 238 .2 183.7 151.8 139.1 
6 90 . 2 79 . 2 226 . 3 72 . 8 59.1 118.9 90.3 302 . 3 167.4 130.3 163 . 4 211.5 
7 159 .1 140.4 172.0 154 . 9 110.4 116.0 225 . 1 215 . 5 206.2 128.5 303.2 128. 1 
8 188 .0 81.1 66.4 120.8 104 . 2 77 . 9 79 . 8 167.8 284.4 110.2 236.6 109 . 1 
9 238.1 102.3 71.6 85.6 117.1 76 . 4 203 . 5 127 . 5 94 .1 101.6 177.8 99.2 

10 103 .9 153.4 97.7 48 . 1 128 . 4 76.8 141.2 79 . 2 100.5 93 . 3 167 . 9 92 . 3 
11 117 . 6 208 . 0 158.6 133.3 73.3 82.7 198.8 83 . 3 91.7 262.8 213.3 111.8 
12 149.9 96.5 146.8 36.1 153.6 120 . 6 203 . 5 231.8 212.6 107 .3 250.6 124.3 
13 245.1 172 . 9 70.4 94 . 9 80 . 8 86.4 221.6 109 . 1 219.8 218 .8 256.0 113.8 
14 223 .9 172.1 45.1 50 . 7 110 . 2 60 . 2 219.4 93.6 271.4 160.7 214. 6 149.8 
15 172.1 150.5 158 . 8 45.3 108. 2 95 . 5 145.3 175.8 15 7.2 213 .0 270 . 9 217.5 
16 252.9 197.5 146 . 9 92.8 89 . 5 103 . 5 158.9 180.3 194.0 90.8 288 . 7 101.8 
17 149 . 4 139.6 50 . 5 109 . 5 117 . 5 70 . 0 125 . 8 241.3 105 . 5 100.8 345 . 5 101 . 9 
18 194.9 63 .0 62 . 4 134 . 6 119 . 5 59.1 117 . 6 197 . 4 150.6 270.3 192.3 169.0 
19 222 . 7 97 . 9 49 . 0 77 . 2 131.4 16.7 218.8 312.4 93.0 166 . 9 202 . 1 185 . 1 
20 197 . 1 79 . 3 62.1 75 . 3 114.4 17 . 9 218.9 96.6 82 .5 195.7 229 . 0 120 . 6 
21 208 .1 192 . 1 52 . 5 108 . 9 124.9 29.7 235.1 245.9 90 .6 84.4 243 . 8 146.4 
22 107.4 248 . 1 167.1 29.6 78.6 37 . 9 193 . 7 121.4 138.2 78.4 266 . 3 111.0 ,, 23 136.9 67 .0 81.0 63.2 81.7 167 . 2 217 .o 233.4 131.4 80 . 5 324 . 8 129.9 
24 112 . 4 54.0 51.6 114 . 9 90.6 166.8 218 . 4 72.2 176 . 4 101.2 191.7 270 . 1 
25 68 . 2 49 . 7 56.2 111.2 104.7 79.7 134.2 77 .o 211 . 7 137 . 0 257 . 7 136 . 1 
26 121.9 61.0 61.3 56.3 112.2 42.0 221.4 95 . 4 248.3 177 . 6 287 . 7 81.4 
27 128.0 147.3 62.0 101.8 135 . 3 140 . 7 203.1 218.8 84.9 117.9 239 . 4 109 . 1 w 
28 137 .3 153.9 42.7 118.1 88.9 145.7 113.6 132.0 121.9 102.0 232 . 9 160.2 "' 
29 57 . 6 64.6 62.1 58.6 139 . 0 141.5 78.8 184 . 5 134 .o 173.5 222.6 
30 52 . 0 135.8 62 . 2 106 . 8 106.8 191.7 171.9 79.2 321. 9 85 . 1 84 . 9 
31 57.0 164.7 127 . 0 99.8 205.9 102.5 112.0 

SUM 4698.4 3616.6 2816 . 6 2717 .0 3421.5 2849.7 4889 . 8 5172.5 4616 . 8 4991.0 6489.6 4130 . 8 
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on cloudless days does not vary much from year t o year . The intensi t y 

is mainly influenced by astronomical factors, like the variati on of the 

di s t ance between the sun and the earth, solar declination, hour angle, 

and poss i bly the 1olar cons t ant. Some physical factors, such as water 

vapor content and degree of contamination of the atmosphere and the albedo 

of t he ground surface may also cause some variation from one year to the 

next. A study by Saube r e r and Dirmhirn (1958) in Austria shows that t he 

variation from the average global radiation established i n t his manner 

rarely exceeds 4 percent . 

Unde r c lear sky condi tions, the extinc tion of the solar radiation 

due to t he atmosphe r e depends upon the phys i cal processes l<hich a ffe c t 

the various regions of the solar spectrum. These e ffec t s are represented 

by the Rayleigh extinction coefficient (scatt ering by a tmospheric 

molecules), t he extinction coeff i c i e nt which represents sca ttering by 

dusts (aerosols) and extinction coefficien t which represents absorption, 

mainly by wa t er vapor . Robinson (1966) presented a review of t he relation­

ships of the various ex t inction coefficient s in empirical equations 

derived for computing global radiat ion. 

A comparison of t he global radiation on app roxima te dates of the 

same so l ar declination (Table 4) shows highe r values during the rela t ive­

ly co l der mon t hs of late wint e r and spring than during the warmer months 

of later s ummer and autumn. These values i ndi cate the inf luence of the 

wa ter vapor con t en t of the atmosphe r e on t he global r adiation. Wa ter 

vapor content of the air is a func tion of air temperature; thus there is 

a higher con t ent in late summer and autumn . Because wa t e r vapo r ab sor bs 

solar radiatJ.on the amount of g lobal radia t ion is reduced dur ing t he 

period when the wa t e r vapor con tent of the air is hi ghest . An interesting 



Table 1, . Average global radiation (gm-cal cm- 2 day- 1) on approximate dates during clear days 
of the same solar declination 

Global radiation Global radiation 
Declination Approximate Approximate 

(degrees) date Direct Scattered date Direct Scattered 

+20 May 21 670 85 Jul 24 655 83 

+15 May 1 615 85 Aug 12 596 78 

+10 Apr 16 565 85 Aug 28 545 65 

+ 5 Apr 3 519 83 Sep 10 499 56 

0 Mar 21 463 82 Sep 23 448 52 

- 5 Mar 8 402 78 Oct 6 390 50 

-10 Feb 23 334 73 Oct 20 323 50 

-15 Feb 9 274 68 Nov 3 261 51 

-20 Jan 21 206 65 Nov 22 197 55 

..,_ 

.... 
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fact is, that not only the direct, but also the scattered component 

shows higher values during the sp ring months. This indicates that there 

exis t s s till another effect, influencing mainly the diffuse sky r adia­

tion. In general we could expect a s lightly higher diffuse component 

toge ther with a reduced solar radiation due to higher water vapor content 

of the a t mosphere . An explanation for the higher diffuse component of 

t he global radiation is the c loseness of the mountains and t he reflected 

radiation from the slopes. During the spring months when these mountains 

are still snow-covered this additional reflec tion increases the scattered 

radiation more than during the fal l months. Multiple reflec tion between 

snow and the atmosphere, however , t hough present during the months with 

snow on the ground , should not contribute to the higher global radiation 

by more than 1.5 percen t (Bennett, 1965). This is re f l ected in Table 5 

which shows the average daily value of t he globa l radiation and its 

components, and th e solar and scattered r'adiation in absolute values and 

i n percent of the global radiation. 

Figure 18b shows the annual variation of t he di ff use component of 

global radiation on clear days. In t his cur ve, a number of effects are 

apparent: 

1 . The dependan ce of the diffuse sky radiation on the amount of 

available solar radiation, which makes the maximum diffuse 

sky radiat ion coincide with the maximum solar radiation at 

mi d-June. 

2. The apparent strong effect of t he snow cover, resulting in 

direct r eflec t ed radiation f rom the high l y reflecting moun­

t ain s l opes and some More increase by multiple reflection due 

to the immediate s now- covered environment. 



Table 5 . Average global, direct , and diffuse sky radiation (gm- cal cm- 2 day-1) during clear days on 
the 15th day of each month 

Direct Solar Radiation Diffuse Sky Radiation 
Mon t h Globa l Radiation 

(gm- cal cm- 2 day-1) (gm- cal em 2 day !) % of Global (gm-cal cm-2 day I) % of Global 

Jan 255 192 75.3 63 24.7 

Feb 365 295 80 . 8 70 19 . 2 

Mar 515 434 84.3 81 15 .7 

Apr 647 562 86.9 85 13.1 

May 740 655 88.5 85 11.5 

Jun 785 700 89.2 85 10.8 

Jul 760 675 88 . 8 85 11.2 

Aug 663 5S6 88.4 77 11.6 

Sep 534 480 89 . 9 54 10. 1 

Oc t 397 346 87.2 51 12.8 

Nov 271 21S 80.4 53 19.6 _,. 
Dec 

w 
218 158 72 . 5 60 27.5 

Average 512.5 441.8 86 . 2 70.8 13 . 8 
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3. Superimposed are the effects of t he water vapor content of the 

atmosphere. This effect cannot be seen very clearly as it works 

in the opposite direction of the reflection, mentioned in 2. 

4. A combined water vapor-aerosol effect can be seen in the highly 

different diffuse component during August of 1968 and 1969. 

In 1968, f r onts passed the area from August 9 to 22, cleaning 

and cooling the atmosphere. The following clear days the scat­

tering of radiation in the c lean atmosphere was low . During 

1969, July and August consisted of 16 clear days. Only a few 

sca ttered showers occurred, the atmosphere was consequently 

rich on aerosols, and scattering was higher. The differences 

amounted to approximately 15 cal cm- 2day- 1 . This is about 23 

percent of the average scattered radiation. 

Global and diffuse sky radiation (cloudy days). Clouds are complex 

phenomena varying from thin transparent cirrus to thick (varying from a 

few hundred to several thousand meters) stratus , stratocumulus and dark 

cumulus (thunderstorm clouds); when present cloud cover may reduce the 

global radiation considerably for hours or even days. The reductions in 

the daily amounts of global and diffuse sky radiation are very prominent 

in Figures 16 and 17. The brightness of towering cumulus may also vary 

depending upon their position relative to the sun. Under partly c l oudy 

conditions , when the sun is shining through the gaps in the clouds, high 

solar radiation values are found. The diffuse sky radiation is in general 

higher in cloudy weather than on clear days. Mo re details on how cloud 

reflections give rise to high values of solar radiation at high altitude 

s t ations gre given by Ives (1946 ) and Dirmhirn (1951). 

When the sky is completely cloud-covered over the whole period of 
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a day, climatic features can be deduced f rom the monthly distribution of 

global radiation such as the win ter storms that give rise to the accumula­

tion of snow on the ground, resulting in higher values of diffuse sky 

radiation due to multiple refle c tions between the snow and the bases of 

the c louds. Long periods of measurements are necessary for a more general 

interpretation of the effect of c louds on the radiation climate. However, 

even one year of record can give some indication of the more pronounced 

f ea tures of a particular radiation climate. The monthly variation of the 

global radiation for overcast days (Figure 19) is pronouncedly different 

f r om the expected curve which would have a maximum around June . 

The amount of diffuse sky r adiation on cloud-covered sky is greatly 

inf luenced by the density of clouds and also by t he average albedo of 

large areas of the ground surface. 

As previously mentioned, th e diffuse sky radiation is in genera l 

higher in cloudy weather. Dirmhirn (1951) has shown t ha t the intensity 

of diffuse sky radiation increases st r ongly wi th heigh t in the case of 

an overcas t sky. She also indicates then that the type of clouds present 

is important , since the bases of the c l ouds vary from a few hundred me t ers 

in the case of low clouds like stratus, stratocululus, and cumulus , to 

several thousand meters for high clouds like cirrus, cirrostra tus, and 

cirrocumulus. 

In a detailed study of the radiation c limate of the Eastern Alps 

i n Austria (Dirmhirn, 1951; Sauberer and Dirmhirn, 1958) it was shown 

that the dif fuse sky radiation has a cer tain dependence on t he altitude. 

However, this dependence is considerably disturbed by multiple reflec tion 

and reflection from the mountain slopes .. They sho,•e~ that at eleva t ions 

of 200 to 3000 meters above sea level, the incoming radiation increases 
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by 21 percent with clear sky and 160 percent with overcast sky, or about 

1 and 4 percent, respec tively, per 100 me ters. The multiple reflection 

and scattering from clouds provide the main share in the inc rease of in-

coming r~iation with height. 

The albedo of the surface also influences the intensity of diffuse 

sky radiation. The increase is brought about mainly by multiple reflec-

tion between the ground surface and the cloud bases. Since the presence 

of snow on the ground increases the albedo, a corresponding i ncrease in 
• 

the scattered radiation also occurs. However, on cloudless days, this 

effect is not apparent in Figure 18b because of another effect . In 

spring, there is a greater increase in the diffuse sky radiation mainly 

due to the additional reflection from the mountain slopes which is still 

snow-covered. After the snow has melted, the relatively smaller increase 

in the scattered radiation contributed by reflection from the mountain 

slopes is complemented by an increase due to the greater water vapor 

con tent of the atmosphere. This resulted in about the same amount of 

diffuse sky radiation until early autumn. 

In Figure 19, the increase in the diffuse sky radiation during 

cloud-covered sky due to multiple reflection effect is very prominent. 

The values are highest when there was snow on the ground in the valley 

and in the mountains in late winter and early spring and lowest in 

autumn when the surface was bare ground. 

An analysis of the ten year winter data from five stations in the 

western United States shows that snow cover apparently produced an 

increase in the daily insolation of 1 .5 percent with clear sky and 29.0 

perce~t with overcast sky (Bennett, 1965). 
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On clear days, the distribution of t he global and diffuse sky 

radiation in Figures 18a and 18b can be taken as climatic averages since 

it will not vary much from year to year. In this locality where the 

atmosphere is relatively clean and the effect of dust small, any varia-

tion of t he transmission coefficients may be primarily due to a varia-

tion in the atmospheric water vapor as previously illustrated. 

Under sky condit ions not comple tely cloudless, t he distribution of 

the globa l and diffuse sky radiation is very difficult to describe. 

However, we can say that the amount of global radiation received on a 

horizontal surface during a day is an indication of the degree of cloudi-

ness whose variability is largely responsible for t he observed diffuse 

sky radiation. 

Short term global and diffuse sky 
radiation at various locations 

The so lar radiation received on t he ear th's surface on short 

dis t ances in a mountain valley can vary cons iderably because of differ-

ences in the natural horizon and changes in the condi tion of t he ground 

surface and the atmosphere brought about by the seasons. 

Figures 20 to 26 show the hourly march of global radiat ion on a 

cloudless day on Ma rch 24 , 1969 when there was snow on the ground at the 

seven points selected in the valley. The direction of the arrows indi-

cate an increase ( t) or decrease (+) as the case may be in the amount 

received compared to the r eference poin t at the university campus. The 

hourly march of global radia tion after all the snow in the va lley and 

mountains me lted is shown in Figures 27 to 33. 

The decrease of the global radiation at solar noon and throughout 

the day in percent at seven locations are listed in Table 6. There was 
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Figure 20 . Global radiation at Point 1 , arrows indicating decrease from reference 
point . Snow on the ground, March 24, 1969 . 

"' <0 



.... 
I 

" .... 
a 

N 
I s u 
.... 
"' u 
I 
s 
~ 

" 0 ..... ... 
"' ..... 
'0 

"' .... 
..... 
"' .D 
0 

H 
t.!> 

1.6 

1.4 

1.2 

1.0 

.8 

. 6 

.4 

. 2 

0 - - " noon 

Time of Day 

Figure 21. Global radiation a t Point 2, arrows indicat i ng decrease from reference 
point . Snow on t he ground, March 24, 1969. 
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Figure 22. Global radiation at Point 3, arrows indicating decrease from reference 
point. Snow on the ground, March 24, 1969 . 
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Figure 23. Global radiation at Point 4, arrows indicating increase or decrease from 
reference point. Snow on the ground, March 24, 1969. 
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Figure 24 . Global radiation at Poin t 5 , arrows indicating increase or decrease from 
reference point. Snow on the ground, March 24, 1969. 
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Figure 25. Global radiation at Point 6 , arrows indicating increase or decrease from 
reference point . Snow on the ground, ~!arch 24, 1969 . 
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Figure 26 . Global radiation at Point 7, arrows indicating increase or decrease from 
reference point. Snow on the ground, March 24 , 1969. 
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Figure 27. Global radiation at Point 1 , arrows indicating decrease from reference point. No snow 
on the ground, June 30, 1969 . 

l..ll 
0"1 



1.6 

.-< 1.4 I 

" .,.. 
s 

"' 1.2 I s 
u 

.-< 

"' 1.0 u 
I s 

.:'3 

" .8 
0 .... .... 
"' .... 

. 6 ., 
"' ... 

.-< 

"' . 4 ..0 
0 

.-< 

" 
.2 

0 
4 am 6 am 8 am 10 am noon 2 om 4 om 6 om 8 pm 

Time of Day 

Figure 28. Glob al radiation at Point 2 , arrows indicating decrease from reference point . No snow on 
t he ground, June 30, 1969. 
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Figure 29. Global radiation at Point 3, arrows indicating increase or decrease from reference point. 
No snow on the ground, June 30, 1969. 
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Figure 30. Global radiation a t Point 4, arrows indicating increase or dec rease from reference point . 
No snow on t he ground, June 30 , 1969. 
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Figure 31. Global radiation at Point 5, arrows indicating increase or decrease from reference point. 
No snow on the ground, June 30, 1969. 
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Figure 32. Global radiation at Poin t 6, a rrows indicating increase or decrease from reference point. 
No snow on the ground , June 30, 1969. 
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Table 6. Decrease of global radiation (percent) received at the seven 
points in the valley compared to the amount received at the 
reference point during summer and winter 

Snow on the ground No snow on the ground 

Points 
March 24, 1969 June 30, 1969 

in the 
Valley Noon SR/SSa Noon SR/SSa 

% % % % 

1 10.7 9.5 4.2 4.6 

2 9.2 8.6 3.5 4.6 

3 6.5 7.7 3.5 3.0 

4 5.5 6.6 3.5 3.0 

5 4.5 6.6 3.5 3.0 

6 3.5 5.2 2.5 2.6 

4.5 5.5 3.5 3.0 

Average 6.35 7.10 3.46 3.40 

aSR/SS Sunrise to Sunset 
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a decrease of 10.7 and 9.5 percent at solar noon and throughout the day, 

respectively , at Point 1 during winter and, likewise, a decrease of 4.2 

and 4.6 percent at solar noon and throughout the day, respectively, 

during summer. The lowest decrease was at Point 6 which was 3.5 per­

cent at solar noon and 5.2 percent throughout the day during winter and 

2.5 percent at solar noon and 2.6 percent throughout the day during 

summer. The average decrease in all the locations are 6 . 4 percent at 

solar noon and 7.1 percent throughout the day with snow- covered ground 

with 3.5 and 3 . 4 percent at solar noon and throughout the day, respec­

tively, after the snow melted . 

The decrease in the in tensity of the global radiation at the seven 

sites compared to the reference point may be due to the following factors: 

the natural horizon at Point 1 reduces the celestial dome by about 28 

percent compared to only 8 percent at the reference point. There is not 

only a reduction of the direct component due to a later sunrise but also 

a reduction of the diffuse component due to the reduced sky. This seems 

to be the case also at Point 2 which is only a few hundred meters from 

Point 1 although higher in elevation by about 25 meters. During summer, 

the decrease is almost uniform except at Points 1 and 6. These may 

seem to indicate that the influence of the horizon becomes less signifi­

cant other than at Point 1. At Point 6 which has the lowest elevation, 

reflections f rom the immediate environment and the mountains are 

greatest compared to the rest of the sites. This apparently accounts 

for the smaller difference . 

The effect of terrain reflection would be to increase the diffuse 

radiation since the reflected radiation is in turn scattered by the 

atmospheric consti t uents and a fraction of this arrives at the surface 
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again. It is likely that the effect of terrain reflection would not 

vary much from point to point except probably at Points 1 and 2 where 

the reduction due to a smaller sky counteracts the increase by terrain 

reflections. This would seem to indicate then, that in this study, at 

Points 3 to 7, the elevation would account for the greater portion of 

the difference . However, during winter, the non-uniform decrease at 

the seven points compared to the reference point may be partly due to 

the influence of the greater contamination of the atmosphere immediately 

above the residential area. 

Another factor that may influence the intensity of global radia­

tion at the various locations in the valley compared to .the reference 

point is the fact that during the winter, radiation fog may be present 

in the valley and near the mountains early in the morning but not over 

the residential areas including the university campus. After the fog 

dis appears there would be a higher water vapor content in the atmosphere 

over the valley compared to the reference point. Water vapor scatter­

ing may increase the diffuse component but reduces the direct component. 

Figure 34 shows the ratio of short period (5- to 10-minute) diffuse 

sky radiation at the seven points to the values at the reference point 

on a completely cloudy day, June 24, 1969, as previously stated, the 

height of the bases and thickness of the clouds vary considerably and 

no definite conclusions or relations could be established with just a 

few observations. When this measurement was made it was observed that 

while the clouds close to Logan Canyon were very thick and dense, this 

was not so on the opposite side of the valley to the west. This is very 

evident in Figure 34 at Points 5, 6, and 7. 

Under cloudy conditions in the valley, the radiation climate is 
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24 , 1969 . 
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difficult to describe. The diffuse sky r adiation is influenced not only 

by the density of clouds and albedo of the ground s urface but also the 

elevat ion and location of the station with respect to the mountain range, 

especially to the east and west. 



SUMMARY AND CONCLUSIONS 

The radiation climat e of Cache Valley was established from the 

continuous recordings of global and diffuse sky radiation at Utah 

State Universi ty campus f r om June 1968 to July 1969, and August 1968 

to July 1969, respectively; and the short term measurements a t seven 

points in the valley on an east~west direction on cloudless days on 

March 24 and June 30, 1969, and on a completely cloudy (overcast) 
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day on June 24 , 1969 . A Moll- Gorczynski and an Eppley pyranometer were 

used in the con tinuous measurements. A shadow band was used to shie ld 

the Eppley pyranometer from the direct solar radiation ; thus, the 

pyranometer detected only diffuse sky radiation. A Star pyranometer 

was used in the short term measurements. All the pyranometers were 

calibrated regularly with the use of the Angstrom compensation 

pyrheliometer. The daily global and the diffuse sky radiation were 

corrected based on the calibration of the Moll~Gorczynski solarimeter 

and on the comparisons between the short-period output of the Moll ­

Gorczynski solarimeter and the Eppley pyranometer with and without 

the shadow band for the same period, respectively. 

A comparison of the clear day average global r adiation on 

approximate dates of the same solar declination shows higher values 

during spring than the values during aut umn . This is due to the 

higher a tmospheric water vapor during the warmer months. An interest ­

ing fact is that the scattered radiation is also higher during the 

spring months. This is caused by the reflections from the snow- covered 

mountain slopes . During cloudy weather (overcas t) condition, the higher 
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values of global radiation in March and April were due to the multiple 

r e flection between t he snow and the bas es of the clouds. 

The influence of the topographic features during summer and winter 

were determined from the short term measurements on clear days at t he 

seven locations across the valley. An average variation (decrease) of 

about 7 percent during winter and 3 percent during summer was experienced 

across the valley compared to the refe rence point where the continuous 

measuremen t s were made . The global radiation on a completely cloudy 

day during summer was found to vary at the points on the opposite side 

of the valley to the west by as much as 144 percent. 

The decrease in the intensity of solar radiation at Point 1 is 

due to the reduction of t he celestial dome by about 28 percent which 

resulted in a depletion of the direct solar radiation due to a later 

sunrise and i n the diffuse sky radiation due to a smaller sky. At 

Point 2, the decrease is due t o the combined effect of lower elevation 

and greate r obs truction of the natural horizon compared to the refer­

ence point. The decrease at Points 3 to 7 is mainly due to the influence 

of elevation during summer and to a small deg ree by the greater pollu­

tion of the air over the residential area and the prevalence of radia­

tion fog over the valley and the mountains during winter. Under over­

cast condi t ions , the variation is mainly due to the difference in t he 

density of the clouds on the opposite side of the valley on an east-west 

direction. When t his measurement was made it was observed that while 

t he clouds clos e to Logan Canyon were thick and dense, it was not so on 

the opposite side of the valley. 
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Recommendations 

l. The continuous measurements of global and diffuse sky radia­

tion should be carried on indefinitely fo r a number of years 

at the university campus to determine radiation climate and 

as a record of radiation conditions. While a general discrip­

tion of the radiation climate can be made from these data 

based on a year 's records, more valid information will be 

obtained from a longer period of observations. The global and 

diffuse sky radiation on clear days are not expected to vary 

much from year to year . However, the global radiation on 

overcast days are greatly influenced by the presence or 

absence of snow on the ground which vary from year to year 

and the thickness of clouds . Therefore, a longer period of 

observation is needed for a better picture of the global radia­

tion on overcast days. 

2. A sunshine duration recorder should be added to the measure­

ments being made at the university campus. This instrument 

does not give information as to the type and amount of clouds 

tha t prevailed on a particular day, but a high degree of 

relationship between the global radiation and the duration of 

sunshine may be obtained after a few (5 to 10) year s of observa­

tions since the amount of global radiation received on a 

horizontal surface dur ing a day is an indication of the degree 

of cloudi ness whose variability is largely responsible for the 

observed diffuse sky radiation . 

3. Continuous measurements of global radiation in at least two 

other locations, one at the middle and the othe r at the opposite 
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side of t he valley near Point 7, is recommended. The short term 

measurements made in this s tudy on clear days during summer and 

winter condi tions provide only a first information on the effect 

of topography on global radiation at the seven selected points. 

However, it was observed that, on certain days during the colder 

months in winter, t he re was fog in the valley early in the 

morning and sometimes throughout the day but none at all a t t he 

UDiversity campus. Under these condi tions it is almost impos­

sible to estimate the amount of global radiation at the various 

locations in the valley without continuous measurements. This 

indicates a charac teristically differen t radiative environment 

with regard t o the campus station. 

4. The above recordings can also be used for an ex tensive study 

in order to get more information on the contribution of the 

shortwave radiation under cloudy sky conditions . The magnitudes 

of the components of global radiation are functions not only of 

cloud type and cloud amount but also of cloud distribution in 

the sky. Additional measurements have t o be made throughout the 

valley both on an east-west and north-south direction. The 

result of the short term measurements of global radiation on an 

ove r cast day in this study indicat es that t he diffuse sky radia­

tion on a completely cloudy day varies by as much as 144 percent 

from t he reference point, even in a distance of only about 5 

miles. 
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