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ABSTRACT 

Ammonia and Nitrate Nitrogen in the Soil Profile and 

Its Relation to Various Nitrogen Treatments 

On Dry-land Winter Wheat 

by 

Abraham E. Van Luik, Master of Science 

Utah State University, 1974 

Major Professor: Dr. Raymond W. Miller 
Department: Soil Science and Biometeorology 

In a dry-land winter wheat field, patterns of mineral nitrogen 

distributions were investigated before and after fertilizer additions. 

Large differences in the added mineral nitrogen recoverable 

three weeks after treatment were found to be specific to nitrogen 

source and treatment within source. 

Initial losses averaged 50 percent for urea treatments, 40 percent 

for calcium nitrate treatments, and varied from a loss of 18 percent 

to a gain of 22 percent for ammonium nitrate treatments. Ammonium 

sulfate proved the most variable with a 36 percent average loss for the 

before-planting treatment and a 61 percent gain for the after-planting 

treatment. 

This ini tial gain and loss behavior correlated at the 2 percent · 

level of significance with the subsequent grain y ield (r = 0.774, 8 df), 

and was still discernable in soil test results of late April , where 

total mineral nitrogen depletion since before t r eatment correlated 

positively at the 10 percent level of significance with the nitrogen 

loss found 3 weeks after treatment. 

ix 



For a small sample of nine plots, a late July sampling revealed 

that depletions of mineral nitrogen since April were much more 

predictive of grain yields than were the actual April-N levels 

(r
2 = 0.787 versus r

2 = 0.460). This result confirms the large role 

played by differential moisture stress regimes in the field, since 

depletions during the drying season of late spring and early summer 

depend on the availability of moisture . 

X 

Initial fertilizer behavior, determining fertilizer losses before 

the onset of crop usage, and a favorable later moisture regime were seen 

as the two largest determinants of yield under the conditions of this 

experiment. Since the latter factor is largely beyond further control, 

the former is the only factor open to manipulation. Generally, 

after planting treatments were lower in initial losses of mineral 

nitrogen, and also generally provided somewhat higher surface mineral 

nitrogen levels in early spring, which was found to be weakly correlated 

with yield. Sur face accumulations in early spring can only be ben eficial 

if sufficient spring moisture is availabl e for downward transport i nto 

the root zone, however, and a drier spring than prevailed during this 

experiment coul d forseeably reverse this relationship by keeping such 

surface nitrogen accumulations from becoming available to the plant in 

spring . 

(164 pages) 



INTRODUCTION 

Practically all the nitrogen taken up by a crop is in the water 

soluble, mineral forms of ammonium (NH:) and nitrate (NO;) salts. The 

sources fo r these mineral nitrogen forms, in non-legume crops, are 

mainly that which naturally occurs in the soils and that which has been 

chemically fixed and added by man. 

The naturally occurring nitrogen in most agricultural soils has 

been largely the res ult of the operation of the nitrogen cycle over 

many years, setting up an equilibrium between nitrogen input and outflow 

before cul tivation began. 

Dry-land farming areas of the intermountain region, in their natural 

states, were generally sparsely vegetated, with a low density animal 

population, mainly due to low precipitation levels or unfavorable annual 

precipitation patterns. As such, it is obvious that great organic 

nitrogen reserves were not built up in these soils, as compared with 

their more heavily vegetated counterparts in such areas as the North 

Central Uni t ed States (Pauli, 1967). 

As discussed by Stevenson (1964), these organic nitrogen res e rves 

are in a complex equilibrium with soil mineral nitrogen forms both 

available and unavailable to plants. This equilibrium may be illus

trated in the simplified formula: 

Stabilized organic -N :t "fresh" organic -N :t mineral N. 

At steady state, gene rally less than 0.1 percent of the total soil 

nitrogen exists in the available mineral forms (Stevenson, 1964). 
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With a large reserve of soil organic nitrogen, the amount of 

minera l nitrogen available to t he plant at any given point in time may 

be more than adequate, without amendment, for a few cropping years. 

After a few seasons, however, the relative nitrogen content of the soils 

wi~l begin to drop, and the equilibrium concentration of the available 

mineral nitrogen will become less and less adequate (Sauchelli, 1964). 

In those dry-land areas where moisture is the major limiting factor 

in biomass production, natural organic nitrogen reserves are lower than 

in areas 1vhere moisture stress is less acute. Moreover, the kinetics of 

chemical and microbiological reactions involved in nitrogen mineral

ization are affected by moisture stress. Dry i ng a soil may temporarily 

incr ease the mineralization rate, but the overall effect on a crop must 

t ake into account increased volatilization losses of ammoniacal nitrogen, 

decreased mobility of the mineralized nitrogen in the soil solution, and 

a loss of plant mobility as a consequence of slowed root and shoot 

growt h (Baligar, 1971; Brouwer, 1966). Rewetting, as by a timely shower, 

resul ts in increased nitrogen uptake by the plant which in turn increases 

the overall demand on the mineral nitrogen in the system. Thus, mois

ture and nitrogen take turns as limiting factors in a natural dry-land 

farming system "that has been cropped for some time. 

The value of adding mineral nitrogen to such a system is immediately 

apparent: the organic nitrogen reserve depletion is slowed, and the 

larger mineral nitrogen reserve allows a more immediate and efficient 

response to any incoming water (Neidig and Sneider, 1924). 

Much work has been done, in Utah and elsewhere, investigating the 

effects of the rate , time, and source of nitrogen fertilizers on 



crop-yields. Reviewing many of these studies, the conclusion is 

inescapable that rate, time, and source of nitrogen affects crop yields 

only insofar as it affects the timeliness of the availability of nitro

gen to the plant. 

Factors which determine the timing of fertilizer-nitrogen avail

ability include soil and climatic characteristics as they interact with 

properties of the individual fertilizer material. The main factors 

which determine the nature of this interaction are: (1) the fertilizer 

materi al's susceptibility to leaching, (2) its absorptive character , 

(3) its tendency to volatilize, and (4) its ability to induce soil 

physical or chemical property changes. 

3 

In view of these observations and general principles, this investi

gation was undertaken to gain more insight into these availabili t y 

factors by studying the fate of selected solid nitrogen fertilizers 

under a dry- land winter wheat crop. 



REVIEH OF LITERATURE 

Sources of Mineral Nitrogen in the Soil 

Since mineral nitrogen is the only important form used by a 

growing crop, as noted above, an in-depth look at mineral nitrogen 

sources and their dynamics follows. 

~1ineralization 

4 

The amount of organic nitrogen present in the soil , and the rat e of 

its mineralization, determine the availability of nitrogen to the crop 

plant. Mineralization is a microbiological process, consisting of 

ammonification and usually followed by nitrification, producing ammonia 

from the organic nitrogen and subsequently oxidizing the ammonia to 

nitrate by way of nitrite (Stevenson, 1964). 

Mineralization rates 

Climate determines overall mineralization rate fluctuations 

(Campbell and Biederbeck, 1972). Harmsen and Van Schreven (1955) 

descr ibed the annual changes in mineralization rates in the temperate 

zone . Typically, winter seems to have a sterilizing effect, with no 

significant mineralization taking place. In spring optimum minerali

zation r a tes occur, tapering off towards summer and slowing markedly by 

fall. Coincidentally, mineral nitrogen in the soil is at its highest 

level in spring, decreasing thereafter until, under a crop, very little 

mineral nitrogen is found in mid-summer. A slight increase usually 

occurs again in fall as the crop demands decrease. 



The two main components o f c l imate, temperature, and moisture, are 

responsible for t his observed annual cycle. Temperature increases 

generally enhance all microbiological activity, so that both ammonifi

cation and nitrification are stimulated (Baligar, 1971). 

5 

Moisture levels, as reported by many workers (Miller and Johnson, 

1964; Alexander and Clark, 1965), have a differential effect on mineral-

ization, with ammonification being much less retarded by high moisture 

tensions than nitrification. As a consequence, during the wetness of 

spring, as maximum nitrificati~n is encouraged, nitrate may be expected to 

dominate the mineral nitrogen fraction in the soil. As the soil dries 

in the transition from spring to summer, the nitrification is inhibited 

more than ammonification, the ammonia concentration fraction may be 

expected to rise as the nitrate fraction drops; however the total 

mineral nitrogen in the soil is decreasing at this same time. 

I mmobilization and mineralization 

Adding a carbonaceous residue to the soil, if favorable conditions 

exist, will stimulate substantial increases in microbial activity and 

population size. As these heterotrophic microorganisms proliferate, 

soil nitrogen is drawn upon to provide for protein and tissue needs in 

the increasing biomass. Depending on the amount of nitrogen in the soil, 

and in the added materials, this competition between microorganism and 

plant may be quite serious in terms of plant growth. 

As t he carbon source is degraded, and supports less and less 

mi crobia l life, the ratio of carbon to nitrogen in the residue is 

lowered, and a point will be reached where residue-nitrogen is enough 

t o mee t t he needs of remaining microorganisms. Beyond this point, an 
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excess of nitrogen will exist in relation to the remaining carbon, and as 

the degradation continues, this surplus nitrogen will be ammonified. In 

addi t ion, t he dying back of the microbial popula t ion provides a food 

sour ce for other groups of heterotrophic organisms. This decaying micro

bial matter has a low C/N ratio, and much of its nitrogen is also mineral

ized. Thus, immobilization is the reverse of mineralization, and is a 

f irst step in adding to the reserve pool of soil organic nitrogen. In 

any natural system in the temperate zone, both immobilization and 

mineralization wil l be tak~ng place throughout the season, but there will 

be net mineralization during spring and early summer, while net immobil-

i zation will take place in late summer and fall (Harmsen and Van Schreven, 

1955). 

Immobilization and mineralization in dryland '\Yheat culture. Under 

conditions typical of dryland wheat farming, as in this study, wheat 

straw is the main carbonaceous material regularly incorporated into the 

soil. The immediate effect of such incorporation is net nitrogen 

immobilization. Measurements by Black and Reitz (1972), showed that 

approximately 1 kg of N0
3
-N was immobilized by every 100 kg of incor

porated wheat straw. The typical high yield wheat crop, according to 

these authors, produces about 14 times as much straw as grain. Under 

stubble mulching as practiced in this study, however, only about sixty 

percent of the straw is initially brought into close contact with the 

soil, or minimally incorporated. At times during the fallow year, 

this surface mixing is redone so that at the planting of the following 

crop there is very little straw left and that which is left is already 

partially decomposed. Irrunobilization is, therefore, not a significant 

compe titor for nit rogen with the yo ung wheat plants, and the straw has 



served t o increase water storage during the fallow season while it has 

been slowly de composing on and in the soil surface , contributing 

eventually to the soil mineral and organic nitrogen pools. 

The time involved in wheat-straw decomposition for this climatic 

region has been studied by Brown and Dickey (1970). Their results show 

that wheat straw decomposition during the winter months was negligible. 

I n spring, decomposition began, and by l ate s ummer the wheat straw had 

reached its maximum nitrogen content. This nitrogen maximum ranged from 

one to six times the original nitrogen content of 0 . 26 percent, depending 

on t he stage of decomposition, which in turn depended on the location of 

the straw in relation to the soil: Straw suspended above the soil sur

face showed no change in nitrogen content; straw laid on the soil sur

face showed doubled and tripled nitrogen contents ; and straws incorpor a t ed 

into the soil had a six-fold increase in nitrogen content over the time 

span of spring to late summer. Thirty percent of the surface applied 

straw was decomposed after eighteen months~ while great er than ninety 

pe rcent of the incorporated straw was lost during this same period. 

These authors also estimated from their data that 30 percent of the 

wheat straw carbon could be accounted for in the humus fraction of the 

soil organic matter some time after decomposition . 

This 30 percent estimate is close to figures presented by Stewart 

(1961), who attempted to correlate decreases in mineral nitrogen with 

increases in certain organic nitrogen fract ions. About 75 percent of the 

immobilized nitrogen was located in the amino acid fraction of the soi l 

hydrolysate. That f raction constitutes approximately half of the total 

soil organic matter. About 25 percent of the immobilized nitrogen was 
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f ound in the less easily degraded fraction of the soil organic matter, 

which b~comes progressively more humus-like through continual biological 

t ransformations. Rlack and Reitz (1972) used the 30 percent retention 

value for humification to estimate the long term nitrogen immobilization 

losses due to wheat straw decomposition. Using for humus an average 

carbon to nitrogen ratio of 10, they calculated that 1100 kg of decomposing 

wheat straw would cause a loss of 7.7 kg of nitrogen to the humic nitro

gen reserve, from which it is only very slowly re-released. This 7.7 

kg-N includes 2.9 kg-N contributed by the straw itself, so that only 4.8 

kg-N per 1100 kg straw is taken from other soil sources. When compared 

to the 11.0 kg of soil-N for 1100 kg straw which these same authors 

indicated would be immobilized initially by decomposition, this shows 

that over half of the initially immobilized nitrogen is released either 

by mineralization into the mineral nitrogen fraction or by microbial 

assimilations into the more labile organic nitrogen fractions. Full 

incorporation of the straw and ideal conditions for decomposition is 

assumed in these figures. 

Fertilization 

The second source of mineral nitrogen in the soil is fertilizers, 

either indirectly from added N-bearing organic materials, or directly 

from mineral-N compounds. Since this study involves a dry-land grain, 

crop rotations with legumes are impractical and will therefore not be 

discussed as a means of adding nitrogen to the soil. 

Organic nitrogen fertilization 

Millar et al. (1966) report that straw has an approximate C/N ratio 

of 80; and that only manures and legumes approach the C/N ratio of 20 which 
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is most desirable. In experiments conduc t ed by Niazi et a l. (1968), in 

Pakistan, manures proved unable t o provide nitrogen in s ufficient quanti

ties at the peak demand times of the wheat plant, whereas no such stresses 

were observed in the same experimen ts where mineral-N sources were 

a pplied. 

Inorganic nitrogen fertilizat ion 

Since increasing mineral nitrogen in the soil through inorganic nitro

gen fertilization is the main topic of the present experiment, it will now 

be cons ider e d in detail . 

Mineral nitrogen fertilizers and mineralization. Niazi et al. (1968) 

repor t that added ammoniacal-N from (NH
4

)
2
so

4 
was nitrified according to 

the same seasonal rate distributions as observed for the mineralization 

of soil organic nitrogen previously discussed. They observed little or no 

nitrification until spring, when the rate increased rapidly. No; content 

of the soi l peaked within a month, and remained steady thereafter for the 

remainder of the season. Peak nitrification slightly preceded peak crop 

demands, a llowing a short lived but fortunate nitrate build-up from a 

crop-need standpoint. As will be discussed at greater length later, 

nitrification of ammonia increases the mineral nitrogen mobility and 

hence its general availability to the plant roots, if proper moisture 

conditions exist. 

It is often reported that added fertilizer-nitrogen stimulates the 

extraction of soil nitrogen by the plant. This phenomenon has been 

attributed to dif ferent effects by different workers, some of which 

effec ts will be discussed later in this study. For the present, Broadbent 

(1965) con firming the phenomenon, att ributes it in part to stimulated 

mineralization of soil organic nitrogen. Using tagged organic nitrogen, 
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and adding untagged increments of (NH4) 2so4 , resulted in tagged mineral 

N increases highly correlated with rates of applied (NH4) 2so4 . Nitrate 

additions provided no such correlations, however, and since this priming 

effect is also observed in experiments using nitrate sources only, 

increased mineralization is only a partial explanation of this commonly 

observed increase in soil nitrogen uptake when fertilizer nitrogen is 

added. 

Another effec t of added ammonia in the soil is the inhibition of 

nitrification. Stojanovic and Alexander (1958) and Aleem and Alexander 

(1960), report that at high ammonium levels there is a significan t 

buildup of nitrite, probably because of an inhibition of the Nitro

bac t e r microorganism responsible for the nitrite to nitrate oxidation. 

They also noted a general decrease of ammonia oxidation to nitrite. 

Harada and Kai (1968) studied this r e tardation of ammonia oxidation 

due to high ammonia concentrations and found the cr itica l NH:-N level 

fo r such r e tardation at over 200 ppm in their culture media. Such 

levels may be reached in the soil when ammoniaca l nitrogen forms are 

a dded, but under moderate rates of application such concentrations 

should occur only in small areas of the immediate placement zone, with 

nitrification inhibition local to these small areas only, and unaffected 

in the soil a t large . 

Incr eases in mineral nitrogen l evels due t o pooling effects . 

Jansson (1971) suggests that such loca lized pools of mineral nitrogen will 

a ccrete t o themselves fresh locally mineralized nitrogen and discourage, 

temporari l y , its bio logical refixation. Ammonium pools, from the above 

noted resistance to oxidation, would be expec ted to cause more such 



pooling of mineral nitrogen than nitrat e nitrogen pools . Such nitrate 

pools are not co lonized by the soil microflora to the same extent as 

ammonium pools, becaus e these micr oorganisms much prefer the ammonium 

11 

form of nitrogen for their own use. (However , this same author found 

nitrate ni trogen to be acceptable to microorganisms when ne t immobilization 

crea ted an ammonia shortage.) Since nitra t e ferti li zers provide l ess 

of a priming eff ec t, and since this priming effect is l ess in nitrifying 

than in non-nitrifying soils, Jansson (1971) hypo t hesizes that t he above 

described pooling effect with a dded ammonium fertilizers causes increased 

soil- N levels, which in turn makes possible increased soil-N uptake by 

the plant . The fact that non-cropped soi l s wi th added fer tilizer 

nitrogen also show increases in available soil mineral nitrogen led 

Jansson (1971) to reject outright the hypothesis that increased soil 

nitrogen upta ke was due primarily to incr eased plant root and shoot 

growth (Alecksic e t al., 1968). 

Legg and Stanford (1967) tried quantifying the priming effect by 

measuring the increase in min e ral nitroge n from the soil a nd the 

corresponding amount of fertilizer nitrogen immobilized. They found, 

qualitatively, that increased fertilization rates resulted in increased 

so il minera l nitrogen levels, as is to be expec ted if the above noted 

pooling eff ec t is a true explana tion of the mechanism involve d. Quanti

tatively, in an experiment using twelve diff erent soils in pots, the 

a uthors found tha t at fertilizer addition r a t es of 200 ppm-N, there was 

5 mg of ferti lizer nitrogen immobilized for every mg of soil nitrogen 

. r e leased . 
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Possible Loss Mechanisms of So i l Mineral Nitrogen 

Loss mechanisms of mineral nitrogen will here be defined as being 

t hose processes which render the mineral nitrogen permanently unavailable 

t o the pl ant. 

Denitrification 

Reduction of oxidized forms o f nitrogen may result in gaseous losses 

of nitrogen from the soil . Facultative anaerobic microorganisms use the 

No; a nd NO; forms of nitrogen as an oxygen source when the o
2 

percentage 

i n the soil is reduced to less than one, generally (Skujins, 1974). 

Such oxygen tensions can result from aeration problems caused by water 

l ogging, poor soil structure , or an unusually high rate of organic matter 

decay (Hausenbuiller, 1970). 

An experiment by Loewenstein et al . (1957) sought to quantify the 

magnitude of denitrification of some acid soils. On uncropped field 

soils losses of 35 percent of applied ammonium sulfate were found at pH 

5.5, while 72 percent of the applied N was lost at pH 6.5. Identical 

treatments on plots cropped with oats, showed losses of only 7 and 8 

percent, respectively. The differences were attributable to the 

r e duced level of nitrified No;-N mainly due to crop uptake. 

A similar experience on four neutral to slightly alkaline soils, by 

Stefanson (1972), showed that under wheat, generally, high water content 

favored denitrification. At low soil water, No;-N was more available to 

the plant and little denitrification occurred. At high soil water, 

+ -NH
4
-N in the soil was preferable to N0

3
-N, as it was less liable to 

become denitrified and hence lost to the plant. 
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Broadbent and Clark (1965) s tudied denitrification losses in the 

fi e ld under conditions not unlike those of this present study. Ten to 

fifteen percent of the total annual nitrogen input was found to be lost 

by denitrification. 

A loss of such small magnitude is in itself not economically intol-

erable. 

Volatilization of ammonia 

+ 
Hydrolysis of exchangeable NH

4
-N results in an equilibrium concen-

t r at i on of NH
3 

in the soil solution which will equilibrate with NH
3 

gas 

into the soil atmosphere and, if at a shallow enough depth in the soil, 

with the air above the soil. There is, therefore, a constant outflow of 

NH
3 

gas from the soil, directly proportional to the ammonia concentra

tion in the soil solution and the partial pressures of H
2
o and NH

3 
in 

the contiguous atmosphere (Jewitt, 1942). The magnitude of this outflow 

can be appreciable if tpe ammonia is in the immediate soil surface, and 

if moisture and pH are high enough in the immediate area to hydrolyze 

and not neutralize the ammonium hydroxide formed (Hausenbuiller, 1970). 

Decreasing the access of the ammonia in the soil solution to the 

atmosphere above the soil is the key to minimizing volatilization losses. 

Using a sandy loam, Wahhab (1957) determined that at a placement depth 

of only 3 em, (NH
4

)
2
so

4 
volatilization losses, as compared to a similar 

surface treatment, were cut by two-thirds. Percentage-wise, 12.9 per-

cent of the surface applied nitrogen was lost, as compar ed to 4.3 per-

cen t at t he 3 em depth. 

The se results agree fairly well with an earlier study on surface 

fer t ilized soils by Martin and Chaprnan (1951). In the two sandy learns 



with pH above 7, heavy rates of nitrogen fertilizers were applied to 

the soil surface and subjected to four wetting and drying cycles in 
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the laboratory . The soils were analyzed after seventy days and compara

tive volatilization loss rates computed, Approximate average loss 

values for the two soils were: (NH
4

)
2
so

4 
lost about 20 percent; urea, 

15 percent; NH
4

No
3

, 7 percent; and NaN0
3

, 0 percent. 

These figures are roughly of the same magnitude as the estimates 

of Broadbent and Clark (1965) of microbiological denitrification losses. 

These loss percentages also approach the estimates of Dinchev and 

Badzhov (1969), who presumed biological and physical volatilization 

losses in their field trials with wheat and maize reached 27- 29 percent 

when maize followed wheat in the cropping sequence. 

Fixation of ammonia 

Ammonia, as a cation, is adsorbed by negatively charged clay 

particles and by organic matter. The organic matter fixation results 

in nitrogen incorporation into the high molecular weight humus-like 

organic fraction rather quickly (Broadbent, 1968). Since this is not 

a permanent removal, but only long term, it will be further considered 

in the section on residual fertilizer effects. 

Clay fixation, on the other hand, can remove ammonium from the 

available nitrogen pool quite permanently. Preul (1965) reports that 

clay adsorption of ammonium was time dependent, taking a few hours to 

establish equilibrium, whereafter it was essentially irreversible. 

In 1965, Broadbent found that clay-fixed ammonium is not involved 

in exchange with other sources. Even though exchangeable ammonium 

declined to very low levels, clay fixed ammonium was not available to 



nitrifying bacteria or to heterotrophic organisms using nitrogen for 

decomposition of organic matter. This fixation process is presumed to 

be t he result of awmonium replacing other cations in the expanded 

lattices of some clay minerals, resulting in strong lattice bonding 

due to the optimum physical size of the ammonia ion (Stevenson, 1964). 

Raza and Muhammed (1971) used two Pakistani soils and measured 
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some of the characteristics of this clay fixation of ammonium. Increased 

amounts of ammonium, added as (NH
4

)
2
so

4
, result ed in increased absolute 

amounts of clay-fixed ammonium, but the percentage of clay-fixed 

ammonium decreased. Amounts fixed increased with time, but fixation 

rate decreased w·ith time. Net fixation was positively correlated with 

clay content. 

The effect of heat on ammonium fixation was examined by Peterburgskie 

and Korchagina (1965). The rate of clay fixation of ammonium was increased 

by heating to 70°C for 24 hours. Ammonium thus fixed was found to be 

unavailable to plants planted subsequently, for the duration of their 

active growth season in the greenhouse. 

Fertilization practices and clay fixation of ammonium . Most normal 

fertilizer practices on soils capable of fixing ammonium will result in 

little economic loss due to ammonium fixation, according to Legg and 

Allison (1959) . In comparisons of similar treatments on ammonium-fixing 

and non-ammonium-fixing soils, no significant yield differences were 

found. The ammonium-N loss attributabl e to clay fixation at a ferti

lizer application rate of 56 kg-N/ha amounted to less than 2 kg-N/ha. 

The authors explain that the usual laboratory evaluation of ammonium 

fixation includes saturation of the soil solution with ammonium salts 
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and subsequent removal of surplus ammonium salts by washing, which 

leaves only the fixed ammonium. In most fields, the ammonium is more 

l ikely to be surface adsorbed on the particles, rather than in the 

interstitial sites, and hence is mostly in an exchangeable form rather 

than a clay-fixed form, depending on clay type, clay content, and 

r ela t i ve ammonia status of the soil in question (Raza and Muhammed, 1971). 

Non-normal fertilizer practices can aggravate the permanent clay 

fixation of ammonium. Shilova (1966) reports that normal additions of 

15 
an N-P-K fertilizer, supplying tagged ( NH

4
) 2so4 , resulted in availa-

bility of this tagged ammonium, with the naturally fixed ammonium in the 

soil remaining unavailable. K applied at three times the normal rate, 

however, resulted in a significant portion of the tagged ammonia 

becoming unavailable due to clay fixation. K, applied twelve days before 

the NP fertilizer had no effect on N availability, but K applied twelve 

days after the NP addition caused a marked increase in ammonium fixation . 

That in-the-field ammonium fixation by clay is normally a slow process 

is borne out by the report of these authors that a soil systematically 

fertilized for 30 years was still able to fix ammonium. 

The marked effect of potassium on clay fixation of ammonium is 

held to be due to a blocking effect by the K+ ion. This blocking effect 

is the result of further clay lattice contraction when a K+ ion enters, 

+ 
successfully trapping an NH

4 
ions at or near the edge of an interstice 

(Tisdale and Nelson, 1966). 

These phenomena suggest three positions of a NH: ion on a clay 

particle: adsorbed on the surface in exchangeable form; at or near the 

open end of an interstitial opening in a slowly or semi-exchangeable 
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fo rm; a nd f i xed well inside a clay interlayer in a non-exchangeable form. 

Potassium, by its l attice contracting properties, serves to trap the 

semi-exchangeable form and render it non-exchangeable until such time 

a s a lattice expanding cation such as calcium or magnesium again 

exchanges with the potassium (Tisdale and Nelson, 1966). 

An experiment by Shilovah and Smirnov (1968) illustrated the 

importance of this second mode of fixation, the semi-exchangeable form. 

Using a potted soil, kno>111 to be able to fix ammonia, tagged ammonium 

sulf at e and tagged calcium nitrate were added to very young oat plants. 

Uptake from Ca(N0
3

) 2 was rapid and practically ceased by the shooting 

stage, after which soil nitrogen was drawn upon. Uptake from (NH
4

)
2
so

4 

was considerably lower, with soil nitrogen supplementing this form 

throughout the season. Fixed, tagged ammonium was slowly released when 

exchangeable levels became very low at the tillering stage. Very little 

of this fixed, tagged ammonium was left at the end of plant growth. 

Plant weight and total uptake of nitrogen were the same for both treat

ments, but the utilization of soil nitrogen was increased more by the 

Leaching of nitrogen 

The mobility of nitrogen forms in the soil will be closely examined 

below in the discussion of nitrogen availability. Rather than discussing 

mechanisms of leaching losses here, the incidence and magnitude of 

leaching losses for soil and climatic conditions similar to those of 

this present study will be investigated. 

Krause and Batsch (1968) confirmed the seriousness of leaching in 

a high rainfall area on a sandy soil. September applied NH
4

No
3 

was 
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found 88 percent removed by leaching in December, aided by nitrification 

continuing even when outside air temperatures fell below freezing . 

Obviously, fall applied nitrogen could not be expected to remain in the 

soil until spring under such soil and climatic conditions . 

Devine and Holmes (1964) describe a large scale experiment wherein 

ten locations were staked for fertilizer and application time comparisons. 

The ten locations represented a wide diversity in annual rainfall pat

terns and amounts. Sources used were (NH
4

)
2

so
4

; NH
4

No
3

; and Ca(N0
3

)
2

, 

all at the rate of 67 kg- N/ha and either applied all in autumn , one-

third in autumn and two-thirds in spring , or all in spring. Similar 

treatmen ts gave similar results und er similar rainfall conditions. In 

high rainfall areas, fall and split applications were less effective 

t han similar spring applications, due to leaching losses. I n the autumn 

applications , yie lds were highest with (NH
4

)
2
so

4
, intermediate with 

NH
4

No
3

, and lowest with Ca(N0
3

)
2

, presumably because of differences in 

leaching susceptibility. In low rainfall areas, autumn applications 

yielded almost as high as spring applications. The authors measured 

rainfall amount s fo r November through March for each area. This rain

fall, in inches, was compared with the yield increase from the fall-N 

applicat ion expressed as a percentage of the yield increase due to the 

corresponding spring-N application. The resulting relationship was 

quite linear, and predicts that for a rainfall of less than 7 inches 

( the r ainfall during this period for the present experiment was 6. 75 

inches) fall applications should yield 90 percent of the corresponding 

spring applica tions . This prediction is a realistic estimate: Watson 

et al. (1963) report a 10 percen t loss in nitrogen uptake when fall 
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applicat ions were compar ed with identical spring appl i cations in a year 

with 12 .5 inch rainfall for this same period. 

Studies cond ucted in the arid r eg ions of the western United St a t es 

indi cat e that rainfall is indeed the determining fac tor in leaching 

magnitudes . 

Peterson (1952) found that in Northern Utah spring applications of 

nitrogen were s uperior to fall applications during a period of above 

normal precipitation. In a more arid area, at the same time, fall and 

spring applica t ions proved equal in producing grain yields. Differences 

in the yields a t the sites with highe r precipitation are probably due to 

the leaching caused by snow-melt after a n unus ually wet winter. 

Spring precipitation does no t seem to be r esponsible for a ny signi f

icant l eachi ng losses , since in experiments by Nielson a nd VanEpps (1955, 

1960·, 1966), a t various times, timely spring rains seemed inevitably t o 

boost yields . 

Additionally, Nielson and Banks (1960) reported on a study cond uc t ed 

north of Logan, Utah, wherein nitrate movement in irrigated soil was 

studied . Forty inches of water were applied to one plot by the furrow 

method, and twenty-seven inches were applied to another plot using 

sprinklers. No appreciable nitrate movement was observed below twenty

four inches dept h in the soil. 

The foregoing suggests tha t for this geographical area, under a 

norma l precipitation regime, losses of nitr ate by leaching should not 

assume any great proportions. 

Peterson (195 2) does note, however, that wheat crops in shallow 

soils do not respond well to nitrogen, for reasons other than nitroge n 

deficiency. A ni t r ogen deficiency problem on shallow soils with a slowly 
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pe rmeable subsoil may in part be due to nitrate leaching, as suggested 

by Painter et al. (1964), in Idaho . Winter and ear ly spring soil water 

movements over the compacted layer will carry nitrates late rally down

slope , according to the authors. 

Such a shallow soil condition was found to exist in a portion of 

the field used in this study, and lateral, downslope leaching will be 

a possibility deserving some analysis in the data. 

Availability of Mineral Nitrogen in the Soil 

The concentration of mineral nitrogen in the soi l is a function of 

the difference between the rate of nitrogen genesis and the rate of 

nitrogen removal by the source and loss mechanisms discussed previously, 

and also by the rate of removal by the plants comprising the crop. Also, 

mobility of the growing plant root system and of the nit rogen in the 

soil are involved, as they determine the coordination between the plant's 

peak demand times and the peak availability times of the nitrogen in the 

soil . 

Mobility of mineral nitrogen in the soil 

The preceding discussions on nitrate leaching and on ammonium fixa

tion by clays and organic matter shed some light on the ques tion of 

nitrogen mobility in the soil. Generally nitrate is considered to be 

quite mobile, while ammonium is not. 

Ava ilabili ty of these nitrogen forms depends in part on their 

arrility to migrate to nearby root zones . Wheat, in particular, is not 

greatly affected by the form of nitrogen being supplied, ammonium or 

nitrate. Yields are somewhat better if more than one sour ce is 



available, as will usually be the case in any non-sterile soil 

(Hutchinson and Miller, 1909; Thelin and Beaumont, 1934). 
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Under conditions of no water stress, Spratt and Gasser (1970) found 

more dry matter and grain produced from a Ca(N0
3

)
2 

fertilization than 

from (NH
4

)
2
so

4 
added with a nitrification inhibitor. These increased 

yields with nitrate-N could well be caused by the greater mobility of 

this nitrogen form. The authors also report that in the ammonium treat

ments, leaves and stems during the extension to flowering stages of 

growth contained half the nitrate nitrogen of the same parts in the 

nitrate treatments. It is suggested by Spratt and Gasser (1970), that 

the nitrification inhibitor contributed to this lack of nitrate, and 

also tended to lengthen the duration of physical immobilization. In 

other words, the nitrification inhibitor accomplished its purpose in 

keeping the ammonium in the soil longer than it would normally. 

Apparently, however, the ammonium was also rendered less available to 

the plant, due to a more prolonged immobility, which caused the plant 

in turn to rely more heavily on existing soil nitrogen as was the 

experience of Shilovah and Smirnov (1968). 

Spratt and Gasser (1970) repeated their experiment under water 

stressed conditions and reported yields to be equal from both sources, 

although yields were depressed for both sources as compared to the above 

experiment with plenty of water. Nielson and VanEpps (1955, 1960, 1966) 

and others who have worked in arid climates (Peterson, 1952; Painter and 

Baker , 1960) all emphasize the possibility of no response to nitrogen 

under water deficient conditions . The explanations given for these 

depressed responses may not be the result of plant physiology changes 

under drought, as suggested, but may be only water stress having 
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become the limiting factor of the plant's growth. Otherwise the conclu

sion must be drawn that ammonium is relatively more available than 

nitrate under low moisture conditions, which is not consistent with 

known nitrogen behavior in sqils. 

On the contrary, Krantz et al. (1943) report that ammonium nitrogen 

was immobile in his field experiments while nitrate nitrogen moved down

ward with rainfall, and afterward moved upward again with the water 

during soil drying. Other workers similarly report the immobility of 

ammonium. Ray et al. (1957), for example, report on the movement of 

ammonia in soils and describes the process as dependent on soil texture, 

organic matter content, cation exchange capacity, and water movements. 

Only on coarse sands was there any appreciable movement of ammonia with 

water flow. 

Tyler et al. (1958) placed a variety of nitrogen sources at a four

inch depth in four types of dry soil, watered to field capacity, and 

analyzed for distributions after two weeks. Ammonia nitrogen did not 

move downward to any signif.icant degree except in the coarser-textured 

soils where small amounts moved downward to about four inches. Had 

there been no nitrification, the authors report, no nitrogen would have 

been available outside the immediate areas of placement. 

In a study by Overrein (191\3), ammonium from the hydrolysis of urea 

tended to move upward significantly more than dmvnward. In the experi

ment of Tyler et al. (1958) this was found to be the case for both the 

urea and NH
4

0H ammonium. This phenomenon illustrates the necessity 

alluded to in the section on ammonia volatilization losses above, for 

deeper placement of ammonium sources. As these experiments indicate, 

urea, and ammonium hydroxide are more prone to such upward movement and 
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c onsequent losses that are the usual fertilizer ammonium salts. This 

greater vulnerability may be related to the hydrolysis mechanism, which 

produces ammonium carbonate, which in turn is easily hydrolyzed to the 

more volatile ammonium hydroxide form (Hausenbuiller, 1970). 

Of interest, also, especially in arid-zone agriculture, is the 

experiment of Stewart and Eck (1958) showing the necessity of rain for 

moving nitrate nitrogen into the root zone of the crop. On a silt loam, 

with no rain, surface applied nitrate did not move over three inches 

into the profile at a moisture content of 9 percent; 77 percent of the 

nitrate did not move over a half inch into the profile, the rest was 

found in amounts decreasing with depth down to three inches. 

Nielson and Banks (1960) report the very prominent upward movement 

of nitrates in a soil which is drying. In other experiments, Nielson 

and VanEpps (1955, 1960 , 1966) observe that a timely spring or early 

spring rain may, in dry-land culture, decide the success or failure of 

a given crop. The authors suggest that the spectacular influence of such 

timely storms is due to their waters reaching the root zone with the 

nitrate nitrogen accumulated on the surface during the preceding drying 

cycle. 

Wheat plant growth interactions with 

nitrogen availability factors 

Perhaps this section is best introduced with this admonition that 

f or best results, nitrogen fertilizers should be applied close to crop 

usage times (Pack, 1957). 

Time of application as an availability factor. Early spring appli

cat i ons on dry-land winter wheat are timed to give a boost to the avail

ab l e nitrogen level as the crop's peak demand period approaches. Fall 



applications by this time may have been rendered unavailable t o some 

extent by t he loss and mobility factors previously discussed . There

fore, under some circumstances , spring applications prove superior in 

terms of gr ain yield over fall applications, while under other circum

stances spring applica t ions have no a dvantage or may actually prove 

disadvantageous (Watson, 1939; Peterson, 1952; Nielson a nd Van Epps, 

1955, 1960 , 1966; Devine and Holmes, 1964). In al l these .citations 

moist ure stress was responsible for the lack of superiority of the 

spring applica t ion as compared with the f a ll application. 

As discussed by Nielson and VanEpps (1966), spring applications 
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in the c limatic region of the pres ent study, i.e., of Northern Utah, 

need to be early since precipitation prospects dec reas e as late spring 

approaches. If application is later, lack of precipitation may prevent 

the applied ni t r ogen from reaching the root zone. In contrast, fall 

applied nitrogen would already be in the rooting zone in some appreci

able, even if somewhat diminished, amount . Forseeably, as roots and 

shoots extend downward seeking new moisture, fall applied nitrogen would 

be extracted along the whole root pene tration path. 

Such a circumstance would result in superior performance f rom fall 

applications. Marginal downward movement of spring applied nitrogen, 

due to some but not plentiful spring mo i sture, could thus cause equal 

responses, with no real advantage being apparent f rom either time of 

fertiliza tion. 

A special case, where spring appl ied nitrogen has actually 

depressed yie lds, was characterized by Nielson and VanEpps (1955). 

Early benefits from spring nitrogen may be apparent soon after fertili

zation , bu t may be nullified by a lack of moisture later in the season. 
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In some of these cases, the early nitrogen may have stimulated excessive 

vegetative growth to a point where this becomes a burden to the plant 

under conditions of extreme drought, with a subsequent depression of 

yields. 

Much work has been done to further understanding of the principles 

involved in this interaction between nitrogen and water availability. 

Ternan et al. (1969) observe that with adequate moisture it is 

hard to put on too much nitrogen. Although much of this nitrogen will 

go to produce straw rather than grain (Hutcheon and Paul, 1966), if 

nitrogen is absorbed in excess of these increased vegetative needs, 

grain yield and protein content will increase (Ternan et al., 1969). 

A general rule, as proposed by many observers (Neidig and Sneider, 

1924; Hutcheon and Paul, 1966; Ternan et al., 1969) is that adequate 

moisture and adequate nitrogen will result in increased grain yield and 

increased protein content. Adequate moisture and inadequate nitrogen 

will especially depress protein accumulation because vegetative nitrogen 

demands will not be fully met. Low moisture and adequate nitrogen will 

usually result in lower yield and increased protein content. 

The latter observation led Nielson and Van Epps (1955) to suggest 

that even in a dry year, nitrogen fertilization may pay off by increasing 

the protein yield per acre. Even if the grain yield per acre is depressed, 

the increased economic value of the crop may more than compensate for 

the fertilization cost. 

Experiments carried out under no water or nitrogen stress are 

instructive in pointing out the wheat plant's behavior under ideal con

ditions. 



Nitrogen-wheat relations without moisture stress. Pavlov (1973) 

found that in a pot experiment with sufficient nitrogen the entire 

growth pe riod as much as half of the grain pro t e in was synthesized 
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during kernel ripening at the expense of soil nitrogen. In a second 

experiment, where nitrogen stre ss was induced after the flowe ring stage, 

with adequate moisture still, wheat kernels were fully formed and grain 

yields were the same as in the first experiment, but the grain protein was 

synthesized wholly at the expense of nitrogen accumulated in vegetative 

organs. Hence the protein content in this case was much lower than in 

the first case where vegetative nitrogen redistribution contributed only 

half the protein nitrogen. In a field experiment by the same authors, 

it was found that the main portion of kernel protein was produced from 

the reusing of nitrogen accumulated by vegetative organs . This outflux 

was highest from leaves, then roots, thirdly from stems, and lastly from 

ear scales. 

Pavlov's (1973) observation concerning uptake during kernel 

ripening reflects a rather late development in wheat research concerning 

the ability of the plant to extract nutrients from the soil late in its 

life cycle. 

Earlier research had assumed and found a virtual cessation of soil 

nitrogen uptake by the time of ear emergence (1~atson , 1939). Thorne 

(1962) effectively demonstrated that if the nitrogen was readily avail

able after ear emergence, it would be taken up with a resultant delay in 

the senescence of vegetative parts. 

Fittingly, Watson, Thorne, and French (1958, 1963) studied the 

problem in some detail and found that in spring barley, winter wheat, 

and spring whea t, only 70 percent of the maximum nitrogen content of 



27 

these grains had been absorbed by the time of ear emergence; i.e., late 

May or even early June in the case of this present experiment. 

Thorne (1962) explains the difference in early research results as 

compared to these later ones as being mainly due to lack of field experi

mentation. For example, in this experiment, the lack of grain yield 

response to late nitrogen applications in pots was found to be related 

to stimulation of new unproductive tiller growth. In the field, to the 

contrary, no new growth occurred and late nitrogen uptake went into 

existing vegetative parts, enriching them and enhancing their contribution 

to the grain nitrogen when these parts senesced. 

Balba et al. (1972), in a pot experiment, checked the effect of 

application time on wheat yield by placing fertilizer at seeding time, 

tillering, and ear emergence. Uptake efficiency of the tillering 

application was measured to be double that of seeding time uptake 

efficiency. Yield response was nearly the same for the first two appli

cation times and lower for the ear emergence application. The authors 

recommend a tillering application, basing their recommendation on the 

above results. Since this was a pot experiment, such a recommendation 

is not warranted. Nearly equal yields from seeding or tillering 

applications, as reported in this same study, suggest that during the 

entire growth season roughly the same nitrogen amounts were available, 

and lower fertilizer nitrogen uptake efficiency only suggests increased 

soil nitrogen uptake efficiency. A field trial, as suggested by 

Thorne (1962), may well have responded differently to the ear emergence 

application. Direct field implementation of pot experiment findings 

is not sound practice. 



Nitrogen-wheat relations under moisture stressed conditions. Non

ideal water and nitrogen conditions are more nearly the norm for the 

climate and soils of Utah dry-land wheat areas (Peterson, 1952). 

The onset of moisture stress with plentiful nitrogen will result 

28 

in high accumulations of nitrate nitrogen in the plant (Baker and Tucker, 

1971; Spratt and Gasser, 1970). 

Spratt and Gasser (1970) further observed a rapid decrease in this 

accumulation with timely rewetting, presumably, according to these authors, 

this indicates that the wheat plant's nitrate reductase system function 

is highly dependent on an adequate water supply. 

As a consequence, a spring storm after a period of drought may not 

only bring the benefit of surface accumulated nitrogen into the root 

zone (Nielson and Banks, 1960) but may further affect a rapid plant 

response by making immediately available nitrates stored in the plant 

itself during the dry period. 

In spite of such rapid recoveries from the effects of short-term 

spring droughts, dry-land wheat yields from low rainfall areas are 

characteristically low, as compared with nearby irrigated areas (McNeal 

et al., 1968) . 

An early Utah study (Stewart and Hirst, 1912) declared dry-land 

wheat from this area to be characteristically lower in moisture and 

higher in protein content than similar crops grown under irrigation. 

Improved practices, including proper fertilization, have reversed 

this protein content characteristic. McNeal et al. (1968) report that 

under irrigation grain-nitrogen contents were either nearly equal or 

higher than under nearby dry-land conditions. From detailed analyses 

of plant part nitrogen contents at successive stages of development, 



these authors determined that the reason for the superiority of the 

irrigated wheat was mainly due to the greater amount of top growth, 
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and the continuation of nitrogen uptake from the soil into the later 

s t ages of growth. In addition, the nitrogen content of the dry land 

wheat top growth was lower than that of the irrigated wheat . Tr ans 

locat i on of top growth-nitrogen accounted f or 75 percent of the dry

land wheat grain nitrogen, as compared with 66 percent for the irrigated 

whea t. As so often happens in dry-land culture, soi l mois ture was 

limit ing during the later stages of plant growth, and nitrogen uptake 

presumably ceased at that time. 

The wheat-fa llow rota tion cropping sequence used in this present 

exper iment has been shown to be ve ry effec tive i n s toring necessary 

moisture for the succeeding crop (Leggett and Nelson, 1960) . Never

t heless, fertilizer response has proved to be significantly correlated 

only wi th spring precipit ation, and not with the biennial precipitation 

amounts for both the fallow and c ropping year (Peterson, 1952). The 

biennial precipitation l evels were positively correlated with yields 

from t he unfe rt ilized plots, however, and the dramatic differences in 

yields between fallow and cont i nuous cropp ing systems for dry-land 

wheat in a low rainfall a rea have been conclusive l y demonstrated by 

Leggett and Nelson (1960) . 

This whole section has served mainly t o emphasize the fact that 

moisture, in the dry-land areas of Utah, is usually the limiting 

factor to plant growth and grain yields. Ni trogen availability is 

vital in the periods of adequate moisture while the plant is still 

growi ng or capable of absorbing nutrients . 



Dynamics of nitrogen uptake and utilization in the whea t plant. 

To gain an appreciation of the fact that the wheat plant is a growing 

organism in need of constant nourishment, especially in the earlier 

growth stages, the following discussion is presented on the dynamics 

of nitrogen uptake and utilization by the growing plant. 

Turchin et al. (1956) studied labeled ammonia nitrogen uptake in 

wheat under various conditions. In the roots, ammonia nitrogen taken 

up was utilized by amino acid synthesis within 15 minutes. A study of 

oats and rye by Turchin et al. (1953) revealed that the newly synthe

sized amino acids were used in synthesis of constitutiona l proteins 

within four hours. These constitutional proteins are constantly renewed 

and the older ones transformed into the more slowly recycled reserve 

proteins. Turchin et al. (1956) further report that in young plants 

virtually all protein in the leaves is renewed every 90-100 hours, and 

in another study (1957) that the pyrrole nucleus of chlorophyll in oats 

was renewed within every 72 hours in a young plant. 

Grain yield predictions from 

quantitative assessments of nitro

gen availability 

Although Jansson (1971) notes that not much lasting success has been 

had in quantifying the nitrogen immobilization and mineralization cycle, 

many us eful studies have appeared which have taken one parameter, such 

as mineral nitrogen level for example, and successfully related it to 

grain yield or response. 

These studies tend to be quite regional in scope and in application 

since the regional parameters of climate and soil characteristics are 
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very of ten yield-determining with the nitrogen parameter being more an 

interacting than a main effect. Within a relatively homogeneous zone, 

however, yield-nitrogen correlations may be usefully and directly made 

because varia tions due to climate and soil may be assumed to be absorbed 

in the field-error term of the analysis of variance. 

Eck and Tucker (1968) attempted to find an equation that would 

predict the dry-land winter wheat yield given the nitrogen level, 

moisture at seeding, precipitation during the growing season, moisture 

in spring, temperatures at selected times, and organic matter content 

o f the soil. This ambitious attempt at a general yield response formula 

f ailed because correlations, although significant for moisture, nitrogen 

level, and yield, were not high enough to allow meaningful predictive 

equations to be based on any factors, alone or in combination. 

Wright (1969) attempted similar correlations, using as factors the 

time of application, time of seeding, class of soil , and seasonal 

differences. The relative importance of these factors was found to be 

in decreasing order as listed. Correlation results were highly specific 

to conditions at hand, ahd no generalized predictions were attempted by 

the author. 

State agencies have traditionally, in bulletins and circulars, 

published fertilizer recommendations geared to local conditions. Some 

diversity of recommendations is noted among the western states: for 

example, Nevada soils seem to need phosphorus as much as nitrogen 

(Spencer and Goodale, 1955), while in Utah no response to phosphorus 

was noted earlier (Peterson, 1952). More recently some Utah sites have 

shown a response to phosphorus fer tilization (Nielson and Van Epps, 1966). 



These di versities and changes with time show the need for continuous 

r egional re-evaluations of conditions, and occasional updatings of the 

recommendations. 
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Several regional predictive attempts for dry-land grains have been 

outs tandingly successful. 

Canadian researchers have been particularly prolific in this 

endeavor. Cook et al. (1957), in Saskatchewan, determined a nitrate 

accumulation capacity for 31 stubble field soils both in the field and 

in the greenhouse, and also for 30 fallow field soils. The field accumu

lation figures were highly significantly correlated wi th field grain 

yields, r = 0.846 and 0.830, for the stubble and fallow fields, respec

tively . The greenhouse incubations gave a 0.874 correlation coefficient 

when related to plant nitrogen uptake. The incubation period for the 

fi e ld soils was 14 days, and the nitrate levels after 14 days were used as 

the index of nitrate accumulation capacity. The greenhouse test of 

mineralization versus nitrogen uptake lasted 30 days. Nitrogen uptake 

versus nitrogen accumulation level gave a linear regression line. For 

the field studies, acc~lation capacity of nitrate nitrogen, in the top 

six inches of soil, yielded a curvilinear regression line when correlated 

with yield. This relation was generally linear between 10 and 45 ppm 

nitrate, and after curving leveled out again, giving the impression that 

yields were maximized after the 60 ppm nitra te accumulation level. 

Soper et al. (1971), in Manitoba, found that the amount of easily 

extractable nitrogen in the soil at the time of seeding was a very good 

test for predicting cereal responses to nitrogen, and is an indicator 

of how much nitrogen the soil is capable of supplying a crop. The best 

results ~<ere with a nitrate nitrogen determination to 61 em of depth, 
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which, when curvilinearly correlated with crop (barley) nitrogen uptake 

gave a coefficient of determination, R
2

, of 0.84. Plant nitrogen uptake 

was exponentially correlated with crop yield, and gave an r 2 of 0.86. 

A direct correlation of nitrate content of the soil to the 61 em optimum 

level correlated with grain yield, however, gave an r
2 

of 0.59 only. 

At the 65 degrees of freedom level this is still significant at the 

1 percent level. Curiously, when a linear function, with a lower r 2 for 

nitrate versus plant uptake, was substituted into the yield predicting 

equation, the R2 value was raised to 0.69. Thus for practical purposes, 

a linear relation between nitrate level and yield is recommended, as it 

is by other researchers also (Ternan and Brown, 1968). 

Nuttall (1973), in Saskatchewan, added a new twist to the research 

pattern of the above researchers by taking into account both ammonium 

and nitrate nitrogen, and by relating them to barley yield increases 

over non-fertilized plot yields . Results indicate that both the ammonium 

and the nitrate nitrogen in the soil are significantly related to grain 

yields. Supposedly grain yield increase, rather than just grain yield 

magnitude, gives a relation relatively more independent of soil and 

climatic variations. R2 values ranged mostly in the 0.60's, significant 

at the 1 percent level for 22 degrees of freedom. As can be expected 

from such a low coefficient of determination, however, estimated yields 

from the predictive equations were quite variable. Confidence intervals 

constructed at the 90 percent level gave the yield increases standard 

variations of from ± 50 to ± 90 percent and higher in some cases. These 

reflect expected variations from the predicted yield increases due to 

climatic and soil variations, and are not unlike deviations from the mean 

yield increases that were encountered in the actual experimental data, 
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due to f ield and climatic variations between sites used for the same 

treatments. More uniform conditions would wipe out this large variabil-

ity, according to the authors, and the methods of this experiment are 

recommended to those who determine local fertilizer recommendations. 

Some investigators use only NO;-N, and others use both NH:-N and 

No;-N at the time of seeding as an indication of total available nitrogen. 

Superiority of one method over the other is a seemingly local phenomena. 

In the above studies by Soper (1971), and Nuttall (1973), in different 

Canadian provinces, one found it best to use only nitrate-N, the other 

found it important to use both mineral forms. An Australian research 

team, Storrier et al. (1971), reports trying both approaches. With the 

combined ammonia and nitrate test at seeding, the R2 value was only 

0.185 when nitrogen level was correlated with wheat grain yield. 

Nitrate level alone, correlated with wheat yield, in these same trials 

gave an R2 of 0.36, almost twice as good, but still much below the 

levels of correlation reported in the above studies by Soper (1971) and 

Nuttall (1973). 

These types of results point out a common problem in the reporting 

of statistical results. In none of the studies so far mentioned in this 

section was there express and clear mention made of the degrees of free-

dam for each regression test. 

Since there is no basis for comparing R's or R2 's without knowing 

the degrees of freedom, the R
2 

of 0.38 for Storrier (1971), and the R2 

of 0.86 of Soper (1971), cannot be legitimately compared. The degrees of 

freedom for the latter is twenty, so that from the tables it is obvious 

that the O.R6 is significant at the 1 percent level (Gore, 1952). From 

the same tables it appears that 0.38 is also significant at ~he 1 percent 
~· _- .. 

_.., .. ,.. . 
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level for any degree of freedom above 14. Since nowhere appears the 

number of experimental trials, however, we cannot tell whether this 

regression was run over the whole range of experimental units, or whether 

it was run on treatment averages consisting of a certain number of 

replications each . In the fi rst instance field variability could have 

contrib uted to the point scatter, while in the second case this would 

have been sharply reduced, and the results would be indeed sadly lacking 

in correlation. 

Perhaps one of the more ambitious projects on yield prejiction of 

wheat in a low rainfall dry land culture was carried out by Leggett 

(1959) i n the State of Washington. Spring soil moisture, spring through 

summer precipitation, and nitrate nitrogen at seeding time, were corre

lated separately and togethe r with grain yields. Over the whole range 

of experiments, with 60 degrees of freedom, the correlation for soil 

moisture combined with precipitation over the growing season proved the 

best moisture-based yield predictor, with an R of 0.87. Nitrate level 

at seeding time (fall), added to the amount of fertilizer nitrogen added, 

gave the best correlations of nitrogen with grain yields with an R of 

0.74 at 58 degrees of freedom. (Degrees of freedom obtained by counting 

points on regression graphs.) When other than linear equations were fitted 

to the data, R values decreased, therefore moisture-yield, and nitrogen

yield relationships over the ranges encountered in these experiments were 

found to be linear. 

Fertilizer recommendations based on grain yield predictive equations. 

Although Leggett (1959) explains that the equations given are specific 

to, and therefore best used in, the dry-lands of eastern Washington, 
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s ome o f the general relationships between mois ture , nitrogen, and yield 

should be applicable to other dry-land areas. For example, it was 

calculated that 4 inches of water were required to allow the crop to 

reach the heading stage . Each additional i nch of water increased yields 

approximately 6 bushels per acre. Moreover, 3 pounds of nitrogen per 

acre were required to increase the wheat yield one bushel per acre, over 

the range where nitrogen, not water, was the limiting growth factor. 

Other investigators have made fertilizer recommendations based on 

fertilizer rate, time, and source experiments, which are valid in their 

soil and climatic regions. 

The fall nitrogen fertilizer recommendations for areas of Idaho, 

close to the northern Utah site of this present study, have been 

variously given as 30 lbs-N/acre (Roylance and Klages, 1959), and as 

20 lbs-N/acre ± 20 lbs depending on whether moisture prospects are 

subnormal or above normal for the year (Painter a nd Baker, 1960). 

Recommendations for northern Utah have been given as ranging from 

30 to 50 lbs-N per acre (Nielson and Van Epps, 1966) in recent years, 

and twenty years ago as ranging from 40 to 60 lbs/acre, unless moisture 

and stand were not encouraged when a rate of less than 40 lbs/acre would 

be more practical (Peterson, 1952). 

Leggett (1959) and Nielson and Banks (1960) both observed that of 

the nitrogen not recovered by the crop one year, a small part is usually 

recovered by the following crop if the moisture l evel is not again 

limiting . 



Long-term consequences of nitrogen 

fertilization 
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Peterson (1952) applied 125 lbs and 250 lbs NaN0
3
-N/acre and noted 

that af ter two seasons of such applications a definite deterioration of 

the soil structure occurred. Painter and Singleton (1960) used four 

nitrogen sources and measured changes in soil physical properties 

including pH, pHs, ECe, and soluble Ca++ and Mg++ With normal appli

cation rates and practices no appreciable alterations were noted. 

With an exception for repeated use of sodium containing nitrogen 

carriers then, soil structure will probably be unaffected by normal 

nitrogen fertilization practices. 

Increases in the soil organic nitrogen level. It has been noted 

in the preceding section that in dry-land wheat culture some of the 

nitrogen not used in one season would probably be used by the following 

crop (Leggett, 1959). To gain insight into this carryover effect, the 

study of Cheng (1961) is instructive. After two annual fertilizer 

treatments, added tagged nitrogen was characterized as to amount and 

position. Some fertilizer nitrogen was still in its original form in 

the soil surface, but this amounted to only 2 percent of the amounts 

added. Of the transformed nitrogen, over 90 percent was found in acid 

hydrolyzable forms such as amino sugars, amides, and amino acids, and in 

plant residues and some clay-fixed forms. The remaining tagged nitrogen 

(less than 10 percent) was in non-acid hydrolyzable clay-fixed and 

organic-residue forms. Therefore, in this experiment, nearly all the 

transformed nitrogen in organic form was still considered relatively 

available after t>m years. 
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Other investigators, such as Black and Reitz (1972), estimate that, 

typically, closer to 30 percent of added nitrogen is rendered 

unavailable through himification after a cropping year. Stewart (1961) 

measured the release rates of the humified, or near humified non-acid 

hydrolyzable fraction of the soil organic nitrogen added after a fertili

zation. After four cropping seasons, less than half this fraction was 

rereleased and used by the crops. Even though this equilibrium release 

rate was quite slow, a surprisingly active immobilization-mineralization 

cycle was indicated by the substantial interchange found between the 

fertilizer and the soil nitrogen. 

Naturally, in order to increase the total nitrogen content of a 

cropped soil, more nitrogen must be added over a period of time than is 

taken out by crops and other loss mechanisms (Tisdale and Nelson, 1966). 

A common observation is that soil organic matter, as well as soil 

nitrogen levels are increased with adequate nitrogen fertilization and 

crop residue return (Tisdale and Nelson, 1966). 

Soil organic matter level and soil nitrogen level. Scharf (1968) 

convincingly demonstrates, however, that organic matter increases are 

no guarantee of nitrogen level increases. In a 14-yeAr fertilizer trial, 

increments of nitrogen were added up to 135 kg-N/ha/year. At this high 

level, the 14-vear increase of organic carbon in the soil reached 0.113 

percent. The nitrogen level in the soil, on the other hand, dropped by 

6.5 mg-N per 100 g soil over the 14-year period under this high rate of 

nitrogen fertilization. At lower rates, below 75 kg-N/ha/year, the 

14-year nitrogen drop ranged from 11 to 15 mg-N/100 g soil. Note that 

these soils were quite high in nitrogen before the onset of the 14-year 

experiment. 
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Soil characteristics and nitrogen level changes under fertilization. 

The initial soil nitrogen level seems to be an important factor in 

determining whether a soil will gain or lose total nitrogen under ferti-

lization rates reasonably near crop demand rates. In a study by Legg 

and Stanford (1967), twelve soils were analyzed for nitrogen availability 

using the method and formula of Fried and Dean (1952), which assesses 

the availability of soil nitrogen by the empiri ca l formula: 

where A is the nitrogen made available to the crop, and is referred to 

as the availability index of the soil; B is the amount of fertilizer 

nitrogen added; and y is the fraction of plant nitrogen derived from B 

compared to the total plant nitrogen. 

From the formula it is easily seen that any value less than 0.5 

indicates that more soil nitrogen was taken up by the plant from soil 

forms than was taken up from fertilizer nitrogen, and, therefore, 

especially if B is high, the availability index will be high. 

For the twelve soils of Legg and Stanford (1967), standardized A 

values were computed for each soil. It was found that soils with 

high A values, which would be soils high in nitrogen available to a 

crop during a season, would lose total soil nitrogen with fertilization 

and cropping, even when reasonably high amounts of nitrogen were applied. 

Soils with low A values, on the other hand, gained in total nitrogen 

content with applications adequate to cover crop removal. Even when 

app lications did not cover the nitrogen taken up by a crop when higher 

l evels of fertilization were used, the yields were reduced from these 



higher l evels so that the additions were in fact adequate for crop 

needs , and total nitrogen was still increased in these soils . 

Since Utah ' s low r ainfall, dry-land soi l s are characteristically 

low i n organic mat t e r (Pauli, 1967) and i n nit r ogen (Peterson, 1952), 

such incre ases in total soil nitrogen are a very real possibil i t y for 

the field used in this present study, and the r esidual effect observed 

by Leggett (1959) and Nielson and Banks (1966) could be more dramatic 

than those observed by Jansson (1971) and Stewart (1961) because l ess 

extensive humificat ion as characteristic in drier soils (Pauli, 1967) 

would result in fract ionally more of the immobilized nitrogen being in 

the more r eadily available hydrolyzable form (Cheng , 1961). 

Jansson (1971) observes that typically up t o half the added 

fe rt i lizer nitrogen may remain in the soil due to biomass incorporation 

and crop residue incorporation. This is a good est i mate i n the case of 

wheat, judging from grain to straw ratio (Percival, 1921) and the straw 

nitrogen content (Peterson, 1965), and studies on the activity of such 

residual nitrogen after cropping are r evealing. 
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Humifica tion and re-mineraliza tion dynamics . Allen (1971) studied 

fer tilizer fates through five crop years using nitrogen-15. The labeled 

nitrogen was originally incorporated into the soil biomass as protein 

and cell wall materials, and then slowly underwent humifica tion with 

only 1 percen t being in a mineralized form a t a ny given time . The rate 

of mineralization of the original tagged-N decreased with time over the 

experimenta l period, indicating tha t the humification process makes the 

nitrogen progressively more stable, and progressively less available 

t o the crop plants. Approximately one-fourth of the l abeled nitrogen 



was recovered after the first cropping year, while about one-eighth 

remained after five years, illustrating this decreasing availability. 
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Jansson (1963) studied these perennial effects of tagged nitrogen 

fer tilizers and calculated a half life of 35 to 45 years for tagged 

nitrogen in the soil humic matter. It appeared, however, that fertilizer 

nitrogen in this humified state was twice as active in the mineralization

immobiliza tion cycle as compared t o the residual soil nitrogen . Even 

after nine years this higher rate of activity was still apparent. 

Judging from pot experiment results, Jansson (1971) estimates that 

an arable soil in the temperate region which has received 50 kg-N/ha/year 

fo r fifty years should have as much as 40 percent, or 600 kg/ha, of this 

added nitrogen in immobilized, organic forms. With moderate rates of 

mineralization, such a reserve could deliver 10-15 kg N/acre/year to a 

growing crop. 

Obviously, if such dynamics could be known for a given region on 

a somewhat more precise quantitative basis, fertilization patterns could 

be adjusted to maximize crop yields, as is presently the main concern, 

and also to optimize the soil organic nitrogen level so that in time a 

steady state will be reached between soil and fertilizer nitrogen delivery 

to the crop, and crop nitrogen removal. 



t1ATERIALS AND METHODS 

The Experimental Field and Its Soil 

The experimental field is located in an area of eastern Box Elder 

County, Utah, known as Blue Creek. The soil of the experimental site 

has been classified as a Parleys silt loam (fine-silty, mixed, mesic) 

with 6 to 10 percent slopes. General characteristics of this series 
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are that they occur in upland elevations from 4200 to 5600 feet, are 

generally well drained with a moderate erosion hazard, and are ip a 15-

18 inch annual precipitation area with a frost free period of 110 to 130 

days. Primary use is for non-irrigated small grains, with a non

irrigated capability unit designated as IIIe. 

Ten-year precipitation records (Nielson, 1974) reveal a 14-inch 

annual average for our field site, with our experimental year being 

above average with 18.52 inches of precipitation recorded. 

Water relations for this soil were characterized in the soil survey. 

Permeability was found to be moderately slow, with slow to moderate in

take rate. The available water-holding capacity to a depth of 150 em 

is 25 to 30 em of water. Roots may penetrate beyond 150 em. Usually 

strong lime accumulations are found at about the 85 em depth. 

The Experimental Design 

This investigation was designed to study the fate of added ammonium 

and nitrate nitrogen under winter wheat. The experimental design used 

was the randomized complete block design with four replications. This 
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design lends itself readily to statistical analysis by two-way analysis 

of variance, with fol low-up i nves tiga tions of significant treatment 

effects us i ng Duncan's Multiple Range Test. Each treatmen t received 56 

kg of nitrogen per hecta r e . The fi e ld design and trea tment distr i butions 

are detailed in Figure 1. 

Data collection procedures 

The main source of data for this experiment was soi l sampling. Each 

sample representing a plot consis ted of cores obtained from s ix places 

within that plot for the 15 em or 30 em sampling depths . Deeper depths 

were sampled from two places in each plot, and samples consisted of these 

two cores , combined and homogenized in the field as mu ch as was prac tic

able. The September and April samplings consisted of s eparating the 

cores for the fo llowing depth increments: 0-3 em, 3-15 em, 15-45 em, 45-

75 em , and 75-120 em. The October sampling consis t ed of the 0-3 em, 3-15 

em, and 15-30 em depth increments. Finally, the July sampling included 

0-45 em, 45-75 em, and 75-120 em increments. 

Soil sampling dates were (1) September 19, 1972, (2) October 20, 

1972, (3) April 28, 1973, and (4) July 31, 1973. These samplings are 

referred to as the September, October, April, or July samplings, respec

tively. 

Other data were also collected, consisting of bulk density, plant, 

and grain samplings. 

The bulk density determinations served only as a guide for esti

mating the whole-f i eld bulk densities a t levels representative of the 

sampling depth increments. The actual determina tion was very limited, 

consisting of two pits wherein two samples were t aken from each depth 

increment, resulting in four samples per soil sampling depth increment. 
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JI. f f A I 10 9 8 
B 2 5 6 3 
c 3. II I 3 I I 7 
D 4 2 II 5 
E 6 9 7 2 

ROWS: F 10 3 4 II 
G 7 I 8 6 
H 8 4 I 2 I 3 10 
I 5 6 2 I 

J 9 7 5 4 
K II 8 10 9 

-·-
Key to treatment numbers; application rates in kilograms nitrogen N/ ( 
per hec tare: S G i'y -hv 

No. Material used 

1 None (Control) 

Application time and method NH -N NO -N 
Ap~lied Ap~lied 

0 ~ 0~-
2 Ammonium nitrate at seeding, with drill ;c<( +5-l"l!l! ..2,~ -;~ v-D 
3 Ammonium nitrate before seeding, with Gandy spreader 15 ~ 41 
4 Ammonium nitrate after seeding, with Gandy spreader 15 41 
5 Ammonium nitrate in Spring, hand broadcast 15 41 
6 Calc ium nitrate before seeding, with Gandy spreader 0 56 
7 Calc i um nitrate after seeding, with Gandy spreader 0 56 
8 Ammonium sulfate before seeding, with Gandy spreader 56 0 
9 Ammonium sulfate after seeding, with Ga ndy spreader 56 0 

10 Urea before seeding, with Gandy spreader 56 0 
11 Urea after seeding, with Gandy spreader 56 0 

*Column I, row C, received double the intended amount of fertilizer, 
and has been replaced by Column V, row C. 

t Plot dimensions are 3.36 m by 4.57 m. 

Figure 1. Experimental plot layout and treatment detail. 

3 
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The av eraged v a lues for each increment were use d a s best estimates of 

the actual bulk densities for each level . in the calculations converting 

parts-per-million (ppm) nitrogen levels to kg/ha nitrogen levels at each 

increment. 

Plant sampling was very limited, and consisted only of a few stems 

and leaves from a few selected plots to spot-check total and nitrate 

n itrogen contents of the vegetative parts towards plant maturity. 

Grain yields were estimated at harvest. Five squares were measured 

off inside each plot, a square meter each, and the grain was harvested, 

threshed, and weighed for each square. The average of each of these 

five yield determinations was taken as the plot-yield value, and recorded 

in kg of grain per hectare. 

Soil description at each sampling

depth increment 

From the soil survey description of the soil profile by horizons, 

the soil at each sampling depth increment may be characterized. These 

horizon descriptions are tabulated together with bulk density figures 

and sampling depth increments in Figure 2. 

Pre-treatment and Storage of Samples 

Soil samples from the September sampling were air dried in the 

laboratory and subsequently transferred to the freezer. All other 

samplings were frozen immediately after reaching the laboratory. The 

pre-treatment and storage of the soil samples is discussed at length 

in Appendix A. 

Plant and grain samples were stored in closed polyethylene bags 

until the time for their analysis. 
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Figure 2. Soil profile des criptions and sampling depth increments. 
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Analytical Procedures 

Determination of available mineral 

nitrogen in the soil samples 

Soil samples were analyzed according to the procedure outlined by 

Bremner (1965). This included extractions with 2~ KCl by shaking for 
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one hour, filtration of the extractants using Eaton-Dikeman No. 512 fluted 

filter paper in 60° long stem funnels, and refrigeration of these filtrates 

until the time of analysis. 

Analyses were done using reagents and apparatus as described by 

Bremner (1965) with the single exception of the indicator solution, 

which is described in detail in the section on plant analysis, below. 

The nitrate nitrogen was determined using Devarda's alloy in the magne

sium oxide distillation procedure, and by subtracting the results of a 

parallel distillation using magnesium oxide only. Bremner's (1965) 

procedure was followed despite some initial problems that were encountered, 

because these problems were mainly in data processing and interpretation, 

and not in the procedural aspects of the analyses. A discussion of 

these problems, and of the accuracy and precision of the MgO-Devarda alloy 

distillation procedure as used in this laboratory is the subject of 

Appendix B. 

For comparative purposes, nitrate nitrogen in a selected group of 

soils was also determined using the phenoldisulfonic acid colorimetric 

procedure, as described by Bremner (1965). 

Nitrite nitrogen was assumed negligible in all these analyses, and 

not accounted for. 
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Analysis of the p l ant and grain 

s amples 

Total organic nitrogen, including any ammonium nitrogen present, 

was determined in both the grain and plant samples using the Macro

Kje ldahl procedure as revised and outlined by Lamborn (1961) for use in 

the Soi l s Laboratory at Utah State University. 

A description of the method follows: 

(1) Apparatus: 800 ml Macro-Kjeldahl flasks and standard 

Macro-Kjeldahl diges tion stand and distillation 

apparatus. 

(2) Reagents: 

(a) Concentrated, reagent grade, H
2
so

4 

(b) Concentrated NaOH solution, 40-45 percent 

NaOH by weight 

(c) Digestion mixture consisting of 500 g Na
2
so

4
, 

anhydrous powder; 78 g CuS04 ·5H
2
0; 5 g 

powdered selenium metal 

(d) Indicator solution of 350 mg. bromocresol green 

in 10 ml 95 percent ethanol added to 1 ml of 

0.5 N NaOH and 200 ml distilled water. To this 

mixture is added 22.1 ml of an aqueous 1 per

cent solution of new Coccine, and then is 

added 750 mg of p-nitrophenol which has been 

dissolved in a few ml of 95 percent ethanol. 

The total mixture is made up to 250 ml, and 

adjust ed to where it will have a light grey 

color in a pH 4.6 buffer solution, either by 
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additions of new Coccine or bromocresol green 

solutions. Use 100 ml of indicator for 18 

liters of 2 percent boric acid solution. 

(e) Boric acid solution, 2 percent by weight 

(f) 0.0715 ~standard H
2
so

4 
for titrations 

(g) Zinc metal, granular, size not critical but 

20 mesh is satisfactory . 

(3) Procedure: Perform analyses in duplicate. Weigh 1 gram of 

plant material into Kjeldahl flasks, add a teaspoon of digestion mixture, 

and soak these contents with distilled water. Add 25 ml concentrated 

sulfuric acid, and digest. Cool after complete digestion, when solution 

has been clear about 15 minutes, add 400 ml distilled water. Cool again . 

Add about a gram of zinc and immediately pour 75 ml of concentrated sodium 

hydroxide down the side of the flask to allow it to run under the solu

tion. Place on distillation stand and distill 150-200 ml into 50 ml of 

the bor ic acid-indicator solution, then titrate. Subtract the value of 

a blank determination. 

Results of the 46 duplicated analyses of the grain samples provided 

the following information on the reliability of the results: (1) mean 

difference between duplicates was 0.58 percent protein, (2) standard 

deviation of this mean difference was 0.06 percent protein, and (3) the 

standard deviation of the 46 differences between duplicates was 0.39 

percent protein. 

From these data , it may be seen that the average difference between 

duplicates that can be expected from this procedure may range from 0.52 

to 0.64 percent protein. In the case of this particular analysis, since 

the mean of two values 111as used to represent the protein percent 
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assigned to a plot, a reasonable range of precision for these prote in 

pe r centages is± 0.1 to± 0.5 percent protein, with an average precision 

of± 0. 3 percent protein. 

Raw nitrogen percentages calcul ated from the data provided by this 

Macro-Kjeldahl procedure were converted to protein percentages by using 

conversion factors of 5.7 for grain and of 6.25 for vegetative parts, 

as recommended by the A.O.A.C. (Horwitz, 1970). 

The determination of nitrate nitrogen in the plant material \<as 

accomplished using the procedures of Lamborn (1972), as used at the 

Soils Laboratory at Utah State University. 

Briefly, the method consists of taking 0.1 g of the finely ground 

plant sample and extracting the nitra te from it by using 25 ml of silver 

sulphate (3 . 5 g Ag
2
so

4
/liter). Extraction is accomplished by shaking 

for a few minutes, adding a scoop of Darco-G-60 Carbon, shaking a few 

more minutes, then adding a scoop of calcium hydroxide, shaking again, 

adding a scoop of magnesium carbonate, shaking once more for a few 

minutes and then filtering through fluted filter paper. A 10 ml aliquot 

is then taken to dryness on a steam bath, 3 ml of phenoldisulfonic acid 

are added and the residue is brought into solution, 25 ml distilled water 

is added and the solution is allowed to cool. Hhen cool, 15 ml of an 

NaOH + Edta s olution (360 g NaOH + 15 g disodium Edta in 100 ml H
2
0) is 

added and the solution is analyzed colorimetrically at 420 m~ after it 

has cooled again. Blanks and standards are run to allow conversion of 

absorption readings into ppm of nitrate nitrogen using a standard curve . 
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RESULTS AND DISCUSSION 

Condition of the field in September 

Uniformity of nitrogen distribution before treatment was assessed 

for the field using the kilograms of nitrogen per hectare data for each 

depth increment in each plot. This procedure was used to determine 

ammonium-N (NH
4
-N) and nitrate-N (N0

3
-N) uniformity at each depth layer 

and cumulative for all depth levels of the profile. The resulting 

eighteen distribution charts were analyzed by two-way analysis of variance 

to determine any significant differences in nitrogen content due to 

position in the field. 

The result, as illustrated in Table 1, was that for NH
4

-N there were 

some high spots in the profile, but the cumulative (0-120 em) values 

over the entire field did not vary significantly. 

Nitrate-N levels in the field showed a significant difference 

between the two separated portions of the field. Columns 1 and 2, which 

were adjacent blocks, were significantly lower in nitrate nitrogen than 

columns 3 and 4, which are at some distance away. These N0
3
-N variations 

occur at the shallower depths of 3-15 and 15-45 em, as well as at the 

cumulative depths including the 0-120 em profile as also shown in 

Table l. 

The field at the time of treatment 

In eight plots not receiving a fall fertilizer treatment, change 

from September 19 to October 20 was determined for NH
4

-N and for N0
3
-N. 

This change in nitrogen was found to be very predictable given the 

September levels of NH
4
-N and N0

3
-N. See Table 2. 
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Table 1. Differences in HN
4
- N and N0

3
- N levels in the fie ld before treatments. F-value from two-way 

analysis of variance were run for each separate depth increment and for each cumulative depth 
profile 

Depth F Values High or low spots, Depth F Values High or low spots, 
increment locations and values increment locations and values 

in em Rows Columns for NH
4
- N; kg/ha in em Rows Columns for N0

3
- N; kg/ha 

Columns I & II less 
0-3 1.19 3.28* than III & IV 0-3 1. 24 <1 None of significance 

(0 vs 1 averages) 
Column II l ess than 

3-15 <1 1. 63 None of significance 3-15 1. 04 2.86t other 3 
(13 vs 18 average) 

Columns I & II lower 
15-45 <1 1. 36 None of significance 15-45 1. 09 2.85t than III & IV 

(18 vs 26 average) 
Column III higher 

45-75 <1 4.4611 than rest 45-75 <1 <1 None of significance 
(21 vs about 15 avg) 

75-120 <1 <1 None of significance 7 5- 120 <1 1.44 None of significance 

0- 15 <1 1. 79 None of significance 0-15 <1 2.98* Column II less than 
other 3 (14 vs 20 avg) 

Columns I & II less 
0-45 1 1. 74 None of significance 0-45 1. 28 4.90** than III & IV 

(35 vs 46 average) 

0-75 1.11 1.77 None of significance 0- 75 1.02 2. 98* Same as above 
(55 vs 70 average) 

<J> 

"' 



Table 1. Continued 

Depth 
increment 

in em 

0-120 

F Values 

Rows Columns 

l. 35 1.41 

**Significant a t 1% level. 
1/Signific'ant at 2. 5% l evel. 
* Signific ant at 5% level. 
tSignificant at 10% level. 

High or low spots, 
locations and values 

for NH4- N; kg/ha 

None of signi ficance 

Depth 
increment 

in em 

0- 120 

F Values 

Rows Columns 

1.03 3.6711 

High or low spots, 
lo cations and values 

for N0
3

- N; kg/ha 

Same as above 
(7 5 vs 97 average) 

"' w 



Table 2. Changes in NH
4

- N and in N0
3
- N from September 19 t o October 20, 197 2 , for control plots by depth 

inc rements of 0- 3 em; 3-15 em; and 15-30 em . The abil ity to predict October sample values from 
September sample values is tested by correl ation analysis and given as " r " values . Significant 
r-value indicates that October samples are pred i c tabl e from September values 

T 
September NH4- N leve l and the change 
by October 20; values in kg-N/ha 

Plot 
code 

number 0-3 em 3-15 em 15-30cm 

JV-D 

IV- I 

I-A 

I -I 

Il-G 

0 

0 

0 

0 

0 

1 

+4 

+1 

+2 

+2 

+1 

+1 

3 +6 

3 +5 

8 +1 

6 -1 

6 -1 

6 +6 li-B 

Ill-C 

III-J 

l +1 2 +13 

0 +l 

No test 
possible 

2 

2 
r 

r 

Avg. Sept . Value = 4 
Avg. Change = +4 

**Significant at 1% level. 
#Significant at 2% level. 
*Significant at 5% level. 

&7 

.5785 

. 7605* 

21 -19 

6 +2 

4 +9 

13 +4 

27 -14 

3 +8 

6 0 

18 +3 

2 = .6495 r 

r = . 8059 11 

12 
-1 

September N03-N level and the change 
by October 20; values in k~-N/ha 

0-3 em 3-15 em l5-30cm 

l 0 18 -9 6 -2 

1 0 18 -11 12 +1 

l +8 14 - 3 4 +ll 

1 - 1 28 - 25 6 +7 

1 0 14 -5 15 0 

l 0 18 -10 9 +2 

l +l 18 - 9 18 -10 

l 0 18 -9 18 -10 

No t es t 
2 = .963 

2 = .651 r r 
possible 

r = .981>'* r = .807 11 

Avg. Sept. Value = 18 10 
Avg . Change = 10 +2 

Ln 

"' 
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This predictability was used to estimate the NH
4 

and N0
3

-N levels 

f or all plots at the time of treatment, for the cumulative 0-30 em depth 

i nc rement. In Table 3 is shown that the regression equations from the 

e ight control plots,which are used as the reference, were more reliable 

when based on the 0-30 em values than whe n the smaller, separate depth 

inc rements v1ere used as was shown in Table 2. 

From these regression equations, the September to October changes 

i n NH
4

- N and N0
3

- N levels were calculated for each plot . Since the time 

span from the September sampling to treatment time was one-third the 

time span from the September sampling to the October sampling, one-third 

of the computed changes were taken as a best estimate of changes in the 

September nitrogen level up to the time of treatment. These estimated 

changes were algebraically added to the September 0-30 em c umu lative 

ni trogen level va lues, and served to estimate NH
4

-N and N0
3

- N levels at 

the time of treatment. 

The resulting values, in their relative field positions, reveal that 

at treatment time the field was more nearly homogeneous in NH
4

-N and N0
3

-N 

l evels, in the 0-30 em increment, than it was at the Semptember sampling. 

It is to be noted, however, that Column 3 was still somewhat higher 

in NH
4

-N than Columns l, 2, and 4. Also, the nitrate levels of Columns l 

and 2 were slightly lower than those of Columns 3 and 4, thus preserving 

the patterns found in the September sampl ing. 

Since actual measured variance is now altered by adding smoothing 

interpolations, analysis of variance cannot realistically be applied to 

these estimated figures. 

A comparison of the row and column averages from the September 

sampling time with these estimated figures for nitrogen forms at treatment 



Table 3. Changes in NH4-N and N03- N from Sept. 19, 1972, t o Oct. 20 , 1972, in plots not r eceiving fa l l 
fertilizer additions. Cumulative 0-30 ern depth increment. Highly significant correlations 
indicate that the regression equations describing these two change patterns may be used 
reliably as a tool for predicting October levels given September levels 

Plot Sept NH4- N Oct NH4 - N 6NH4- N Sept NOrN Oct NOrN 6N0
3
- N kg/ha; 0- 30 ern kg/ha; 0- 30 ern kg/ha; 0-30 ern kg/ha; 0-30 ern 

I-A 12 24 +12 19 26 +7 

I - I 19 25 +5 35 16 -19 

II-B 10 24 +14 28 19 -9 

II-G 34 18 - 16 30 25 -5 

III-C 9 23 +14 25 22 -3 

III-J 20 32 +12 38 19 -1 9 

IV-D 24 15 -9 26 14 -1 2 

IV-I 9 17 +8 30 20 - 10 

Average level of NH4- N = 17 kg N/ha in Sept. The N0
3
-N = 29 kg- N/ha in Sept. 

Average change of NH
4

- N = +5 kg N/ha Sept to Oct. 

Coefficient of determination= r 2 = .7873. 

The N03-N = -9 kg-N/ha Sept to Oct. 

r 2 = . 8169. 

Coefficient of r egression = r = .887** (significant at 1%). r = .9038** (significant a t 1%). 

'"' cr.. 
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time illustrates the apparent increas e in homogeneity quite strikingly, 

as i n Table 4. 

Table 4. Co lumn averages fo r NH
4

-N and N0
3

-N levels compared with the 
corresponding averages est imat ed for the time of treatment fo r 
untreated plots. The narrowed ranges i llustrate an increase 
of homogeneity with time 

NH
4
- N in kg/ha 

Column September 19 Sept ember 

I 14 17 

II 10 14 

III 20 21 

IV 15 16 

Ranges fo r column averages: 

NH
4

-N in kg/ha 

Sept ember 19 September 29 

10-20 14-21 
IIN=lO IIN=7 

NH
4
-N and N0

3
-N transformations 

af t er fertilizer placement 

N0
3
- N i n kg/ha 

29 Sep t ember 19 Sep t ember 29 

27 25 

24 24 

32 27 

34 29 

N0
3

- N in kg/ha 

Sept ember 19 September 29 

24-34 24-29 
IIN=lO IIN=5 

Large c hanges occurred in the NH
4

-N a nd N0
3

-N levels f rom the time 

of treatment to the time of the October sampling , a space of three weeks . 

The soil at placement time was warm and dry at the surface. The 

1971-1972 water year at the experimental site had been below normal, 

with 10 inches for this site. 

After placement, only a trace of precipi tation fell the first few 

days; but over hal f an inch fell by the end of the first week. 



During the next week and a half a few small showers fell with a large 

storm towards the end of the third week which deposited 1.40 inches of 

rain in two days. It was shortly after this latter storm that the 

October 20 sampling was made. 
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Thus, nearly a week of warm dry weathe r followed by a wetter period, 

of 2 inches of rain in 2 weeks, characterized the time between treatment 

and the October sampling. 

The first part of this period (moist surface and high evaporation) 

favored ammonia evolution losses from the surface; the second wetter 

period favored microbiologically-induced losses and transformations . 

Performing analysis of variance on the changes in NH
4

-N, N0
3

-N, and 

the total (NH
4

+N0
3

)-N levels during this period showed NH
4

-N transformations 

to be highly treatment dependent. N0
3

-N changes were not significantly 

treatment dependent, and the total (NH
4
+N0

3
)-N changes, dominated by the 

highly dependent NH
4

- N changes, were found to be significantly treatment 

related. The F-test values are tabulated below in Table 5. Field column 

position effect was tested also, to subtract out the variance due to 

column effects and to determine if this effect had a significant influ

ence on the rate of mineral nitrogen transformations. Field position 

of columns did not appear to have a significant effect. 

Since there is a significant treatment effect for the NH
4

-N and 

(NH4+N0
3

)-N transformations, individual treatments were statistically 

evaluated for differences in mean NH
4

-N changes. Student's t-test, and 

Duncan's Multiple Range (DMR) tests were employed, but neither were found 

to be satisfactory discriminators between treatments involving the same 

fertilizer source, and the tests lacked sensitivity over the whole range 

of means generally. For example, only one case was found where the 



Table 5. Two way analysis of variance results on changes in kg-N/ha 
levels from fertilizer placement time, September 29, to the 
time of the October 20 sampling. Nine fall treatments, each 
with one replication in each column. Significant F values 
indicate N-level change is dependent on the tested effect 
(treatment applied or column position). 
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due to effect of: due to effect of: 

(NH
4
-+No

3
)-N changes 

due to effect of: 

Treatments Column 
position 

F = 5.66** F = 1.00 

Treatments 

F = 1.82 

**Significant at 1% level. 
t Significant at 10% level. 

Column 
position 

F = 0.43 

Treatments Column 
position 

F = 1.27 

two application modes for the same source yielded significantly different 

mean results for the NH
4

-N level changes. 

A valid distribution-free statistical test for this experimental 

data is Wilcoxon's Rank-sum Test. The tables given for this test list 

the critical values as that value which has its cumulative probability 

smaller than the listed significance level, so that the usual parametric-

test significance levels may be used and a convenient comparison may be 

made at, say, the 5 percent significance level, instead of the true 

significance level of 2.8 percent. 

The following small table lists the true significance levels for 

the critical values of a two-tailed four element by four element rank-

test comparison. 
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Tab l e 6. Computed signif i cance levels for Wilcoxon ' s Rank Sum Test 
comparing two treatments wi th four values each. Critical 
values given for lower tail of a two tai led test . 

a = true significance level: 0.028 0.057 0.114 

for a value ~ critical value : 10 11 13 

An application of this test to the foregoing nitrogen-level change 

data shows i t s sensi t ivity. The r esulting significance levels for 

differences in treatments using the same fertilizer sourc e is r epor ted 

in Table 7. 

Table 7. 

Source 

NH
4

No
3 

NH
4

No
3 

NH
4

No
3 

(NH4) 2SO 4 

Urea 

Ca(N0
3

)
2 

* 

Wilcoxon's Rank Sum Test applied to treatments involving the 
same source. Two-tailed test. Changes in NH4-N f rom time of 
treatment until the Octob er sampling date. Reported in 
kg-N /ha. Four replications in each mean. 

Treatment and change in mean NH
4

-N leve l 

with seed before seeding af t er seeding 

+14 +9 

+14 +24 

+9 +24 

-29 +31 

-4 2 - 24 

+2 +15 

Significance 
level 

No significant 
difference* 

a= 0.114 

No s ignificant 
difference* 

a= 0.057 

No significant 
difference* 

a = 0 . 114 

a - levels above 0.114 considered non-significant. 



Characteri zation of treatments 

Four treatment parameters have been experimentally determined or 

estimated from the raw data, namely: 

1 . Nitrogen levels found in October. 

2. Nitrogen levels at the time of, and including, treatment. 

3. The differences between these two, or the transformations 

which were found to be treatment-dependent in the above 

section . 

4. Grain yields and protein contents. 

To test the representativeness of these parameters, and to estimate 

their relative significance, the three nitrogen level paramet ers were 

correlated with corresponding grain-yield values. 
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Two such correlations were computed . The first, a plot by plot 

comparison of each parameter with yields, using only (NH4+N0 3)-N figures. 

The second, taking treatment averages of each parameter only, but 

additionally, testing the NH
4

-N and N0 3-N components separately for 

their contribution to yield. 

The results, reported in Table 8, show the tremendous effects of 

the plot- to-plot variances in the first correlation as compared with 

the second correlation using average d values. On the treatment average 

correlations , the treatment-time nitrogen levels prove to be a poor 

determinant of yield in comparison to the October nitrogen levels, 

suggesting that nitrogen losses between treatment time and October 

sampling time were rather permanent. The treatment-time to October 

sampling-time changes, found to be treatment related in the previous 

section, seem to be unrelated to final grain yields, suggesting tha t 

transformations which removed nitrogen from the water-soluble mineral 



Table 8. Correlations between three fall-nitrogen related parameters and grain yields, plot by plot for the 
(h'H4- N + N03- N) parameter values, and by treatment averages for the separate NH4 - N, N03-N; and 
(NH4 + N0

3
)-N contributions. 

A. Individual plot correlations: 40 data pairs, 38 degrees of freedom 

Parameter Coefficient of determination Significance level 

1. (NH
4 

+ N0
3

) -N level after treatment 
2 = .1155 Significant at 5% level r 
2 2 . (NH

4 
+ N0

3
)-N level at October sampling r = .2296 Significant at 1% level 

2 3. (NH
4 

+ N0
3

) - N change between (1) and (2) r = .0645 Not significant 

B. Treatment average correlations: 10 data pairs, 8 degrees of freedom 

Parameter Coefficient of determination Significance level 

1. NH4-N level after treatment 
2 = .0584 Not significant r 
2 

2. N0
3
-N level after treatment r = .1334 Not significant 

2 3. (NH
4 

+ N0
3

) - N level after treatment r = . 6931 Significant at 1% level 
2 4. NH

4
- N level at October sampling r = .5037 Significant at 5% level 

2 5. N0
3
- N level at October sampling r = .0737 Not significant 

6. (NH
4 

+ N0
3

)-N level at October sampling 
2 = .8345 Significant at 1% level r 
2 7. NH

4
- N level change from treatment to October 20 r = . 0450 Not significant 

8. N0
3

- N level change from treatment to October 20 2 = . 0534 Not significant r 
2 9. NH

4 
+ N0

3
- N level change f r om treatment to Oct. 20 r = .01 71 Not significant 

-- ------------

"' "' 



nitrogen pool, as measured in this experiment, did not render this 

nitrogen unavailable to the plant for the remainder of the growing 

season in all cases-

The April sampling 
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The work so far described sets the stage for the analysis of the 

April nitrogen data and the grain-yield data. These data show the 

importance of the field-column effects referred to in both the September 

and October field evaluations above. For example, analysis of variance 

on the grain-yield data evaluating the importance of treatment effects 

and the field column effects resulted in a treatment F-test value which 

is significant at the 0.5 percent level, but also a field-column effect 

F-test value significant at the 1 percent level. Column 1 gave yields 

about 20 percent lower than the rest of the field. That this may be a 

reflection of water-status differences in the experimental field is 

strongly suggested by a close look at surface nitrogen levels in the 

April sampling as they compare with yields at harvest. 

Table 9 describes the differences in nitrogen status versus yields 

in the field columns. 

Using the Student's 11 t 11 statistic, the nitrogen levels are not 

found to be significantly different, but the difference between the 

grain yield of Column I compared with the other three is different at 

the 95 percent confidence (5 percent significance) level. 

Note the lack of correlation between the surface nitrogen levels 

in Column I as compared to the others, suggesting water-stress as the 

limiting factor in Column I, at least to a greater extent than in the 

other columns since all had similar nitrogen contents. Column I was 



Table 9. Nitrogen levels for the April 28 sampling in the 0-15 em 
surface, correlated with grain-yields, showing columnar 
differences in nitrogen-yield relations 
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Average nitrogen 
level ± the standard 

Average grain Correlation 

Column error of the mean 
0-15 em 

(NH
4 

+ N0
3
)-N; kg/ha 

19 ± 4 

II 28 ± 

III 21 ± 6 

IV 21 ± 5 

**Significant at 1% level . 
#Significant at 2% level. 

± 
yield in kg/ha results: 11 
the standard error plots per 
of the mean column 

1593 ± 106 R2 0.010 

2036 ± 106 R2 0.687** 

2038 ± 132 R2 0.494 11 

1954 ± 86 R2 0.228 

observed to be shallower to restricting layers (cemented parent 

material) than the others during the samplings, which could be respon-

sible for the water problem in terms of reduced storage. Some plots 

in this column were shallower than 75 em to a hardened, calcareous 

substratum (especially plot I - k). 

Further analysis of the April sampling data involves compar isons 

between this data and the data from the other samplings which appear in 

a separate section, below . 

The July sampling 

On July 31, 1973 spot checks of a limited number of plots were made 

just a week before harvest for the purpose of determining whether all the 

available nitrogen had been extracted by the growing crop . 
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The data from this limited sampling revealed no statistically signif

icant differences between the nitrogen levels of the plots sampl ed, 

except in the case of one plot where urea was applied in spring. This 

data proved surprisingly illuminating, however, when comparisons were 

made between the July and April nitrogen levels, and then compared to 

the yields in these plots. 

For example, correlation between 0-120 ern mineral nitrogen depletion 

f rom April to July and the plot yields gave an r
2 

= 0.787 for nine of 

the eleven samples taken, which is significant at the 1 percent level. 

Regression analysis comparing the 0-120 ern April mineral nitrogen 

l evels with corresponding yields for these same nine plots yielded an 

r
2 

of 0.460, significant at the 5 percent level for this sample size . 

A similar correlation for the 0-30 ern October mineral nitrogen levels 

for these plots compared to their respective yields produced an insig

nificant r
2 

of 0.280. This shows that this sampling is representative 

of the population from which it was drawn, which population as a whole 

gave an r
2 

of 0 . 23 when October mineral nitrogen was correlated wi th 

yield for all 44 plots. 

The July sampling being thus representative of the whole field 

allows a generalization of the finding that nearly 80 percent of the 

yield variability was a function of nitrogen availability between 

April and maturity . It may be further hypothesized, that the mineral 

nitrogen content of the soil in April could have been just as effective 

a yield predictor as the April-to-maturity depletions, if water could 

have been adequate over this period of time . Differential drying in 

the field, causing nitrogen uptake cessation in different locations at 



different times, may, therefore, have been responsible for the 30 per

cent yield variability which was lost when April mineral nitrogen 

levels were considered without post-maturity nitrogen levels. 

The results of a small experiment conducted at the time the crop 

approached maturity lends credence to the assertion that drying , and 

subsequent cessation of nitrogen uptake, varied with location in the 

field. On June 6, 1973 a small sampling of wheat plants was made down 

the center of the field, taking two samples from each of Columns II, 

III, and V. These samples were analyzed for nitrate nitrogen, and 

organic + ammonium nitrogen, so that total nitrogen was known at this 

time for the leaves and stems . The result s of this experiment are 

tabulated and discussed in Table 10. 

Further analysis of the data in Table 10 reveals that there is 

high correlation (r
2 

= 0.73, significant a t the 5 percent level) 

between total nitrogen level and grain yield, while there is a 

negligible relationship between the organic nitrogen level and the 
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grain yield. A conclusion to be drawn from this, based upon the hypoth

eses of McNeal (1968), is that even though nitrogen uptake had markedly 

slowed (in all except one case), and even though photosynthesis had 

almost ceased, in all except this one case in which there was still 

green pigment in the leaves and stems, inorganic nitrogen was still used 

in organic synthesis and being translocated to the grain. If the 

magnitudes of the other r
2 

values are meaningful, it may be inferred 

from th~n that at the dough stage of growth the nitrogen in the leaves 

and stems was used more in the grain structural materials than in the 

grain protein fraction. This is characteristic of intraplant nitrogen 



Table 10. Nitrogen levels in some of the wheat plants at the onset of maturity. Diversity in values 
for nitrates may indicate variability in the time of the onset of maturity, and corresponding 
cessation of nitrogen uptake, presumably due largely t o differential drying patterns in the 
field. The amount of organic nitrogen may be taken as an indication of the biological 
activity of the plant. 

Field Treatment 
location received 

North of III-A None 

III- A (NH4) 2so4 
after planting 

v-c NH
4

No
3 

before 
plant1ng 

II-C Urea after 
planting 

V- E Urea in spring 

II-F NH
4

No
3 

Comments 

Stunted 
(taken from buffer 
zonP. between road 
and field plots) 

Normal 

Normal 

Normal 

Normal 

ppm No;- N ppm organic + ppm total-N Rank of 
in leaves N~-N in leaves in leaves yields in 
and stems an stems and stems these 6 plots 

2 56 58 6 

29 140 170 4 

28 77 105 3 

16 97 113 5 

12 146 158 1 

before planting Only sampl e taken 77 87 164 2 
where plants in the 
plot were still gr een 

--------------- ------------------!~-~E~!~---------------------------------------------------------------
Correlation with grain yields (expressed as /)

2
= 0.30 0.40 0.73* 

Correlation with protein yields (expressed as r ) = 0.25 0.32 0.20 

*significant at 5% level . 

"' ._, 



translocations in the post-dough to ripe stages of growth as described 

by McNeal (1968). 

Grain yield, prot ein , and 

moisture-data analysis 
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Grain yields, in kg-grain/ha were obtained for each soil sampling 

depth increment in each plot. Two-way analysis of variance revealed 

treatment effects to be significant at the 0.5 percent level, but, in 

addi tion, field column position effects were significant at the 1 percent 

level. Col umn I, as previously shown (Tab l e 9), yielded about 20 percent 

lower than the other three columns. Repeating this analysis without 

Column 1, in other words on a more uniform field but with only three 

replications, the co lumn effect was reduced to insignificance , but the 

treatment effect now could only be considered significan t a t the 10 per

cen t level. Further analyses of variance, not using Column I, revealed 

no significant effects due to trea tment if only the treatments involving 

fall applications were used. If this analysis is repeated for fall 

treatments only , but for a ll four field co lumn replications, treatment 

effec ts are noted significan t a t the 5 percent level and field column 

effec ts register significance a t the 10 percent level. Since these sub

sets were tes ted after an examina t ion of the data , they may be statistically 

illegal , but they do serve to point out the thorough confounding of trea t

ment with soil he t erogeneity effects. 

Pro tein percent age of the grain for each plot was also analyzed 

by two-way analysis of variance, with the result that treatment effects 

were significant a t the 2.5 percent level of significance,and field column 

posi tion effects were non-significant, registering an F-test value at the 
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25 percent level of significance. Of i nterest i s the fac t that the high

est yielding field column had the lowest grain protein percentage 

(Column III). The other three columns, although exhibiting real differ

ences in grain yield, showed no differences in protein content of the 

grain. If interpreted by the observations of Hutcheon and Paul (1966), 

this finding would be suggestive of a higher available moisture level in 

Column III, causing a slight increase in vegetative development at the 

expense of protein synthesis. From the same standpoint, the nondiffering 

yields of the control, and the urea after seeding treatment seems to 

indicate a similar impediment to growth in both cases, namely moisture 

stress. But when protein percent is compared for these two treatments, 

it becomes clear that urea after seeding treatment was superior in the 

providing of nitrogen to the native nitrogen supplying ability of the soil. 

Even with the same grain yields, the urea after seeding treatment yie lded 

25 percent more protein, in kg of the protein per hectare, than did the 

control plot. This is in accord with the observation of Nielson (1955) 

that even if, in a dry year, yield responses from nitrogen fertilizer 

are lacking, the increase in the protein yields may well pay for ferti

lization costs anyway . The chances for a good return from added ferti

lizer even in a marginal year seem good. 

Two-way analysis of variance was run on protein yields, which were 

obtained by multiplying the grain yield by the protein percent for each 

experimental plot. Since the protein percent did not change proportion

ally with the changes in grain yield (correlation coefficient for mean 

treatment values of grain yield and protein content, r = 0 . 0000), in 

either direction, these protein yields should reflect much the same 

treatment and field factor dependencies as the grain yields. F-test 
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results bore this out, with a 5 percent significance level for treatment 

effects, and a 10 percent significance level for field column effects. 

The lowered significance of the treatment effects, and the higher 

significance of the field position effects, for these protein yields as 

compared to the grain yields, again tend to confirm the presence of 

water stress since under mild water stress nitrogen use for protein 

synthesis is favored over vegetative production, while under more severe 

water stress both the vegetative and protein synthesis are depressed. 

Therefore, nitrogen availability differences due to treatment become 

moderated, when water and not nitrogen becomes limiting. A corresponding 

nitrogen availability difference due to field location would become 

exaggerated because any stressed plots would tend to be concentrated in 

certain locations in the field. 

A summary of the data on which the foregoing discussions are based 

appears in Table 11, including the results of using Duncan's Multiple 

Range test to find significantly different subsets for each of the three 

pa rameters. 

Further analysis on this water stress factor involved a moisture 

determination on the grain from each plot. It was hoped that the obser

vations of Steward and Hirst (1912) that grain moisture content differs 

depending on available water, could be quantitatively appraised. This 

hope was somewhat beclouded by the observation of Dondlinger (1912), 

that two days of grain exposure to the atmosphere equalized the moisture 

content of grains formerly ranging from 8 to 13 percent grain moisture. 

Nevertheless, grain samples from each plot at harvest were sealed in 

plastic bags and kept sealed until weighing for the moisture determina

tion. Analysis of variance on these moisture percentages for each 



Table ll. Grain yield, grain protein percent, and protein yield means with the standard err ors of their means 
for each treatment. Non-significant differences in means calculated using Duncan's Multiple Range 
Test at the 5 percent level of significance, and these in-distinguishable subsets of means 
indicated by matching letters: i.e., all A treatment means are not significantly different at the 
5 percent significance level, etc. Protein yield calculated by multiplying grain yield by protein 
content for each plot. 

Treatment 

Control 

NH
4

No
3

, with seed 

NH
4

No
3

, before seeding 

NH
4

No
3

, after seeding 

NH
4

No
3

, in Spring 

(NH
4

)
2
so

4
, before seeding 

(NH
4

)
2
so

4
, after seeding 

Ca(N03)
2

, before seeding 

Ca(N0
3

)
2

, after seeding 

Urea, before seeding 

Urea, after seeding 

Subsets of statistically indistinguish-
able means at the 5 percent significance 
level. a 

Grain yieldb Protein %c Protein Yieldd 

D c c 
BCD A AB 

ABC AB A 

BC BC AB 

A BC A 

BCD BC BC 

AB BC AB 

BCD AB AB 

CD BC BC 

BCD BC BC 

D A BC 

Mean grain Mean grain Mean pro-
yields, ± protein con- tein yield 
standard error tents, ± ± stand. 
of the mean; stand. error error of 
kg/ha of mean, % mean,kg/ha 

1531 ± 109 8 . 8 ± 0.2 136 ± 13 

1839 ± 135 11.4±0.6 208 ± 16 

2175 ± 91 10.9 ± 0.3 238 ± 13 

2001 ± 162 10.0 ± 0.2 200 ± 15 

2423 ± 137 10.0 ± 0.4 243 ± 17 

1887 ± 230 9 . 5 ± 0.4 177 ± 18 

2192 ± 150 9 . 9 ± 0.5 215 ± 10 

1872 ± 196 10.4 ± 0.5 195 ± 20 

1760 ± 159 10.0 ± 0 . 4 177 ± 20 

1870 ± 134 9.5 ± 0 . 2 177 ± 11 

1501 ± 273 11.3 ± 1. 0 170 ± 38 

aA good estimate of the least significant range (LSR) for all these tests is three times the standard error 
bof the mean. 
Mean LSR = 421 
~ean LSR = 1. 5 
~Mean LSR = 55 .._, 

..... 
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block showed the fie ld column effects to be highly significant at the 

0.5 percent level. 

The field column moisture, protein, protein yield, and grain yield 

figures are given in Table 12. 

Table 12. Summary of field-column position effect due to water stress 
on the grain yield, grain protein, protein yield, and grain 
moisture content 

Field Mean grain Mean protein Mean pro t ein Mean mois-

column yield ± SD percent ± SD yield ± SD ture % ± 
of mean (a) of mean (b) of mean (c ) SD of mean 

I 1593 ± 106 10.3 ± 0.3 164 ± 12 11.9 ± 0.1 

II 2036 :!: 106 10.5 ± 0.4 214 :!: 13 12.0 ± 0.2 

III 2038 ± 132 9.7 :!: 0. 3 198 ± 16 12.8 * 0.1 

IV 1954 ± 86 10.1 ± 0.4 197 ± 13 12.3 ± 0.1 

~SR 321 at 5% level of significance. 
LSR 1.0 at 5% level of significance. 
~SR 45 at 5% level of significance. 

LSR 0 . 4 at 5% level of significance. 

(d) 

From the least significant differences, i t may be seen that, at the 

5 percent level of significance, the only real differences in these 

figures are (1) the lowest grain yield and the l owest protein yield are 

in field Column I, and (2) the highest grain moisture was found in 

Column III. Three-way correlation of grain moisture with yield and 

protein for the four field columns gave an r of 0.993 at 2 degrees of 

freedom, which is significant at the 1 percent level, lending greater 

credence to the water stress hypothesis than is seemingly afforded by 

just Table 12. Correlation comparing grain moisture with grain yield 

done inside each block separately for the eleven treatments revealed 
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a significant (at the 5 percent level) relationship between grain moisture 

and grain yield only in Column II, with Column I being the least corre

lated and III and IV being intermediate but still below any useful 

probability levels. Repeating this experiment for three-way correlation 

of grain moisture with grain yield and protein, gave a similar result 

with the effects in Column II being correlated at the 1 percent signifi

cance level with r = 0.866, and Column I being the lowest at r = 0.35, 

and the other two columns (III and IV)both with r's around 0.40. 

The inference to be drawn from these results is that Column II had 

the most favorable water regime, not especially meaning the most avail

able water, but rather meaning that the timing of the water availability 

was such that the efficiency of nitrogen and moisture use was higher 

than in the surrounding field columns. 

The role of moisture is thus quite complicated. Column I had 

lowest yields, and since the plots were found to be relatively shallow 

to cemented parent material, water stress was thought to be the obvious 

problem here. Columns II and III yielded equally, but in Column II the 

grain protein content is higher while the grain moisture content is 

lower, and the relationship is quite linear between grain moisture, 

yield, and protein content. Column III has significantly higher grain 

moisture, and its protein content is the lowest of the four columns, 

suggesting that field water stress was less here than in other columns 

and nitrogen use efficiency was down somewhat. And Column IV, with less 

grain yield than Column III, yielded the same in protein per hectare, 

showing maybe a little less available moisture during some segment of 

the growing season with an accompanying increase in nitrogen use 

efficiency. 



It must be kept in mind that these observations on the role of 

availab l e moisture are hypothetical and not supported by quantitative 

assessments of moisture in the field, qualitatively they are well 

supported from the results of the regressions obtained in the above 

noted correlation analyses. 

Mineral nitrogen in the soil profile 

at the different sampling times 
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In view of the fact that the experimental field, throughout this 

inves tigation, has exhibited some significant heterogeneity, it would be 

profitable to assess the mineral nitrogen levels at the different sampling 

times to see if heterogeneities found in the September sampling reappeared 

some time after the treatments. If so, these differences must then be 

characteristic of the soils in these local areas of significantly higher 

or lower mineral nitrogen levels. On the other hand, if no patterns can 

be established, it may be assumed that different rates of microbial 

nitrogen cycling within this field, or some locally differing physical 

properties of the field soil, are not responsible for these high and low 

mineral nitrogen levels as found in the September sampling of the field. 

If this happens to be the case, then these September differences are due 

to transitory effects instead, arising from the recent history of the 

field, which would naturally change in both magnitude and location with 

each cropping season. 

The October sampling nitrogen levels were dominated by the treat

ment additions, and the samples without fall treatments have been shown 

to have changed quite predictably from the September levels toward a 

more homogeneous common level (in the section describing the field at the 

time of treatment, above). 
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The surface to 30 em depth increment in the April sampling still 

shows some treatment effects, especially the ammonium nitrate in spring 

and the two ammonium sulfate treatments in the fall. No significant 

differences were found outside of these three treatments, and no corre

lations were significant between September, October or April nitrogen 

levels for the other eight treatments. The treatment averages for 

ammonium and nitrate nitrogen levels at the surface to 30 em depth 

increment are given for the three main sampling times in Tables 13 and 

14. 

The September and April 30-120 em cumulative mineral nitrogen 

levels were compared plot by plot in an analysis of covariance. These 

deeper nitrogen levels in April were found to be independent of the 

corresponding September levels, suggesting that the September mineral 

nitrogen distribution patterns were not reflections of permanent 

features of the field structure, but rather reflected the field's recent 

history only. 

It must be noted that when analysis of covariance was run on the 

0-30 em mineral nitrogen levels of September and April, a slight 

dependency of the April ammonium level on the September ammonium level 

was noted (at the 5 percent significance level). Reduced analysis of 

variance on the field column effect in this dependence showed no 

significant contribution from field column position. Nitrate levels were 

not found to be dependent using the same test. The explanation for this 

ammonium nitrogen dependency is simply that little change in ammonium 

nitrogen levels occurred between September and April, while nitrate 

nitrogen levels were more highly variable. 



Table 13. Treatment average NH4-N levels at the three main sampling times: Sept. 19, 1972; Oct. 20, 197 2; 
and Apr. 28, 1973. Cumulative N values to 30 em depth, given in kg-N/ ha with st andard error of 
the mean based on a four-plot average 

Treatment 

Control 

NH4No 3 , with seed 

NH4No
3

, before seeding 

NH4No 3 , after seeding 

NH4N0
3

, in Spring 

(NH4) 2so
4

, before seeding 

(NH4)
2
so4 , after seeding 

Ca(N0
3

) 2 , before seeding 

Ca{N0
3

)
2

, after seeding 

Urea, before seeding 

Urea, after seeding 

September 
NH4-N S.D.x 

kg-N/ha kg-N/ha 

16 6 

ll 2 

18 6 

12 2 

18 3 

16 8 

8 3 

14 2 

10 5 

21 9 

15 4 

NH4-N 
kg-N/ha 

20 

43 

46 

55 

24 

52 

100 

18 

22 

33 

48 

October 
S.D.x 

kg-N/ha 

5 

6 

3 

6 

23 

2 

2 

6 

10 

~ April 
NH4-N 

kg-N/ha 

ll 

12 

15 

17 

29 

26 

21 

14 

12 

14 

17 

S.D.x 
kg-N/ha 

3 

4 

4 

6 

3 

7 

3 

4 

4 

6 

*4 kg NH
4
-N/ha -forthe 0-30 em depth- isthe thr-eshold value of the method used; below 4 kg NH4- N/ha, the 

method cannot discriminate. 

.._, 
"' 



Table 14. Treatment average N03-N levels at the three main sampling times: Sept. 19, 1972; Oc t. 20 , 1972 ; 
and Apr. 28, 1973. Cumulative N values to 30 em depth, given in kg-N/ha with stand ard error of 
the mean based on a four-plot average 

SeEtember October AEril 

Treatment N03-N S.D.- N0
3
-N S.D.- N0

3
-N* S.D.-

X X X 

kg-N/ha kg-N/ha kg-N/ha kg-N/ha kg-N/ha kg-N/ha 

Control 26 3 23 1 9 1 

NH4No3, with seed 26 3 54 2 18 9 

NH4N0
3

, before seeding 28 3 66 12 12 2 

NH4No3 , after seeding 28 7 44 4 14 3 

NH4N0
3

, in Spring 27 5 17 1 29 9 

(NH4) 2so
4

, before seeding 25 5 28 3 17 5 

(NH4) 2so
4

, after seeding 21 5 24 5 16 3 

Ca(N0
3

)
2

, before seeding 29 10 60 7 8 0 

Ca(N03) 2 , after seeding 20 4 58 13 10 1 

Urea, before seeding 25 5 31 4 12 1 

Urea, after seeding 28 7 21 4 13 5 

*8 kg N03-N/ha for the Q-30 em depth is the threshold value of the method used; below 8 kg N03-N/ha, the 
method cannot discriminate. 

"' "' 
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Decreases in soil mineral nitrogen content reflect the inability 

of the soil nitrogen immobilization-mineralization cycle to supply the 

demands of the crop plants to some degree. Even a total lack of avail

able mineral nitrogen cannot be taken as a fool-proof indication of 

severe nitrogen stress if soil moisture and temperature are conducive 

to further mineralization and mobilization of soil nitrogen. On the 

other hand, a significant amount of mineral nitrogen in the soil is no 

sure indication of it availability to the crop unless moisture is 

present also. Because of these complications, regressions of the 

differences in mineral nitrogen levels between the September and April 

samplings at ·all depths for all plots with fall treatments compared with 

plot yields as an indicator of plant nitrogen demands, failed to produce 

any significant correlation coefficients in almost every instance. The 

correlation coefficient for the 30-120 em depth mineral nitrogen deple

tions, for 39 plots compared with their yields was r = 0.016, and for 

the whole 0-120 em, nitrogen depletions from September to April run only 

on the nine treatment means with fall treatments versus treatment

averaged yields gave an r = 0.236. Three exceptions to these non

significant regression findings are discussed below. 

Some interesting results came from this data . The data in Table 15 

serves to introduce these results. This data is especially useful since 

these differences in the nitrogen levels take into account not only the 

October and March treatment effects, but also the initial September 

mineral nitrogen level effects are considered. 

Because of the extremely large variances, statistical analysis of 

these means is not useful since only the largest differences would be 

significant and these can be picked out easily from a cursory examination 



Table 15. Treatment an~ field_ column average diff.frences !n the soil mineral nitrogen contents between the September and April samplings. Data 
given for NH -N. N0

3
-N. and combined (NH

4
-N + N0

3
-N) in kg-N/ha. Negative signs indicate net depletion from September to April, posi

tive signs i*dicat e gains. The standa+.d deviaEions of the eleven column or four treatment results are given to indicate the large 
variations in the magnitudes of the NH

4 
and N0

3
- N changes within the treatments. Note large field column effects. 

0-30 em JD-120 em D-120 em 
Mean nitrogen changes Mean nitrogen changes Mean nitrogen changes 

Treatment (and standard deviations) (and stardard deviations) 
or 

NH:-N NO;-N Both 
+ 

NO;-N Both NH:-N NO;-N Both Field column 
NH

4
-N 

kg-N/ha kg-N/ha kg-N/ha 

Control -5 (9) -17 (6) -22 -14 (10) -18 (15) -32 -19 -35 -54 

NH
4

No
3 

with seed +1 (6) -8 (24) -7 -8 (21) -20 (25) -28 -7 -28 -35 

NH
4

No
3 

before planting - 2 (9) -16 (9) -18 -22 (42) -32 (25) -54 -24 -48 -72 

NH
4

No
3 

after planting +5 (13) -14 (17) -9 -33 (28) -20 (19) -53 -28 -34 -62 

NH
4

No
3 

in spring +10 (5) +2 (17) +12 -38 (30) -28 (15) -66 -28 -26 -54 

(NH
4

)
2

so
4 

before planting +10 (7) -8 (7) +2 -41 (49) -31 (27) -72 -31 -39 -70 

(NH
4

)
2
so

4 
after planting +12 (9) -5 (6) +7 -15 (7) -6 (50) -21 -3 -11 -14 

Ca(N0
3

)
2 

before planting 0 (5) -20 (19) -20 -22 (17) -9 (18) -31 -22 -29 -51 

Ca(N0
3

)
2 

after planting +2 (15) -10 (6) -8 -30 (20) -40 (30) -70 -28 -50 -78 

Urea before planting -7 (24) -13 (8) -20 -34 (49) -27 (21) -61 -41 -40 -81 

Urea after planting +2 (12) -15 (16) -13 -22 (19) -18 (20) -40 -20 -33 - 53 

--------------------------------------------------------------------------------------------------------------------------------------------
0 (7) -13 (15) -13 -20 (28) -13 (22) -33 -20 -26 - 46 

li +3 (8) -9 (12) -6 -20 (20) -12 (33) -32 -17 -21 -38 

Ill -5 (13) -17 (B) -23 -38 (40) -31 (19) -69 -43 -48 -91 

IV 0 (9) -20 (13) -20 -23 (18) -33 (17) -56 -2 3 -53 -76 

;;: 
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of this table. For example, treatment effect s that are noticeable include 

the three treatments that gained mineral nitrogen in the 0-30 em depth (1) 

planting . In the first two cases, the mineral nitrogen taken out a t t he 

lower depth made up for this net gain in the higher soil depth. 

But in the case of (NH
4

)
2
so

4 
applied after planting, the treatment with 

the highest mean yield for all the fall ni trogen applications, there was 

definit ely less difference between the Sep tember and April mineral nitro-

gen levels than is found for any other treatment. A case study was made 

of this treatment by incremental analysis of the mineral nitrogen levels 

at each sampling. 

The overall pattern for this treatment seems to be large, shallow 

accumulations of ammonium nitrogen for a few weeks after broadcasting the 

ammonium sulfate. The large increases in the 0-45 em depth seem out of 

proportion to the 56 kg-N/ha added. The replications vary from an in-

crease of 27 kg-N/ha to a n increase of 173 kg-N/ha, which is hard to 

explain except in vague terms including error, and the pooling effect as 

described by Jansson (1971). It should be noted t hat the III-A replica

+ tion at the 3-15 em depth was r e run twice , so that the 128 kg-NH
4
-N/ha 

figure appearing in the figure is an average of three analyses. Such 

high incr eases from ammonium nitrogen additions seem to be substantiated 

by the April sampling finding tha t for this trea tment's replication 

II-E, the r e was 96 kg NO;-N/ha in the 75-1 20 em depth increment. The 

low increase noted for the first replication, I-J, and its subsequent 

lower yield, may be due to some unaccounted for surface phenomena. The 

fac t that this replicat i on had one of the highe r mineral nitrogen contents 

of the f ield in Sept ember shows that the plot is not incapable of storing 
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mineral nitrogen, but it should be recalled from the section discussing 

the changes in the field mineral nitrogen content from the September 

sampling to the time of treatment (page 56) that plots high in mineral 

ni t rogen in September would lose some of this mi neral ni t rogen by the 

time of treatment . If the regression equation used in Table 3 (page 56) 

is applied to compute the nitrogen level at the time of treatment, then 

a net increase of 44 kg-N/ha is noted at the October sampling time, which 

indicates only a 27 percent loss of ammonium sulfate . This is still no 

explana tion of why this is the only replication that failed to gain 

mineral nitrogen above the added level in this treatment. 

Having analyzed this (NH
4

)
2
so

4 
after-planting treatment in some 

detail, two outstanding features were found which should be assessed in 

each of the other fall treatments (1) accumulation of the added fertili-

zer nitrogen in the surface layers of the soil, and (2) the amount of 

the available mineral nitrogen three weeks after treatment as a fraction 

of the amount of nitrogen added. 

A treatment by treatment detailing follows in Table 16 i n which the 

net changes in the mineral nitrogen levels from the time of treatment 

to three weeks after treatment are shown by treatment averages and by 

field column and grand field averages. 

The treatment averages show a general trend toward higher nitrogen 

treatments. There also seems to be a favoring of after-seeding treat-

ments in the cases of ammonium sulfate and urea, possibly due to more 

concentrated shallow NH+-N accumulations. 
4 



Table 16. Increases due to nitrogen fertilizer additions measured for the 0-30 em depth increment three 
"eeks after treatment. Plot mineral nitrogen contents at the time of treatment estimated from 
September measurements and known rates of change (see p. ). All average increases listed as 
a percentage of the amount of added material, followed by their standard deviations to show 
plot to plot variabilities 

-= 
Treatme nt Mean percent changes from added nitrogen levels follm;ed Mean grain 

or by their individual plot by plot standard deviations yields given 
Field column llNH4 

S.D. liN0
3 

S.D. li(NH
4
+N0

3
) S.D . in kg/ha 

NH
4

No
3 

with seed +64 25 +100 46 +82 36 1839 

NH4No 3 before planting +86 36 +161 82 +125 48 2175 

NH4No
3 

after planting +121 36 +89 39 +107 32 2000 

(NH4) 2so4 before planting +54 21 (net increase) +66 21 1886 

(NH4) 2so
4 

after planting +138 84 (net increase) +159 91 2193 

Ca(N0 3) 2 before planting (net decrease) +71 27 +64 29 1872 

Ca (N0 3) 2 after planting (net decrease) +64 45 +64 39 1760 

Urea before planting +20 23 (net increase) +39 34 1870 

Urea after planting +48 38 (net increase) +62 48 1501 

I +59 59 +105 100 +7 5 38 1627 

II +65 59 +73 114 +68 52 2036 

III +109 130 +13 2 77 +118 7l 2038 

IV +53 7l +127 55 +80 43 1953 

Whole field +71 82 +109 91 +86 61 1914 

00 ..., 
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These conclusions are supported by a regression test result of 

R = 0.774 (significant at the 2 percent level) when the nine treatment 

total mineral nitrogen accumulations were compared with their mean 

grain yields. The test suggested that this initial behavior of the 

fertilizer material accounts for roughly 60 percent of the 83 percent 

of the variability which can be predicted by the total mineral nitrogen 

level to this same depth at this point in time, run on these same 

treatment averages. 

The question of the importance of surface accumulations of nitrogen 

at the time of the October sampling, as suggested by the results of the 

(NH
4

)
2
so

4 
after-planting treatment characterization will now be treated 

in some greater detail. 

Using the nineteen plots with the highest 0--3 em mineral nitrogen 

levels in April, and correlating these levels with the plot grain 

yields resulted in a highly significant correlation coefficient of r = 

0.573 (significant at the 2 percent level). Using the 0-15 em cumulative 

nitrogen levels for these same samples, being the addition of the 3- 15 

em nitrogen contents to the 0-3 em contents used above, the correlation 

coefficient falls to r = 0.339 (not significant). 

Doing another regression analysis on the nine highest April 0-3 em 

nitrogen level plots versus their yields, however, produced a correlation 

coefficient of r = 0.282, which is insignificant. These findings illus

trate the general nature of the trend illustrated that the surface 

accumulations of mineral nitrogen (not within reach of the plant roots 

on dry land) at the beginning or middle of the season will tend to raise 

yields. What needs to be added is, that if there is no significant down 

ward movement toward the peak demand time of the crop plants, no yield 



84 

response will be seen, as may be interpreted from the poor correlation 

using only the nine highest April treatments. These great surface 

accumulations, for the fall treatments, anyway, could be due to a locally 

greater clay sorption, meaning that the release is very slow and may not 

be great enough to supply plant needs. 

A breakdo,;n of these nineteen out of forty- f our highest April sur-

face samples follows by treatments: 

1. Ammonium sulfate after planting, all four plots 

2. Ammonium sulfate before planting, two plots 

3. Ammonium nitrate in spring, three plots 

4. Ammonium nitrate after planting, three plots 

5. Ammonium nitrate before planting, two plots 

6. Ammonium nitrate with seed, two plots 

7 0 Urea before planting, two plots 

8. Urea after planting, one plot. 

Conspicuously absent are the nitrate treatments, and extra 

prominent are the ammonium sulfate and ammonium nitrate treatments, each 

with 75 percent of their plots represented. 
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SUMMARY AND CONCLUSIONS 

Patterns of mineral nitrogen distribution were investigated before 

and after fertilizer additions. 

In the fall, before seeding and fertilizer treatment, nitrate nitro-

gen levels in the field were double the ammonium levels, with a grand 

+ 
mean of 85 kg/ha of N0

3
-N and of 42 kg/ha of NH

4
-N in the total measured 

profile of 0-120 em. 

Three weeks after time of treatment, the plots were sampled again 

and, even though all plots received the same (56 kg-N/ha) amounts of 

fertilizer nitrogen, highly variable differences in the 0-30 em mineral 

nitrogen content were found both between and within treatments. 

To subtract from these post-treatment mineral nitrogen levels any 

variability contributed by pre-treatment mineral nitrogen levels, an 

estimate was made of the treatment-time mineral nitrogen levels for each 

plot. This estimate was based on the linear relationship of pre-treatment 

to post-treatment mineral nitrogen levels as determined on eight plots 

not receiving a fall treatment. One-third of this 30~day nitrogen level 

change relationship was taken as a best estimate of the ten-day nitro-

gen level change between the September sampling and treatment time. To 

this best estimate was added the amount of nitrogen contributed by the 

treatment for each plot, and this composite figure served as a treat-

ment time nitrogen-level index in the following analyses. 

The unadjusted differences between this treatment-time mineral 

nitrogen-level and the experimentally determined post-treatment time 

mineral nitrogen level for each plot was ·computed, and this change was 



86 

averaged for each of the four plots within each treatment as a possible 

index to treatment effectiveness. 

It was statistically determined that the after-seeding treatment 

using ammonium nitrate had significantly more mineral nitrogen in its 

G-30 em profile than did the same source when applied with the seed. 

Similarly, ammonium sulfate post-treatment nitrogen levels were signifi

cantly higher from treatment after seeding than from treatment before 

seeding. 

The highest loss of added mineral nitrogen was that of the urea 

before planting treatment, where only about 41 percent of the added 

mineral nitrogen was recovered. In contrast, the ammonium sulfate after 

planting treatment gained mineral nitrogen over this same period, 

resulting in a 160 percent recovery. Two other treatments, both using 

ammonium nitrate, registered increases over this period, also resulting 

in recoveries greater than 100 percent. Correlation of these treatments 

averaged percent recoveries with yields for each treatment shows that 

about 60 percent of the yield variability may be attributable to this 

initial fertilizer behavior (see Figure 3). 

The later sampling results show not only the behavior of the added 

materials, but also suggest the influence of differential drying in the 

field on this behavior . The variability in mineral nitrogen content 

induced by differential plant uptake confounded attempts to attribute 

specific characteristics of fertilizer behavior to specific materials 

and treatments. The reality of this problem was illustrated well by 

correlating April nitrogen levels across the field columns, negating 

treatment effects, with average columnar yields. 
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Only in the center two columns were April nitrogen levels signifi

cantly related to subsequent yields, with 50 to 70 percent of the grain 

yield variability relatable to mineral nitrogen levels. In the other 

two field columns, in contrast, only one and 23 percent of yield varia

bility were so relatable. Although no field moisture samples were taken, 

there appeared to be some relatability of protein and grain yield to 

moisture stress. At the 5 percent level of significance, grain yield and 

protein yield were found to be higher for the portion of the field with 

the most favorable moisture content (Column II), as compared with the 

field area with the least favorable moisture regime (Column I). Moisture 

adequacy was deduced from grain moisture data and deep, favorable soil 

areas. 

Comparing pre-treatment and early spring mineral N levels for all 

the treatments, now including one spring treatment added three weeks 

previous to sampling and having received some precipitation in the mean

time, provides no statistically meaningful results except to show a few 

general and one specific phenomena. Figure 4 is a summary of a previously 

presented table, and illustrates the dramatic difference between the 

ammonium sulfate-after sampling and the other ten treatments. 

The pattern of initial gains and losses of added mineral nitrogen 

for each treatment is still detectable in these depletion figures, with 

highest initial loss rates corresponding to highest depletions by April 

and also highest initial mineral nitrogen accumulation rates resulting 

in smaller depletions. Correlation analysis reveals this relationship 

to be weak, however, at only a 10 percent level of significance, showing 

that other effects such as leaching and biological transformations have 

also become important. 
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A mid-summer soil N analysis of nine plots, picked as a representa

tive sample of the whole field, suggest that possible differential 

moisture stress regimes across the field, which would determine the plant's 

ability to take up mineral nitrogen and therefore the nitrogen depletion, 

may be increasingly more important in determining yields . These 

analyses, as shown in Figure 5, may be summarized by saying that April 

soil N levels accounted for less than half the grain yield variability 

of these plots, while the April to maturity N depletions, which are in 

part a summation of the interactions between any percent of this same 

grain yield variability. Note that this data comes from nine individual 

plots, and that these are not treatment averages. 

The two largest determinants of grain yields in this experiment are 

predicted to be (1) the initial fertilizer behavior, and (2) the favora

bility of the moisture regime in the latter stages of growth. Evidence 

of item 2 was obtained by indirect clues and not from field moisture 

samples. 

Specifically, it appears that ammoniacal surface treatments using 

an ammonium salt are preferable to either urea or nitrate salt surface 

treatments. High Yields for the one spring treatment in this particular 

experiment is not to be taken as evidence of spring treatment superiority 

over fall treatments . Rather it is believed to reflect a favorable spring 

moisture regime this particular year, with enough rainfall to carry the 

mineral nitrogen materials into the root zone. 

The success of the ammonium sulfate after planting treatment in 

comparison to the other fall treatments suggests a desirablilty of 

having the fertilizer material in a rather concentrated form near the 

surface . However, in spring the same biological and moisture regimes 
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that insure the success of a spring treatment , namely accelerated ni trifi

cation and a net downward movement would be necessary to induce a 

ferti l izer response. Therefore, with fall application of ammonium ferti

lizers, the same cautions apply as with a spring treatment regarding 

climatic variability and risk. 
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APPENDIXES 



Appendix A 

Preservation of the Soil Samples 

Soil sample preservation 

Ideally, analyses for nitrogen should be made immediately after 

sampling, according to Ranney and Bartlett (1972), since biological 

activity can alter nitrogen· forms rapidly and may thwart attempts at 

assessing a specific nitrogen form in its natural concentration. 
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Realistically, the analyses of large numbers of soil samples takes 

time, and therefore the samples must be stored, sometimes for extended 

periods. Additionally, the biological activity that alters nitrogen 

forms may be manipulated to be minimal in most cases, following proper 

procedures. 

The two procedures most often used are low temperature storage and 

dry storage, or a combination of the two. 

Different soils usually will react differently to a given storage 

procedure (Selmer-Olsen, et al., 1971), and it would behoove the researcher 

to study the problem and plan a storage method before the samples are 

brought in from the field. 

Gasser (1961) warns that air dried soils upon rewetting will exhibit 

a flush in mineralization, after which mineralization rates decrease to 

fresh soil values. This flush is especially apparent in air-dry soils 

stored for periods of time less than 12-16 weeks. Ammonium will accumu

late during such a flush, making nitrate-only determinations misleading. 

These results are especially important for researchers contemplating 

incubation experiments. 

Allen and Grimshaw (1962) found that freezing a calcareous soil, 

a slate soil, a litter soil, and a peat soil, increased the extractable 
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nitrogen in both wet and air dry samples. For example, the fresh calcar

eous soil was found to contain 2.5 ppm. extractable ammonium nitrogen. 

When frozen and re-examined afterwards, the value was 19.0 ppm. Air 

dried, 3.3 ppm were found, which increased to 14.0 ppm when frozen and 

analyzed afterwards. 

Starrier (1966) suggests that generally sub-zero temperature storage 

effect the smallest mineral nitrogen changes, and found drying effects 

to be unpredictable for the soils under study. 

Selmer-Olsen et al. (1971) studied nitrate and ammonia nitrogen in 

field samples stored at room temperature, and at 4•c, in polyethylene. 

The nitrate levels were slowly increasing during the first 48 hours in 

the room temperature bags after which the rates increased rapidly. 

Ammonium nitrogen over the same period increased in some samples and 

decreased in others, presumably because of nitrification rate fluct uations . 

At 4°C, the same general results were obtained, but the processes proceeded 

at a much slower pace. 

Quantitatively, Gasser (1958) studied the same type situation, at 

2°C, and found a seven ppm mineral nitrogen increase after 28 days. 

Storage at -l0°C for 32 days produced no detectable changes. That care 

must be taken in storage was also illustrated when a soil was frozen at 

-1o•c for a time, allowed to thaw for 2 days at only 2°C, and refrozen 

to be analyzed after a total lapse of 32 days. A 12 ppm mineral nitrogen 

increase was measured after this time. As a consequence, it is not good 

practice to thaw a soil for an analysis, find there is not enough time, 

and put it back in the freezer. A better way of handling such a situa

tion is to extract the sample with the extracting solution, and then 

store it in a refrigerator (Selmer-Olsen et al., 1971). 
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If absolutely necessary, air drying such a sample overnight would 

be preferable to refreezing and a subsequent rethawing. 

Nelson and Bremner (1972) reported average increases of 4 ppm 

NH:-N, and 2 ppm No;-N after air drying, and slightly higher increases 

after oven drying at 55°C. Long term storage (9 months) in air tight 

bottles resulted in negligible changes thereafter, but paper bag storage, 

over the same period, resulted in doubled ammonia levels and slight 

nitrate level increases. These authors recommend field-moist storage 

in air tight containers at -s•c, since only negligible increases were 

measured even after 9 months of such storage. Rapid extraction after 

thawing is also discussed as desirable, although no studies were done 

to check the effects of reasonably small delays in beginning the sample 

processing. 

It should be understood, however, that the average mineral nitrogen 

increase figures given by Nelson and Bremner (1972) were determined 

from air drying ten different soils, three of which showed no significant 

ammonium nitrogen increase at all, and seven of which showed no real 

nitrate nitrogen increase after the air drying in the laboratory. It 

would be helpful to the researcher to set aside a few samples to check 

thawing, refreezing, and drying effects on the soils being stored, so 

that proper precautions may be taken to minimize the effects of which

ever treatment seems most prone to stimulate mineralization and nitri

fication. 

Starrier (1966) and Bremner (1965) found pretreatments to reduce 

microbial activity such as toluene to be generally ineffective. 



Pretreatment and storage of samples 

used in this study 
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The September samples were air dried and stored in polyethylene 

bags for four to seven months. October, April, and June samples were 

placed in the deep-freeze, in polyethylene bags, immediately after 

reaching the laboratory . Thawing and homogenizing was followed by the 

K Cl extraction procedure as rapidly as practical, usually taking between 

one and three hours from freezer removal times. Thawing was usually, 

except in the case of smaller, drier samples, not complete before 

extraction began. Slightly frozen samples were found to be easier to 

homogenize by subdividing the semi-solid mass with a hatchet, then 

were the globs of mud typical of totally thawed surface samples. 

Experiments were conducted to check the changes in soil mineral 

nitrogen levels under conditions of drying, thawing, and both frozen 

and room temperature storage over prolonged periods. 

Tables 17 and 18 describe the first two such experiments. The 

third such experiment involved a more detailed appraisal of the drying 

process. Ten samples, from the April sampling, were frozen one month, 

and then thawed, homogenized, and routinely analyzed. During the 

analytical process, the remainder of each sample was laid out to dry 

in a corner of the laboratory. Each successive day for 2 days, these 

samples were re-analyzed, resulting in analyses for wet samples, analyses 

after one day of drying, and analyses after two days of drying. 

The fourth experiment involved nine samples, widely divergent in 

available mineral nitrogen content, from the April sampling. These sam

ples were routinely analyzed on various dates in late June and early July, 



Table 17 • Experiment I. Experimental detail for pre-treatment and storage method assessments on soils from the field used in two investi
gations. All samples were collected into polyethylene bags which were closed before transportation to the laboratory. All 
samples kept in such closed bags during freezing and storage. All samples from ~3 em depth from untreated sites. Collected 
28 Oct 1972 

Pre-treatment 1 before storase Storase until anal;tsis 

Sample In field Period held at Period All samples frozen, Period Period thawed Final condition 
identification treatment room temperature in spread out time elapsed from kept and kept at at time of 
number if any field-moist condition for drying collection to frozen room temp. analysis 

in closed poly-bag freezing 

Al None 3 days 3 days 6 days 3 months Air-d r y 

A2 None 3 days 3 days 6 days 1 month 2 months Air-dry 

Bl Few drops 3 days 3 days 6 days 3 months Air-dry 
toluene 

82 Few drops 3 days 3 days 6 days 1 month 2 months Air-dry 
toluene 

Cl None Not held 3. days 3 days 3 months Air-dry 

C2 None Not held 3 days 3 days 1 month 2 months Air-dry 

Dl None Not held Not dried 0 days 3 months Field-moist 

D2 None Not held Not dried 0 days 1 month 2 months Field-moist 

0 
~ 



Table 18. Experiment II. Experimental detail for pre-tre.at111.ent and storage method assessments on soils from the field used in this 
investigation. All Salllples col lected , frozen, and stored in closed polyethylene bags. Samples taken from untreated sites 
adjacent to treated site& on 28 Oct 1972, from the Q-3 em and the 3-15 em soil depths. 

Pre-treatment before storase Storase till analxsis 
Sample m In field Period held in closed poly-bag Period spread All samples frozen • Period Final condition 
number and treatment. at room temperature in field- out for drying time elapsed from kept at time of 
depth of aBIII.ple if any moist condition st room temp collection to freezing frozen analysis 

A1 ~3 em None 3 days Not dried 3 days 9 months Field-moist 

A2 3-15 em None 3 days Not dried 3 days 9 months Field-moist 

Bl G-3 em Pew drops 3 days Not dried 3 days 9 months Field-moist 
toluene 

82 3-15 em Few drops 3 days Not dried 3 days 9 months Field-moist 
toluene 

Cl o-3"" None Not held 3 days 3 days 9 months Air-dry 

C2 3-15 em None Not held 3 days 3 days 9 months Air-dry 

Dl o-3 em None Not held Not dried 0 days 9 months Field-moist 

D2 3-15 em None Not held Not dried 0 days 9 months Field-moist 

El G-3 em Few drops Not held Not dried 0 days 9 months Field-moist 
toluene 

E2 3-15 em Few drops Not held Not dried 0 days 9 months Field-moist 
toluene 

~ 

0 
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then dried in the laboratory at room temperature for three days, and 

then stored at room temperature in closed polyethylene bags for 3 months 

before being reanalyzed. 

Results and discussion 

The first experiment tested the effects of toluene versus no toluene 

in samples held 3 days in the laboratory at room temperature in closed 

polyethylene bags, after which they were dried and frozen. Also tested 

was the desirability of air drying the sample before freezing, and as 

compared with directly freezing the sample after transport to the labora

tory. A sub test on each of these was made by thawing one of each of 

the frozen samples and keeping it in the lab for 2 months in a closed 

polyethylene bag. The results of this test appear in Table 19. The 

second experiment complements the first, in that toluene effects were 

checked on soils frozen field-moist instead of dry, both immediately 

after arriving at the laboratory and also after being held at room 

temperature for 3 days before. Depth-of-sample effects were also 

brought into the trials since mineral nitrogen levels were found to be 

higher in the second sampling levels in this field. Results appear in 

Table 21. 

Experiment I, using a very low nitrogen surface soil, shows no 

mineralization or nitrification of any consequence except in the case 

where the wet soil was thawed and kept in the laboratory for two months 

prior to analysis. Despite the low standard deviations of the means, 

the other results can not be rigidly interpreted because variances from 

0 to 3 ppm could be due to chance error being high or low on both of the 

analyses. 
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Table 19. Results of Experiments I and II. Key to treatment codes: T, 
toluene administered in field; H, held 3 days at room temp
erature in closed poly-bag; D, dried 3 days at room tempera
ture; Fl, F), F9 , fr ozen for 1, 3, or 9 months before analysis; 
W, thawed, and stored in closed poly-bag at room temperature 
for 2 months. Nitrogen levels are averag es of two analyses 
per treatment for Experiment I, and are averages of three 
analyses per treatment for Experiment II. 

Experiment Sample 0 Pre-treatment ppm NH+ -N* ppm NO -N** 
II sample depth and storage 4,+ 3_t 

(coded) 
± S.D. X ± S.D. X 

A1 HDF3 1 ~ 1 0 ~ 0 
Surface 

A2 HDFlW 3 :- 1 0 + 1 
Surface 

81 TliDFJ 2 + 1 1 + 1 
Surface 

82 THDFlW 3 : 0 0 + 0 
Surface 

C1 OF3 3: 1 0 + 0 
Surface 

C2 DF!W 1 + 0 1 ± 1 
Surface 

01 F3 1 ± 0 2 ± 0 
Surface 

02 FlW 0 + 0 10 ± 0 
Surface 

II A1 IIF9 3 :!" 1 5 :!: 2 
G-3 em 

II A2 HF9 1 :!" 1 10:! 0 
3-15 em 

II 81 THF9 7 :!" 0 9 :!" 1 
D-3 em 

II B2 THF9 1 :! 1 40 + 1 
3-15 em 

II C1 OF9 4 :!: 1 6 + 0 
D-3 em 

II C2 OF9 2 :t 1 12 + 1 
3-15 em 

II 01 F9 3 :t 1 6 + 2 
D-3 em 

II 02 F9 1 :t 0 16 :t 1 
3-15 em 

II E1 TF9 4 :! 1 6 :t 1 
D-3 em 

II E2 TF9 2 :t 0 12 ! 0 
3-15 em 

* ± 1 ppm standard method error. ** ± 2 ppm standard error for method 
for each determination. for each determination. 

t All results rounded to nearest ppm, including standard deviations of mea ns. 



113 

Experiment II, using soil samples with some appreciable mineral nitrogen 

levels, yields more information. The value of toluene is ambiguous, 

since in the surface soil which was held 3 days at room temperature and 

then frozen, there seems to be a definite increase in both ammonium and 

nitrate nitrogen, while in the samples frozen immediately, there is no 

significant difference. In the 3-15 em samples, those immediately frozen 

without toluene showed slightly more nitrate nitrogen present, while those 

held 3 days and having toluene present had nearly quadruple the nitrates 

of similar treatment without the toluene. According to Russell (1923), 

there are bacteria that use toluene as a food source. Perhaps toluene 

levels were not toxic in these samples, and stimulation of one group of 

bacteria was followed by a general increase in other microbiological 

activity as toluene levels were decreased and this bacterial group died 

back. 

Comparing the practice of holding the sample at room temperature 

for three days with freezing immediately, nitrogen levels were not 

affected greatly by the three days of holding except in the case referred 

to above where toluene was present. The difference between samples A2 

and D2 in the nitrate level may seem appreciable, except that field 

variations may well be to blame (see Appendix B) as they sometimes will 

meet or exceed this 6 ppm difference when sampling different parts of 

the source sample. This points out the importance of homogenizing a 

sample with some degree of thoroughness. 

Comparing samples that were dried immediately with those frozen 

immediately and with those held 3 days and then frozen, reveal s no 

significant changes due to pre-treatments. 
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From these two experiments the conclusion may be drawn that with 

the soil used in this investigation, pretreatment practices such as 

drying , f reezing, or even holding field-moist at room temperature for 

a limit ed time, do not tend to alter the mineral nitrogen levels signif-

icantly except when toluene is present a t a low level or when mois t 

soils are held at room temperature longer than a few days. 

Experiments III and IV investigated short and long term effects of 

drying on some April sampled specimens. The following small tables will 

illustrate the results. 

Table 20 . Results of Experiment III. April samples routinely analyzed 
after one month of deep-freeze storage , and reanalyzed after 
one, and two days drying. Standard error of determination for 
this group is ± 1 ppm, calculated using eight duplicate 
analyses . 

Soil Field-moist After drying one day After drying two days 
sample 

II ppm NH+-N 
4 

ppm NO;-N 
+ 

ppm NH
4

-N ppm No;-N ppm 
+ 

NH
4
-N ppm N0

3
-N 

IIK6 3 6 3 2 2 4 

IDS 1 4 0 4 1 3 

IIJ6 2 3 2 3 1 4 

IC3 3 2 1 3 3 2 

I G4 2 2 2 1 1 1 

IIH4 1 1 1 1 1 1 

IIG4 3 1 1 2 3 1 

IlKS 1 3 1 3 3 1 

IH3 3 0 2 0 1 

IG6 1 6 2 3 2 s 
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Table 21. Results of Experiment IV. April samples routinely analyzed, 
dried 3 days, and stored at room temperature for three 
months in closed polyethylene bags before reanalyses. 

Soil samples 
Field moist: Air dry, 3 months 

ra¥ked by initial 
1st analysis storage: 2nd analysis 

NH+-N ppm N0
3

-N NH+-N NH
4
-N content ppm 

4 
ppm 

4 
ppm N0

3
-N 

1 123 62 128 53 

2 57 46 51 29 

3 44 35 44 34 

4 22 49 24 42 

5 4 1 2 

6 6 0 1 0 

7 4 9 6 

8 2 0 3 2 

9 l 0 5 0 

In Experiment III one way analysis of variance reveals no signif-

icant changes due to drying. Correlation analyses applied to the 

results of Experiment III show no particular direction for the changes 

in ammonium nitrogen with drying. Hith the nitrate changes in 

Experiment III, only the total changes between the first and the third 

analyses were significantly correlated, with the trend being in the 

direction of a slight nitrate loss. Such losses could be due in part 

to the nitrates having moved downward with the water and then having 

been deposited on the plastic under the soil as the water evaporated. 

But, as the analysis of variance suggests, the larger part of the 

changes were due to random error . 
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Correlation analysis applied to the results of Experiment IV yields 

an r 2 value of 0.96 for the ammonia nitrogen levels at both times, and 

an r 2 value of 0.99 for the nitrate levels at both times, which is 

highly significant at seven degrees of freedom. These high correlations 

show that what little variance there is, is to be attributed to chance 

errors, as is also suggested by the lack of significance found using . 
two way analysis of variance. A two way analysis was necessary here to 

subtract out sample to sample variations from the total and thereby reduce 

the error variance for a more meaningful F test. 

Conclusions 

The conclusion to be drawn from these experiments is that for the 

soil used in this investigation, changes in the mineral nitrogen levels 

due to drying or freezing the samples as soon as they arrived at the 

laboratory and subsequent deep-freeze storage have been negligible. 



Appendix B 

The Magnesium Oxide-Devarda Alloy Procedure for Determining 

Ammonium and Nitrate Nitrogen in Potassium Chloride 

Soil Extracts: Principles, Limits of 

Detection 1 Accuracy and Precision 

The magnesium oxide-Devarda alloy 

distillation procedure 
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Problems were encountered in using this procedure as outlined by 

Bremner (1965), which were mostly attributable to a lack of understanding 

of the reagents used and their reactions. Bremner (1965), for example, 

does not discuss the possible extent of ammonia adsorption by Devarda ' s 

alloy which caused a slight consternation in this author until it was 

better understood. Hillebrand and Lundell (1953), have warned that organic 

nitrogen compounds may be de-aminated in the procedure using Devarda's 

alloy. Bremner (1965), shows which organic nitrogen compounds and under 

what conditions, but does not discuss the implications of these facts to 

a soil mineral nitrogen determination. 

Furthermore, Bremner (1965) indicates that the extracting solution 

need not be filtered before analysis, and that even suspended materials 

will not affect the results of an analysis by the Devarda alloy- MgO method. 

In the case of this study, filtration was found to be desirable, however, 

since unsettled material in the extraction solutions was found to have an 

effect on the analytical results. 

Lastly, and perhaps most importantly, Bremner (1965), and others who 

describe the method such as Hesse (1971), and Jackson (1958), fail to give 

an indication of the analytical threshold range, or accuracy of the method 
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which can reasonably be expected under conditions of routine use. These 

problems will be discussed individually in the following sections. 

Devarda's alloy as a reducing reagent 

The MgO-Devarda ' s alloy distillation procedure for ammonium and nitrate 

nitrogen, as described by Bremner (1965), was used in this investigation. 

According to Hillebrand and Lundell (1953), the Devarda' s alloy is a 

mixture of copper, aluminum, and zinc in the ratios 50 Cu: 45 Al: 5 Zn. 

The copper is inactive and is a desirable component only in that it provides 

a coherent yet brittle structure to the alloy. It has been observed in 

this laboratory that when using Devarda's alloy repeatedly in the same 

distillation flasks without cleaning, as the zinc and aluminum are solu

bilized, the copper will form a copper colored plating on the bottom of 

the flask, illustrating its inactivity in the reaction solution. Since the 

aluminum and the zinc metals are oxidized to ions by giving up electrons 

to the nit rate nitrogen atom, Devarda's alloy is not a catalyst, but a 

redox-reagent. 

The reaction equations for nitrate reduction with aluminum and zinc 

follow: 

3 NO; + 8 Al + 5 OH + 2 H
2
0 [1] 

[ 2] 

In the KCl extraction, KN0
3 

would be the reactant and the ionic products 

could be either potassium salts or hydroxides. 

The above reaction schematics belie the complexity of the mechanisms 

involved. First, aluminum and zinc do not occur in their atomic states in 

a surface. Both undergo rapid oxidation when a nascent surface is 

exposed to air. According to Hannay (1967), at room temperature, the 
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thickness of this oxidized layer on aluminum is of the order of 20 A, 

while at 100°C the thickness will be about 50 A. The composition of 

this layer is mostly Al
2
o

3 
for the aluminum absorption, and mostly ZnO 

for the zinc absorption, with stoichiometric defects created by the 

presence of mixed oxides, especially where there are boundaries t•ith 

charge dislocations between the metals in the alloy (Rees, 1954). 

The rate limiting step in this process is thought to be the initial 

transfer of an Al atom into an interstitial position in the oxide 

layer as an Al+J ion. A spontaneous donation of electrons by aluminum 

must occur to cause bonding in this initial layer. Thereafter, adsorption 

of new anionic oxygen layers will set up an electric field in this new 

surface layer which will draw Al+J ions from beneath the first oxygen 

layer i nto interstices in this first oxygen layer with a consequent re-

distribution of electrons and a demand on the next lower layer of Al 

atoms to donate electrons . Repetitions of this process thicken the 

oxidized layer (Hannay, 1967). 

Aluminum and zinc oxides are the active surface components of the 

Devarda's alloy, therefore. This alumina adsorbs water vapor from the 

air at room temperature. A rearrangement of one water molecule with one 

surface oxide ion results in a hydrated surface layer. A recombination 

of two of these surface hydroxyl groups to form water again temporarily 

leaves an exposed Al ion which, because of its electron deficient character, 

acts as a Letds acid site. These sites are traditionally considered the 

active centers of alumina (Lippens and Steggarda, 1970). 

A small extension of this information should result in the formation 

of a reasonable reaction mechanism for the alloy in solution. Generaliza

tion could lead to error, however, since Al+J and Zn+Z seem to react by 

different pathways. Meyerstein and Hulac (1968) studied the reduction of 
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nitrite by zinc a nd found a large effect on the rate of reaction with 

variations in the ionic strength of the solution. Therefore, an outer-

sphere complex formation mechanism was indicated for this reaction. 

Edwards (1964) confirms this diagnosis and explains that the formation 

of an outer sphere activated complex involves rapid electron transfer 

between the reacting species without an immediate change in their coordi

nation spheres. In other words, if coordinated ligands are changed by 

e ither or both of the reactants, it is done after this rapid electron 

transfer has been initiated. 

Benson (1968) also places Zn+2 reactions in this mechanistic 

classification, and indicates that the rate constant is greater than 

107 moles per second. Aluminum, on the other hand, is classed as reacting 

by the fo rmation of an inner sphere activated complex. The reaction rate 

for this type of formation seems to be the same as the rate at which the 

surface adsorbed water, in the inner sphere, is desorbed and replaced by 

a specimen from the outer sphere. This lends much weight to the character

ization of an exposed aluminum atom by a desorbed water molecule as being 

the active site on an alumina surface. Any polarized specie in solution 

can become adsorbed by this process, including ammonia, about which more 

will be said below. 

The formation of an inner sphere activated complex involves the 

at traction to the positive Al+J ion of one of the ligands of the 

approaching specie. Such ligands as H
2
o, OH-, o=, o;, Cl-, and carboxylate 

anions are acceptable bridging ligands, which serve to bind the two metal 

ions in an activated complex at the surface, partly inside the hydroxyl 

layer. In order to be effective, however, the electrons which pass through 

the ligand to the receiving ion must be slightly preceded by a ligand 
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replacement of one of the ions, otherwise electron flow will not result in 

any net gain or less of electrons in either specie of ion (Edwards, 1964). 

In the case of nitrate being reduced by Devarda's alloy, the above 

discussion simply indicates that if the nitrate ion reacts with a zinc 

dominated active site, electron exchange will take place with extreme 

rapidity and will be followed by an immediate replacement of the 0-

ligands by the H+ ligands. If, on the other hand, an active site is 

approached dominated by aluminum, the nitrate ion will form an electron 

bridge with one of its oxide ligands, and as the oxide ligands are re

placed by hydrogen ligands, electrons will flow along the bridging oxide 

ligand from the alumina complex to the nitrogen ion undergoing reduction. 

The processes of oxidation, hydration, creation of an active site by 

dehydration, and the redox reaction of such an active site by adsorption 

from solution are all shown for an alumina surface in Figure 6. 

Practical application was made of the above information in this 

investigation. 

Since comparisons of blanks run with reagents only indicated that 

Devarda's alloy contributed a significant amount of ammonia to the 

determination, it became necessary to determine to what extent NH
3 

would 

be adsorbed from air at room temperature, and whether this was a process 

at equilibrium with the ammonia concentration in the laboratory air, or 

whether this was an accumulative, specific, or preferential type adsorp

tion as in some types of activated charcoal. 

Lippens and Steggarda (1970) relate that NH
3 

adsorption energies are 

somewhat lower than H
2
o, and that molecular H

2
0 may be driven off active 

alumina by simply heating to 120°C for an hour. The same treatment, since 

NH
3 

is held less tenaciously, will therefore also remove adsorbed ammonia. 
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Since the ammonia and the water adsorptions are in proportion to 

their atmospheric partial pressures, and since the alloy being used was 

over a year old, it was deemed unnecessary to remove the ammonia from 

the Deva rda alloy in the case of this inve stigation. If ammonia concen

trations in th e air did not change radic ally, it could be expected that 

the amount of NH
3 

contributed by the Devarda alloy to each analysis would 

be uniform due to a well established equilibrium. Checks with blanks 

containing reagents only, throughout the period of this investigation, 

showed this assumption to be correct. On the other hand, ammonia removal 

would have been followed by a slm• re-adsorption in time, which would have 

made the NH
3 

contribution by the Devarda alloy non-uniform. This, in turn, 

would have complicated the calculation to the point where instead of 

standard subtraction values for reagent blanks being useful for calculations 

throughout the analytical effort, periodic changes would have had to be 

made to allow for increasing NH
3 

contributions from the alloy and programs 

for calculations would have had to be revised accordingly. Naturally, the 

alloy's contribution was continually monitored through the running of 

reagent-only blanks, but the contributions were, indeed, found to be 

uniform throughout the 1-year period of the analyses. 

The question of residual NH
3 

contributions by the Devarda alloy which 

stayed from one analysis to the next was investigated in this laboratory . 

Routinely obtained soil samples were run continuously, until four 

increments of 35 ml of distillate were collected from each analysis. In 

each of four such cases, the first 35 ml of distillate contained all of 

the ammonia, and the next 105 ml of distillate contained no more ammonia 

than control solutions without Devarda's alloy which were run simultan

eously. These results confirm that the desorption of NH
3 

from Devarda's 
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alloy is rapid at elevated (the boiling point, in this case) tempera

tures. The data appears in Table 24. Figures are given in the ml of 

standard H
2
so

4 
required to titrate the distillates, and their magnitudes 

have no meaning other than showing on a comparative basis that there is 

no carryover of NH
3 

from one analysis to the next in continuous use of 

the Kjeldahl flasks. Disuse of the apparatus over a few days, however, 

with some residual Devarda's alloy remaining in the flasks, will contribute 

some NH
3 

when analyses are restarted due to readsorption from the air. 

It is therefore necessary to run blanks before each batch of analyses, 

which wi ll reveal such a residual effect, or, if a measurement is not 

wanted, a good steaming out of the apparatus before analyses will also do. 

The results in Table 22 also point up an interesting set of varia

tions in the later distillate fractions. The first two samples with 

suspended materials, show similar values for the three later fractions 

in both the control and the Devarda's alloy treatments. In contrast, 

the clear, filtered samples show higher NH
3 

content in the samples used 

for control, without Devarda's alloy, than in those where Devarda's 

alloy was used. A possible explanation for this phenomenon is that 

de-amination of organic amines was rapid in solutions with either 

Devarda's alloy or with suspended solids, and was slower in a solution 

without such suspended solids, so that ammonium was still detectable in 

each of the three later distillate fractions. 

Experiments were designed and carried out to shed more light on 

such contributions from organic matter and the effects of suspended 

solids on the analysis. These experiments were intended to show mainly 

the Devarda alloy interactions with organic matter and suspended mater

ials, and therefore will be presented in this section on the Devarda's 

alloy reaction. 



Table 22. Lack of residual NH 3 contributions due to Devarda's alloy in successive distillations of the same 
sample in the same flasks. Four r eplicat ions with four controls without Devarda ' s alloy, run 
simultaneously. All figures are in ml of standard acid used to titrate the distillates, and have 
no significance other than for comparisons between these distillation fractions. 

Soil sample ml H
2
so

4 
ml H

2
so

4 
used in 

ml H
2
so

4 
used ml H

2
so

4 
used 

number and 
used in first first 35 ml fraction 

in next 3 35 ml in next 3 35 ml 
condition distillate fractions distillate fractions 
of solution 35 ml fraction of control distil- of samp_!e (X) of contE_ol (X) 

of distillate late (no D.A.)* ±S.D. X ± S.D. X 

1. unfiltered 0.39 0.23 0.14 + 0 . 01 0.15 + 0.01 
solution: 
opaque 

2. unfiltered 0.51 0.30 0.18 + 0.01 0.18 + 0.02 
solution: 
opaque 

3. fil t ered 0.40 0 . 24 0.12 + o.oo 0.17 + 0.03 
solution: 
clear 

4. filtered 0.43 0.21 0.13 + 0.00 0.17 + 0.00 
solution : 
clear 

*D.A. is Devarda's alloy. 

,... 
N 
'-" 
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Bremner (1965) presents r esults of analyses run on organic nitrogen 

mate r ials by the Devarda al l oy-magnesium oxide distillation to see how 

much deamination took place with resulting ammonia liberation. The 

compounds test ed were 28 amino acids, 5 purines, 4 pyrimidines, 5 amides, 

12 mis cel laneous nitrogen compounds, and 2 amino sugars . 

The amino sugars were the only compounds from which measurable 

ammonia was ,evolved. Interest i n gly, distillation with MgO only released 

one percent of the nitrogen present. I f after this distillation 

Devarda ' s alloy was added, from two to four more percent of the nitrogen 

present could be liberated. These results becloud the issue somewhat, 

because in this type of analytical procedure MgO distillation proceeds 

first f or ammonia determination, and then Devarda's alloy is added t o 

the same solution for nitrate determination, confounding the effect of 

time with the effect of adding the alloy. The time of analysis was 

doubled, though, while nitrogen liberation was tripled or quintupled, 

giving support to the contention that the Devarda alloy plays a part in 

the deamination, even if it is only to provide a catalytic surface. 

Perhaps the reason for the fact that the amino sugars are the only 

organic nitrogen bearing compounds which released nitrogen under the 

experimental conditions is due to the unique position of the amine 

group on the carbon a to the carbonyl carbon. This arrangement is able 

to form a carbanion on the a carbon with the subsequent release of an 

a carbon substituent. Usually this released substi tuent is the hydrogen 

of this a carbon, but it appears that in from zero to five percent of 

the cases, depending on the reaction condi tions, the amine group will 

be rel eased , hydrogenated, and leave the solution as ammonia. 
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As the amino sugars should he bound rathe r securely into the 

organic residues, ins i gnificant amounts should be readily solubilized 

by the 2~ KCl extraction procedure. Where a significant amount may 

become involved in the reaction, however, is in the unfiltered samples 

with suspended materials, the boiling of which may cause release of 

water soluble organic compounds including the amino sugars. 

Before data is presented on experiments using such unfiltered 

solutions, another problem must receive attention which influences 

reactions of solutions with suspended materials. 

Silicon dioxide, or the hydrated form of Si(OH)
4

, is a polar 

molecule of some significant solubility. Huang (1966) reports solubil

ities of over 100 ppm in pH 7.5 solutions with silicate materials. 

Miller (1963) found silica solubility to be proportional to the water 

content of a soil, and found no solubility depression from the presence 

of common salts. The filtered solutions, therefore, probably contain 

a significant amount of silica, but the unfiltered solutions with 

suspended soil particles may be presumed to have, under heat and 

agitation, much more silica in solution. Any polar molecule or ion in 

solution, including water, ammonia, nitrate, nitrite, and silica, may 

adsorb temporarily at an active alumina site on the surface of the 

Devarda's alloy. The presence of much silica may, therefore, compete 

with and reduce the rate of nitrate and nitrite reduction reaction. 

In addition to this rate reduction due to high silica concentra

tions, the inert particles suspended in the solution will physically 

interfere with the accessibility of the suspended alloy particles, so 

that no differentiation is possible between the two effects, and the 



net effect of an unfiltered solution with suspended materials is to 

slow the reaction rate. 
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Figure 7 illustrates this effect as found in an experiment com

paring filtered and unfiltered extracting solutions from the same large 

extraction. In this experiment, a 800 ml 2N KCl solution was used to 

extract 80 g of air dry soil, and 10 ml aliquots were used in each 

determination. Distillates were examined periodically, with the period 

(t = 0) beginning at the time boiling started in the flask. Periods 

were 1 1/2, 3, 4, and 5 minutes after boiling began. Error was largest 

at the smallest intervals, as is obvious from the figure. 

It is immediately apparent from the results of this experiment 

that in the case of the soil used in this analysis, filtration is 

necessary because of the effect of suspended materials on the reaction. 

The best filter system for the soils in this investigation was found to 

be long stem funnels with fluted filter paper. 

In a second experiment, two soil samples were extracted in the 

normal manner, using 100 ml 2N KCl per 10 g air dry soil. Sample number 

one was analyzed at four intervals of settling after shaking: directly 

after, 3 minutes after, 15 minutes after, and after 20 minutes of settling 

it was reshaken for a few minutes and then analyzed. A filtered aliquot 

was then also taken and analyzed. The second sample was shaken and 

analyzed immediately after removal from the shaker. Simultaneously, an 

aliquot was filtered and analyzed, and finally a third aliquot was 

analyzed after settling for 30 minutes. Results appear in Figure 8. All 

results are an average of two replications per treatment. 

In analyzing Figure 8, it must be kept in mind that the accuracy 

of these analyses is ± 1 ppm under these conditions where the same 
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solution is used for every analysis. Therefore, there is no real 

difference between the treatments on sample 2, and Bremner's (1965) 

statement that 30 minutes of settling gave the same results as filtering 

holds for this case. In fact, even an unsettled sample gave similar 

results here. 

Sample one, however, shows a rapid decline in ammonia nitrogen 

when settling has begun. This may be due to heavier particles, such 

as the organic and organo-clay complexes, settling out first taking 

with them some adsorbed ammonia despite the high KCl concentration. 

An actual organic matter contribution through de-amination is not 

supported, since the filtration of a freshly shaken aliquot has the 

same amount of available ammonia. Thus, freshness of the samples before 

filtration may be essential also, but the data are not sufficient to 

confirm such a need. Perhaps more importantly, the ammonia results for 

sample 1 suggest that the ammonia evolution reaction is not affected by 

any silica or suspended materials in solution. The reaction itself is 

aided by MgO, and may be outlined: 

(3] 

The magnesium is very readily soluble as a chloride, and no inter

ferences are to be expected since enough is added to accommodate about 

14,000 ~g N, or for our sample size, about 2,000 ppm NH
3
-N, which is 

adequate considering the ammonia and nitrate content of the soils used 

in this investigation. 

Sample 1, in Figure 8, reveals, as did Figure 7, that the longer 

the solution has settled, in other words: the less suspended solid 
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matter present, the more n i trate will be determined in a given time. 

The difference between the sample settled for 15 minutes and the filtered 

sample, as far as nitrates are concerned, could be due to a combination 

of experimental error and a contribution from slowly solubilized amino 

sugars which, if de-aminated in the presence of the Devarda alloy, would 

contribute to the nitrate nitrogen determination since this value is 

obtained without Devarda's alloy. 

Threshold , accuracy, and precision 

of the procedure for nitrate and 

ammonium nitrogen 

No indication of the range or accuracy of the method is given in 

any of the three texts that deal with the Devarda alloy-magnesium oxide 

method for nitrogen as applied to soils (Bremner, 1965; Hesse, 1971; 

Jackson, 1958). 

A brief search of the literature was undertaken to determine what 

results others may have had using this method. Since this particular 

distillation is usually associated with a Kjeldahl procedure, and since 

very little literature could be found on the distillation alone, the 

Kjeldahl procedure was searched for in the literature. Indeed, it 

appears that some researchers have called this distillation procedure, 

when applied to i norganic nitrogen without a digestion, a Kjeldahl 

procedure (Scales and Harrison, 1920). 

The overwhelming majority of workers using macro, semi-micro, or 

micro-Kjeldahl methods with digestion of organic nitrogen compounds find 

the procedures useful only in the milligram range of nitrogen content 

levels (Ebeling, 1967; Ebeling, 1968; Ma and Zuazaga, 1942; Munro and 
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Fleck, 1969; Fleck, 1969; Pregl and Grant, 1946; St eyermark, 1961; Acree, 

1941). It is hard to determine from these articles whether the limiting 

step is the digestion, or the distillation and titration procedures. 

A few researchers have refined their procedures to where less than 

0.1 mg of nitrogen can be accurately measured. All en (1931), for example 

analyzed 100 ~g-N samples with an error of ± 3 ~g-N. Stover and Sandin 

(1931) achieved ± 5 ~g-N accuracy in urine samples of about 570 ~g 

each. 

Kirk (1950) hints at the existence of refinements to bring accuracy 

into the microgram range, but fails to describe any of them. And 

Hallett (1942) suggests using Conway microdiffusion units for the 0.3 

to 10.0 ~grange of nitrogen. This Conway micro-diffusion procedure was 

used on soils by Bremner and Shaw (1955). With 100 ~g No;-N additions 

to the soils, four recovery experiments with eight replications each, 

had standard deviations ranging from 0.2 to 1.4 ~g of nitrogen. Standard 

solutions of 100 ~g-oitrogen per 2 ml were run with a resultant error 

range of± 0.6 ~g of nitrogen. 

Doyle and Omoto (1950), describe in detail the changes that need 

to be made in the distillation apparatus and pro cedure as used in this 

experiment (Bremner, 1965) to make it quantitative in the lower micro

gram range. The major changes include a silver tube condensor, and a 

millivolt range titrimeter with calomel and quinhydrone electrodes to 

eliminate titration errors as much as possible. 

Sin~e the procedure of Bremner (1965) was followed without such 

refinements, the literature was re-consulted to see if others using 

this procedure had reported accuracies of results in their publications. 



Wagner (1940) examined titration of ammonia in the presence of 

boric acid and found that with apparatus much like that used in this 

study, the optimum range was 0.4 to 1.4 mg nitrogen. These findings 

were not for distillations titrated with 0.01 N H2so4 , but even so, a 

much greater range of usefulness should have been obtained. Using 

0.005 N H
2
so

4
, Scales and Harrison (1920) report soil analyses in the 

lower ~g range with errors of less than 25 percent, meaning that a 28 

~g-N sample could be determined with about a ± 6 ~g-N accuracy. 

More recently, in reporting analyses of soil samples, Allen and 

Grimshaw (1962) report an error of ± 8 percent, which means that a 
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25 ~g-N sample was determinable with a standard error of ± 2 ~g-N for 

the mean. A large variance could be indicated by such a standard devia

tion for the mean, but the authors did not elaborate on the number of 

trials so that estimating a variance was not possible. 

Errors in the distillation procedure have been reported due to 

inserting the tip of the condenser into the boric acid solution (Yuen 

and Pollard, 1953; Bremner and Edwards, 1965) and it should be noted 

that the procedure of Bremner (1965) used in this study calls for the 

tip of the condenser to be above the boric acid, and not in it. In this 

study, no discernable difference was detected whether the condenser tip 

was under or above the boric acid surface, consequently care was not 

taken to keep the condenser tip out of the boric acid at each determin

ation. 

Limits of detection 

To determine the threshold level of nitrogen, below which none could 

be detected by this apparatus and reagents used in this research, the 
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procedure of Eckslager (1969) was used. The smallest measurable 

value, !• was computed as a function of the mean value of zero or blank 

experiments, x
0

, the standard deviation of these zero or blank experi

ments, s
0

, and an appropriate constant from Gaussian tables, k, by the 

following relation which was first defined by Kaizer (1966): 

[4] 

Kaiser (1966) suggested the use of k 3, because it represents a 

probability of 99.86 percent. Actually k 3.18 represents such a 

probability, but the k m 3 was used for this data since the actual 

probability of 99.74 percent was quite acceptable. Throughout the year 

of analytical work, blanks and standards were run with every batch, and 

the calculation of the lowest determinable level was based upon these 

results for the blank trials. + It was found that 1 ppm-NH
4

-N and 

2 ppm No;-N were the limits of detection for this particular investigation. 

The determination of these limits is illustrated in Table 23. 

Finding an upper limit for the method was not deemed necessary, 

since the 5 ml of 2 percent boric acid solution used to absorb the 

ammonia will effectively absorb about 5,000 ~g-NH3 , and quantitative 

results have been obtained by many workers in the 500 ~g-N range 

(Bremner and Edwards, 1965; Stover and Sandin, 1931). If larger amounts 

of nitrogen are present, however, it would be more convenient to use a 

stronger acid in the titrations. Using 0.01 ~H2so4 , a workable range 

of 200 ~g to 2,000 ~g-N will result with the same apparatus and procedure 

as used in this investigation (Ma and Zuazaga, 1942; Munro and Fleck, 

1969). 
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Table 23 . Determination of limits of detection using mean and s t andard 
deviation of blanks run throughout the period of the 
analytical work. The limits of detection, X, is equal to the 
mean value of the blank determinations, X ,-plus three times 
their standard deviation s

0 
(Eckslager, 1~69). 

Ammonia Nitrogen 
(magnesium oxide distillation only) 

Results given in cm3 of 0.0052 N 
H

2
so

4 
used to titrate distillates 

Number of blanks run 108 

Mean, x0 0.1346 cc 

Standard deviation, 
so 0.0278 cc 

Lower limit of 
detection, ! 0.0880 cc 

! = x0 + k s0 ; k = 3 

Consequences 

X converted to Vg-N 6.41 vg-N 

X range in terms of 
ppm-N 0. 7-1.3 ppm N 

(Soil samples ranged from five to 
nine grams ) 

X in ppm-N for 
average 

sample of 6.5 grams 

X used to evaluate 

1. 0 ppm N 

data in this research-! ppm N 

Nitrate Nitrogen 
(Devarda's alloy and magnesium oxide 
distillation with value of corres
ponding ammonia determination sub
tracted) 

Results given in cm3 of 0. 0052. N 
H

2
so

4 
used to titrate distillates 

Number of blanks run 80 

Mean , X 0.2395 cc 

Standard deviation, 
so 0.0405 cc 

Lower limit of 
detection, X 0.1310 cc 

Consequences 

! converted to vg-N 9.54 vg-N 

! range in t erms of 
ppm-N 1.1- 1.9 ppm N 

(Soil samples ranged from f ive to 
nine grams) 

X in ppm-N for 
average 1. 5 ppm N 

sample of 6.5 grams 

X used to evaluate 
data in this research-2 ppm N 



Accuracy and precision 

Accuracy and precision for the procedure were determined by five 

separate and distinct types of tests, so that procedural error, soil 

heterogeneity error, sampling error, and the dependability of the 

experimental results could all be determined with confidence. 

Procedural error 
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The first estimate of precision was based on the standard deviations 

of the blanks, s
0
•s, determined already in the above section on limits 

of the detection. This precision at the zero level of nitrogen was 

found to be± 2.2 ~g-NH3-N and ± 2.9 ~g-No;-N for these two mineral 

nitrogen species. Confidence intervals for these values were computed 

using the t/ln statistic at the 95 percent confidence level, but because 

of the high number of trials (high n), these intervals were unrealistic

ally low, and the variation that can be expected from sample to sample 

is better described by the above values based on standard deviations. 

A hypothetical error of this magnitude on an average sized soil sample 

of 6.5 g dry soil would mean precision of ± 1.1 ppm NH
3
-N or ± 1.5 ppm 

No;-N. Precision of the method is therefore not much of a problem in 

field oriented work such as that of this study. 

Accuracy of the method was determined by statistical analyses of 

standard solution results. Standard solutions were made up and run 

frequently in the course of this experiment. The total number of 

standards run, and their distribution by nitrogen levels are summarized 

in Table 24. 
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Table 24. Total number of standards run. Also ranges of their nitrogen 
contents expressed in the theoretical mls of 0.0052 ! H2so

4 required to titrate their distillates, with the number of 
standards in each range. 

Ammonia nitrogen standards Ammonia + nitrate nitrogen standards 

Range in ml standard No. of Range in ml No. of 
H

2
so

4 
required samples H2so

4 
required samples 

0.03- 5.76 (Total)* 162 0.03 - 5.76 (Total)* 213 

0.03 - 0.20 46 0.03 - 0.14 35 

0.26- 0.68 35 0.15 - 0.29 31 

o. 72 - 1.03 30 0.34 - 0.52 42 

0.38- 1. 92 37 0.55 - 1.14 35 

2.50 - 5.76 14 1. 37 - 2.58 29 

2.76- 5.76 41 

*Representing a range of 2.18 to 419.33 ~g's of nitrogen, or, for an 
average size soil sample of 6. 5 g dry soil with standard procedures, a 
range of from 1 to 215 ppm nitrogen, which covers the whole spectrum of 
nitrogen levels found in this study. 

Statistical analyses of these standard solution runs consisted of 

correlating the theoretical titrant requirements for the standards with 

the amount of titrant actually used. The results of these analyses are 

reported in Table 25· 

From Table 25, it may be seen that there is only 0.4 percent 

variation between theoretical and actual results, ascribable to random 

error. The ammonium nitrogen determinations seem to be lower than they 

should be by an average of about 0.04 ml of standard titrant, while the 

comparable figure for the (ammonia + nitrate)-nitrogen determinations is 

about 0.03 ml of titrant lower than theory. This error is rather 

consistent over the whole range of standards, indicating a systematic 



139 

Table 25. Correlations of amount of titrating acid theoretically 
required by the standard solutions, with the amounts 
actually used. Figures used are expressed in ml of 0.0052 N 
H

2
so

4
• Mean deviation of experimental result from theoret-

ical result, and the standard deviation of this mean, are 
also re-expressed in ppm-N for a hypothetical 6.5 g dry soil 
sample routinely processed, to give an indication of preci
sion for the method as applied in this study. 

Ammonia nitrogen 
standards Correlation analysis 

parameter Value of parameter 

No. of analyses 

Mean theoretically 
calculated acid 
requirement 

Mean experimentally 
determined acid 
requirement 

Coefficient of 
determination: R2 

Mean deviation of 
experimental results 
from theoretical 
results: b0 

Mean deviation, b
0

, 
expressed in ppm N for 
a hypothetical soil 
sample with a ppm-N 
content of: 

162 

0.8666 

0.8149 

0.9962 

-0.0375 

-1.40 

30.42 

Ammonium + nitrate nitrogen 
standards 

Value of parameter 

213 

1.1357 

1.1119 

0.9964 

-0.0308 

-1.15 

41.51 

type error. The standard subtractions due to dilution and reagent 

effects could have been readjusted empirically to decrease this 

systematic error, but since nitrate levels are determined by subtracting 

the corresponding ammonia determination result from the (ammonia + 

nitrate)-nitrogen result, the nitrate level results will be slightly 

high, by about 0.01 ml of titrant,in fact. As will be seen in the next 
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section, errors of this magnitude are negligible in the context of field 

sampling and soil heterogeneity errors. 

Field and soil heterogeneity error 

Soil heterogeneity error was estimated by frequent analyses of a 

standard soil sample. This standard soil sample consisted of a large 

surface soil sample which was air dried and homogenized, and then frozen 

as were all other samples. With each day's sample preparations, one or 

a few of the samples prepared were taken from this standard soil sample. 

Between November of 1972, and March of 1973, 51 such standard soil 

determinations were made. Thereafter, until the end of the analyses in 

September 1973, another batch of a similarly prepared standard soil 

sample was used for another 26 determinations. 

Analysis of the data provided by these standard soil samples 

consisted of computing averages, standard deviations, deviations of 

means, ranges, and 95 percent confidence intervals for the two groups 

of data and for the two forms of mineral nitrogen determined. The 95 

percent confidence intervals were constructed using the method and 

tables provided in the work of Eckschlager (1969). The formula used 

was: 

[4] 

* The ~ were found in tables, and were constructed by Eckschlager (1969) 

from the t//U statictic which is usually multiplied by the standard 

deviation for the creation of confidence intervals by the equally valid 

classical method. 

Results appear in Table 26. 
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Table 26. Analysis of standard soil samples. Two experiments, one 
during the analysis of the September and October samplings, 
including 51 standard soil sample determinations, and the 
other during the analysis of the April sampling, including 
26 such standard soil sample determinations. Results in 
ppm-NH

3
-N or ppm-No;-N rounded to nearest whole ppm-N. 

Batch 
number 

I 

II 

Number of 
determinations 

51 

26 

Average nitrogen content, ± 
95% confidence interval values 

~~ ~~ 

4 + 1 4 + 2 

2 + 1 5 + 2 

From this table it may be seen that a soil, if properly homogenized, 

will not display a heterogeneity error of discernible size if the 

nitrogen levels of the sample are low. This experiment was not valuable 

in terms of showing an error due to variations within the same sample, 

but it was of considerable value in providing workable confidence 

limits for low nitrogen sample results. An accuracy of ± 1 ppm for 

ammonia, and ± 2 ppm for nitrate determinations in low nitrogen level 

soil samples may be expected with a confidence level of 95 percent. 

The last indication of error magnitudes in the procedure is given 

by the duplication of routine analyses. Differences between such 

duplicate sample results are a real measure of error within the sample, 

reflecting a combination of field variations with depth as well as 

variation due to failures in attempts at completely homogenizing each 

sample. An attempt was made in each duplication to take different 

appearing parts for the two parallel analyses so that profile hetero-

geneity would be emphasized over failure to homogenize. 
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The results of all these samples were used in the analyses in the 

main part of this thesis, and divergent results were averaged for use 

in the body of data upon which the conclusions of this study are based. 

A breakdown of the duplicate analyses made appears in Table 27, 

The grouping of the data in Table 27 is misleading in that it suggests 

a larger mean deviation due to sampling date. A rearrangement of the 

individual data for each sampling by nitrogen level was made, according 

to the following scheme, as illustrated in Table 28, and analyzed against 

sampling date by one-way analysis of variance. 

From Table 28, the conclusion is evident that sampling time was not 

an important variable, but nitrogen level is related to error between 

duplicate analyses of the same sample. This relationship was investi

gated further by combining the results of all the analyses for each of 

the groups defined in Table 28. 

A comparison of the average deviation for each grouping, and for 

the standard deviation of the deviations in each grouping for each 

nitrogen specie analyzed appears in Table 29. 

The trend is fairly obvious from these averages and standard 

deviations of the differences between duplicates, that higher differences 

in nitrogen levels within the sample may be expected with higher soil 

nitrogen levels. This relationship was tested by correlating the 

differences between each duplicated analysis with its mean nitrogen level 

for every duplication. For NH
3
-N, with 176 duplicates, and therefore 

174 degrees of freedom, the regression coefficient was 0.23, which was 

significant at the 1 percent level. Similarly, for N0
3
-N, with 161 

degrees of freedom, the regression coefficient was 0.205, which is 



Table 27. Listing and characterization of duplicated analyses from the same soil samples. Number of dupli
cates run, for each nitrogen specie, and for each sampling appears together with mean values 
of deviations for each specie in each sampling. 

Soil sampling Number of NH
3
-N Number of N0

3
-N Average value of nitrogen levels 

Month, year 
duplicates run duplicates run deviations for each specie 

ppm NH
3
-N ppm No;-N 

September 1972 64 54 1 2 

October 1972 29 26 5 3 

April 1973 83 83 2 1 

..... 
"' w 
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Table 28. Scheme for analysis of duplicated sample analyses results to 
show that variance within samples was due· to nitrogen levels 
and not due to sampling dates. Samples grouped into a class 
by the highest value for either nitrogen specie in either 
analysis. One way analysis of variance, for each group, 
compared magnitude of differences in duplicate results with 
qualitative factors 1, 2, or 3, representing the September, 
October, and April samplings, respectively. F test results 
reported only as significant or not significant. 

Group number 
and nitrogen 
level range 
in ppm-N 

Sampling, and 
number from this 
sampling in this 
group for each 
specie 

1. 39 
1. D-5. 00 2. 6 

3. 70 

1. 12 
2. 5.01-10.00 2. 7 

3. 6 

1. 13 
3. 10.01-20.00 2. 6 

3. 1 

1. 2 
4. 20.01-50.00 2. 4 

3. 0 

1. 
5. 50.0D-lOO.OO 2. 

3. 

1. 
6. 100.01-200.00 

2. 
3. 

0 
4 
2 

0 

4 
0 

24 
5 

69 

22 
10 

4 

7 
9 
3 

1 
2 
2 

0 
0 
1 

0 

0 
1 

Average deviation 
between duplicates 
for each of the 
preceding numbers 
of duplicates for 
each specie 

ppm 

1 
1 
1 

3 
1 
4 

2 
3 
2 

3 
9 

11 
9 

14 

ppm 

1 
0 
1 

2 
2 
3 

5 
4 
4 

1 
13 

3 

12 

4 

F test results 
for each specie 
N.S. = no 
significance, 
N.T. ~ no test 
possible 

N.S. N.s. 

N.S. N.S. 

N.S. N. S. 

N.S. N.S. 

N.S. N.T. 

N.T. N.T. 
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Table 29. Median ppm-N level of each group, with the number of dupli
cated analyses in each group, listed with the averages and 
standard deviations of the differences between these dupli
cated analyses of the same sample. Means and standard 
deviations in ppm-N. 

Median nitrogen Number of Mean differences Standard deviations 
level of group duplicates between of differences 
in ppm-N in group duplicates between duplicates 

NH
4

-N N0
3
-N NH

3
-N ppm N0

3
-N NH

3
-N ppm N0

3
-N 

2.5 114 100 1 1 1 1 

7.5 25 37 2 2 3 2 

15 20 19 2 4 2 3 

35 6 5 7 6 5 11 

75 6 1 10 12 13 

150 4 1 14 4 16 

significant at the 2 percent level, confirming the trend for larger in-

sample deviations with larger nitrogen levels. 

The actual error magnitudes here are not very meaningful, until the 

data are adjusted to cull out samples whose average nitrogen levels were 

found to be below the above determined limits of detection. Fully one-

hundred of these duplicates were found to be below (or, the average was 

below) the detection threshhold for the method. Thus, analysis of in-

sample error could be done on 239 duplicated samples. Using the values 

for 239 samples, with an average nitrogen content of 11 ppm NH
3 

or N03- N, 

the corresponding average error between duplicates was 4 ppm NH
3 

or No;-N. 

An average sample of 11 ppm NH
3 

or NO;-N may thus be expected to have 

from 9 to 13 ppm NH
3 

or NO;-N, which corresponds to a ± 2 ppm N 

uncertainty for this nitrogen level. 



Comparison of the dist i llation 

procedure with a colorimetric 

procedure 
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One other experiment was conducted, compar i ng nitrate results of 

samples done with the procedure of this exper i ment with the results of 

these same samples analyzed by the colorimetr i c phenoldisulphonic acid 

procedure for nitrates as outlined by Bremner (1965). Fifteen samples 

were chosen to cover a range of from zero to fi ft y-three ppm nitrate 

nitrogen, as determined by the distillation procedure of this study. 

Regression analysis on the results show that the distillation procedure 

results, in ppm N0
3

- N, were consistently lower than the results 

obtained by the colorimetric procedure. Since the coefficient of 

determination was high (R2 
= 0.98 with 13 deg r ees of freedom), a 

predictive equation was put together, and nitrate levels from the 

colorimetric procedure, with their standard deviat i ons, were predicted 

from the nitrate levels given by the distillation technique. The results 

appear in Table 30. 

Considering the results for duplicated analyses from the same 

samples as reported above, this comparison i s not at all unfavorable to 

either method. Hesse (1971) estimates the accuracy of this colorimetric 

procedure at 5 percent; our standard deviation at the higher nitrate 

level reflects such an accuracy. In comparison, 14 of the duplicate 

analyses clustered around the 50 ppm-N level showed an average error of 

14 percent difference between the duplicates, or ± 7 ppm-N at the 50 ppm-N 

level. Considering such a magnitude of error introduced by intra-sample 

variations, the trend of the regression shown in Table 33 may be accidental 

only and due to a coincidence of in-sample variations between the comparisons 
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Table 30. Result of comparison between nitrate levels as given by the 
distillation procedure and as given by the phenoldisulphonic 
acid method. Given the distillation procedure results, the 
corresponding value for the phenoldisulphonic acid method is 
predicted from the regression equation, also the computed 
standard deviation of this estimated value is given. All 
values in ppm No;-N. 

Nitrate level by Predicted nitrate level Standard deviation 
distillation if done by colorimetric of this predicted 

procedure nitrate level 

o.oo 0.19 + 3.04 

1. 00 1.33 + 3.04 

5.00 5.89 + 3.00 

10.00 11.60 :t 3.03 

25.00 28.71 + 3.05 

50.00 57.24 + 3.42 

having been in the same directions for the two larger nitrate levels. 

Such a coincidence of error at the larger ~nd could influence a regression 

line's slope unduly. No conclusions as to the relative efficiencies or 

accuracies of these two analytical methods may therefore be drawn from 

the results of this experiment. 

Summary of threshold, precision, and 

accuracy of findings 

The results of the five experiments on threshold, accuracy and 

precision are summarized in Table 31. 

Since the duplicate analyses were biased toward showing the magnitude 

of in-sample variations, and since NH3 and No; nitrogen results were com

bined, the accuracy of the method for the individual species will be held 

to be that achieved with the standard soil samples and blanks, namely± 1 

ppm for NH3-N and± 2 ppm for No;-N. 



Table 31. Summary of results of experiments on threshold, precision, and accuracy of the method as applied 
to blanks, standard solutions, standard soil samples, and duplicated field sample analyses. 
Results reported as they would affect a hypothetical soil sample of 6.5 grams air dry weight, 
processed by the procedures of this investigation. 

Experiment 

Blanks 

Standard 
solutions 

Standard 
soil samples 

Duplicate 
analyses of field 
soil samples 

Subject of 
investigation 

Consequences for analysis of hypothetical soil sample with these 
nitrogen levels: 

ppm NH
3
-N 

Lower limit of 
detection for 
the method 

Precision of 
method 

Accuracy of method 

Accuracy and precision 
of method using 
homogeneous soil 
samples 

< 1 

0 

30 

3 

ppm No;-N 

< 2 

0 

42 

4 

Precision of field 
soils as affected by 
nitrogen levels in 
the samples 

11 ppm NH
3
-N or No;- N 

Indistingui shable from 0 ppm-N 

+ 1 ppm NH
3
-N 

- 1 ppm NH
3
-N 

± 1 ppm NH3-N 

+ 2 ppm No;-N 

- 1 ppm No;-N 

+ 2 ppm No;-N 

+ 2 ppm NH
3
-N or NO;-N 

,... ..,. 
(X) 
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Raw Data in Parts-per-million of Nitrate or Ammonium 

Nitrogen for Each Plot in Each Sampling 
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Table 32. + -September sampling-~pp~ NH
4
-N an~ ppm N0

3
-N levels for each sampling depth increment for each 

pl ot. Format: ppm NH
4
-N/ppm N0 3-N. 

PLOT:I-A I-B I-C I-D I-E I~F I-G I-H I-I I-J I-K 

Dept h: 
0-3 em 1/4 1/5 1/2 3/5 1/5 1/3 2/2 1/3 1/4 2/2 1/4 
3-15 em 5/9 2/9 11/10 2/14 1/10 2/12 1/12 5/9 4/18 2/15 5/10 
15-45 em 2/2 1/2 8/2 3/5 6/2 3/3 1/3 3/7 6/3 6/7 2/5 
45-75 em 4/2 1/2 4/11 4/2 3/2 2/2 4/2 4/8 5/5 3/4 4/4 
75-120 em 1/2 2/2 11/6 1/2 4/2 1/3 3/3 2/6 6/2 1/5 4/5 

II-A II-B II-C II-D II-E II-F II-G II-H II-I II-J II-K 

Q-3 em 1/3 2/3 2/4 1/2 2/10 1/7 1/3 1/2 1/2 1/6 2/2 
3-15 em 2/10 4/12 1/10 3/10 1/6 1/7 4/9 2/8 1/7 1/8 1/6 

15-45 em 1/3 1/3 2/3 2/4 1/4 2/2 9/5 3/2 2/2 1/4 1/4 
45-75 em 2/2 1/3 2/1 1/4 4/2 2/2 1/4 1/3 3/2 9/14 2/4 
75-120 em 1/3 1/3 1/1 3/2 1/2 2/5 2/2 9/5 1/3 3/2 8/3 

III-A III-B III-C III-D II I-E III-F III-g III-H III-I III-J III-K 

0-3 em 8/2 2/4 4/2 2/13 2/12 1/3 10/6 1/2 2/2 1/4 1/2 
3-15 em 2/10 2/12 1/12 1/12 1/9 7/18 10/9 10/13 2/11 1/12 4/11 
15-45 em 1/8 3/5 2/2 3/5 7/2 2/4 7/4 1/3 3/2 6/6 14/5 
45-75 em 2/2 2/2 6/6 2/4 1/6 4/2 5/2 2/7 1/3 2/2 12/9 
75/120 em 1/3 1/3 1/3 2/5 1/8 11/6 11/4 1/2 2/3 8/7 1/4 

IV-A IV-B IV-C IV-D IV-E IV-F IV-G IV-H IV-I IV-J IV-K 

0-3 em 2/3 5/12 4/3 1/4 1/3 4/2 5/4 4/7 1/4 2/4 2/6 
3-15 em 2/14 1/12 2/4 2/12 2/5 4/15 1/24 4/15 2/11 3/11 1/12 
15-45 em 1/5 2/4 1/5 7/2 4/8 6/ 5 5/5 4/2 2/4 2/7 1/3 
45-75 em 1/5 1/6 5/2 2/6 1/6 6/4 2/4 1/5 2/2 1/2 4/4 
75-120 em 1/6 2/6 2/5 5/3 6/3 1/2 5/5 5/3 3/2 2/4 1/2 .... 

l.n 
0 



Table 33. + -October samplin. ppm NH~-~ and ppm N0
3
-N levels for each sampling depth increment for each plot. 

Format: ppm NH
4
-N/ppm o

3
-N. 

PLOT:I-A I-B I-c I-D I-E I-F I-G I-H I-I I-J I-K 

Depth: 
0-3 em 6/3 5/2 106/7 60/4 4/4 16/2 8/6 117/3 6/2 102/3 26 /1 3 

3-15 em 6/7 21/27 6/22 7/16 5/19 6/8 3/19 12/ 5 3/2 13/2 23/ 2 

15-30 em 6/7 3/7 4/12 7/8 6/15 2/4 5/24 6/10 8/6 4/9 8/2 

II-A li-B II-C li-D li-E II-F II-G II-H II-I II-J Il-K 

Q-3 em 23/8 5/2 64/9 4/2 187/2 77/15 3/2 49/6 5/2 106/2 8/11 

3-15 em 11/14 8/5 13/8 4/12 7/9 ~/31 3/6 11/13 5/22 9/7 7/9 

15-30 em 4/6 5/5 7/2 6/4 8/5 8/22 6/7 6/6 4/6 5/5 7/ 3 

III-A III-B III-C III-D II I-E II I-F III-G III-H III-I III-J III-K 

Q-3 em 71/17 4/4 5/7 59/9 11/7 130/17 93/6 92/6 21/4 4/4 31/12 

3/15 em 83/10 6/31 10/6 9/26 4/29 6/21 6/4 9/15 20/20 6/6 15/4 

15-30 em 9/7 4/14 3/5 16/2 5/3 7/8 3/7 6/14 5/13 10/4 6/9 

IV-A IV-B IV-C IV-D IV-E IV-F IV-G IV-H IV-I IV-J IV-K 

D-3 em 65/11 53/14 10/2 12/3 5/2 9/7 4/5 23/2 3/3 133/11 186/4 

3-15 em 6/6 4/14 6/23 6/6 19/23 4/6 5/21 14/16 5/4 4/22 12/5 

15-30 em 5/10 5/10 5/17 1/2 6/7 4/8 2/9 4/6 4/6 9/3 6/2 

>-' 
l.n 
>-' 



Table 34. + -May sampling ppm NH~-N an~ ppm N0
3
-N levels for each sampling depth increment for each plot. 

Format: ppm NH!-N/ pm N0 3-N. 

PLOT:I-A I-B I-c I-D I-E I-F I-G I-H I-I I-J I-K 

Depth: 
0-3 em 4/8 12/9 41/32 20/25 1/4 6/2 2/4 4/9 4/6 16/11 2/7 
3-15 em 2/2 7/21 1/2 2/6 1/2 2/3 3/2 3/2 5/3 3/2 9/2 
15-45 em 4/2 2/5 3/2 2/2 4/2 3/2 2/2 3/2 3/2 1/2 1/2 
45-75 em 3/2 3/2 2/2 3/2 2/2 2/2 2/2 1/2 1/2 1/2 1/2 
75-120 em 1/2 3/2 1/4 1/4 1/4 1/2 2/3 2/4 1/2 2/2 3/7 

II-A II-B II-C II-D II-E II-F II-G II-H II-I II-J II-K 

G-3cm 14/14 59/134 6/6 34/2 36/23 2/2 6/5 7/7 1/2 4/5 7/4 
3-15 em 4/3 2/3 5/14 4/2 3/4 4/2 6/2 3/2 5/2 1/5 1/2 
15-45 em 1/2 1/2 1/2 1/2 1/2 1/2 3/2 2/2 2/2 2/2 2/2 
45-75 em 2/2 1/2 1/2 1/2 1/2 2/2 3/2 1/2 2/2 2/2 1/3 
75-120 em 1/2 1/2 2/2 1/2 2/15 1/4 2/2 3/2 2/2 1/4 2/3 

III-A III-B III-C III-D II I-E III-F III-G III-H III-I III-J III-K 

0-3 em 14/27 2/6 2/2 1/7 1/3 35/15 123/63 24/12 4/4 31/46 12/15 
3-15 em 1/4 4/2 1/3 1/2 3/3 1/3 1/2 9/2 1/4 10/2 1/3 
15-45 em 1/4 1/2 1/3 2/2 2/2 2/2 2/2 2/2 2/2 1/2 2/2 
45-75 em 1/2 1/2 2/2 2/2 1/3 2/2 1/3 1/2 2/2 1/2 3/2 
75-120 em 3/2 1/4 2/2 1/3 1/3 3/2 1/4 2/5 2/3 1/2 1/4 

IV-A IV-B IV-C IV-D IV-E IV-F IV-G IV-H IV-I IV-J IV-K 

0-3 em 57/46 9/12 2/6 86/94 1/2 1/6 1/7 4.9 3/2 19/13 41/30 
3-15 em 2/4 1/2 2/3 1/2 1/2 10/3 6/2 4/3 4/2 1/2 1/2 
15-45 em 1/2 1/2 1/2 1/2 1/2 1/2 2/2 1/2 2/2 1/2 2/2 
45-75 em 1/2 1/3 1/2 1/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 
75-120 em 2/2 4/2 1/2 5/2 3/2 1/2 1/4 1/2 2/2 1/4 1/2 .... 

Ln 
N 



Table 35. + -July sampling ppm NH
4

-N and ppm N0
3
-N levels for each sampling depth increment for each plot. 

+ -Format: ppm NH
4
-N/ppm N0

3
-N. 

PLOT:II-C II-E II-G II-J III-A III-C III-D III-E III-J IV-I 

Depth: 

0-45 em 1/4 1/3 2/2 1/2 3/2 1/3 1/3 1/3 2/2 2/2 

45-75 em 1/2 1/2 2/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 

75-120 em 1/2 3/2 2/2 2/2 1/2 1/2 1/2 4/2 1/2 1/2 

..... 
lJ> 
w 
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