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ABSTRACT

Computational Models of Intracellular and Intercellular Processes in Developmental

Biology

by

Ahmadreza Ghaffarizadeh, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. Nicholas S. Flann
Department: Computer Science

Systems biology takes a holistic approach to biological questions as it applies mathe-

matical modeling to link and understand the interaction of components in complex biological

systems. Multiscale modeling is the only method that can fully accomplish this aim. Mut-

liscale models consider processes at different levels that are coupled within the modeling

framework. A first requirement in creating such models is a clear understanding of pro-

cesses that operate at each level. This research focuses on modeling aspects of biological

development as a complex process that occurs at many scales. Two of these scales were

considered in this work: cellular differentiation, the process of in which less specialized

cells acquired specialized properties of mature cell types, and morphogenesis, the process

in which an organism develops its shape and tissue architecture. In development, cellular

differentiation typically is required for morphogenesis. Therefore, cellular differentiation is

at a lower scale than morphogenesis in the overall process of development. In this work,

cellular differentiation and morphogenesis were modeled in a variety of biological contexts,

with the ultimate goal of linking these different scales of developmental events into a unified

model of development.
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Three aspects of cellular differentiation were investigated, all united by the theme of

how the dynamics of gene regulatory networks (GRNs) control differentiation. Two of the

projects of this dissertation studied the effect of noise and robustness in switching between

cell types during differentiation, and a third deals with the evaluation of hypothetical GRNs

that allow the differentiation of specific cell types. All these projects view cell types as high-

dimensional attractors in the GRNs and use random Boolean networks as the modeling

framework for studying network dynamics.

Morphogenesis was studied using the emergence of three-dimensional structures in

biofilms as a relatively simple model. Many strains of bacteria form complex structures

during growth as colonies on a solid medium. The morphogenesis of these structures was

modeled using an agent-based framework and the outcomes were validated using structures

of biofilm colonies reported in the literature.

(110 pages)
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PUBLIC ABSTRACT

Computational Models of Intracellular and Intercellular Processes in Developmental

Biology

Ahmadreza Ghaffarizadeh

Because living systems arise from coupling different organizational scales (e.g., molec-

ular networks govern cellular states and behaviors, which in turn determine multicellular

structures and characteristics), a suitable multiscale modeling framework that incorporates

this coupling is needed to predict the effects of molecular level perturbations (such as mu-

tations) on cellular and multicellular behaviors. Such models will be vitally important

for understanding the molecular basis of embryogenesis and physiology as well as diseases,

particularly cancer. In turn, this deeper understanding is essential for developing ratio-

nal therapeutic strategies intended to alter clinical outcomes, such as reduction of tumor

invasiveness or angiogenesis, through molecular targeting.

Having a clear understanding of processes at different scales is the first step in multiscale

modeling. The research presented in this dissertation focuses on studying different aspects of

biological development at two scales to provide some useful platforms for the construction of

future multiscale models of developmental biology. Specifically, this work studied network

dynamics-driven cellular differentiation at lower scale (for example, in myeloid and pan-

creatic cell differentiation) and examination of intracellular interactions in morphogenesis

(emergence of three dimensional structures in biofilms) at higher scale.
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CHAPTER 1

INTRODUCTION

1.1 Multiscale modeling

A wide variety of processes occur at different levels of resolution and complexity. This

difference can stem from the nature of these processes or just as a consequence of the

measurements used for quantifying interconnected levels. Physical laws that work at each

level define the temporal and spatial scales. As an example, consider a river flowing into

its delta. At the macro scale, the flow of the river can be described by physical laws of the

motion of fluids like Navier-Stokes equations using minutes and meters as time and space

scales. Then the focus can be shifted to the water drops and their interactions with the

environment as the meso scale. Here the time and space scales are of the order of magnitude

10−9 second and 10−3 meter, respectively. Continuing this hierarchy, at the micro scale,

a water molecule can be described where the time and space scale become very small [7].

Note that one may define many other scales for the river flow process ranging from different

temporal and spatial scales or change the view by describing water drops at the macro scale,

water molecules as the meso scale and the covalent bonds in a water atom as the micro scale.

Multiscale modeling of complex systems has gained a lot of attention in the past decades

as the result of significant progress of computational capacity. A broad range of topics is cov-

ered by multiscale modeling including the economy [8,9], ecology [10–12], material engineer-

ing [13–15], and biology [16–18]. The main challenge in all multiscale modeling approaches is

tradeoffs between accuracy and computational complexity. The more details included in the

model, the more accurate model will likely be, but at the cost of computational complexity.

Multiscale modeling approaches can fall in two main groups:
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1. Sequential multiscale modeling: in this approach, sometimes referred to as microscopically-

informed modeling, the result of one scale is obtained and then fed into an upper scale.

Thus, there is no signaling or communication between distinct scales. The pros of this

approach center around the independency of scales where the output of each level can

be verified and validated before being passed to the upper level; also it makes it easier

to implement and debug the system. On the other hand, the independence of scales

turns to be its weak point too: this approach suffers from a lack of integrity. This

type of modeling has proven effective where different scales work independently; as a

result the vast majority of multiscale simulations that are in use are sequential. For

some examples, see [19–22].

2. Parallel multiscale modeling: this approach, also called as concurrent multiscale mod-

eling, is a more realistic one where different scales run simultaneously. There are feed-

back loops between different levels which result in an integrated system. Each change

at each scale will gradually be passed to the neighbor scales and subsequently to the

whole system. While this approach is closer to how the nature works, it is difficult to

implement. Usually the scales are widely far from each other in terms of time or space.

Therefore, the challenge of this approach is to find the proper inter-scale modeling to

bridge the gaps between different scales. For some examples, see [17,23–25].

1.2 Multiscale Modeling in Biology

Biological systems, at any level of abstraction, have roots in the complex interactions

of cell systems. The behavior of each cell is regulated by its genome. In turn, the genome

follows what is dictated by its molecular networks. Thus, a biological phenomenon can be

seen as a collection of components which function at different scales. Studying the interaction

of these components and the way they give rise to the function of a system is one of the

main conceptual challenges in biology. Figure 1.1 shows a paradigm of multiscale modeling

in biology that spans from micro seconds (10−6s ) to years (108s), and from nano meters

(10−9m ) to meters. Each scale is coupled to the strata above and below it. Understanding
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Figure 1.1. Multiscale interactions in biology (from [1]).

the inter-scale and intra-scale interactions between these diverse scales is critical to studying

physiology and the treatment of diseases. Martins et al. [26] suggested categorizing events in

the human body into 3 different scales starting with the microscopic scale. Gene regulation,

signaling, metabolic pathways, and cell cycles are some sample of events at the microscopic

scale. The next level is the mesoscopic scale which mainly deals with cell-cell and cell-matrix

interactions. The last scale is the macroscopic level which includes processes at the tissue

level.

The complexity of biological systems makes their simulation very complicated in terms

of computation and interpretation. That is why most of the multiscale modeling frame-

works in biology are implemented as sequential multiscale systems where discrete scales are

separated by gaps which are usually bridged with mathematical prediction and estimation

techniques [16].

1.2.1 Top-down and Bottom-up Approaches

Biological systems are usually modeled and interpreted in two ways: top-down or

bottom-up [27]. The bottom-up approach starts with simulation of system components
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in isolation. These components are later integrated to study the emergent behavior of the

model and compare it with the observed behavior of the target system. As an example,

consider the process of morphogenesis that causes an organism to develop its shape. One

may employ Turing’s 2-component reaction-diffusion theory of morphogenesis [28] to study

the non-uniformities commonly seen in nature [29–33]. This theory explains how the con-

centration of two substances distributes and reaches a steady state over time. In this theory,

one component, termed activator, stimulates the production of activator and inhibitor, while

the inhibitor prevents their production. To create such a model, the activation/inhibition

functions first need to be constructed, and then be combined to give rise to pattern forma-

tion.

Top-down approach starts by investigating the macroscopic behaviors of the system.

These behaviors are then used to construct a model which can describe these high level

properties. The main advantage of top-down approaches is their simplicity; they usually use

a high level abstract description of the underlying mechanisms of the modeled phenomena,

thus they do not consider many irrelevant details that have small or no effect on system

behavior. Studying the formation of extracellular matrix (ECM) in multicellular organisms

is an example of a top-down approach. Extracellular matrix is a non-cellular component

that provides structural support to the cells and also plays important roles in activating

signalling pathways and many critical biochemical interactions. Without getting trapped

in modeling the complicated process of biomechanical adhesion, one may use the emergent

behavior of this adhesion to describe the stages in formation of extracellular matrix.

There is another emerging approach called middle-out [34] which focuses on one scale

and then starts linking the lower and upper scales to the collection of scales used in the

modeling. In this dissertation, we use a middle-out approach to model and study some

important phenomena in developmental biology that are important in human physiology and

disease treatment. This dissertation focuses on the linkage of subcellular to cellular scales in

modeling cellular differentiation and in turn on the coupling the cellular and multicellular

scales to model morphogenesis.
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Regulation type inference in gene regulatory networks, modeling and visualizing cell

type switching, and studying the role of multistable switches in providing robustness to

terminally differentiated cell types are the three research topics at the level of cellular differ-

entiation that are covered in this dissertation. In a complementary work, wrinkle formation

in biofilms was modeled as an example of morphogenesis and the outcomes of the modeling

were validated against experimental findings. The studies presented in this dissertation can

serve as steps towards multiscale studies in systems biology.
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CHAPTER 2

REGULATION TYPE INFERENCE IN GENE

REGULATORY NETWORKS

2.1 Abstract

Inferring gene regulatory networks from high-throughput microarray expression data

remains a challenging problem in systems biology, mostly due to underdetermined nature

of GRN inference. In order to cope with this problem, we constrain the solution space of

GRNs by employing nested canalyzing functions. We use a genetic algorithm with nested

canalyzing functions to search for candidate GRNs that allow the differentiation of specific

cell types. The set of candidate GRNs is then used to infer the type of regulation (activation

or inhibition) between particular genes. We use this method to evaluate two hypothetical

GRNs previously proposed for myeloid and pancreas cellular differentiation. Finally, we

propose a set of updating rules that can be used for future studies of myeloid and pancreas

gene regulatory networks.

2.2 Introduction

The ultimate goal of systems biology is to obtain a blueprint of gene and protein in-

teractions at the subcellular scale that give rise to the characteristics observed at cellular

or organismal levels. Although it seems that we are at the beginning of a long way towards

reaching this ultimate goal, the availability of high-throughput micro array data and the

effectiveness of automated literature mining tools have provided hope that information may

be coming available for systems biologists to reach this goal sooner rather than later. With

this rapid growth of knowledge sources, the essence of accurate inference of gene regulatory

networks (GRNs) seems more crucial than ever; the burst in the number of research studies
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recently carried out in this field is an evidence for this claim.

Selection of a proper network architecture is the first step in modeling gene regulatory

interactions. There are many network architectures suggested for modeling GRNs. In all

of these networks nodes are genes or transcription factors. However, the formalism behind

each architecture is different. Generally, these modeling approaches fall into 4 groups [35]:

1) Information theory models, 2) Bayesian Networks, 3) Boolean Networks, and 4) systems

of equations. Each of these approaches has its own principals, assumptions and limitations.

Based on the criteria defined for a problem, any of these approaches may be employed for

GRN modeling. The tradeoffs are between scalability, simplicity, parameterization and the

amount of required information for modeling [36]. Due to the simplicity and the capability

of Boolean networks in modeling GRN dynamics without needing knowledge of any kinetic

parameter [3], we used Boolean networks as our modeling framework in this study.

First proposed by Kauffman [37], Boolean networks are a major contributor to our

knowledge of gene regulatory networks. They are dynamical networks which use discretized

values for gene expression levels of each node with values set to 1 or 0. Each node is

associated with a Boolean function which specifies the output of the node as on (1) or off

(0) based on the corresponding inputs. The main advantage of Boolean networks is their

simplicity; the influences are simply inhibition or activation without any quantification.

Kauffman [37] suggested that cell types are attractors in dynamics of Boolean networks

simulating GRNs. He later proposed that these Boolean networks need to be robust against

the intrinsic noise of the system in order to be able to model GRNs appropriately. Noise

robustness comes from canalyzing functions, where the value of one input determines (cana-

lyzes) the output no matter what other inputs are. Canalyzing functions shift the dynamics

of the system from the chaotic to the critical domain where GRNs are believed to oper-

ate [38,39]. Nested canalyzing functions (NCFs) are a generalization of canalyzing functions

where all inputs canalyze the output with an ordering defined for the function [40].

Identifying GRNs for known differentiation systems is a complex and challenging task.

Too much information of physical and regulatory interactions between genes should be inte-
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grated and compiled to a network whereas the dynamics of this network should simulate the

differentiation process. Extracting data from sometimes contrasting reports makes this task

even more complicated. In this work we use a searching mechanism to find Boolean networks

with nested canalyzing functions which can reconstruct known GRNs in developmental bi-

ology. We employ a genetic algorithm to match the attractors of our inferred GRN against

the expression profiles obtained from experimental data. We use an ensemble of candidate

solutions to identify the type of each regulatory interaction (inhibition or activation) in our

target GRN.

2.3 Boolean Networks as GRNs

Boolean networks [37] have been used for representing GRN structure and dynamics in

many systems, including Drosophila development [41, 42], angiogenesis [43], eukaryotic cell

dynamics [44], and yeast transcription networks [40]. Each node in a network represents a

gene whose activity is regulated by an internal function based on inputs from other nodes.

The output of each node is either the value true, representing an expressed gene, or the

false, representing a non-expressed gene.

A Boolean network with K genes has 2K possible states, denoted as Ŝ. At each step in

the simulation, the next state ŝt+1 ∈ Ŝ is determined by applying each gene’s logic function

(representing the regulatory interactions) to the current value of the genes in ŝt. Let this

computation be defined as ŝt+1 ← D(ŝt) where D(ŝt) is the deterministic mapping function

that finds the next state of the network given the current state. As the network is executed

by repeated applications of D(ŝ), the state will reach a previously visited state, and thus,

since the dynamics are deterministic, enter into an attractor which represents a fixed point

of the system. Attractors can be single states, called point attractors, or consist of more

than one state that the network continuously transitions between, called cyclic attractors.

Let â = D(ŝ)∗ be the resulting network attractor state reached when starting at ŝ and

applying the logic functions until the attractor state â is reached [45].

In this work, attractors of the high dimensional state space of possible gene expression

profiles are interpreted as distinct cell types [46]. The dynamical behavior of system in
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transitioning from one attractor to another is employed to model cell differentiation [47].

2.4 Problem Description

Suppose that there is a cellular differentiation subtree that contains n cell types, each

referred to as Ci, i = 1...n. Cell types are represented by expression profiles of a set of K

genes identified that play a role in differentiation of these cell types Ci ← {e1, ..., eK}. The

general problem is how to find a Boolean network that generates single or cyclic attractors

that can be mapped to all the cell types in the target differentiation tree. In this way, the

functions of the nodes specify the regulatory interactions between the genes of the regulatory

network. Thus the objective of this problem is to minimize the error of model fitting as the

difference between the observed gene expression levels of cell types from experimental data

(C) and modeled GRNs (C ′).

objFun =

n∑
i=1

dist
(
Ci, C

′
i

)
(2.1)

Note that the ordering of attractors are not important and each cell type C is evaluated

against its corresponding attractor.

2.4.1 Approach

A search mechanism is needed to find a Boolean network that can model a GRN.

Since the state space of all possible Boolean networks is huge, the search mechanism must

be efficient. As mentioned before, we use a genetic algorithm (GA) for our optimization

algorithm. To use the GA, many settings need to be adjusted. Two of the most important

are: 1) how to represent a GRN as a solution; and 2) How to evaluate a solution.

Solution Representation

Suppose that the GRN is composed of K interacting genes. To simplify the problem, we

apply the maximum connectivity degree U constraint so that each gene can have U inputs.

One intuitive way for representing a solution is to let the function of each gene have 2U
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entries. The function specifies the output of the gene as expressed or repressed for each

input combination. The following table shows a sample gene function with 3 inputs.

inp1 inp2 inp3 f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Each gene also needs to be sensitive to where its connection come from, so there are

K binary numbers, each showing a connection from kth gene (k = 1, ...,K). For each gene

we have 2U entries for representing the function plus K connections, therefore the size of

solution representation is K ∗ (2U +K) bits.

Though this representation seems straightforward and has been used in some previous

studies for inferring GRNs, we found it not suitable in our approach. In the Results section,

we show that GRN inference is an under-determined problem; therefore, to direct our search

method we need to impose constraints on the solution structure. We consider two constraints

in our approach: 1) we fix the structure of GRN based on reports from the literature, and

2) we use NCFs. Even with these constraints, there are often many possible solutions.

To encode a solution considering the added constraints, we use the scheme shown in

Figure 2.1. In this scheme, instead of directly encoding each gene’s function to the solution,

we use metafunctions. The size of solution is
∑K

i |MFi| where |MFi| is the number of bits

needed to represent the meta function for ith gene. As Figure 2.1 shows, metafunction i has

a size 2mi + [log2(mi!)] + 1 where mi is the number of inputs to the gene. The first 2mi bits

inMFi create a mapping between the function’s inputs (canalyzers) and its output. We also

need to know how canalyzing effects are nested, e.g., what is the order in which the inputs

are affecting the output? Since there are mi! possible permutations in which inputs can be

arranged, we need [log2(mi!)] + 1 bits to choose one of these permutations (starting from

[1, 2, ...,mi] to [mi,mi−1, ..., 1]). The values of bits at locations j and mi+ j(1 ≤ j ≤ m) of
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Figure 2.1. Solution structure representation using nested canalyzing functions.

ith metafunction indicate how the jth input affects the output of the ith gene. For example,

if for an arbitrary gene, the first 2m bits of MF are 010110, it indicates that the value 0 for

the first input turns on the gene; the value 1 for the second input turns on the gene too;

and the value 0 for the third gene turns the gene off; so we can deduce that the first input

has an inhibitory effect while the next two are activators of this gene.

Solution Evaluation

We use the function shown in Equation 2.1 to evaluate the fitness of the each solution.

The City Block distance is employed as the measure of similarity between expression profile

of a cell type and its corresponding modeled profile as an attractor in the dynamics of

an inferred GRN. Note that the mapping of cell types is a one-to-one mapping and each

cell type is mapped to the attractor with the least distance with tie broken randomly.

Extra numbers of attractors are punished with a penalty Pext. This constraint is added to

prevent the overfitting by the model. Therefore, the error function (the difference between

experimental data and modeled profiles) is formulated as:

error =
n∑
i=1

K∑
k=1

∣∣eik − e′ik∣∣+ |n− n′| × Pext (2.2)

where eik is the expression level of the kth gene in ith cell type from the experimental data,

and e′ik is the expression level of the modeled cell type, n is the number of cell types in the

target differentiation process and n′ is the number of attractors in the inferred GRN. The
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maximum error is nK (considering Pext = 0) while the minimum is 0 for a perfect fit. The

GA solves the minimization problem.

2.5 Results

2.5.1 Test Case 1: Pancreatic Cell Differentiation

The pancreas is as an endocrine gland that secretes many important hormones in the

digestive and endocrine systems. By regulating blood glucose level through secreting insulin,

pancreas beta cells play a key role in controlling metabolism; deficiency in the operation of

these cells results in the diabetes. The interesting properties of the pancreas cellular differ-

entiation have made it the focus of many studies [2, 48–52]. A partial subtree of pancreatic

differentiation is shown in Figure 2.2. This figure shows the value of 5 key transcription fac-

tors (TFs) in exocrine, β/δ progenitor, and α/PP progenitor cells suggested by [2]. Pdx1

determines the onset of pancreatic development, however, this gene is only regulated in β/δ

progenitor during the later stages of development. Ngn3 and Ptf1a form a bistable switch

which determines cell fate in the exocrine/endocrine bifurcation. For cells committed to

endocrine lineage, the mutual interaction of Pax4 and Arx in another bistable switch de-

termines whether a cell becomes either a β/δ progenitor or ab α/PP progenitor. The solid

edges in Figure 2.3 represent experimentally confirmed interactions while the dashed lines

are the proposed gene interactions.

We used the discretized gene expression levels of each cell type in the pancreatic differ-

entiation subtree (shown in Figure 2.2) to infer a gene regulatory network using the method

described in the previous section. As the first step, we ran our search algorithm 100 times

using the original solution presentation (unconstrained scheme), and recorded solutions the

algorithm converged to. To see how similar these solutions are, we compared each result with

a hypothetical inferred GRN from [2] shown in Figure 2.3. We assigned each solution a score

based on the number of false positive and false negative errors relative to the target GRN.

Note that we just consider the presence or absence of an interaction for computing the score,

not whether this interaction is positive or negative. The results showed (not presented here)
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Figure 2.2. Pancreas cellular differentiation subtree and discretized expression values for 5
important genes that play a role in this differentiation.

Figure 2.3. Hypothetical pancreas gene regulatory network from [2]. Arrows and closed
lines show activation and inhibition influence respectively. The solid lines represents ex-
perimentally confirmed interactions while the dashed lines are proposed gene interactions
by [2].

that there are variety of solutions with similar scores but very different structures. These

structural differences are also present in cases with perfect matches of attractors to target

cell types. This variability stems from the fact that the problem is so underdetermined.

To address the problem of underdetermination, we used the constrained solution scheme

described in Section 2.4.1. We reduced the problem to search for nested canalyzing functions

that can form attractors with a close match to target cell types in pancreatic differentia-

tion. Note that a solution will determine both the order and type of influence (activa-
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Table 2.1. List of research studies that confirm/propose the type of interactions between
pancreatic transcription factors shown in Figure 2.2. Red references have reported inhibitory
influence while blue ones have reported activation. Star shows theoretically proposed influ-
ences in previous studies that are not experimentally validated. [S] denotes our proposed
corrections on previously reported influences.

Pdx1 Ptf1a Ngn3 Pax4 Arx
Pdx1 - [2]* [2]* [53] [S] - -
Ptf1a - [54] [52] - -
Ngn3 - [52] [55] [56] [52] [49]
Pax4 [2]* - - [2] [57] [58]
Arx - - - [58] [2]

tion/inhibition) each gene imposes on the other. Again we ran our search algorithm 100

times. It was interesting to see that all runs converged to a prefect fit solution in less than

30 iterations After comparin the solutions and removing the identical ones, there were 95

distinct solutions. To integrate the results obtained in this step, we extracted the inhibition

and activation interactions from the results and compared the number of times in which

an interaction was considered as activatiing versus the number of times it was considered

as inhibiting. Results are shown in Figure 2.4. We hypothesize that for each regulatory

interaction, the most frequent influence can predict the nature of this regulation in the in-

ferred GRN. Figure 2.4 demonstrates the power of our method in evaluating the hypothetical

GRN for pancreatic cell differentiation proposed by Zhou et al. [2]. Our results confirm all

experimentally validated interactions. Table 2.1 lists the previous research studies that sup-

port each particular interaction; references that have reported the interaction as inhibitory

are colored red and references that have reported activation are colored blue (our proposed

influences are noted with [S]). It is striking that there are contradictory reports for some

interactions.

For the interactions proposed by Zhou et al. [2] (dashed edges in Figure 2.3), our method

confirms inhibitory interaction between Pdx1 and Ptf1a and also the activation of Pdx1 by

Pax4; in contrast, based on our results, we predict that the inhibitory interaction between

Pdx1 and Ngn3 is actually an activation. Significantly, our prediction was validated in a

previous report by Oliver-Krasinski et al. [53].

For a small test case like the GRNs for pancreatic cell differentiation, an exhaustive
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Figure 2.4. Percentage of presence of regulatory interactions either as activatory or inhibitory
influence in pancreas differentiation. Results are averaged for 95 Boolean networks that their
dynamics have attractors that can be matched to cell types shown in Figure 2.2.

search instead of a genetic algorithm is possible. In this example, the number of possible

solutions is of the order 107 which also includes many redundant cases. However, for most

of GRNs, like the next test case, the solution space is huge and it is not possible to examine

all possible networks.

2.5.2 Test Case 2: Myeloid Cell Differentiation

Hematopoiesis is a well characterized example of cellular diversification. During hematopoiesis,

hemocytoblast gives rise to blood precursor cells (common myeloid progenitors (CMPs)) and

lymphocyte precursor cells. Figure 3.1 shows a sub-tree of myeloid lineage tree in which the

CMP differentiates into megakaryocyte-erythrocyte precursor (MEP) cells and granulocyte-

monocyte precursor (GMP) cells. Depending on extracellular environment, MEP can give

rise to erythrocytes (red blood cells) or megakaryocytes (platelets). The GMP can differen-

tiate to granulocytes or monocytes [3, 59, 60].

Informed by work of Krumsiek et al. [3], we picked 11 transcription factors known to play

a role in myeloid differentiation: GATA-1, GATA-2, FOG-1, EKLF, Fli-1, SCL, C/EBPα,

PU.1, cJun, Gfi-1, and EgrNab (EgrNab represents an integration of Egr-1, Egr-2 and Nab-
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2). Figure 3.1 shows a subtree of myeloid differentiation and the discretized expression levels

for 4 differentiated cell types. Using these expression profiles, we repeated the study done in

the test case 1. Again, for the unconstrained search, we discovered a set of solutions with a

very low similarity (results not shown). Similar to test case 1, we reduced the problem using

the described constrained solution scheme. We also added information from a knockout

experiment to the problem. GATA1-PU.1 is a tristable switch that controls the bifurcation

of CMP cells between MEP and GMP lineages. Expression of GATA-1 represses PU.1 and

pushes the cell to the MEP lineage; in contrast, when PU.1 is expressed it represses GATA-1

and the cell commits to the GMP lineage. We expected to see that knocking out PU.1 leads

to disappearance of granulocytes and monocytes from the dynamics of our inferred GRN

while GATA-1 knockout removes megakaryocytes and erythrocytes from the inferred GRN.

Here, we rewrite Equation 2.2 to integrate information coming from multiple sources.

error =
E∑
e=1

(
ne∑
i=1

Ke∑
k=1

∣∣eike − e′ike∣∣+ |ne − n′e| × Pext

)
(2.3)

In this equation, E is the total number of experiments used as different sources of

information. Using this new formulation, we ran the constrained minimization problem

100 times. For this test case, only 11 runs converged to a perfect fit. We repeated the

experiment multiple times to get 100 distinct solutions and averaged the results to identify

the type of interaction between transcription factors in our target GRN. Figure 2.7 shows

the averaged results of influences between genes. The results show excellent agreement with

interaction information extracted from literature. Our results propose three corrections to

regulatory interactions reported in the previous studies: a) the inhibitory influence of GATA-

1 and its cofactor (FOG-1) on GATA-2 should be replaced with an activating influence. This

activation might account for the partial expression of GATA-2 in erythrocytes where GATA-1

is fully expressed; b) the autoregulation of PU.1 should be negative; and c) the influence that

Fli-1 imposes on EKLF may be of type of activation. This also might account for partial

expression of EKLF during megakaryocyte differentiation where Fli-1 is fully expressed.

Table 2.2 summarizes references that confirm each interaction. Again, references that have
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Table 2.2. List of research studies that confirm/propose the type of interactions between
myeloid transcription factors shown in Figure 3.3. Red references have reported inhibitory
influence while blue ones have reported activation. Star shows theoretically proposed influ-
ences in previous studies that are not experimentally validated. [S] denotes our proposed
corrections on previously reported influences.

GATA-1 GATA-2 FOG-1 EKLF Fli-1 SCL C/EBPα PU.1 cJun EgrNab Gfi-1
GATA1 [61] [62] [63] [64][S] [65] [66] [67] [68] [3]* [69] [70] [71] - - -
GATA2 [72] [72] [63] - - - - - [69] [70] [71] - - -
FOG-1 - [72] [63][S] - - - - [3]* [73]* - - - -
EKLF - - - - [74] - - - - - -
Fli-1 [74] [75] - - [74][S] - - - - - - -
SCL - - - - - - [3]* - - - -
C/EBPα - - - - - - [3]* [76] [77] - - [78] [79]
PU.1 [70] [71] [70] [71] - - - [80] - [81] [82][S] [83] [78] -
cJun - - - - - - - - - [78] -
EgrNab - - - - - - - - - - [78]
Gfi-1 - - - - - - - - [84] [78] -

reported the interaction as an inhibitory influence are colored red and the references that

have reported the activatory influence are colored blue.

2.5.3 Proposed GRN Updating Rules

Based on the results obtained for the test cases and from the interaction information

extracted from literature, we propose a set of updating rules which can construct a GRN

with attractors corresponding to the cell types of each test case. Table 2.3 and 2.4 present

these updating rules for pancreas and myeloid differentiation, respectively. Note that these

are not the only updating rules that can produce the same set of attractors; they are provided

here simply to serve as a possible starting point for future studies. Compared to updating

rules proposed in previous studies, our proposed rules do not produce extra attractors and

the network dynamics are supported by the knockout experiments.

Table 2.3. A sample set of logical functions for pancreatic transcription factors shown in
Figure 2.3.

Gene Name Update rule
Pdx1 Pax4

Ptf1a Nng3.Pdx

Ngn3 (Pdx1 +Ngn3).P tf1a

Pax4 (Ngn3 + Arx).Pax4

Arx Ngn3.Pax4
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Figure 2.5. Myeloid differentiation tree and discretized expression values for 11 transcrip-
tion factors that control the differentiation process. Terminal nodes are the mature cell
types of Erythrocytes (ERY), Megakaryocytes (MEG), Monocytes (MON), and Granulo-
cytes (GRA). Multipotent cells are the common myeloid progenitor (CMP), megakaryocyte-
erythrocyte precursor (MEP), and granulocyte-monocyte precursor (GMP).

Figure 2.6. The inferred genetic regulatory network for myeloid differentiation. Nodes
are eleven key transcription factors that control cell lineage and edges are the interactions
between the genes.
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Figure 2.7. Percentage of presence of regulatory interactions either as activatory or inhibitory
influence in myeloid differentiation process. Results are averaged for 95 Boolean networks
that their dynamics have attractors that can be matched to cell types shown in Figure 3.1.

2.6 Conclusion

Boolean networks have proved effective in explaining and modeling cellular differentia-

tion. They are very useful in studying the interactions between genes and for analyzing the

dynamics of regulatory networks. Recent advances in the availability of high throughput

data and extensive literature discussing different regulatory interactions have fostered inter-

est in inferring GRNs based on this information. The major barrier to effective inference of

GRNs is underdetermination. Even when many sources of information are integrated, there

are many possible solutions that can simulate the dynamics of biological target GRN. In this

work, we used the strong constraint of nested canalyzing functions on the space of possible
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Table 2.4. A sample set of logical functions for myeloid transcription factors shown in
Figure 3.3.

Gene Name Update rule
GATA-1 GATA-1 ∨GATA-2 ∨ Fli-1 ∨ PU.1
GATA-2 GATA-1 ∧GATA-2 ∧ FOG-1 ∧ PU.1
FOG-1 GATA-1
EKLF GATA-1 ∧ Fli-1
Fli-1 GATA-1 ∧ EKLF
SCL PU.1

C/EBPα (GATA-1 ∧ SCL) ∨ (FOG-1 ∧ SCL ∧ C/EBPα)
PU.1 GATA-1
cJun PU.1 ∧Gfi-1
EgrNab (PU.1 ∧ EKLF ) ∨ (PU.1 ∧ cJun)
Gfi-1 C/EBPα ∧ EgrNab

Boolean networks to reduce the inference problem and to find the regulatory interactions

in a predefined GRN structure. A genetic algorithm is employed in this work to search the

solution space of nested canalyzing functions. We averaged the solutions and compared the

frequency in which a regulatory interaction was activating versus inhibitory. We hypothe-

sized that the favored type of influence reveals the nature of this interaction. The two test

cases we studied are in excellent agreement with our hypothesis. Finally, we proposed a set

of updating rules that can be used for future studies of myeloid and pancreas differentiation.
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CHAPTER 3

MODELING AND VISUALIZING CELL TYPE
SWITCHING 1

3.1 Abstract

Background: Understanding cellular differentiation is critical in explaining develop-

ment and for taming diseases such as cancer. Conventionally, cellular differentiation is

visualized as bifurcating lineage trees. However, these lineage trees cannot readily capture

or quantify all the types of transitions between cell types that are now known to occur.

For example, “terminally differentiated” cells can be reverted directly to a pluripotent state,

adult cells can be induced to transdifferentiate, even across germ layer lineages, and in can-

cer, cells often acquire specialized properties not seen on any standard lineage tree. None of

these transitions can easily be represented by a conventional hierarchically-arranged lineage

tree and conventional trees do not show the likelihood of any transition.

Results: This work introduces a new analysis and visualization technique (with a

supporting tool called CellDiff3D) that is capable of representing and visualizing all possible

transitions between cell states compactly, quantitatively, and intuitively. CellDiff3D takes

as input a regulatory network of transcription factors that control cell type switching, then

performs an analysis of network dynamics to identify stable expression profiles and the

potential cell types they may represent. CellDiff3D creates a three dimensional graph that

shows the overall direction and likelihood of transitions between pairs of cell types within

a lineage. In this visualization, the distance between a pair of cell types measures the

likelihood of transitions between them, with greater distances indicating lower probabilities.

Arrows between cell types show the favored direction of the transition, with the thickness
1A. Ghaffarizadeh, G. J. Podgorski, and N.S. Flann,“Modeling and Visualizing Cell Type Switching,”

Computational and Mathematical Methods in Medicine, vol. 2014, Article ID 293980, 10 pages, 2014.
doi:10.1155/2014/293980
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of the arrow representing the relative rate. Therefore, probabilities and rates of transitions

within a lineage are quantified in the CellDiff3D graph. In this work, the influence of gene

expression noise and mutational changes in myeloid cell differentiation are presented as a

demonstration of the CellDiff3D technique. The supporting software can be downloaded

from www.CellDiff3D.org.

Conclusions: As new complexities in cellular differentiation are being recognized, more

powerful analysis and visualization approaches are needed. Our technique is an innovative

approach that quantities, represents and visualizes all possible cell state transitions in any

given regulatory network.

3.2 Introduction

During development, a complex system of tissues and organs emerges from a single cell

by the coordination of cell division, morphogenesis, and differentiation. Understanding the

differentiation of cell types is necessary to understanding development and its associated

defects, for improved control of stem cell differentiation in therapeutic use, and for taming

diseases such as cancer. Cellular differentiation occurs when a less specialized cell or its

progeny become increasingly specialized by acquiring properties that allow specific functions.

In animals, differentiation typically results in a terminally differentiated state in which a

specialized cell can no longer acquire the properties of other specialized adult cells. Recent

discoveries, however, have shown that terminally differentiated cells can be reprogrammed to

revert back to multipotent and pluripotent stem cells which have the potential to differentiate

into other cell types [5, 85] or to transdifferentiate into other specialized cell types [86].

Differentiating cells normally follow well defined paths to mature cell types. Taken

together, these paths are referred to as a lineage tree. Pluripotent stem cells give rise to

progeny that specialize into more constrained multipotent cells. In turn, multipotent cells

produce a variety of stable, terminally differentiated cells. This process is usually depicted

as a tree with a pluripotent cell at its root, multipotent cells as intermediate nodes, and the

mature cell types as branch tips. As an example, a simplified portion of the myeloid cell

lineage tree is illustrated in Figure 3.1. This figure shows that common myeloid progenitor
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Figure 3.1. A simplified myeloid lineage tree from [3] where the terminal nodes are
mature terminally differentiated erythrocytes (ERY), megakaryocytes (MEG), monocytes
(MON), and granulocytes (GRA). Multipotent cells are the common myeloid progenitor
(CMP), megakaryocyte-erythrocyte progenitor (MEP), and granulocyte-monocyte progeni-
tor (GMP). The color assigned to each cell type in this figure is also used in the differentiation
network shown in Figure 3.4.

stem cells produce two pluripotent cell types, a megakaryocyte-erythrocyte progenitor and

a granulocyte-monocyte progenitor, that in turn produce terminally differentiated erythro-

cytes, megakaryocytes, monocytes and granulocytes.

Intracellular genetic regulatory networks (GRNs) control differentiation by responding

to external (extracellular) and internal (intracellular) stimuli that reconfigure gene expres-

sion profiles and change cell physiology [87]. There is a growing body of evidence that cell

types are determined by stable expression patterns of the regulatory networks, referred to

as attractors. Switching between cell types amounts to transitioning from one attractor to

another [47]. The attractor model explains how cell types can be stable under gene expres-

sion noise, and how changes in the expression of a small number of master regulators can

shift the expression of hundreds of genes as cell types switch.

Regulatory network dynamics are driven by molecular events within the cell that are

subject to noise [88]. Understanding the role of noise in gene expression and its effect on

differentiation is essential to gaining insight into cellular specialization and its errors. If cell

types are attractors of the GRN, these attractors must be robust to noise in order to maintain

particular cell types and to stay on the correct branches of the lineage tree during differ-
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entiation. Failure to do either can have dire consequences. For instance, cancer has been

proposed to involve destabilization of attractor states due to changes in genetic regulatory

network dynamics [89]. In this view, the attractors that correspond to normal cells switch

to new, abnormal attractors characteristic of cancer cells. In addition to pathological states,

transitions between attractor states of differentiated cells may lead to de-differentiation, in

which a cell reverts to an earlier multipotent state, or trans-differentiation, in which a differ-

entiated cell switches to another adult differentiated cell type [90]. Abnormal type switching

may also result in off-differentiation in which a multipotent cell from one branch of a lineage

tree is converted to a differentiated cell on another branch of the tree. Finally, to maintain

a population of multipotent cells, at least some of these cells must resist differentiation to

later stages within the lineage tree [91].

An early and influential way of viewing differentiation is Conrad Waddington’s [4] epi-

genetic landscape. Waddington envisioned differentiation occurring on a rugged landscape of

sloping ridges and valleys (see Figure 3.2). Waddington represented an undifferentiated cell

as a ball at the uppermost point of the highest valley. Differentiation occurred as this ball

rolled downhill, encountering the ends of ridges that define branch points between valleys.

At each of these branch points the ball moved left or right to follow the new sloping valley

to another ridge terminus that separates yet another pair of valleys. Each ridge terminus

represents a progenitor cell in a conventional lineage tree and the movement right or left

into a new valley from this branch point represents a commitment of the progenitor to one

or another lineage. The ridges represent barriers that maintain a cell state once it is chosen.

In the decades since Waddington proposed his model, many investigators have used the

concept of an epigenetic landscape and tailored it to explain a variety of developmental pro-

cesses. Waddington himself cautioned that the epigenetic landscape is an abstraction that

could not be rigorously interpreted [4]. Some recent work has tried to enhance Waddington’s

epigenetic landscape to move it from metaphor to rigorous model [5,92–95]. However, even

with these extensions, the ridge-and-valley topography of the epigenetic landscape places a

fundamental limit on the number and kinds of cell type transitions that can be shown. For
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Figure 3.2. Waddington’s classic model of an epigenetic landscape [4]. A developmentally
immature cell, represented as a ball at the top rolls downhill and is deflected right or left at
each branch point until it reaches a catch basin (not shown in this diagram) that corresponds
to a terminally differentiated cell.

example, representing trans-differentiation between non-adjacent lineages in Waddington’s

model requires jumping over two or more ridges, and showing dedifferentation requires uphill

movement. Conventional two-dimensional lineage trees suffer similar problems. Even more

significant than difficulties in visually representing non-standard, yet documented transitions

between cell types is that Waddington’s epigenetic landscape and conventional lineage trees

both fail to provide quantification of the probability of any transition. Finally, epigenetic

landscapes and conventional lineage trees show only a small fraction of the possible transi-

tions between cell types. Many of these transitions were previously considered hypothetical,

but with ability to induce pluripotent stem cells from adult differentiated cells and to in-

duce trans-differentiation between lineages, these changes in cell type are well known. To

illustrate the limitations of standard representations of cell lineages, a generalized epigenetic

landscape like that shown in Figure 3.2 that considers m cell type attractors can only repre-

sent a maximum of 2m− log2(m+1)−1 cell type transitions. This formulation considers the

expected differentiation transitions within the lineage tree (m− 1) and trans-differentiation

events between adjacently arranged cell types on the tree (m− log2(m+ 1)). As the num-

ber of cell types in a system increases, the limitations of the epigenetic landscape become

more acute: the number of representable transitions grows with O(m), while the number of

possible transitions grows with O(m2). Given that non-standard attractor type transitions

play key roles in cancer and disease development, coupled with the ability to experimentally
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induce de-differentiation and trans-differentiation, and the possibility of off-differentiation

events, improvements are needed in the visualization of cellular differentiation.

In this work we present a new method that generates a three dimensional graph of

attractors and all possible transitions between them to overcome the limitations of a con-

ventional representation of cellular differentiation. Our technique, implemented by a tool

called CellDiff3D, analyzes the network of attractors generated by a random Boolean GRN.

In this work, the GRN that simulates myeloid cell differentiation is used as a demonstration.

A noise analysis of the network dynamics is performed to identify m attractors and the like-

lihood of all the possible m(m− 1) transitions between them. This information determines

the layout of the graph. The graph is easy to interpret and qualitatively represents the like-

lihood of transitions between cell types, their overall direction and rate under the influence

of noise. Visualization of the results of CellDiff3D is achieved by Virtual Reality Modeling

Language (VRML), that allows the user to zoom and rotate the three dimensional lineage

network.

3.3 CellDiff3D Design and Visualization

3.3.1 Separation and Flux between Attractors

We use the mean first passage time (MFPT) [96] between the attractors of any given

GRN, represented qualitatively as a Boolean network [37]. MFPT determines the probability

and directionality of each theoretically possible transition between all pairs of network states.

Introduced by Shmulevich et al. [96], MFPT(ai, aj) between a pair of attractors, ai and aj ,

is an estimate of the average number of state update steps of a Boolean network that are

required to transition from an attractor state ai to an attractor state aj when the network

operates under uniform random noise. Noise is modeled by having each bit (gene expression

value) have a probability of changing states (a bit flip, from expressed to non-expressed or

vice versa) at each state update step. Low MFPTs indicate a high likelihood of a transition

between cell states and high MFPTs indicate low likelihood for this transition. Once MFPT

between two attractors of a network is estimated, then two useful derived measures of the
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epigenetic barrier between attractors can be determined: the separation between attractors

and the flux of transitions between them. Let the separation between two attractors i, j be:

separation(i, j) = min(MFPT(i, j),MFPT(j, i)) (3.1)

Higher separation implies a lower likelihood of transition between attractors. Note that

separation is symmetric. Flux, establishes the directionality of the transition by quantifying

the difference between the rates (MFPTs) of forward and reverse transitions between a pair

of attractors. The flux between attractors i, j is defined as:

flux(i, j) = MFPT(i, j)−MFPT(j, i) (3.2)

Note that flux establishes overall direction of the transition between cell states and is

asymmetric.

3.3.2 Network Dynamics Visualization

An important element of GRNs is their behavior under gene expression noise. By

definition, attractors are stable expression states of a genetic regulatory network, but this

stability is relative and expected to vary depending on the network structure and dynam-

ics. For example, terminally differentiated cell states are expected to be more stable than

progenitor cells that may be more sensitive to noise-driven changes in states. High levels

of gene expression noise may cause unexpected or pathological cell state transitions, with

these transitions categorized based on the relative positions of the source and sink cell types

in the normal lineage tree. Table 3.1 summarizes five kinds of transitions between cell types

and provides an example of each case with respect to the cell types in the simplified myeloid

lineage tree shown in Figure 3.1.

Two of these five transition types are represented easily in Waddington’s epigenetic

landscape: differentiation (moving “downhill” in the landscape toward more specialized

cell types) and de-differentiation (loss of specialization shown by upward movement). Two
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Table 3.1. Summary of different kinds of cell type transitions with possible examples from
myeloid differentiation tree shown in Figure 3.1.

Transition Example Definition
Spontaneous-
differentiation CMP to MEP Cell switches to a more specialized state

Spontaneous-
dedifferentiation MON to GMP Cell reverts to an earlier multipotent state

Off-differentiation GMP to ERY Cell switches to a more specialized state
but on a wrong branch of the lineage tree

Off-
dedifferentiation MEG to GMP

Differentiated cell reverts to an earlier
multipotent state but on a wrong branch
of the lineage tree

Trans-
differentiation GRA to ERY Differentiated cell switches to another dif-

ferentiated state

other transition types cannot be shown in the classic epigenetic landscape representation:

off-differentiation (differentiation to a cell type not on the normal lineage path); and off-

dedifferentiation (loss of specialization to a cell type off the normal lineage path). Addition-

ally, the epigenetic landscape limits visualization of trans-differentiation events (a switch

from one adult differentiated cell type to another) to only those events that occur between

adjacently arranged cell types. As discussed earlier, it is important to have a way of rep-

resenting all possible transition types because off-differentiation and de-differentiation are

likely to play central roles in cancer [86, 89], and because recent evidence suggests that

trans-differentiation may occur during normal development [97] as well as being induced in

cultured cells [98].

Our method visualizes the different attractor transition kinds by constructing a 3-

dimensional graph in which the distances between pairs of cell types are their separation

(the minimumMFPTs between each pair) and the favored direction of the transition is shown

by an arrow with a thickness proportional to the flux. In this way, the graph provides a

quantitative view of these important parameters. To reach this result, the following steps

are taken. First, the attractors of a given network are determined. Next, noise analysis
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(described later) is performed for each attractor pair and the separation and flux values are

calculated. This is followed by mapping separation and flux values to a weighted directional

graph in which attractors are shown as nodes. Mapping is done using Graphviz, an open

source graphing application [99]. All these procedures are described in detail in the Methods

below. Plotting separation and flux values using Graphviz produces 3-dimensional layouts

of the graph which can be rotated freely in any web browser and that are easy to understand

and analyze.

The graphical layout problem for showing cell type switching is defined in the following

way: Let ix,y,z be the 〈x, y, z〉 coordinate of attractor i in the graph visualization, and

dist(i, j) be the Euclidean distance between points ix,y,z and jx,y,z. Then given a graph

of m attractors defined as a set of separation(i, j)|1 ≤ i, j ≤ m, the layout is defined by

determining the set of coordinates for each attractor such that the following summation is

minimized: ∑
1≤i,j≤m

(dist(ix,y,z, jx,y,z)− separation(i, j))2

After determining the location of attractors (nodes) in 3D space, flux between pairs of

attractors is represented by arrows (directed edges) of variable width between them with

arrow width proportional to flux. The edge direction is given by the relationship between

MFPT(i, j) and MFPT(j, i): if MFPT(i, j) <MFPT(j, i) then the edge is from i to j.

The 3D graph is viewable in any web browser using the VRML viewer plugin (such as

Cartona3D) and allows the user to rotate and zoom the graph to aid viewing, analyzing,

and understanding the relationships between attractors within complex networks.

3.3.3 Visualizing the Myeloid Differentiation Network

We modeled the simplified myeloid lineage network that is shown in Figure 3.1 to

demonstrate the utility of the visualization technique. The modeling was based on the work

of Krumsiek et al. [3] who considered a network of eleven transcription factors known to

be important in myeloid cell differentiation. We extended this work by applying a novel

search technique (manuscript in preparation) to discover a new Boolean regulatory network
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Figure 3.3. The genetic regulatory network used in this work for modeling myeloid dif-
ferentiation. Nodes are eleven transcription factors that control cell lineage and edges are
regulatory interactions between the transcription factors. An arrow signifies activation and
a closed line signifies inhibition. The Boolean regulatory control functions are not shown.
This network was discovered using a new search algorithm (manuscript in preparation) that
uncovers networks that can produce a particular set of cell types, but it does not necessarily
find the actual biological network.

that is both supported by the literature and whose dynamics produce all the attractors in

the lineage tree: three attractors representing pluripotent cells, along with an additional

4 attractors representing the terminally differentiated cell types. The transcription factor

expression pattern of each of these attractors corresponds to a myeloid cell type shown in

Figure 3.1. Our GRN discovery method searches the space of Boolean GRNs converging

to a specific GRN that minimizes the difference between the attractor’s Boolean expression

values and the experimental expression values of the corresponding cell types. The new

inferred Boolean GRN is illustrated in Figure 3.3. The essential point for demonstrating

the value of the CellDiff3D approach is that this network produces transitions between cell

types that cannot be visualized using Waddington’s epigenetic landscape or conventional

lineage trees but can easily be seen and analyzed using CellDiff3D.

Figure 3.4 shows some outputs of the visualization method applied to simulated myeloid

differentiation GRN. Running the myeloid GRN resulted in four attractors with gene ex-

pression levels that closely match the four terminally differentiated cell types (erythrocytes

(ERY), megakaryocytes (MEG), monocytes (MON), and granulocytes(GRA)). In addition,
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there are three attractors that correspond to the MEP and GMP progenitors and the CMP

stem cell (expression data is given in [3]).

Each row of Figures 3.4 and 3.5 show three different orthographic projections of the 3D

graph of the attractor network. The inferred Boolean network generated the seven stable

attractors produced during normal myeloid differentiation (labeled wild type in Figures 3.4

and 3.5). Rows below the wild type network show how network modifications (equivalent to

mutations) alter the attractor landscape and how the technique described here can readily

visualize these changes. These mutated GRNs were created by knocking out the forward

interaction link between a transcription factor and one of its targets by always assigning

this link a value of false then running the network to compute the MFPT. For example, in

the second row of Figure 3.4, we fix the value of the link from transcription factor EgrNab

to transcription factor Gfi-1 in the network shown in Figure 3.3.

A key point in interpreting the visualized lineage networks is understanding flux and

separation. For example, in the wild type network of Figure 3.4, note the wide spacing

between the granulocyte (GRA; orange) and megakaryocyte-erythrocyte precursor (MEP;

green) cells and the narrowness of the arrow that connects these cells. The large distance

indicates that there is a low probability for this cell type transition, the direction of the arrow

shows the overall direction of this infrequent transition, and the narrow width of the arrow

indicates that there is relatively little difference between the forward and reverse rates of

the transitions between these cells. Therefore, this is an infrequent and low flux transition.

Similarly, the wide separation and lack of an arrow (signalling a very low flux) indicates that

granulocyte (GRA; orange) and monocyte (MON; pink) terminal differentiation is stable and

trans-differentiation is rare.

Contrast this with the arrow connecting the monocytes(MON; pink) and common

myeloid precursor (CMP; dark blue) cells shown in the same row of the figure. The separa-

tion between these cell types is small, indicating a low MFPT and a high probability of this

transition and the thick arrow connecting the CMP to the MON cells indicates both the

overall direction of the cell state transition (CMP to MON) and that the rate of the CMP
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to MON forward transition far exceeds the rate of the reverse transition. Therefore, this is

a frequent and high flux transition. The ability to rotate this graph freely using the VRML

viewer tool adds to the utility of the visualization as the viewer can explore the relationships

between all pairs of cell types within this, or any other, lineage network.

Comparisons of the wild type network with mutated networks in which one of the

interactions between transcription factors is blocked reveals strong differences in lineage

network organization. For instance, in the bottom panel of Figure 3.4, our visualization

method immediately demonstrates major alterations in the lineage tree due to blocking Fli-

1’s regulation of EKLF. In this case, two cell types, megakaryocyte-erythrocyte progenitor

(MEP) and erythrocytes (ERY), are no longer present.

Finally, the technique developed here is able to reveal many different kinds of transitions

between cell states (Table 3.2). Although a GRN that produces attractors that correspond

to myeloid cell types was used in this initial study, any GRN and its resulting attractors/cell

types can be explored using this approach. Significantly, non-standard transitions such as

de-differentiation, off-differentiation, and trans-differentiation, are increasingly recognized

in normal and disease states, many of which cannot be shown using conventional lineage

trees. Our method allows their representation in 3-dimensional space and provides important

information on their likelihood under either gene expression noise as shown here, or other

driving forces in GRN dynamics.

3.4 Methods

3.4.1 Cell Differentiation and Attractor Dynamics

First proposed by Kauffman [37], Boolean networks are one of the main contributors to

our current knowledge of gene regulatory networks. They have proved effective in represent-

ing many biological systems including Drosophila development [41, 42], angiogenesis [43],

eukaryotic cell dynamics [44], and yeast transcription networks [40]. Boolean networks con-

sist of nodes and directed edges. In GRN modeling, nodes represent the genes and edges

represent the regulatory influences between the genes. These regulatory influences are fully
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Table 3.2. Cell type transitions discovered and visualized in the myeloid differentiation
network shown Figure 3.3 and in mutationally altered forms of this network.

Figure Network Cell type
switch Kind

3.4(a) Wild Type

CMP ⇒ MON Spontaneous-differentiation
MEP ⇒ GMP Off-differentiation
MEG ⇔ CMP High separation
MEP ⇒ GMP Off-differentiation
MEP ⇔ MEG Low separation

3.4(b) EgrNab/Gfi-1
CMP ⇒ MEG Spontaneous-differentiation
ERY ⇒ GRA Trans-differentiation
GRA ⇔ CMP Low separation

3.4(c)
Fli-1/EKLF

MEG ⇒ CMP Spontaneous-dedifferentiation
MEG ⇒ MON Trans-differentiation
MEG ⇒ GMP Off-differentiation
MEG ⇔ MON Low separation
GMP ⇔ MON High separation

3.5(b) GATA-2/PU.1

GRA ⇒ CMP Spontaneous-dedifferentiation
MEP ⇒ MON Off-differentiation
GMP ⇒ ERY Off-differentiation
GMP ⇒ MEG Off-differentiation

3.5(c) GATA-1/PU.1 MON ⇒ GMP Trans-differentiation

defined by the updating rules for each gene as a logic function of the inputs. A gene can be

either expressed (the output is true) or not expressed (the output is false).

A Boolean network with n genes has 2n possible states, denoted as Ŝ. Each network

state ŝt is the collection of all gene values at time t, ŝt = {g1, g2, ..., gn}. Given the current

state ŝt, the next network state ŝt+1 is obtained by applying each gene’s function to the the

current gene values. The gene’s logic functions are deterministic. Thus, the the mapping

function D(ŝt) that finds the next network state is also deterministic: ŝt+1 ← D(ŝt). By

repeatedly applying deterministic updating, the network dynamics will eventually reach a

previously visited state. This cycle is called an attractor (â). Attractors can be single states,

called point attractors or cyclic attractors in which the cycle consists of more than one state.

Note that to find all attractors of a given network, all possible starting states need to be con-

sidered (the code can be obtained from http://code.google.com/p/pbn-matlab-toolbox).
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In this work, cell types are considered attractors in the state space of possible gene

expression profiles [46] and cell differentiation is modeled as the process of transitioning

from one attractor to another [47].

3.4.2 Simulating and Measuring Noise Dynamics

Noise at the molecular level plays a key role in many biological processes including

protein folding, transcription factor binding to DNA, and the rate of initiating transcription

and translation [100, 101]. At the systems level, noise influences the likelihood of cell type

transitions [46]. Noise can be modeled in Boolean regulatory networks by random bit flips

during network operation, with these bit flips representing noise-driven changes in gene

expression. Let ŝj ← η(ŝi, r) be the spontaneous noise function that maps a state of the

network ŝi to a new state ŝj with the addition of noise, implemented as r bit flips, each single

bit flip occurring with probability p. Noise modifies the probability of state transitions as the

states are updated and the switching among network attractors. Since attractors represent

cell types, measures of noise tolerance can estimate the magnitude of the barrier between

attractors; the so-called epigenetic barrier. In the following section three measures of the

epigenetic barrier are introduced and compared.

Hamming Distance

Hamming distance is the direct measure of the difference between corresponding ele-

ments of two bit vectors. In GRNs, Hamming distance measures the differences in expression

levels between two network states. Differences between gene expression profiles are used to

identify cell type or cell physiology [102]. However, as a measure of the epigenetic barrier

between states, Hamming distance does not utilize η(ŝ, r) and also ignores the constraints

that regulatory network dynamics impose upon state transitions D(ŝ). For these reasons,

Hamming distance is a poor measure of the epigenetic barrier.

Transitory Perturbation (Single-bit-flip)

An alternative measure of the likelihood of attractor transition under expression noise
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was introduced by Villani et al. [103]. Once the set of attractors is identified, this measure

inserts noise as a single bit flip one-off event followed by deterministic updating. So given

âi as an attractor state, ŝi ← η(âi, 1) is applied to a single bit, then the network-defined

updating rules are applied determinatively until an attractor state âj ← D∗(ŝi) is reached.

For each attractor and each bit, the process is repeated. Let ci,j , 1 ≤ i, j ≤ m (wherem is the

number of attractors) be the count of when âj ← D∗(η(âi, 1)). Then, P (âi, âj) =
ci,j
m . For

each pair of attractors {âi, âj}, P (âi, âj) is the portion of single one-step bit flips (transitory

perturbations) in the nodes of all states of attractor âi which will result in a transition from

âi to âj under noise-free dynamics.

This single-bit-flip measure of likelihood of network transition under noise efficiently

estimates the epigenetic barrier (since it is O(nm)), but it assumes that expression noise is

an infrequent event during network dynamics.

Mean First Passage Time

Introduced by Shmulevich et al. [96], mean first passage time (MFPT) is the the average

time it takes to reach state y from state x in the presence of noise. Mathematically, first

passage time (FPT) is defined as Fk(ŝx, ŝy): the probability that starting in state ŝx, the

first time the system visits a state ŝy will be at time k; in Boolean networks, time is measured

as the number of state updates. MFPT is then defined as:

MFPT (ŝx, ŝy) =
∑
k

kFk (ŝx, ŝy) (3.3)

Where the Fk itself is formulated as:

Fk(ŝx, ŝy) =
∑

ŝz∈{0,1}n,z 6=y

pxzFk−1 (ŝz, ŝy) (3.4)

In this recursive formula F1(ŝx, ŝy) is the probability of direct transition from state ŝx

to ŝy. pxz is the probability of transition from state ŝx to state ŝz. Probabilistically, there

are two ways to reach state ŝz from ŝx ; either ŝz is a deterministic target for ŝs and no bit

flips occur due to the noise, or an aggregate of bit flips drive the transition from ŝx to ŝz.
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When the MFPT between two states is low, it implies that starting from the first state,

the second state is easily reached by molecular noise. Figure 3.6 shows Fk and kFk for the

transition between two arbitrary attractors. As this figure shows, the b to a transition has a

lower MFPT compared to a to b. Note that when an attractor has more than one state i.e it

is a cyclic attractor, the MFPT is calculated for each state separately and then is averaged

over all states of that attractor.

At each network state update D(ŝ) there is a probability that the state will change as

a function of the Hamming distance (h) between the current state and the subsequent state

ŝt+1 ← D(η(ŝt, r)). MFPT models uniform expression noise by considering probabilistic bit

flips at every possible state of the network and deriving the distribution of passage times

from analysis of the corresponding Markov process. Statistically, the probability distribution

of bit flips can be seen as a binomial distribution, thus the probability of r bit flips, η(ŝa, r)

is
(
n
r

)
pr(1 − p)n−r, where p is the probability of a single bit flip and n is the total number

of bits.

Mean first passage time quantifies the epigenetic barriers between all attractor states

during network execution. Therefore, this work only considers MFPT because of its realism

in modeling expression noise. However, the time required for MFPT computation is an

exponential function of the number of genes, so if the number of genes in the network is

large, calculating MFPT may become intractable. In this case, transitory perturbation can

be used as a possible alternative.

3.5 Summary

In this work, we developed a technique and a supporting method for visualization,

CellDiff3D, that estimates the likelihood and directionality of noise-driven transitions be-

tween different cell types and allows the three dimensional visualization of these relation-

ships. A Boolean network model of myeloid cell differentiation [3] was used as a demonstra-

tion system for this research.

The metric of mean first passage time (MFPT) assesses the likelihood that noise in the

GRN for myeloid differentiation will trigger a transition between cell types. Low MFPT
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values indicate a high probability of a cell type transition. The difference in MFPTs for

forward (cell type A to cell type B) and reverse (cell type B to cell type A) transitions

provides a measure termed flux. Flux is analogous to the difference in forward and reverse

rates of a chemical reaction and it gives the anticipated direction and the strength of the

directionality in transitions between cell types.

Our technique calculated the MFPT, separation and flux between all pairs of cell types

in a simplified myeloid lineage tree that included one multipotent stem cell, two intermediate

cells, and four terminal cell types to produce a graph to display all 42 pairwise relationships

m(m − 1) where m = 7 between the myeloid cell types. A VRML-based graphics tool was

employed as part of CellDiff3D to visualize all attractor type transitions by placing all pairs

of different cell types in 3 dimensional space. It shows the likelihood of a transition between

cell types as the separation between each pair and the directionality of the transition as

arrows with a width proportional to the flux. The VRML output, viewable in any web

browser (with the proper plugin), allows the free rotation and zooming of the differentiation

network to reveal its features. It can be used for any cell differentiation network, can include

many more than the 7 cell types considered here, and is capable of showing all possible

transitions (for example, de-differentiation and trans-differentiation) between different types

of cells. Our technique readily revealed changes in the dynamics of mutationally altered

myeloid differentiation networks, the loss of cell types, and unusual cell type transitions

that included dedifferentiation, trans-differentiation, and off-differentiation.

This work has introduced a 3D graph approach to visualize the influence of noise on cell

type switching of wild type and mutated regulatory networks. However, the system is not

limited to noise analysis and can incorporate other influences that drive cell type switching.
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(a)Wild Type

(b)EgrNab Gfi-1

(c)Fli-1 EKLF

Figure 3.4. CellDiff3D visualization of the simulated myeloid differentiation network. Each
image is a still taken from renderings of VRML code produced by the modeling method. The
transcription factors and their regulatory interactions that comprise the GRN are shown in
Figure 3.3. Each sphere is one of the myeloid cell types shown in Figure 3.1. Each row shows
three orthographic views of cell type transitions derived from runs using the wild type tran-
scription factor network (top row of panel) or with transcription factor mutations in which
the first transcription factor listed does not interact with the second transcription factor
(lower rows of panel). The distance between each pair of cell types is the separation and
the arrow direction and thickness is flux. For clarity low flux edges are not shown. Laven-
der arrows show normal differentiation or de-differentiation along the standard lineage tree
from a specialized cell to its immediate progenitor; black arrows show trans-differentiation,
off-differentiation, or off-dedifferentiation.
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a)Wild Type

(b)GATA-2 PU.1

(c)GATA-1 PU.1

Figure 3.5. CellDiff3D illustration of the effects of two additional mutations that disrupt the
myeloid differentiation network. There are interactions between GATA-2 to PU.1 (middle
row) and GATA-1 to PU.1 (bottom row). See Figure 3.4 for extended caption.
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(a) (b)

Figure 3.6. (a) Fk (probability of first visit at time step k) plotted for two arbitrary attrac-
tors, called a and b in a random Boolean network for 1000 steps (k). The red curve is for
the transition from b to a that has a low MFPT compared to the reverse transition, a to b
is shown with the blue curve; (b) kFk plotted for the Fk curves in (a). Note that MFPT is
the centroid of the area under the kFk curve.
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CHAPTER 4

MULTISTABLE SWITCHES AND THEIR ROLE IN
CELLULAR DIFFERENTIATION NETWORKS 1

4.1 Abstract

Background: Cellular differentiation during development is controlled by gene regu-

latory networks (GRNs). This complex process is always subject to gene expression noise.

There is evidence suggesting that commonly seen patterns in GRNs, referred to as biologi-

cal multistable switches, play an important role in creating the structure of lineage trees by

providing stability to cell types.

Results: To explore this question a new methodology is developed and applied to study

(a) the multistable switch-containing GRN for hematopoiesis and (b) a large set of random

boolean networks (RBNs) in which multistable switches were embedded systematically. In

this work, each network attractor is taken to represent a distinct cell type. The GRNs were

seeded with one or two identical copies of each multistable switch and the effect of these

additions on two key aspects of network dynamics was assessed. These properties are the

barrier to movement between pairs of attractors (separation) and the degree to which one

direction of movement between attractor pairs is favored over another (directionality). Both

of these properties are instrumental in shaping the structure of lineage trees. We found that

adding one multistable switch of any type had a modest effect on increasing the proportion

of well-separated attractor pairs. Adding two identical switches of any type had a much

stronger effect in increasing the proportion of well-separated attractors. Similarly, there

was an increase in the frequency of directional transitions between attractor pairs when two
1A. Ghaffarizadeh, N.S. Flann, and G. J. Podgorski, “Multistable Switches and their Role in Cellular

Differentiation Networks,” BMC Bioinformatics 2014, 15 (Suppl 7), S7.
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identical multistable switches were added to GRNs. This effect on directionality was not

observed when only one multistable switch was added.

Conclusions: This work provides evidence that the occurrence of multistable switches

in networks that control cellular differentiation contributes to the structure of lineage trees

and to the stabilization of cell types.

4.2 Introduction

Understanding differentiation is critical to knowing how normal development unfolds

and for taming diseases, such as cancer, that are associated with defects or reversals in

differentiation. In animals, the process of differentiation typically results in cells reaching

a terminally differentiated state. However, recent discoveries have shown that “terminal

differentiation” may be a misnomer as fully differentiated cells can be reprogrammed to revert

back to a pluripotent state, with these pluripotent cells having the potential to differentiate

into other cell types.

Transitions between cell types can be mapped as a directed tree of cell types, known

as a lineage tree, with embryonic stem cells at the root, various classes of precursor cells

as internal nodes, and terminally differentiated cells as branch tips. Gene regulatory net-

works (GRNs) that respond to both external stimuli and to gene expression noise con-

trol transitions between cell types and determine the structure of lineage trees [5]. Given

that differentiation is driven by the output of dynamic gene regulatory networks, a useful,

network-based perspective for envisioning different stable cell types is as basins in an at-

tractor landscape [39, 87]. In this dynamical systems view, differentiation is the process of

moving between the different attractor basins that are generated by the dynamics of the

gene regulatory network.

The GRNs that control differentiation are complex, but these larger networks can be

decomposed into smaller modules of simpler, frequently appearing regulatory motifs that

consist of only a few genes that interact in characteristic patterns [5]. For example, a common

feature of many regulatory motifs is a pair of genes coupled by either positive or negative

feedback loops [104]. These couplings result in different network outputs, with positive
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Figure 4.1. A simplified myeloid lineage tree (from [3]) where the terminal nodes
are the mature cell types of erythrocytes (ERY), megakaryocytes (MEG), monocytes
(MON), and granulocytes (GRA). Multipotent cells are the common myeloid progenitor
(CMP), megakaryocyte-erythrocyte progenitor (MEP), and granulocyte-monocyte progeni-
tor (GMP).

feedback loops often producing two or more stable attractor states, and negative feedback

loops often enhancing attractor stability [104]. The generation of two or more attractors is

referred to as multistability, with the special case of generating only two attractors termed

bistability.

In this work, we investigated four regulatory motifs, termed multistable switches, that

operate in differentiating cells [5,104]. Each of these motifs results in multistability when the

motif operates in isolation [5]. These multistable switches were added singly or in identical

pairs to larger GRNs to understand how they affect the structure of lineage trees and the

stability of different cell types. These studies were done by generating random Boolean GRNs

that produce five or more attractors. These networks were then seeded with the multistable

switches. We found that the addition of identical pairs multistable switches of any of the

four different types increased the stability of attractors produced by the GRNs. Adding a

single multistable switch of any type had little effect on attractor stability. The addition

of two multistable switches to a randomly generated GRN also increased the proportion of

directional transitions between attractors. In terms of differentiation, this contributes to the

structure of a lineage tree by favoring particular pathways that lead between different cell

types.
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4.3 Approach and results

This work studied three key properties of cellular differentiation [103]: (a) differen-

tiation of multipotent cells can be driven by gene expression noise; (b) there is a strong

directionality to differentiation, with transitions between cell types occurring from less to

more differentiated cells; and (c) terminally differentiated cells are stable.

The simplified myeloid linage tree illustrated in Figure 4.1 provides an example of these

key properties. This lineage tree includes only favored transitions between cell types that

involve progenitor cells giving rise to two different, more differentiated cell types, and the

establishment of barriers between cell types that prevent transdifferentiation and dediffer-

entiation.

4.3.1 Cellular differentiation and attractor dynamics

In this work, differentiation is viewed as a set of transitions between attractor basins

produced by a dynamical genetic regulatory network. This model of differentiation was

pioneered by Kaufman and extended by many others [37,39,103,105]. Borrowing from early

work by Waddington [4], the landscape created by these attractor basins has been termed

an epigenetic landscape [5]. A conceptual model of such an epigenetic landscape is shown

in Figure 4.2. In this view, each cell type occupies an attractor basin at a particular level

of a potential energy landscape. A cell can be moved out its attractor basin in response to

an external signal or to gene expression noise. Once it crosses the barrier that delimits the

basin, it moves down to another attractor basin lower in the epigenetic landscape. There are

at least two possible paths leaving each attractor basin, with each downhill path leading to

a different basin that represents a distinct, more specialized cell type. Once a cell descends

into a new basin, the large potential energy barrier between the new lower basin and upper

starting basin makes it unlikely for a more specialized cell to make the transition back to a

progenitor cell. This process of cells moving out of an attractor basin in response to external

signals or to gene expression noise and descending into attractor basins of lower potential

energy that correspond to more differentiated cells is repeated at each level of the lineage

tree.
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This potential energy barrier that must be crossed to move between attractor basins

is called the epigenetic barrier. Shmulevich et al. [96] proposed a method of quantifying

this barrier termed the mean first passage time (MFPT), defined as the average number

of state transitions needed to move from one attractor basin to another during the noisy

operation of a Boolean regulatory network. The MFPT provides a measure of the probability

of a particular transition between two attractor basins, with low MFPTs indicating a high

likelihood of the transition, and high MFPTs indicating a low likelihood for this transition.

Details on the calculation of MFPT values and all other aspects of the procedures are given

in Methods; this section will only provide an overview.

The forward and reverse MFPT values between two attractor basins (simply called at-

tractors from this point forward), att1 and att2, provide information on the directionality

of the transition. Directionality is a key element of differentiation, as under normal circum-

stances, cells transition from less to more mature states, but not in the reserve direction.

For the pair of attractors att1 and att2, we define a directional transition to occur if

att1 → att2 (reaching att2 from att1) has a significantly larger MFPT than the MFPT of

att2 → att1.

Another important aspect of cellular differentiation captured by MFPT is the proba-

bility of making a transition between any pair of different cell types. This is important in

shaping the structure of a lineage tree and in stabilizing cell types. For example, progenitor

cell types should not differentiate into cell types off the normal lineage path, and terminally

differentiated cells must be prevented from dedifferentiation or transdifferentiating into other

cell types. Therefore, the MFPT should be high in both directions for unfavored transitions

between attractors. We term this separation, with high separation occurring when the

MFPTs of att1 → att2 and att2 → att1 are both large.

Given the directionality of differentiation and the large separation of the majority of cell

types within a linage tree, a plot of the distribution of MFTPs of the forward (for example,

att1− > att2) and reverse (att2− > att1) transitions between all possible pairs of cell types

within a lineage tree is expected to show clustering in the regions of directionality and
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separation. This is shown in Figure 4.3. In this plot of forward and reverse MFPTs between

all possible attractor pairs produced by a set of gene regulatory networks, the quadrant

with a low forward MFPT and high reverse MFPT represents attractor pairs (cell types)

that are linked with a strong directional transition. In contrast, the quadrant with high

MFTPs in both the forward and reverse directions represents well separated attractor pairs.

This region of high separation represents low probability transitions between cells types,

such as transdifferentiation or differentiation off the normal lineage pathway. Using this

reasoning, if adding a small multistable switch to a larger GRN enhances the directionality

of transitions between attractors, then in a plot like the one shown in Figure 4.3, there should

be an increase in frequency of attractor pairs in the regions labeled directional. Similarly, if

a multistable switch added to a gene regulatory network increases the separation between

pairs of attractors, then there should be an increase in the region of Figure 4.3 labeled

separate. This is the basis of the approach followed in this work.

An important point to note is that in a MFPT representation of biologically realistic

lineage trees, the proportion of attractor pair transitions in the separate region will far exceed

the proportion in the directional quadrant. This is because the topology of actual linage trees

leads to there being significantly fewer directional transitions than well separated transitions.

Intuitively, this stems from the ideas that the number of favored transitions between different

cell types is much smaller than the number of theoretically possible transitions, and that

most of the theoretically possible transitions are unfavored events such as dedifferentiation

and transdifferentiation. Mathematically, the possible number of well separated transitions

is on the order O(b2h) while the number of directional transitions is of the order O(bh),

where b is the branching factor of differentiation tree (number of children for each node)

and h is the height of the tree measured as the number of cell type transitions between a

stem cell and a terminally differentiated cell. This expected difference in the proportions of

separate and directional attractor pair transitions is important when interpreting the effects

of adding multistable switches to random Boolean genetic regulatory networks (see below).

We investigated how the addition of the four multistable switches shown in Figure 4.4
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Figure 4.2. A hypothetical two dimensional epigenetic landscape of differentiation (modified
from [5]). The horizontal axis shows the state space of different cell types and the vertical axis
approximates potential energy differences between cell types. The basins are attractors that
represent different cell types and the magnitude of potential energy differences between states
provides a measure of the probability of transitions between states under gene expression
noise.

Figure 4.3. Forward and reverse MFPT plot showing directional and separate regions.

influenced the attractor landscape produced by randomly generated Boolean regulatory net-

works. A conventional node-and-edge diagram of each multistable switch used in biological

literature is depicted in the figure, followed by a more informative logic circuit representa-

tion. The first logic circuit (Figure 4.4.a) is usually referred to as a bistable switch (BS)

or toggle switch [106]. We call the second logic switch (4.4.b) a mutual inhibition switch

(MI00). Note how the less informative node-and-edge diagrams for these two distinct logic

circuits are identical. The next two multistable switches extend mutual inhibition with the

addition of one (MI+0) or two (MI++) positive feedback loops. MI++ is sometimes referred

to as tristable switch.
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(a)

(b)

(c)

(d)

Figure 4.4. Multistable switches used in this work. The diagrams in the left show the node
and edge representation and the diagrams at the right show the logic gate representation
of each switch. The truth table of the functions are [1,1,0,1] for a and [0,1,0,0] for b, c, and
d for binary numbers [00,01,10,11], respectively. In this work, the multistable switches are
referred to as: (a) bistable switch (BS), (b) mutual inhibition with zero positive feedback
loops (MI00), (c) mutual inhibition with one positive feedback loop (MI0+), and (d) mutual
inhibition with two positive feedback loops (MI++).

4.3.2 Multistable switches in myeloid differentiation

An important example of cellular diversification is the well studied system of hematopoiesis.

During hematopoiesis, multipotent stem cells (hemocytoblasts) differentiate into either myeloid

or lymphoid progenitors [3]. A sub-tree of the myeloid lineage tree is illustrated in Fig-

ure 4.1. This figure shows that hemocytoblast stem cells produce two pluripotent cell types

(megakaryocyte-erythrocyte progenitor (MEP) cells and granulocyte-monocyte progenitor

(GMP) cells) that in turn produce terminally differentiated erythrocyte, megakaryocyte,

monocyte and granulocyte cells.
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To construct a GRN that simulates the dynamics of the myeloid differentiation, we

extracted a set of regulatory gene expression levels of all cell types in Figure 4.1 from three

datasets of distinct experiments available at ArrayExpress database (http://www.ebi.ac.

uk/microarray-as/ae/): E-GEOD-5606, E-GEOD-8407, and E-GEOD-18483. Motivated

by Krumsiek et al. [3], we picked 11 transcription factors that play important roles in

myeloid differentiation: GATA-1, GATA-2, FOG-1, EKLF, Fli-1, SCL, C/EBPα, PU.1,

cJun, EgrNab, and Gfi-1; note that the EgrNab, represents an integration of Egr-1, Egr-2

and Nab-2. Using these genes and their expression profiles, we utilized a search tool to infer

a GRN for myeloid differentiation as a Boolean network (manuscript in preparation). This

network includes 4 well-known gene interactions that represent multistable switches [3, 5]:

a) An MI++ switch between GATA-1 and PU.1; b) An MI++ switch between GATA-2 and

PU.1; c) A bistable switch between Fli-1 and EKLF; and d) A bistable switch between Gfi-1

and EgrNab. We computed the MFPT between attractors of this network that represent

the cell types of the myeloid lineage tree. The pairwise forward and reverse MFPT values

between all pairs of attractors of this network are depicted in the Figure 4.5 (red circles);

we also included the MFPT values for the attractors of the original network proposed by

Krumsiek and colleagues (green diamonds) that contains only four attractors as the termi-

nally differentiated cell types. This figure shows that the majority of transitions in myeloid

differentiation fall in either the separation or directionality regions shown in Figure 4.3.

4.3.3 Multistable switches in random networks

We showed that the myeloid differentiation network, with its multistable switches, gen-

erates directional transitions and well separated attractors. How general is this result?

We extended our study to examine the role of these switches in a large space of cellular

differentiation networks.

The outline of this approach was to:

1. Construct a random Boolean network (only networks that are expected to operate in

the critical domain were generated (see Methods)).
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Figure 4.5. Forward and reverse MFPT plot for the myeloid differentiation network. Red
circles are the MFPT values of our inferred network. This network has all 7 attractors of
the myeloid lineage tree shown in Figure 4.1, including multipotent cells. Green diamonds
show the MFPT values for the network proposed by Krumsiek et al. which only has the
4 terminally differentiated cell types [3]. Including multipotent cells illustrates additional
attractor relations, including directionality.

2. Embed zero, one or two copies of a given multistable switch within the network.

3. Run the network and identify attractors; if the number of attractors is less than 5, go

back to step 1.

4. Compute the forward and reverse MFPT between all pairs of attractors.

5. Map the forward and reverse MFPT of each pair of attractors to a point in a MFPT

density plot like the one shown in Figure 4.3.

6. Repeat for 5000 random Boolean networks to create each MFPT density plot.

Density plots were generated for 9 different types of networks: RBN networks without

any added multistable switch and RBNs with one or two identical copies of each of the

four types of multistable switches. Figure 4.6 shows these density plots. Each plot shows

the forward and reverse MFPT between all attractor pairs generated by 5000 networks of a

single type.
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The MFPT density distribution produced by RBNs without any added multistable

switch (Figure 4.6 a) shows no clustering in the directional or separate regions of the plot.

Instead, the forward and reverse MFPTs of most of the transitions are equal and of interme-

diate values and therefore fall in the mid-range of the diagonal. Adding a single multistable

switch of any type to the RBN had a modest effect of increasing the density of attractor

pairs in the separate region. Adding two multistable switches of the same type to the RBN

had a much stronger effect on increasing the frequency of well separated attractor pairs.

This is reflected in an increased density in the separate region of the MFPT plots. The

particular kind of multistable switch had little impact on this effect; instead, the critical

element was adding two rather than one multistable switch to the RBN.

There was a modest increase in the density of attractor pairs in the directional regions of

the MFPT plot when two identical multistable switches were added. However, as discussed

above, a major clustering of MFPT values in the directional region is not expected in

networks that produce lineage trees. The modest increase in directionality gained by adding

multistable switches is likely to be significant. In contrast to the effect on separation,

there was a difference between the multistable switch types in increasing directionality: The

MI++ switch type did not increase directionality, but all three of the other types did. To

better illustrate these enrichments in directional and separate regions, Figure 4.7 shows

the difference between the MFPT distribution of networks with two embedded multistable

switches and the base-line random network distribution.

4.4 Conclusion

This work examined how the attractor structure generated from random Boolean reg-

ulatory network dynamics was influenced by the addition of multistable switches that are

commonly found in biological networks that control differentiation. The results show that

the addition of multistable switches increases the resilience of genetic regulatory networks

to gene expression noise. This is seen by the increase in the proportion of well separated

attractors. In a biological context, this separation of attractors has the effect of stabilizing

determined cells and of helping to establish well defined pathways between differentiating
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6. Distributions of MFPT values. The plots show the forward and reverse MFPTs
for all transitions seen in 5000 critical networks of each type. (a) Networks with no added
multistable motifs; (b) Networks with one embedded bistable switch; (c) Networks with two
embedded bistable switches; (d) Networks with one embedded MI00 switch; (e) Networks
with one embedded MI+0 switch; (f) Networks with one embedded MI++ switch; (g) Net-
works with two embedded MI00 switches; (h) Networks with two embedded MI+0 switches;
(i) Networks with two embedded MI++ switches.

cells. Adding a single multistable switch to a random network had a relatively modest stabi-

lizing effect, but adding two identical switches of any of the four types tested here produced

much stronger barriers between different cell types. In parallel, there was also evidence that

adding two multistable switches to a genetic regulatory network increased the frequency of
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(a) (b)

(c) (d)

Figure 4.7. Difference of distributions of MFPT values for networks embedded with two
identical motifs against the networks with no motifs. (a) Difference of network with no
motifs and networks with two embedded bistable switches ; (b) Difference of network with
no motifs and networks with two embedded MI00 switches; (c) Difference of network with
no motifs and networks with two embedded MI+0 switches; (c) Difference of network with
no motifs and networks with two embedded MI++ switches.

directional transitions between attractors. From a biological perspective, this structures a

linage tree by favoring one-way transitions between particular cell types. Therefore, the

pervasive occurrence of multistable switches in networks that control cellular differentiation

is likely to contribute to the structure of lineage trees and to the stabilization of cell types.

4.5 Detailed methods

4.5.1 Cell differentiation and attractor dynamics

Boolean networks [37] have proved effective in representing GRN structure and dynam-

ics in many systems, including Drosophila development [41,42], angiogenesis [43], eukaryotic

cell dynamics [44], and yeast transcription networks [40]. Each gene in a network is repre-
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sented as a node whose regulation by other genes is modeled using updating rules as logic

functions. An expressed gene is assigned the value true and a non-expressed gene the value

false.

A Boolean network with n genes has 2n possible states, denoted as Ŝ. At each step in

the simulation, the next state ŝt+1 ∈ Ŝ is determined by applying each gene’s logic function

(representing the regulatory interactions) to the current value of the genes in ŝt. Let this

computation be defined as ŝt+1 ← D(ŝt) where D(ŝt) is the deterministic mapping function

that finds the next state of the network given the current state. As the network is executed

by repeated applications of D(ŝ), the state will reach a previously visited state, and thus,

since the dynamics are deterministic, enter into an attractor which represents a fixed point

of the system. Attractors can be single states, called point attractors, or consist of more

than one state that the network continuously transitions between, called cyclic attractors.

Let â = D∗(ŝ) be the resulting network attractor state reached when starting at ŝ and

applying the logic functions until the attractor state â is reached.

In this work, cell types are considered attractors in the state space of possible gene

expression profiles [46] and cell differentiation is modeled as the process of transitioning

from one attractor to another [47].

4.5.2 Network construction

A random Boolean regulatory network is generated by randomly connecting a varying

number of nodes, then instantiating each node with a randomly generated logic function.

To replicate networks found in natural systems, we created only networks that operate in

the critical domain, rather than ordered or chaotic. Critical networks implement maximal

information flow [39] and have the lowest attractor basin entropy [107]. Evidence that

GRN’s tend to be critical is given in [38]. To generate critical networks, the parameters are

set according to s = 2qpN (1− pN ) where s is the sensitivity of the network to perturbations

in gene values, pN is the probability of the output of each Boolean function being 1, and

q is the count of inputs to each Boolean function [108]. When s = 1 a single bit change

is on average propagated to one other node and the network is in the critical domain. In
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an ordered network, s < 1 and perturbations tend to die out, while in a chaotic network,

s > 1 and perturbations tend to grow. In this work s was fixed at 1 and pN was adjusted

depending upon the value of q.

The attractors of each random Boolean regulatory network are determined, then Markov

chain analysis is performed to determine the transition probabilities between all possible

states. This allows determination of the MFPTs between each pair of attractors [109]. The

MFPTs allow the construction of a graph whose nodes are attractors and weighted edges

are the MFPT value between different nodes. Figure 4.8.a shows a sample graph. MFPT

graphs for cellular differentiation are expected to have a small MFPT value for forward

edges (moving from less to more specialized cell types), large values for reverse edges, and

large values in both directions for transitions between attractors at the same level of tree

(level is the number of transitions from the root). In [103] a method was introduced that

applied successively higher MFPT thresholds to prune edges from this complete MFPT tree

as a means to identify separation among subsets of close attractor states as illustrated in

Figure 4.8(b). The effects of changing the threshold from low to high was proposed as a

possible mechanism for cellular differentiation with the low threshold representing pluripo-

tency and the process of raising the threshold as type specialization as attractors become

more and more isolated . This model proposes that cells differentiate by actively control-

ling their sensitivity of expression noise and can account for the observation that terminally

differentiated cell states tend to be more stable than pluripotent states.

4.5.3 Network search

We perform a uniform Monte Carlo search over the space of critical random Boolean net-

works. For each network we find the attractors and compute the MFPT between all possible

attractor pairs (extended from code posted at http://code.google.com/p/pbn-matlab-toolbox [109]) .

Using the MFPT values, for each type of multistable switch added to the network, we draw

a density plot where the x-axis is the forward MFPT and the y-axis is the reverse MFPT

(we consider the edge with lower MFPT as forward). The acquired density plots are used

to determine the distribution of directional, non-directional, separated and non-separated
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(a) (b)

Figure 4.8. (a) A sample MFPT graph. Nodes are attractors and the weights of edges
are proportional to MFPT values between attractors. (b) Same graph as in (a) with high
(> 103) MFPT edges eliminated.

probability transitions between attractors in each network.

4.5.4 Network types

We investigated 9 types of networks. Approximately 5 ∗ 104 networks of each type were

explored to find 5, 000 networks of each type with five or more attractors. The different

network types come from the use of the 4 multistable switches that are shown in Figure 4.4.

The first switch (Figure 4.4 a) is a bistable switch, a small local circuit with feedback

loops. This is a common switch in biological networks and it controls binary branch points

between two mutually exclusive cell lineages [5,106]. The truth table of the functions in this

switch is [1,1,0,1] for binary numbers [00,01,10,11], respectively. The other three switches all

encode mutual inhibition between two genes. The first is MI00 and is based on the network

synthesized in [106]. MI00 includes two incoherent feedback loops. The final two switches

extend mutual inhibition with the addition of one MI+0 or two MI++ positive (coherent)

feedback loops. These two switches were explored in [110], where it was shown that the

positive feedback loops can introduce additional shallow attractor basins in continuous ODE

network models.

The four switches were used as described above to construct nine different types of

networks: no motif, one BS, one MI00, one MI0+, one MI++ and then four more network
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(a) (b)

Figure 4.9. (a) Fk (probability of first visit at time step k) plotted for two arbitrary attrac-
tors, called a and b, in a random Boolean network for 2500 steps (k). The red curve is for
the transition from a to b that has a low MFPT compared to the reverse transition, b to a
(shown with the blue curve); (b) kFk plotted for the Fk curves in (a). Note that MFPT is
the centroid of area under the kFk curve.

classes each with two of the same switch. Note that when a motif defined in Figure 4.4

is embedded, two nodes of the original RBN are selected randomly, their logic functions

replaced and inputs and outputs rewired. For illustration, consider how a MI0+ motif is

embedded into a RBN. Starting with a RBN (see Figure 4.4 (a)), two nodes are selected

randomly and their truth tables are changed to [0,1,0,0]. Then, the 20 input of the second

node is wired to the output of first node and, conversely, the 20 input of first node is wired to

the output of the second node. The small or-gate and not-gate are not considered in wiring,

because they were previously considered in the truth tables of their respective nodes.

4.5.5 Mean first passage time

The first-passage time (FPT), also called first hitting time, is the time taken by a

stochastic system for the first visit of a specific state. Mathematically, FPT is defined

as Fk(ŝx, ŝy): the probability that starting in state x̂, the first time the system visits a

state ŷ will be at time k. In the case of Boolean networks, time is the path length of

state transitions. Considering pxy as the probability of transition between states x and y,

then F1(ŝx, ŝy) = pxy. As equation 4.1 shows, for k ≥ 2, Fk is calculated by a recursive

iteration over all transitive relations: for all z states in the network dynamics, Fk(ŝx, ŝy) is

the probability of a one step transition from state x to z times the FPT from state z to y
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in k − 1 steps.

Fk(ŝx, ŝy) =
∑

ŝz∈{0,1}n,z 6=y

pxzFk−1 (ŝz, ŝy) (4.1)

Probabilistically, there are two possibilities to reach state y from x ; either y is a

deterministic target for x and no bit flips occur due to the noise, or an aggregate of bit flips

drive the transition from x to y. So the equation for pxy can be written as follows.

pxy =


(1− pe)n y ← D(ŝx)

p
hxy
e (1− pe)n−hxy y ← η(ŝx, hxy), ŝx 6= ŝy

(4.2)

where dij is equal to 1 if there is a deterministic transition from x to y in the network

dynamics, otherwise it is 0; pe is the probability of a single bit flip resulting from noise and

hxy is the Hamming distance between two states; n is the total number of nodes in the

network.

Although the FPT is a valuable measure, the average time it takes to reach state y

from state x, termed Mean First Passage Time (MFPT), is of greater interest. MFPT in

Boolean networks was introduced by Shmulevich et al. [96] and is defined as:

MFPT (ŝx, ŝy) =
∑
k

kFk (ŝx, ŝy) (4.3)

A low MFPT between two states indicates that starting from the first state, the second

state is easily reached by gene expression noise. Figure 4.9 shows Fk, kFk, and MFPT for

the transition between two arbitrary attractors. As this figure shows, the a to b transition

has a lower MFPT compared to the other.

At each network state update D(ŝ) there is a probability that the state will change as

a function of the Hamming distance (h) between the current state and the subsequent state

ŝt+1 ← D(η(ŝt, r)). MFPT models uniform gene expression noise by considering probabilis-

tic bit flips at every possible state of the network and deriving the distribution of passage

times from analysis of the corresponding Markov process. Statistically, the probability dis-
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Figure 4.10. Relationship between MFPT and P for 100 critical RBNs.

tribution of bit flips can be seen as a binomial distribution, thus the probability of r bit

flips, η(ŝa, r) is
(
h
r

)
pr(1 − p)h−r, where p is the probability of a single bit flip and h is the

total number of bits.

4.6 Comparisons of epigenetic barrier measures

There are a number of possible ways to measure epigenetic barriers that separate two

attractor basins. In this part of the work, the utility of three of these measures, MFPT,

transitory bit flips, and Hamming distance, were compared.

4.6.1 Evaluating epigenetic barriers: MFPT vs. transitory bit flips

Villani et al. [103] studied noise-driven network transitions in RBNs. They introduced

a measure of the probability of network transitions as the likelihood of attractor transition

under expression noise. In this measure, for each pair of attractors {ai, aj}, P (i, j) is the

portion of single one-step bit flips (transitory perturbations) in the nodes of all states of

attractor ai which will result in a transition from ai to aj under noise-free dynamics. The

measure of likelihood of network transition under noise is similar to MFPT, but it does not

consider gene expression variability throughout the network. MFPT better models global
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expression noise by considering probabilistic bit flips at every possible state of the network

and deriving the distribution of passage times from analysis of the corresponding Markov

process.

Since one-off bit flips consider noise only as a single bit changes and only when the

network has reached its attractor states, it could serve as an efficient yet heuristic measure

of the MFPT. To test this idea, a study was performed on a set of small critical networks

where for each network and each pair of attractors, P (i, j) was compared with MFPT(i, j).

Figure 4.10 depicts the relationship between MFPT and P for 100 arbitrary Boolean net-

works that have 5 or more attractors. Each point represents the epigenetic barrier between

two attractors measured in MFPT and P . Since the networks studied in these experiments

are small and do not have many attractors, many points are located in the line P = 0. The

regression line in this figure shows that as MFPT increases P tends to decrease. P and

MFPT are modestly correlated for these small networks and it is unclear how well one-off

bit flips can accurately estimate MFPT when network size grows. Since the networks in our

experiments are small, we only consider MFPT because of its realism in modeling expression

noise.

4.6.2 Evaluating epigenetic barriers: MFPT vs. Hamming distance

An intuitive idea is that MFPT between attractors has a direct relationship to the

Hamming distance that separates these attractors. However, we found that this is not the

case. Instead, network dynamics, not the Hamming distance, is the main contributor to

the MFPT between attractors. As an example of the limitations of Hamming distance,

consider that the MFPT(ai, aj) and MFPT(aj , ai) can be different, but that the Hamming

distance between these attractors is the same. However, even though there is not a strong

relationship between MFPT and Hamming distance, a weak correlation between the average

of the forward and reverse MFPT between attractors and their Hamming distance can be

detected. This is depicted in Figure 4.11, which shows MFPT versus the Hamming distance

obtained from 100 RBNs containing 8 nodes. As the Hamming distance increases, the

upper-bound of MFPT values also increases (r = 0.1027 for Hamming distance and average
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Figure 4.11. Relationship between average MFPT between attractor pairs and Hamming
distance for 100 critical BNs.

MFPT). In Figure 4.11, the box represents the central 50% of the points and the red bar

shows the median of data.
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CHAPTER 5

IN SILICO MODEL OF MORPHOGENESIS IN BIOFILMS

5.1 Abstract

Complex organization of connecting wrinkles observed in many biofilms plays a critical

role in survival of these microbial communities. While the underlying genetic causes of

wrinkling are not well-understood, recent discoveries have proposed the counterintuitive

idea that wrinkles are formed by localized cell death rather than cell growth. This work

aims to explore whether the accumulation of vertical and horizontal forces at the areas of

cell death initiates the formation of wrinkles.

5.2 Introduction

Bacteria live in almost every environment on the Earth. While they have proved useful

in some contexts, for example in microbial fuel production, they are the source of many

threats to human health [111–113]. Bacteria can attach to a surface and form a bacteria

community encased in an extracellular matrix, referred to as biofilm, which increases the

survival rate of their aggregation [111]. Biofilms are responsible for many infections caused

by implanted medical devices [114]. Complex organization of connecting wrinkles observable

in many biofilms, play two important roles in survival of the microbial community. First,

they maximize liquid transport in biofilms by forming high permeable channels connected in

a radial network [115]. The aqueous liquid carries nutrients, waste, and signalling molecules.

A second role of wrinkles is to increase the waste disposal rate by maximizing the surface

area exposed to air [116]. Wrinkles and their formation process have been the target of

many microbial research studies [6, 116–119].

A recent study by Asally et al. [6] proposed that localized programmed cell death
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initiates wrinkle formation in B. subtilis colonies by unlinking cells and the substratum,

eliminating anchors that hold the colony in stasis. The well-formed extra cellular matrix

(ECM) keeps the cells in place by providing a bond between cells that resists movement

against the compressive force from the other cells’ growth and division. Cell death disrupts

the integrated network of cells and ECM to provide an outlet for compressive stress release

[6].

In this work, we aim to model the process of wrinkle formation triggered by cell death

using an in silico setup. This research employs an agent-based framework to explore whether

the accumulation of vertical and horizontal forces at the areas of cell death initiates the

wrinkle formation.

5.3 Results

The complex organization of bioflims starts from a single bacterium adhering to a

surface. The bacterium secrets a glue-like protein to attach itself to the substratum. Then

during division process, the cell cement itself to its daughter [118]. Formation of these

cell-cell and cell-surface bonds, along with the pressure arising from population growth,

push the colony system to a quasi stable state where there are potential unrelaxed forces

dampened by the rigid structure of biofilm. Figure 5.1 demonstrates the potential energy

function between two particles. There is an equilibrium point where all competing forces

are balanced so the net force applied to particles is zero. If there is no bond, all the particles

are expected to be at this point. However, the formation of bonds will gradually prevent

relaxation of the repulsive forces. The accumulation of unreleased repulsive forces moves the

system to a new quasi stable state as shown in Figure 5.1. The disruption of bonds at the

cell-substratum interface, triggered by cell death, provides an outlet for the release of the

accumulated forces [6]. This relief of these lateral forces causes the formation of wrinkles at

the areas of cell death.

In this study, we used an agent based model extended from [120] to validate the idea that

the cell death and the triggered biomechanical forces are sufficient for forming the wrinkles

in biofilms. We simulated simple colonies and configured them to be initially compressed
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Figure 5.1. Potential energy function: Repulsive and attractive forces between two particles
based on the mutual distance. At the equilibrium point the net force between particles is
zero. The stiff junctions formed between particles in addition to the pressure resulting from
the population growth push the system to the quasi stable state.

having their cell-cell interactions comprised of particles that interact biomechanically in

two states: bonded or unassociated. At the next step, we disrupt the connections at the

interface of colony and substratum to model cell death. As Figure 5.2 shows, the subsequent

movements of the cells cause vertical buckling at the location of cell death. In the left panel

of Figure 5.2 (images from [6]), cell death is measured by Sytox Green, a fluorescent cell

death marker. The right panel demonstrates our 2D simulation of this process where green

color represents the area where we kill the cells to disrupt the connection of biofilm and

substratum. Here, particles are the cells and the connections between particles shows the

bonds between cells.

To quantitatively track the movement of particles during wrinkle formation, we simu-

lated fluorescent beads placed on the surface of colony. We determined the trajectory of each

bead and computed the velocity vectors to replicate the experimental setup in [6]. Figure 5.3

depicts the process of this simulation. Starting from a block of cells in the quasi stable state,

we mapped the cell death pattern (CDP) generated by Sytox reporters, as shown in Fig-

ure 5.3.A (pattern adopted from [6]), to the bottom layer of this block killing the cells in

the mapped area (Figure 5.3.B). As expected, wrinkles form on the top of the areas of cell
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Figure 5.2. Sequence of wrinkle formation originating from cell death at the cell-substratum
interface. Left column shows cross-sectional images of a wrinkle from [6] while the right
column shows the simulated process. Green color shows the area of cell death.

death as shown in Figure 5.3.C (video can be found in Supplementary materials section).

We quantized the surface and by summing the trajectory of the particles in each square, we

computed the velocity vector for that partition (blue arrows in Figure 5.3.D). These veloc-

ity vectors determine the convergence (negative divergence) of vector fields, demonstrating

the aggregate material directional movement. The colored areas in Figure 5.3.D show the

convergence; the more intense color, the higher convergence. The observed convergence

along with the velocity vectors confirm the counterintuitive idea that wrinkles are formed

by cell death rather than local cell growth [118]. Figure 5.3.E shows how cell death areas

and wrinkles spatially correlate.

The last experiment is the simulation of the “smiley face” that arises from an artificial

CDP designed by Suel group at University of California San Diego [6]. They manually

applied cells to regions of a colony to initiate cell death due to high density of cells. The

designed cell pattern forms a smiley face on the surface of the biofilm. We simulated this
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Figure 5.3. Experimental steps taken in this study: A) Cell death pattern (CDP) adopted
from [6]. B) CDP mapped to the bottom layer of a colony in which the cells are in a quasi
stable state. Note that the upper layer of the colony is not shown in this image. C) Relief
of lateral pressure at the CDP area gives rise to the wrinkles. D) Velocity vectors and
convergence of vector fields computed from material movement. E) Spatial correlation of
CDP and wrinkles.

Figure 5.4. Smiley face simulation: an artificially designed CDP, the resulting wrinkled
biofilm (images from [6]), and in silico formed wrinkles (our simulation).

experiment in our framework shown in Figure 5.4. The simulated wrinkles are in an excellent

agreement with the wrinkles in bacterial biofilm.
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5.4 Methodology

5.4.1 Domain independent agent-based framework

In silico computer-based modeling has proved effective in many biological research stud-

ies [121–124], especially for experiments that are expensive in time and cost. To simulate

the process of wrinkle formation, we extended the agent based modeling framework devel-

oped by the Kreft group at University of Birmingham, referred to as iDynoMiCs [120]. We

modeled cells as particles that mechanically interact. A particle is composed of biomass and

regulatory components; it is positioned in space and occupies the volume of a single cell,

but does not commit to the cell’s specific morphology. Particles grow, divide, and mechan-

ically interact with each other through packing constraints, pressure relief, adhesion, and

bonding. Cell state switching is defined through logical expressions that test properties of

a particle’s micro-environment and internal state. Shoving (where particles are pushed by

neighboring particles to relieve packing constraints), bonding, and relief of mechanical stress

fields are the main players in the process of wrinkle formation presented in this study. These

mechanisms are explained in details in Supplementary Materials section.

5.4.2 Cell death

Cell death is implemented by state switching from a growing to a dying cell. Dying cells

do not interact with the environment and gradually are removed from the system as their

mass drops below a threshold. In this work cell death patterns are set from segmented Sytox

reporter images. However, the spatiotemporal patterns of cell death can be mathematically

modeled and be integrated to the framework.

5.4.3 Convergence and velocity fields computation

As mentioned in Results section, we partition the xy plane into a fine grid. For each

particle we track the movement and compute the displacement vector. By subtracting the

number of particles that enters a grid point from the number of particles that left we can

find the convergence (negative divergence) at that particular grid point. The velocity vector
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for each square can be computed as the average of all displacement vectors of particles which

were initially located at this grid point.

5.4.4 Computation domain

Boundaries of our computation domain are set as rigid surfaces which cells can stick

to. For each simulation shown in Figures 5.3 and 5.4 we used 29,250 particles structured

in a 45(witdth)× 130(length)× 5(height) block. We arrange the particles without overlap.

However, due to their close packing, there are latent repulsive forces among neighboring par-

ticles with the potential to rearrange them in a minimum mechanical interactions structure.

The presence of cell-cell and cell-ECM bonds prevents this rearrangements and maintains

the particle dynamics to a quasi stable state.

5.5 Discussion

To form a multicellular organism, cells interact via a complex interplay between bio-

chemical signaling and biomechanical forces; however, these interactions are poorly un-

derstood. Investigating the morphogenesis of model organisms will provide insights into

understanding and formalizing the common patterns seen in many organisms. Having this

big plan in mind, we narrowed our research down to multiscale modeling of morphology

formation of complex biofilms. Recent studies show that cell death triggered by biochemical

stress combined with relaxation of biomechanical forces play a critical role in the initiation

of wrinkles in biofilms by eliminating anchors that hold the colony in stasis. This research

employs an agent based framework to simulate the wrinkles initiated by cell death events.

The results validate the idea that accumulation of vertical and horizontal forces at the cell

death area originates the wrinkle formation.

By tracking simulated beads on the surface of colony, we can compute the convergence of

lateral movements. The discrepancy between this simulated convergence and experimentally

determined convergence can act as an error function. This is the future work of this study

to approximate the biomechanical parameters of a system model via minimizing this error

function.
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The wrinkles simulated in this study are specific morphological features of the whole

colony. An important future work is the expansion of the current simulation to a larger

spatial scale. We will use Biocellion [125], a high performance computational framework

capable of simulating millions of cells, to simulate a whole colony, bringing the simulation

close to the scale of the biological systems.

5.6 Supplementary materials

5.6.1 Particle dynamics

A configuration of particles represents the state of the biological system. Simulation

configures the updates by first determining the net force acting on each particle, then moving

the particles based on their determined force vector. The mechanical forces acting on a

particle are computed by vector addition of force contributions of each mechanism in play

during the simulation of the system. Since the particles are over damped, inertial effects

are ignored and particle velocity is proportional to force. A weak stochastic force η is

added to each particle to model underlying fluctuations in cell movement using a Gaussian

distribution with a default value for Coefficient of Variation of 0.1; this stochastic movement

is an essential component for reaching realexed cellular configurations of near-minimum

energy.

The change in momentum of an arbitrary particle σi, denoted as p(σi), is a function of

noise and the forces acting on σi. These forces can be from pairwise interactions Fk(σi, σj)

like cell-cell adhesion or overlap, or can be acting on each individual particle Fl(σi) like cell-

surface adhesion (k and l refer to active mechanisms). Changes in momentum of particles

due to force is defined as follows:

∆p(σi) = (Σk∈MΣjFk(σi, σj) + Σl∈MFl(σi) + η)∆t (5.1)

where p(σi) is the momentum of particle σi, and all neighboring particles are σj .
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Once forces are generated, a relaxation algorithm is executed to determine the quasi-

steady state that minimizes forces acting on the system. The process continues until the

magnitude of particle movement drops below some threshold. The complete particle con-

figuration is asynchronously updated by randomly selecting each particle then applying a

small momentum based on equation 5.1.

5.6.2 Pairwise particle interaction

Packing constraints cause particles to exert repellant force (positive) on each other to

prevent spatial overlapping caused by growth or cell movement. The process is illustrated

in Figure 5.5. In this work, the repellant force magnitude is directly proportional to the

overlap distance between each particle. So

Fov(σi, σj) = (αt|Rti +Rtj | − d(σi, σj)),

d(σi, σj) < αt|Rti +Rtj |
(5.2)

where Rti is the designated radius of particle i based on its state t(σi). The shoving factor

αt determines the average packing density of particles of size Rti and Rtj . Additionally,

nearby particle experience attractive forces due to adhesion. This is represented as potential

function applied when d(σi, σj) greater than or equal αt|Rti +Rtj |. Initially attractive forces

increase from zero then fall off to zero as the distance increases. The potential function in

this case is a generalized Morse function described in [126].

5.6.3 Stiff junctions

Given particles i and j the equilibrium distance between particles is αt(Rt(i) + Rt(j)).

A stiff junction between two particles is modeled as an attractive force when the dis-

tance is greater than αt(Rt(i) + Rt(j)) and a repulsive force when the distance is less than

αt(Rt(i) + Rt(j)). Unlike adhesion, the force between two joined particles does not fall off

with distance, rather, as the distance grows, the attractive force between them grows until

the bond between particles breaks and the particles become unassociated when their dis-
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(a) particle shoving (b) particle/boundary shoving

Figure 5.5. Particle Shoving: Rt(σi) is the radius of a particle of state t(σi), αt is the shoving
factor for this state t and d is the distance between the objects. When two particles i and
j are closer than αt(Rti −Rtj ) then a force is applied to push them apart. Similarly for an
impregnable boundary, but the force is only applied to the particle.

tance passes a threshold. The magnitude of Fs(σi, σj) is defined as follows, where ps(σi, σj)

is the potential function:

Fs(σi, σj) = αt|Rt(i) +Rt(j)|ps(σi, σj)

ps(σi, σj) = −(x− 1) tanh(ss|x− 1|)

x =
d(σi,σj)

αt|Rt(i)+Rt(j)|
,

(5.3)

The stiffness of the bond between the particles is controlled by a parameter ss whose

effect is illustrated in Figure 5.6. As ss grows the forces around the equilibrium point also

grow to pull or push the particles back to the equilibrium point, so as to strongly enforce the

distance constraint. With low ss, the distance constraint is lax and the particles are allowed

to separate away from the equilibrium distance even when the low forces are applied.
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Figure 5.6. Stiff junctions: Stiffness potential function between particles based on the
normalized distance between the particles for three different stiffness strength parameter
ss.
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CHAPTER 6

CONCLUSIONS

While the international community has not yet reached an agreement on a formal

definition of systems biology, there are two aspects which are conserved in all the endless

definitions of this emergent field of study: 1) a holistic perspective; and 2) the need for math-

ematical modeling that links components of the system. The first characteristic separates

systems biology from the classical reductionist approaches. The second aspect is essential

to understand the big picture of how all the pieces interact in an organism. The only mod-

eling approach that can assure the simultaneous consideration of these two characteristics is

multi-scale modeling. This approach can construct a whole system, starting from a very fine

scale where molecules are modeled as integrators and controllers of signaling pathways, to

the largest scale where the behavior of an entire organ or animal is modeled. Having such a

model – where all the inter- and intra-scale interactions are known – is the ultimate goal of

systems biology. Although we are only at the beginning of a long path to reaching this goal,

the burst in availability of -omics data can help in building data-based and experimentally

validated computational models. These models can help in the transition from traditional

population-based disease treatments to personalized medicines. For example, in cancer ther-

apy, training a multi-scale model with patient-specific genomic, proteomic, physiologic, and

pathological data has the potential to significantly improve the treatment outcomes.

This dissertation focuses on studying two fundamental aspects of developmental biology,

cell differentiation and morphogenesis, as a starting point for the multiscale modeling. Three

chapters of this dissertation are centered around studying gene regulatory networks (GRNs)

as the the underlying controller of cellular differentiation. Random Boolean networks are

used here as a tool for modeling GRNs where each network attractor is taken to represent a

distinct cell type. Chapter 2 presents a methodology for validating the hypothetical GRNs



74

using the gene expression data. Chapter 4 introduces a technique and a supporting method

for visualization, CellDiff3D, that estimates the likelihood and directionality of noise-driven

transitions between different cell types. Chapter 4 examines how the attractor structure

generated from random Boolean regulatory network dynamics are influenced by the addition

of multistable switches commonly found in biological networks that control differentiation.

The last study of this dissertation studies the process of wrinkle formation in biofilms as

an example of morphogenesis. This study employs an agent based framework to simulate the

wrinkles initiated by localized cell death. The results reveal the importance of biomechanics

forces in morphogenesis by showing the role of lateral pressures in the formation of the

wrinkles at the cell death areas.

The topics covered in this dissertation can serve as principal steps towards future mul-

tiscale studies in systems biology.
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