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ABSTRACT 

 

 
Bridging the Nano- and Macro-Worlds: Thermal Property Measurement Using  

Thermal Microscopy and Photothermal Radiometry – Application to  

Particle-Irradiation Damage Profile in Zirconium Carbide 

 

 

by 

 

 

Colby Bruce Jensen, Doctor of Philosophy 

Utah State University, 2014 

 

 

Major Professor: Dr. Heng Ban 

Department: Mechanical and Aerospace Engineering 

Co-Major Professor: Dr. Mihai Chirtoc 

University: Université de Reims Champagne-Ardenne, Reims, France 
 

 

 Multiscaled experimental investigations of heat transfer from nanoscales to macroscales 

are requisite to progress in energy technologies. In nuclear applications, material properties can 

undergo significant alteration due to destructive interaction with irradiating particles at 

microstructural levels that affect bulk properties. Correlating material microstructure to bulk 

material properties remains a crucial hurdle for obtaining first-principles-based, full-scale 

material property predictive capability. Ion-irradiated material studies provide valuable insight 

into material behavior under irradiation conditions that can be correlated to neutron irradiation 

effects. Through such studies, the need of costly (money and time) studies of neutron interaction 

with materials can be mitigated significantly. One of the challenges associated with studies of 

ion-irradiated materials is that the affected layer, or penetration depth, is typically very thin (~0.1-

100μm for laboratory accelerators). Few investigations have been reported of ion-irradiation 



iv 

 

 

effects on thermal transport properties, in part, due to the challenge associated with measurements 

at the spatial scales of the zones of interest. 

 This study expands the current knowledge base regarding thermal transport in ion-

irradiated materials through the use of a multiscaled experimental approach using thermal wave 

methods. In a manner not previously explored, four thermal wave methods are used to 

characterize the proton-irradiated layer in ZrC including scanning thermal microscopy, spatial-

scanning front-detection photothermal radiometry (PTR), lock-in IR thermography (lock-in IRT), 

and tomographic, frequency-based PTR. For the first time, the in-depth thermal conductivity 

profile of an ion-irradiated sample is measured directly. The profiles obtained by each of the 

spatial scanning methods are compared to each other and the numerical prediction of the ion-

damage profile. The complementary nature of the various techniques validates the measured 

profile and the measured degradation of thermal conductivity in the ZrC sample showing the 

viability of such complementary studies.  

(140 pages) 
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PUBLIC ABSTRACT 

 

 

Bridging the Nano- and Macro-Worlds: Thermal Property Measurement Using  

Thermal Microscopy and Photothermal Radiometry – Application to  

Particle-Irradiation Damage Profile in Zirconium Carbide 

 

 

by 

 

 

Colby Bruce Jensen, Doctor of Philosophy 

Utah State University, 2014 

 

 

Major Professor: Dr. Heng Ban 

Department: Mechanical and Aerospace Engineering 

Co-Major Professor: Dr. Mihai Chirtoc 

University: Université de Reims Champagne-Ardenne, Reims, France 

 

 

 Multiscaled experimental investigations of heat transfer from nanoscales to macroscales 

are requisite to progress in energy technologies. In nuclear applications, material properties can 

undergo significant alteration due to destructive interaction with irradiating particles at 

microstructural levels that affect bulk properties. This study expands the current knowledge base 

regarding thermal transport in ion-irradiated materials through the use of a multiscaled 

experimental approach using four complementary thermal wave methods. For the first time, the 

in-depth thermal conductivity profile of an ion-irradiated sample is measured directly. 
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CHAPTER 1 
 

1. INTRODUCTION 

  

 

 Thermal transport plays a critical role in energy generation and conversion processes. 

The development of new technologies in these fields relies on our understanding and ability to 

predict these transport processes. This work presents a detailed experimental study of thermal 

transport on ion-irradiated material using a combination of techniques providing multi-scaled 

measurement results. This chapter lays out the motivation for this work and overviews the 

materials and methods used to accomplish the objectives, found in Chapter 2. 

1.1. Motivation 

 Many technological and scientific advances occurring in the world today rely on the 

synthesis, processing, and characterization of materials at nanoscales [1, 2]. In many applications, 

understanding the thermal performance of such materials is crucial. For example, the 

development of improved electronic devices is strongly correlated with Moore’s law, showing an 

exponential growth for the number of transistors on integrated circuits with transistor count 

doubling every 18 months. Such increase in transistor density is marked by a reduction of size, < 

30 nm today, having gate thickness ~ 1.2 nm, notably resulting in increasing power densities (∝ 

L2) that places greater burden on thermal management. Understanding material behavior at these 

small scales is pushing scientific understanding and creates great experimental challenges for data 

collection.  

 In many technologies, materials are pushed to their limits such as those found inside a 

nuclear reactor, which experience varying temperatures, pressures, and harsh irradiation 

conditions over long time scales where, again, experimental data is difficult to collect. The 

conditions experienced by these materials can result in modification of the material structure from 

the atomic/nano-level to macro-levels [3]. These changes affect, among other properties, the 

thermal transport capability, a critical property since the main objective of a power plant is to 
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transfer heat from the fuel to produce electricity. Both scientific advancement and technological 

development increasingly call for bridging the gap between the nano- and macroscale worlds. The 

bridge will be built using data from improved multi-scaled experimental techniques as well as 

advancing theory and computational predictive capabilities.  

 The irradiation process provides a unique opportunity to change material structure at the 

molecular level in such a way that material structure can be correlated to material behavior [4]. 

Additionally, ion irradiation (defined here as any charged particle) has provided a feasible 

alternative to neutron irradiation for time- and cost-saving studies of irradiation effects in 

materials [5]. The achievable penetration depth for laboratory-scale accelerators and implanters is 

between 0.1-100 μm. In the case of neutron-irradiated samples, using samples of small size will 

reduce overall sample radioactivity, allowing for easier (and cheaper) handling of the material 

through characterization experiments. In either case, the small sizes and geometries of such 

samples create special metrological challenges for extracting desired data. 

 To date, significant progress has been made in the development of thermal measurements 

capable of high spatial resolution [2, 6-8]. Still much work is being directed toward improving 

and innovating new methodologies to meet the challenge of nanoscale measurement. 

Photothermal techniques and thermal microscopy represent some of the most promising 

technologies to achieve this goal [2]. 

1.2. Overview 

  In a manner not previously studied, four thermal wave methods will be used in this work 

to characterize the proton-irradiated layer in zirconium carbide (ZrC) including: scanning thermal 

microscopy (SThM), spatial-scanning front-detection photothermal radiometry (PTR), lock-in IR 

thermography (lock-in IRT), and tomographic, frequency-based PTR. Due to a combination of 

acceptable neutronic performance, thermal properties, chemical behavior, and physical properties, 
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ZrC is being considered in tri-structural isotropic (TRISO) fuel as an oxygen getter in the kernel, 

as a coating layer for fission product retention, or a combination of these two functions as a direct 

coating on the fuel kernel [9]. However, the understanding of the irradiation defects, especially 

the degradation of the thermophysical properties of irradiated ZrC, is under-studied. 

 The intent is to explore the ability of each measurement system to thermally characterize 

ion-irradiated samples. In fact, the combination of systems is intended to provide a multi-scaled 

measurement approach to measure the irradiation damage profile in the sample with resolution 

down to ~ 1 μm as well as to provide quantitative, macroscopic thermal conductivity of the 

damaged/undamaged regions of the sample. SThM measurements have been performed by three 

different SThM systems located at Utah State University (USU) in Logan, UT, the Silesian 

University of Technology in Gliwice, Poland, and the Université de Reims Champagne-Ardenne 

(URCA) in Reims France. PTR and lock-in IRT were also performed at URCA. 
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CHAPTER 2 

 

2. OBJECTIVES 

 

 

 The purpose of this work is to use thermal wave techniques for the thermophysical 

characterization of ion-irradiated materials. Scanning thermal microscopy, spatial-scanning front-

detection photothermal radiometry (PTR), lock-in IR thermography (lock-in IRT), and 

tomographic, frequency-based PTR are used to measure thermal conductivity of proton-irradiated 

zirconium carbide.  

The objectives of this work include: 

 Development of a methodology to measure the thermal property change within a proton-

irradiated layer of metal-ceramic materials using thermal wave techniques including: 

scanning thermal microscopy, spatial-scanning PTR, lock-in IRT, and tomographic, 

frequency-based PTR; 

 Measurement of the thermal conductivity profile in the irradiated zone of proton-irradiated 

ZrC to establish an appropriate theoretical description for proton irradiated ZrC for 

tomographic PTR and quantify change of the irradiation-damaged zone of proton-irradiated 

ZrC. 
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CHAPTER 3 

 

3. THEORETICAL BACKGROUND AND CONSIDERATIONS 

  

 

 The objectives of this study require a cross-disciplinary approach with knowledge of 

subjects of heat transfer in solids, particle-radiation effects in materials, and advanced 

thermometry techniques. This chapter presents a foundational background for these subjects 

illustrating relevant aspects of each. The final section of the chapter presents a brief summary of 

related works performed simultaneously with the work herein.  

3.1. Thermal Conduction in Solids 

Heat conduction is one of the primary modes of heat transfer and plays a crucial role in 

innumerable applications as it occurs in all mediums containing a temperature gradient. In this 

work, the application limits the focus to conduction in solids. As a means of understanding 

irradiation-damage effects on thermal transport, the purpose of this section is to only briefly 

introduce relevant topics regarding macroscopic views of thermal properties [10, 11], thermal 

resistance [12, 13], thermal energy carriers, and carrier scattering mechanisms  [14, 15]. 

3.1.1. Material Properties 

 Four interrelated material properties are important for conduction in solids at continuum 

scales, of which only two are independent. These temperature-dependent properties include: 

thermal conductivity, k, volumetric heat capacitance, Cp = ρcp (not discussed in detail here), 

thermal diffusivity, α = k/ρcp, and thermal effusivity, .pcke    However, despite their 

importance in engineering applications, accurate measurement and usage of thermal properties 

remains an engineering challenge that requires careful consideration. Perhaps, the most complete 

and referenced database of material thermophysical properties is those compiled in the 1970’s by 

the Thermophysical Properties Research Center [16]. Specific sample geometries, sizes, types, 
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non-destructive requirements, etc. present additional challenges that must be overcome in 

measurement, to which great investment has been devoted over the past century from industry 

and research ventures alike [17, 18]. 

 Thermal conductivity, which is the measure of a material’s ability to transport heat 

energy, is an intrinsic property of any material. The thermal conductivity of a material represents 

the constitutive constant relating the vector quantity of heat flux to the gradient of a temperature 

field, a relationship more commonly known as Fourier’s Law.  Therefore, steady-state 

measurement techniques directly measure thermal conductivity. More formally, it is defined as 

the quantity of heat energy transmitted per unit time per unit distance per unit temperature change 

over that distance in the direction of heat transfer. 

 The thermal diffusivity of a material is a lesser understood parameter representing the 

ratio of a material’s ability to conduct heat versus store energy during changes of temperature. It 

is, therefore, associated with the speed of propagation of heat in a material. Materials of high 

thermal diffusivity will respond rapidly to changes in thermal environment, while the opposite is 

true as well. Although for most solid materials thermal diffusivity maintains a nearly linear 

relationship to thermal conductivity (indicating small variation of heat capacitance), it is 

significant to note that the thermal diffusivity of air is approximately equivalent to that of many 

metals such as Pt and Ni.  

 The thermal effusivity of a material is probably the least known of the important 

conduction properties. The thermal effusivity of a material is the primary parameter determining 

temperature relationships of heat transfer processes across boundaries between differing media 

(neglecting Kapitza/contact resistances). It is a measure of the heat stored in a solid per degree of 

temperature rise from the start of a surface heating process. For example, when two semi-infinite 

solids at different uniform temperatures, T1 and T2, are brought together, the temperature at the 

contact, Tc, assuming no thermal resistance is governed by the relationship: Tc = (T1e1 + T2e2)/(e1 
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+ e2). Here ei represents the thermal effusivity of the materials. From this equation, the thermal 

effusivity can then be viewed as a weighting factor in determining which material most influences 

the resulting contact temperature. Therefore, thermal effusivity plays a critical role in heat 

transfer processes in multilayered materials. Both thermal diffusivity and thermal effusivity may 

be obtained using transient measurement techniques. 

3.1.2. Thermal Resistance 

Thermal resistances at interfaces also play a critical role in heat transfer processes at any 

interface. The formal definition of a thermal resistance, Rth, is the ratio of the temperature 

difference to the heat flux. At an interface, the thermal resistance results in a temperature 

discontinuity. A thermal contact resistance [12] is a thermal resistance that is the result of 

mechanical contact between two materials, which, due to variations of surface roughness, is most 

reliably determined by experimental measurement. Thermal boundary resistance [13, 19, 20], or 

Kapitza resistance [21] is distinguished from thermal contact resistance as it is found at the 

atomically adjoined interfaces. In such cases, the thermal resistance arises due to mismatched 

electronic and vibrational properties of the adjoined materials having the effect of scattering an 

energy carrier passing through it. In the scope of ion-irradiated materials, the existence of a 

thermal boundary resistance is a possibility in a location where material structure undergoes a 

significant transition as may be the case at the end of the ion-stopping zone. 

3.1.3. Energy Carriers 

For conduction in solid materials, energy is transported by two types of energy carriers: 

electrons (dominant mode in metals) and phonons (dominant mode in non-metals). A phonon is a 

particle view of quantized lattice vibrations (elastic waves that only exist at discrete energies). In 

a solid material, atoms are bound in a periodic arrangement called a lattice. It is the periodicity of 

the atoms that dictates the allowed energy states of thermal carriers in a solid. For a detailed 
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description of crystallography and solid lattices see [22]. Heat transfer involves the motion of 

heat carriers generated by temperature differences and distributed randomly in all directions. In 

the case of metal-ceramics, carriers of both types contribute significantly to overall thermal 

conductivity, which is commonly represented as the sum of the electronic and the lattice vibration 

contributions, 

 
pe kkk  . (3.1) 

3.1.3.1. Kinetic Theory 

 A rudimentary, but surprisingly useful relationship for thermal conductivity may be 

derived using simple kinetic theory [14]. With this description energy carriers are viewed as 

particles traveling with some average random velocity, vc. The particles travel for an average 

time, τc or relaxation time, before being scattered (energetic interactions with other particles, 

boundaries, or the material structure causing energy exchange and changes of direction). The 

average distance traveled between each interaction is called the mean free path, λc = vcτc. Then 

considering 1-D flow of energy across an imaginary plane, a relationship relating the gradient of 

energy in this direction to temperature through volumetric specific heat, ρcp results in a Fourier’s 

Law relationship giving the thermal conductivity as 

 3/ccpc vck  . (3.2) 

 This simple relationship shows the direct dependence of thermal conductivity on the 

mean free path of the solid. Importantly, the mean free path of electronic and phononic energy 

carriers are different. In irradiation-damaged materials, the mean free path will be affected by 

types and densities of defect structures formed in the process [4]. 

3.1.3.2. Scattering Effects 

 The physics of scattering events in a solid is detailed in several sources [14, 22, 23]. The 

scattering mechanisms include events between energy carriers themselves and between the 
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energy carriers and defects or imperfections in the crystalline structure of the material (boundary 

effects can also be important if geometry length scales ~ λ). Generalized scattering effects on 

mean free path as a function of temperature are presented in Fig. 3.1. At high temperatures, 

phonon scattering events play a dominant role in determining mean free path, as increasing 

temperature means increasing phonons (k ∝ 1/T). For non-metals in particular, phonon-phonon 

interactions termed Umklapp processes are most responsible for reduced overall energy flux. At 

low temperatures, phonon-boundary scattering dominates and transport is proportional to specific 

heat and crystal size (k ∝ T3). The effects of material defects play a greater role with increasing 

temperature as well, however, they are generally dominated by phonon scattering events. 

As mentioned above, the periodicity of the crystalline structure in a solid determines the 

available energy states responsible for energy transport. Naturally, defect structures, which are 

present in all but pure crystalline materials, play a critical role in modifying thermal transport 

processes. These defect structures are classified as: (0-D) point - interstitial, vacancies, or 

impurities, (1-D) linear - screw and edge dislocations, (2-D) planar - grain boundaries, external 

 

λc

Temperature, T/D

Boundary
Phonon
ScatteringDefect

Decreasing Boundary Separation

Increasing defect 
concentration

0.01 0.1 1.0

 

Fig. 3.1. Representative effects of boundaries, defects, and phonon scattering events on mean free 

path, λc. θD is the debye temperature. 
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surfaces, or (3-D) volume - pores, cracks. The effects of each of these on thermal transport is has 

been and remains an important area of ongoing research. The irradiation process provides a 

unique ability to generate defect structures, which can be characterized and correlated to thermal 

transport properties. In ceramic materials where phonon transport dominates the irradiation-

induced defect scattering can exceed phonon-phonon scattering, so that the temperature 

dependence of thermal conductivity may be nearly removed [24]. A summary of phonon 

relaxation relationships for different defect types is found in [4].  

3.1.3.3. Wiedemann-Franz Law 

 The Wiedemann-Franz Law provides a relationship between the free electrons 

responsible for electrical conductivity and for the electronic thermal carriers. It states that the 

ratio of thermal conductivity, k, to electrical conductivity, σe, is directly proportional to 

temperature or  

 
ekLzT / . (3.3) 

where Lz = 2.44∙10-8 W∙Ω∙K-2 at room temperature. 

 Frequently this relationship is used to estimate thermal conductivity from the easier-to-

measure electrical conductivity in metals. In the case of materials with energy carriers of both 

types such as metal-ceramics, it is used to estimate the electronic contribution of thermal 

conductivity. 

3.2. Particle-Radiation Effects 

 The subject of particle-radiation effects in materials is broad covering topics from 

displacement energies and cascade formations to the resulting changes to physical properties. 

These effects vary depending on the form of irradiation and the types of materials undergoing the 

irradiation process. The spans of length and time scales associated with radiation processes are 

also great, on the order of 10-10 m to 1 m and 10-13 s to 108 s. This section will introduce the 
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subject of ion studies of irradiation damage as well as some of the basic processes that occur at an 

atomic level as a means of providing a framework for understanding the effect on thermal 

transport. Extensive descriptions of radiation effects in various materials can be found in [3, 25-

27].  

3.2.1. Defect Formation 

 The primary microstructural effect of radiation on solids is the production of atomic 

displacements. As an irradiating particle passes through a material, its energy is transferred to the 

material through direct nuclear interactions transferring momentum to the surrounding lattice or 

by a process termed radiolysis, which is a response to electronic excitations by ionizing radiation. 

The transfer of energy to the lattice can result in the removal of an atom from its lattice site to 

form a vacancy. The freed atom may then end up in a stable, interstitial location. The resulting 

vacancy and interstitial results in the basic unit of radiation damage called the Frenkel pair. The 

displaced atom is called a primary knock-on atom (PKA) and can have sufficient energy to cause 

further atom displacements, resulting in a collision cascade event. 

 The minimum amount of energy required in a collision event to displace an atom from its 

lattice site is called the threshold displacement energy, Ed. If the energy transferred is less than 

this threshold, then the atom will not be displaced, but will vibrate interactively with neighboring 

atoms to dissipate this energy as heat (phonons). The threshold energy is dependent on the 

potential fields of the atoms in the lattice. Thus, within the lattice of a polyatomic material, 

different atoms have different threshold displacement energies.  

 During an irradiation process, the formation of Frenkel pair defects usually results in self-

recombination or in recombination with other nearby Frenkel pairs to return to a lower energy 

state. At times, the defects undergo aggregation, which also lowers the elastic energy in the 

lattice. The product of the localization of defect structures between planes of lattice atoms is the 



12 
 

 

formation of dislocation loops. For the case of the “insertion” (or removal) of a circular plane of 

atoms between existing planes in a lattice, the dislocation loop is called a prismatic or Frank loop 

[3]. In a cross-section perpendicular to the plane of the loop, a frank loop in a lattice appears as an 

edge dislocation. In ionic and particularly covalent bonding materials, the growth of these loops is 

limited due the localized, directional bonding that takes priority in terms of lowering energy. The 

short-range strain field created from the loops is energetically more favorable than open bonds. 

Irradiation temperature plays a critical role in the formation and growth process of point defects. 

At high temperatures the irradiation-induced defect structures will anneal out of the material 

 Other common radiation effects in materials are termed volume defect condensation 

effects, which include voids and precipitates. Voids result for the accumulation of vacancies in a 

3-D space, which are stabilized by gases formed in the irradiation process. In some cases, 

precipitates may be formed from nonstoichiometric displacement of a sublattice in polyatomic 

materials. 

 As a result of these atomic processes, several macroscopic effects may be witnessed in 

irradiated materials. Significant and varied effects on mechanical, electrical, optical, thermal 

properties can result and have been the topics of many works. Swelling can result from the 

aggregation of vacancies (usually at higher temperatures where point defects have higher 

mobility). More common at lower temperatures, amorphization may result when a material loses 

long range order in the lattice.   

 As a means of quantifying radiation damage, the displacements per atom (dpa) is the dose 

unit used as a means to correlate damage irradiation produced under different conditions. It 

represents the ratio of atoms displaced by irradiation to the number of atoms present.  
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3.2.2. Ion-Irradiation Studies 

 Since the 1960s, ion-irradiation studies have been developed for the purpose of 

simulating neutron damage [5]. More recently, such studies have been used to study the 

irradiation assisted stress corrosion cracking in light water reactors, characterize effects in reactor 

pressure vessel steels, Zircaloy fuel cladding, materials for GenIV reactors and the advanced fuel 

cycle initiative [5].  

 Identification of basic mechanisms involved in a material’s response in the initial stages 

of irradiation can be done efficiently using ion irradiation. The time and cost savings of these 

studies can be enormous. Ion irradiations can be carried out in a matter of hours compared to 1-2 

years for neutron experiments. No special handling requirements are needed for ion-irradiated 

samples as little or no residual radioactivity is produced. The resulting savings is about 99% for 

cost and 90% for time. Still, the problem remains to show equivalency of results for ion and 

neutron studies [28].  

Ions of different types have distinct differences in terms of the irradiation damage effects 

they produce. Fundamental differences between ion and neutron irradiation are: the particle 

energy spectrum of the particles and their associated depth of the penetration. Ion sources are 

have very narrow energy range; while neutron energy cover several orders of magnitude of 

energy. The electronic interactions experienced by ions through matter cause them to lose energy 

quickly and to interact with the material in a spatially varying manner. Neutrons can pass through 

long distances and produce spatially flat profiles. 

The ion particles considered here include electrons (not a true ion), heavy ions, and 

protons. A detailed overview of the characteristics of each ion type can be found in [5]. 

Characteristics of electron irradiation include advantages of a simple source (TEM), high dosage 

rates allowing for short times. Disadvantages include a ~1 MeV energy limitation, no cascades or 

transmutation, a high temperature requirement that is not easy to control, and a non-uniform beam 
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profile. Characteristic advantages of heavy ions include high dose rates (short times), high 

average temperature, and the production of cascades. Important disadvantages are a very limited 

penetration depth, strongly peaked damage profile (varies significantly with depth), high 

temperature requirement, no transmutation, and a potential for composition changes. 

Over the past two decades, significant effort has been performed to refine proton 

irradiation as a radiation damage tool. Proton irradiation effects demonstrate characteristics that 

should be advantageous for studies of material properties such as thermal transport. The 

advantages include a relatively long penetration depth and flat damage profile over most of depth. 

This characteristic should lend well to a layered structure approximation of proton-irradiated 

materials. Other primary advantages are moderate dose rate (moderate times), moderate 

temperature requirements. The disadvantages of proton irradiations are minor sample activation, 

smaller and spread out cascades, and no transmutation.  

3.2.3. Radiation Effects on Thermal Transport in Ceramics 

 The radiation defects in ceramics are considerably more complicated than in metals due 

to the presence of multi-sublattices, strong bonding orientation and the greater importance of 

chemical and ionization effects [26]. Due to a low density of valence band electrons, thermal 

conductivity of ceramic materials is mainly based on phonon transport. The effect of irradiation 

on ceramics at relatively low temperatures is to produce simple defects and defect clusters that 

very effectively scatter phonons, resulting in a significant degradation in thermal conductivity of 

material [4]. The electrical conductivity of ceramic materials shows little or no permanent 

alteration [26]. In metal-ceramic materials where phonons and electrons contribute to heat 

conduction, phonon thermal transport is expected to be most significantly affected by irradiation 

damage defects. Relatively few studies of radiation effects in metal-ceramics exist in literature 



15 
 

 

with silicon carbide having the most investigations [24]. A more detailed review of literature 

regarding thermal transport studies in irradiated ZrC will follow in Section 4.1.1. 

3.3. Thermal Wave Techniques 

 Thermal wave techniques encompass an important range of applications from physics, 

chemistry, biology, medicine, etc., for non-destructive characterization / evaluation of thin films, 

interfaces, surfaces [29]. As a thermal characterization tool, thermal waves have been used for 

over a century and half, since Angstrom measured the thermal diffusivity of a long copper bar 

[30].  However, most practical applications of photothermal methods appeared after Rosencwaig 

gave a comprehensive theoretical description of the photoacoustic effect in a solid using the 

physics of thermal waves [31]. The most familiar concept of a thermal wave is probably 

represented by periodic temperature oscillations within the surface of the earth. In general, 

thermal waves are simply temperature distributions oscillating in time and space.  

3.3.1. Basics of Thermal Wave Techniques 

 In thermal wave techniques, periodic heating is applied to a sample inducing a periodic 

temperature response in the sample. The induced periodicity of the temperature field in the 

sample follows the mathematical description of evanescent waves, thus, the term thermal wave. 

Different thermal wave techniques are distinguished by the methods used for exciting and 

detecting these thermal waves. Although any time-dependent heating source could be used to 

generate thermal waves, two of the most common methods include using electromagnetic 

radiation or direct electrical heating [32]. Due to the great flexibility they allow in control and 

application, lasers or other light sources are common sources of excitation resulting in the 

classification “photothermal.” 

 The distance these thermal waves travel before the temperature amplitude decays to 1/e 

of the amplitude at the heated surface is called the thermal diffusion length,  
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 f / . (3.4) 

where α is material thermal diffusivity and f is the heating modulation frequency. Thermal 

diffusion lengths for most materials are typically in the sub-mm range. Using the frequency-

dependent thermal diffusion length, these techniques then have the advantage of non-

destructively, depth-profiling the sample with knowledge of sample thermal and geometric 

parameters. However, the measured signal at a given frequency results from the integrated 

response of the material to the depth of the thermal diffusion length. For this reason, extracting 

specific, quantitative information from measured data is frequently an ill-posed problem requiring 

careful formulation of the thermal models used. Inversion algorithms will not be discussed in 

detail in this work but has been reported in literature and is an ongoing area of study [33-37] .  

3.3.2. Thermal Wave Generation and Propagation 

 Consider a semi-infinite medium with constant properties experiencing periodic heating 

on its surface as shown schematically in Fig. 3.2. The temperature field in the solid may be found 

by solving the 1-D parabolic heat equation, 
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with a flux boundary condition having intensity, I0, and angular frequency, ω, given as 

Medium

φin=I0/2(1+cos(ωt))

z

z=0

 

Fig. 3.2. Schematic of 1-D semi-infinite medium experiencing modulated heating. 
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 The consequence of heating is to produce a dc (constant) and ac (sinusoidal) components 

of the temperature field. The steady, periodic temperature field above ambient temperature may 

be assumed to have the form 

  tiezTtzT )(Re),(  . (3.7) 

Substituting this form into Eq. (3.5) and (3.6) gives, respectively, 
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The solution to this equation for the boundary conditions of a periodic heat flux at z = 0 and the 

semi-infinite condition T(z→∞) →0 is 
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 The solution has the form of an attenuated plane wave and is therefore called a thermal 

wave. In analogy to acoustics, σ = (iω/α)1/2 = (1+i)/μ may be considered the complex thermal 

wave number and λt = 2πμ is the thermal wavelength. The phase velocity, vt = μω = 2 , 

increases with frequency. This simplistic solution illustrates several important features of thermal 

wave theory: 1) The thermal diffusion length, μ, represents the distance that the temperature 

propagates from the heated boundary until damped to 1/e = 37% of the value at the heated 

boundary; 2) the phase between the heat source and the temperature response as a function of 

distance is dependent only on μ and is -π/4 rad or -45° at the surface; 3) the temperature at the 

boundary surface is dependent on the thermal effusivity, e, of the medium; 4) the natural log of 
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the magnitude of the complex temperature result is directly proportional to heating frequency, f, 

as shown by   (   constant/constant/)(ln   fxxzT ).  

 Making an analogy to electrical impedance which relates electrical field to current 

density, the thermal impedance of medium is defined as the ratio of temperature, T, to heat flux, 

φ. Using thermal impedance to express photothermal signals in place of temperature is convenient 

as it is independent of excitation power and of the specific photothermal method used. The 

thermal impedance, Z, at the surface determined from Eq. (3.6) and (3.10) is 

 
)exp()4/exp(

1
)( zi

e
Z 


  . (3.11) 

3.3.3. Theoretical Models of Thermal Waves in Layered Systems 

 Thermal models used to describe the temperature field in multilayered materials have 

been derived using direct solutions to the heat diffusion equation, Green’s function solutions [38], 

and the thermal quadrupoles method [39]. This work presents the formulation using thermal 

quadrupoles. First quadrupoles are introduced for a 1-D case. Next, a 2-D axisymmetric model 

will be introduced as an extension of the 1-D case. 

3.3.3.1. Quadrupoles Method for 1-D Multilayered Materials 

 As an introduction to the thermal quadrupoles method [39], the temperature field in an 

opaque, isotropic, homogeneous plane wall (1-D) is derived from the heat equation with a 

periodic heat source at the surface (Fig. 3.3). The problem of a semi-transparent medium has been 

solved using quadrupoles in [40]. The heat source has a modulated intensity of I0(1+cos(ωt))/2 

where I0 is the intensity of the source and ω = 2πf is the angular frequency of modulation. With 

this heat source the boundary condition may be written as 
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 As in the previous section, the solution for the temperature field will be comprised of the 

sum of the DC and AC components. The AC component may be written as  

  tiezTtzT )(Re),(  . (3.13) 

Substituting into the heat equation and solving results in a solution of the form 

 )cosh()sinh()( 22 zBzAzT   , (3.14) 

where the 1-D complex thermal wave vector is σ = (iω/α)1/2 = (1+i)/μ with thermal diffusion 

length, μ = (α/πf)1/2 (3.4).   

 Substituting Eq. (3.14) into the definition of Fourier’s law for heat flux and rearranging 

results in the following matrix relationship for temperature and heat flux between the front (z=0) 

and back (z = L) surfaces 
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(3.15) 

where A = D = cosh(σL), B = sinh(σL)/kσ, and C = kσ sinh(σL). The ‘ABCD’ matrix is called the 

quadrupole matrix of a plane wall, which will now be termed the Q matrix.  

 Now suppose as in the case of a multilayered material as shown in Fig. 3.4, several layers 

are connected in series. The relation of Eq. (3.15) may be applied successively to each layer of a 

composite of n layers resulting in an expression of the form 

Layer 1

φin=I0/2(1+cos(ωt))

z=L

z=0

 

Fig. 3.3. Schematic of 1-D, finite, homogeneous material with modulated heating. 
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where subscripts 0 and n in the input and output matrices (containing T and φ) represent the front 

and rear surface temperatures and fluxes. Heat losses from the surfaces may be accounted for 

using the relationship, φ0 = -hT0 + φin  and φn = hTn, where h is the heat transfer coefficient and T0 

and Tn represent the temperatures of the front and rear surfaces exposed to a gas. The gas 

temperature is assumed to be zero. Writing these relationships in matrix form and combining with 

Eq. (3.16) gives  
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 The presence of a thermal resistance, Rth,j, at an interface may be accounted for using the 

relationship 
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Layer 1

φin=I0/2(1+cos(ωt))

z=L1

z=0

Layer n

Layer 2

:    :    :

:    :    :

Rth,1

Rth,2

Rth,n-1

z=L1+L2

 

Fig. 3.4. Schematic of 1-D, multilayered material with modulated heating. 
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in the proper sequence of matrix multiplication. Defining matrix M as the matrix resulting from 

multiplication of the heat loss, quadrupole, and resistance matrices, the overall relationship can be 

written as 
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The thermal impedance of the multilayered composite may then be defined as 
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where φin is the heating flux at I0/2. 

3.3.3.2. Extension for 2-D, Axisymmetric, Multilayered Materials 

 For each layer in a multilayered material as shown in Fig. 3.5, heated with a Gaussian 

intensity profile, the 2-D axisymmetric heat equation (assuming no volumetric absorption) takes 

the form 
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where z is in the through-thickness direction and r is the radial coordinate extending from the axis 

of the heating. The total power of the laser, P0, is modulated as P0(1+cos(ωt))/2. In this case, the 

modulated heat is assumed to be absorbed at the surface only, defined by the flux boundary 

condition for the AC component as 
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where P0 is the total heating power and r0 is the heating radius at 1/e2 of the maximum intensity. 

 As with previous cases discussed, the temperature solution to Eq. (3.21) will be 

composed of DC and AC components. Substituting the assumed form of the AC component into 
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Eq. (3.21) and applying the Hankel transform to the heat equation and the periodic component of 

the heating boundary condition, respectively, gives 
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where σm = (u2 + iω/α)1/2 and  
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where T
~

and ~ are the zero-order Hankel transform of temperature and flux. The zeroth order 

Hankel transform of T(r,z) is defined by 
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where J0 is the zero-order Bessel function. The inverse Hankel transform is defined as 
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Fig. 3.5. Schematic of 2-D, multilayered material with modulated, Gaussian heating. 
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 Solving Eq. (3.23) for the temperature in Hankel space is completely analogous to the 

preceding discussion for the 1-D quadrupoles case with the primary difference lying in the 

definitions of the complex wave vector: 1-D case → σ = (iω/α)1/2 = (1+i)/μ, 2-D case → σm = (u2 

+ iω/α)1/2; and the heating amplitude: 1-D case → I0/2, 2-D case → 4/
8/

0

2
0

2ru
eP


. 

 Therefore, using the previous quadrupoles derivation for the 1-D case and using the 

inverse Hankel transform, the solution for the sample temperature at any radial location may be 

written as  
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where 21110 /~/
~

)(
~

MMTuZ in   is the thermal impedance at z = 0 of the multilayered material 

in Hankel space. 

3.3.3.3. 1-D vs 2-D Considerations 

 The foregoing analysis presents 1-D and 2-D solutions for the thermal impedance at the 

surfaces of a sample undergoing periodic excitation. Mathematically, multidimensional heat flow 

has been shown to be equivalent to the 1-D case under the condition of capturing the entire 

temperature response of the heated surface at z = 0 [41]. This result has useful implications for 

many thermal wave techniques, simplifying the analysis for cases where this condition is met as 

is intrinsic to photoacoustic and photopyroelectric techniques. For photothermal radiometry, this 

condition may be met by ensuring the detection area has a radius ~ greater than the thermal 

diffusion length + the heating radius. 

3.3.4. Thermal Wave Detection Techniques 

 Modulated thermal wave techniques most commonly employ a laser as an excitation 

source for heating a sample. The process of heating a solid by photothermal means is through the 

absorption of photons resulting in heating and temperature changes in the material. The advantage 
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of using a light source for heating is non-contact excitation. In this work, thermal wave 

techniques of interest are classified as either photothermal or scanning probe microscopy (SPM). 

Scanning thermal microscopy techniques use a probe having a contact diameter approximately < 

1 μm. The probe may act passively to detect temperature or actively to locally heat a sample. The 

temperature changes can lead to modification of thermophysical properties. Over the course of 

nearly four decades, a variety of thermal wave techniques have been developed with fundamental 

differences in the types of excitation sources, but more predominately, with differences in the 

detection of the thermal waves.  

 The temperature changes induced by modulated heating in the sample generate distinct 

physical phenomena (summarized in Fig. 3.6) including: acoustic waves, changes in thermal 

expansion (thermoelastic effect), changes of infrared emission, pyroelectric effect, changes of 

refractive index in gases or transparent media, changes of optical reflectivity, etc. The following 

presents a brief overview of common thermal wave techniques including photothermal and SPM 

types. For more detailed reviews of thermal wave techniques see [29, 42-44]. 

Modulated Heating

Surface Reflectivity 

Modulation

Refractive Index

Gradient

Surface 

Expansion

Acoustic 

Waves 

IR Emission

Thermal & Thermoelastic Waves

 

Fig. 3.6. Schematic of sample with modulated heating showing resulting thermal wave 

phenomena used for detection. 
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3.3.4.1. Photothermal Techniques 

Photoacoustic Spectroscopy (PA) – Stemming from the discovery of the photoacoustic affect by 

Alexander Graham Bell in 1880 [45], the photoacoustic sensing technique utilizes a microphone 

to detect the pressure fluctuations induced in the gas at the solid/gas interface experiencing 

optical heating. Performing the measurement in a sealed enclosure allows the acoustic waves 

generated at the surface of a sample (acoustic piston) to pass through the gas to the microphone 

where they are converted to an electrical signal. The signal level is proportional to the 

temperature rise in the sample. Almost one hundred years after the discovery of the effect, 

pioneering work into quantitative theoretical and experimental work emerged [31, 46, 47] and 

expanded rapidly giving birth to a revival of photothermal techniques. The PA technique can 

measure thermal phenomena in solids, liquids, and gases. In materials of large surface area to 

volume ratios such as gases and powdered solids, temperature fluctuations ~10-6 °C are 

detectable. The need for an enclosed measurement cell is a disadvantage of this technique. 

Photothermal Displacement (PTD) – The photothermal displacement detection mechanism 

relies on the detection of the local thermal expansion at the location of heating [48]. Detection 

schemes are by use of a secondary laser probe beam that is reflected from the surface location 

experiencing thermal expansion. An interferometer or a bi/quad-cell photodiode detect changes of 

the surface conformation from the probe beam.  

Photothermal Radiometry (PTR) – The thermal radiation emitted from matter having a 

temperature associated with is the basis for photothermal radiometry (PTR) [49, 50]. For 

temperatures near room temperature, the emitted radiation has dominant wavelengths in the near 

and mid-infrared spectral range as calculated from Planck’s Law. Local detection of the infrared 

emission is generally by means of using mirrors or optics to pass the IR emission from a sample 

to a liquid nitrogen cooled semiconductor detector. Frequency response can be from mHz to MHz 

providing good sensitivity to coatings and layered materials. Due to its non-contact, relatively 
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less complex, and versatile setup, PTR has been used extensively over the previous several 

decades on a wide variety of applications. As this technique is of particular interest for this work, 

a more detailed description follows in Section 4.2.1. 

Photopyroelectric Technique (PPE) – The photopyroelectric technique utilizes a pyroelectic 

transducer, which generates an electric charge proportional to the volume-averaged, incremental 

temperature within it [51-53]. The sensor (commonly polyvinylidene diflouride PVDF or LiTaO3 

single crystals) is placed in direct contact on the front or back of a sample. The PPE technique has 

been used widely to characterize solids, liquids, and gases. Advantages of the technique include: 

high sensitivity, high signal to noise ratio, large bandwidth of mHz to kHz, and simple setup.  

Photothermal Beam Deflection (PBD) – Based on the mirage effect, photothermal or optical 

beam deflection detects the temperature-dependent, incremental changes of the index of 

refraction in a gas/liquid medium next to a heated surface [54, 55]. A secondary probe laser beam 

is passed parallel to the sample surface through the affected gas, into a position sensitive 

photodetector. The probe beam can be passed directly through transparent samples to detect 

changes of refractive index. The technique is limited to applications on smooth planar surfaces.  

Modulated Optical Reflectance (MOR) – The optical reflectivity of materials can have 

temperature dependency providing the basis for the modulated optical reflectance method. A 

typical MOR detection scheme consists of a pump (heating) laser beam focused on a sample 

surface. A secondary probe laser beam is reflected from the sample surface and measured to 

capture the temperature-dependent intensity of the reflected beam [56, 57]. The advantages of this 

technique are that it is non-contact and can have excellent spatial resolution. Disadvantages are 

that it requires a reflective surface and very accurate alignment. 
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3.3.4.2. Scanning Probe Microscopy 

 Scanning probe microscopy (SPM) techniques come in a wide variety in an attempt to 

access information at sub-diffraction limited length scales. In spite of difficulties associated with 

quantitative measurements, SPM methods are among the most promising for obtaining 

nanometer-level thermal measurement resolution. These techniques employ a fine probe that is 

brought into (close) contact with a sample’s surface to measure various characteristics. A more 

detailed introduction to scanning probe microscopy and scanning thermal microscopy will follow 

in Section 4.2.3. A brief introduction is provided here to two variations of two primary thermal 

detection techniques using SPM.   

Scanning Thermal Microscopy (SThM) – Scanning thermal microscopy makes use of 

specialized thermal probes, which may be thermoresistive or thermocouple temperature 

sensors/heaters [58-60]. The resolution of the measurement is governed by the size of the tip, 

sample surface features, and heat transfer between a tip and sample. Heating in the probe is by an 

applied DC or AC current. Even for AC heating, SThM, in standard single probe configuration, is 

not a true tomographic thermal wave method as has been shown in [61]. From the perspective of 

the solution of a point heat source in a semi-infinite medium, it is shown that the temperature 

field in the sample decays much quicker than described by the frequency-dependent thermal 

diffusion length, μ, for μ < ~1 MHz. Typically the physical geometry of the thermal probe limits 

the applied frequency to < few kHz. The conclusion is that DC and AC methods provide 

equivalent thermal information from a sample. 

Scanning Thermoelastic Microscopy (SThEM) – In the case of scanning thermoelastic 

microscopy [62] or scanning Joule expansion microscopy [63, 64] for Joule heated samples, the 

thermal expansion of a heated sample is detected by the probe. Heating is provided by either the 

detecting probe (thermoelastic) or by modulated electric current applied to an electrically 

conductive sample (Joule expansion). Advantages of this technique compared to conventional 
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SThM is that the drawbacks of ill-defined contact resistances between the probe tip and the 

sample surface may be avoided [65]. Measurements of nanometer resolutions have been achieved 

with this technique [66-68] . 

3.4. Additional Studies on Thermal Property Measurement during PhD Period 

 Many thermal property measurement techniques exist in the literature. In particular, 

thermal conductivity measurement is of great interest for many applications. Typically these 

techniques are classified as either steady-state or transient. As the classifications imply, steady-

state measurements rely on measuring a steady temperature gradient through a material and using 

Fourier’s law relationships to extract thermal conductivity. Transient measurements utilize a 

dynamic temperature field, from which thermal diffusivity and thermal effusivity are calculated 

providing a pathway to obtaining thermal conductivity. Although simple in principle, steady-state 

measurements typically require complicated experimental details to ensure known heat flow. 

Still, with proper consideration, steady-state measurement can yield very accurate results for 

thermal conductivity as they provide the most direct path to it. Transient measurement techniques 

can be relatively simpler and less sensitive to environmental effects. Measurement times can be 

short and sample size and temperature gradients are generally smaller. Due to these 

characteristics, transient techniques such as the hot-wire method and laser flash have attained the 

most widespread usage.  

 In conjunction with the primary objectives related to measuring ion-irradiated materials, 

several other related topics have been explored covering a broad range of measurement 

techniques. A comparative-guarded-axial heat flow (cut-bar) system was designed to measure 

bulk (composite) materials up to 1000 °C [69]. During this process, several advancements in the 

measurement technique were discovered and explored to improve the accuracy of the system [70-

73]. These findings disprove several foregone conclusions regarding comparative measurement 



29 
 

 

techniques providing a method to deal with the mismatch of thermal conductivities in meter 

(comparator) bars and the measured sample. In this way, measurement uncertainty for the system 

is estimated to be <6% from room temperature up to 1000 °C. Measurement results on certified 

reference materials verify this uncertainty with deviations of no more than 3% over the 

measurable temperature range of the samples (< 600 °C). 

 As a parallel to SThM measurements, the analysis of which is really a form of hot-wire 

anemometry, two approaches to measurement of thermal properties of thin fibers have been 

studied including a pure transient type and a 3ω type. Contributions to this work include 

improving the technique through proper modeling of heat loss mechanisms, experimental 

evaluations of theoretical models, and comparisons of techniques. These techniques allow for the 

extraction of thermal conductivity, thermal diffusivity, and heat capacity of fine diameter samples 

(both electrically conductive and non-conductive). 

 Contributions have been made in several other related works including: a parametric 

study of the modulated optical reflectance (MOR) technique [74] (Section 3.3.4.1); SThM 

analysis of wood cell walls using phase transition measurements [75]; and the development of a 

an approach to measuring/modeling surface roughness using PTR measurements [76]. 

 Each of these projects has contributed to a more complete understanding and experience 

with thermal property measurement techniques ranging from classical techniques to state-of-the-

art advanced techniques. It is with this foundation of knowledge that the approach to 

measurement of the ion-irradiated material was devised and carried out. 
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CHAPTER 4 

 

4. MATERIALS AND METHODS 

  

 

 Because of the importance of thermal conductivity (k) in characterizing material 

performance in nearly any engineering and/or science application, a great deal of resources have 

been expended in efforts to measure/collect thermal conductivity data for innumerable materials. 

Much of the data presently available and used as reference data dates to the 1950-1970’s. In spite 

of these efforts, uncertainties for thermal conductivity data remain large (typically > 5%) due to 

the differences inherent to material composition, formation, history, etc. It is for this reason that 

measurement of thermal properties remains an active field of study with vast amounts of 

measurement methods and variations of those methods having been developed over the last 

century. In this chapter, the material of study in this work, zirconium carbide, is summarized in 

the context of the objectives of this work. Following a description of the material, the multi-

scaled techniques applied to its measurement are described in detail.  

4.1. Zirconium Carbide 

 Transition-metal carbides have theoretical and practical interest due to their high melting 

point, hardness, metallic property, and superconductivity. Applications include cutting and 

grinding tools, thermal-barrier coatings, diffusion-resistant thin films, interconnects, and 

superconductivity devices.  

 Zirconium carbide (ZrC) is a typical transition metal-carbide that takes the NaCl ground-

state crystal structure. Prior to irradiation, ZrC has several exceptional characteristics including 

hardness, corrosion resistance to fission products, high melting point of ~3540 °C (46.5% carbon 

atoms), and imperviousness to hydrogen attack. Due to a combination of acceptable neutronic 

performance, thermal properties, chemical behavior, and physical properties, ZrC is being 

considered in the tri-structural isotropic (TRISO) fuel as an oxygen getter in the kernel, as a 
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coating layer for fission product retention, or a combination of these two functions as a direct 

coating on the fuel kernel [9]. However, the understanding of the irradiation defects, especially 

the degradation of the thermophysical properties of irradiated ZrC, is under-studied. ZrC has been 

studied using fast neutron, proton, and heavy ion irradiation, mainly focusing on the 

phenomenological change of the microstructures, while very little information was provided on 

the degradation of thermophysical properties [77]. Previous results from proton irradiated ZrC 

show that the irradiated microstructure consists of a high density of dislocation loops, and a 

significant change in the thermophysical properties is expected [78]. For a detailed summary of 

the properties of ZrC and previous irradiation studies see [77, 79]. 

 As with other transition metal carbides, ZrC intrinsically has a high vacancy 

concentration in the carbon sublattice, and the properties of ZrC are often sensitive to the 

stoichiometry (C/Zr ratio). The significant effects of stoichiometry on physical properties means 

it is critically important that properties be discussed in the context of stoichiometry. For example, 

for stoichiometries yielding vacancies (C/Zr < 1), the thermal conductivity of hot-pressed ZrC 

decreases rapidly from ~45-10 W∙m-1∙K-1 with decreasing C/Zr from 1.0 to 0.9, respectively, 

becoming relatively constant at 8-10 W∙m-1∙K-1 over the range of 0.6 < C/Zr < 0.9 [80]. 

 As discussed in more detail in Section 3.1.3, the thermal conductivity of metal ceramics 

may be considered as the sum of the electron thermal conductivity and the phonon thermal 

conductivity. ZrC demonstrates unusual trend of increasing k with increasing temperature.  The 

unusual trend is attributed to a reduced temperature dependency of the phonon thermal 

conductivity at higher temperatures and an increasingly dominating electronic contribution at 

higher temperature. At low temperatures, k is produced mostly by phonons, which are greatly 

scattered by conduction electrons. At higher temperatures, phonons and electrons both contribute 

but are scattered by either carbon vacancies (responsible for the large decrease of k seen for 
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decreasing C/Zr ratio) or are affected by excess carbon, both acting to reduce k. At temperatures 

(> 500 K), the electronic contribution to k predominates [80, 81]. 

4.1.1. Previous Studies of Irradiation Effects on Thermal Conductivity of ZrC 

 Few studies have reported measurements of irradiation effects on thermal conductivity of 

ZrC using fast neutrons and heavy ions [79, 82, 83]. Taubin observed no notable changes in 

thermal properties in fast neutron irradiated ZrC0.96 with a fluence of ~4∙1016 n∙m-2. Snead et al. 

found only minor degradation in α of ZrC0.87 irradiated with a fast neutron fluence of 1.8-9.0∙1021 

n∙cm-2 with maximum degradation of ~15% at irradiation temperatures ~<1473 K. Higher 

temperature irradiations showed only slight degradation of α. The non-irradiated thermal 

conductivity for their sample was between 12-16 W·m-1·K-1. They attributed the reduction mainly 

to phonon scattering as the electronic contribution (electrical resistivity) to thermal conductivity 

showed no change [79].  David et al. found a 50% and 75% decrease in thermal conductivity for 

1016 and 6∙1016 ions∙cm-2, respectively, on ZrC (virgin k = 20 W∙m-1∙K-1, composition not 

specified) irradiated by 25.8 MeV krypton ions [83].  

4.1.2. ZrC Sample Preparation 

 The ZrC sample studied in this work is a 3 mm disc of nearly stoichiometric (C/Zr = 

1.01), hot-pressed, commercial-grade zirconium carbide (ZrC) cut from a rod having a measured 

density of 6.58 g∙cm-3, near the theoretical density of 6.60 g∙cm-3. The value of specific heat, cp, 

has been taken from the literature as 368 J∙kg-1∙K-1 [80, 84, 85]. One face of the 500 μm thick disc 

was polished and irradiated using a 2.6 MeV proton beam. Both pre- and post-irradiation the 

sample grain size was studied using scanning electron microscopy (SEM) finding an average size 

of 24 μm and no indication of grain boundaries, respectively. A more complete description of the 

irradiation preparations and conditions of the sample is given by Yang et al. [78]. 
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 Proton irradiation was performed at 600°C until the damage level reached an approximate 

level of 1.75 dpa (displacements per atom) in the nearly constant portion of the profile comprising 

the first several tens of microns of the damage depth profile. The damage profile calculated by 

TRIM2008 [86] (Transport of Ions in Matter) using threshold displacement energies of 35 eV for 

zirconium and 25 eV for carbon as given by Yang et al. [78] is shown in Fig. 4.1a. The numerical 

result is compared to the profiles obtained using thermal transport measurement techniques in 

Chapter 6. The damage profile will have some proportionality to the degradation of thermal 

conductivity of the material.  

 After irradiation, a fragment of the sample was fractured off to reveal the cross section of 

the damage profile to measure using the spatial scanning techniques. The cross section was 

mounted in epoxy and polished down to 0.02 μm colloidal silica. The remaining disc was used for 

the frequency-based PTR measurements. Sample measurement configurations are shown in Fig. 

4.1b. Additionally, a disc of undamaged ZrC was used to measure the thermal properties of the 

virgin ZrC material. 
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Fig. 4.1. (a) Numerically calculated damage profile for 2.6 MeV protons in ZrC from TRIM2008 

[86] (b) Sample measurement configurations for frequency and spatial profiling techniques 
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4.2. Multiscale Thermal Wave Detection Techniques and Instrumentation 

 For ion-irradiated materials, the shape, depth, and magnitude of the thermal degradation 

profile through the irradiated zone of the material is unknown and poses a challenge for 

traditional measurement techniques. In recent years, frequency-based thermal wave methods have 

been used to investigate thermophysical properties of ion-irradiated samples [83, 87, 88]. 

Although, the thermal properties extracted from the thermal diffusion models in such 

measurements have typically been based on layered descriptions of the ion-damaged surface with 

layer thicknesses estimated from numerical calculations of the irradiation damage. One study 

used Transmission Electron Microscopy (TEM) of the in-depth irradiation damage profile to 

validate the numerically predicted profile [87]. The SThM measurements performed on ion-

irradiated samples were done on the irradiated surface measuring from the damaged region to a 

zone masked from the irradiation. Only for titanium carbide (TiC) was the change of thermal 

property detectable. For zirconium carbide (ZrC), a degradation of thermal signal was measured 

but found to be at least partially attributed to oxidation on the irradiated surface [89]. 

 In this work, photothermal radiometry, lock-in IR thermography, scanning thermal 

microscopy are investigated for the thermophysical characterization of the proton-irradiated ZrC. 

In particular, complementary approaches are to be explored. The first two measurement 

techniques discussed fall under the classification of IR detection while the third represents a type 

of scanning probe microscopy. The following section summarizes the relevant literature 

pertaining to these methodologies and presents the experimental setups used in this work. 

4.2.1. Photothermal Radiometry 

 Photothermal radiometry (PTR) is one of the most common techniques used for the 

detection of thermal waves due to its simplicity, robustness, non-contact configuration, and 

compatibility with many industrial requirements. PTR is distinguished from IR thermography 
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(following section) in that a single monolithic IR sensor is used rather than an IR sensing array. A 

typical PTR setup utilizes a light source such as a laser to heat a sample. Detection of the 

temperature response of the sample is accomplished by means of collecting the IR emission and 

passing it into an IR detector.  Further distinction may be made as to whether the sample heating 

is modulated or pulsed [90]. In this work, modulated (frequency-domain) PTR is used in all cases. 

 Modulated PTR was first introduced by Nordal and Kanstad [49, 50]. In analogy to 

theory developed for the photoacoustic method, full modulated PTR theory was developed in [91, 

92]. Since then, applications include thermal and optical properties of homogeneous, layered 

materials, thin films, etc. of both inorganic and organic [93] materials. Two recent studies were 

performed using frequency-domain PTR on ion-irradiated materials [87, 88]. More recent 

summaries of the technique can be found in [40, 94].  

 In modulated PTR, the light source is intensity modulated onto the surface of a sample. 

An IR detector measures the resulting temperature response of the sample and is connected to a 

lock-in amplifier, which captures the oscillating component of the response for a given heating 

modulation frequency. As is shown from the theoretical discussions in Sections 3.3.3 and 4.2.1.2, 

the measured signal from the lock-in, the thermal wave response, is dependent on the thermal 

parameters of the sample. This configuration allows for flexibility in configurations, making PTR 

a versatile tool for a variety of thermophysical characterization approaches. Heating may be 

focused or defocused and can be applied to the front or back of the sample, allowing differing 

sensitivities to the thermophysical structure of a sample [95]. 

4.2.1.1. Description of Measurement System 

 The PTR system used in this work is located at URCA in Reims, France. A schematic 

and photography of this PTR system in front detection configuration (FD-PTR), used for both 

spatial and frequency scanning, is presented in Fig. 4.2. The system uses a DPSS, 532nm laser 
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modulated by an acousto-optical modulator (AOM) at a given frequency to heat the sample 

surface. Parabolic mirrors capture the emitted IR radiation from the sample, focusing it into an 

HgCdTe detector with a 1mm2 detection area. A preamplifier passes the signal from the detector 

to a lock-in amplifier which measures the temperature amplitude and phase relative to the heat 

source.  

 For the frequency-scanning measurements, the Gaussian heating laser beam profile is 

homogenized using a flat-top beam shaper. In this way, the entire surface of the sample (< 3mm 

diameter) is heated uniformly creating an approximate 1-D heating condition. Amplitude and 

phase spectra are then measured for the range of frequencies having the greatest sensitivity to the 

parameters of interest and used to fit to the thermal model to extract the desired parameters.  

 For the spatial-scanning measurements, the flat-top beam shaper was replaced with a set 

of lenses to focus the heating spot to a size of ≈50 μm. The sample was then scanned laterally 

using a micrometer stage at a defined frequency. 
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Fig. 4.2. Photothermal radiometry setup at URCA used for measurement: a) schematic view; b) 

photograph 
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4.2.1.2. Photothermal IR Radiometric Signal 

 When a black body is subjected to modulated radiation, its surface temperature will 

change periodically as was first observed in [96]. The resulting temperature depends on the 

thermo-optical properties of the sample near the surface. The resulting temperature change in the 

sample creates periodic emission from the sample obeying the Stefan-Boltzmann Law defining 

the total radiant emission from a black body as Eb = σSBTa
4, where σSB = 5.67∙10-8 W∙m-2∙K-1 and 

Ta is the absolute temperature of the body. This emission is also dependent on the thermo-optical 

properties of the sample. Assuming emission is from the sample surface only (body is opaque at 

emission wavelengths), the signal measured by the IR detector results from the IR emission of the 

sample surface, which for a gray and diffuse body, qgd, is defined as 

  4

aSBgd Tq  , (4.1) 

where ε is the total hemispherical emissivity of the emitting body. For the case of small surface 

temperature fluctuations, δT << Ta, the resulting increment in thermal radiation emittance may be 

found using a Taylor series expansion of Eq. (4.1) giving 

 TTq aSBgd  34 . (4.2) 

The incremental temperature, δT, represents the thermal wave response of the heated body for a 

given frequency and time. For cases of materials other than those that are opaque see [92]. 

Written in general form, δT at the surface resulting from modulated heating may be expressed as 

   )((exp)(),,0(   tiAmptzT , (4.3) 

where Amp(ω) and ψ(ω) are the amplitude and phase relative to heating of the thermal wave at 

the surface of the sample.  

 However, the overall response measured by the IR detector is influenced by instrumental 

factors from the detector, modulator, and other electronic components as well as the solid angle 



38 
 

 

from the sample to the capturing optics, resulting in a prefactor, KPTR, incorporating these effects. 

Thus, the voltage signal measured by the lock-in amplifier may be expressed as 

   ),(42/)( 3

0  ZTKIV aSBPTRPTR   (4.4) 

where I0 represents the magnitude of the heating flux and Z(ω) = T(z=0,ω,t)/φ(ω,t) is the thermal 

impedance of the sample. The heat flux delivered by the light source is assumed to have the form 

φ(ω,t) = (I0/2) exp(iωt). To account for the instrumental factors in the measured signal, a 

normalization procedure is needed. 

4.2.1.3. Signal Normalization 

 Several normalization procedures have been used for PTR measurements to account for 

instrumental factors summarized in [94]. These include: 1) normalizing to measurements from 

reference material; 2) direct measurement of the instrumental factor by allowing the heat source 

to pass directly to the IR detector; 3) self-normalization by normalizing the measured data from 

the front of the sample to that from the rear; 4) comparison of results obtaining with and without a 

backing liquid. In this work, the results are normalized using the electro-optical transfer function 

of the setup at low frequencies obtained by impinging the laser directly on a photodiode 

connected to the lock-in amplifier. For higher frequencies (>10 kHz) where the IR detector 

influence is significant for this setup, normalization is done using reference material data, in this 

case, well-polished steel, which is known to be homogeneous.  

 In the case of a signal normalized by data from a reference material, the normalized PTR 

signal can be represented as 

 
 )(exp

3

,

3

,

,0

,0

,

,

rs

r

s

ra

sa

r

s

r

s

rPTR

sPTR

n i
Amp

Amp

T

T

P

P

V

V
S 




 , 

(4.5) 



39 
 

 

where subscripts “s” and “r” denote sample and reference data. Assuming equivalent DC 

temperature of a given sample and reference material, the resulting normalized data is no longer 

dependent on the instrumetnal factor and retains the important tempereature information. 

4.2.2. Lock-in Infrared Thermography 

 Lock-in IR thermography (lock-in IRT) was first described in [97] and has since been 

developed in many works [98-101] as a non-destructive testing (NDT) technique for material 

defects. Whereas for PTR a single IR sensor is used to obtain single signal, IR thermography 

utilizes an IR camera to obtain a thermal image. The ability to obtain an image in a single 

measurement is also its advantage over PTR. In lock-in IRT, as with other photothermal wave 

methods that have been discussed, periodic heating is applied to a sample. The IR camera 

captures a series of the resulting IR images. The temperature response of each pixel in the image 

is processed using lock-in techniques to deliver the amplitude and phase of the imaged material in 

reference to the heat source. 

4.2.2.1. Description of Measurement System 

 For the lock-in IRT measurements, the same laser/AOM used in the PTR setup (described 

in Section 4.2.1.1) was used to heat the surface of the cross section of the sample at a frequency 

of 40Hz. A schematic of the measurement setup is shown in Fig. 4.3. An IR (wavelength 3.5 - 5.0 

IR Camera

AO Modulator

PC

Sample

Iris

 

Fig. 4.3.  Schematic of the lock-in IR thermography setup at URCA 
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m) camera (Titanium model from Cedip Infrared Systems) with a frame rate of 100Hz recorded 

the periodic heating response of the sample over a period of 10 s. An internally developed 

software (CAMIR) at URCA was used to calculate the amplitude and phase for each pixel, at the 

heating frequency, using lock-in techniques. The result is both amplitude and phase images of the 

entire sample. 

4.2.3. Scanning Thermal Microscopy 

 Scanning thermal microscopy (SThM) falls under the broader classification of scanning 

probe microscopes (SPM). Although a variety of SPM types exist, the two primary instruments 

used in applied research are the scanning tunneling microscope  (STM) (Nobel Prize for Physics 

in 1986) [102] and the atomic force microscope (AFM) [103]. The STM and AFM represent 

some of the foremost tools for imaging, measuring, and manipulating matter at the nanoscale. 

Since their invention in 1982 and 1986, respectively, many variants of these devices have been 

proposed with applications across all fields of science. SThM was first invented in 1986 using a 

thermocouple probe mounted to an STM [58]. Such a configuration suffered from difficulties in 

distinguishing temperature from topographical variations.  Later, the first images of material 

thermal conductivity at nanoscale were performed by Nonenmacher and Wickramasinghe [104]. 

Shortly thereafter, Majumdar used a contact AFM as the platform for SThM providing the 

flexibility to measure both conductive and non-conductive sample materials [60]. This system 

provided topography as well as a thermal image. Within the last decade, SThM has advanced to 

have spatial resolutions ~10nm, temperature precision ~50mK, and the ability to measure 

nanometer-scale heat flows ~10pW [2]. Comprehensive reviews of SThM topics can be found in 

[61, 65, 105-107]. 

 In this work, three different AFM systems as well as different thermal probe types are 

used in an attempt to quantify thermal properties of unknown samples. The first AFM system, 
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made by Park Systems, is located at the Silesian University of Technology in Gliwice, Poland. 

The second system, located at the Université de Reims Champagne-Ardenne in Reims, France, is 

a Topometrix Explorer from the mid to late 1990’s. The third AFM system is made by Nanonics 

Imaging, Ltd., and is located at Utah State University in Logan, Utah. The following sections will 

distinguish between the different AFM systems. An explanation of different modes of thermal 

microscopy follows. As well, the variations of thermal probes used in this work will be 

overviewed with relation to a review of literature regarding the different approaches used to 

extract quantitative thermal property measurements. 

4.2.3.1. Feedback Mechanisms 

 The basic principle of scanning probe microscopy is to control a very sharp probe with 

sub-nanometer precision. Therefore, the sensor, integrator, and effector of the feedback control 

system consists of, respectively, a tip-sample distance sensor, a computer system to process and 

store data from the sensor, and an x-y-z capable movement usually accomplished through 

piezoelectric scanners. The probe is raster scanned across a sample surface with precise control of 

the tip-surface distance providing maps of topography, electrical, mechanical or thermal 

properties, etc.   

  STM accomplishes the necessary feedback through the concept of quantum tunneling. 

The tip is brought near the surface of a sample in vacuum with a voltage bias applied between the 

surface and the tip. The result is a tunneling current, which is dependent on tip-sample distance, 

applied voltage, and the local density of states of the sample. One of the key drawbacks of this 

method is the requirement of a conductive sample. In the first instance of scanning thermal 

microscopy, a thermocouple tip was used in place of the traditional electron tunneling probe. In 

this case, the probe is heated while moving near the surface. The proximity of the surface reduces 
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withdraws heat from the probe, cooling it. Thus, temperature provided the feedback mechanism 

for tip-surface control. 

 With the invention of the AFM, the feedback mechanism controlling the tip-surface 

provided greater flexibility for the types of samples (insulators to conductors) and for the types of 

thermal (or other) probes that could be used. Two feedback sensing mechanisms for the 

piezoelectric actuators are used in the AFM systems explored in this work: optical based and 

tuning fork based. 

Optical Detection 

 The feedback signal/sensor used by the Park Systems and Topometrix AFM systems, 

which is also the most common from several AFM manufacturers, is the detection of cantilever 

deflection using optical means. A schematic diagram of this configuration is shown in Fig. 4.4a. 

Typically, a laser is reflected from the cantilever of the probe onto a bi/quad-cell photodiode. 

With knowledge of the stiffness of the probe, the force exerted by the probe on the sample surface 

can be calculated and maintained constant. This is also known as a static mode of operation. Such 

a configuration allows moving the probe across a surface with precisely controlled pressure and is 

often times referred to as contact AFM.  
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Fig. 4.4. Schematic view of AFM probe feedback mechanisms: a) optical; b) tuning fork 
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Tuning Fork Detection 

 The second type of feedback, which is used by the Nanonics AFM, uses a unique 

piezoelectric tuning fork [108, 109] as is illustrated in Fig. 4.4b. A photograph of the tuning fork 

is shown in Fig. 4.5. In this case, the probe (discussed in a following section) is rigidly attached to 

one of the prongs of the tuning fork, which is also rigidly attached to an external piezoelectric 

vibrator. The fork is vibrated at resonance (~30-40 kHz) as the probe approaches the sample 

surface. The resonance generates a piezoelectric potential proportional to the tip oscillation 

amplitude, which is fed into a lock-in amplifier. This piezoelectric signal is the sensor in the 

control feedback of the system. The implications of the tuning fork tip control mechanism on 

thermal measurements are less clear than the optical feedback mechanism. The literature states 

that under feedback control the probe maintains tip-sample distances within tens of nanometers. 

The effects of tuning fork feedback control system on thermal microscopy merit further 

consideration, beyond the scope of this work. This mode of operation is a dynamic mode referred 

to as non-contact AFM. 

4.2.3.2. SThM Modes of Operation and Instrumentation 

 For typical SThM measurements, the probe may act passively as a temperature sensor, 

and at times, as an active heat source as well. These modes of operation are then distinguished as 

passive SThM or active SThM.  In passive mode, a small current is applied to the probe so the 

Tuning Fork

Glass probe
 

Fig. 4.5. Photograph of (left) glass-pipette probe mounted to piezo-electric tuning fork and (right) 

glass probe from Nanonics Imaging, Ltd. [109] 

 



44 
 

 

change of temperature-dependent electrical resistance may be measured or in the case of 

thermocouple tips, the Seebeck voltage may be directly measured. 

 In the active mode, a current is applied to the probe tip to raise its temperature. The 

current may be applied in a constant fashion or as the feedback-controlled parameter in a constant 

temperature mode, where the probe resistance (∝ temperature) is maintained constant.  The 

heating of the probe tip drives heat transfer between the tip and a sample under measurement. 

Measurement of the temperature change of the probe tip (constant current mode) or of the power 

dissipated into the sample (constant current mode) is then correlated to the thermal conductivity 

of the sample. 

 In SThM, the excitation current applied to the probe may be either DC or AC. When 

using purely thermoresistive probes, both configurations rely on the linearity of the relation 

between electrical resistance of the probe circuit and its temperature. Using an AFM as a 

platform, common SThM configuration is to place a thermoresistive probe as one of the legs in a 

Wheatstone bridge configuration.  

DC  

 In pure DC mode, the heating current is applied to the probe in either constant current or 

constant temperature modes. In constant current mode, the measured change of voltage across the 

probe is proportional to the temperature change in the probe sensor. If a thermocouple probe is 

used the measured Seebeck voltage is directly proportional to temperature. On the other hand, 

constant temperature mode has the advantage of maintaining a more constant temperature 

difference between the probe and the sample. This is accomplished through adjusting the heat rate 

delivered to the sample. In this way the measured changes of power applied to the tip during 

operation should better represent changes of tip-sample thermal conductance. Typical schematics 

for the Wheatstone bridge thermal circuits used in DC SThM modes are shown in Fig. 4.6.   
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AC 

 AC operation has the advantage of lock-in signal processing, which results in higher 

sensitivity, stability, and resolution than DC methods. In this mode of operation, a modulated 

heating current is passed to the thermoresistive probe. For DC+AC excitation, the resulting 

voltage across the probe has three primary harmonic components including 1ω, 2ω, and 3ω. With 

pure AC current, only the 1ω and 3ω components are contained in the voltage signal. The 

resulting amplitude and phase of the harmonic components are measured with a lock-in amplifier. 

A brief explanation follows regarding the relationship of measured voltage and temperature. For 

an applied harmonic current, iω ∝ exp(iωt), the power generated through a resistance is 

proportional to the second harmonic, which will also be proportional to the change of 

temperature, P ∝ ΔT ∝ exp(i2ωt). Due to temperature dependence of resistance, ΔR ∝ exp(i2ωt). 

The resulting resistance change therefore generates higher harmonics, ΔV = iωΔR ∝ exp(i3ωt) 

 The third harmonic is directly proportional to the AC temperature rise in the sample. 

When it is used as the measured signal, the technique is termed 3ω SThM. As is common for DC 

operation, in AC mode the probe is placed in a Wheatstone bridge configuration in order to 
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Fig. 4.6. Schematic of typical configurations for SThM measurements in DC mode. The feedback 

loop is for constant temperature operation while the dashed lines connected to the lock-in 

amplifier are for AC operation. 
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cancel the 1ω component of the signal when in 3ω detection. The basic electrical schematic for 

AC configuration is shown in Fig. 4.6 where R0 represents the output impedance of the signal 

generator, Vref is the applied reference voltage, and VA-B represents the difference of input 

voltages across the bridge measured in the lock-in amplifier. 

 AC excitation is equivalent to DC excitation in terms of the thermal information 

measured from a sample. The lateral resolution is determined by the size of tip-sample contact 

area. This statement is valid also when the SThM is operated in the ac mode and is known as the 

super-resolution effect of thermal wave probing [110]. It is due to the fact that the thermal 

diffusion length in the sample at the used modulation frequencies (up to tens of kHz) is still much 

larger than the size of the contact area. The ac and dc modes provide the same information about 

the sample [61]. Therefore, active (sample heating), single-tip SThM measurement is not a true 

thermal wave method in the sense that probing (heating) depth is not controlled by heating 

modulation frequency. In other words, unlike the other thermal wave methods described in this 

work, the spatial resolution of measurement is not determined by heating frequency, but only by 

contact radius. 

4.2.3.3. Probe types 

 Over the course of more than two decades, many variations of thermal probes have been 

explored in the literature. Much of this effort has been driven by the push for smaller spatial 

resolutions. The primary categories of thermal probes include two types: thermoresistive and 

thermocouple. Of those that have been studied only a few have been made available 

commercially. In this work, several commercial probes have been explored for viability in 

measuring the irradiation damage in an ion-irradiated sample. These probes types include the 

Wollaston-wire, batch-fabricated-thin-film, and glass-pipette types including both thermocouple 

and thermoresistive sensors. 
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Wollaston Wire 

 Of all SThM probes, the Wollaston wire probes first produced by Dinwiddie et al. [59] 

are the most studied and well understood (SEM image shown in Fig. 4.7). These probes are 

commercially available from Bruker Corp. These hand-made probes consist of a Wollaston wire 

that is bent to form a tip, which is then etched to remove the silver cladding exposing a V-shaped, 

5 μm platinum core. Each leg of the two sides of the platinum “V” is approximately 100 μm long. 

In measurement the apex of the tip is then placed in contact with the sample while the resistance 

of the exposed platinum is monitored. The manual fabrication process results in less than ideal 

reproducibility from probe to probe as will be shown in the results of this work. 

Thin Film 

 The second most common thermal probes belong to a class of batch fabricated thin film 

probes, which are also commercially available [111]. SEM images of the probes are shown in Fig. 

4.8. First manufactured by Mills et al. [112], the batch fabrication process has resulted in better 

reproducibility of probes and improved spatial resolutions. The probe used in this work consists 

of SiO2 substrate with a thin palladium (Pd) ribbon near the apex of the tip.  

200 μm

Mirror

Pt wire

Silver 

cladding

 

Fig. 4.7. SEM image of Wollaston wire probe 
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Glass Pipette 

 The glass-pipette thermal probes [113] are a less common type available from Nanonics 

Imaging, Ltd [109]. Both thermocouple and thermoresistive thermal probes are available (Fig. 

4.9). The thermocouple type are fabricated by placing a platinum wire inside a borosilicate glass 

tube. Using a pipette puller, the composite wire assembly is drawn down resulting in a probe tip 

consisting of a platinum core ~100nm in diameter and a surrounding glass tube with outer 

diameter ~0.5 μm [114]. After pulling the second thermoelectrode for the thermocouple is made 

by a vacuum-evaporated thin gold film coating over the entire probe tip. Thus, the temperature 

sensing junction is at the interface of the exposed platinum end and the gold film coating. 

 The thermoresistive probes are fabricating using similar glass pulling technology as the 

thermocouple type. However, in this case the two platinum wires insulated from one another are 

 

Fig. 4.8. SEM images of batch-fabricated, thin-film probes manufactured by Kelvin 

Nanotechnology Ltd. [110] 
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Fig. 4.9. Schematic drawings of (left) thermoresistive and (middle) thermocouple-type probes 

available from Nanonics Imaging, Ltd. [109] (right) SEM image of thermcouple probe. 
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contained within the glass during the draw-down operation. After the pulling operation, the 

isolated wires within the glass are exposed to a length of a few microns by an etching procedure 

and then fused together by heating. The tip wire diameters are ~100 nm-500 nm [115].  

4.2.3.4. Quantitative Analysis 

 Despite more than twenty years of research focus, quantitative interpretation of SThM 

results remains a challenge. The key to this challenge is to relate the temperature measured by the 

probe to the sample temperature [2]. This relationship has been studied by many over the past 

twenty years with specificities related to each type of thermal probe used. Common to most probe 

configurations, an energy balance on a thermal probe in contact shows that the key heat losses are 

through direct conduction from the tip to the sample, conduction/convection from the probe 

through surrounding air or water meniscus, and conduction through electrical leads and the 

cantilever, away from the probe apex. Typical heat transfer mechanisms for SThM probes are 

illustrated in Fig. 4.10. Heat transfer losses from the probe other than those to the sample affect 

its sensitivity to sample measurement. Effects of radiation heat transfer have been shown to be 

relatively negligible [106]. 

 The key heat pathway from the probe heating/sensing element to the sample is comprised 

of several thermal conductances including within the tip itself, tip-sample contact resistance, 

through a water meniscus formed at the contact, through surrounding gas, and into the sample. 

Several groups have studied these effects [116, 117]. The effect of the water meniscus for a 

Wollaston ThP was shown experimentally in [118]. They concluded that up to near the boiling 

point of water, conduction through the water meniscus is dominant. They also show that the 

relative magnitudes of heat transferred by each mechanism are influenced by the thermal 

conductivity of the sample. Later, these conclusions were corroborated by 

theoretical/experimental work by [119].  They show the importance of the heat path through the 
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air and its influence on an effective heat transfer radius between a Wollaston wire tip and a 

sample. This conclusion was further demonstrated for the heat transfer through air between a hot 

nanometer-sized tip and a sample [120].  

More recently, promising results have been obtained using methods intended to isolate 

the heat path between the probe tip and the sample. In one case, a sophisticated double-scanning 

procedure allows for the probe to pass over a sample twice. During the second scan, the probe is 

raised slightly from the surface to provide a background measurement. The second measurement 

is subtracted from the first to give primarily the effect of the tip-sample contact [121, 122]. The 

second approach has been to operate in high vacuum, which has been shown to eliminate the 

influence of air and water on the measurement providing better resolution [8, 123] 

 One important consideration regarding use of a thermoresistive probe is that the 

measured signal corresponds to the average temperature of the resistive element, meaning 

degradation of spatial and temporal resolutions. One implication of an averaged temperature 

value is a measurement dynamic range = 4 for a Wollaston wire probe [61]. On the other hand, 

the dynamic range of a thermocouple probe with a local temperature measurement at the probe 
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Fig. 4.10. Relevant heat transfer mechanisms for SThM probes (adapted from [106]). 
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apex would imply a theoretical dynamic range → ∞. The more localized the temperature sensor is 

to the probe apex, the greater the dynamic range of the measurement.   

4.2.3.5. Modeling Approaches 

 Proper modeling of the heat transfer in a thermal probe is crucial for extracting 

quantitative information. Several models have been derived in the literature and should be 

discussed in context of the probe type as well as whether excitation is DC or AC. In general, most 

approaches follow the well-known theory of hot-wire anemometry. Common modeling 

approaches are 1-D fin analysis [61, 124, 125], lumped model [126-128] and numerical 

approaches [126, 129].  
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CHAPTER 5 

 

5. RESEARCH PLAN 

 

 

 This chapter presents a task list for accomplishing the objectives of the work. A key 

strategy to this work is to draw on the expertise of leading experts in the fields of thermal 

property measurements. These collaborative efforts will be illustrated through the following task 

list. Each section in the chapter briefly delineates the process followed for each of the major tasks 

outlined in Table 5.1. 

Table 5.1. Outline of main tasks to accomplish the objectives of the dissertation 

Section Tasks 

5.1  Material procurement and sample preparation 

5.2 & 5.3 In-depth measurement of thermal property profile with SThM 

 Measure ability of different SThM systems to sense thermal property 

variation in the proton-irradiated ZrC 

− Thin-film probes/Contact AFM (SUT, Poland) 

− Wollaston probes/Contact AFM (URCA, France) 

− Glass-pipette probes/Non-contact AFM (USU, USA) 

 Measure in-depth thermal property using lock-in IR thermography 

 Measure in-depth thermal property using focused-heating, front-

detection photothermal radiometry 

5.2 & 5.4 Quantify thermal property modification by irradiation effects 

 Calibration of SThM probe signal 

 Photothermal radiometry measurements using various configurations 

5.5  Correlate irradiation damage effects to measured thermal characteristics 
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5.1. Material Procurement and Preparation 

 Proton-irradiated ZrC is to be obtained from the University of Wisconsin-Madison in the 

form of a 3mm diameter disk. The sample is to be high-purity with well-defined stoichiometry. In 

order to directly measure the in-depth profile, the sample will need to be section in such a way as 

to minimize altering the irradiation effects in the interior. This will be accomplished through 

careful fracturing of the disk to isolate a small piece that will have the exposed cross-section. 

Using sample preparation equipment at the University of Utah, the cross-section can be mounted 

in epoxy resin with the exposed cross section on the surface. The remaining ZrC disk can be used 

directly with tomographic thermal-wave methods. 

5.2. SThM Measurement and Calibration 

 A large focus of this work is to explore the viability of using SThM to measure ion-

irradiated materials. Therefore, a significant effort will be placed on exploring the capabilities of 

various SThM systems to detect these changes. The first step in this process is to perform detailed 

review of literature related to quantified SThM measurements. The first measurements will be 

done at the Silesian University of Technology (SUT) in Gliwice, Poland. The Department of 

Applied Physics at SUT is one of few that is actively pursuing the development and application of 

using thin-film SThM probes for quantifiable thermal conductivity measurement. Both DC and 

AC SThM techniques will be utilized. This work will be sponsored through an NSF International 

Research Fellowship. 

 The second SThM system to be explored is located at URCA in Reims, France through 

sponsorship of the Chateaubriand Fellowship from the Embassy of France in the U.S. Wollaston-

wire thermal probes will be used to measure the proton-irradiated sample using different SThM 

configurations including DC, AC, and micro-thermal analysis. 
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 Lastly, the laboratory at USU will be acquiring an AFM system in late 2011. After 

returning from France, the new AFM system at USU will be explored. This task will require 

significant effort to gain an understanding of the system control and manipulation as it will be 

brand new. Thermal measurement capability of the system will be tested, in particular, in relation 

to the proton-irradiated ZrC. 

 In all cases, the ability to sense a change of thermal properties on various samples will 

first be explored to measure their individual sensitivity to sample thermal conductivity. In the 

case that thermal conductivity variation is detectable in the ZrC sample, thermal models from 

either the literature will be used/adapted where possible to extract quantified information or will 

be formulated as needed. 

5.3. Other In-Depth Profiling of Thermal Conductivity 

 As a means of validating and comparing measurements of resolutions small enough to 

detect sharp variations in irradiation-damage profiles, lock-in IRT and PTR will be used to 

measure in-depth k profile. Each of these systems are available at URCA. The lock-in IRT system 

is frequency-limited to < 100 Hz. The PTR system is limited by the heating focus size vs. 

measureable signal. Such measurements have not been performed before on irradiated materials 

and will be useful to validate a thermal profile that may be obtained from SThM.  

5.4. Tomographic Photothermal Radiometry 

 Associated to a valid thermal model with properly determined parameter dependencies, 

tomographic PTR measurements will provide quantified thermal property information about the 

irradiated ZrC that can be compared to quantified data obtained from SThM measurements. The 

thermal profiles will be obtained from the thermal profiling techniques discussed in Sections 5.2 

and 5.3. A parameter sensitivity will be performed to understand the frequency ranges of greatest 

sensitivity to the parameters of interest. The irradiated ZrC will be measured using the PTR setup 
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at URCA. Effects of 1-D and 2-D heating will be explored to verify appropriate measurement 

configuration for the thermal models used to extract data. Two normalization procedures will be 

tested for the proton-irradiated material including comparison with a reference material and self-

normalization. A sample of non-irradiated ZrC will be measured to obtain the virgin ZrC, which 

comprises the substrate layer of the irradiated sample. These data will be used to validate data 

from the spatial measurements. 

5.5. Correlation of Irradiation Effects to Thermal Conductivity 

 Using the known proton-irradiation characteristics for similar conditions from work done 

by the University of Wisconsin-Madison, the observed thermal profile and level of degradation of 

thermal conductivity will be discussed. These results will be placed in the context of the few 

existing irradiation studies of thermal transport in ZrC and other metal-ceramic materials.  
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CHAPTER 6 

 

6. IN-DEPTH THERMAL PROPERTY PROFILE RESULTS 

  

 

 As was discussed in Chapter 3, ion irradiation penetrates a certain depth into a material 

before losing energy and stopping. The depth is dependent on particle type, energy, target 

material, etc. The damage level (correlated to thermal transport) at various depths into the 

material also depends on these parameters. The resulting overall damage profile and depth may 

be estimated using numerical simulation such as that described in Sec. 4.1.2 or by TEM studies as 

in [87]. Knowing the exact profile in a given material is crucial for applying various tomographic 

thermal wave techniques as the results are dependent on the assumed thermal model.  

 In this chapter, three techniques are explored as spatial profiling tools to directly measure 

the thermal conductivity profile in a proton-irradiated zirconium carbide sample for the first time. 

For these measurements, the cross-sectioned sample is measured to capture the in-depth profile as 

shown in Fig. 6.1. The work presented here has been published in [130, 131]. First, a presentation 

of SThM results is given. Measurement results follow from two thermal wave techniques, spatial-

scanning PTR and lock-in IR thermography, with an overall comparison of the applied 

techniques. For these measurements, the cross-sectioned sample is measured to capture the in-

depth profile. 

Sectioned

Sample Irradiated Face

Photo

Measured Profile

 

Fig. 6.1. Schematic representation of sample used for in-depth profiling measurements. 
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 The first profile measurement results presented are taken from SThM. Although 

measurements were taken using three different SThM probes (and several probes of each type), 

the best results were obtained using a particular Wollaston-wire probe. Due to the thermal 

conductance relationship being a combination of thermal properties at the contact as well as the 

physical nature of the contact, great care was taken to verify the measured k profile is 

independent of imperfect sample topography. Finally, the resulting overall thermal profile is 

constructed by overlaying several thermal line profiles.  

 In conjunction with SThM profiles, focused-heating PTR was spatially scanned across 

the profile and lock-in IRT was used to image the cross-sectional surface. For the PTR spatial 

scans, the heating spot size was ~50 μm with a heating frequency of 1 MHz. The result of the 

scans revealed a clear layer of degraded thermal conductivity. Lock-in IRT images were taken at 

heating frequencies of 10 Hz, 20 Hz, and 40 Hz. From the images the damaged layer is clearly 

evident. Line profiles were extracted from the image to provide an overall thermal profile that is 

consistent with the other profiles obtained. 

 The shape of the numerically calculated, irradiation-damage profile compares well with 

the resulting profile of k degradation. A relatively thick and constant diminished k value is 

revealed through the majority of the damaged zone, consistent with characteristics of proton 

irradiation. A sharp transition of thermal signal to the non-irradiated material was found at the 

rear of the profile, with no indication of the very thinly peaked damage zone seen in the 

numerically calculated damage profile.  

6.1. Scanning Thermal Microscopy 

 Due to its capability of high spatial resolution measurement, SThM presents itself an 

ideal candidate for thermally profiling thin layers by direct means (as opposed to tomographic). 

Because of the many challenges associated with quantitative measurement, great effort was 
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expended in an attempt to obtain a thermal profile from the proton-irradiated ZrC. In fact, 

measurements were made from three distinct AFM systems located in laboratories in three 

different countries. The results presented in this work were primarily obtained using a TA 

Instruments µTA 2990 Micro-Thermal Analyzer equipped with a Wollaston-type thermoresistive 

probe. The system platform is based on an atomic force microscope (AFM) using optical 

feedback to control the probe contact force on the surface. All measurements performed in this 

work are with the system in the constant temperature mode (i.e. thermal conductance mode). The 

power dissipated in the probe tip is measured, which is correlated to the k of the sample.  

 The general procedure undertaken in this process was to first attempt to measure 

variation of thermal conductivity in various reference samples as different probes, even of the 

same type, showed varying sensitivity. In this section, the topography of the ZrC sample is 

described in detail through selected AFM measurements. Then, the thermal profiling results will 

be presented. Lastly, some of the challenges and observations made during these measurements 

across three different SThM systems will presented. 

6.1.1. Topography 

 Because the measured thermal conductance of a sample is directly proportional to the 

product of thermal conductivity and the contact size, the topography of a sample plays a key role 

in measured signals. The effect of the sample surface can alter the contact as the tip moves across 

the surface. For this reason, it is extremely important to distinguish topography effects from 

thermal effects of the sample.  

 Surface topography, characteristic of the ZrC cross-section surface, are presented in Fig. 

6.2. In Fig. 6.2(a-b), topography results obtained using a Wollaston-type probe are shown for the 

first 100 μm from the irradiated surface. Evident from the presented profiles, the surface is not 

ideal, showing variations in slope and with “hole-like” defects of varying sizes scattered across 
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the surface. Near the edge of the sample, the surface is rounded with an increasing slope towards 

the irradiated surface. The marked center of the image is the approximate division between the 

damaged and virgin sample.  No clear distinction may be made between the two zones except for 

concern related to the slope near the edge of the sample, which is found to affect the signal 

primarily near the edge as will be shown in the thermal results. 

 In Fig. 6.2(c-d), images are shown that were made by an AFM contact tip having much 

better spatial resolution than the Wollaston wire tip used in the thermal measurements of this 

study. Again, the center of the image in Fig. 6.2(d) marks the approximate boundary between 

damaged and undamaged zones. The profiles extracted from the image as well as surface 

statistics taken on the smoother regions of the sample show small roughness (Ra < 5 nm) and no 

clear differences between the two zones. 
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Fig. 6.2. Topographic images of the ZrC cross section with the irradiation damaged zone 

indicated in the figures. (a) and (b) show line profiles and image for 100 μm square region 

acquired with Wollaston tip; the left side in both figures is near the edge of the irradiated surface. 

Numbers indicate corresponding profiles. (c) and (d) show images acquired with higher 

resolution AFM contact tip showing a roughness value of <5 μm. Line style correlates to image 

zone: solid – irradiated; dashed – non-irradiated 
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 From these results, the topography will certainly influence the conductivity results 

between different locations on the sample. However, with careful consideration, the thermal 

signal over the “flat” regions of the sample should be generally comparable allowing for a 

quantitative relationship between the two zones. In all cases, great care was also taken to ensure 

the sample surface was aligned with the lateral scan directions of the microscope. 

6.1.2. Thermal Profiles 

 The measured thermal power profiles with the SThM in active mode (thermal 

conductance profiles) of the sample are presented in Fig. 6.3. The absolute values of thermal 

power are irrelevant in these images; and a more quantitative interpretation will follow in Section 

7.1.1. The irradiated surface is ~15 μm farther to the left in Fig. 6.3(a-b). The images provide a 

clear contrast between the two zones and, by inspection with the eye, reveal rather uniform levels 

in two distinguishable zones. The damaged zone is the darker zone (lower dissipated power 

meaning lower thermal conductance). The scan direction was left-to-right in all images shown, 

thus each line contains a good relative contrast between the two regions.  

 At first glance, the thermal conductance profiles presented in Fig. 6.3(a) appear quite 

noisy. Upon closer inspection, the upper levels of each of the extracted profiles correspond to 

regions of the sample where the signal level is most comparable, reproducible, and has relatively 

good stability, and thus indicating the thermal signal corresponding to the thermal conductance of 

the sample. A comparison of probe power to measured height is presented in Fig. 6.3(c) to better 

illustrate their relationship. The many dips in probe power represent many “defect” structures on 

the sample where thermal conductance decreased (due to surface roughness and/or possible 

differences of material composition). Therefore, by examining the upper levels and piecing 

together from different lines in the image, one can see an average profile, directly correlated to 

the k of the damaged zone into the virgin material. The resulting profile is unique, not found   
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Fig. 6.3. Thermal profiles across irradiation damaged layer showing clear contrast and transition 

between irradiation-damaged and non-irradiated zones. (a) and (b) show 80 μm square region – 

left side is ≈15 μm from irradiated surface edge. (c) shows a comparison of probe power to height 

for a single profile taken from (b). (d) and (f) show a 15 μm square zoom of the boxed location 

marked in (b). The transition between damaged and undamaged material spans 3-4 μm. (f) and (g) 

show approximately the same location on the sample, scanned at an oblique angle. Dotted lines in 

(a) and (f) are to indicate the general thermal conductivity profile in each location represented by 

the upper level of the combined line profiles. 
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elsewhere in the open literature. k appears quite constant through most of the damaged zone with 

a small transition zone to the bulk, undamaged material.  

 For an idea of the uncertainty of the profile measurement, from Fig. 6.3(a), the span 

between ≈15-20 μm (flat and mostly free of defects) is most representative of good surface 

conditions on all extracted profiles where the fluctuations are no more than ±0.05 mW from the 

absolute level of 5.6 mW. In other locations defect-affected signal from other extracted profiles 

mask the low variation of signal in other flat, smooth surfaces. This idea is illustrated further in 

Fig. 6.3(c) as it is a zoom on a region where the influence of defects is more obvious. 

 The results of a zoomed scan of the region indicated by the box in Fig. 6.3(b) are shown 

in Fig. 6.3(d-e).  The extracted profiles shown in Fig. 6.3 show a transition occurring over a zone 

having ~3-4 μm thickness. Interestingly, no strong evidence of a more damaged intermediary 

layer was found. Therefore, no intermediary layer of higher damage is assumed in the thermal 

model used for fitting PTR data in the following chapter. The measurements of Fig. 6.3(f-g) are 

of approximately the same region as Fig. 6.3(a-b) (look for identifiable features in both images to 

correlate location) scanned at an oblique angle. The profiles shown in Fig. 6.3(f) have been 

shifted laterally so that the transition region for each individual profile approximately lines up. 

The resulting profile is similar to that shown in Fig. 6.3(a) proving the independency from scan 

orientation. As mentioned in the section discussing topography results, edge effects due to 

rounding caused by polishing are evident in the reduced signal in the first 10 μm of the profile. 

6.1.3. Additional SThM Observations 

 In this section, the difficulty of obtaining quality SThM measurements is illustrated 

through comparisons of results from various SThM probes and systems. First several thermal 

images taken with various Wollaston wire probes are presented and discussed. This will be 

followed by images taken from thin-film type and glass-pipette type probes. The results presented 
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are taken from the same ZrC sample that was presented previously in exactly the same location. 

Certain distinguishing features of the location will be apparent in each image allowing for direct 

comparisons. 

6.1.3.1. Probe-to-Probe Variation of Measurement Results 

 Due to the difficulty in fully characterizing tip-sample contact, results from various 

SThM tips may vary significantly. In truth, even results from the same tip can vary from one 

measurement to another due to damage, environmental changes, tip contamination, etc. 

Therefore, such studies as were done on the ZrC sample require great patience and care in 

ensuring the quality and accuracy of the results. For this work a series of more than 150 thermal 

images were recorded using Wollaston wire probes alone. Great variation was found between 

many of the probes used. 

 In Fig. 6.4, several images are presented to illustrate the effect of different probes on the 

sensitivity to the thermal contrast between the irradiated and non-irradiated zones. The figures 

present the relative contrast of the image in terms of the dissipated power in the irradiated, Pirr, 

and non-irradiated zones, PZrC, as (PZrC-Pirr)/PZrC. These results begin to illustrate the variation of 

results when using such probes. In each of the images presented, thermal contrast is apparent 

Tip 1 Tip 2 Tip 3 Tip 4

0.021 0.19 0.004:
ZrC

irrZrC

P

PP 
0.026

 

Fig. 6.4. Several SThM images taken in constant temperature mode using different thermal tips. 

The results illustrate the variation of effects from using different Wollaston probes. Pirr and PZrC 

are the average power dissipated in the irradiated (left) and non-irradiated (right) zones. Not 

shown are images from other tips that showed no thermal contrast between the two zones. 
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between the damaged and undamaged zones. The relative contrast between each of the four 

images shown is from 0.026 down to 0.004. Not shown are results that had no contrast between 

the two zones. Such variation can be challenging especially when initially looking for such 

differences as demonstrated by the irradiated ZrC material.  

 Also seen in Fig. 6.4, the effect of topography on results varies depending on each tip. 

For Tip 1 (used for the data presented in Section 6.1.2), the thermal contrast is the best. Also, 

those results show the least variation due to topography effects. The other images show more 

variation, which is most likely caused by variation of the probe tip geometry and surface 

characteristics. For Tip 2, moving towards the left edge the measured signal seems to, on average, 

rise but then drops off sharply. This is most likely due to a sloping topography that increases tip-

surface contact, but then as the edge is approached the contact is reduced to zero. Other variations 

are observed in the images where “darker” or “lighter” spots vary across the surface. 

 Due to the large variations observed from tip to tip, several Wollaston wire probes were 

imaged using an SEM to compare to the tip with the best and most consistent thermal contrast. 

The images of three probe tips are presented in Fig. 6.5. Tip 1 is from the same probe used for the 

results in Section 6.1.2. The other two tips were taken from a new box of probes that all showed a 

general low sensitivity to thermal properties. The images of Tip 1 were taken after much use and 

it had broken just to the side of the tip extremity. In the top image, the wire running to the left 

shows slight ridges that seem to disappear at a certain point that has the appearance of being 

coated.  

 Using electron-dispersive X-ray spectroscopy (EDS) in the SEM, carbon seems to be a 

major constituent of the “coating.” The other two tips shown have quite large radii of curvature 

(also noticeable by the naked eye). Very clear from the images is the “rough” and variable 

surface. Large ridges run axially down the wire. Coupling these effects with sample surface 
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imperfections could have dramatic effects in terms of signal variation as the tip moves across the 

surface. 

  The relative good performance and the appearance of Tip 1 has lead to some questioning 

as to the explanation. Previous to measurements on ZrC, Tip 1 had been used on a polymer 

material. Therefore, one explanation for its appearance is that the extremity had been coated by a 

polymer material. To clean the tip, it had been cycled to high temperature ~450°C. In doing so, 

the polymer may have been reduced to a carbon deposit, the effects of which being unknown. 

However, the overall sensitivity of the tip was enhanced relative to any other tip tested (>10 tips). 

Whether a true coating or not, the images also show a much smoother and somewhat more 

rounded surface near the extremity of the tip. This would imply a lesser variation from the tip side 

of the tip-sample contact and may explain the low variation of measurement signal seen with Tip 

1, even with sloping topography. 

Tip Extremity

Tip 1 Low Sensitivity 

Tip B (unused)

Low Sensitivity 

Tip A (unused)

 

Fig. 6.5. SEM images of various Wollaston wire probe tips – for reference the wire diameter in 

each is ~5 µm. Tip 1 is from the probe that provided the best and most consistent thermal contrast 

(shown broken on one end.) It has the appearance of having collected carbon material at the 

extremity (verified by EDS analysis). The other two tips (A & B) are from new probes that all 

demonstrated low or no sensitivity to the ZrC material. The images illustrate the variation of 

probe contact surfaces. 
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 Finally, another phenomena observed with all probes tested is demonstrated in Fig. 6.6. 

In this case, the displayed thermal images show a clear contrast during the scan, which is 

attributed to contamination of the tip extremity. In both images, the upper portion of the scanned 

region shows almost a negative result of the lower portion. The defect features exhibit higher 

signal as compared to the flatter regions. This effect may be explained by the contribution of an 

additional thermal resistance at the tip extremity. On the flat surfaces, the thermal resistance acts 

to decrease heat flow to the sample. When passing through the defect regions, the region of the 

tip in contact with the sample varies to locations with less resistance. The image on the left shows 

an abrupt transition from “contaminated” to a more typical function. At right, the transition is a 

bit more gradual. Such effects have been observed with all AFM tips tested during this work (thin 

film, Wollaston, glass-pipette). 

6.1.3.2. Glass-Pipette Probes with Tuning Fork Feedback 

 The AFM system located at USU has been explored preliminarily to gauge its relative 

ability to sense thermal contrast. The following is brief summary of thermal measurements to date 

with only a few thermal measurements made thus far. The first example shown in Fig. 6.7 is a 

sample of SiO2 wafer that has a Pt coating (~1 μm thick) on the left side. It was used as a baseline 

 

Fig. 6.6. Thermal images on irradiated ZrC cross-section where an abrupt anomaly occurs during 

the scan. The difference seen in the upper portion of the scan is most likely due to additional 

thermal resistance at the tip extremity caused by contamination. 
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sample to test the sensitivity of the probes. In these measurements, the tip is placed in the 

Wheatstone bridge configuration while a constant current is applied to the bridge. The measured 

thermal signal corresponds to the resulting voltage bias across the bridge (Fig. 4.6) as the tip is 

scanned on the sample surface. In this case, the sample was scanned from bottom to top. The 

result is a clear contrast between the two zones in the bottom half. As was seen in Fig. 6.6, the 

contrast is suddenly lost making the two zones indistinguishable.  

 Only a few scans were made on the irradiated ZrC sample. As an example, the results in 

Fig. 6.8, show constant current measurements using a glass-pipette thermoresistive probe. The 

location is centered on the border between the irradiated and virgin material with the 

distinguishable line of defects seen in most other images presented in this study, running 

vertically. Clearly no thermal contrast is observed between the two zones. Thus far, few good 

thermal images have been obtained from the system due to working on characterizing the overall 

behavior of the Nanonics system and due to a shortage of thermal probes. Initial testing indicates 

that the tuning-fork feedback mechanism used by the Nanonics system seems to decrease overall 

tip-sample conductance due to the gap between the tip and sample surface. 

Topography

Thermal

Pt SiO2
 

Fig. 6.7. Demonstration of glass-pipette thermoresistive probe using tuning-fork feedback on a 

Pt/SiO2 sample. The thermal image was taken in constant current mode showing sensitivity to 

surface thermal conductivity during the initial scanning and subsequently losing sensitivity during 

the latter (upper) half. 
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6.1.3.3. Thin-Film Probe Measurements 

 The first probe experimented with the irradiated ZrC sample was the thin-film probe in 

contact mode. This probe type has the smallest contact radius of all the probes tested in this work 

with an estimated contact radius of ~20 μm. The study performed with this probe focused on 

obtaining a calibration of the probe signal on several reference materials using DC and AC 

measurements. While several measurements were made on the irradiated ZrC sample, no thermal 

conductivity profile related to proton degradation was detected. At that stage, the damage layer 

thickness was unknown and estimated to be <40 μm (from numerical prediction from TRIM). 

Therefore, in retrospect, the transition zone of damaged-to-undamaged material was not explored 

with enough care. An example of a 3ω thermal image is presented in Fig. 6.9. The configuration 

of the measurement is shown in Fig. 4.6. The thermal image corresponds to the measured 

amplitude of the third harmonic of the heating frequency, which was set as 169 Hz. The lock-in 

amplifier used a 3 ms time constant and the AFM was scanned at a rate of 0.18 Hz. The location 

of the shown image is closest to the transition region. Different than other images presented in 

this work, the right side of the image is the proton-damaged zone. No noticeable difference is 

shown in the image to distinguish the two zones.  

Thermal

Topography Thermal
 

Fig. 6.8. Topography and thermal images in constant current mode on irradiated ZrC from a 

glass-pipette thermoresistive probe using tuning form feedback. The thermal image shows no 

contrast between the damaged (left) and undamaged (right) zones.  
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 A DC constant temperature result is presented in Fig. 6.10. Unknown at the time, these 

measurements are far from the boundary of transition (~50 μm depth) from damaged to 

undamaged ZrC. The maximum x-y range of the Park Systems AFM is 40 μm. No interesting 

thermal conductivity profile is observed.  

6.1.3.4. Summary 

 The foregoing sections presented a sample of many results obtained in the process of 

using SThM to extract the in-depth thermal conductivity profile in irradiated ZrC. These results 

demonstrate that obtaining such a measurement is not trivial and is dependent on many factors 

that require patience, care, and can be helped by a “good” probe. In all, many measurements were 

performed on a variety of samples with a variety of probes to explore individual probe 

Thermal (AC)

3ω AmplitudeTopography
 

Fig. 6.9. Topography and 3ω amplitude (AC) thermal image of irradiated ZrC measured with a 

1ω probe current frequency of 169 Hz. No observable transition between damaged and 

undamaged zones is observed. 

 

Thermal (DC)

Constant TTopography
 

Fig. 6.10. Topography and constant temperature thermal images of irradiated ZrC. Location of 

measurement is in the irradiation-damaged region near the edge corresponding to the irradiated 

surface. Damaged-layer transition occurs ~50 μm to the left (out of view). Dark region in both 

images corresponds to epoxy mount. 
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sensitivities. At times the inconsistency of a given probe can prove frustrating as calibration is 

obtained through tedious measurements on many reference samples. Frequently such calibrations 

were lost for no apparent reason – only the probe no longer demonstrated the same sensitivity or 

it completely lost sensitivity to thermal properties of the sample. Other times the probe was 

noticeably damaged and useless for further measurements. 

6.2. Spatial-Scanning PTR and Lock-in IR Thermography 

 Using the PTR system, spatial profiles on the sample surface were made by focusing the 

laser heating spot diameter to ~50 μm. The normalized amplitude profile measured across the 

entire thickness of ZrC cross section is displayed in Fig. 6.11. The profile is normalized to the 

average value of the amplitude in the non-irradiated zone of the sample, and represents the 

average of three spatial scans with a heating modulation frequency of 1 MHz. The step size 

between each measurement was 10 μm. At this frequency μ ~ 1-2 μm, meaning thermally thick 

sample heating case so that the amplitude is inversely  e (Eq. (3.10) and (7.8)), assuming the 

irradiated and non-irradiated zones have similar radiation properties. Although the diffusion 
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Fig. 6.11. Spatially-scanned profiles of irradiated-ZrC cross-section from PTR amplitude 

measurements at 1 MHz heating with 50 μm focused spot. Vertical line “Boundary” marks SThM 

measured thickness of irradiated layer.  
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length is small in this case, the limitation of lateral resolution was found to be the spot size, which 

was measured to be ~50 μm (at 1/e2) using a DataRay WinCamD profilometer.  

 In the measured profile, the edges of the sample and the boundary between irradiated and 

non-irradiated zones evidence the insufficient resolution by gradual changes of signal 

representing a convolution of the laser spot across the two zones. The peak in the measured 

profile again shows the damaged layer, a zone of lower e, (eirr<eZrC). The width of the zone is 

wholly consistent with the measured width found in the SThM profile taking into consideration 

the heating spot size. 

 The third direct measurement of the thermal conductivity profile was performed using 

lock-in IRT. Three heating frequencies were used to image the ZrC cross-section surface: 1Hz ~ μ 

= 1.25 mm, 10Hz ~ μ = 0.395 mm, 40 Hz ~ μ = 0.198 mm. The calculated amplitudes of the 

heating response are displayed in Fig. 6.12. The images display several features of the sample. At 

lower frequency, high signal level is seen on the top and bottom surfaces corresponding to the IR 

emission from these surfaces. As the sample is embedded in epoxy, which is transparent to IR 

wavelengths, the emission from these surfaces is strongly manifest, especially at very low 

frequency (long μ) where much of the surface within the epoxy is heated. At the highest 

1 Hz 10 Hz

40 Hz

 

Fig. 6.12. Lock-in IR thermography amplitude images of the cross-section of proton-irradiated 

ZrC at various frequencies. The proton-damaged, upper layer is evident in each of the images 

with the strongest contrast between the irradiated and non-irradiated zones in the image at 40 Hz. 
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frequency, the sample is most distinguishable from these effects.  Looking at the sample itself, 

defect structures provide a stronger signal showing what have the appearance of cracks running 

through the material. 

 From these amplitude images, several profiles were extracted in order to map out a 

spatial profile of the amplitude. Profiles were extracted in regions having less effect from any 

apparent defect structures. From each image, four representative profiles were extracted and are 

shown in Fig. 6.13 in terms of absolute signal level. With knowledge of the overall thickness of 
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Fig. 6.13. Extracted amplitude profiles from lock-in IR thermography images showing relative 

values and a comparison of measurements at various frequencies. 
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the ZrC sample and careful comparison of the various images, various boundaries of the sample 

are marked in the figure.  

 As expected due to shortest µ, the higher frequency result shows the greatest sharpness in 

profile characteristics and was selected to be used as a comparison to the other profiling 

techniques. The four profiles shown in Fig. 6.13 were used to generate the average profile given 

in Fig. 6.14, where the linear bias has been subtracted out. The amplitude image of the ZrC 

sample from which the profiles were extracted, is shown in the inset of the figure. Again, the 

resulting average of four profiles has been normalized to the level of the virgin ZrC. For this 

measurement, the heating frequency was limited to 40 Hz, giving μ of the order of Ls. For this 

reason the spatial resolution of the thermal signal is not as good as the pixel resolution of the 

camera, which was found to be approximately 5 μm. Also for the same reason, any quantitative 

interpretation is more difficult to extract from the measurement. The normalized amplitude peak 

of ~1.2, much less than the PTR result, is expected due to the increased heat spreading due to the 

large thermal diffusion length, whereas the PTR measurement is confined to a depth of ~1-2 μm 
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Fig. 6.14. Spatial profiles of irradiated-ZrC cross-section. Vertical line “Boundary” marks SThM 

measured thickness of irradiated layer. Average of four lock-in IRT profiles at 40Hz heating of 

entire cross section, taken from amplitude image (inset – amplitude image showing sample cross 

section). 
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from the surface. Still, the damaged layer is clearly present with an apparent thickness of the 

order of ~50 μm. 

 A direct comparison of the three different spatial profiles along with the numerically 

calculated profile is found in Fig. 6.15. In this figure, edge effects were removed in the lock-in 

IRT profiles by subtracting the mirror-inverted, non-irradiated edge from the irradiated edge 

profile. The SThM profile is represented by an average of the upper levels of the various profiles, 

Table 6.1. Characteristics of thermal conductivity profiling methods used on proton-irradiated 

ZrC and measured degradation of thermal conductivity.  

Method Scanning Type Lateral Resolution Probing Depth 

SThM Spatial 
~ contact radius  

(~ 1 μm) 

~contact radius 

(~1 μm) 

Lock-in IR 

Thermography 
Spatial 

pixel size = 5 μm 

μ ~ 300 μm 
μ ~ 300 μm 

PTR Spatial 
heating spot size 

~50 μm 
μ ≈ 1-2 μm 

PTR Frequency 
measured spot size 

~1 mm 
μ ≈ 1 mm - 1 μm 
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Fig. 6.15. Spatial profiles of irradiated-ZrC cross-section. Vertical line “Boundary” marks SThM 

measured thickness of irradiated layer. Comparison of measurements from spatial scanning 

techniques (edge effects removed in lock-in IRT) and numerical prediction of damaged layer. 
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considered to be the thermal conductivity profile of the sample. Table 6.1 summarizes the 

characteristics of each technique’s measured profile.  

 The SThM measurement has the best lateral resolution of the three methods and is, 

therefore, the most accurate for predicting the irradiation-induced damaged depth (used in Fig. 

6.15). For the PTR and lock-in IRT, each has both a strength and a weakness concerning spatial 

resolution of the measurement that is each other’s opposite. The PTR can operate at high 

frequencies (at the cost of reduced amplitude, Af -1/2 ) allowing for small μ, but the heating spot 

size used in this measurement is large relative to the needed resolution for measuring Lirr. Lock-in 

IRT has good spatial resolution, but frame rate limits the possibility of decreasing μ. For 

decreasing heating spot size, PTR resolution will have the inherit limitation from the IR 

wavelengths involved in detection (8-12μm) as well as the conflict of diminishing IR signal vs. 

excessive sample heating.  

6.3. Thickness of Thermally Affected Layer 

 To obtain a more precise estimation of the thickness of the thermally affected zone, a 

scan was made using SThM to include the transition from the epoxy to the sample. The resulting 

topographic and thermal images as well as line profiles (both topographic and thermal from the 

same locations) from these images are shown in Fig. 6.16. Due to the V-shape of the Wollaston 

probe tip, the contact surface is elliptical. Therefore, the spatial resolution in the direction 

perpendicular to the “V”-plane of the Wollaston tip is better than in the other. The tip orientation 

for these figures was such to provide the best resolution in the profile. All line profiles in Fig. 

6.16(c) have been shifted negatively so that the sample edge indicated by the topographic image 

is at 0 μm. The transition zone from damaged to undamaged material is marked in the figure and 

occurs between 50-54 μm from the irradiated surface. This result was found consistent at 

different locations along the sample confirming a damaged layer of very uniform thickness. 
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 An optical microscope was used to verify the measured thickness. A photograph of the 

damaged layer is shown in Fig. 6.17, the boundary of which is roughly marked by an apparent 

higher concentration of defects. This boundary is confirmed to approximately 50 μm from the 

edge of the sample. 

 In comparing these results to those calculated by TRIM in Fig. 4.1(a), the obtained 

thermal profiles are very consistent with the numerical results. The numerical profile shows very 

uniform damage spanning most of the affected zone (> 30 μm) in agreement with the measured k 

profile and characteristic of proton-irradiation damage [5]. The zone affected by irradiation is 

≈25% deeper than estimated from TRIM, but the discrepancy is reasonable due to uncertainty in 

the simulation. These results illustrate the significance of zone thickness identification when 
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Fig. 6.16. Figures used for damaged depth measurement. (a) and (b) Probe power and topographic 

images (100 μm × 100 μm) and (c) corresponding, extracted profiles used to measure precise 

thickness of irradiation damaged layer of ZrC sample. The arrow indicates the transition zone 

marking the limit of ion penetration at a depth of 50-55 μm. 
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using non-destructive techniques such as photothermal methods that rely on layer thicknesses as 

input parameters for thermal property determination. They also show that the assumption of 

homogenous, damaged layers used in photothermal parameter estimation seems appropriate for 

proton-irradiated materials. Therefore, the results of the profile measurements justify the thermal 

model used for the tomographic PTR measurements to extract thermal property data. 

  

≈ 50 μm

 

Fig. 6.17. Optical micrograph confirming damaged layer thickness of ≈50 μm. 
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CHAPTER 7 

 

7. THERMAL CONDUCTIVITY DEGRADATION RESULTS  

  

 

 In the previous chapter, multiple approaches were taken to characterize the in-depth 

thermal property profile through the proton-damaged layer of ZrC. Each of these techniques were 

explored in terms of their ability to distinguish features of a spatial profile. They all have 

characteristic difficulties related to quantitative interpretation of the measured signal. Still, the 

precise level of degradation in the thermal profile is a requisite objective to identify the level of 

proton-irradiation-induced degradation of thermal transport. In this chapter, the thermal 

conductivity profile measured in Chapter 6 is to be quantified. First, the measurements from 

spatial-scanning techniques of Chapter 6 are quantified; then frequency-domain PTR is used to 

provide a more reliable estimation of thermal conductivity in the damaged zone. These results 

have been published in [130, 131]. 

 Quantitative interpretations of the signals measured from the spatial profiling techniques 

are first presented for the spatial-scanning methods which are used as validation of the frequency-

scanned FD-PTR results presented in the second section of this chapter. As discussed in Chapter 

6, each of the spatial measurements was performed on the polished cross-section of the irradiated 

ZrC sample. The results presented in this chapter demonstrate the ability of each technique to 

extract quantitative data. Using a model from literature, the Wollaston-wire probe signal is 

calibrated with several materials used as references of thermal conductivity. Some discussion of 

calibration uncertainty follows as is related to the measurements on ZrC. For the IR techniques, 

the measured signal amplitude is used to extract quantitative information. The uncertainty of this 

procedure arises due to the fact that the measured amplitude is dependent on surface radiation 

properties. The results obtained from these measurements are presented in terms of a ratio of 

thermal conductivities between the damaged/undamaged zones. 
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 The second part of this chapter presents results for tomographic (frequency-scanned) 

PTR measurements. To ensure unique fitting results for the damaged layer of ZrC, an undamaged 

ZrC sample was first measured using frequency-scanned FD-PTR to obtain thermal parameters 

for the virgin material. The FD-PTR measurements were then made on the irradiated face of the 

ZrC sample. Using the thermal profile obtained in Chapter 6 to identify the layered geometry, a 

full thermal model is described for the case of periodic heating. The model is used to illuminate 

limiting heating frequency regimes providing specific parameter sensitivities. Additionally, a 

sensitivity study is performed to ensure uniqueness of fitted parameters. Using the FD-PTR 

measurement results, the thermal properties of the irradiated layer were fit from the complete 

thermal model.  

 The final section of the chapter draws conclusions regarding the measured thermal 

degradation in relation to previous works and to the measured irradiation-damage level for similar 

samples [78]. A brief description of the influence of the particle-irradiation effects on energy 

carriers is provide. Finally, a discussion regarding the assumption of a thermal resistance at the 

damaged/undamaged interface is also provided. 

7.1. Spatial-Scanning Measurement Quantification 

 The methods used to spatially profile the ZrC cross section were selected due to their 

high spatial resolution. Each has their own particular set of weaknesses and strengths. 

Quantitative measurement is a weakness for each of these techniques. For SThM, quantitative 

interpretation of measured signals remains a great challenge for the technique even after over two 

decades of research in the area (Section 4.2.3). In this section, the results from the Wollaston wire 

probe given in Chapter 6 are used to quantify thermal conductivity changes in the irradiated ZrC. 

The IR techniques rely on amplitude data, which is generally disadvantageous when using such 

techniques due to the dependency on material surface characteristics such as emissivity. This 
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section presents the quantitative results of each of the aforementioned spatial profiling 

approaches. Although uncertainties in each measurement are difficult to quantify, the strength of 

approach presented is the complementary comparisons that result from multiple approaches, 

which provide better confidence of measurement accuracy. 

7.1.1. Thermal Conductivity Estimation from SThM Signal 

 The measured thermal power from SThM measurement is the combination of heat loss 

into the sample through the tip-sample thermal conductance, as well as all other heat losses from 

the exposed wire (heating) tip. Because every tip has unique physical characteristics (shape, 

contact surface, etc), each tip should be calibrated (basically a calibration of contact area) using 

samples of known k. Clearly, from SThM results presented in the Chapter 6, a step-like profile of 

thermal conductivity exists between the irradiated and non-irradiated zones. Therefore, the 

purpose of this section is to provide an estimation of the relative change of k that this step 

represents.  

 Compared with results from other tested probes, the results from the Wollaston wire 

probe proved to be the most stable in terms of providing clear contrast between the 

irradiated/non-irradiated zones of the ZrC. In an effort to quantify the k degradation in the 

damaged layer, the measured thermal signal is compared to modeling and calibration work 

reported in the literature. Lefevre et al. [124] proposed a DC model of one side of the exposed, 

symmetric, V-shaped tip of the Wollaston probe using a steady-state 1D fin equation. To simplify 

the problem, they neglect the heat contributions from losses to air and variations of the Joule 

heating caused by temperature resistance changes in the platinum/rhodium wire of the probe 

(estimated to be ~10-20% of the total). The resulting formula relates the sample conductance to 

the difference, ΔP, of dissipated tip Joule power between sample contact, Pc, and in air, Pa, 

normalized to dissipated power with sample contact, 
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   1)2)2(2(275.0//  sPtPtscacc kbGGGGkbGPPPPP  . (7.1) 

G is tip-sample thermal conductance (assumed constant in [124]); GPt = kPt·S/L is the thermal 

conductance of one leg of the platinum/rhodium wire tip; ks is the contact surface thermal 

conductivity; and b is the thermal exchange radius. The quantity 2π∙b∙ks is the thermal 

constriction conductance assuming a constant temperature hemisphere of radius b at the probe 

contact. Equation (7.2) was also used by David et al., with the following adaptation made for the 

variation of tip-sample conductance with sample thermal conductivity, ks [132], 

 
1)(2  sPtsPtcg kkkkaGG  . (7.2) 

Gg is the tip-sample thermal conductance through a surrounding gas; ac is the tip-sample physical 

contact radius. 

 Because of the large uncertainty involved with quantitative interpretation of SThM 

measurements, a calibration was made using several materials listed in Table 7.1, to obtain the 

approximate relative change of thermal conductivity of the irradiated ZrC.  

Table 7.1. Reference materials used to obtain SThM calibration curve. 

Material 
k 

W·m-1·K-1 
 

Material 
k 

W·m-1·K-1 

Glass 1.05  Ti 21.9 

Quartz 1.4  Sapphire 25 

ZrO2 1.7  Ta 57.5 

Pyrolytic 

Carbon I 
4 

 
Ni 90 

TiAlV 6.4  SiC 160 

Pyrolytic 

Carbon II 
10 

 
Diamond 900+ 
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 The results of the calibration are shown in Fig. 7.1 with the best fit of Eq. (7.1) using GPt 

= 5.9 W∙K-1 [124]. Resulting best fit parameters in Eq. (7.1) and Eq. (7.2) are Gg = 4.5 W∙K-1, ac 

= 8 nm, and b = 1.1 μm. Due to the uncertainties related to these parameters, the primary use of 

the fit is to provide a calibrated trend from which the relative change of k for the ZrC sample may 

be extracted. From the calibration curve, the found k value of the bulk ZrC is ≈30 W·m-1K-1 and 

that representative of the damaged layer is ≈ 10 W·m-1K-1. The resulting degradation of k induced 

by the proton damage is then ≈ 66%. 

  Regarding the uncertainty of these estimations, the calibration curve clearly reveals the 

difficulty of such quantitative interpretation, especially with materials of high k where the 

sensitivity to k becomes diminishingly small. However, particular care was taken on several of 

the calibration sample measurements to ensure more identical conditions between different 

materials. For example, for glass (low k), diamond (high k), and both ZrC materials, 

measurements were performed after scanning to select random locations of extremely flat, 

smooth, and homogeneous regions (free of defects). For a minimum of 10 samples points, the 
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Fig. 7.1. SThM calibration curve made using Lefevre’s model [119], Eq. (7.1), with the measured 

irradiated and non-irradiated ZrC. Error bars represent measurement precision at ± 2∙St.Dev. 
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resulting relative standard deviations (σi) were: 3.45% for glass, 2.3% for diamond, 1% for 

irradiated ZrC, and 1.3% for non-irradiated ZrC.  

 Without doing a detailed uncertainty analysis of the entire measurement, the uncertainty 

of the found k value related to the sensitivity of Eq. (7.1) to k is equal to the standard deviation of 

the measurement multiplied by the inverse of the slope of the calibration curve evaluated at the 

found k,  )/()2( / csPP PPkk
c

  , (factor of 2 is for 95% confidence). The resulting 

uncertainty is 30 ± 10 W∙m-1∙K-1 and 10 ± 2.4 W∙m-1∙K-1 for non-irradiated and irradiated ZrC, 

respectively. Because the relative change of the irradiation damaged material is of particular 

interest, the low deviations between materials and the good agreement of the measurements on 

the virgin ZrC material with values from literature, greater confidence is taken for the estimation 

of relative degradation of thermal conductivity in the proton-irradiated ZrC.  

7.1.2. Spatial-Scanning IR Techniques 

 The thermal profile results in Chapter 6 were presented as a demonstration of relative 

thermal property variation in the ZrC cross section. In the limit of a thermally thick sample for 

thermal wave methods, the measured amplitude is  e-1. Therefore, the normalized profile should 

also represent the ratio of the local thermal effusivity of the sample to the effusivity of the bulk, 

virgin ZrC, eZrC.   

 In the case of the PTR profiles, the heating frequency was 1 MHz or μ = 1-2 μm, 

corresponding to a thermally thick case. In the damaged layer, a normalized peak of 2 in Fig. 6.11 

represents the ratio eirr/eZrC. Assuming the same volumetric heat capacity (discussed in Section 

7.2.3.2), this means that the conductivity ratio of the kZrC/kirr is ~ 4.  

 For the lock-in IRT results, the maximum heating frequency was 40 Hz or μ = 0.198 mm. 

The thermal diffusion length is on the order of the sample cross-section thickness and greater than 

the irradiated zone thickness and thus not at a high frequency limit. For this reason, quantitative 
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interpretation is more difficult to extract from the measurement. The normalized amplitude peak 

of ~1.2, much less than the PTR result, is expected due to the increased heat spreading due to the 

large thermal diffusion length, whereas the PTR measurement is confined to a depth of ~1-2 μm 

from the surface. Assuming amplitude is  e-1, results in a ratio of conductivities of kZrC/kirr ~ 1.5. 

 In regards to the extraction of quantitative information, none of the spatial profiling 

methods used, provide a reliable extraction of k independently. The value extracted for kZrC is at 

the upper limit of typical SThM sensitivity, and thus, uncertainty becomes increasingly large for 

this range. For the PTR spatial scans, ratio of effusivities was extracted although again with large 

uncertainty, primarily related to the variations of thermal radiation properties (optical reflectivity 

and IR emissivity) across the sample surface. Still, the high emissivity (~0.9) [133] of ZrC is 

favorable for such analysis especially comparing between two zones of the “same” material. The 

results extracted from SThM and PTR are comparable and especially interesting when viewed 

from the perspective of measurement probing depth in the two measurements. For the PTR at 

1MHz heat modulation and the SThM, the probing depths are both on the order of a few microns. 

Therefore, the effects of the (larger) grain boundaries in the material are not measured. As was 

previously described, the irradiated zone shows no evidence of grain boundaries while the virgin 

ZrC is characterized by grain of ~25 μm size. The virgin material would be expected to have a 

higher measured thermal conductivity (excluding longer scale effects due to boundary thermal 

resistance). Assuming kirr ~ 10 W∙m-1∙K-1, a value of kZrC/kirr = 4 is not unreasonable for this 

measurement. 

7.2. Tomographic PTR Measurements 

This section presents the frequency-scanned PTR results measured directly (and non-

destructively) on the irradiated face of the ZrC sample as shown in Fig. 7.2. The presentation is 

divided into three main sections. First, a thermal model is presented stemming from the cross-
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section profiling results. A complete theoretical description of the model is presented along with 

important limiting cases. Next, a sensitivity study is used to estimate the frequency sensitivity of 

important parameters and ensure unique parameter dependencies. Finally, measured amplitude 

and phase spectra are used to fit desired parameters using the derived thermal model. 

7.2.1. Frequency Response of a Two-Layer Sample 

 As with other works, the continuously varying damage in the irradiated zone (Fig. 4.1) is 

approximated as a multilayered structure [83, 87, 88]. As compared to other types of ions, proton 

irradiation lends particularly well to a structure approximated by discrete layers due to the 

relatively thick and uniform damage level spanning most of the damaged zone in the sample as 

described in Section 3.2.2. From the measured profile obtained from SThM measurements 

(Chapter 6), the proton-irradiated ZrC sample is modeled as a homogeneous damaged layer on 

the bulk, virgin ZrC material as seen in Fig. 7.3. An interfacial thermal resistance, Rth, is placed 

between the two materials to account for the possibility of a greater damaged zone, seen in the 

numerically calculated damage profile and/or the presence of void space at the interface 

(discussed in more detail in Section 7.2.3.2). The spatial profiling measurements shown in 

Chapter 6 showed no evidence of a secondary layer as the calculated damage profile seen in Fig. 

4.1(a) may suggest by the sharp damage peak located at the back of the profile. However, even if 

a thin layer exists, using Rth is also mathematically appropriate. 

Sectioned

Sample
PTR

 
Fig. 7.2. Sample configuration for tomographic (frequency-scanned) PTR measurements 
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 Following the theory developed in Section 3.3.3.1, the thermal quadrupoles method has 

been used to model the irradiated ZrC sample [39]. The sample is considered adiabatic (heat 

losses neglected) and opaque to the 532nm laser heat source (absorption calculated from the 

dielectric constant of ZrC0.96 results in a penetration depth of < 50nm). In the simplified case of 

the ZrC sample under plane illumination (1D), a matrix relationship between the temperature and 

heat flux at the front and at the rear of the sample may be found as: 
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 (7.3) 

where Ai = Di = cosh(σi∙Li), Bi = sinh(σi∙Li)/(ki∙σi), Ci = ki∙σi∙sinh(σi∙Li) for layer “i.” σi is the 

complex thermal wave vector, σi = (iω/αi)1/2 = (1+i)/μi, where μi = (αi/πf)1/2 is the thermal 

diffusion length. The depth sensitivity controlled by μ makes frequency-based thermal-wave 

techniques powerful for non-destructively probing the in-depth properties of materials. αi = 

ki/(ρi∙cpi) is thermal diffusivity with thermal conductivity, ki, density, ρi, and specific heat 

capacity, cpi for material “i.” The term “ki∙σi” may be simplified to ei∙(i∙ω)1/2 where ei = (ki∙ρi∙cpi)1/2 

is the thermal effusivity. 

Proton-Damaged 
Layer (irr)

Non-Irradiated 

Layer (ZrC)

Ls = LZrC + Lirr

Lirr

Rth

z= 0

z
 

Fig. 7.3. Schematic of heat model geometry used for frequency-scanning FD-PTR for irradiated 

ZrC sample. 
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 Assuming the heat losses at the rear are negligible so that φZrC(z =Ls) = 0, the thermal 

impedance of the sample in a front detection configuration (FD-PTR) may be found as 
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or in an explicit form as 
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(7.5) 

  At low frequencies the whole sample is thermally thin (Lirr/irr << LZrC/ZrC << 1). 

The thin irradiated layer can be incorporated in the bulk and in a first approximation Eq. (7.5) 

yields 

   
pZrCZrCZrCirrZrC cLLiZ   / , (7.6) 

meaning that the PTR signal amplitude is  f -1 and the phase is -90°. There is no influence from 

the parameters of the irradiated layer or from Rth. The sample is equivalent to the homogeneous 

bulk ZrC. 

 At intermediate frequencies the bulk ZrC is thermally thick (Lirr/irr ≤ 1 << LZrC/ZrC). 

Then tanh(ZrCLZrC)1 and Eq. (7.5) reduces to 
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 . (7.7) 

 This frequency range offers the most information on the irradiated layer. Referring to the 

bulk layer, Eq. (7.7) contains only its effusivity, eZrC. 

 At high frequencies both layers become thermally thick (1 << Lirr/irr << LZrC/ZrC) and 

Eq. (7.7) further simplifies to 
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  2)1(  irrirr eiZ , (7.8) 

meaning that the amplitude is  f -1/2 and the phase is -45°. The only accessible parameter is eirr, 

via the amplitude. There is no influence from the bulk layer. Equation (7.8) is applicable for the 

spatial-scanning PTR on very shallow depths. It allows measuring relative effusivity variations 

over the sample cross-section. 

 Depending on boundary conditions, a layer manifests either its capacitive impedance 

component ZC (like Eq. (7.6)) under quasi-isothermal conditions, or rather its resistive component 

R = L/k under temperature gradients between the two faces. In the quadrupole formalism the two 

components appear in parallel. As long as ZC >> Rth, ZC can be neglected and L can be set to zero. 

In a multilayer system, such a layer can be replaced by an interfacial thermal resistance Rth having 

the same value as R. Note that the condition for this equivalence depends on frequency. In 

Section 7.2.3.2 it will be shown that this condition is fulfilled in the present study. 

7.2.2. Sensitivity Analysis 

 From the theoretical model presented above, the dependence of the complex impedance 

to ω is a function of five independent parameters: Lirrαirr
-1/2, LZrCαZrC

-1/2, eirr, eZrC, and Rth. The 

parameters related to the virgin material are measured independently so that the independent 

parameters to be determined are Lirrαirr
-1/2, eirr, and Rth. To ensure unique fitting results, the 

relative sensitivity of the thermal parameters to be fitted has been studied. The relative sensitivity 

of a function, F(p), to parameter “p” is defined as 
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 In the case of complex quantities, F=Ampexp(iψ), it can be shown that Sp=SAmp,p+iSψ,p 

where Sψ,p = ψ/(ln p) [61]. A value SA,p = -1 implies Fp-1. The relative sensitivities for A and 

ψ to the three parameters related to the irradiated layer are plotted in Fig. 7.4. Their sensitivity 
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spectra are different indicating that the respective parameters are not correlated. Therefore, the fit 

of this parameter set is feasible. Moreover, the features of the spectra are consistent with the 

discussion of Eqs. (7.6)-(7.8). At low frequency there is practically no sensitivity to the plotted 

parameters (Eq. (7.6)), while at high frequency there is only amplitude sensitivity to eirr (SAmp,eirr = 

-1) as predicted by Eq. (7.8). All three parameters reveal strongest sensitivity from 8 Hz to 8 kHz 

providing the range of frequencies selected for fitting them in the thermal model to the FD-PTR 

results. This range encompasses the more restrictive interval of 17.5-580 Hz set by the thermally 

thin-thick limits of the two layers (Fig. 7.5 and Table 7.2). The parameter of interest kirr is 

embedded in 
2/1

irrirrL   and in eirr. It will be eventually determined using other complementary 

data (Section 7.2.3.2). 
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Fig. 7.4. Relative sensitivities of the (top) amplitude and (bottom) phase to independent 

parameters for proton-irradiated ZrC using the values for parameters shown in Table 7.2. 
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7.2.3. Frequency-Scanning PTR Results 

 Equation (7.5) describes the thermal impedance of the ZrC sample, which is proportional 

to the sample surface temperature measured by the PTR system. The sensitivity analysis showed 

that the parameters, 
2/1

irrirrL  , eirr and Rth, are decorrelated and can be simultaneously fitted. 

Prior to that, the other two parameters 
2/1

ZrCZrCL   and eZrC were determined from a sample of 

undamaged ZrC material. Both amplitude and phase data were used for extracting the thermal 

parameters of interest. However, because the amplitude is dependent on instrumental factors, only 

relative values were used. 

7.2.3.1. Thermal Diffusivity of Virgin ZrC 

 A non-irradiated sample of ZrC with known thickness Ls' was used to measure its thermal 

diffusivity from frequency-scanning FD-PTR. The direct transition between Eq. (7.6) and Eq. 

(7.8) (with eZrC replacing eirr) occurs at frequency, fT, when ZrC = Ls', whence 

2/12/1 )('   TZrCs fL  . The PTR obtained spectrum and the fT marker are similar to that 

obtained for the irradiated ZrC below 100 Hz. Next the measured value of ρ and the literature 

value of cp (Section 4.1.2) were used to extract kZrC. The result is a bulk value of kZrC = 26.71 

W∙m-1∙K-1 (Table 7.2). For comparison, thermal conductivity of ZrC reported in the literature 

varies from 17 to 40 W∙m-1∙K-1 with [80, 134-137] higher stoichiometry resulting in the higher 

values. Finally, eZrC could also be determined. Using electrical resistivity values of 65-75 μΩ∙cm 

from the literature for similar stoichiometry (~1) and hot-pressed ZrC [80, 134], the Wiedemann-

Franz Law (Eq. (3.3)) predicts an electronic contribution to k of ~ 9-11W∙m-1∙K-1. 

7.2.3.2. kirr & Rth 

 Frequency scanning FD-PTR measurements were made on the irradiated face of the ZrC 

sample. Multiple measurement spectra were obtained over the span of a few months finding very 
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consistent results. Amplitude (Amp) and phase (ψ) results measured on the irradiated face of the 

ZrC sample along with the model results (Eq. (7.5)) are presented in Fig. 7.5. A summary of key 

parameter values are found in Table 7.2. For visual purposes, the amplitude data is plotted as 

Amp∙f 1/2. This subtracts the overall amplitude slope of f -1/2 found in the pre-factor of Eq. (7.5). At 

low frequencies, the results are characteristic of a thermally thin sample (μ > Ls) where Amp 
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Fig. 7.5. FD-PTR amplitude and phase for proton-irradiated ZrC. Points, experiment; solid lines, 

fit with Eq. (7.5) and 
2/1

irrirrL 
, eirr and Rth as free parameters; dashed lines, Eq. (7.5) with Rth = 

0. Key parameter values are listed in Table 7.2. The thermally thin-thick vertical markers (fT 

given in Table 7.2) delimit three frequency sub-ranges and the respective theoretical special 

cases. 

Table 7.2. Key sample parameters derived from independent fit parameters (
2/1

irrirrL 
, eirr and 

Rth) and from additional measurements: (m) denotes previously measured, (SThM) denotes SThM 

measurement, (PTR) denotes FD-PTR measurement. Transition frequencies fT for thermally thin-

thick ( = L) irradiated and bulk layers are also given. 

Layer fT, Hz L, μm k, W∙m-1∙K-1 ρcp∙10-6, J∙m-3∙K-1 Rth∙106, m2∙K∙W-1 

Bulk ZrC 
17.1 

 
4532 

(SThM & m) 

26.71 

(m) 

2.42 

(lit) [80,85] 
1.580.1 

(PTR) 

Irr. ZrC 
579 

 
522 

(SThM) 

11.90.5 

(PTR) 

2.420.1 

(PTR) 
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demonstrates f -1 dependence and ψ approaches –90° (cf. Eq. (7.6)). For high frequencies (μ < Ls), 

Amp∙f 1/2 is flat while ψ → -45° (cf. Eq. (7.8)). The dashed lines are plots of Eq. (7.5) for Rth = 0. 

The differences relative to the full model are relatively small in the mid-frequency range, and 

vanish outside this range. This behavior is consistent with the low sensitivity spectra to Rth from 

Fig. 7.4.  

 The simultaneous fit of the independent parameters: 2/1

irrirrL  , eirr, and Rth to Amp and ψ 

with Eq. (7.5)) provides the results shown in Table 7.2. Using the measured values of Lirr, from 

αirr and eirr, results in kirr = 11.90.5 W∙m-1∙K-1 and (ρ∙cp)irr = (2.420.1)∙106 J∙m-3∙K-1. The fit value 

of interfacial resistance is Rth = (1.580.1)∙10-6 m2∙K∙W-1. kirr is dependent on Lirr of the sample 

due to the parameter dependency of the model. The resulting value of (ρ∙cp)irr is nearly identical to 

the value of the non-irradiated material. Irradiation effect on heat capacitance is not expected to 

be great and for a similar material, SiC, was found to be practically non-existent for neutron 

irradiation [138]. As further validation, image analysis was performed on an optical micrograph 

of the sample cross section (e.g. Fig. 7.6). Comparing the number of pixels related to defect areas 

(appear porous) between the two zones, indicates a 5% possible density change (decrease). This 

result validates the fit procedure. The irradiation-induced degradation of k is then ~55%.  

7.3. Particle-Radiation-Induced Degradation of 

Thermal Conductivity 

 From the SThM signal calibration, kirr was found to be 10 ± 2.4 W∙m-1∙K-1
 while the kZrC 

was 30 ± 10 W∙m-1∙K-1, comparing favorably with the PTR measurements of kirr = 11.9 0.5 W∙m-

1∙K-1 and kZrC = 26.71 W∙m-1∙K-1. The result for the bulk ZrC is in the higher range of most 

values reported in the literature (17-40 W·m-1K-1 from [80, 134, 135, 137, 139]) but is consistent 

with high carbon content in the ZrC sample (C/Zr = 1.01). The significant degradation level of k 

was similar to that reported by David et al. [83] (stoichiometry not specified) and greater than that 
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reported by Snead et al. [79] (C/Zr = 0.87, irradiated at higher temperatures).  The SThM-

measured kZrC showed relatively more variability that was attributed to both decreased sensitivity 

and the localized measurement, not capturing longer scale effects such as grain boundaries (grain 

size ≈ 24 μm). However in the irradiated zone the dominant mechanism of thermal transport 

degradation is a high concentration of nanometer-sized Frank loops that would be manifest in 

both SThM and PTR. Grain boundaries were not found in the irradiated zone of the ZrC sample 

[78]. 

 Clarke [140] developed a model to estimate the minimum k for a material in an 

amorphous state at high temperatures. The model only accounts for acoustic phonon modes and is 

formulated based on expressions for minimum phonon mean free path and mean phonon 

velocities. The mean free path is formulated from the cube root of the volume of a molecule. 

Using this expression, the minimum calculated thermal conductivity, kmin, of ZrC is 1.6 W∙m-1∙K-

1. Snead et al. found little change of electrical resistivity in ZrC resulting from fast neutron 

irradiation. The small changes of thermal conductivity were then attributed to phonon scattering 

from irradiation-induced defects [79].  While no measurements of electrical resistivity were made 

in this work for comparison, assuming the change of the electronic contribution to k is relatively 

small as is common in ceramic material [26], the measured kirr compared to the electronic 

contribution calculated in Section 7.2.3.1 evidences a drastic reduction of the phonon contribution 

of k, to the order of kmin.  

 From Rth and an approximate thickness for the secondary layer as 5 μm from the TRIM 

profile, k for such a layer would be approximately L/Rth = 3.2 W∙m-1∙K-1
, comparable to what 

others have found for k of regions of peak damage [83, 87]. On the other hand, the capacitive 

impedance ZC of the same layer satisfies the condition ZC >> Rth for frequencies up to 8.3 kHz. 

The sensitivity of PTR method to Rth is situated below this frequency limit and therefore the 

effect of Rth is indistinguishable from that of an equivalent 5 μm thick layer (Section 7.2.2). With 
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the other methods, the spatial profiles made of the irradiation-damaged profile reveal no evidence 

of a region of peak damage (sharp degradation of k). Although in such a configuration, the 

excitation thermal gradients are oriented primarily parallel to the interface, which is unfavorable 

for the detection of Rth. Yet, from the frequency-based FD-PTR measurements, the shape of the 

profiles shows the existence of a strong resistance at the rear of the irradiated layer. One theory to 

explain this resistance is that it may not actually be due to the damaged microstructure as 

suggested by the TRIM results. Instead, evidence supports the possibility of small voids in the 

material that have been pushed by the proton irradiation to congregate at the backside of the 

damaged zone.  

 An optical micrograph of the sample cross-section is shown in Fig. 7.6; in which, the 

damaged layer is apparent. In the micrograph, the polished sample has many “defect” structures 

(void space based on topographic measurements from SThM) that appear as dark regions. The 

irradiated layer is clearly visible due to less defects and a higher concentration of defects at the 

rear of the layer. In some regions, “crack”-like structures are visible, running primarily 
~

 5
0
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Fig. 7.6. Optical micrograph of irradiated-ZrC cross section. Irradiated layer has ~50μm 

thickness. "Cracks" are clearly visible, terminating at depth of irradiation penetration. In some 

locations, showing evidence of having been pushed by proton front to form a boundary between 

the two zones. 



95 
 

 

perpendicular to the irradiated surface. All of these “cracks” (appear to be aligned void space, 

originating from the material formation process), terminate at the backside of the irradiated zone. 

For some, they have the appearance of being bent into the plane of the backside of the irradiated 

layer. In the extreme case, the irradiated layer completely delaminated off the bulk layer when 

mechanical stress was applied to the sample during the procedures of sample preparation. 

 Similar effects were documented in a study of proton-irradiated ZrN, where they 

hypothesized that voids in the material had been moved through the material by the proton beam 

front and coalesced at the peak of the damage profile [141]. The result was transgranular cracking 

with void surfaces having silicon rich oxides. No composition analysis was performed on the ZrC 

sample studied here. Although, the SThM measurements found the defect regions to be of lower 

thermal conductance, even though,  such “hole”-like regions would typically increase contact 

surface area with the thermal probe, indicative of lower conductivity material such as oxides. 

 Further support of the non-existence of a region of peak damage of the material 

microstructure as seen in the TRIM results can be inferred from molecular dynamics simulations 

done by Brutzel et al. [142]. Their simulations of collision cascades found that point defects are 

primarily created while no amorphization was observed. For the given conditions, the damage 

level in the ZrC may be saturated through proton-damaged zone. Yang et al. showed consistent 

findings with this ZrC sample in an experimental study, with no evidence of amorphization, but 

high concentrations of nanometer-sized Frank loops [78]. The primary contribution to the 

degradation of kirr is attributed to these loop defects acting as phonon scattering sites. 
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CHAPTER 8 

 

8. CONCLUSIONS 

 

  

 For the first time, the in-depth thermal conductivity profile of an ion-irradiated material 

was directly measured. The primary objectives of this work were met through a multi-

measurement approach to characterizing the thermal property changes in proton-irradiated ZrC.  

8.1. Multi-Measurement Approach 

 Multiple, high-resolution thermal measurement techniques were used to map the thermal 

conductivity, k, profile of a cross section of a proton-irradiated ZrC sample. Each of the 

measurement techniques employed were able to capture the thermal property profile induced by 

the irradiation damage. However each method comes with its own advantages and disadvantages. 

Also for the first time such methodology has been applied to an irradiated sample. The methods 

complement and validate each other 

 Frequency scanning provides more straightforward thermophysical quantification but 

requires knowledge of the in-depth profile. 

 SThM profiling provides good resolution for estimating irradiation penetration depth and 

relative characteristics of the profile. 

 Possible artifact on Rth detection: the used spatial scanning methods involved excitation 

thermal gradients oriented parallel to the interface with Rth (unfavorable configuration for 

Rth detection); in the FD-PTR method, the Rth detection is based on the "reflection" of 

thermal waves traveling perpendicular to the interface with Rth (favorable configuration). 

 Spatial scanning PTR resolution is limited by heating spot size. Lock-in IRT is frequency 

limited, thus having thermal diffusion lengths too large for good spatial resolution, but has the 

advantage of quickly imaging the entire cross-section in a single measurement. SThM has the 

best resolution and gives a good approximation of the profile of thermal conductivity degradation. 
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However due to difficulties associated with exact reproducibility of tip-sample contact conditions, 

it requires careful interpretation of results. A summary of the characteristics of each of the 

measurement techniques used is found in Table 8.1. 

 Due to the complexity of experimental parameters, the uncertainty contributors of all the 

measured results are difficult to identify and quantify. One of the strengths of the approach 

developed in this work is the complementarity of the techniques used. The results of several 

independent measurements and measurement types corroborate and justify the reported findings 

from each measurement. 

8.2. Thermal Conductivity Degradation in Proton-Irradiated ZrC 

 The overall k profile shape is found to be consistent with numerical predictions being 

nearly constant over most of the damaged zone, with a thin transition zone to the non-irradiated 

material. In spite of imperfections in topography, the SThM measured profile is shown to be 

independent of topography. A calibration of the probe signal was made indicating greater than ≈ 

66% reduction of k between the damaged and undamaged material. In interpreting the results, it 

Table 8.1. Characteristics of thermal conductivity profiling methods used on proton-irradiated 

ZrC and measured degradation of thermal conductivity. 

Method 
Scanning 

Type 
Lateral 

Resolution Probing Depth 
kirr 

W∙m-1∙K-1 
kZrC 

W∙m-1∙K-1 

SThM Spatial 
~ contact radius  

(~ 1 μm) 

~contact radius 

(~1 μm) 
10±2.4 30±10 

Lock-in IR 

Thermography 
Spatial 

pixel size = 5 μm 

μ ~ 300 μm 
μ ~ 300 μm (2/3)∙kZrC - 

PTR Spatial 
heating spot size 

~50 μm 
μ ≈ 1-2 μm (1/4)∙kZrC - 

PTR Frequency 
measured spot size 

~1 mm 
μ ≈ 1 mm - 1 μm 11.9±0.5 26.7±1 
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should be remembered that SThM measurement occurs on a localized area of < 1 μm radius. The 

measured profiles should not reflect the larger thermal barriers such as grain boundaries found in 

the non-irradiated ZrC. The results from the spatial scans by PTR show ≈ 75% reduction of k, 

however they are somewhat less reliable due to measuring absolute values of thermal wave 

amplitude influenced by spatial variabilities of sample surface properties.   

 Spatial scanning techniques of cross-sections prove valuable when combined with 

tomographic frequency scanning techniques. Using the measured spatial profile, tomographic 

PTR results show 55% degradation of thermal conductivity (kirr = 11.9 W∙m-1∙K-1 and kZrC = 26.7 

W∙m-1∙K-1) in ZrC irradiated to 1.75 dpa @ 600°C by a 2.6 MeV proton beam.  

 The proton-irradiated ZrC has a damage profile lending itself well to a discrete layered 

approximation used in FD-PTR. The damaged layer is ~52±2 μm thick with a relatively uniform 

thermal profile. A rather sharp transition to the virgin material was found at the back side of the 

radiation damaged layer. However, as evidenced by visual study and the tomographic profiles, a 

thermal resistance exists in the transition zone. Evidence suggests that the thermal resistance is 

due to the coalescence of void space driven by the proton irradiation front. The existence of such 

an effect merits further study. 

 Although SEM images and optical observation provide no indication of grain boundary 

separation, no irradiation-induced amorphization has been observed in similar ZrC samples [78, 

143]. Study of ZrC irradiated after similar irradiation conditions has shown a high concentration 

of Frank (dislocation) loops in the damaged zone [78]. Therefore, degradation of thermal 

conductivity in the irradiation-damaged zone is primarily attributed to the presence of a high 

concentration of Frank loops that act to scatter phonon energy carriers.  
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8.3. Future Work 

 The results of this work provide a footing for continued work in investigating thermal 

degradation of ion-irradiated materials. The methodology used here can be applied to a more 

systematic study of ZrC or other samples subjected to varying irradiation doses and at various 

temperatures. The ultimate goal of these studies would be to identify and quantitatively correlate 

the mechanisms of thermal transport degradation. Proton-irradiated materials seem particularly 

advantageous for such studies to the uniformity and relatively long depth of the damage profiles, 

lending themselves well to layered structure approximations. 

 Additional work continues in the topic of quantitative measurement of thermal 

conductivity using SThM. In particular, the tuning-fork feedback system at USU is being 

explored for its potential due to its capability of dual-tip operation as well as vacuum operation. 
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