Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1975

Determining a Crop Production Function for Corn as Influenced by Irrigation and Salinity Levels

Timothy E. Sullivan Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Life Sciences Commons

Recommended Citation

Sullivan, Timothy E., "Determining a Crop Production Function for Corn as Influenced by Irrigation and Salinity Levels" (1975). *All Graduate Theses and Dissertations*. 3136. https://digitalcommons.usu.edu/etd/3136

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

DETERMINING A CROP PRODUCTION FUNCTION FOR

CORN AS INFLUENCED BY IRRIGATION

AND SALINITY LEVELS

by

Timothy E. Sullivan

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Soil Science and Biometeorology

UTAH STATE UNIVERSITY Logan, Utah

ACKNOWLEDGEMENTS

I wish to extend sincere appreciation to Dr. R. J. Hanks for his encouragement and support. Without his unending patience the completion of this paper would have _____ been most difficult.

Thanks also to Dr. L. S. Willardson, J. L. Andersen and Eugene Farmer for their support and helpful suggestions. I have enjoyed associating and working with men of such professionalism.

A special thanks to Stuart W. Childs and Duane A. Lammers for their constant encouragement. They have been an inspiration throughout my graduate work.

Finally, a most sincere thanks to my wife, Judy, who typed and edited my thesis and has given me constant and unyielding support always.

Jenuty E. Lallian Timothy E. Sullivan

TABLE OF CONTENTS

													Page
ACKN	OWLED	GEMEN	TS										ii
LIST	OF TA	BLES		•									iv
LIST	OF FI	GURE	S				•						vi
ABST	RACT			•			•			•			vii
INTR	ODUCTI	ON	•	•	•					•			· 1
	Objec	tive	5	•									2
LITE	RATURE	REV	IEW										3
	Soil Salin Produ	ity a	and (crop	gro	owth			:	:	:	:	34
	Frodu	16 1101	n Iui	ne ti	ons	and	des	ıgn	•	•	•	•	5
EXPE	RIMENT	AL PI	ROCEI	EDUR	E	•	•	•	•	•	•	•	9
	Desig Salt Water	treat			:	•	•	:	:	:	:	:	9 9 12
RESU:	LTS AN	D DIS	CUSS	SION									14
	Irrig Soil Salin Yield Produ Monit	moist ity ctior	ure • • • fur	nctio		••••••		••••••	••••••	••••••		•	14 14 17 18 27 34
		Th Re	sist	cour	ole ty m	ors psyc eter ion		eter		: : :	•		34 34 35 37
SUMMA	ARY AND	D CON	CLUS	IONS	5								38
LITER	RATURE	CITE	D						•				40
APPEN	NDIX												43
VITA													82

LIST OF TABLES

Table		Pa	age
1.	Osmotic potential of the soil solution as a function of salt level, desired and obtained		11
2.	Average root zone salinity and irrigation applied for the levels studied		15
3.	Average number of plants as a function of salt ar irrigation treatments	nd •	25
4.	Analysis of variance for oven dry matter, Kg/ha.		26
5.	Analysis of variance for oven dry matter, grams/plant		26
6.	Analysis of variance for grain, Kg/ha @ 15.5 percent moisture		27
7.	Regression analysis of variance for oven dry matter Kg/ha		32
8.	Regression analysis of variance for oven dry matter grams/plant		32
9.	Regression analysis of variance for grain, Kg/ha @ 15.5 percent moisture		33
10.	Electrical conductivity of the soil solution as a function of time and site, salinity sensor result in mmhos/cm @ $25^{\circ}C$		35
11.	Water potential of the soil solution measured by thermocouple psychrometers as a function of time and sampling site, bars		36
12.	Volumetric water content of the soil as a function of time and sampling site	n •	44
13.	Electrical conductivities (EC_) of the soil solution, initial (I) soil samples		54
14.	Electrical conductivities (EC_) of the soil solution, final (F) soil samples		56
15.	Oven dry matter yield, metric ton dry matter/ha.		61
16.	Oven dry matter yield, grams dry matter/plant .		63
17.	Grain yield, Kg/ha		65

LIST OF TABLES (Continued)

Table	3]	Page
18.	Moisture percentage by weight of the grain, corrected to 15.5 percent moisture		• 70
19.	Protein percentage by weight of the grain		. 72
20.	Grain and dry matter production as influenced by salt and irrigation treatments, Duncan's Multipl Range Test	le	• 72
21.	Electrical conductivity of the soil solution as function of time and site, 4-probe results in mmhos/cm $@$ 25°C		• 73
22.	Electrical conductivity of water samples extracte	d	. 80

v

LIST OF FIGURES

Figur	re F	age
1.	Plot layout and instrumentation	10
2.	Relative sprinkler application rate as a function of distance from the sprinkler line	15
3.	Average volumetric water content in the 1 - 3 feet (0.3 - 0.9m) zone during the growing season, 1974	16
4.	Average volumetric water content in the 1 - 3 feet (0.3 - 0.9m) zone during the growing season, 1974	16
5.	Dry matter and brain yields as influenced by salt and water levels, metric ton/ha	19
6.	Average corn height as a function water and salt level	20
7.	Dry matter yield as a function of salt and irrigation level, grams/plant	21
8.	Dry matter yield as a function of salt and irrigation level, grams/plant	23
9.	Projected and actual dry matter yields as a function of salt and irrigation levels, metric tons/ha	24
10.	Predicted dry matter yield, metric tons/ha	29
11.	Predicted dry matter yield, grams/plant	30
12.	Predicted grain yields, metric tons/ha	31
13.	Dry matter yields as influenced by salt and irrigation levels, metric tons/ha	67
14.	Dry matter yields in grams/plant as influenced by salinity and irrigation levels	68
15.	Grain yields metric tons/ha as influenced by salinity and water levels	69

Abstract

Determining a Crop Production Function for Corn as Influenced by Irrigation and Salinity Levels

by

Timothy E. Sullivan, Master of Science Utah State University, 1975 Major Professor: Dr. R. J. Hanks

Department: Soils and Biometeorology

Production functions were generated for dry matter and grain yields of corn. A continuous variable plot design replicated four times was established in the spring of 1974 in Vernal, Utah. Each replication included ten salt treatments and twenty irrigation levels. The salt treatments resulted in an average root zone salinity ranging from 2.7 to 14.9 mmhos/cm. Irrigation levels ranged from 4.2 to 45.0cm of water applied. Dry matter (Kg/ha) yield showed an 83 percent reduction over the range of salt applied and a 52 percent reduction over the range of water applied. Grain yield declined 96 and 64 percent over the range of salt and water applied, respectively. Salinity sensors produced results corresponding closely to measurements taken from the saturation extract of soil samples. Thermocouple psychrometers and a four probe resistivity meter produced results inconsistant with those of the soil samples.

(82 pages)

INTRODUCTION

The increasing salinity of the Colorado River and its impact on crop production has received much attention in recent years (U. S. Bureau of Reclamation, 1974, King and Hanks. 1973). Salinity affects not only the farmers of the United States and Mexico but all people of the lower basin states and Mexico that use the water for industry, energy production. recreation. and culinary needs. It has been said that the high salinity adversly affects nearly 10,000,000 people and about 1.000.000 acres of fertile, irrigated farmland. The Bureau of Reclamation in recent studies has shown annual economic losses ranging from \$194,000 to \$395,000 per mg/l increase in salinity at the Imperial Dam. the last major U. S. diversion point before the water reaches Mexico. In 1973 damages attributed to salinity in the Colorado River System totaled about 53 million dollars (U. S. Bureau of Reclamation, 1974).

In response to the salinity problem of the Colorado River this project has been initiated to determine the affect of salinity and irrigation on crop production. From the resulting data crop production functions were determined for use as prediction equations. Production functions have been found reliable in describing crop responses to several controlled factors within the limits of the controlled factors (Heady and Dillon, 1961).

Objectives

The objectives of this research are as follows:

(1)to determine crop production functions for corn as related to irrigation and salinity.

(2)to evaluate methods of monitoring salt movement and distribution.

LITERATURE REVIEW

Soil water and crop growth

Soil water and its availability for plant growth has been the subject of much research. Jamison (1956) in a summary article concluded that the available water depends not only on the soil factors but also to a great extent on the plant and climatic factors. Some of the climatic factors include matric potential, water content, osmotic potential, ions in the soil solution, soil water conductivity, depth of wetting, and soil temperature. Kramer (1963) pointed out that plant growth is controlled directly by plant water stress and only indirectly by soil water potential. He said it was not safe to assume that the two were always equal as plant water stress depends on the relative rates of water absorption and water loss rather than on the soil water supply alone. Thus a complicated interaction must exist between soil, plant and climatic factors.

Soil water in the available range between field capacity and the permanent wilting point has been of particular interest. One group of authors report that the water is readily available throughout the entire range (Veihmeyer and Hendrickson, 1950; Letey and Peters, 1957) while others report that water becomes less available as the water content decreases to the permanent wilting point (Lucey and Tesar, 1965). Denmead and Shaw (1960) have shown that these two views can both be supported by field data depending on climatic conditions. See Taylor and Ashchroft (1972) for a summary on this subject.

Howe and Rhodes (1955) have shown that corn production as indicated by height, dry matter production, ear development and yield of grain was materially influenced by irrigation. They concluded that it was essential to maintain a low soil water suction throughout the growing season to obtain maximum yield.

Yield of corn has been closely related to the reserve moisture condition at the beginning of the growing season and to the soil moisture stress that the plant experiences during the growing season (Letey and Peters, 1957). Moisture depletion to the wilting percentage at certain physiologic growth stages markedly depressed grain yields (Robins and Domingo, 1953; Howe and Rhodes, 1955)

Salinity and crop growth

Salinity and its detrimental effect on the growth and yield of agricultural crops is of concern in irrigated agriculture. Decreases in yield resulting from increasing salinities are well documented (Meiri and Shalhevet, 1973). Salt in the soil solution (salinity) affects the plants in two ways; first a decreased osmotic potential tends to reduce the entry of water into the plant making it less available: and second, specific ions can exert a specific toxic action on the activity of the plant cells (Wadleigh, Gauch and Strong, 1947). Magistad et al., (1943) found the

osmotic component to be a greater factor in determining the amount of growth reduction than specific ions. Bernstein and Hayward (1958) have suggested that some toxicities are actually nutritional disturbances. Luken (1962) working on saline soils in Canada found that fertility and structural factors as well as water conservation all influenced yield. Lunin and Gallatin (1965), also found that bean yield on a saline soil is affected by soil fertility.

Some interesting work has been completed in the zonal salinization of various root systems to relate water uptake to plant growth. Bingham and Garber (1970) reported that sweet corn was able to withstand substantial salinization of the root zone provided that a portion of the root zone remained free from excessive salinization. Lunin and Gallatin (1965) working with tomatoes showed that with one-third of the root zone salinized yield was unaffected. With two-thirds of the root zone salinized, water uptake was reduced significantly and yield slightly reduced. Shalhevet and Bernstein (1968) concluded that the relative water uptake depends on the relative salinity of the root zone rather than on the absolute salinity. Both of the above authors showed that salinity induced yield decreases were highly correlated with transpiration decreases.

Production functions and design

The production function is a concept relatively new to the physical and biological sciences. It was developed and has been used mainly by economists. A detailed description

of the types of production functions and of their use are offered by Heady and Dillon (1966). Briefly the production function is a tool of management and decision making i.e. it is useful in describing plant response to several variables. Box and Hunter (as cited in Bauder, 1974) have indicated that the production function approach of describing crop responses is used for two reasons: (1) to find the conditions of the variables under consideration, which give the best yield, and (2) to determine the characteristic of the response surface in the neighborhood of the optimum operating conditions to indicate how operations should be modified if conditions change in order to best control crop production.

A production function of two independent variables can be represented by a second degree quadratic equation of the general form

 $\hat{\mathbf{Y}} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 + \varepsilon$ where:

 $\hat{\mathbf{Y}}$ = dependent variable, yield

X 1X 2. . = independent variables

 ϵ = error due to the fact that the postulated independent variables do not completely explain Y

 β_i = population regression coefficients. An equation of this form has been used successfully in describing the response of corn to soil moisture and nitrogen fertilizer (as cited in Bauder, 1974) and will be used in this project's analysis.

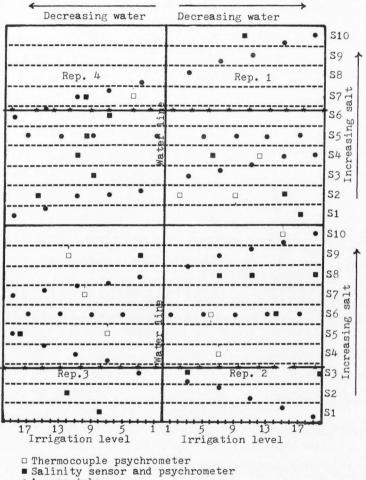
The continuous variable experimental design as described by Fox (1973) and Bauder (1974) has been useful in producing data from which production functions were derived. These production functions are statistically interpolated and are thus very difficult to extrapolate beyond the situation where the data were collected. The number of treatments generated in a continuous variable design is much greater than those generated from the more commonly use used statistically replicated field plot designs. The size of each individual plot is much smaller in a continuous variable design. Bauder (1974) found that increasing the size of his fertilizer treatments from 1.2 to 3.6m (3.9 to 12.8 feet) and decreasing the number of treatments from 21 to 7 seemed to be a good compromise between large plots with few treatments and small plots with many treatments. The main advantage of a continuous variable design is the use of a relatively small amount of land area since no border areas are used between treatments.

Some question as to the reliability of the statistical analysis of data collected from the continuous variable design has been raised because of the lack of randomization of the treatments. In conventional designs, randomization is assumed to minimize the bias due to treatment interaction of natural field variation. The continuous variable design by its nature is completely non-randominized maintaining the same arrangement of treatments throughout the design. It assumes that the increment between treatments is small

enough to minimize the influence of one treatment on its neighbor, thus minimizing the bias due to treatment interaction. Bauder (1974), to test the assumptions of the continuous variable, compared it to a conventional randomized block design. Production functions generated for both designs did not significantly differ in their predicted yields (Bauder, Hanks and James, 1975).

An example of a continuous variable irrigation system is the line source sprinkler system described by Hanks, Keller, and Bauder (1974). This system has been shown effective in establishing a water application pattern which is uniform along the length of the plot and continuously but uniformly variable across the plot. This system is more manageable than the tedious trickler irrigation scheme used by Bauder (1974). The small change occuring across the treatments makes the system useful for the continuous variable design.

EXPERIMENTAL PROCEEDURE


Design

The field work was conducted on the Hullinger experimental farm near Vernal, Utah. The farm has been described in detail by King and Hanks (1973). A continuous variable plot design (Figure 1) replicated four times was established early in the spring of 1974 on a Mesa sandy clay loam soil. Each replication measured 50 X 100 feet (15.2 X 30.84m) and included 10 salt treatments 10 feet (3.1m) wide by 50 feet (15.24m) long and 20 water treatments each 2.5 feet (0.76m) wide by 100 feet (30.48m) long. A single row of corn constituted a plot for a water treatment. Irrigation was accomplished approximatly every 10 days through the line source sprinkler system described by Hanks, Keller and Bauder (1974).

Corn (Utah hybrid 330) was first planted on May 22, but because of poor germination was replanted on June 13, 1974. The second planting, oriented about 6 inches (15cm) to the side of the first, helped to increase the stand. After two plantings the corn was thinned to about 53,800 plants/ha (21,800 plants/acre).

Salt treatment

CaCl₂ salt was applied with a 10 foot (3.0m) wide fertilizer spreader pulled behind a tractor. The quantity of salt applied was determined by the osmotic potential desired for each treatment (Table 1). The spreader was

- Access tube * Funnel placement

Figure 1. Plot layout and instrumentation

Salt level	Desired (bars)				ined trs)		
				De	epth-inch	es	
		0-6	6-12	12-18	18-24	24-36	36-48
1 2 3 4 5 6 7 8 9 10	0.0 - 0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 5.0 - 7.0 - 9.0	- 0.8 - 0.8 - 1.3 - 1.4 - 1.1 - 1.4 - 1.9 - 4.8 - 6.3 -11.8	- 0.9 - 1.0 - 2.9 - 2.8 - 2.5 - 3.3 - 3.2 - 6.0 - 5.6 -12.8	- 0.8 - 1.5 - 2.1 - 2.7 - 3.5 - 3.5 - 4.0 - 4.5 - 7.5 - 5.2	- 0.6 - 1.7 - 1.5 - 1.4 - 1.9 - 2.2 - 2.0 - 2.1 - 2.8 - 2.4	- 1.1 - 1.2 - 1.5 - 1.3 - 1.7 - 1.4 - 1.4 - 1.1 - 1.5 - 1.7	- 1.3 - 1.2 - 1.6 - 1.3 - 1.5 - 2.3 - 1.2 - 1.2 - 1.4 - 1.6

Table 1. Osmotic potential of the soil solution as a function of salt level, desired and obtained, (Soil samples taken 6-11-74)

calibrated to apply 3.4 lbs/A (3.9 Kg/ha) of salt, the amount required to obtain the osmotic potential of the first salt treatment (S2). Each salt level thereafter required only additional passes by the tractor and spreader to obtain the desired salt application.

Initial intentions were to apply the salt in four applications and to disc the ground and irrigate to wet the soil to field capacity to a depth of six inches (15.2cm). This proceedure was designed to produce a uniform salinity in the top two feet (0.6m) of soil. After the first application of water, it became obvious that it was impractical to add more water and still get the tractor across the plots without getting stuck and still complete the salt application in the time allowed. The following day the wet soil was disced and a second application of salt applied. The soil was then disced again and with the spreader recalibrated the remaining salt was applied. Only after all the salt had been applied was the remaining water applied.

Water application

The water variable was obtained using Rain Bird #30 sprinkler heads with a three-sixteenths inch (.48cm) front nozzle and a three-thirtysecond inch (.24cm) rear nozzle with a 7 percent slit. Two parallel irrigation lines consisted of 30 foot (12.2m) sections of 3 inch (7.6cm) aluminum irrigation pipe that were placed to position a sprinkler every 15 feet (6.1m). The high water treatment next to the water line was designed to receive about 1.5 times evapotranspiration (Et). Et was measured with two lysimeters located near the plot area and planted to alfalfa.

To determine the quantity of water being applied, a series of nine funnels mounted every 6 feet (1.8m) on 3 inch (7.6cm) aluminum irrigation pipe were used. A 4 inch (0.2cm) diameter aluminum funnel was fitted snuggly into a nine-sixteenth inch (1.4cm) hole drilled into the pipe. To each funnel was connected a section of polyethylene tubing one-fourth inch (0.6cm) inside diameter that ran through the length of the irrigation pipe and out of the plot area. The end of the tubing was then connected to a 500 ml glass

jar for collecting the water from each individual funnel. A number 11 rubber stopper with two 3 inch (7.6cm) pieces of copper tubing mounted through it provided for the connection of the tubing to the jar. A slight slope on the funnel line allowed most of the collected water to drain into the jars. It was necessary to use a hand vacuum system to extract all the water from the tubing for final measurement. The funnel line was fastened to four lengths of threequarter inch (1.9cm) steel pipe driven vertically into the ground. This arrangement allowed the funnel precipitation collection line to be raised as the corn grew. The tops of the funnels were kept at the height of the corn. The funnel system allowed an accurate measure of the water being applied without entering the plot area. After an initial priming essentially all of the sprinkler water entering the funnel collection system could be extracted with the hand vacuum system.

RESULTS AND DISCUSSION

Irrigation

The funnel sampling system demonstrated the line source sprinkler system to be effective in establishing the continuous but uniformly variable water treatments (Figure 2). Total amounts of water applied (Table 2) ranged from 45.0cm (17.7 inches) at water level one (W1) to 4.2cm (1.7inches) at W20. The odd number rows corresponding to grain yield and the even number rows to dry matter yield. Wind proved to be a major problem associated with the irrigation system. As a result, irrigation was conducted only in the early mornings and some late afternoons when wind speed was low. This schedule resulted in less water being applied than had been desired, but it maintained the continuous variable water treatment.

Soil moisture

A neutron probe was used to measure soil water content and results presented in table 12 of the appendix show that soil moisture decreased very little on any treatment. Neither irrigation treatment nor salt levels had any appreciable effect on the volumetric water content of the soil (Figures 3 and 4). Readings taken as late as September 18, 1974 showed high water contents in all the treatments. Upward flow from a water table at about 7 feet (2.13m) was the only possible source of the water that caused the water contents to stay high since total natural precipitation was

		Grain	n	Dry matter		
Salt level	Average root zone salinity* (mmhos/cm)	Irrigation level	Water applied (cm)	Irrigation level	Water applied (cm)	
S1 S34 S56 S58 S58 S58 S58	2.7 3.4 4.9 6.1 6.0 6.3 8.7	1 5 7 9 11 13	45.0 41.2 39.0 37.0 22.0 29.0 25.0 20.0	2 4 6 8 10 12 14 16	42.7 39.6 37.8 33.5 30.0 27.9 22.9	
S 9 S 10	10.3 12.9 14.9	15 17 19	13.0 7.0	18 20	17.0 9.9 4.2	

Table 2. Average root zone salinity and irrigation applied for the levels studied

*Average salinity per salt treatment for the growing season 0-3 feet (0-90 cm), in the soil at the beginning of the season (May 15, 1974).

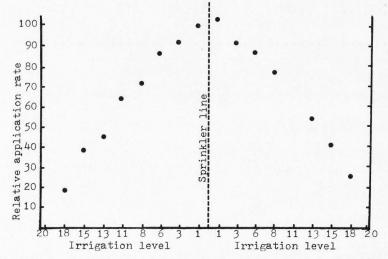


Figure 2. Relative sprinkler application rate as a function of distance from the sprinkler line

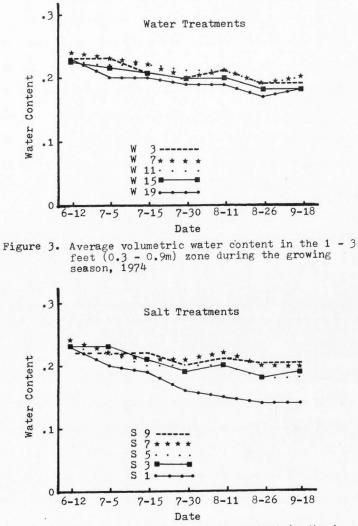
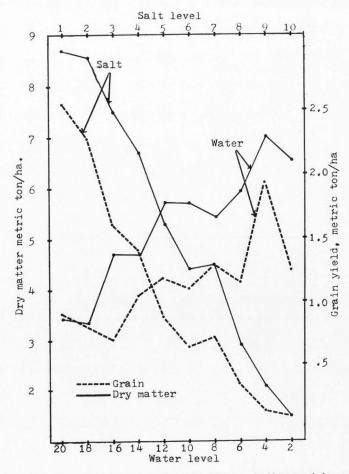


Figure 4. Average volumetric water content in the 1 - 3 feet (0.3 - 0.9m) zone during the growing season, 1974

Salinity

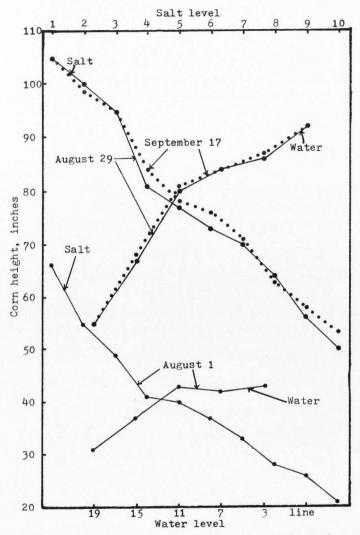
Intentions were to evenly distribute the salt in the top 2 feet (60cm) of soil. Achieving this would have resulted in the approximate desired osmotic potential of each treatment (Table 1). However, soil samples taken before the first irrigation (Table 13 in the appendix) showed the salt to be unevenly distributed in the top 18 inches (46cm) of soil. This concentration of salt was one of the factors that may have made a second planting necessary although seedling emergence in the whole agricultural area was generally poor.

The tractor and fertilizer spreader proved to be a relatively easy method of applying the salt but may have caused a serious soil compaction problem. Since higher salt application required more trips across the plots with the tractor and drill, the compaction problem in turn caused an infiltration problem that may have affected germination. There was noticeable difficulty getting the irrigation water into the soil without runoff. It was necessary to irrigate for a shorter duration more frequently.

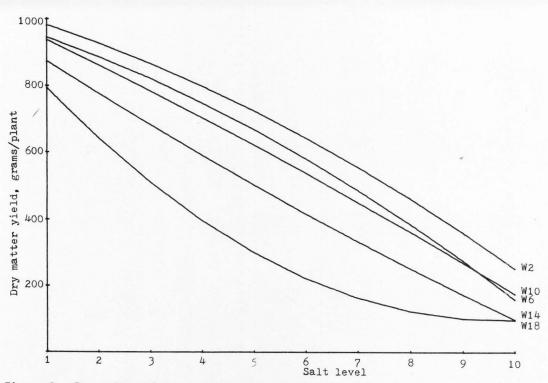

The salt became more evenly distributed in the soil profile with time. Electrical conductivities of the soil samples (Table 14 in the appendix) taken just before harvest showed the salt to be relatively uniformly distributed down to 3 feet (0.9m). The higher water application levels leached the salt slightly deeper and distributed it somewhat more evenly.

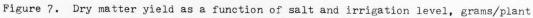
Yield

The detailed yield data and their resulting graphs are presented in tables 15, 16, 17 and figures 12, 13 and 14 of the appendix. Oven dry matter has been expressed both as Kg/ha and grams/plant to isolate the compaction effect.


Figure 5 shows the average grain and dry matter yield (Metric tons/ha) plotted as a function of salt and irrigation levels. A regression line fitted to the dry matter data showed a linear relationship between yield and salt levels. Regression lines fitted to the average water application level data for dry matter and both the averaged salt and water application level data for grain production resulted in a curvilinear fit. Similar curves were found for corn height as a function of salt and water levels (Figure 6).

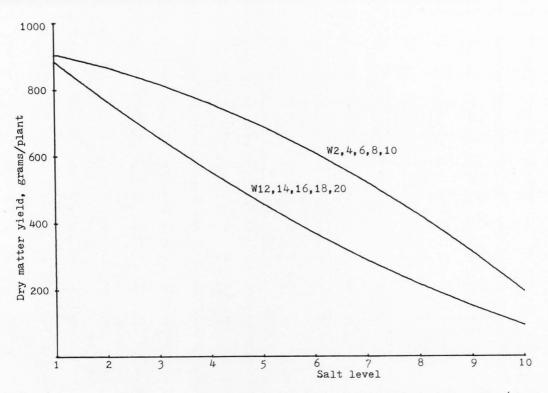
Plotting dry matter yield in grams/plant as a function of individual water and salt levels resulted in curves with a variety of slopes (Figure 7). Similar curves were produced for dry matter and grain yield expressed as metric ton/ha. Averaging the first five (W2, 4, 6, 8 and 10) and




5. Dry matter and grain yields as influenced by salt and water levels, metric tons/ha

ł

Figure 6. Average corn height as a function water and salt level



second five (W12, 14, 16, 18 and 20) water levels resulted in curves of different shapes (Figure 8). These differences in slope indicates a complex interrelationship of salinity and irrigation levels complicated further by compaction.

Dry matter (Kg/ha) yield showed an 83 percent reduction over the range of salt applied and showed 52 percent reduction over the range of irrigation levels. Expressed as grams/plant, dry matter declined 67 percent in response to salt and 56 percent in response to water application level. Grain production declined 96 percent over the range of salt applied. A 64 percent grain yield reduction was found over the range of water treatments.

The effect of compaction on yield is seen in figure (9). The yield expressed as grams/plant has been equated to that of Kg/ha by a correction factor. The difference in slope of the lines is due to decreased dry matter production of plants growing in the compacted area and a fewer number of plants in the heaviest salt treatments (Table 3). Although the average number of plants did not significantly decrease in the first seven salt levels, the dry matter produced per plant within the compacted area showed a steady decrease starting about S3. There were no plants growing in the compacted area of S10.

Because soil moisture was never limiting below about a foot (3.0cm) for the entire growing season, the effect of irrigation was realized in the early part of the growing

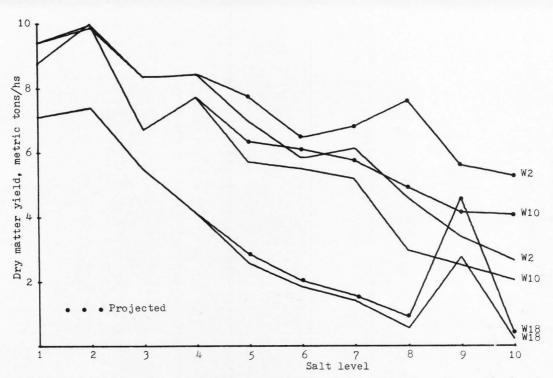


Figure 9. Projected and actual dry matter yields as a function of salt and irrigation levels, metric tons/ha

Salt level Average number of plants	S1 10	S2 9	S 3 10	S4 10	S 5 9	S 6 9	S 7 9	\$ 8 5	S 9 6	S10 4
Water level Average number of plants	₩3 9	₩5 8	W 7 9	W 9 9	W1: 8	1 W	13 8	₩15 7	W17 7	W 19 7

Table 3. Average number of plants as a function of salt and irrigation treatments

season before the plants had developed an adequate root system. Corn growing in the compacted area was stressed the most because of poor infiltration.

The moisture percentage of the grain (Table 18 in the appendix) did not appear to correlate to salinity or irrigation treatments. The protein percentage (Table 19 in the appendix) increased slightly with increasing salinity.

The analysis of variance computed for all yield data showed salinity and irrigation treatments and their interaction to be significant at the 99 percent level (Tables 4, 5 and 6). A word of caution must be included here regarding significance of the data. The error associated with the lack of randomization within the field design has been assumed insignificant through arguements previously mentioned.

A test of significance of the treatment means is presented in table 20 of the appendix. Generally all the salt treatment means proved to be significantly different from their neighbors. S6 and S7 were the only treatments which

Source of variation	Degrees of freedom	Sum of squares	Mean squares	F-ratio
Replication	3	• 50327E+08	.16776E+08	
Salinity	9 27	.24506E+10 .10604E+09	.27229E+09 .39274E+07	69.33*
Error (A) Irrigation	9	.53078E+09	.58975E+08	21.83*
Error (B) Interaction Error (C) Total	27 81 243 399	.72929E+08 .16167E+09 .37887E+09 .37512E+10	.27011E+07 .19959E+07 .15591E+07 .94016E+07	1.28*

Table 4. Analysis of variance for oven dry matter, Kg/ha

*Significant at the 95 percent level

Table 5. Analysis of variance for oven dry matter, grams/plant

Source of	Degrees of	Sum of	Mean	F-ratio
variation	freedom	squares	squares	
Replication	3	.60077E+06	.20026E+06	
Salinity	9	.11533E+08	.12814E+07	28.66*
Error (A)	27	.12074E+07	.44719E+05	
Irrigation	9	.65823E+07	.73136E+06	26.88*
Error (B)	27	.73462E+06	.27208E+05	
Interaction	81	.20871E+07	.25766E+05	1.56*
Error (C)	243	.40038E+07	.16477E+05	
Total	399	.26749E+08	.67040E+05	

*Significant at the 95 percent level

Source of variation	Degrees of freedom	Sum of squares	Mean squares	F-ratio
Replication	3	.43286E+07	.14429E+07	
Salinity	9	.27290E+09	.30323E+08	53.17*
Error (Å)	27	.15396E+08	.57021E+06	
Irrigation	9	.14306E+08	.15896E+06	3.87*
Error (B)	27	.11075R+08	.41019E+06	
Interaction	81	.31873E+08	.39350E+06	1.37*
Error (C)	243	.69715E+08	.28689E+06	
Total	399	.41960E+09	.10516E+07	

Table 6. Analysis of variance for grain, Kg/ha @ 15.5 percent moisture

*Significant at the 95 percent level

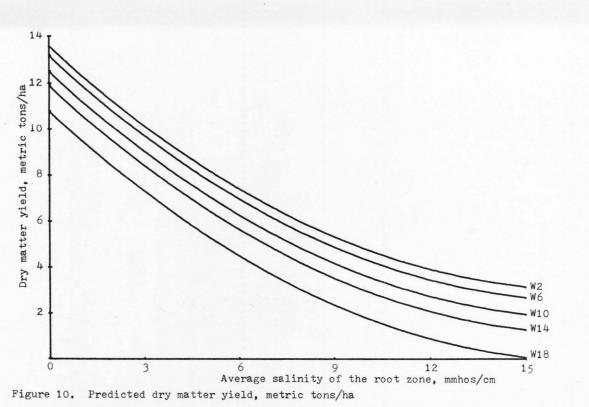
were nonsignificant between their means for all yield data. Irrigation treatments showed sporadic nonsignificance in the heavier water levels while the lighter application levels tended to show adjacent treatments to be nonsignificant.

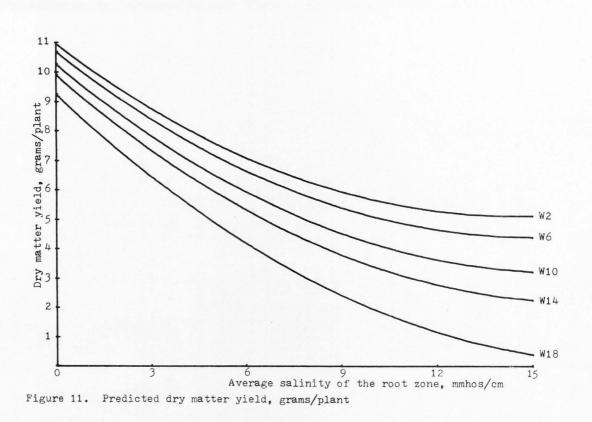
Production functions

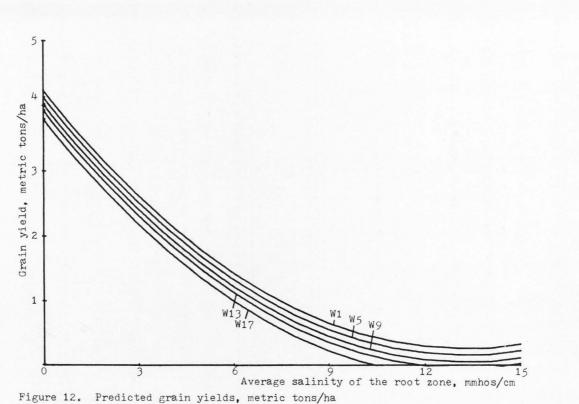
A second degree quadratic (Equation 1) was used to generate the production functions. The statistical analysis and production functions were generated on a Burroughs B6700 computer system. Programs from the Statistical Program Package (STATPAC: Hurst, 1973) included the Multivariate Data Collection (MDCR), Stepwise Multiple Regression (SMRR). Stepwise Multiple Regression Upward (SMRU), Multiple Regression (MREGT), and a two way Split Plot Analysis of Variance (FCTCUR). The production functions for dry matter expressed as Kg/ha and grams/plant, and grain expressed as Kg/ha are seen in equations 2, 3 and 4 respectively. The salt variable, 5, is expressed as the average root zone salinity in mmhos/cm @ 25° C while the irrigation level, W, is expressed as total centimeters of water applied (Table 2). The resulting response curves are presented in figures 10, 11 and 12. $\hat{Y} = 9896 - 1274S + 84W + 37S^2 + .03W^2 + .53SW$ (2)

$$R^{2} = 0.74$$

$$\hat{Y} = 873 - 107S + 4.7W + 2.8S^{2} + .01W^{2} + .61SW \qquad (3)$$


$$R^{2} = 0.64$$


$$\hat{Y} = 3676 - 604S + 6.1W + 23S^{2} + .13W^{2} + .008SW \qquad (4)$$


$$R^{2} = 0.63$$

A regression analysis of variance (Tables 7, 8 and 9) was run on the general form of the second degree quadratic equation to determine the significance of the individual terms.

The sign associated with the first degree terms of equations 2, 3 and 4 distinguishes between a positive and negative response of yield to changing levels of salt and water. Here, the negative coefficient of the first degree salinity variable (S) indicates the negative response of increasing salinity on yield. The positive W indicates an increase in yield with an increase in water applied. The second degree terms show a nonlinear relationship of salt and irrigation levels to yield. W^2 proved to be

Source of variation	Degrees of freedom	Mean sum of square	F-ratio
Salinity	1	.3036E+09	123.72*
Irrigation	1	.1774E+08	7.23*
Second order salinity	1	.9506E+08	38.74*
Second order irrigation	1	.8335E+04	0.003
Irrigation X salinity	1	.2471E+06	0.10
Model	5	.5569E+09	2.27
Error	394	.2454E+07	

Table 7. Regression analysis of variance for oven dry matter Kg/ha

*Significant at the 95 percent level

Table 8. Regression analysis of variance for oven dry matter grams/plant

Source of variation	Degrees of freedom	Mean sum of square	F-ratio
Salinity	1	2134426.0	86.91*
Irrigation	1	55352.0	2.25*
Second order salinity	1	545867.0	22.23*
Second order irrigation	1	1485.0	0.06
Irrigation X salinity	1	329835.0	13.43*
Model	5	3414541.0	
Error	394	24559.0	

*Significant at the 95 percent level

Source of variation	Degrees of freedom	Mean sum of square	F-ratio
Salinity	1	.6566E+08	167.35*
Irrigation	1	.7402E+05	0.19
Second order salinity	1	•3859E+08	98.34*
Second order irrigation	1	. 1192E + 06	0.30
Irrigation X salinity	1	•5200E+02	0.00013
Model	5	.5300E+08	
Error	394	.3924E+06	

Table 9. Regression analysis of variance for grain, Kg/ha @ 15.5 percent moisture

* Significant at the 95 percent level

insignificant for all equations. The sign of the second degree term determines the rate of increase or decrease. In the equations presented here all second degree coefficients are positive indicating the effect of salt and water to be greatest in the first four salt treatments. The interaction term in all three equations was small and in only one case (Equation 3) was it significant. The results presented here are typical for a sensitive crop and are consistent with other field data (Meiri and Shalhevet, 1973; Howe and Rhodes, 1955).

The multiple correlation coefficient (R^2) represents the degree to which the function fits the data. The Equation for dry matter expressed as Kg/ha showed the best fit with an R^2 of .74. The equation for dry matter in grams/ plant was slightly better fitted than the equation for grain with R^2 's of .64 and .63 respectively.

Monitoring devises

Limited success was achieved with the monitoring insturments. EC_e was the only data to give the salinity status of the total soil profile for the course of the growing season.

Salinity sensors. The salinity sensor results were useful in differentiating between the salt and water treatments (Table 10). The salt levels are identified by the magnitude in the readings and the irrigation treatments by the range in the readings over time. The sensors in the high water treatments picked up the movement of the applied salt very early. The lowest water application levels required the entire summer to leach the salt down to one foot (30cm). Because the salinity sensors were all located at 12 inches they were insensitive in describing the salinity status of the total soil profile. Their cost prohibited using them in any quantity.

<u>Thermocouple psychrometers</u>. The thermocouple psychrometer data (Table 11) proved to be of little value. The main problem was obtaining a reliable low value calibration reading at the wet end of the calibration curves. A consistent low reading from the dew point microvolt meter could not be obtained. This made it very difficult to obtain a reliable water potential reading. This eliminated the usefulness of the psychrometers as most of the readings taken in field were in lower range. Since the water content did not decrease much during the season the psychrometer

	Salt	Water		Sam	pling da	ate	
Block	level	level	7-15	7-30	8-11	8-24	9-18
1	1	17	2.4	1.5	1.4	1.2	1.4
	2 4	15 6	1.7	7.9	6.0	6.3	5.8
		6	7.7	1.4	1.1	0.3	1.6
~	0	10	3.7	15.8	13.9	17.0	19.0
2	3	3	5.5	1.0	0.3	0.3	0.3
	3	20	1.2	1.2	1.9	1.6	1.9
	6	14	5.9	4.3	1.7	1.4	2.2
	0	7 11	3.0	1.1 7.2	0.7 7.4	0.6	0.3
	0	19	18.0	9.4	9.5	13.5	15.8
3	1	8	1.1	0.5	1.0	0.7	0.3
)	2	12	1.9	0.3	0.3	0.3	0.3
	5	18	13.0	13.6	13.2	14.5	12.1
	9	3	4.5	3.5	2.2	3.5	9.8
4	2	16	7.7	7.0	~.~	7.7	6.9
	3	9	3.0	1.7	3.0	1.2	1.7
	4	12	10.6	7.7	10.1	10.9	10.4
	5	10	7.7	9.8	11.1	9.9	11.1
	0336888 1259234567	7	2.3	4.5	6.4	7.7	
	7	10	12.1	9.7	12.5	9.6	9.6

Table 10. Electrical conductivity of the soil solution as a function of time and site, salinity sensor result in mmhos/cm @ 25°C

reading would have been changed mostly by salt. Lack of operating experience may have been a contributing factor.

<u>Resistivity meter</u>. The 4-probe resistivity method (described in Gupta and Hanks, 1972) was used to monitor salt movement and distribution in the profile. The data is presented in table 21 of the appendix. Problems related to variable soil water content minimized by taking the readings just before each irrigation. The water content of the soil at this time changed very little over the course of the growing season (Figures 3 and 4). treatments probably reduced the effectiveness of the insturment.

<u>Ceramic soulution samplers</u>. The ceramic samplers worked well as a means of obtaining soil solutions as long as the units were intact and the soil water content was high. The electrical conductivity of the water samples (Table 22 in the appendix) are useful in supporting the assumption of the effectiveness of the line source sprinkler in creating the continuous water treatments. Salt was leached more rapidly and to a greater depth in the high water treatments. The sample taken from the lowest water application levels indicate that it took the entire field season to get the salt leached to 4 feet.

SUMMARY AND CONCLUSIONS

The objectives of this research were:

(1)to determine crop production functions for corn under field conditions as related to irrigation and salinity treatments, and

(2) to evaluate methods of monitoring salt movement and distribution.

Salinity and irrigation both had a significant effect on grain and dry matter production of corn. Salinity of the root zone varied from 2.7 to 14.9 mmhos/cm and irrigation treatments were confounded somewhat because of an unknown amount of water moving upward into the root zone from the water table. Averaged dry matter (Kg/ha) yield was reduced 83 percent over the range of salt treatments and 52 percent over the range of irrigation treatments. Expressed as grams/plant, dry matter declined over the range salt and water treatments by 67 and 56 percent respectively. Grain production declined in response to salt and water treatments by 94 and 64 percent respectively.

The production functions for dry matter expressed as Kg/ha and grams/plant, and grain expressed as Kg/ha are shows as equations 2, 3 and 4 respectively. $\hat{Y} = 9896 - 1274S + 84W + 37S^2 + .03W^2 + .53SW$ (2) $R^2 = 0.74$ $\hat{Y} = 873 - 107S + 4.7W + 2.8S^2 + .01W^2 + 61SW$ (3) $R^2 = 0.64$

 $\hat{Y} = 3676 - 604S + 6.1W + 23S^2 + .13W^2 + .008SW$ (4) $R^2 = 0.63$

S is the average salinity of the root zone in mmhos/cm and W is the total centimeter of water applied.

 EC_e (conductivity of the saturation extract), while the most involved proceedure for estimating soil salinity, was the only satisfactory method used to describe the soil profile salinity throughout the root zone.

The salinity sensors and ceramic extraction samples produced reasonable results but were restricted to a given position in the soil. The 4-probe resistivity meter gave a gross picture of the soil salinity. It may be more suited to a conventional type of design with larger treatments.

LITERATURE CITED

- Bauder, J. W. 1974. Determination of crop production functions as related to soil moisture and nitrogen. PhD dissertation, Utah State University, Logan, Utah.
- Bauder, J. W., F. J. Hanks, and D. W. James. 1975. Crop production function determinations as influenced by irrigation and nitrogen fertilizer using a continuous variable design. Submitted to Soil Science Society of America Proceedings.
- Bernstein, L. and H. E. Hayward. 1958. Physiology of salt tolerance. Ann. Rev. Plant Physiol. 9:25-46.
- Bingham, F. T. and M. J. Barber. 1970. Zonal salinization of the root system with NaCl and boron in relation to growth and water uptake of corn plants. Soil Sci. Soc. Amer. Proc. 34:122-126.
- Bower, A. A., G. Ogata and J. M. Tucker. 1969. Root zone salt profiles and alfalfa growth as influenced by irrigation water salinity and leaching fraction. Agron. J. 61:783785.
- Denmead, O. T. and R. H. Shaw. 1960. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron. J. 52:272-274.
- Fox, R. L. 1973. Agronomic investigations using continuous function experimental design-nitrogen fertilization of sweet corn. Agron. J. 65:454-456.
- Gauch, H. B. and C. H. Wadleigh. 1944. Effects of high salt concentrations on growth of bean plants. Bot. Gaz. 105:379-387.
- Hanks, R. J., J. Keller, and J. W. Bauder. 1974. Line source sprinkler plot irrigator for continuous variable water and fertilizer studies on small plots. Utah State University, Logan, Utah.
- Hayward, H. E. and W. B. Spun. 1943. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz. 105:152-164.
- Heady, E. O. and J. L. Dillon. 1961. Agricultural production functions. Iowa State University Pres. Ames, Iowa.

- Howe, O. W. and H. F. Rhodes. 1955. Irrigation practice for corn production in relation to stage of plant development. Soil Sci. Soc. Amer. Proc. 19:94-98.
- Jamison, Vernon C. 1956. Pertinent factors governing the availability of soil moisture to plants. Soil Sci. 81:459-471.
- King, L. G. and R. J. Hanks. 1973. Irrigation management for control of quality of irrigation return flow. Utah State University, Logan, Utah.
- Kramer, P. J. 1963. Water stress and plant growth. Agron. J. 55:31-35.
- Letey. J. and D. B. Peters. 1957. Influence of soil moisture levels and seasonal weather on efficiency of water use by corn. Agron. J. 49:362-365.
- Lucey, R. F. and M. B. Tesar. 1965. Frequency and rate of irrigation as factors in forage growth and water absorption. Agron. J. 57:519-523.
- Luken, H. 1962. Saline soils under dryland agriculture in southeastern Saskatchewan (Canada) and possibilities for their improvement II. Evaluation of effects of various treatments on soil salinity and crop yield. Plant and Soil. 27:26-48.
- Lunin, J. and M. H. Gallatin. 1965. Salinity-fertility interaction in relation to the growth and composition of beans. Agron. J. 57:339-345.
- Lunin, J., M. H. Gallatin, and A. R. Batchelder. 1963. Saline irrigations of several vegetable crops at various growth stages. I. Effect on yields. Agron. J. 55:107-110.
- Magistad, O. C., A. D. Ayers, C. H. Wadleigh, and H. G. Gauch. 1943. The effect of salt concentrations, kind of salt, and climate on plant growth in sand cultures. Plant Physiol. 18:151-166.
- Robins, J. J. and C. E. Domingo. 1953. Some effects of severe soil moisture at specific growth stages in corn. Agron. J. 45:167-172.
- Shalhevet, J. and L. Bernstein. 1968. Effects of vertically heterogeneous soil salinity on plant growth and water uptake. Soil Sci. 106(2):85-93.

- Taylor, S. A. and G. L. Ashcroft. 1972. Physical edaphology, the physics of irrigated and nonirrigated soils. W. H. Freeman and Company, San Francisco.
- U. S. Bureau of Reclamation. 1974. Status report: Colorado river water quality improvement program. U.S. Dept. of the Interior, Bureau of Reclamation.
- Veihmeyer, F. J. and A. A. Henderson. 1949. Methods of measuring field capacity and permanent wilting percentage of soils. Soil Sci. 68:75-94.
- Wadleigh, C. H., H. G. Gauch, and D. F. Strong, 1947. Root penetrations and moisture extraction in saline soils by crop plants. Soil Sci. 63:341-349.

APPENDIX

	Salt	Water	Depth			Sam	oling d	lates		
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
2	1	19	0-6	.13	.04	.04	.06	.03	.03	.06
			6-12	.23	.17	.16	.14	.12	.12	.13
			12-18	.22	.17	.17	.14	.13	.13	.13
			18-24	.22	.21	.20	.16	.13	.14	.14
			24-36	.17	.18	.19	.13 .11	.09	.09	.09
			36-48		.12	.13	• 11	.08	.08	.08
2	1	15	0-6	.14	.06	.06	.15	.05	.03	.08
			6-12	.23	.20	.18	.19	.18	.15	.15
			12-18	.25	.22	.21	.20	.19	.16	.16
			18-24	.23	.22	.22	.21	.18	.16	.15
			24-36	.23	.22	.23	.22	.19	.15	.13
			36-48		.18	.18	.18	.16	.13	.11
2	2	11	0-6	.15	.05	.04	.06	.05	.04	.08
			6-12	.23	.21	.19	.20	.19	.17	.20
			12-18	.24	.22	.21	.24	.21	.21	.20
			18-24	.24	.22	.22	.25	.22	.21	.20
			24-36	.23	.20	.21	.22	.20	.18	.19
			36-48		.20	.22	.23	.20		.20
2	2	7	0-6	.23	.06	.04	.05	.05	.04	.09
			6-12	.30	.22	.20	.17	.18	.16	.19
			12-18	.30	.25	.24	.21	.21	.20	.22
			18-24	.31	.25	.25	.23	.23	.23	.22
			24-36 36-48	.28	.22	.22	.20	.19	.18	.17
2	3	3	0-6 6-12	.11	.05	.03	.04	.06	.02	.06
			12-18	.22	.21	.17	.15	.18	.14	.16
			18-24	.23	.24	.23	.23	.23	.20	.23
			24-36	.24	.25	.24	.23	.22	.22	.22
			36-48		.25	.24	.23	.23		.22
3	3	3	0-6	.13	.05	.03	.03	.05	.02	.07
5	5	5	6-12	.22	.20	.17	.13	.16	.12	.12
			12-18	.24	.24	.22	.19	.21	.17	.20
			18-24	.24	.25	.24	.23	.24	.22	.20
			24-36	.22	.22	.22	.21	.22	.21	.18
			36-48	.24	.22	.22	.21	.22	.20	.18

Table 12. Volumetric water content of the soil as a function of time and sampling site

	Salt	Water	Depth		Sa	mpling	g date	es		
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
3	4	7	0-6	.11	.06	.05	.04	.06	.02	.09
			6-12	.22	.20	.20	.17	.19	.13	.18
			12-18	.24	.23	.26	.22	.23	.20	.23
			18-24	.25	.24	.25	.23	.24	.20	.25
			24-36	.23	.22	.24	.22	.22	.21	.21
			36-48	.24	.23	.26	.23	.24	.23	.23
3	4	11	0-6	.13	.06	.04	.05	.04	.03	.10
			6-12	.23	.20	.21	.17	.16	.15	.19
			12-18	.23	.23	.25	.23	.20	.20	.21
			18-24	.23	.23	.26	.24	.22	.21	.22
			24-36	.23	.23	.25	.23	.22	.21	.20
			36-48	.24	.23	.26	.24	.23	.22	.21
3	4	15	0-6	.12	.04	.04	.04	.05	.03	.10
			6-12	.22	.18	.19	.17	.16	.14	.19
			12-18	.25	.22	.25	.22	.21	.20	.21
			18-24	.25	.23	.27	.24	.22	.22	.21
			24-36	.23	.22	.25	.24	.22	.21	.20
			36-48	.23	.21	.24	.22	.21		.20
3	5	19	0-6	.11	.02	.02	.03	.03	.02	.08
			6-12	.21	.15	.14	.14	.14	.12	.16
			12-18	.25	.21	.21	.20	.20	.18	.23
			18-24	.25	.25	.25	.23	.23	.21	.25
			24-36	.23	.23	.23	.21	.22	.20	.20
			36-48		.23		.21	.21	.19	
3	6	17	0-6	.11	.06	.04	.05	.06	.03	.11
			6-12	.21	.20	.17	.17	.14	.14	.19
			12-18	.23	.24	.22	.22	.23	.20	.22
			18-24	.24	.26	.24	.23	.24	.21	.23
			24-36	.21	.24	.21	.20	.21	.18	.19
			36-48		.27	.24	.23	.24	.21	.22
3	6	13	0-6	.10	.02	.02	.02	.03	.01	.05
	100		6-12	.21	.17	.14	.14	.13	.11	.13
			12-18	.24	.23	.22	.21	.21	.18	.20
			18-24	.25	.25	.25	.25	.23	.22	.22
			24-36	.24	.24	.24	.24	.23	.21	.22
			36-48	.24	.25	.24	.24	.23	.21	

Table 1	2.	Conti	nued
---------	----	-------	------

	6-14	Watow	Depth			Sam	pling	date	s	
Block	Salt level	Water level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
3	6	9	0-6 6-12 12-18 18-24 24-36 36-48	.12 .22 .24 .24 .23 .23	.07 .21 .24 .24 .24 .24	.04 .18 .25 .25 .26 .24	.04 .14 .22 .24 .23 .23	.05 .15 .22 .24 .23 .23	.03 .11 .18 .21 .21 .20	.06 .13 .19 .21 .19 .20
3	6	5	0-6 6-12 12-18 18-24 24-36 36-48	.14 .22 .23 .25 .22	.07 .21 .23 .24 .23 .22	.05 .20 .24 .25 .24	.05 .17 .21 .24 .23	.05 .16 .22 .24 .22 .20	.02 .12 .18 .22 .21	.07 .15 .20 .22 .20
3	6	1	0-6 6-12 12-18 18-24 24-36 36-48	.14 .21 .23 .24 .22	.10 .21 .23 .23 .21 .21	.04 .20 .23 .23 .22 .27	.03 .15 .21 .23 .21 .20	.04 .16 .22 .23 .21 .20	.03 .12 .18 .21 .20 .19	.06 .14 .18 .20 .18 .07
2	6	5	0-6 6-12 12-18 18-24 24-36 36-48	.13 .22 .23 .24 .22	.07 .21 .22 .23 .22 .20	.05 .20 .24 .25 .24 .22	.04 .17 .23 .23 .22 .21	.04 .16 .21 .23 .21 .19	.02 .11 .18 .21 .21 .18	.05 .13 .20 .21 .20 .18
2	6	9	0-6 6-12 12-18 18-24 24-36 36-48	.12 .20 .21 .23 .20	.05 .19 .21 .22 .21 .20	.03 .18 .22 .23 .22	.05 .17 .21 .22 .21 .20	.05 .17 .21 .22 .20 .20	.02 .11 .18 .20 .19	.06 .15 .19 .20 .18
2	6	13	0-6 6-12 12-18 18-24 24-36 36-48	.14 .22 .25 .25 .21	.05 .22 .24 .24 .21 .20	.04 .20 .24 .25 .21 .20	.05 .18 .24 .25 .21 .21	.05 .18 .22 .24 .19 .19	.03 .13 .20 .23 .20 .18	.07 .15 .20 .21 .16 .17

	Salt	Water	Depth			Samp	ling	dates	_	
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
2	6	17	0-6 6-12 12-18 18-24 24-36	.13 .21 .21 .23 .18	.08 .19 .20 .23 .19		.04 .14 .21 .24 .18	.04 .15 .19 .22 .18	.03 .12 .16 .19 .17	.04 .12 .15 .18 .13
2	10	19	36-48 0-6 6-12 12-18 18-24 24-36 36-48	.17 .10 .19 .22 .25 .21	.15 .03 .16 .19 .22 .20 .19	.18 .04 .18 .21 .24 .23	.16 .05 .17 .19 .21 .19 .19	.15 .07 .17 .19 .22 .20 .19	.13 .04 .17 .19 .21 .20 .18	.13 .12 .18 .20 .22 .19
2	10	15	0-6 6-12 12-18 18-24 24-36 36-48	.10 .18 .22 .26 .24 .25	.05 .19 .21 .25 .25 .26	.04 .17 .19 .23 .22 .23	.07 .18 .19 .23 .22 .24	.07 .18 .18 .22 .21 .23	.04 .17 .18 .21 .21 .21	.11 .18 .18 .21 .19 .21
2	9	11	0-6 6-12 12-18 18-24 24-36 36-48	.10 .21 .23 .23 .24	.04 .20 .20 .25 .23 .23	.05 .19 .21 .24 .22 .22	.08 .18 .20 .23 .22 .21	.08 .19 .21 .22 .21 .21	.04 .17 .19 .21 .21	.11 .18 .20 .21 .19
2	9	7	0-6 6-12 12-18 18-24 24-36 36-48	.12 .21 .25 .23 .19 .21	.06 .20 .23 .24 .20 .22	.06 .20 .23 .24 .19 .21	.05 .18 .22 .22 .18 .19	.06 .18 .21 .21 .17 .18	.03 .17 .20 .22 .18 .19	.11 .18 .21 .21 .16 .17
2	8–9	3	0-6 6-12 12-18 18-24 24-36 36-48	.08 .20 .21 .24 .22 .23	.03 .20 .23 .22 .22 .24	.02 .19 .23 .23 .21 .23	.04 .18 .22 .24 .20 .22	.05 .19 .19 .23 .19 .21	.02 .15 .21 .23 .20 .21	.07 .17 .22 .23 .19 .21

	Salt	Water	Depth		Sam	pling	date	s		
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
3	8	3	0-6 6-12 12-18 18-24 24-36 36-48	.13 .23 .24 .26 .23 .24	.06 .22 .24 .25 .22 .23	.04 .19 .22 .24 .22 .22	.04 .17 .21 .24 .21 .22	.03 .17 .22 .24 .21 .21	.01 .12 .19 .22 .20	.06 .16 .20 .24 .19 .19
3	8	7	0-6 6-12 12-18 18-24 24-36 36-48	.11 .21 .24 .26 .26 .23	.06 .19 .22 .25 .24 .22	.04 .18 .21 .24 .24 .21	.06 .19 .21 .25 .25 .22	.10 .20 .23 .26 .26 .22	.04 .16 .19 .23 .23 .19	.10 .17 .19 .24 .23 .19
3	7	11	0-6 6-12 12-18 18-24 24-36 36-48	.11 .21 .24 .27 .27 .27	.06 .20 .24 .26 .26 .27	.05 .17 .21 .23 .24 .24	.06 .17 .22 .25 .25 .25	.07 .18 .22 .26 .26 .27	.04 .15 .20 .24 .24 .26	.09 .16 .21 .24 .24 .24
3	7	15	0-6 6-12 12-18 18-24 24-36 36-48	.13 .21 .23 .25 .25 .24	.05 .19 .22 .25 .27 .25	.03 .15 .20 .23 .25 .23	.04 .15 .18 .23 .24 .23	.05 .15 .18 .24 .24 .23	.02 .13 .18 .22 .24 .22	.07 .16 .18 .24 .23 .22
3	7	19	0-6 6-12 12-18 18-24 24-36 36-48	.11 .23 .25 .26 .26 .27	.02 .14 .20 .24 .24 .24	.02 .14 .20 .23 .24 .25	.03 .14 .20 .23 .24 .24	.03 .15 .20 .24 .23 .25	.02 .15 .19 .23 .23 .24	.05 .16 .20 .24 .23
4	1	19	0-6 6-12 12-18 18-24 24-36 36-48	.10 .20 .21 .24 .26	.03 .14 .17 .21 .25 .26	.03 .13 .16 .20 .27 .27	.03 .10 .11 .14 .23 .24	.03 .11 .11 .15 .24 .26	.02 .09 .10 .13 .22 .25	.05 .10 .11 .16 .22 .24

						Sam	pling	date	s	
Block	Salt level	Water level	Depth inches	6-12	7-9		7-30	8-11	8-26	9–18
4	1	15	0-6 6-12 12-18 18-24 24-36 36-48	.14 .20 .20 .24 .25 .26	.04 .18 .18 .20 .24 .25	.03 .15 .15 .18 .23 .24	.04 .11 .11 .14 .22 .23	.04 .12 .11 .14 .20 .25	.03 .11 .11 .13 .20 .23	.06 .11 .11 .14 .21 .22
4	2	11	0-6 6-12 12-18 18-24 24-36 36-48	.12 .20 .20 .22 .26	.06 .20 .20 .21 .21	.03 .16 .18 .19 .26 .26	.04 .15 .16 .18 .24 .25	.05 .15 .15 .18 .24 .24	.03 .14 .15 .17 .23 .24	.08 .15 .15 .17 .24
4	2	7	0-6 6-12 12-18 18-24 24-36 36-48	.10 .20 .25 .23 .24	.06 .20 .23 .26 .24 .25	.02 .14 .20 .24 .22 .23	.03 .13 .18 .22 .20 .23	.05 .15 .20 .23 .22 .24	.03 .13 .19 .23 .21 .24	.06 .13 .19 .22 .19 .21
4	2	3	0-6 6-12 12-18 18-24 24-36 36-48	.12 .24 .25 .23 .23	.05 .21 .25 .24 .23 .23	.03 .18 .23 .22 .21 .21	.06 .16 .21 .21 .20 .21	.05 .19 .24 .22 .21 .23	.03 .15 .20 .21 .19 .20	.08 .16 .19 .18 .19
1	3	3	0-6 6-12 12-18 18-24 24-36 36-48	.09 .21 .22 .23 .21 .24	.05 .20 .22 .23 .22 .22 .24	.03 .15 .19 .20 .20 .22	.03 .11 .15 .19 .19 .20	.05 .14 .19 .12 .21 .23	.03 .11 .15 .18 .19 .20	.06 .12 .16 .19 .19 .20
1	3	7	0-6 6-12 12-18 18-24 24-36 36-48	.11 .22 .24 .24 .23 .23	.05 .20 .24 .24 .23 .23	.02 .14 .22 .22 .22 .22	.02 .12 .18 .21 .21 .21	.03 .16 .22 .23 .23 .23	.04 .15 .19 .21 .21	.07 .15 .19 .20 .21

	Salt	Water	Depth			Sampl	ing da	ates		
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
1	3	11	0-6 6-12 12-18 18-24 24-36 36-48	.11 .22 .23 .24 .26	.06 .23 .24 .24 .24 .26 .26	.05 .20 .23 .23 .25 .24	.05 .15 .19 .22 .24 .23	.06 .17 .21 .23 .25 .25	.03 .13 .17 .20 .23 .22	.07 .14 .18 .20 .22
1	4	15	0-6 6-12 12-18 18-24 24-36 36-48	.11 .23 .25 .24 .26	.05 .21 .26 .25 .26 .26	.04 .17 .23 .22 .23 .25	.04 .18 .23 .21 .23 .23	.05 .19 .25 .24 .25 .26	.03 .15 .21 .20 .22 .22	.07 .16 .21 .20 .22
1	4	19	0-6 6-12 12-18 18-24 24-36 36-48	.10 .22 .26 .25 .23	.02 .19 .26 .25 .23 .25	.03 .18 .25 .24 .21 .24	.04 .18 .24 .22 .20 .23	.07 .18 .24 .23 .23 .24	.03 .14 .20 .20 .19 .22	.08 .15 .21 .19 .20
1	5	17	0-6 6-12 12-18 18-24 24-36 36-48	.11 .20 .23 .23 .22 .22	.05 .16 .20 .23 .21 .21	.02 .14 .20 .23 .21 .20	.02 .15 .20 .22 .20 .20	.04 .16 .22 .24 .23 .22	.02 .13 .18 .21 .19 .19	.07 .15 .20 .20 .19 .18
1	5	13	0-6 6-12 12-18 18-24 24-36 36-48	.11 .20 .23 .25 .22	.04 .19 .21 .25 .21 .22	.03 .16 .19 .24 .21 .22	.04 .15 .19 .25 .21 .22	.04 .14 .19 .23 .21 .21	.02 .11 .14 .21 .20	.06 .12 .17 .21 .18
1	5	9	0-6 6-12 12-18 18-24 24-36 36-48	.11 .20 .23 .25 .23	.05 .19 .22 .23 .21 .22	.04 .16 .20 .23 .21 .21	.03 .12 .18 .22 .20 .21	.06 .12 .19 .21 .20 .21	.03 .10 .15 .20 .19 .20	.05 .11 .18 .20 .19

	Salt	Water	Depth	_		Samp	ling d	lates		
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
1	5	5	0-6	.13	.06	.05	.04	.07	.05	.11
			6-12	. 22	.21	.19	.19	.20	.18	.18
			12-18 18-24	.25	.25	.23	.23	.19 .19	.22	.21
			24-36	.25	.24	.23	.23	.19	.21	.21
			36-48		.22	.21	.21	.20	.18	.18
1	5	1	0-6	.13	.03	.02	.03	.03	.02	.05
			6-12	.20	.19	.14	.13	.14	.12	.12
			12-18 18-24	.23	.23	.21	.18	.19	.17	.16
			24-36	.24	.24	.24	.23	.24	.22	.21
			36-48		.21	.20	.20	.20	.20	.18
4	5	5	0-6	.14	.05	.03	.03	.05	.03	.06
			6-12	.22	.20	.17	.16	.17	.13	.14
			12-18	.24	.24	.21	.22	.22	.20	.20
			18-24 24-36	.23	.23	.21	.23	.23	.22	.21
			36-48	. 25	.24	.22	.23	.23	.23	.21
4	5	9	0-6	.14	.05	.03	.04	.06	.02	.06
			6-12	.22	.20	.16	.14	.15	.11	.12
			12-18	.23	.23	.22	.20	.21	.15	.16
			18-24 24-36	.22	.23	.22	.21	.19	.18	.18
			36-48	.22	.22	.20	.20	.22	.18	.10
4	5	13	0-6	.13	.02	.02	.02	.03	.01	.05
			6-12	.22	.18	.17	.14	.15	.18	.14
			12-18	.24	.23	.24	.21	.21	.18	.19
			18-24 24-36	.23	.24	.26	.24	.23	.21	.20
			36-48	. 20	.19 .19	.22 .21	.20	.19 .18	.17 .16	.15
4	5	17	0-6	.15	.04	.03	.04	.05	.03	.08
			6-12	.21	.17	.15	.15	.16	.15	.15
			12-18	.24	.21	.20	.20	.20	.19	.19
			18-24 24-36	.25	.24	.22	.22	.23	.22	.19
			24-36 36-48	.20	.17	.20	.20	.20	.18	.14

	Salt	Water	Depth			Sam	pling	date	s	
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9–18
4	6	19	0-6 6-12 12-18 18-24 24-36 36-48	.14 .21 .21 .24 .23	.02 .14 .19 .22 .24 .23	.02 .13 .18 .22 .24	.01 .11 .17 .21 .24 .23	.05 .18 .21 .25 .21 .25	.03 .14 .18 .23 .23	.07 .15 .18 .22 .22
4	6	15	0-6 6-12 12-18 18-24 24-36 36-48	.15 .20 .23 .24 .24	.03 .19 .20 .23 .24 .25	.05 .19 .21 .23 .24 .25	.07 .18 .20 .23 .23 .24	.06 .19 .21 .23 .23 .25	.04 .16 .18 .22 .23 .24	.09 .16 .18 .22 .22
4	7	11	0-6 6-12 12-18 18-24 24-36 36-48	.16 .20 .22 .24 .22	.03 .20 .22 .23 .23 .23 .24	.06 .18 .20 .23 .22 .24	.05 .17 .18 .22 .22 .23	.07 .17 .18 .23 .22 .23	.03 .14 .16 .21 .22 .22	.08 .15 .16 .21 .20 .22
4	7	7	0-6 6-12 12-18 18-24 24-36 36-48	.17 .20 .23 .26 .24	.05 .20 .22 .25 .24 .24	.04 .17 .19 .23 .21 .22	.05 .16 .19 .23 .22 .23	.06 .17 .19 .24 .22 .23	.03 .15 .17 .23 .22 .22	.09 .15 .17 .24 .21 .21
4	8	3	0-6 6-12 12-18 18-24 24-36 36-48	.13 .19 .20 .25 .22 .23	.06 .20 .21 .25 .23 .22	.06 .18 .19 .23 .21 .21	.06 .16 .19 .23 .20 .21	.07 .18 .21 .25 .22 .22	.04 .14 .16 .23 .20 .21	.07 .14 .17 .23 .21 .20
1	8	3	0-6 6-12 12-18 18-24 24-36 36-48	.15 .19 .21 .25 .25	.04 .19 .20 .22 .25 .22	.05 .16 .18 .20 .23 .21	.04 .16 .17 .19 .22 .21	.06 .18 .18 .20 .23 .21	.04 .16 .17 .20 .22 .21	.10 .15 .17 .21 .23

	Salt	Water	Depth			Sam	pling	dates	5	
Block	level	level	inches	6-12	7-9	7-15	7-30	8-11	8-26	9-18
1	9	7	0-6 6-12 12-18 18-24 24-36 36-48	.16 .20 .22 .24 .22	.07 .20 .21 .24 .23 .23	.06 .18 .20 .24 .23 .23	.07 .17 .19 .23 .22 .22	.08 .20 .22 .25 .24 .24	.04 .15 .19 .23 .23 .22	.09 .15 .19 .22 .22
1	9	11	0-6 6-12 12-18 18-24 24-36 36-48	.16 .17 .19 .23 .23	.07 .19 .20 .23 .24 .23	.06 .18 .19 .22 .24 .23	.06 .16 .19 .22 .24 .22	.05 .16 .20 .22 .24 .23	.04 .15 .18 .21 .23 .22	.09 .15 .19 .21 .22 .22
1	2	15	0-6 6-12 12-18 18-24 24-36 36-48	.13 .19 .20 .23 .24	.04 .18 .17 .20 .23 .23	.05 .18 .18 .20 .24 .24	.09 .19 .19 .22 .24 .25	.07 .18 .18 .20 .23 .24	.05 .18 .17 .20 .23 .24	.13 .17 .16 .20 .22 .23
1	10	10	0-6 6-12 12-18 18-24 24-36 36-48	.14 .17 .20 .23 .24	.04 .15 .16 .21 .24 .23	.04 .14 .16 .20 .24 .24	.07 .16 .17 .23 .26 .25	.06 .16 .17 .20 .23 .24	.04 .15 .16 .20 .24 .23	.10 .15 .18 .21 .24 .24

1. 1. 2. 1. 1

	Salt	Water	Sample		Der	oth - ir	nches	
Block	level	level	taken	0-6	6-12	12-18	18-24	24-36
2	1	19	I	2.0	2.5	1.6	1.6	2.0
<u>៷៷៷៷៷</u> ៳៳៳៳៳៳៳៳៳៳៳៳៷៷៷៷៷៷៷៷៷៷៷	1 1 2 2 3 3 4	15	Ī	3.6	2.5 2.3 2.8 3.0 8.2 7.4	2.0		4.1
2	2	11	I	5.1	2.8	3.5 5.5 5.2 4.8	4.4	4.8
2	2	7	Ĩ	1.7	3.0	5.5	5.9 3.9 1.9	2.0
2	3	3	I I	8.2	0.2	5.2	3.9	3.9 1.9
2	3	2	1 T	4.2	1.4 8 E	4.0	3.7	3.1
2	4	11	I I	3.9	8.5	6.0	6.4	2.7
2	4	15	T	2.9	5 8	5.8	1.8	2.1
2	5	19	I I I	2.0	5.8 5.7 6.8 2.7	5.8	1.8 2.1 5.6 11.1	3.0
à	6	17	Ĩ		6.8		5.6	2.1
ñ	6	13	Î I	1.7	2.7	6.5	11.1	3.0 2.1 7.3
3	6	9	I	3.2	4.4	9.3	6.4	5.2
3	6	5	I	3.1	11.1	18.0	4.8	
3	4 5666666666	1	I I I I	2.6 1.7 3.2 3.1 3.9 3.1 5.3 6.5	18.0	6.5 9.3 18.0 12.6	9.8 7.2	6.1 3.5
2	6	5	I	3.1	13.7	9.4	7.2	3.5
2	6	9	I	5.3	11.5	19.5 6.4		1.9
2	6	13	Ĩ I	6.5	10.0	6.4	3.5	2.9
2	6	17	I	5.1	12.1	15.6 15.0	7.0	
2	10	19	I	25 0	hr o	15.0	4.6	6.0
2	10	15	T	35.0	45.9 5.8 20.4	13.0	4.6	4.5
2	9	7	Ť	36.0	20.4	6.6	3.0	3.7
2	8-9	3	Ť	36.0	20.4	25.0	24.6	3.2
3	8	ŝ	Ī		10.5		8.4	4.5 3.7 3.2 2.2
3	8	7	I	11.8	16.5	12.1 35.0	2.8 8.1	
3	7	11	I	7.9	16.5 27.6	35.0	8.1	3.5
3	7	15	I	1.8	3.3	4.1	4.4	3.3
3	7	19		1.7	5.9	13.5	5.2	3.8
4	1	19	I	1.7 2.4	3.3 5.9 3.0 2.4	4.1 13.5 2.8 2.5	10.0	3.7
4	1	15	I I	2.4	4.0	2.5	1.9 4.2	2.9
4 4	2	11	I	1.7	1.6	4.8	4.2	3.5 3.8 3.7 2.9 2.9 2.9 2.9 3.2
4	2	3	I	1.4	2.8	3.3	5.0	3.2
1	2	3	Ť	2.1	10.5	9.4	4.8	4.4
1	à	7	I I	1.6	10.5	3.6	6.3	6.2
ī	3	11	I	2.0	6.5	6.8	4.1	4.8
1	4	15	I	2.0	10.4	3.3 9.4 3.6 6.8 12.0	4.8	4.2
1	4	195173371597395159 37 95179371599517337159971	I	4.7 2.8	10.5	0.5	3.9	
1	5	17	I	2.8	3.4	7.2	8.0	4.2
1	5		I	2.4	5.0		3.9	4.2
1	5	9	I	7.8	15.0	9.0	4.2	4.1
1	10 10 99 8 8 8 77711222333344555555	9 5 1	I	1.9	5.0 15.0 2.6	11.0	10.0	4.2
1	5	1	I	3.2	12.5	13.2		4.7

Table 13. Electrical conductivities (ECe) of the soil solution, initial (I) soil samples

	Salt	Water	Sample		De	pth - i	nches	
Block	level	level	taken	0-6	6-12	12-18	18-24	24-36
4	5	5	I	3.5	6.7	8.3		6.5
4	5	9 13	I	1.7	3.2	7.5	12.0	8.2
4	25	17	Ť	1.8	10.2	11.5	1.9	1.9
4	6	19	Ĩ	2.0	5.4	20.7	5.7	4.4
4	6	15	I	7.2	7.3	2.8	2.8	3.6
4	7	11	I	10.9	2.3	12.0	7.5	5.6
4	7	7	I	4.1	6.0	4.9	2.9	3.2
4	8 8	3	1	15.0	25.8 14.0	18.0	8.0	3.0
1	9	27	T	4.3	3.7	9.0	3.6	4.3
1	9	11	Î	3.6	2.9	47.0	20.0	4.5
1	10	15	I	30.6	20.4	2.0	3.1	3.7
1	10	19	I		40.0	26.0	15.2	4.4

	Salt	Water	Camp 1 a						Dep	oth -	inches				
Block			Sample taken		3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
2	1	19	F	3.2	2.2	2.2	1.7	1.9	2.8	2.0	3.2	3.4	3.8	3.4	3.4
2	1	15	F	2.2	2.8		2.0	2.1	2.0	2.5	3.4	3.8	3.6	3.6	3.6
2	2	11	F	1.2	1.2	1.7	2.4	4.3	5.6	5.5	5.2	4.8	4.8	4.4	4.3
2	2	7	F	1.1	1.3	1.6	2.7	2.9	4.5	4.5	5.2	4.4	4.0	4.5	4.2
2	3	3	F	1.2	1.5	2.5	3.0			5.5	6.0	7.0	7.1	5.9	5.7
3	3	3	F	1.8	2.1	2.4	3.9	5.2	6.0	7.0	7.3		6.5		3.6
3	4	7	F	2.4	4.3	5.2	6.2	5.4	5.0	5.0	3.5	5.0	4.2	3.8	3.6
3	4	11	F	0.9		3.5	4.1	5.4	8.0		6.8	6.5	4.8	4.0	2.9
3	4	15	F	3.2	8.0	8.0	8.5	8.6	6.2	6.9	4.2	3.3	2.1	2.2	3.0
3	5	19	F	7.3	13.8	11.5	11.0	8.0	6.8	4.4	3.7	2.7	2.8	3.2	2.3
3	6	17	F	10.4				12.2		7.3	5.1		3.0	2.4	2.7
3	6	13	F			16.2	9.4	12.8					4.5	4.5	3.9
3	6	9	F	1.4		3.0	3.1	4.6	6.3	7.7					7.0
3	6	5	F	1.3	2.0	2.9		10.9	10.7				9.2		

Table 14. Electrical conductivities (ECe) of the soil solution, final (F) soil samples

	0-1+		01-						Dep	th - i	nches				
Block			Sample taken		3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
3	6	1	F	1.1	1.6	1.4	1.1		1.4	2.4	3.7				
2	6	5	F				4.0	5.4	8.5		8.2	5.4	7.8	6.0	5.5
2	6	9	F	1.2	1.6	2.8	5.2		8.0	9.3	10.2		8.3	5.7	5.3
2	6	13	F			7.6		5.8		5.6				4.1	4.0
2	6	17	F	1.3	1.6	2.1	2.0	1.8		3.6		7.1	8.4	3.1	7.0
2	10	19	F		14.1			21.6	30.0	14.0	10.5	6.1	5.2		4.9
2	10	15	F	7.4	12.2			14.4	23.0		8.3		4.8	3.9	
2	9	11	F	14.4	14.9		24.0	22.5		24.9		19.5	19.8	19.5	18.3
2	9	7	F		15.3			16.5	15.6	12.1		13.2	10.8	8.5	5.4
2	8-9	3	F	3.6		28.2	18.0	12.0	9.8		14.0	12.0	12.4		14.2
3	8	3	F	13.0	10.5	15.6			15.3	16.8	13.9	13.5		9.9	
3	8	7	F	4.1	7.5	12.0	13.5	11.0	13.0	14.0	12.0	10.5		2.8	9.3
3	7	11	F	6.8	11.0	14.0	9.2	12.5	13.5	16.2	13.2	7.7	5.1	3.8	2.6
3	7	15	F	11.0	11.0	11.3	6.5	6.7	5.3	3.9	3.0	2.9	3.8	3.6	3.4

	Salt	Water	Sample							Dept	h - in	ches			
Block			taken	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
3	7	19	F	8.5	14.3	13.2	12.0	11.6	7.0	5.7	4.0	3.8	3.4	3.6	3.9
4	1	19	F	1.5	1.1	2.4	1.7	2.1	2.0	2.2	2.1	1.9	3.2	3.2	3.0
4	1	15	F	1.4	2.3	2.6	1.7	1.8	2.5	2.4	2.9	3.0	3.2	3.4	3.7
4	2	11	F	2.1	2.0	2.8	2.7	3.4	3.4	3.2	3.6	3.6	3.4	3.6	2.4
4	2	7	F	2.7	1.0	1.8	2.0	3.8	3.0	4.6	3.6	3.6	3.9	2.4	2.6
4	2	3	F	1.0	1.1	1.3	1.8	2.2	2.4	2.6	2.7	2.6		3.4	3.4
1	3	3	F	1.3	1.5	2.8	3.9	4.5	5.6	4.2	5.6	6.9	6.1	4.9	5.0
1	3	7	F	0.1	1.7	3.6	4.7	5.5	7.2	7.6	6.7	6.5	5.3	5.0	5.0
1	3	11	F	1.1	1.1	2.3	3.0	4.5	5.3	7.1	7.7	7.5	6.8	6.0	5.1
1	4	15	F	9.4	8.3	8.5	5.5	6.8	7.0	6.1	6.1	4.9	3.9	3.9	3.8
1	4	19	F	12.7	9.0	7.7	6.5	5.1	7.1	5.6	3.9	4.6	4.4	4.4	5.6
1	5	17	F	6.3	8.0	9.0	9.0	8.2	8.8	9.7	7.5	6.3	6.0	5.4	5.1
1	5	13	F	1.7		5.0	7.4	7.2	7.3	7.6	7.4	6.0	5.2	4.8	4.9
1	5	9	F	2.0	6.4	5.5	10.0	7.9	9.0	8.5	7.8	8.4	6.8	6.1	4.8

	Salt	Wator	Sample						De	pth -	inches				
Block			taken	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
1	5	5	F	3.5	5.4		6.6	6.0	6.2	5.9	5.5	4.9	4.5	4.4	4.3
1	5	1	F	1.6	3.6	3.7	4.3	3.8	5.7	3.9	4.9	5.3	5.0	5.5	5.7
4	5	5	F	2.3	4.8	5.5		6.5	6.8	9.0	8.2	5.6	6.2	5.8	5.5
4	5	9	F	1.3	1.5	3.0	3.4	3.4	5.4	4.9	5.5	6.4	5.5	5.6	8.0
4	5	13	F	2.7	6.4	8.0	9.0	8.6	10.0	6.5	7.6	8.4	6.6	5.3	4.1
4	5	17	F	6.0	9.7	7.8	7.5	7.8	9.3	5.9	4.8	3.9	2.5	2.6	2.3
4	6	19	F	11.9	11.1	11.2	10.0	8.7	5.7	5.6	4.9	4.3	4.3	3.7	4.4
4	6	15	F	3.2	6.1	6.4	5.6	5.2	5.9	5.4	3.4	2.9	3.4	3.4	3.4
4	7	11	F	1.1	1.4	2.5	4.8	7.5	8.0	9.7	10.5	8.0	8.2	7.4	5.8
4	7	7	F	7.8	9.5	8.9	9.1	10.9	11.0	9.6	8.3	7.2	6.7	6.3	7.0
4	8	3	F	3.6	7.0	6.6	8.1	7.2	8.2	8.7	8.0	8.5	7.3	6.4	7.0
1	8	3	F	7.4	8.5	11.0	8.2	9.2	11.0	11.5	12.0	13.6	11.5	8.0	5.7
1	9	7	F	8.8	13.2	12.0	10.2	11.8	14.0	16.5	13.5	11.2	9.0	6.3	6.1
1	9	11	F	6.8	17.0	18.0	30.9	20.0	22.6	19.3	13.8	17.5	11.2	5.6	5.1

	Sal+	Water	Sample						D	epth -	inche	S			
Block			taken	0-3	3-6	6-9	9–12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
1	10	15	F	33.0	13.9	14.0	10.0	8.7	13.8	24.0	12.0	7.1	1002	4.4	3.8
1	10	19	F	43.8	19.6	21.3	26.4	21.0	23.4	22.2	16.8	11.9		9.0	7.8

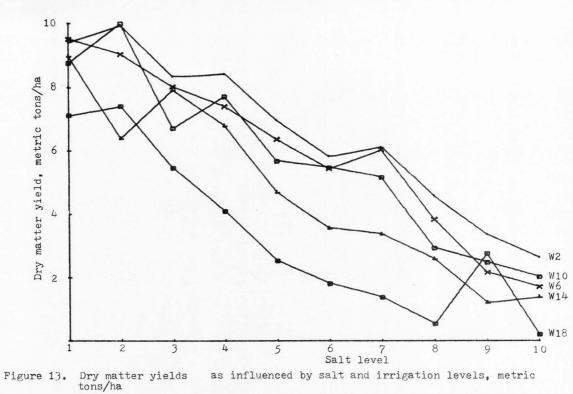
Sa	lt									
le	vel			Irrig	ation	level				
	2	4	6	8	10	12	14	16	18	20
				B	lock 1					
1234567890 10	8.0 11.8 7.1 6.8 8.2 6.0 4.0 2.6 3.3	11.5 11.2 9.5 10.8 7.3 7.4 3.7 2.5	10.8 7.92 8.3 8.4 5.7 3.7 1.1 1.0	6.8 9.1 4.3 6.8 5.0 0.9	8.7 13.9 6.2 9.6 5.0 6.1 4.5 1.3 1.7 0.8	12 2 11 3 6 4 6 8 5 1 4 0 2 0 5 2 3	9.4 8.4 6.7 5.5 4.4 3.3 2.0 1.7 0.4 1.4	7.3 11.3 5.3 4.2 2.3 2.7 2.1 0.9 1.1 t	8.3 8.4 6.3 5.6 0.5 0.6 0.2 0.0	9.8 8.7 8.0 4.4 3.2 1.2 1.9 0.1 0.0
				<u>B</u>	lock 2					
12 34 56 78 90 10	10.3 7.7 7.9 6.2 6.6 4.6 4.9 2.7	7.6 11.9 6.3 8.4 5.5 6.8 3.8 4.4 2.1	9.1 8.9 5.5 5.5 6.8 3.4 1.6	8.8 6.56 7.3 5.2 5.1 5.2 5.2 5.2 1.5	7.9 7.8 7.8 8.1 6.2 4.2 7.1 3.6 2.1	6.8 7.2 7.5 6.8 6.0 3.0 5.2 3.1 3.6 1.7	8.1 5.6 7.9 5.7 5.8 6 3.4 1.7 1.6 0.1	8.7 8.5 7.3 4.6 3.9 2.6 3.4 1.3 1.0 0.4	5.5 4.1 5.5 1.9 2.1 1.7 3.4 1.1 0.1 0.0	6.7 3.5 4.7 5.0 2.5 2.5 2.5 1.2 0.0
				<u>B]</u>	ock 3					
12 34 56 78 90	10.4 9.9 10.6 5.9 7.0 5.9 7.0 5.8 2.6	8.5 5.9 10.3 6.5 6.6 8.2 4.8 4.3 3.0	10.5 10.9 7.7 4.9 5.1 5.4 3.6 3.1 1.7	7.8 9.4 11.4 5.8 4.6 4.3 0.6	8.0 6.0 3.7 6.0 5.4 5.4 3.0 1.7 2.8	2725351545 885254422	9.1 5.9 8.9 3.5 3.9 3.5 3.2 2.6 1.6	8.9 7.6 7.5 5.5 3.2 3.1 1.1 1.1	4.8 8.0 3.9 2.0 1 8 0.7 4.4	5.6 5.6 7.6 3.8 1.8 3.4 0.6 0.0

Table 15. Oven dry matter yield, metric ton dry matter/ha

Sal	lt vel									
	2	4	6	Irrig 8	ation 10	level 12	14	16	18	20
				B	lock 4					
12 34 56 78 90 10	9.0 10.4 7.8 9.6 7.4 3.5 4.8 3.4 3.4 1.8	10.3 10.6 9.7 10.5 7.8 8.3 7.4 6.1 3.3 4.0	7.64956672564122	9.4 7.4 7.2 7.2 3.0 3.2 2.2 3.0	10.4 12.2 9.2 7.1 6.6 6.2 5.0 3.8 2.5 2.3	8.5 10.3 9.0 7.8 10.2 6.8 6.2 4.2 2.0 2.7	96874676834 9687444202	9.3 11.9 9.5 8.4 5.1 4.9 2.0 1.2 0.6	9.7 9.1 5.7 9.5 4.5 1.8 9.2 5.3	10.3 8.5 5.4 4.7 4.3 1.6 2.0 0.3 0.0

=										
Sal										
	2	4	6	Irrig 8	ation 10	level 12	14	16	18	20
				B	lock 1					
123456789 10	714 1049 631 816 596 734 596 385 598	1028 999 846 966 679 725 736 534 409 447	962 706 641 740 835 413 569 550 162 183	609 586 815 388 431 651 573 440 296 162	776 1242 552 854 495 605 450 193 252 150	1142 1007 571 607 504 440 396 381 69 225	842 751 598 489 440 330 202 248 56 75	654 1010 475 371 229 266 211 132 14 2	743 751 565 320 147 55 28 33 0	875 778 715 389 321 119 188 14 0
				В	lock 2					
1234567890 10	916 685 692 619 665 651 688 722 479	677 1065 561 751 615 546 679 571 660 383	809 792 743 545 545 666 671 512 413 281	784 577 652 525 286 504 406 264	702 693 726 614 415 703 537 592 371	611 669 611 596 293 516 468 537 297	726 503 702 512 570 259 341 252 234 16	780 759 652 413 3258 481 195 144 74	495 363 173 204 172 340 165 21 0	603 314 421 446 420 246 246 246 179 1 0
				B	Lock 3					
123456789 10	924 866 949 850 587 587 715 371 462	759 528 916 578 651 614 816 715 647 528	941 974 685 644 504 532 537 468 301	693 842 1015 743 578 477 459 647 440 107	718 537 330 537 486 532 394 440 254 502	817 776 735 491 229 550 404 674 358 446	809 454 792 751 385 349 330 619 385 294	792 677 594 669 541 321 330 468 165 191	429 718 380 347 202 303 83 110 619 78	503 503 677 264 376 183 339 83 96 0

Table 16. Oven dry matter yield, grams dry matter/plant


Sal lev										
	2	4	6	Irrig 8	ation 10	level 12	14	16	18	20
				B	lock 4					
12 34 56 78 90	801 925 693 858 7349 459 715 509 330	916 949 867 941 770 825 734 908 498 710	677 751 792 759 651 569 679 674 234 446	842 603 660 652 715 596 293 619 326 537	933 1090 817 636 651 614 495 571 371 416	759 916 801 693 1009 679 614 619 296 479	825 570 735 469 468 459 413 41 426	834 1065 850 751 633 504 486 299 180 108	867 809 512 619 449 183 92 30 963 54	916 759 479 421 377 156 202 37 50

Sa. le	lt vel									
	1	3	5	Irri	gation 9	level 11	13	15	17	10
	1	,	2		9	11	1)	15	17	19
				H	Block 1	L				
12 34 56 78 90	2303 1735 2836 1368 319 1016 407 132 11 51	1748 1727 967 2030 1606 739 297 20 21 141	4223 1817 2101 1020 517 527 943 559 26 210	3187 1791 1935 2330 430 575 1255 542 14 118	1503 5868 2704 2569 776 501 518 25 36 101	2066 1960 1881 981 844 1504 1649 199 0	2122 2278 1330 1254 312 785 94 121 0 0	3584 1922 1626 2075 264 46 885 55 0 0	1712 1914 1561 1857 490 81 495 0 0	3954 3546 1125 890 146 25 238 0 0
				B	lock 2					
12 34 56 78 90	2884 1372 763 1292 1007 1241 300 574 108 106	2451 2666 1191 913 1360 453 629 76 242 435	2127 1094 1934 1534 1454 626 741 406 548	2564 2650 1934 1515 740 767 1065 310 287 232	3358 1734 1084 774 754 496 1482 706 534 213	1837 2941 1191 1514 387 305 561 659 358 116	2359 763 485 1580 765 336 1766 102 29 29	1525123912931107164547238000	3241 2307 659 210 157 246 270 80 0	3168 2682 1198 122 158 35 174 150 0
				B	lock 3					
4	3165 2691 2301 1410 1584 1474 477 334 550 86	3733 1747 2385 1799 1370 846 1292 544 407 527	3147 2332 2301 1633 1015 823 1272 592 312 592 312 592	3358 1916 2567 1007 1149 426 2279 252 527 229	2295 1988 878 805 871 947 893 895 703 81	2534 2599 2452 1447 1600 1427 904 856 11 160	2984 2326 2177 1859 708 695 286 320 31 107	1761 1544 656 1541 646 30 11 193 9 0	2874 1626 1241 799 142 311 587 0 52 0	3679 2535 1182 269 89 202 269 749 0

Table 17. Grain yield, Kg/ha

Sal										
		0	-		ation		10		4.0	10
	1	3	5	7	9	11	13	15	17	19
				B	lock 4					
1	1275	2744	2352	2678	1156	1842	2307	1505	1779	3838
2	3867	3431	2019	2497	$1510 \\ 1549$	2616 1221	5118 2357	676 498	4052	1532
34	3712 2817	1832 2073	1371 1491	798 2845	1218	1770	2088	1386	1316	803
5	2144	1323	754	1855	1359	1793	1767	1176	634	1326
6	1537	908	1715	951	440	2149	881	90	255	148
7	1592	1170	538	1611	765	1082	80	102	465	183
8	411	510	407	1273	8 58	704	159	326	435	22
9	42	125	0	91	0	144	0	149	0	0
10	132	333	220	57	104	10	0	0	0	0

Table 17. Continued

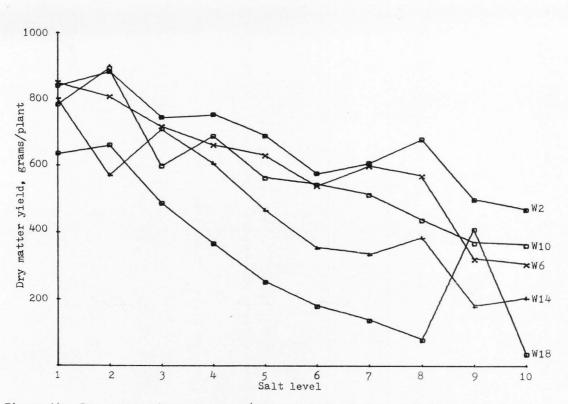
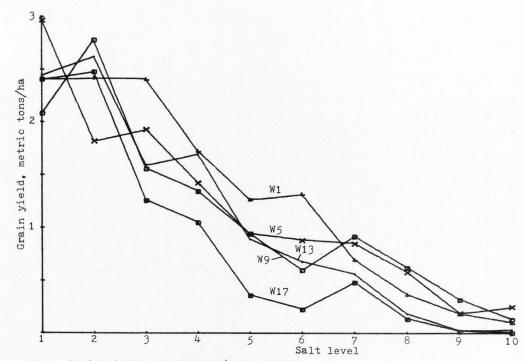
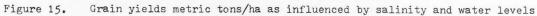




Figure 14. Dry matter yields in grams/plant as influenced by salinity and irrigation levels

Sal				Irriga	ation]	Level				
lev	rel 1	3	5	7	9	11	13	15	17	19
				Ē	lock 1					
12345	1.49 1.61 0.86 2.92	6.20 0.45 0.20 0.92 3.30	3.56 1.67 6.57 0.25	0.86 1.88 1.49 0.40	1.15 1.39 0.92 0.63 0.25	1.10 0.86 3.51 0.80	3.70 0.45 0.92 0.86	1.27 0.40 0.20 1.33	0.92 0.40 0.51 0.51	
1 2 3 4 5 6 7 8 9 0 10	0.31	0,86	0.25	0.37	0.29	1.55 0.51		0.51		
10				E	lock 2					
123456789	2.30 2.21 2.54	3.70 0.53 0.52 0.31 1.10	7.00 1.82 0.31 2.06 0.57	2.15 0.75 4.89 0.51	1.44 0.31	0.44 0.63 7.12	1.16 0.98 1.39	4.86 3.44 1.44	2.08 1.21 0.31	3.07
6 7 8 9 10			2.38		1.39 1.05					
				B	lock 3					
1 2 3 4 5 6 7 8 90	1.55 0.20 0.37 0.92 0.92	1.55 0.10 2.10 0.86 0.57 0.37 1.27	0.86 0.20 0.31 1.27 0.31 1.21	3.87 0.92 0.86 0.25 3.50 4.90	1.55 0.51 0.20 0.31 0.80 2.54 0.43 0.25	8.96 1.88 0.31 1.05 0.86 1.94	2.60 1.88 1.49 1.27 1.33 0.51	1.21 0.20 0.57 0.92 0.37 0.37	1.44 0.50	1.82 2.60 1.21

Table 18. Moisture percentage by weight of the grain, corrected to 15.5 percent moisture

Sal	t			Irriga	tion 1	evel				
lev		3	5	7	9	11	13	15	17	19
				B	lock 4	:				
1 2 3 4 5 6 7 8 90	2.15 4.21 3.18 1.55 5.92 0.45 2.15	1.21 0.80 0.20 0.70 1.21 0.92 0.40	0.92 0.75 1.21 0.92 0.57 1.55	4.06 0.63 0.31 1.05 1.21 0.98 3.70 3.81	0.20 1.55 0.86 0.51 1.49 0.57 0.92	7.96 2.86 2.54 0.20 1.39 0.86 7.77		3.81 6.14 0.86 1.44	0.41 3.56 2.54 1.27 0.31	1.27

Table 18. Continued

Salt		Rep.	lication	
level	1	2	3	4
1	12.43	11.46	11.17	11.40
2	11.97	11.29	11.74	12.14
3	11.97	12.60	12.26	11.51
4	11.86	12.48	13.22	11.97
5	13.22	12.83	11.69	11.63
6	12.71	13.79	11.63	11.41
7	13.34	13.62	10.72	12.31
8	13.22	13.74	12.03	11.57
9	15.16	14.31	12.20	13.85
10	19.27	12.77	11.46	15.22

Table 19. Protein percentage by weight of the grain

Table 20. Grain and dry matter production as influenced by salt and irrigation treatments, Duncan's Multiple Range Test

Dry matter-Kg/ha		Dry matter-grams/plant		Grain-Kg/ha	
Salt	Irrigation	Salt	Irrigation	Salt	Irrigation
1a*	2a	1a	2a	1a	1ab
2a	4b	2b	4b	2b	3c
3b 4c 5d	6cd	3c	6c	3c	5de
4c	8ef	4d	8d	4d	7a
5d	10dfg	5e	10e	5e	9efg
6e	12ceg	5e 6fg	12e	5e 6f	11bdf
7e	14h	7f	14f	7f	13g
7e 8f	16h	7f 8g	16f	8g	15h
9g	18i	9h	18g	9h	17i
10h	20i	10i	20g	10h	19i

* Treatments with matching letters are not significant at the 0.05 level

	0-1+	Water	Denth		Sampl	ling dates	
Block	Salt level	Water level	Depth inches	6-12	7-15	8-10	9-18
2	1	19	0-6	0.84	0.42	0.31	0.21
			6-12	0.37	0.21	0.10	0.05
			12-18 18-24	0.38	0.14	0.10	0.10
			24-36	0.23	0.18 0.06	0.10 0.06	0.03
			36-48	0.09	0.10	0.03	0.04
2	1	15	0-6	0.84	0.52	0.42	0.10
			6-12	0.47	0.37	0.21	0.26
			12-18	0.10	0.28	0.21	0.03
			18-24	0.18	0.21	0.16	0.08
			24-36 36-48	0.13 0.09	0.08 0.12	0.15 0.05	0.06
2	2	11	0-6	1.98	1.15	0.42	0.31
			6-12	0.16	0.63	0.42	0.31
		12-18 18-24	0.38	0.38 0.21	0.31 0.23	0.21	
			24-36	0.29	0.06	0.23	0.21
			36-48	0.12	0.17	0.09	0.10
2	2	7	0-6	1.46	0.84	0.52	0.42
			6-12	0.47	0.37	0.31	0.26
			12-18	0.31	0.77	0.38	0.35
			18-24	0.29	0.08	0.31	0.31
			24-36	0.15	0.21	0.04	0.31
			36-48	0.07	0.05	0.31	0.17
2	3	3	0-6	1.78	0.63	0.42	0.21
			6-12	0.42	0.99	0.52	0.26
			12-18	0.31	0.21	0.14	0.42
			18-24 24-36	0.18	0.37 0.38	0.31 0.44	0.26
			36-48	0.29	0.23	0.28	0.23
3	3	3	0-6	1.25	0.73	0.63	0.21
			6-12	0.52	0.42	0.26	0.31
			12-18	0.35	0.52	0.35	0.29
			18-24	0.29	0.47	0.21	0.26
			24-36	0.21	0.02	0.37	0.27
			36-48	0.03	0.21	0.16	0.14

Table 21. Electrical conductivity of the soil solution as a function of time and site, 4-probe results in mmhos/cm @ 25°C

Table 21. Cor	ntinued
---------------	---------

	Salt	Water	Depth		Sampl	ing dates	3
Block	level	level	inches	6-12	7-15	8-10	9-18
3	4	7	0-6 6-12 12-18 18-24 24-36 36-48	1.57 0.94 0.24 0.26 0.33 0.02	0.84 0.84 0.31 0.37 0.13 0.23	0.21 0.42 0.59 0.23 0.17 0.31	0.21 0.57 0.47 0.16 0.15 0.19
3	4	11	0-6 6-12 12-18 18-24 24-36 36-48	1.36 1.20 0.56 0.03 0.73	0.63 0.57 0.42 0.26 0.23 0.24	0.42 0.37 0.38 0.47 0.23	0.21 0.37 0.49 0.47 0.10 0.19
3	4	15	0-6 6-12 12-18 18-24 24-36 36-48	1.15 0.84 0.66 0.23 0.19 0.17	0.94 0.99 0.21 0.52 0.06 0.05	0.21 0.68 0.63 0.18 0.27 0.17	0.42 0.52 0.24 0.21 0.13 0.12
3	5	19	0-6 6-12 12-18 18-24 24-36 36-48	1.04 1.36 0.17 0.21 0.21	1.46 0.52 0.45 0.31 0.04 0.17	0.94 0.47 0.52 0.18 0.04 0.12	0.63 0.73 0.31 0.39 0.39 0.00
2	10	19	0-6 6-12 12-18 18-24 24-36 36-48	4.70 1.10 0.91 0.05 0.04	3.13 1.98 0.59 0.26 0.21 0.00	3.03 1.36 0.66 0.26 0.21 0.00	2.30 1.78 0.77 0.08 0.84
2	10	15	0-6 6-12 12-18 18-24 24-36 36-48	3.97 1.20 0.31 0.21 0.29 0.05	2.51 2.66 1.22 0.91 0.00 0.00	2.72 0.99 1.36 0.05 0.02 0.00	1.78 1.88 0.38 0.29 0.27

	Salt	Water	Depth		Sampl	ing dates	5
Block	level	level	inches	6-12	7-15	8-10	9-18
2	9	11	0-6 6-12 12-18 18-24 24-36 36-48	5.22 0.84 0.80 0.68 0.14	2.82 2.14 1.08 0.99 0.00 0.00	2.61 0.26 1.57 0.13 0.94 0.00	2.19 0.52 1.25 0.08 0.44
2	9	7	0-6 6-12 12-18 18-24 24-36 36-48	5.22 0.63 0.77 0.18 0.50	1.36 2.72 1.14 1.25 0.00 0.00	2.09 1.04 1.39 0.13 0.94 0.00	0.21 0.78 0.66 0.16 0.19 0.19
2	8-9	3	0-6 6-12 12-18 18-24 24-36 36-48	5.64 0.21 0.94 0.44 0.06 0.03	0.52 0.42 2.16 1.17 0.00 0.00	0.21 0.47 1.36 2.09 0.00 0.00	0.94 0.21 0.97 0.08 0.86 0.00
3	8	3	0-6 6-12 12-18 18-24 24-36 36-48	1.15 1.46 1.08 0.13 0.13 0.31	0.84 1.51 1.01 0.75 1.19 0.00	0.21 0.42 0.70 0.37 0.65 0.00	0.21 0.47 0.59 0.16 0.17 0.17
3	8	7	0-6 6-12 12-18 18-24 24-36 36-48	1.46 1.51 0.97 0.08 0.21 0.17	0.84 1.88 0.35 0.63 0.92 0.00	0.21 0.47 1.46 0.03 0.88 0.00	0.10 0.47 1.01 0.26 0.06 0.40
3	7	11	0-6 6-12 12-18 18-24 24-36 36-48	1.25 1.20 0.97 0.23 0.23 0.10	0.63 1.10 0.77 0.44 1.02 0.00	0.31 0.63 0.52 0.57 0.50 0.16	0.21 0.37 1.32 0.03 0.08 0.45

Table 21. Continued

					Compli	ng dates	
Block	Salt level	Water level	Depth inches	6-12	7-15	8-10	9-18
3	7	15	0-6 6-12 12-18 18-24 24-36 36-48	1.46 1.20 0.45 0.47 0.19 0.16	0.73 1.15 0.70 0.55 0.00 0.00	0.84 1.41 0.24 0.55 0.33 0.14	0.10 1.62 0.24 0.13 0.29 0.07
3	7	19	0-6 6-12 12-18 18-24 24-36 36-48	2.82 0.78 0.49 0.23 0.13 0.09	1.36 1.20 1.36 1.01 0.00 0.00	1.36 0.68 0.59 0.21 0.56 0.02	1.15 1.20 0.17 0.34 0.17 0.16
4	1	19	0.6 6-12 12-18 18-24 24-36 36-48	0.63 0.21 0.35 0.26 0.13 0.12	0.42 0.31 0.10 0.31 0.21 0.09	0.21 0.16 0.17 0.16 0.13 0.09	0.10 0.10 0.17 0.21 0.19 0.21
4	1	15	0-6 6-12 12-18 18-24 24-36 36-48	0.73 0.26 0.38 0.21 0.15 0.10	0.42 0.26 0.28 0.21 0.31 0.00	0.21 0.16 0.17 0.08 0.21 0.12	0.21 0.16 0.28 0.10 0.17 0.16
4	2	11	0-6 6-12 12-18 18-24 24-36 36-48	0.52 0.37 0.14 0.21 0.17 0.09	0.42 0.26 0.28 0.13 0.27 0.00	0.21 0.26 0.17 0.10 0.21 0.09	0.21 0.21 0.16 0.08 0.19
4	2	7	0-6 6-12 12-18 18-24 24-36 36-48	0.94 0.37 0.28 0.29 0.92 0.16	0.31 0.31 0.24 0.29 0.33 0.07	0.21 0.21 0.24 0.23 0.36 0.00	0.10 0.26 0.14 0.26 0.08 0.16

Table 21. Continued

	Salt	Water	Depth		Sampl	ing dates	5
Block	level	level	inches	6-12	7-15	8-10	9-18
4	2	3	0-6	0.73	0.42	0.21	0.21
			6-12	0.42	0.42	0.26	0.21
			12-18 18-24	0.17	0.28	0.17	0.28
			24-36	0.10	0.04	0.03	0.16
			36-48	0.10	0.07	0.12	0.33
1	3	3	0-6	0.63	0.31	0.21	0.10
			6-12	0.52	0.52	0.16	0.10
			12-18	0.24	0.35	0.28	0.17
			18-24 24-36	0.23	0.29	0.18 0.17	0.21 0.27
			36-48	0.03	0.12	0.31	0.12
I	3	7	0-6	0.63	0.31	0.21	0.10
			6-12	0.42	0.36	0.26	0.21
			12-18	0.45	0.63	0.38	0.31
			18-24	0.42	0.23	0.31	0.39
			24-36 36-48	0.15 0.12	0.02	0.23	0.29 0.16
1	3	11	0-6	1.46	0.73	0.42	0.21
			6-12	0.37	0.89	0.37	0.38
			12-18	0.45	0.42	0.49	0.56
			18-24	0.29	0.63	0.16	0.29
			24-36 36-48	0.19 0.16	0.02 0.09	0.23 0.28	0.23
1	4	15	0-6	2.30	0.94	1.04	0.73
			6-12	0.57	1.31	0.52	0.16
			12-18	0.59	0.38	0.80	0.87
			18-24	0.23	0.37	0.00	0.05
			24-36 36-48	0.13 0.03	0.17	0.00	0.21
1	4	19	0-6	1.98	1.25	0.94	0.63
-			6-12	0.57	0.73	0.42	0.26
			12-18	0.66	0.45	0.49	0.38
			18-24	0.21	0.29	0.13	0.16
			24-36	0.17	0.21	0.19	0.17
			36-48	0.00	0.00	0.03	0.07

Table	21.	Continued
-------	-----	-----------

	Salt	Water	Depth	Sampling dates					
Block	level	level	inches	6-12	7-15	8-10	9-18		
4	6	19	0-6 6-12 12-18 18-24 24-36 36-48	1.36 0.57 0.52 0.63 0.12	1.25 0.63 0.49 0.08 0.21 0.00	0.94 0.57 0.80 0.00 0.00 0.00	0.10 1.25 0.49 0.10 0.23 0.12		
4	6	15	0-6 6-12 12-18 18-24 24-36 36-48	2.40 0.31 0.91 0.34 0.00 0.21	0.84 1.04 0.24 1.28	1.25 0.42 0.87 0.78 0.00 0.00	0.73 0.31 0.73 0.00 0.44		
4	7	11	0-6 6-12 12-18 18-24 24-36 36-48	1.36 0.63 0.84 0.21 0.56	0.42 0.94 0.31 0.70 0.57	1.67 0.37 1.08 0.10 0.00 0.00	0.42 0.21 0.59 0.29 0.59		
4	7	7	0-6 6-12 12-18 18-24 24-36 36-48	1.57 0.26 1.04 0.31 0.31	0.31 0.68 0.45 0.76 0.00 0.10	1.36 0.16 0.73 0.26 0.06 0.00	0.10 0.26 0.31 0.21 0.33 0.03		
4	8	3	0-6 6-12 12-18 18-24 24-36 36-48	1.67 1.41 1.11 0.13 0.40 0.00	0.63 0.99 0.49 1.31	0.94 0.78 0.10 0.26 0.90 0.52	0.31 0.42 0.49 0.18 0.71 0.00		
1	8	3	0-6 6-12 12-18 18-24 24-36 36-48	3.34 1.10 0.56 0.23 0.13 0.04	0.94 1.41 0.52 0.68 0.13 0.12	2.09 0.52 0.00 0.52 0.71 0.00	0.21 0.21 0.38 0.26 0.36 0.05		

Table 21.	Continued
-----------	-----------

Block	Salt level	Water level	Depth inches	Sampling dates					
				6-12	7-15	8-10	9-18		
1	9	7	0-6 6-12 12-18 18-24 24-36 36-48	5.74 0.63 0.73 0.39 0.10 0.21	3.34 1.25 0.49 0.89 0.29 0.12	1.15 1.46 1.81 0.00 0.00 0.00	0.94 0.68 0.97 0.29 0.61 0.26		
1	9	11	0-6 6-12 12-18 18-24 24-36 36-48	8.56 0.26 0.37 0.19 0.52	2.61 2.19 0.59 0.26 0.23 0.70	2.51 2.25 0.00 0.00 0.00 0.00	0.21 2.25 1.50 0.47 0.40 0.00		
1	10	15	0-6 6-12 12-18 18-24 24-36 36-48	5.64 0.84 0.59 0.83	4.07 1.98 0.00 0.13 0.04 0.17	3.55 0.99 1.43 0.00 0.00 0.00	0.21 2.51 0.35 0.34 0.44 0.10		
1	10	10	0-6 6-12 12-18 18-24 24-36 36-48	4.28 0.89 0.80 0.21 0.46	2.82 1.72 0.17 0.39 0.08 0.19	2.82 2.77 0.00 0.00 0.00 0.00	2.51 1.20 0.56 0.18 0.42 0.00		

Block	Salt		Sampling dates						
	level		6-13	7-9	7-17	8-1	8-12	8-27	9-18
2	1 2 2 3 3 4	19 15 11 7	5.5	5.3 4.8 4.8	5.8 5.2 2.7 5.5	5.6 5.2 5.7	5.8 5.3 5.9	7.0 7.5	7.6 7.3
3) 344	3 7 11	5.5 4.7 4.4 7.3	3.8 3.4 3.8	2.6	3.6	4.2		
	4666	15 17 13 9	5.2 3.4 6.8 4.4	3.7 4.2 4.8	6.8 3.6 4.2 3.3	5.19	3.3	4.8 4.3 5.8	3.7
2	44666666666	5 1 5 9	4.9 4.3 4.3	2.2 3.2 4.3	4.2 3.3 2.8 5.4 4.6	3.4 13.2	4.9 3.8 15.2 4.6	5.8 4.3 8.2 5.3	5.1 15.6 6.3
	10	13 17 19 15 11	3.7 16.7 10.9 14.6	3.4 8.4 12.3 24.6 4.6 3.6 4.1	4.4 4.2 7.7	5.0 6.0	6.7 6.1 7.8 7.7	7.8	19.2 7.1 8.2
3	8-9 8 8	3 3 7	3.7 3.6 4.6	4.6	3.5	3.7	10.3 4.1 4.2 4.7	4.8 4.3	12.3 6.6 4.2 4.5 6.4
4	7 7 1	15 19 19	3.6 5.2 5.5 4.4	5.2 5.3 5.0 4.3 3.8 7.2 3.2	5.2 5.0 4.3 3.8	6.6 5.0 4.3 3.8 4.2	4.7 6.4 5.0 4.7 4.1 3.7	4.9	6.4 8.8 5.0 4.3
	2 2	11 7	4.0 3.4	3.7 2.3	3.7	4.2	3.7 3.2	3.8 4.0	4.3 4.9
1	10 99998 8-887771122233334	3 7 11 15	6.3 5.2	5.3 5.1 6.0	3.2 4.7 4.4	4.8 5.6 5.2	5.6 5.7 5.6 5.1	5.8 4.2 7.1	7.5 5.1 7.7 5.7
4	4555555	151733715739515937951733715995173371599515 11111111111733715997159739515	6.1 5.2 4.9 5.1 5.4	5.3 5.2 4.4 4.8 4.2	5.6 5.1 1.8 3.9 5.0	6.4 5.4 5.6 8.1 6.4	5.6 5.7 5.1 5.6 5.9 5.9 5.9 10.3 8.1 7.5	7.0 5.5 7.1 8.7 9.9 10.7 8.6	5.1 7.7 5.8 5.8 9.7 12.7 9.8 11.3

Table 22. Electrical conductivity of water samples extracted from ceramic cups, mmhos/cm @ 25°C

Table	22.	Cont	inued

Block	Salt level	Water level	Sampling dates						
			6-13	7-9	7-17	8-1	8-12	8-27	9-18
4	5	9 13	5.7	2.6	2.8	2.3	2.9	3.8	6.4
	55566	17 19 15	3.2	3.7 5.7	6.2	3.3 5.1 4.3	3.5	3.4 4.9	3.2
	777	11 7	5.4	3.5	4.2	3.8	4.3	4.4	4.8
1	-8 8 9 9	337	6.3 5.9	4.7	2.6	5.2 4.2	7.4 4.7	11.0 6.4	7.7
	9 10 10	11 15 19	6.3 6.7	21.0		10.4	9.4	5.3 7.8	5.6

VITA

Timothy Edward Sullivan

Candidate for the Degree of

Master of Science

Thesis: Determining a Crop Production Function for Corn as

Influenced by Irrigation and Salinity Levels

Major Field: Soil Science

Biographical Information:

- Personal Data: Born at Long Beach, Calif, August 19, 1950, son of James P. and Aneth C. Sullivan; married Judy Hutton Sullivan July 11, 1970; two children-Jennifer and Brian.
- Education: Attended elementary school in Bellflower, Calif;graduated from Mayfair High School in 1968 1968; received the Bachelor of Science degree from Utah State University, with a major in Forest Management, in 1973.