Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

**Graduate Studies** 

5-1976

# A Decision Theory Approach to a Resource Management System in Corn Production

James L. Anderson *Utah State University* 

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Economics Commons

# **Recommended Citation**

Anderson, James L., "A Decision Theory Approach to a Resource Management System in Corn Production" (1976). *All Graduate Theses and Dissertations*. 3154. https://digitalcommons.usu.edu/etd/3154

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



# A DECISION THEORY APPROACH TO A RESOURCE

MANAGEMENT SYSTEM IN CORN PRODUCTION

by

James L. Anderson

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Economics

Approved:

UTAH STATE UNIVERSITY Logan, Utah

#### ACKNOWLEDGMENTS

This study had its beginnings in a combined project including Dr. R. J. Hanks of Soil Science and Biometerology, Dr. J. C. Andersen of Economics, Dr. R. W. Hill of Civil and Environmental Engineering, Dr. G. L. Ashcroft of Soil Science and Biometeorology, E. A. Richardson of Soil Science and Biometeorology, and V. P. Rasmussen, research assistant. Each of the above have been a valuable source of information, as my understanding of their specialties is deficient.

Special appreciation is expressed to Dr. Jay C. Andersen, Major Professor, for all of his encouragement and direction. This study would not have been possible without his timely help.

I would also like to extend sincere thanks to my graduate committee, Dr. R. John Hanks, Dr. John E. Keith, Dr. Reed R. Durtschi, and Dr. Jay C. Andersen for their help and suggestions.

Special assistance was received from Stuart Richards, Rex F. Nielson, Dr. DeVere R. McAllister, Dr. Darwin B. Nielsen, and E. A. Richardson.

I would like to thank the Utah Agricultural Experiment Station which, through Project UTA 411, provided financial assistance.

Most of all I would thank my wife, Betty, for her support, encouragement, and patience. I am also indebted to her for her proofreading and typing services; her untiring devotion shall not go without reward.

James Z. Chick were James L. Anderson

ii

# TABLE OF CONTENTS

|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | ruge   |
|-------|-------|-----|------|-----|------|-----|-----|-----|-----|------|------|-----|-----|-----|------|----|------|------|----|---|---|---|--------|
| ACKI  | NOWL  | ED  | GME  | NTS |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | . ii   |
| LIST  | f OF  | Т   | BL   | ES  |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | . iv   |
| LIST  | C OF  | F   | GUI  | RES |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | . vii  |
| ABSI  | 'RAC' | г   |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | . viii |
| INTR  | ODU   | СТІ | ON   |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | . 1    |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    | • •  |      | •  | • |   |   | . 1    |
| STAT  | EMEI  | T   | OF   | THI | ESI  | S 1 | PR  | OBL | EM  | •    |      | •   |     | • • |      |    | •    |      |    |   |   |   | 3      |
|       |       |     |      |     | ion  |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 3      |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 4      |
|       | Met   | ho  | ds   | of  | pro  | oce | edu | ire |     |      |      |     |     |     |      |    |      |      |    |   | , |   | 4      |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   |        |
| SURV  | EY C  | )F  | THE  | AF  | REA  | UN  | IDI | ER  | DIS | SCUS | SSIC | DN  | •   | •   |      |    |      | •    |    |   | • |   | 8      |
| REVI  | EW C  | )F  | LIT  | ERA | TUF  | RE  |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 11     |
| THEO  | RETI  | CA  | LF   | RAM | ſEWC | ORK | A   | ND  | SI  | TUDY | AS   | ទទហ | MPT | ION | s.   |    |      |      |    |   |   |   | 13     |
|       | Dec   | is  | ion  | mo  | del  |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 13     |
|       | Gro   | wi  | ng   | deg | ree  | d   | ay  | s   |     |      |      |     |     |     |      |    |      |      |    | • | • |   | 20     |
|       | Tot   | a1  | di   | ges | tib  | le  | n   | ut  | rie | ents |      |     |     |     |      |    |      |      | ÷  | ÷ | ÷ | : | 25     |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   |        |
| ANALY | ISIS  | A   | ND   | DEC | ISI  | ON  | M   | OD  | EL  | APP  | LIC  | ATI | ION | •   | ·    | ·  | •    | ·    | •  | • | • | • | 28     |
|       | P1a   | nt  | ing  | da  | te   | cr  | it  | er  | ia  |      |      |     |     |     |      |    |      |      |    |   |   |   | 28     |
|       | P1a   | nt  | ing  | de  | cis  | io  | ns  |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 34     |
|       | Rep   | Lai | nti  | ng  |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 43     |
|       | Wat   | er  | sh   | ort | age  | a   | s   | a i | fac | tor  | in   | co  | orn | vai | riet | tv | sele | ecti | on |   |   |   | 50     |
|       | Har   | ve  | st   | con | sid  | er  | at  | ior | ıs  |      |      |     |     |     |      |    |      |      |    |   | 1 |   | 56     |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 50     |
| SUMMA | RY A  | ANI | ) C( | DNC | LUS  | 101 | NS  |     | •   | •    | ·    | ·   | •   | ·   | •    | •  | •    | •    | •  | • | • | • | 62     |
| BIBLI | OGRA  | APH | IY   | •   | •    | •   |     | •   |     | •    | •    | •   |     |     |      |    |      |      |    |   |   |   | 66     |
| APPEN | DIX   |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 69     |
| VITA  |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   | 122    |
|       |       |     |      |     |      |     |     |     |     |      |      |     |     |     |      |    |      |      |    |   |   |   |        |

iii

n

## LIST OF TABLES

| Table |                                                                                                                                                                        | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Gain-loss relationship for each combination of action and state of nature                                                                                              | . 14 |
| 2.    | Probability of making observation o, when n, is the state of nature                                                                                                    | . 15 |
| 3.    | <u>A priori</u> probabilities                                                                                                                                          | 16   |
| 4.    | Calculation of the "no data" problem                                                                                                                                   | 17   |
| 5.    | List of possible strategies                                                                                                                                            | 18   |
| 6.    | Average utility for each strategy and respective state of nature                                                                                                       | 19   |
| 7.    | Computation of the <u>a posteriori</u> probabilities                                                                                                                   | 21   |
| 8.    | <u>A posteriori</u> probabilities                                                                                                                                      | 22   |
| 9.    | Bayes strategy                                                                                                                                                         | 23   |
| 10.   | Time of harvest, effect on pounds TDN at various yields . $% \left( {{{\left( {{{\left( {{{}_{{\rm{T}}}} \right)}} \right)}_{{\rm{T}}}}}} \right)$                     | 26   |
| 11.   | Comparative yields and livestock produced per acre from different methods of harvesting and storing the corn crop (based on a yield of 100 bushels [56 cwt.] per acre) | 27   |
| 12.   | Dates when the sum of GDD for seven consecutive spring<br>days first reached 70 as recorded at U.S.U. Agricultural<br>Experiment Station, 1959-1966                    | 28   |
| 13.   | Dates when the spring mean soil temperatures equal 50° F<br>at U.S.U. Agricultural Experiment Farm, 1969-1975<br>(depth = 4 in.)                                       | 30   |
| 14.   | Initial date when the total GDD for seven consecutive days reached 70 as recorded at U.S.U. Agricultural Experiment Station, 1967-1975                                 | 31   |
| 15.   | 70 GDD planting dates and potential dates of emergence                                                                                                                 | 33   |
| 16.   | Profit table with all possible combinations of planting dates, varieties, and states of nature (based on 1973 prices and costs)                                        | 36   |
| 17.   | <u>A priori</u> probabilities of the states of nature in<br>relation to each course of action (based on 1941-<br>1971 normals)                                         | 38   |
|       |                                                                                                                                                                        | 50   |

# LIST OF TABLES (continued)

| Table |                                                                                                                                                                  |   |   | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------|
| 18.   | "No data" profit table with solutions                                                                                                                            |   |   | 39   |
| 19.   | Joint probabilities                                                                                                                                              | • |   | 41   |
| 20.   | <u>A</u> <u>posteriori</u> probabilites                                                                                                                          |   |   | 41   |
| 21.   | Pay-off table, given the possible planting dates and varieties                                                                                                   | • |   | 42   |
| 22.   | Potential yields and profits for four corn varieties in Cache Valley, Utah                                                                                       |   | • | 43   |
| 23.   | Killing frosts in Cache Valley, 1952-1974                                                                                                                        |   |   | 46   |
| 24.   | A comparison of yields in TDNs for a number of<br>varieties of corn in Cache Valley, 1966, when part<br>of the corn was left in the ground after a hard          |   |   |      |
|       | frost and part was replanted                                                                                                                                     | · | • | 48   |
| 25.   | Profit for replanting corn after a hard killing frost                                                                                                            | · | • | 51   |
| 26.   | Consumptive use schedule for the Cache Valley and Sevier Valley                                                                                                  |   |   | 53   |
| 27.   | Dates when third growth stage of corn is reached for<br>various planting dates and varieties with lines<br>drawn to show when water runs out with different      |   |   |      |
|       | water supplies                                                                                                                                                   | · | • | 55   |
| 28.   | Normal precipitation (inches) for Cache Valley and Sevier Valley, 1941-1970                                                                                      |   |   | 57   |
| 29.   | Yields compared with frost dates and their intensities for the years 1959-1966                                                                                   |   |   | 70   |
|       | Minimum and maximum daily temperatures for selected weather stations in Cache Valley for key months in the growing season, 1952-1975                             |   |   | 75   |
|       | Growing Degree Days for selected growing season<br>months from 1952 through 1975, calculated for Utah<br>State University Experiment Station, (50°-86° F method) |   |   | 94   |
| 32.   | Mean growing degree days using the 50° - 86° F method, for various time periods and stations in Utah $\ldots$                                                    |   |   | 104  |

# LIST OF TABLES (continued)

| Table | 1                                                                                                                                                    |   |   | Page |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|------|
| 33.   | Prices for corn silage in Utah from 1953 through 1974                                                                                                |   |   | 106  |
| 34.   | Growing Degree Days to maturity for Utah hybrids with<br>an attached comparison of several other brands and<br>their growing degree days to maturity |   |   | 107  |
| 35.   | A 130 day frost free growing season frost probability table                                                                                          |   |   | 110  |
| 36.   | Growth stages of corn in GDD                                                                                                                         |   |   | 111  |
| 37.   | Silage yield data for Utah Hybrid corn trials in the years 1953 through 1966                                                                         |   |   | 112  |
| 38.   | A comparison of several years data taking one Utah<br>Hybrid at a time                                                                               |   |   | 114  |
| 39.   | Precipitation accumulated over the 14 day period<br>ending with the dates listed, (in inches), at<br>Utah State University Experiment Station        |   |   | 115  |
| 40.   | Snow fall data, 1959-1974, at Utah State University                                                                                                  | • | · | 115  |
|       |                                                                                                                                                      | · | · | 118  |
| 41.   | Lewiston, Utah precipitation means and probabilities for one-week periods                                                                            |   |   | 121  |

vi

# LIST OF FIGURES

| Figur | e                                                                                           |  |  | Page |
|-------|---------------------------------------------------------------------------------------------|--|--|------|
| 1.    | Possible plant growth function                                                              |  |  | 24   |
| 2.    | Freeze-free season in Cache Valley                                                          |  |  | 45   |
| 3.    | Sign of maturity, showing one method of<br>determining maturity of the grain in corn silage |  |  | 60   |

vii

#### ABSTRACT

A Decision Theory Approach to a Resource Management System in Corn Production

by

James L. Anderson, Master of Science

Utah State University, 1976

Major Professor: Dr. Jay C. Andersen Department: Economics

The major purpose of this study is to make additional information available to the farm manager through the use of decision theory. This will enable him to improve the decision-making process relating to corn production. The goal is to use the resources at his disposal more efficiently and profitably. This study is primarily concerned with factors that influence planting date and corn variety selection. Within the framework of decision theory analysis, <u>a priori</u> and <u>a posteriori</u> probabilities are employed to calculate the losses that may occur to corn crops in the Cache Valley area of Utah because of harmful spring frosts under optional corn varieties. The alternative of replanting is also added to the model. A brief discussion is included regarding the impact of water shortage on planting date and corn variety selection. A discussion of factors influencing harvesting decisions is included.

The "seventy growing degree day" method is employed as a criterion for planting date selection. The planting dates are matched with four different season length Utah hybrid corn varieties to formulate the courses of action available to the farm manager. The states of nature are the degrees of damage that would occur due to various frost intensities. The decision theory approach of this study identifies the shortseason variety as the optimal corn crop for Cache Valley, unless planting can be done during the first week in May. This study indicates that planting a shorter season variety than most Cache Valley farmers have been using in the past would be profitable. Replanting after a frost is found to be unprofitable in marginal cases, but necessary in the case of a killing frost of sufficient duration.

The problem of a short water supply adds a constraint as to what varieties can be planted where the time required to reach the third stage of growth is most critical in obtaining potential yields. Finally, it was found that the risk of increased precipitation interferring with harvesting operations becomes almost a certainty if attempts to lengthen the season pushes the harvest too far into October.

(131 pages)

ix

#### INTRODUCTION

Risk and uncertainty are conditions that are recognized and lived with as part of agricultural life in the mountain west. The capriciousness of nature makes it very difficult to predict changes in weather conditions with any degree of certainty. Most farmers rely on their own intuitive feelings to make important decisions when dealing with the weather. The farm manager may improve his success ratio by putting his decisions in the proper framework through a systematic scientific approach to the decision problem. Corn production in the State of Utah is a process that could benefit by the use of this systematic approach. The systematic approach used in this study is that of Bayesian Statistical Decision Theory.

If one speaks strictly in terms of absolute advantage, raising corn is probably best suited to areas other than Utah. The growing season for corn in Utah is hampered by late spring and early fall frosts, and, in some cases, lack of water. Because corn is a high yield, high profit crop, however, the farmer is willing to take some risk in order to enjoy the possible benefits. With the many hybrids available today, it is possible to vary the choice of action and be reasonably certain of yielding a profit.

This study is mainly concerned with Cache County because of data accessibility and because the frost constraints that are present there are a significant factor in the decision process. In order to evaluate water shortage as a factor in corn production, data have been drawn from Sevier County where the water problem is much more acute than in Cache Valley.

Decision theory, under certain circumstances, cannot provide any sure answers, but can only hope to improve the ratio of success and thus improve profits.

There are several goals to be reached in improving corn production: (1) selecting an optimal planting date, (2) choosing the best variety of corn to be used, (3) deciding what action to take in case of frost, (4) establishing an initial date for irrigation during critical periods, and (5) arriving at a harvest date. Two options are possible in arriving at these goals: If data can be gathered to predict in advance what the state of nature will be, then <u>a posteriori</u> probabilities will be used; if positive prediction is not possible, then a "no data" problem classification is necessary and <u>a priori</u> probabilities are employed.

#### STATEMENT OF THESIS PROBLEM

#### Justification

The decision-making process is one of the most common activities in our lives. Many decisions are simple and require little or no effort on our part. It usually does not take long to decide to get up in the morning, nor do we have any trouble deciding when to eat. Other decisions such as what should I wear, should I play tennis or golf are somewhat harder. These everyday decisions involve only a few variables and are relatively easy to make, usually involving only a few seconds or minutes of thought and very little planning or investigation. On the other hand, there are some decisions that are relatively complex, involving many variables. The final outcome of some of these decisions may have great impact upon those involved. Production of corn in Utah is such a problem. Furthermore, there are uncontrollable factors that may affect these above variables such as length of season, late spring and early fall frosts, etc.

In the past, many of these decisions have been made based only upon the experience of the farmer involved or his feeling about what is best. There is room for improvement in this area. The farm manager could make better decisions if he had better information available.

A decision theory approach would help to yield a more efficient use of the resources involved. Little has been done in this sector of the farm management scene. Decision theory as a method would take advantage of the most up-to-the-minute information as the time for each

decision approaches. Since there is some uncertainty involved, special methods must be employed to handle the process.

One key issue will be the cost of information obtained versus the increased profit due to better choices. A purpose of the thesis is to show whether it is worth the time and effort to obtain the information. This work will test whether a systematic approach will yield better results than relying merely on past experience or intuitive feelings as to what the best decision might be.

#### Objectives

The objectives of this study are:

- To determine the best variety of corn to be used, given the information that is available in that growing season,
- 2. To determine an optimum planting date,
- To estimate the irrigation requirements necessary under the given natural conditions,
- 4. To determine optimal time of harvest,
- 5. To provide for the changes that might be necessary in any of these decisions due to changes in the states of nature, and
- To list all significant strategies that might be employed so that the farm manager may pick the one best suited for his situation.

## Methods of procedure

Following is a general outline of the steps in the decision theory method that will be used:

1. Determine the available actions that can be taken.

- 2. List the various states of nature which can occur.
- Consider the consequences (gain, losses, utilities) of each combination of action and state of nature (state-act pair).
- Design an experiment or other device for obtaining knowledge about the state of nature. An experiment consists of:
  - a. Possible observations that are related to the state of nature and which are observable at the time a decision is made.
  - b. Estimation of a relationship that shows the dependence of the observations upon the states of nature in probabilistic terms.
- 5. Evaluate the available strategies or recipes telling the decision maker which action to take in the event of a particular observation from the experiment.
- Study the consequences of each strategy for each state of nature, as determined by the action probabilities.
- Establish a choice criterion by which the decision maker solves the final problem.

This approach is designed to solve for the most economically efficient operation. This point is by no means fixed; as the states of nature continue to vary, the choices will also vary.

There are several available actions that must be given consideration. One of the most important variables is the variety of corn to be planted. With so many hybrids available today, it is possible to vary the length of season to maturity. The available varieties can be categorized according to length of season required for maturity such as: long,

medium, short, and very short. Another action that is open to the farm manager is to vary the planting dates. The third set of available actions is irrigation. In this area, the method of application, quantity to be applied, frequency of application, and timing in critical periods are all sets of actions that can be taken by the manager. Fertilizer treatment is the last general area of available actions that is suggested.

The states of nature are almost as complex as the available actions open to the farm manager. The length of season is not to be considered on a basis of days only, but with a relative heat factor added. This heat factor is measured in growing degree days. Because corn is quite a delicate plant, frosts at the beginning and end of the season are a significant factor in Utah. The soil type, depth, and need for fertilizer are also factors to be considered. The next general state of nature to consider is the amount of water available excluding irrigation. This includes the spring water storage in the soil and the rainfall, both quantity and timing.

It is apparent from a brief look at the complex available actions and states of nature that this model would be too difficult to work out entirely by hand and is really best suited for a computer analysis. After the fixed costs of the model are recovered, the variable costs of information to the manager should be quite low in comparison to the increased profits it will yield.

The remaining steps three through seven are those where the actual work of the decision process takes place. A major portion of the input for this model will be drawn from information, experimentation, and data gathered in other projects.

By applying these data to the decision theory model, the objectives should be reached and more efficient decisions applied to the production of corn in Utah. With minor adjustments, such a farm management system could also be applied to other areas.

## SURVEY OF THE AREA UNDER DISCUSSION

Cache County is located in the northeast corner of the Utah panhandle. The arable land of the county is located in Cache Valley which is a mountain valley about thirty to thirty-five miles in length and about ten to fifteen miles wide. A variety of seasons can be found in the valley. The bench and canyon mouth areas have the longer growing season, while the valley floor has a shorter growing season. Canyon winds protect some local areas from frosts.<sup>1</sup>

There are two main locations where weather data are available: Logan and Lewiston. Lewiston has an elevation of 4,480 feet, thus giving a weather recording station to yield data for the valley floor. Logan's elevation is 4,785 feet giving a view of the weather in the canyon mouth and bench areas. The frost-free growing season varies from 80-100 days to 160-180 days.<sup>2</sup> This characteristic of the study areas makes it difficult to have one policy to handle the problem of predicting frost dates.

Water in Cache Valley is plentiful. It is doubtful that there is ever a serious water shortage, except in certain canyon mouth areas. To illustrate a water shortage problem, a study conducted on that subject in the Sevier Valley was selected. Since the Sevier Valley is much like Cache Valley, the intent of this paper is to draw comparisons

<sup>&</sup>lt;sup>1</sup>E. Arlo Richardson and Gaylen L. Ashcroft, "Freeze-Free Seasons of State of Utah", Map and Table, (Published jointly by Utah Agricultural Experiment Station, Utah State University, Logan, Utah, and Department of Commerce, ESSA, Environmental Data Services).

between the two and discuss a hypothetical situation assuming Cache Valley were ever to have a water shortage or that a similar area was short of water. Cache Valley has ample precipitation during the winter and spring. Precipitation decreases during the summer months and increases again in the fall. There is a sufficient supply of irrigation water during the summer months to supplement the scant rainfall.<sup>3</sup> The Sevier Valley has a relatively constant rate of precipitation during the year, but it is generally far less that of Cache Valley. The area is dependent largely upon irrigation during the growing season, thus snowpack and reservoir storage are critical.<sup>4</sup> The shortage years experienced in Richfield, Utah in the Sevier Valley lend credence to the assumption that it will be helpful to apply a hypothetical shortage to Cache Valley for illustrative purposes.

One of the necessary criteria for any study is the availability of data. There is a generous amount of weather data recorded in Cache Valley. The first records in Cache Valley begin in the late 1800's and continue, with few exceptions, to the present.<sup>5</sup> There are data available for this location in corn trials as well. Rex F. Nielson

<sup>&</sup>lt;sup>3</sup>U. S. Department of Commerce, Weather Bureau. Climatological Summary, Climatography of the United States No. 20-42, Utah State University, Logan, Utah, 1941-1970.

<sup>&</sup>lt;sup>4</sup>U. S. Department of Commerce, Weather Bureau. Climatological Summary, Climatography of the United States No. 20-42, Richfield, Utah, 1925-1954.

<sup>&</sup>lt;sup>5</sup>U. S. Department of Commerce, Weather Bureau. Logan, Utah, 1941-1970.

has corn trials published for the years between 1953 and 1966.  $^6$  DeVere R. McAllister has also conducted some corn trials for this area.  $^7$ 

<sup>6</sup>Rex F. Nielson, Corn Trials, 1953-1966. Department of Soil Science and Biometeorology, Utah State University, Logan, Utah.

<sup>7</sup>DeVere R. McAllister, Grain and Silage Corn Trials for Utah--1973, Plant Science Department, (Mimeographed), Utah State University, Logan, Utah, 1974.

DeVere R. McAllister, Silage Corn Trials--1974, Plant Science Department, (Mimeographed), Utah State University, Logan, Utah, 1975.

#### REVIEW OF LITERATURE

There have been many publications of a general nature in the area of decision theory, but no studies have been found which used a decision theory approach to select planting dates and varieties of hybrids for optimal corn production. Included in this review is a discussion of two significant books on decision theory and a source where a more general discussion of the history of decision theory may be found.

Bayesian decision theory had its beginnings in 1762 with the writing of Bayes.<sup>8</sup> In more modern times, there have been several significant books and articles written on the decision theory technique. Two of these books proved more helpful than others in gaining a facility with decision theory. The first of these is a basic work written by Albert N. Halter and Gerald W. Dean called <u>Decision Under Uncertainty</u>.<sup>9</sup> This book outlines a step-by-step approach to decision theory with simple examples along the way. The primary aim of the book is the implementation of decision theory. The second book, <u>Elementary Decision</u> Theory by Chernoff and Moses,<sup>10</sup> is helpful in explaining the theoretical

<sup>10</sup>H. Chernoff and L. E. Moses, <u>Elementary Decision Theory</u>, (New York: John Wiley and Sons, Inc.), 1959.

<sup>&</sup>lt;sup>8</sup>A. N. Halter, "A review of decision-making literature with a view of possibilities for research in decision-making processes of western ranchers, <u>Economic research in the use and development of range resources</u>, Development and evolution of research in range management decision making", Committee on the Economics of Range Use and Development of Western Agricultural Economics Research Council, Rep. No. 5, Laramie, Wyoming, (July 1963), p. 1.

<sup>&</sup>lt;sup>9</sup>Albert N. Halter and Gerald W. Dean, <u>Decision Under Uncertainty</u>, (Cincinnati, Ohio: South-Western Publishing Co., 1971), p. 143.

approach to Bayesian Decision Theory. Chernoff and Moses move through the theory of the "no data" problem and the use of <u>a priori</u> probabilities in a step-by-step manner. With the addition of <u>a posteriori</u> probabilities, they turn to a discussion of the optimal Bayes strategy in a simple tabular calculation. This expansion to the "data" problem shows the contrast of situations when data may or may not be available in making decisions under uncertainty.

A satisfactory review of other general publications in decision theory can be found in the <u>Economic Research in the Use and Development</u> of <u>Range Resources</u>, Report No. 5.<sup>11</sup>

<sup>11 &</sup>quot;A review of decision-making", pp. 1-28.

## THEORETICAL FRAMEWORK AND STUDY ASSUMPTIONS

## Decision model

This section contains an outline of the general decision theory process, in a theoretical sense, which will be used in the later sections. This will follow the same seven general steps found in the "Statement of Thesis Problem".  $^{12}$ 

The first step includes the list of available actions open to the farm manager:

$$a_1, a_2, \ldots a_i$$

Some actions need to be excluded for simplicity as the model can become too complicated if all possible available actions are included.

Step two is similar to the first step in that it is the listing of the states of nature:

$$n_1, n_2, \ldots n_j$$

As in the courses of action, only a limited bracketing of states of nature are included to avoid complication. (See Table 1.)

In the third step, a gain-loss table (Table 1) is generated to show the consequences of each combination of action and state of nature. In this table, the values of U = Utility are listed. These are the gains or losses relative to each combination of available action and state of nature.

<sup>12</sup>Halter and Dean, Decision Under Uncertainty, p. 9.

|                  |                                     | Availab                             | ole acti | ons |                                     |
|------------------|-------------------------------------|-------------------------------------|----------|-----|-------------------------------------|
| States of nature | <sup>a</sup> 1                      | a <sub>2</sub>                      | •        | •   | a <sub>i</sub>                      |
| nl               | U(n <sub>1</sub> , a <sub>1</sub> ) | U(n <sub>1</sub> , a <sub>2</sub> ) |          |     | U(n <sub>1</sub> , a <sub>i</sub> ) |
| n <sub>2</sub>   | U(n <sub>2</sub> , a <sub>1</sub> ) | U(n <sub>2</sub> , a <sub>2</sub> ) | •        | •   | U(n <sub>2</sub> , a <sub>i</sub> ) |
|                  |                                     | •                                   | •        | •   |                                     |
| •                |                                     |                                     |          | •   |                                     |
| •                |                                     |                                     |          | •   | •                                   |
| nj               | U(n <sub>j</sub> , a <sub>1</sub> ) | U(n <sub>j</sub> , a <sub>2</sub> ) |          |     | U(n <sub>j</sub> , a <sub>i</sub> ) |

Table 1. Gain-loss relationship for each combination of action and state of nature

Step four separates what is known as the "data" problem from the "no data" problem.<sup>13</sup> An experiment or other device is organized to gain information about the states of nature. Observations are made in the experiment that are related to the states of nature. It is then possible to make those same observations just prior to the actual decision. An actual relationship in probabilistic terms between the observations and the states of nature is made, thus making it possible to draw some conclusions about what the state of nature will be depending on the observation. If it is not possible to conduct such an experiment or make observations just prior to the decision, then the only choice is to deal with the situation as a "no data" decision problem.

As the experiment is conducted and the observations are made, the probabilities given in Table 2 are generated.

<sup>13</sup> Chernoff and Moses, <u>Elementary Decision Theory</u>, p. 167.

|                  | Observations                        |                                     |   |   |                                     |  |  |  |  |
|------------------|-------------------------------------|-------------------------------------|---|---|-------------------------------------|--|--|--|--|
| States of nature | °1                                  | °2                                  |   | · | °k                                  |  |  |  |  |
| n <sub>1</sub>   | P(n <sub>1</sub> , o <sub>1</sub> ) | P(n <sub>1</sub> , o <sub>2</sub> ) |   |   | P(n <sub>1</sub> , o <sub>k</sub> ) |  |  |  |  |
| n <sub>2</sub>   | P(n <sub>2</sub> , o <sub>1</sub> ) | P(n <sub>2</sub> , o <sub>2</sub> ) | · |   | P(n <sub>2</sub> , o <sub>k</sub> ) |  |  |  |  |
|                  | •                                   | •                                   | • | · | •                                   |  |  |  |  |
|                  | •                                   | •                                   | • | • | •                                   |  |  |  |  |
|                  |                                     | •                                   | • | • | •                                   |  |  |  |  |
| nj               | P(n, o <sub>1</sub> )               | P(n <sub>j</sub> , o <sub>2</sub> ) |   |   | $P(n_j, o_k)$                       |  |  |  |  |

Table 2. Probability of making observation  $\boldsymbol{o}_k$  when  $\boldsymbol{n}_j$  is the state of nature

These probabilities are then used to calculate the optimal strategy in the steps to follow before the decision must be made. This table can be updated as more information becomes available over successive periods of time.

The "no data" decision problem. Even in the case where it is not possible to make an observation that yields an updated prediction on the state of nature, decision-making ability may be improved by using <u>a</u> <u>priori</u> probabilities. This is called the "no data" problem. In other words, the probability of a state of nature may be formulated by using the data of all past periods. An example of this in weather data is the <u>a priori</u> probability of frost occurring on a certain spring day calculated by the Weather Bureau from the data of past years. These data usually cover a minimum thirty-year period. Probabilities of  $n_j$ states of nature may be stated as in Table 3.

| P(nj)              |  |
|--------------------|--|
| P(n <sub>1</sub> ) |  |
| P(n <sub>2</sub> ) |  |
| •                  |  |
|                    |  |
| •                  |  |
| P(n <sub>j</sub> ) |  |

With the use of the gain-loss table and the <u>a priori</u> probabilities, it is now possible to arrive at the best option under available actions or the best decision of an available action, considering there is no further information. See Table 4.

After conducting the operations in these tables, it is possible to pick the optimal action. If it is a loss table, the optimal action will be the minimum of the sums from  $a_1$  to  $a_3$ ,

$$\sum_{n=1}^{j} [U(n_j, a_i)] [P(n_j)].$$

If it is a gain table, the optimal action will be the maximum value in the sums. In any case, the optimal action is indicated.

|                                      |                                    | Loss-gain<br>Available a                                               |                   |   | 5                                  |      | lity table<br>probabilitie              |
|--------------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------|---|------------------------------------|------|-----------------------------------------|
| States of<br>nature                  | a <sub>1</sub>                     | <sup>a</sup> 2                                                         |                   |   | a <sub>i</sub>                     |      | P(n <sub>j</sub> )                      |
| n <sub>1</sub>                       | U(n <sub>1</sub> ,a <sub>1</sub> ) | U(n <sub>1</sub> ,a <sub>2</sub> )                                     |                   |   | U(n <sub>1</sub> ,a <sub>i</sub> ) |      | P(n <sub>1</sub> )                      |
| <sup>n</sup> 2                       | U(n <sub>2</sub> ,a <sub>1</sub> ) | U(n <sub>2</sub> ,a <sub>2</sub> )                                     |                   |   | U(n <sub>2</sub> ,a <sub>i</sub> ) |      | P(n <sub>2</sub> )                      |
| •                                    |                                    |                                                                        |                   |   |                                    |      |                                         |
|                                      |                                    |                                                                        |                   | · |                                    |      | •                                       |
|                                      |                                    |                                                                        |                   |   |                                    |      | •                                       |
| n j                                  | U(n <sub>j</sub> ,a <sub>1</sub> ) | U(n <sub>j</sub> ,a <sub>2</sub> )                                     |                   |   | U(n <sub>j</sub> ,a <sub>i</sub> ) |      | P(n <sub>j</sub> )                      |
| <sup>a</sup> 1                       |                                    | <sup>a</sup> 2                                                         | 4                 |   | •                                  |      | <sup>a</sup> i                          |
| [U(n <sub>1</sub> ,a <sub>1</sub> )] | [P(n <sub>1</sub> )]               | [U(n <sub>1</sub> ,a <sub>2</sub> )][P(n                               | n <sub>1</sub> )  | ] |                                    | [U(n | 1,a <sub>i</sub> )][P(n <sub>1</sub> )  |
| [U(n <sub>2</sub> ,a <sub>1</sub> )] | [P(n <sub>2</sub> )]               | [U(n <sub>2</sub> ,a <sub>2</sub> )][P(n                               | n <sub>2</sub> )  | ] |                                    | [U(n | 1, <sup>a</sup> i)][P(n <sub>2</sub> )] |
| •                                    |                                    |                                                                        |                   |   |                                    |      | •                                       |
|                                      |                                    | •                                                                      |                   |   |                                    |      |                                         |
|                                      |                                    |                                                                        |                   |   |                                    |      | •                                       |
| [U(n <sub>j</sub> ,a <sub>1</sub> )] | [P(n <sub>j</sub> )]               | [U(n <sub>j</sub> ,a <sub>2</sub> )][P(n                               | n <sub>j</sub> )] |   |                                    | [U(n | j,a <sub>i</sub> )][P(n <sub>j</sub> )] |
| j                                    |                                    | j<br>Σ [U(n <sub>j</sub> ,a <sub>2</sub> )]<br>n=1 j,a <sub>2</sub> )] |                   |   |                                    | 1    |                                         |

Table 4. Calculation of the "no data" problem

<u>The "data" decision problem</u>. Now that the "no data" situation has been briefly discussed, the "data" problem will be considered with the commencement of step five. The available strategies are tabulated, including all possible actions which the decision maker might have, given the observations  $o_1$  through  $o_k$ . (See Table 5.) Table 5 would give all possible combinations of actions with each possible observation  $o_k$ .

| Strategies $o_1  o_2  .$                                                      | °k             |
|-------------------------------------------------------------------------------|----------------|
| I I                                                                           |                |
| <sup>s</sup> <sub>2</sub> <sup>a</sup> <sub>1</sub> <sup>a</sup> <sub>2</sub> | a <sub>i</sub> |
|                                                                               | a <sub>i</sub> |
| • • • • •                                                                     |                |
|                                                                               |                |
|                                                                               | •              |
| s <sub>m</sub> a <sub>2</sub> a <sub>3</sub> .                                | a <sub>i</sub> |

Table 5. List of possible strategies

The sixth step determines the consequences of each strategy for each state of nature as determined by the probabilities in Table 2. This computation gives the average gain or loss for each strategy and the possible states of nature (see Table 6).

| States<br>of<br>nature | Strategies                                                                                                                                                                                                                                   |       |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
|                        | s <sub>1</sub>                                                                                                                                                                                                                               | ••••s |  |  |  |  |  |  |
| n <sub>1</sub>         | $P(\mathbf{n}_1, \mathbf{o}_1) \cdot \mathbb{U}(\mathbf{n}_1, \mathbf{a}_i) + P(\mathbf{n}_1, \mathbf{o}_2) \cdot \mathbb{U}(\mathbf{n}_1, \mathbf{a}_i) + \dots P(\mathbf{n}_1, \mathbf{o}_k) \cdot \mathbb{U}(\mathbf{n}_1, \mathbf{a}_i)$ |       |  |  |  |  |  |  |
| <sup>n</sup> 2         | ${}^{P(n_2,o_1)\cdot \mathrm{U}(n_2,a_i)+\mathrm{P}(n_2,o_2)\cdot \mathrm{U}(n_2,a_i)+\ldots \mathrm{P}(n_2,o_k)\cdot \mathrm{U}(n_2,a_i)}$                                                                                                  |       |  |  |  |  |  |  |
| ·                      |                                                                                                                                                                                                                                              |       |  |  |  |  |  |  |
| •                      |                                                                                                                                                                                                                                              |       |  |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                              |       |  |  |  |  |  |  |
| n<br>j                 | $\mathbb{P}(n_j,o_1)\cdot\mathbb{U}(n_j,a_i)+\mathbb{P}(n_j,o_2)\cdot\mathbb{U}(n_j,a_i)+\ldots\mathbb{P}(n_j,o_k)\cdot\mathbb{U}(n_j,a_i)$                                                                                                  | ••••  |  |  |  |  |  |  |

Table 6. Average utility for each strategy and respective state of nature

The last step includes multiplying the average gains or losses of each state of nature in the preceding step by its respective <u>a priori</u> probability and totaling the results to yield one gain or loss figure for each strategy. The decision maker is then able to choose the optimal strategy. This approach has the advantage of including all possible solution strategies. It may be a disadvantage to calculate all strategies if only the optimal one is wanted. In this case, there is a short-cut using what is called the <u>a posteriori</u> probabilities. Detailed and practical examples of the above "data" method can be found in <u>Decision Under Uncertainty</u> by Halter and Dean.<sup>14</sup> No new information is needed to calculate the <u>a posteriori</u> probabilities. The letters  $z_1$ through  $z_i$  will represent these <u>a posteriori</u> probabilities.

14 Halter, Decision Under Uncertainty.

The first step in calculating the <u>a posteriori</u> probabilities is to multiply the probability of states of nature with respect to the observations by the corresponding <u>a priori</u> probabilities (Table 7). The resulting sums of the products relative to each observation are then totaled. The sums corresponding to  $o_k$  are divided into the relative members of the joint probabilities matrix as performed in Table 8. The <u>a posteriori</u> probabilities are then multiplied by the corresponding figures in the loss-gain table. These values are then totaled for each available action as shown in Table 9.

If a loss table is used, the object is to find the minimum  $B(\bar{z}, a)$ , or Bayes strategy for the observations.<sup>15</sup> If a gain table is used, then the maximum should be found. The above procedure may be followed to find the optimal course of action for each observation  $o_1$  through  $o_k$ . These optimal available actions for each observation become the Bayes strategy.

## Growing degree days

Many crops in the past were rated according to number of days to maturity, such as 119-day corn. Since the growth that takes place in any given day varies widely, that system has been replaced for many crops with a term called "growing degree days". Growing degree days takes into consideration the heat factor since growth is dependent upon heat over a restricted temperature range. The growing degree days calculation used in this model is that referred to as the U.S. Weather

<sup>15</sup>Chernoff, <u>Elementary Decision Theory</u>, p. 167.

|                                     |                                            | Observati                              | ons               |      |                                    | A | priori probabilitie                                                 |
|-------------------------------------|--------------------------------------------|----------------------------------------|-------------------|------|------------------------------------|---|---------------------------------------------------------------------|
| States of<br>nature                 | °1                                         | °2                                     |                   | •    | °k                                 |   | P(n <sub>j</sub> )                                                  |
| n <sub>1</sub>                      | P(n <sub>1</sub> ,o <sub>1</sub> )         | P(n <sub>1</sub> ,o <sub>2</sub> )     |                   |      | P(n1,0k)                           | ) | P(n <sub>1</sub> )                                                  |
| <sup>n</sup> 2                      | $P(n_2, o_1)$                              | $P(n_2,o_2)$                           |                   |      | P(n <sub>2</sub> ,o <sub>k</sub> ) | ) | P(n <sub>2</sub> )                                                  |
|                                     | •                                          |                                        |                   |      | •                                  |   | •                                                                   |
|                                     |                                            | •                                      |                   |      | •                                  |   |                                                                     |
|                                     | •                                          | •                                      |                   |      |                                    |   | •                                                                   |
| <sup>n</sup> j                      | $P(n_j,o_1)$                               | P(n <sub>j</sub> ,o <sub>2</sub> )     | ·                 | ·    | P(n <sub>j</sub> ,o <sub>k</sub> ) |   | P(n <sub>j</sub> )                                                  |
|                                     |                                            | Joint p<br>P(n <sub>j</sub> )          |                   | nj,o | k)                                 |   |                                                                     |
| °1                                  |                                            | 0                                      |                   |      | ·                                  |   | ° <sub>k</sub>                                                      |
| P(n <sub>1</sub> ) P(r              | <sup>1</sup> , <sup>0</sup> <sup>1</sup> ) | P(n <sub>1</sub> ) P(n <sub>1</sub> ,o | 2)                |      |                                    |   | $P(n_1) P(n_1,o_k)$                                                 |
| P(n <sub>2</sub> ) P(n              | <sup>1</sup> 2, <sup>0</sup> 1)            | P(n <sub>2</sub> ) P(n <sub>2</sub> ,o | 2)                |      |                                    |   | $P(n_2) P(n_2,o_k)$                                                 |
|                                     |                                            | •                                      |                   |      | •                                  |   |                                                                     |
|                                     |                                            | •                                      |                   |      | •                                  |   |                                                                     |
|                                     |                                            | •                                      |                   |      | •                                  |   |                                                                     |
| P(n <sub>j</sub> ) P(n              | j,01)                                      | P(n <sub>j</sub> ) P(n <sub>j</sub> ,o | 2)                |      | ·                                  | • | P(n <sub>j</sub> ) P(n <sub>j</sub> ,o <sub>k</sub> )               |
| j<br>Σ P(n <sub>j</sub> ) P<br>=1 j | (n <sub>j</sub> ,o <sub>1</sub> ) Σ<br>n=  | P(n <sub>j</sub> ) P(n <sub>j</sub>    | ,o <sub>2</sub> ) |      |                                    |   | j<br>∑ P(n <sub>j</sub> ) P(n <sub>j</sub> ,o <sub>k</sub> )<br>n=1 |

Table 7. Computation of the <u>a posteriori</u> probabilities

|                                    | Observations                                            |                                                       |   |   |                                                                     |  |  |
|------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---|---|---------------------------------------------------------------------|--|--|
| <u>posteriori</u><br>probabilities | °1                                                      | °2                                                    | • | • | °k                                                                  |  |  |
| z1                                 | P(n <sub>1</sub> ) P(n <sub>1</sub> ,o <sub>1</sub> )   | P(n <sub>1</sub> ) P(n <sub>1</sub> ,o <sub>2</sub> ) |   |   | P(n <sub>1</sub> ) P(n <sub>1</sub> ,o <sub>k</sub> )               |  |  |
|                                    | $\sum_{n=1}^{j} P(n_j) P(n_j,o_1)$                      | $\sum_{n=1}^{j} P(n_j) P(n_j,o_2)$                    |   |   | $\sum_{\substack{n=1 \\ n=1}}^{j} P(n_j) P(n_j,o_k)$                |  |  |
| z2                                 | P(n <sub>2</sub> ) P(n <sub>2</sub> ,o <sub>1</sub> )   | P(n <sub>2</sub> ) P(n <sub>2</sub> ,o <sub>2</sub> ) |   |   | $P(n_2) P(n_2,o_k)$                                                 |  |  |
|                                    | $\sum_{\substack{\Sigma \\ n=1}}^{j} P(n_j) P(n_j,o_1)$ | $ \sum_{n=1}^{j} P(n_j) P(n_j, o_2) $                 |   |   | j<br>∑ P(n <sub>j</sub> ) P(n <sub>j</sub> ,o <sub>k</sub> )<br>n=1 |  |  |
|                                    |                                                         |                                                       |   |   |                                                                     |  |  |
|                                    | · · · · · · · · ·                                       |                                                       |   |   |                                                                     |  |  |
|                                    | P(n <sub>j</sub> ) P(n <sub>j</sub> ,o <sub>1</sub> )   | $P(n_j) P(n_j,o_2)$                                   |   |   | $P(n_j) P(n_j, o_k)$                                                |  |  |
| <sup>z</sup> j                     | $\frac{j}{\sum_{n=1}^{j} P(n_j) P(n_j,o_1)}$            | j                                                     | · | · | $\sum_{\substack{n=1}}^{j} P(n_j) P(n_j, o_k)$                      |  |  |
|                                    | n=1 5 5 -                                               | n=1 5 5 5                                             |   |   | n=1 5 5                                                             |  |  |

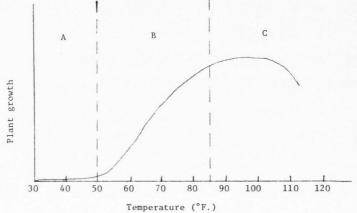
Table 8. A posteriori probabilities

|         | Observation ol                                                     |                                         |  |  |                                                                     |  |  |
|---------|--------------------------------------------------------------------|-----------------------------------------|--|--|---------------------------------------------------------------------|--|--|
|         | <sup>a</sup> 1                                                     | <sup>a</sup> 2                          |  |  | a <sub>i</sub>                                                      |  |  |
| B(z, a) | $ \sum_{\substack{n=1 \\ n=1}}^{j} \sum_{j=1}^{j} U(n_{j},a_{1}) $ | $ \sum_{n=1}^{j} z_{j} U(n_{j},a_{2}) $ |  |  | j<br>∑ z <sub>j</sub> U(n <sub>j</sub> ,a <sub>i</sub> )<br>n=l j j |  |  |

Table 9. Bayes strategy

Bureau 50-86 method suggested by Gilmore and Rogers in 1958<sup>16</sup> and expressed as:

$$GDD = (TH/2 + TL/2) - 50$$


where

GDD = growing degree days for a given day in degrees fahrenheit.

TH = maximum daily temperature in °F. (If TH  $\geq$  86°, then TH = 86°.)

TL = minimum daily temperature in °F. (If TL  $\leq$  50°, then TL = 50°.)

Since the corn plant begins growth at about 50° fahrenheit, this temperature is used as the lower limit in the equation. In other words, no appreciable growth takes place when the temperature is below 50° fahrenheit. Growth of the corn plant also tapers off above an upper limit set at 86° F. Additional heat units much above that point may even impair growth. Consider the possible growth curve represented in Figure 1:





<sup>16</sup><sub>R. W. Hill, R. J. Hanks, J. Keller, and P. V. Rasmussen, "Predicting corn growth as affected by water management: An example", Department of Agricultural and Irrigation Engineering, Utah State University, Logan, Utah, Report No. 211(d)-6, (September, 1974), p. 3.</sub> In section A, little or no growth is taking place. In section B, the growth of the plant is proportional to an increment in temperature. In section C, the growth has tapered off and there could even be some damage as shown by the downward arc of the curve.

Growing degree days are cumulative from the date of planting through maturity. Modeling and trials currently in process make it possible to predict growth stages and maturity by this method, provided other variables are held constant.

## Total digestible nutrients

It is not sufficient when considering feasibility and profit to look only at tons per acre yields since the value of a ton of corn silage can vary significantly. Two of the more important factors are percent dry weight and degree of maturity. In this study, these factors will be taken into account by use of a term call Total Digestible Nutrients (TDN). As silage corn becomes more mature, it increases in percent dry weight and in TDN, thus becoming more nutritious and yielding more feed value to animals.

Consider the following quote by Dr. DeVere McAllister, Extension Agronomist with Utah State University:

The total feeding value of corn increases right up to the time the grain is mature. But the digestibility of the leaves and stalks and the keeping quality of the silage decline somewhat earlier. If chopped when only one-fifth of the kernels are dented, you harvest only 50% of the potential. With half the kernels dented, you get only 70%. With all dented and in hard-dough or early glaze stage, you get 90% of the possible feed value of the grain. At this latter stage (early glaze), the ear contains two-thirds and the stalk and leaves one-third of the TDN in the whole plant. The ear is the important thing. 17

<sup>17</sup>DeVere R. McAllister, "More and Better Corn Silage", p. 1.

An estimate of the effect of maturity on TDN is shown in Table 10.

Table 10. Time of harvest, effect on pounds TDN at various yields

|           | Pounds TDN<br>Green weight tons |      |        |  |  |
|-----------|---------------------------------|------|--------|--|--|
|           |                                 |      |        |  |  |
| Milk      | 4800                            | 6000 | 7800   |  |  |
| Dough     | 6080                            | 7600 | 9088   |  |  |
| Late dent | 7040                            | 8800 | 11,440 |  |  |

Source: DeVere R. McAllister, More and Better Corn Silage Through Timely Harvest, "It's the Grain that Counts", Plant Science Department, Utah State University, Logan, Utah (August 1974), p. 1.

An index of the maturity values for field trials on corn is recorded in Appendix B Tables 37 and 38.

For purposes of this study, TDN rather than total tons of silage per acre is considered in order that benefits may be more properly assigned. In support of the above information are some figures published in Table 11 for four types of corn silage. It would appear from this report that mature grain is most important to the yield as far as TDNs are concerned.

| Corn<br>harvesting<br>system                        | Acreage                                                               | Yield           | Total TDN                                    | TDN<br>per acre | Cattle<br>fed<br>per acre | Beef<br>produced<br>per acre |
|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------|----------------------------------------------|-----------------|---------------------------|------------------------------|
| Regular corn silage                                 | 100                                                                   | 1800 tons       | 712,800 lbs.                                 | 7,128 lbs.      | 2.57                      | 1,540 lbs                    |
| Corn silage<br>and<br>high moisture<br>shelled corn | 42 acres<br>corn silag<br>100<br>58 acres<br>high moist<br>shelled co | 5570 bu.<br>ure | 299,376 lbs.<br>249,758 lbs.<br>549,134 lbs. | 5,491 lbs.      | 1.86                      | 1,116 lbs                    |
| High moisture<br>ground ear corn                    | 100                                                                   | 10,000 bu.      | 491,904 lbs.                                 | 4,919 lbs.      | 1.60                      | 958 lbs                      |
| Corn ear and center-cut silage                      | 100                                                                   | 1320 tons       | 607,200 lbs.                                 | 6,072 lbs.      | 2.20                      | 1,320 lbs                    |

Table 11. Comparative yields and livestock produced per acre from different methods of harvesting and storing the corn crop (based on a yield of 100 bushels [56 cwt.] per acre)

Source: "Modern Corn Production", The Farm Quarterly, (1966), p. 290.

# ANALYSIS AND DECISION MODEL APPLICATION

### Planting date criteria

In the past, several methods of determing an optimal planting date have been recommended to the farmer. Two of these methods are considered here as to which would be best suited to this decision problem.

One of these methods consists of determining the first seven consecutive spring days for which the growing degree days (GDD) as computed according to the formula on page 24 total 70. The earliest planting date would be the day on which the cumulative GDD for the previous 7 days reaches this total. Optimal planting dates determined according to this method for the years 1959-1966 are presented in Table 12. These years are selected because they are the ones from which the main body of data for this study are drawn.

Table 12. Dates when the sum of GDD for seven consecutive spring days first reached 70 as recorded at U.S.U. Agricultural Experiment Station, 1959-1966

| Years | Date   |
|-------|--------|
| 1959  | May 14 |
| 1960  | May 10 |
| 1961  | May 22 |
| 1962  | May 6  |
| 1963  | May 6  |
| 1964  | May 15 |
| 1965  | May 16 |
| 1966  | May 3  |

Daily mean 1959-1966 reached on May 16

Some indication of the relative success of this method of planting date selection can be gained by examining the records of spring frost activity for the eight years in question. Table 29 of the Appendix gives the dates and intensities of late spring frosts for those eight years. Using the figure of about seven days to emergence, it can be noted that crops for the years 1961, 1963, 1964, and 1965 would have received no frost damage, those for the years 1959 and 1962 would have received some damage, and those for the years 1960 and 1966 would have received extensive frost damage. If the mean optimal planting date of May 16 had been used for each of the eight years, 1959 and 1966 crops would have received no frost damage, 1962 crops some damage, and only those for 1960 would have received extensive frost damage. Frosts for both 1962 and 1960 occurred in June and would have been difficult to avoid or anticipate.

Another method of planting date selection is the use of mean soil temperature. This method recommends planting when the mean soil temperature reaches 50° F. Although the data for this method are relatively recent, some conclusions can be drawn. Table 13 gives those dates for the years 1969-1975 when the spring mean soil temperature for Cache Valley first reached 50° F. According to the data of Table 13, this method would have the farmer in Cache Valley plant on or about May third. Applying this date to the years 1959-1966, we note that crops for the years 1963, 1964, and 1965 would have received no frost damage, those for 1961 and 1962 would have received some damage, and those for 1959, 1960, and 1966 would have received extensive frost damage (Table 28, Appendix). A direct comparison cannot be made, however, since data are

not available for those years. Applying this criterion for planting to the years 1969-1975, it can be noted from the data of Table 29, Appendix B that 1970 crops would have received some frost damage and those for 1975 would have had major frost damage.

| 4 in.)   |       |  |
|----------|-------|--|
| Years    | Date  |  |
| <br>1969 | May 1 |  |
| 1970     | May 4 |  |
| 1971     | May 2 |  |
| 1972     | May 3 |  |
| 1973     | May 6 |  |
| 1974     | May 2 |  |
| 1975     | May 3 |  |
|          |       |  |

Table 13. Dates when the spring mean soil temperatures equal 50° F at U.S.U. Agricultural Experiment Farm, 1969-1975 (depth = 4 in.)

Source: U.S. Department of Commerce, Weather Bureau. Climatological Data, Utah, 1952-1975.

It is not immediately apparent which is the better of these two methods; however, it appears that the GDD method provides a safer margin for avoidance of frost damage. Comparing the two methods for the years 1969 to 1975, one sees that the 70 GDD method is a little more conservative. See Table 14 for dates when the 70 GDD criterion is achieved. In the two years between 1969 and 1975 where frost damage occurred, the 70 GDD method, because of a later optimal planting date, would have avoided part of the damage in each case.

Many farmers select their planting date by the field conditions, planting as soon as it is feasible to till and work the fields. Other

| Years    | Date   |
|----------|--------|
| <br>1967 | May 20 |
| 1968     | May 7  |
| 1969     | May 6  |
| 1970     | May 7  |
| 1971     | May 5  |
| 1972     | May 7  |
| 1973     | May 12 |
| 1974     | May 5  |
| 1975     | May 15 |

Table 14. Initial date when the total GDD for seven consecutive days reached 70 as recorded at U.S.U. Agricultural Experiment Station, 1967-1975

farmers plant on the basis of past experience and some merely according to intuitive feelings, neither of which are very reliable methods. Either of the temperature based systems is to be preferred over such arbitrary selection techniques.

A closer examination of the growing degree day method is of some interest. By applying the criterion of 70 GDD in seven consecutive days and calculating the corresponding date of emergence, the severity of frosts affecting corn crop planting could be more closely quantified. From the information on maturity in Appendix Table 33 and the formulation of growth stages in Appendix Table 36, it is possible to predict the time of emergence once the planting date has been selected. The corn plant will emerge 80 GDD after planting. Suppose that the various planting dates or courses of action are labeled a<sub>1</sub> through a<sub>1</sub>, where

> $a_1 = May 2-7$  $a_2 = May 8-13$

 $a_3 = May 14-19$  $a_4 = May 20-25$  $a_5 = May 26-31$ 

These courses of action are applied in the data of Table 15. Conclusions can be drawn as to the relative success of this criterion for determining the course of action for planting dates, since hindsight is much better than foresight.

The states of nature  $\mathsf{n_1-n_j}$  in Table 15 reflect the state of nature with respect to frost, where

 $n_1 = no \text{ frost}$   $n_2 = mild \text{ frost } (32^\circ-29^\circ \text{ F})$  $n_3 = hard \text{ frost } (28^\circ \text{ F and below})$ 

It is evident from Table 15 that the GDD method is successful in the avoidance of frost in seventeen out of twenty-three years from 1952, the first full year when data were recorded at the Utah State University Experimental Farm, to 1974.<sup>18</sup> While improvement is still possible, a record of 83 percent success in avoiding major frost damage would be desirable. Late spring frosts in Cache Valley cannot be easily predicted in every case and sometimes come without warning. As a general rule, then, the GDD method is more reliable in selection of the optimum planting date to avoid these frosts. There is, of course, the constraint of field conditions due to wet or adverse weather to be considered. Some information relative to how wet the soil generally will be is presented in Table 38 (Appendix) which shows amounts of precipitation accumulated over a two-week period. Field conditions were not added to the planting date

<sup>&</sup>lt;sup>18</sup>E. Arlo Richardson, Utah State Climatologist, Department of Soil Science and Biometeorology, Utah State University, Logan, Utah, Personal interview, (August 1975).

| Year | 70 GDD<br>reached | Planting date<br>action a <sub>i</sub> | Emerge<br>80 GDD after plant | State of<br>nature n<br>j |
|------|-------------------|----------------------------------------|------------------------------|---------------------------|
| 1974 | May 5             | a <sub>1</sub>                         | May 11                       | n <sub>1</sub>            |
| 1973 | May 12            | a <sub>2</sub>                         | May 18                       | n <sub>1</sub>            |
| 1972 | May 7             | <sup>a</sup> 1                         | May 16                       | n <sub>1</sub>            |
| 1971 | May 5             | <sup>a</sup> 1                         | May 14                       | n <sub>1</sub>            |
| 1970 | May 7             | <sup>a</sup> 1                         | May 19                       | n <sub>1</sub>            |
| 1969 | May 6             | <sup>a</sup> 1                         | May 12                       | n <sub>1</sub>            |
| 1968 | May 7             | <sup>a</sup> 1                         | May 18                       | n <sub>1</sub>            |
| 1967 | May 20            | a <sub>4</sub>                         | May 25                       | n <sub>1</sub>            |
| L966 | May 3             | <sup>a</sup> 1                         | May 8                        | <sup>n</sup> 3            |
| 965  | May 16            | a <sub>3</sub>                         | May 24                       | n <sub>1</sub>            |
| 964  | May 15            | a <sub>3</sub>                         | May 21                       | n <sub>1</sub>            |
| .963 | May 6             | <sup>a</sup> 1                         | May 14                       | n <sub>1</sub>            |
| 962  | May 6             | <sup>a</sup> 1                         | May 12                       | n <sub>2</sub>            |
| 961  | May 22            | a <sub>4</sub>                         | May 27                       | n <sub>1</sub>            |
| 960  | May 10            | <sup>a</sup> 2                         | May 16                       | n <sub>3</sub>            |
| 959  | May 14            | a <sub>3</sub>                         | May 30                       | n <sub>1</sub>            |
| 958  | May 6             | <sup>a</sup> 1                         | May 16                       | n <sub>1</sub>            |
| 957  | May 5             | <sup>a</sup> 1                         | May 15                       | n <sub>1</sub>            |
| 956  | May 8             | a2                                     | May 19                       | n <sub>1</sub>            |
| 955  | May 10            | <sup>a</sup> 2                         | May 19                       | <sup>n</sup> 2            |
| 954  | May 8             | <sup>a</sup> 2                         | May 14                       | <sup>n</sup> 3            |
| 953  | May 31            | <sup>a</sup> 5                         | June 9                       | n <sub>1</sub>            |
| 952  | May 4             | <sup>a</sup> 1                         | May 12                       | n <sub>3</sub>            |
|      |                   |                                        |                              |                           |

Table 15. 70 GDD planting dates and potential dates of emergence

model in this study since this would introduce several new variables such as wind conditions, evaporation, and precipitation probability.

#### Planting decisions

The most important planting decision to be considered is selection of the variety of corn to be planted. Modern technology applied to the breeding of the corn plant has made significant improvement in productivity, and thus increased the options available to the farm manager in terms of what variety to plant. Hybrid corn offers a wide range of growing season varieties by which farm managers may now more optimally match growth to climate conditions for their area. Most regions presently enjoy the options of long, medium, short, and very short-season varieties.

Four such hybrids were selected for purposes of this study and applied to growing conditions for Cache Valley. These varieties are: Utah Hybrid 680 (long season), Utah Hybrid 544 (medium season), Utah Hybrid 330 (short season), and Utah Hybrid 216 (very short season). Table 33 in the Appendix gives the growing degree days to maturity and provides a more exact method of measuring relative time to maturity. These designations are of one particular company. Other companies would have a similar list of varieties. Because of the competitive nature of the corn-breeding industry, there is continual experimentation to develop new and improved strains. For the sake of simplicity, however, this discussion will be confined to the four varieties mentioned above. In the decision model, these four varieties will be labeled v<sub>1</sub> through v<sub>4</sub>, where

> $v_1 =$ Utah Hybrid 680  $v_2 =$ Utah Hybrid 544

$$v_3 =$$
 Utah Hybrid 330  
 $v_4 =$  Utah Hybrid 216

In the following analysis, potential green weight yields (based on Table 36, Appendix) were assumed to be twenty-six tons per acre for Utah Hybrid 680, twenty-five tons per acre for Utah Hybrid 544, twentythree tons per acre for Utah Hybrid 330, and sixteen tons per acre for Utah Hybrid 216. The prices used in figuring the profit or loss are taken from Table 32 in the Appendix. The budget cost information comes from budgets worked out at Utah State University.<sup>19</sup> Both prices and budget information are for the year 1973.<sup>20</sup>

Allowing for all possible combinations of planting dates and varieties, there are twenty courses of action that are open to the farm manager. Using the growth data in Table 36, Appendix, the GDDs to maturity found in Appendix Table 34, and the above assumptions, values of TDN per acre may be calculated for each combination of course of action and state of nature (Table 16). This table is the profit or gain table as referred to in the decision model. The growing degree days in Table 16 are figured from Utah State University Experiment Station data recorded during the years 1959-1966.

In the first planting period,  $a_1$ , if there is no frost, Utah Hybrid 544 yields the highest profit, but by the next planting period,  $a_2$ , Utah Hybrid 330 has a higher profit yield. Utah Hybrid 544 is a longer season variety than Utah Hybrid 330 and has a higher potential yield, but it

<sup>&</sup>lt;sup>19</sup>Rondo A. Christensen, Lynn H. Davis, and Stuart H. Richards, "Enterprise Budgets for Farm and RAnch Planning in Utah", <u>Agricultural</u> <u>Experiment Station Research Report No. 5</u>, Utah State University, Logan, Utah (April 1973), p. 24

<sup>&</sup>lt;sup>20</sup>Statistical Reporting Service, U.S. Department of Agriculture, (Salt Lake City, Utah: Utah Agricultural Statistics, 1973).

|                               |      | Concrete/      |                         | Stal | es of          | Nature                  |                |      |                         |
|-------------------------------|------|----------------|-------------------------|------|----------------|-------------------------|----------------|------|-------------------------|
|                               |      | <sup>n</sup> 1 |                         |      | n <sub>2</sub> |                         | <sup>n</sup> 3 |      |                         |
| Courses<br>of<br>action       | GDD  | TDN*           | Profit<br>in<br>\$/acre | GDD  | TDN            | Profit<br>in<br>\$/acre | GDD            | TDN  | Profit<br>in<br>\$/acre |
| <sup>a</sup> 1 <sup>v</sup> 1 | 2318 | 5.67           | 214.15                  | 2278 | 5.56           | 207.82                  | 2220           | 5.41 | 199.19                  |
| <sup>a</sup> 1 <sup>v</sup> 2 | 2318 | 5.70           | 215.88                  | 2278 | 5.60           | 210.12                  | 2220           | 5.44 | 200.92                  |
| <sup>a</sup> 1 <sup>v</sup> 3 | 2318 | 5.59           | 209.55                  | 2278 | 5.59           | 209.55                  | 2220           | 5.51 | 204.95                  |
| <sup>a</sup> 1 <sup>v</sup> 4 | 2318 | 3.89           | 111.73                  | 2278 | 3.89           | 111.73                  | 2220           | 3.89 | 111.73                  |
| <sup>a</sup> 2 <sup>v</sup> 1 | 2259 | 5.51           | 204.95                  | 2219 | 5.40           | 198.62                  | 2158           | 5.24 | 189.41                  |
| <sup>a</sup> 2 <sup>v</sup> 2 | 2259 | 5.55           | 207.25                  | 2219 | 5.43           | 200.34                  | 2158           | 5.26 | 190.56                  |
| <sup>a</sup> 2 <sup>v</sup> 3 | 2259 | 5.59           | 209.55                  | 2219 | 5.51           | 204.95                  | 2158           | 5.33 | 194.59                  |
| <sup>a</sup> 2 <sup>v</sup> 4 | 2259 | 3.89           | 111.73                  | 2219 | 3.89           | 111.73                  | 2158           | 3.89 | 111.73                  |
| <sup>a</sup> 3 <sup>v</sup> 1 | 2199 | 5.35           | 195.74                  | 2159 | 5.24           | 189.41                  | 2091           | 5.07 | 179.63                  |
| <sup>a</sup> 3 <sup>v</sup> 2 | 2199 | 5.39           | 198.04                  | 2159 | 5.26           | 190.56                  | 2091           | 5.08 | 180.20                  |
| <sup>1</sup> 3 <sup>v</sup> 3 | 2199 | 5.46           | 202.07                  | 2159 | 5.33           | 194.59                  | 2091           | 5.15 | 184.23                  |
| <sup>a</sup> 3 <sup>v</sup> 4 | 2199 | 3.89           | 111.73                  | 2159 | 3.89           | 111.73                  | 2091           | 3.77 | 104.83                  |
| 4 <sup>v</sup> 1              | 2137 | 5.18           | 185.96                  | 2097 | 5.07           | 179.63                  | 2015           | 4.87 | 168.12                  |
| 4 <sup>v</sup> 2              | 2137 | 5.21           | 187.68                  | 2097 | 5.10           | 181.35                  | 2015           | 4.88 | 168.70                  |
| 4 <sup>v</sup> 3              | 2137 | 5.27           | 191.14                  | 2097 | 5.16           | 184.81                  | 2015           | 4.93 | 171.57                  |
| <sup>4</sup> 4 <sup>v</sup> 4 | 2137 | 3.86           | 110.00                  | 2097 | 3.78           | 105.40                  | 2015           | 3.61 | 95.62                   |
| 5 <sup>v</sup> 1              | 2065 | 4.99           | 175.02                  | 2025 | 4.89           | 169.27                  | 1935           | 4.66 | 156.04                  |
| 5 <sup>v</sup> 2              | 2065 | 5.02           | 176.75                  | 2025 | 4.92           | 171.00                  | 1935           | 4.68 | 157.19                  |
| 5 <sup>v</sup> 3              | 2065 | 5.07           | 179.63                  | 2025 | 4.96           | 173.30                  | 1935           | 4.72 | 159.49                  |
| 5 <sup>V</sup> 4              | 2065 | 3.71           | 101.37                  | 2025 | 3.63           | 96.77                   | 1935           | 3.45 | 86.41                   |

Table 16. Profit table with all possible combinations of planting dates, varieties, and states of nature (based on 1973 prices and costs)

\*TDNs in tons/acre.

Source: GDD taken from Appendix Tables 31 and 32; prices taken from Appendix Table 33; costs from: Christensen, "Enterprise Budgets for Farm. . ." could seldom, if ever, realize its complete potential in Cache Valley. This would be possible in some of the relatively frost-free years if planting were early and harvest were late. Hard frosts that affect the first planting period would also give the advantage to Utah Hybrid 330 over 544. If an extra 120 GDD over the mean could be obtained, then that first period would look more like this:

|                               | GDD  | TDNs | Profit   |
|-------------------------------|------|------|----------|
| <sup>a</sup> 1 <sup>v</sup> 1 | 2438 | 6.01 | \$233.72 |
| <sup>a</sup> 1 <sup>v</sup> 2 | 2438 | 6.04 | 235.44   |
| <sup>a</sup> 1 <sup>v</sup> 3 | 2438 | 5.59 | 209.55   |
| a <sub>1</sub> v <sub>4</sub> | 2438 | 3.89 | 111.73   |

A further increase in GDD would give the advantage to Utah Hybrid 680. It can be concluded from the foregoing that it is best to use the corn hybrid with the longest possible growing season and still come close to the potential of the crop. Thus, it can be seen that the grain development during the final growth stage is quite important.

The data of Table 17 have been prepared to show the probability of each state of nature occurring in combination with each available action.<sup>21</sup> These are the <u>a priori</u> probabilities for the three states of nature, given any one planting date  $a_1$  to  $a_i$ , figured on the basis of the thirty-year period 1931-1960.

Where there are no experimental means of predicting with any degree of accuracy the state of nature that will affect the decision in the immediate future, the situation becomes a "no data" problem to be solved by use of the <u>a priori</u> probabilities and the profit or gain table. Although this approach to the decision process is incomplete, it is

<sup>21</sup>Richardson, Freeze-Free Seasons of State of Utah--Map and Table.

|                | States of nature |                |                |  |
|----------------|------------------|----------------|----------------|--|
| Actions        | n <sub>1</sub>   | <sup>n</sup> 2 | <sup>n</sup> 3 |  |
| a <sub>1</sub> | .3               | .45            | .25            |  |
| <sup>a</sup> 2 | .45              | .4             | .15            |  |
| a3             | .6               | .3             | .1             |  |
| a <sub>4</sub> | .75              | .2             | .05            |  |
| a <sub>5</sub> | .85              | .14            | .01            |  |

Table 17. A priori probabilities of the states of nature in relation to each course of action (based on 1941-1971 normals)

better than having no help at all. Table 18 gives the results of this process as calculated from the data in Tables 16 and 17.

From Table 18, the optimal time to plant would be the first period in May,  $a_1$ . It would be unwise to plant prior to May in Cache Valley as the probabilities of a killing frost are too high and the GDD or heat units decrease rapidly. The optimal choice in this first period would be  $a_1v_2$ . If it were not possible to plant in that first period, then  $a_2v_3$  would be the next best choice. The optimal variety for each planting period is boxed in Table 18.

Now, turning to a discussion of the "data" problem, observations are taken and <u>a posteriori</u> probabilities are calculated. The first operation is to obtain the probability of success of the observation over an experimental period. From 1952-1974, there were seventeen years in which the frost problem was successfully avoided  $(n_1)$ , two years with minor frost damage  $(n_2)$ , and four years with major frost damage

| States<br>of   | Available actions             |                               |                               |                               |       |  |
|----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------|--|
| nature         | <sup>a</sup> 1 <sup>v</sup> 1 | <sup>a</sup> 1 <sup>v</sup> 2 | <sup>a</sup> 1 <sup>v</sup> 3 | <sup>a</sup> 1 <sup>v</sup> 4 | P(nj) |  |
| n <sub>1</sub> | 214.15                        | 215.88                        | 209.55                        | 111.73                        | .3    |  |
| <sup>n</sup> 2 | 207.82                        | 210.12                        | 209.55                        | 111.73                        | .45   |  |
| n3             | 199.19                        | 200.92                        | 204.95                        | 111.73                        | .25   |  |
| Total          | 207.56                        | 209.55                        | 208.40                        | 111.73                        | 1.0   |  |
| n <sub>1</sub> | $\frac{a_2v_1}{204.95}$       | $\frac{a_2v_2}{207.25}$       | $\frac{a_2v_3}{209.55}$       | $\frac{a_2v_4}{111.73}$       | .45   |  |
| n <sub>2</sub> | 198.62                        | 200.34                        | 204.95                        | 111.73                        | .4    |  |
| n <sub>3</sub> | 189.41                        | 190.56                        | 194.59                        | 111.73                        | .15   |  |
| Total          | 200.09                        | 201.98                        | 205.47                        | 111.73                        | 1.0   |  |
| n <sub>1</sub> | $\frac{a_{3}v_{1}}{195.74}$   | $\frac{a_{3}v_{2}}{198.04}$   | $\frac{a_{3}v_{3}}{202.07}$   | $\frac{a_{3}v_{4}}{111.73}$   | .6    |  |
| <sup>n</sup> 2 | 189.41                        | 190.56                        | 194.59                        | 111.73                        | .3    |  |
| <sup>n</sup> 3 | 179.63                        | 180.20                        | 184.23                        | 104.83                        | .1    |  |
| lotal          | 192.23                        | 194.01                        | 198.04                        | 111.04                        | 1.0   |  |
| <sup>n</sup> 1 | $\frac{a_4v_1}{185.96}$       | $\frac{a_4v_2}{187.68}$       | $\frac{a_4v_3}{191.14}$       | $\frac{a_4^{v4}}{110.00}$     | .75   |  |
| <sup>1</sup> 2 | 179.63                        | 181.35                        | 184.81                        | 105.40                        | . 2   |  |
| <sup>1</sup> 3 | 168.12                        | 168.70                        | 171.57                        | 95.62                         | .05   |  |
| Total          | 183.80                        | 185.47                        | 188.90                        | 108.36                        | 1.0   |  |
| 1              | $\frac{a_5^{v_1}}{175.02}$    | $\frac{a_5^{v_2}}{176.75}$    | $\frac{a_5^{v_3}}{179.63}$    | $\frac{a_5^{v_4}}{101.37}$    | .85   |  |
| 2              | 169.27                        | 171.00                        | 173.30                        | 96.77                         | .14   |  |
| 3              | 156.04                        | 157.19                        | 159.49                        | 86.41                         | . 01  |  |
| otal           | 174.03                        | 175.75                        | 178.54                        | 100.58                        | 1.0   |  |

Table 18. "No data" profit table with solutions

 $(n_3)$ . (See Table 15.) The probability of each state of nature occurring after the observation of 70 growing degree days for the first time in seven consecutive days would be:

These observation probabilities are multiplied by the corresponding <u>a priori</u> probabilities of Table 17 to derive the joint probabilities shown in Table 19. The columns have also been summed. Each a<sub>i</sub>, n<sub>j</sub> value in the matrix of Table 19 is divided by its corresponding sum at the bottom of each column to generate the values for the <u>a posteriori</u> probabilities (Table 20). It now becomes a simple operation to replace the <u>a priori</u> probability column from Table 18 with the <u>a posteriori</u> probability values from Table 20 and to multiply those values by the corresponding profit figures to generate the pay-off figures of Table 21.

If the seven consecutive days GDD total reaches seventy in the first planting period, then Utah Hybrid 544 would be the recommended crop for planting. If the seventy growing degree days are reached in the later periods in May, then Utah Hybrid 330 would be the recommended variety to plant. Utah Hybrid 544 would have a higher yield and higher profit, but the season is not quite long enough. The mean season in Cache Valley is about one-hundred GDD short of that required for the 544 variety, but it is ideal for the 330 variety. In a year with an exceptionally long growing season, the 544 variety would provide an extra profit for the farm manager, even above the figures of Table 21, as they are mean values. The potential yields and potential profits for the four crops under consideration (based on 1973 prices) are shown in Table 22.

| States<br>of<br>nature |                | Р(   | $n_j) \cdot P(n_j, o_k)$ |                |                |
|------------------------|----------------|------|--------------------------|----------------|----------------|
|                        | <sup>a</sup> 1 | a2   | a <sub>3</sub>           | <sup>a</sup> 4 | <sup>a</sup> 5 |
| <sup>1</sup> 1         | .222           | .333 | .443                     | . 554          | .628           |
| 2                      | .039           | .035 | .026                     | .017           | .012           |
| <sup>1</sup> 3         | .044           | .026 | .017                     | .009           | .002           |
| Cotal                  | .305           | .394 | .486                     | .580           | .642           |

Table 19. Joint probabilities

Table 20. A posteriori probabilities

| States<br>of<br>nature |                | Available actions |                |                |                |  |  |
|------------------------|----------------|-------------------|----------------|----------------|----------------|--|--|
|                        | <sup>a</sup> 1 | <sup>a</sup> 2    | <sup>a</sup> 3 | <sup>a</sup> 4 | <sup>a</sup> 5 |  |  |
| 1                      | .728           | .845              | .912           | .955           | .978           |  |  |
| 2                      | .128           | .089              | .053           | .029           | .019           |  |  |
| <sup>n</sup> 3         | .144           | .066              | .035           | .016           | .003           |  |  |
| Fotal                  | 1.0            | 1.0               | 1.0            | 1.0            | 1.0            |  |  |

| States         |                               | Availa                        | ble actions                   |                               | A posteriori<br>prob. |
|----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------|
| nature         | al <sub>v</sub> 1             | <sup>a</sup> 1 <sup>v</sup> 2 | <sup>a</sup> 1 <sup>v</sup> 3 | <sup>a</sup> 1 <sup>v</sup> 4 | probl                 |
| n <sub>1</sub> | 214.15                        | 215.88                        | 209.55                        | 111.73                        | .728                  |
| n <sub>2</sub> | 207.82                        | 210.12                        | 209.55                        | 111.73                        | .128                  |
| n <sub>3</sub> | 199.19                        | 200.92                        | 204.95                        | 111.73                        | .144                  |
| Total          | 211.19                        | 212.99                        | 208.89                        | 111.73                        | 1.0                   |
|                | <sup>a</sup> 2 <sup>v</sup> 1 | <sup>a</sup> 2 <sup>v</sup> 2 | a2 <sup>v</sup> 3             | <sup>a</sup> 2 <sup>v</sup> 4 |                       |
| n <sub>1</sub> | 204.95                        | 207.25                        | 209.55                        | 111.73                        | .845                  |
| <sup>n</sup> 2 | 198.62                        | 200.34                        | 204.95                        | 111.73                        | .089                  |
| n <sub>3</sub> | 189.41                        | 190.56                        | 194.59                        | 111.73                        | .066                  |
| Total          | 203.36                        | 205.53                        | 208.15                        | 111.73                        | 1.0                   |
|                | <sup>a</sup> 3 <sup>v</sup> 1 | <sup>a</sup> 3 <sup>v</sup> 2 | <sup>a</sup> 3 <sup>v</sup> 3 | <sup>a</sup> 3 <sup>v</sup> 4 |                       |
| n <sub>1</sub> | 195.74                        | 198.04                        | 202.07                        | 111.73                        | .912                  |
| <sup>n</sup> 2 | 189.41                        | 190.56                        | 194.59                        | 111.73                        | .053                  |
| <sup>n</sup> 3 | 179.63                        | 180.20                        | 184.23                        | 104.83                        | .035                  |
| Total          | 194.84                        | 197.02                        | 201.05                        | 111.49                        | 1.0                   |
| n <sub>1</sub> | $\frac{a_4^{v_1}}{185.96}$    | $\frac{a_4v_2}{187.68}$       | $\frac{a_4^{v_3}}{191.14}$    | $\frac{a_4^{v_4}}{110.00}$    | .955                  |
| -              | 179.63                        | 181.35                        | 184.81                        | 105.40                        | .029                  |
| <sup>n</sup> 2 | 168.12                        | 168.70                        | 171.57                        | 95.62                         | .016                  |
| n <sub>3</sub> | 185.49                        | 187.19                        | 190.64                        | 109.64                        | 1.0                   |
| Total          |                               |                               |                               |                               | 1.0                   |
| n <sub>1</sub> | $\frac{a_{5}v_{1}}{175.02}$   | $\frac{a_5^{v_2}}{176.75}$    | $\frac{a_5v_3}{179.63}$       | $\frac{a_5^{v_4}}{101.37}$    | .978                  |
| <sup>n</sup> 2 | 169.27                        | 171.00                        | 173.30                        | 96.77                         | .019                  |
| n <sub>3</sub> | 156.04                        | 157.19                        | 159.49                        | 86.41                         | .003                  |
| Total          | 174.85                        | 176.58                        | 179.45                        | 101.24                        | 1.0                   |

Table 21. Pay-off table, given the possible planting dates and varieties

| Variety | Potential yield | Profit    |
|---------|-----------------|-----------|
|         | Tons TDN/acre   | \$/acre   |
| #680    | 6.32            | \$ 251.55 |
| #544    | 6.08            | 232.74    |
| #330    | 5.59            | 209.55    |
| #216    | 3.89            | 111.73    |

Table 22. Potential yields and profits for four corn varieties in Cache Valley, Utah

#### Replanting

To this point, states of nature  $n_2$  and  $n_3$  have been discussed only in the light of temporary frost damage where the corn plant is retarded for a period of time and eventually recovers to its normal strength. Sufficiently low tenperatures over an extended period of time cause permanent crop damage beyond the point where recovery is possible. Although a temperature of 28° F is considered a killing frost, this is a marginal point and the plant may still recover. It may even recover from a 27° F frost, but a 26° F frost of one hour or more duration will kill the plant.<sup>22</sup> When the temperature drops below 26° F, permanent damage is certain. If, however, the sun comes up shortly after a 26° F low and the temperature climbs rapidly, then there will not be permanent damage as there would be if the frost were maintained.<sup>23</sup> Replanting becomes an important consideration in this situation.

<sup>&</sup>lt;sup>22</sup>Kenneth Wilford Hill, Professor of Plant Science, Utah State University. Personal interview, August 12, 1975.

The farm manager in Cache Valley faces the possibility of finding himself in this situation, and in some localities there is a much greater chance than in others. Figure 2, for example, shows that for the different locations where weather data are collected, there is a wide range of probabilities for frost occurrence and intensity. Lewiston, Utah, located in area II, has 100-120 frost-free growing days. The Utah State University Experimental Farm, located in area IV, has 140-160 frost-free growing days. The Utah State University is within area V where there are 160-180 frost-free growing days.

The probabilities of a heavy frost occurring are different for each of the numbered areas in Figure 2. For example, there is a 50 percent chance of a 24° F frost in Lewiston on April 25, at the Utah State University Experiment Farm on April 5, and at Utah State University on March 26.<sup>24</sup> On any given date early in the growing season, the farmer in Lewiston runs a higher risk of a killing frost than the farmer in the area of the Utah State University Experimental Farm. Table 23 records the dates in Cache Valley from 1952-1974 on which killing frosts occurred which would have come after the date of emergence if the 70 growing degree day criterion for planting had been used. This table shows that over the 23-year period there have been several examples of killing frost at the three recording stations mentioned which would have resulted in crop damage.

There are times in this mountain valley when frost damage is severe enough that replanting would be more profitable than nursing along a severely damaged crop. If the temperature reaches a 28° F minimum, then

 $^{24}_{\rm Richardson,\ Freeze-Free}$  Seasons of State of Utah—Map and Table.

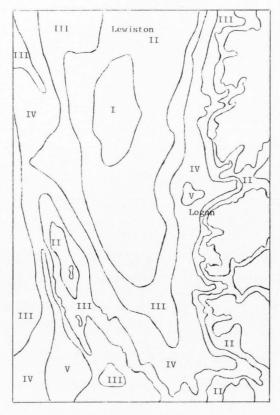



Figure 2. Freeze-free season in Cache Valley

Key:

| No. of days | Area |
|-------------|------|
| 80-100      | I    |
| 100-120     | II   |
| 120-140     | III  |
| 140-160     | IV   |
| 160-180     | V    |

Source: Richardson, Freeze-Free Seasons of State of Utah-Map and Table.

|      | Emergence date<br>emerge 80 GDD | Lewiston     | Logan<br>USU | Logan<br>USU Exp. Station |
|------|---------------------------------|--------------|--------------|---------------------------|
| Year | after planting                  | Date Temp.   | Date Temp.   | Date Temp.                |
| 1952 | May 12                          |              |              | May 16 26°F               |
| 1953 | June 9                          |              |              |                           |
| 1954 | May 14                          | May 28 25°F  |              | May 28 28°F               |
| 1955 | May 19                          | May 28 26°F  |              |                           |
| 1956 | May 19                          |              |              |                           |
| 1957 | May 15                          |              |              |                           |
| 1958 | May 16                          |              |              |                           |
| 1959 | May 30                          |              |              |                           |
| 1960 | May 16                          | June 21 27°F |              |                           |
| 1961 | May 27                          |              |              |                           |
| 1962 | May 12                          |              |              |                           |
| 1963 | May 14                          |              |              |                           |
| 1964 | May 21                          |              |              |                           |
| 1965 | May 24                          |              |              |                           |
| 1966 | May 8                           | May 23 26°F  |              | May 23 27°F               |
| 1967 | May 25                          |              |              |                           |
| 1968 | May 18                          |              |              |                           |
| 1969 | May 12                          |              |              |                           |
| 1970 | May 19                          |              |              |                           |
| L971 | May 14                          |              |              |                           |
| L972 | May 16                          |              |              |                           |
| .973 | May 18                          |              |              |                           |
| 974  | May 11                          |              |              |                           |

Table 23. Killing frosts in Cache Valley, 1952-1974

the drop will probably bounce back and one should not worry too much about replanting unless damaging temperatures existed over a long period of time. If, however, the minimum temperature reaches 27° F or lower, and is maintained for an hour or more, then replanting should be strongly considered.

The experimental corn trials performed at Utah State University in 1966 provide an interesting case study with regard to this marginal area of frost damage where replanting may be an alternative. The data from Table 29 (Appendix) show that a 27° F minimum temperature was recorded at the Utah State University Experiment Station on May 23, 1966. According to Table 28 (Appendix), emergence would have taken place on May eighth. A basis for comparison is established in this case because part of the experimental crop was left in the ground while the rest was replanted. As might be predicted from the 27° F minimum, this proved to be a marginal case where some varieties did slightly better on replanting while other varieties did better by leaving the original plant for recovery. There were some varieties which showed no apparent difference in yield between the replanted sector and that left for recovery. Table 24 shows a comparison of total digestible nutrients for the two cases in question.

The minimum temperature recorded at Lewiston, Utah on May 23, 1966 was 26° F (Table 29, Appendix). Since corn trials were not being conducted in that area at the time, one can only speculate. It is likely, though, that the results would have strongly favored replanting.

While the decision to replant is a matter of individual judgment in these marginal cases, there are times when this decision is unquestionably

|              | Yiel | d in ton |                  |     | urity |          | DN         | TDN              |  |
|--------------|------|----------|------------------|-----|-------|----------|------------|------------------|--|
| Corn variety | Re*  | P1**     | in tons<br>Re-Pl | Re  | P1    | in<br>Re | tons<br>Pl | in tons<br>Re-Pl |  |
| DeKalb       |      |          |                  |     |       |          |            |                  |  |
| 805 A        | 8.1  | 7.4      | +0.7             | 2.8 | 2.4   | 5.2      | 4.8        | +0.4             |  |
| 664          | 7.9  | 7.9      | 0                | 3.8 | 3.5   | 4.6      | 4.7        | -0.1             |  |
| 1051         | 7.4  | 7.9      | -0.5             | 4.8 | 4.0   | 3.7      | 4.4        | -0.7             |  |
| Exp. 613     | 7.4  | 7.1      | +0.3             | 3.6 | 3.3   | 4.4      | 4.4        | 0                |  |
| 640          | 7.1  | 6.8      | +0.3             | 3.5 | 3.4   | 4.3      | 4.1        | +0.2             |  |
| XL 385       | 7.0  | 7.7      | -0.7             | 4.0 | 2.9   | 3.9      | 4.9        | -1.0             |  |
| XL 369       | 7.0  | 6.7      | +0.3             | 3.6 | 3.5   | 4.1      | 4.0        | +0.1             |  |
| XL 361       | 6.7  | 6.9      | -0.2             | 3.0 | 2.8   | 4.3      | 4.4        | -0.1             |  |
| XL 362       | 6.7  | 6.8      | -0.1             | 2.6 | 1.9   | 4.3      | 4.5        | -0.2             |  |
| XL 65 A      | 5.9  | 5.9      | 0                | 3.0 | 3.0   | 3.8      | 3.8        | 0                |  |
| unks         |      |          |                  |     |       |          |            |                  |  |
| G 4680       | 7.4  | 7.2      | +0.2             | 4.1 | 3.9   | 4.0      | 4.1        | -0.1             |  |
| G 4601       | 7.1  | 7.2      | -0.1             | 3.1 | 3.4   | 4.5      | 4.4        | +0.1             |  |
| G 4697       | 7.1  | 6.9      | +0.2             | 2.6 | 3.0   | 4.6      | 4.4        | +0.2             |  |
| G 4390       | 6.6  | 6.6      | 0                | 3.3 | 2.5   | 4.1      | 4.3        | -0.2             |  |
| G 91         | 6.6  | 7.0      | -0.4             | 3.0 | 3.0   | 4.2      | 4.5        | -0.3             |  |
| G 17 A       | 6.3  | 5.6      | +0.7             | 1.0 | 1.0   | 4.4      | 3.9        | +0.5             |  |
| olden        |      |          |                  |     |       |          |            |                  |  |
| 450          | 6.9  | 6.4      | +0.5             | 2.5 | 1.8   | 4.5      | 4.3        | +0.2             |  |
| ortwalco     |      |          |                  |     |       |          |            |                  |  |
| PW 120       | 6.7  | 6.4      | +0.3             | 4.5 | 4.0   | 3.2      | 3.6        | -0.4             |  |
| PW 100       | 6.7  | 6.2      | +0.5             | 2.8 | 2.8   | 4.3      | 4.0        | +0.3             |  |

Table 24. A comparison of yields in TDNs for a number of varieties of corn in Cache Valley, 1966, when part of the corn was left in the ground after a hard frost and part was replanted

| Table | 24. | Cont | inued |
|-------|-----|------|-------|
|       |     |      |       |

|              | Yield | in tons | in tons | Mat | urity |     | DN<br>tons | TDN<br>in tons |
|--------------|-------|---------|---------|-----|-------|-----|------------|----------------|
| Corn variety | Re*   | P1**    | Re-P1   | Re  | P1    | Re  | P1         | Re-P1          |
| Kingscrost   |       |         |         |     |       |     |            |                |
| PX 616       | 7.4   | 7.2     | -0.2    | 2.4 | 3.3   | 4.8 | 4.7        | +0.1           |
| KT 623 A     | 7.0   | 6.3     | +0.7    | 2.4 | 2.5   | 4.6 | 4.1        | +0.5           |
| PX 610       | 6.7   | 6.0     | +0.7    | 2.6 | 1.6   | 4.3 | 4.1        | +0.2           |
| PX 676       | 6.7   | 6.4     | +0.3    | 3.3 | 2.5   | 4.1 | 4.2        | -0.1           |
| KM 589       | 6.5   | 5.6     | +0.9    | 2.6 | 2.6   | 4.2 | 3.6        | +0.6           |
| KE 497       | 6.5   | 4.9     | +1.6    | 2.1 | 1.0   | 4.3 | 3.4        | +0.9           |
| PX 674       | 6.4   | 6.4     | 0       | 3.6 | 3.1   | 3.8 | 4.0        | -0.2           |
| KT 665       | 6.3   | 6.9     | -0.6    | 3.1 | 4.0   | 4.0 | 3.9        | +0.1           |
| KE 449       | 4.9   | 4.3     | +0.6    | 1.4 | 1.0   | 3.4 | 3.0        | +0.4           |
| P.A.G.       |       |         |         |     |       |     |            |                |
| SX 29        | 7.4   | 7.7     | -0.3    | 4.0 | 4.0   | 4.1 | 4.3        | -0.2           |
| 395          | 6.7   | 6.3     | +0.4    | 3.8 | 2.8   | 3.9 | 4.1        | -0.2           |
| 437          | 6.7   | 6.2     | +0.5    | 3.6 | 2.6   | 4.0 | 4.0        | 0              |
| Utahybrid    |       |         |         |     |       |     |            |                |
| 33-30        | 7.2   | 7.9     | -0.7    | 2.6 | 2.2   | 4.7 | 5.2        | -0.5           |
| 680          | 6.7   | 6.4     | +0.3    | 2.0 | 2.0   | 4.4 | 4.2        | +0.2           |
| 54-40        | 6.6   | 6.0     | +0.6    | 2.1 | 2.5   | 4.3 | 3.9        | +0.4           |
| 544 A        | 5.8   | 5.5     | +0.3    | 1.6 | 1.0   | 3.9 | 3.9        | 0              |
| 216          | 4.4   | 3.8     | +0.6    | 1.4 | 1.0   | 3.0 | 2.7        | +0.3           |

\* Re = Crop frozen and replanted

\*\* Pl = Crop was frozen, but left in the ground and not replanted

resolved. For example, a 25° F frost was recorded at Lewiston, Utah on May 28, 1954 (Table 29, Appendix). Computed by the 70 GDD method, emergence would have been on May fourteenth. This definitely would have been a killing frost for corn and replanting would have been a necessity.

In the majority of cases, these late killing frosts come without warning. The cost of replanting, if it becomes necessary, is about twenty dollars per acre.<sup>25</sup> A new factor must be considered in the profit computations of Table 21 in order to account for the cost of replanting. This term is designated by  $a_6$  through  $a_{11}$ , depending on the replanting period, where:

The state of nature requiring replanting is designated as  $n_3$ '. Table 25 shows the schedule of profits per acre where replanting is necessary. Utah Hybrid 680 is not considered as a variety for replanting because of its long growing season. Utah Hybrid 330 is the best variety of the four to use in this case.

# Water shortage as a factor in corn variety selection

Cache Valley is not an area characterized by water shortage. Generous amounts of precipitation occur during the spring months and there is an

<sup>25</sup>Christensen, "Enterprise Budgets", p. 24.

|                                | 1    | Replant after bad frost n.<br>(Assume no frost after) | 3                    |
|--------------------------------|------|-------------------------------------------------------|----------------------|
| Available<br>actions           | GDD  | Yield TDNs<br>in tons/acre                            | Profit<br>in \$/acre |
| <sup>a</sup> 6 <sup>v</sup> 2  | 2179 | 5.32                                                  | 174.01               |
| a <sub>6</sub> v <sub>3</sub>  | 2179 | 5.40                                                  | 178.62               |
| <sup>a</sup> 6 <sup>v</sup> 4  | 2179 | 3.89                                                  | 91.73                |
| <sup>a</sup> 7 <sup>v</sup> 2  | 2117 | 5.16                                                  | 164.81               |
| <sup>a</sup> 7 <sup>v</sup> 3  | 2117 | 5.22                                                  | 168.26               |
| <sup>a</sup> 7 <sup>v</sup> 4  | 2117 | 3.82                                                  | 87.70                |
| <sup>a</sup> 8 <sup>v</sup> 2  | 2043 | 4.96                                                  | 153.30               |
| <sup>a</sup> 8 <sup>v</sup> 3  | 2043 | 5.02                                                  | 156.75               |
| <sup>a</sup> 8 <sup>v</sup> 4  | 2043 | 3.67                                                  | 79.07                |
| <sup>a</sup> 9 <sup>v</sup> 2  | 1965 | 4.76                                                  | 141.79               |
| <sup>a</sup> 9 <sup>v</sup> 3  | 1965 | 4.80                                                  | 144.09               |
| <sup>a</sup> 9 <sup>v</sup> 4  | 1965 | 3.51                                                  | 69.87                |
| $a_{10}v_2$                    | 1880 | 4.53                                                  | 128.56               |
| <sup>a</sup> 10 <sup>v</sup> 3 | 1880 | 4.57                                                  | 130.86               |
| <sup>a</sup> 10 <sup>v</sup> 4 | 1880 | 3.34                                                  | 60.08                |
| <sup>a</sup> 11 <sup>v</sup> 2 | 1788 | 4.30                                                  | 115.32               |
| <sup>a</sup> 11 <sup>v</sup> 3 | 1788 | 4.33                                                  | 117.05               |
| <sup>a</sup> 11 <sup>v</sup> 4 | 1788 | 3.16                                                  | 49.73                |

Table 25. Profit for replanting corn after a hard killing frost

abundance of stream flow from several rivers making supplemental irrigation water plentiful.<sup>26</sup> Only a few high bench areas have ever experienced water shortages in the past. In order, then, to consider the effects of water shortage on corn variety selection, reference is made here to a 1970 study conducted in Sevier County, Utah, where water is not as abundant as in Cache Valley.<sup>27</sup>

In that study, irrigation water available to the Sevier County farmer was estimated by a snowpack and reservoir storage measurements taken on April 1. Using this information and the decision theory process, predictions were made as to whether the water supply for that year would be poor, fair, good, or excellent. According to this study, annual supplies of water can be categorized into one of these types of water years: poor—1.84 acre feet (22.1 acre inches) per acre of land, fair—2.67 acre feet (32.0 acre inches) per acre of land, good—2.95 acre feet (35.4 acre inches) per acre of land, and excellent—3.25 acre feet (39.0 acre inches) per acre of land.

Comparative consumptive use requirements for the Cache and Sevier Valleys of Utah, shown in Table 26, have been calculated from data compiled by Milo E. Lyon.  $^{28}$ 

The work of R. W. Hill, et al., emphasizes the importance of timing in the application of water to maximize yields when the water supply is

 $<sup>^{26}</sup>$ U. S. Department of Commerce, Weather Bureau. Climatological Summarv, Climatography of the United States No. 20-42, Utah State University, Logan, Utah, 1941-1970.

<sup>&</sup>lt;sup>27</sup>Suwaphot Lakawathana, "An Application of Statistical Decision Theory to Farm Management in Sevier County, Utah", unpublished MS thesis, Utah State University Library, Logan, Utah (1970).

<sup>&</sup>lt;sup>28</sup>Milo E. Lyon, Watershed Planning Staff Engineer, Salt Lake City, Utah. Consumptive Use Computer Program, 1970.

|                                                |       |       |       |         | Мо    | nth    |        |      |       |       |       |       |
|------------------------------------------------|-------|-------|-------|---------|-------|--------|--------|------|-------|-------|-------|-------|
|                                                | Jan.  | Feb.  | Mar.  | Apr.    | May   | June   | July   | Aug. | Sept. | Oct.  | Nov.  | Dec.  |
| Cache Valley                                   |       |       |       |         | Wa    | ter (i | nches) |      |       |       |       |       |
| Normal consumptive use                         | 0.10  | 0.13  | 0.22  | 0.51    | 1.19  | 2.78   | 5.98   | 6.01 | 2.26  | 0.48  | 0.17  | 0.13  |
| Effective precipitation                        | 1.08  | 0.93  | 1.12  | 1.34    | 1.36  | 1.04   | 0.48   | 0.81 | 0.67  | 1.02  | 0.95  | 1.08  |
| Normal net irrigation<br>requirement           | -0.98 | -0.80 | -0.90 | -0.83   | -0.18 | 1.73   | 5.50   | 5.20 | 1.60  | -0.54 | -0.78 | -0.95 |
| Note: Soil moisture capa<br>Growing season = N |       |       |       | L22 day | vs)   |        |        |      |       |       |       |       |
| Sevier Valley                                  |       |       |       |         |       |        |        |      |       |       |       |       |
| Normal consumptive use                         | 0.14  | 0.17  | 0.32  | 0.57    | 1.52  | 3.27   | 6.40   | 6.43 | 3.30  | 0.56  | 0.22  | 0.15  |
| Effective precipitation                        | 0.38  | 0.40  | 0.59  | 0.47    | 0.54  | 0.48   | 0.73   | 0.70 | 0.35  | 0.43  | 0.38  | 0.41  |
| Normal net irrigation<br>requirement           | -0.24 | -0.23 | -0.26 | 0.10    | 0.98  | 2.79   | 5.66   | 5.73 | 2.95  | 0.13  | -0.16 | -0.25 |
| Note: Soil moisture capa<br>Growing season = N |       |       |       | 37 days | 5)    |        |        |      |       |       |       |       |

Table 26. Consumptive use schedule for the Cache Valley and Sevier Valley

short.<sup>29</sup> Their investigations show that the third growth stage, tassel to silk, is the critical time to meet the water requirement of the plant and to not put it under stress of insufficient moisture. If the corn plant has its full water requirement up to the end of the third growth stage, better than 90 percent of its potential yield will be realized even if the water supply is then cut off.

From the data of Tables 15, 30, 31, and 35, it is possible to predict when the third growth stage, tassel to silk, will occur. Estimations of those dates for each of the previous choices of action  $a_1$  through  $a_{11}$  are recorded in Table 27.

In Sevier County, the soil moisture would probably accommodate the net irrigation requirement for the month of May. Beyond that point, this requirement can be met by applications of two to three inches of irrigation water every seven to ten days.<sup>30</sup> Four lines have been drawn on Table 27 to represent the four types of water supplies: poor, fair, good, and excellent. From the April 1 snowpack and storage readings, the farmer will know what type of water supply to expect for that year. Any of the actions above the line in Table 27 corresponding to the predicted water supply will provide water to the end of the third growth stage of the corn plant and thus assure 90 percent or better of the yield potential of the variety planted.

There is one case where the farm manager would not have a choice of action above the corresponding line on Table 27. This situation would occur if a poor water supply was predicted and after planting there was a

<sup>29</sup>Hill, Hanks, Keller, and Rasmussen, "Predicting Corn Growth", p.

<sup>30</sup>Lyon, Consumptive Use Computer Program.

|                      |      |      |            |    |      |      |            | rowt | h stag | -        |            |    |      |          |            |     |               |          |
|----------------------|------|------|------------|----|------|------|------------|------|--------|----------|------------|----|------|----------|------------|-----|---------------|----------|
| Available<br>actions | Tas  |      | 4<br>to si | lk | Tass |      | 3<br>to si | lk   | Tass   | v<br>sel | 2<br>to si | lk | Tass | v<br>sel | l<br>to si | lk  |               |          |
|                      |      |      |            |    |      |      |            |      |        |          |            |    |      |          |            |     | Poor water    | supply   |
| <sup>a</sup> 1       | July | 10   | July       | 30 | July | 12   | Aug.       | 1    | July   | 16       | Aug.       | 3  | July | 17       | Aug.       | 6   |               |          |
| a <sub>2</sub>       | July | 13   | Aug.       | 2  | July | 15   | Aug.       | 4    | July   | 19       | Aug.       | 6  | July | 20       | Aug.       | 8   |               |          |
| <sup>a</sup> 3       | July | 16   | Aug.       | 5  | July | 18   | Aug.       | 7    | July   | 22       | Aug.       | 8  | July | 23       | Aug.       | 11  |               |          |
| a <sub>4</sub>       | July | 19   | Aug.       | 8  | July | 21   | Aug.       | 10   | July   | 25       | Aug.       | 11 | July | 26       | Aug.       | 14  |               |          |
| <sup>a</sup> 5       | July | 22   | Aug.       | 11 | July | 24   | Aug.       | 13   | July   | 28       | Aug.       | 15 | July | 29       | Aug.       | 17  |               |          |
| <sup>a</sup> 6       | July | 16   | Aug.       | 5  | July | 18   | Aug.       | 7    | July   | 22       | Aug.       | 8  | July | 23       | Aug.       | 11  |               |          |
| a <sub>7</sub>       | July | 20   | Aug.       | 9  | July | 22   | Aug.       | 11   | July   | 26       | Aug.       | 12 | July | 27       | Aug.       | 15  |               |          |
| a <sub>8</sub>       | July | 23   | Aug.       | 12 | July | 25   | Aug.       | 14   | July   | 29       | Aug.       | 16 | July | 30       | Aug.       | 18  | Fair water    | supply   |
| <sup>a</sup> 9       | July | 26   | Aug.       | 15 | July | 28   | Aug.       | 17   | July   | 31       | Aug.       | 18 | Aug. | 1        | Aug.       | 22  | Good water    | supply   |
| <sup>a</sup> 10      | July | 30   | Aug.       | 18 | Aug. | 1    | Aug.       | 20   | Aug.   | 4        | Aug.       | 24 | Aug. | 5        | Aug.       | 27  |               |          |
| a <sub>11</sub>      | Aug. | 3    | Aug.       | 21 | Aug. | 5    | Aug.       | 23   | Aug.   | 8        | Aug.       | 30 | Aug. | 9        | Sept       | . 3 | Excellent wat | er suppl |
| GDD                  | 88   | 0-12 | 28         |    | 9    | 18-1 | 1283       |      | 9      | 96-1     | 394        |    | 1    | 035-     | -1450      |     |               |          |

Table 27. Dates when third growth stage of corn is reached for various planting dates and varieties with lines drawn to show when water runs out with different water supplies

killing frost which only left action a<sub>7</sub> open. The farmer is then unable to pick an action which is above the line corresponding to the poor water supply. It would be best in this situation to plant a short season variety.

It can be noted from Table 27 that an excellent water supply permits the choice of any variety in combination with any course of action. Even with a fair water supply indication, most combinations of actions and varieties are open to the decision maker. The greater latitude of choice is open where a fair prospect exists. Only a few more choices are opened by good and excellent indicators over a fair reading.

As indicated in Table 28, the average annual precipitation in Cache Valley is over twice that of Sevier County.<sup>31</sup> Cache streamflows are much higher and last longer into the season, thus allowing most farmers to irrigate throughout the entire season. The discussion on water shortage as a factor in corn variety selection has been presented as a reference for the farm manager in the event that an abnormally dry year should occur in Cache Valley or a similar region and as an illustration of the method.

# Harvest considerations

There has been much discussion and perhaps even a little dispute about the best time for harvesting corn. Some of the key areas for consideration are: precipitation, fall frosts, maturity, and silage moisture content.

 $<sup>^{31}\</sup>text{U.S.}$  Department of Commerce, Weather Bureau. Logan and Richfield, Utah.

|                  |      |      |      |      |      |      | Month |      |       |      |      |      |        |
|------------------|------|------|------|------|------|------|-------|------|-------|------|------|------|--------|
| Area             | Jan. | Feb. | Mar. | Apr. | May  | June | July  | Aug. | Sept. | Oct. | Nov. | Dec. | Annual |
| Lewiston         | 1.70 | 1.43 | 1.60 | 1.96 | 1.99 | 1.92 | 0.46  | 0.98 | 1.02  | 1.38 | 1.59 | 1.61 | 17.64  |
| Logan (USU)      | 1.36 | 1.45 | 1.74 | 2.12 | 1.86 | 1.78 | 0.34  | 0.87 | 0.94  | 1.43 | 1.79 | 1.64 | 17.59  |
| Richfield (KSVC) | 0.57 | 0.65 | 0.79 | 0.79 | 0.72 | 0.61 | 0.78  | 0.72 | 0.69  | 0.66 | 0.59 | 0.59 | 8.16   |

 $T_{\rm able}$  28. Normal precipitation (inches) for Cache Valley and Sevier Valley, 1941-1970

<u>Precipitation</u>. Snow and rain are possible constraints on the growing season in Cache Valley. Although it could be a problem, snow does not generally stay on the ground long enough to interfere with the harvest. One of the earliest snows on record occurred on October 1, 1971, but the snow did not stay long enough to damage the harvest (Table 40, Appendix). According to Arlo Richardson, Climatologist at Utah State University, snow in Cache Valley does not begin to accumulate until late November or early December,<sup>32</sup> and frosts would have stopped the growth of the plant long before that time.

Rain is more of a problem than snow. The rain itself does not damage the corn, but if the soil gets too wet, the heavy equipment used for harvesting is unable to function properly. When cooler fall temperatures prevail and there is very little solar radiation, soil dries very slowly. With a one-inch rainfall and temperatures of about 60° F, the soil will take a week or two to dry sufficiently for harvesting the corn.<sup>33</sup> Table 38 (Appendix) gives moisture accumulations in the fall months near an expected normal harvest time. From these data, it is evident that there are not too many times when the farm manager can harvest and avoid the heavy moisture. A mid-September harvest would have been possible all of the years from 1952 to 1966 with the exception of 1965. Harvesting this early would minimize the risk of wet weather but would also shorten the growing season. The farm manager takes more of a risk by waiting until the last week of September to harvest, but he will also increase the yield. If harvest is delayed past the first few

 $^{32}$ Richardson, Utah State Climatologist, personal interview.

33 Ibid.

days of October, the risk factor is greatly increased. After the first ten days of the month, precipitation begins to accumulate more rapidly (Table 40, Appendix). This action is consistent with the recommendations in the planting date and planting sections of this study.

<u>Fall frosts</u>. Cool nights can be expected in the fall months in the valleys of northern Utah. By the last week in September, the probability of a 32° F frost is 50 percent, and by October 11 the probability of a 28° F frost is 50 percent.<sup>34</sup> The ideal situation is for the corn to reach maturity and be harvested without a frost, but this is not always possible in this climate since frosts are not always one hundred percent predictable. What can be done to minimize losses and maximize profits if an unpredicted frost hits? DeVere R. McAllister, Extension Agronomist at Utah State University, suggests three procedures that will help:

- "If the corn was in the eary glaze stage when frosted, harvest as soon as possible as further drying will make packing more difficult.
- If corn is immature (milk, early dough—partially dented), let it be, if the frost nips only the tops above the ears. Periodically check for the early glaze stage and harvest when ready. More growth will occur.
- 3. If corn is immature (milk or early dough—partially dented), and is frosted to below the ears or to the ground, let it dry several days in the field under bright, clear weather or a week in damp, cloudy weather. There will be no further growth during this delay but the moisture level in the stalks and ears will decrease allowing better storage and diminished leakage from the silage mass. The leaves on a mature, unfrosted corn plant make up only 15 percent of the total weight. Should they frost and blow off, you still have from 85 to 90 percent of the total left."<sup>35</sup>

<sup>34</sup>Richardson, Freeze-Free Seasons of State of Utah—Map and Table.
<sup>35</sup>McAllister, "More and Better Corn Silage", p. 3.

One of the real dangers of frost is that too much drying can take place. Most sources have stated that the ideal moisture level is between 60 and 70 percent for compacting and storage.

<u>Maturity</u>. All of the efforts expended during the growing season are culminated in the harvest. Determining the proper degree of maturity is an important factor in optimizing crop yield. There have been several methods suggested for testing maturity from extensive research done on this subject in recent years. The Northrup King Company, for example, suggests:

"One good way to determine whether or not your corn has matured is to split a kernel from tip to top (illustration B). It has completed its growth cycle when a tough black layer has formed just above the tip, (illustration A), which seals off the embryo and starchy endosperm. Once it reaches this state, corn will start to dry out naturally. No further grain development occurs."<sup>36</sup>

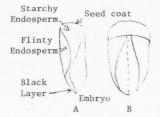



Figure 3. Sign of maturity, showing one method of determining maturity of the grain in corn silage.

DeVere R. McAllister, Extension Agronomist at Utah State University, makes the following suggestion on how to tell the corn is mature:

"The ideal time to harvest for safe storage and maximum milk or meat per acre is when the kernels begin to glaze, which is well past the time when hernels are just dented. It is later than you think by just looking at the plant and the outside of the ears. You can afford to let some of the lower leaves die and fall off rather than rush harvesting

<sup>36</sup>Northrup King Company, personal correspondence.

the crop with the grain still growing. In late August or early September, go into the field at least once a week and break the upper half off of several ears from scattered locations leaving the butt of the ear on the plant. Now examine, the kernels around the ring of the broken upper half of each ear. Using your fingernail, a pencil, a nail, or other pointed object, pierce the lower part of each kernel around the ring. If juice comes out, you are too early as starch is still being deposited in the kernels and maximum starch accumulation has not occurred. When the kernels have reached the hard-dough or early glaze stage, no juice will be evident and growth will have ceased—go ahead and harvest."<sup>37</sup>

Another method that has proven accurate and that is easy to use is the accumulation of growing degree days. This measure gives the farm manager up-to-date information as to how his crop is maturing and provides him with a means of making some projections as to what he will have to do at harvest. Will the crop reach full maturity? Through the accumulation of heat units, it can be noted whether or not the season has been as hot or as long as normal. If the season has been hotter than normal, the farmer can expect an early harvest. From Tables 33 and 35 in the Appendix, it is possible to predict the time of maturity by accumulating heat units. The growing degree day formula (page 24) is simple to use and calculations can be easily handled.

<sup>&</sup>lt;sup>37</sup>McAllister, "More and Better Corn Silage", p. 1.

#### SUMMARY AND CONCLUSIONS

In summary, this study has been accomplished for the purpose of aiding the farm manager in making better decisions with regard to the choices of action that will yield the best results in corn production when the constraints of variable nature are imposed. Although the unpredictability of weather conditions preclude any cut-and-dried answers, a foreknowledge of the states of nature that can occur and the relative advantages of certain courses of action to take when they do occur is a requisite for improving the decision process and, consequently, profit yield.

The process of corn production is analogous to playing the game of chess. It is impossible to predict exactly how the opponent will move, but it is possible to study his alternatives and to plan the strategy of a move to any one of those alternatives. So it is with corn production. The farm manager does not know when or how nature is going to move to thwart or aid him, but by studying the alternatives and planning a strategy for each, he stands a much better chance of making the right move when a given constraint is imposed at random.

Specifically, this study has considered the various states of nature that are likely to occur in any given year that will condition corn production, particularly in the Cache Valley area (e.g., water shortage, late planting date, spring or fall frosts, precipitation at harvest time). The study further evaluates each alternative course of action for these states of nature and makes recommendations pertinent to three major concerns of corn producers: when to plant, what variety to plant, and

when to harvest. Treatment is also given the matter of replanting after a damaging spring frost.

The April 1 observation of snowpack and water storage readings are the first indicator to have a bearing on planting decisions. The only way in which these decisions would be affected is if the reading predicted a poor water year, in which case the short-season varieties such as Utah hybrids 216 and 330 would be the only two that would have sufficient water to reach third stage, and hybrid 330 would bring in the most profit of the two (see Table 26). With a poor water supply indication, the farm manager would be better off to risk crop loss by frost and plant on the first planting date that he can get his equipment on the field. The longer the wait, the greater the chance of running out of water before third stage is reached, even with shortseason varieties.

In the event of either a fair or a good water supply reading, the only actions affected would be if a replant became necessary. Since the longer season varieties would be the shortest on water, it would be wise in the case of a replant to use a short season variety. An excellent water supply reading, such as is normal in Cache Valley, has no effect at all upon the actions to be taken.

The planting date criterion suggested in this paper is the seventy growing degree days accumulated in seven days method. Two significant advantages of this system are the simplicity in making measurements and the safer margin which it provides for avoidance of early frost damage. The only equipment needed by the farm manager serious about using this method for collection of data is a minimum-maximum thermometer for monitoring growing degree days in his own locality. This is important

because the growing season can vary significantly over a small area.

Along with a planting date, it is important to select an appropriate variety of corn to plant (see Table 21). Within the limits of the growing conditions imposed, the best variety would be either Utah Hybrid 544 or Utah Hybrid 330. (Other comparable season length varieties of other brand names are available for selection.)

The next major decision, that of replanting, is a consideration only when a damaging frost occurs. If the frost is a killing one (28° F or below and of sufficient duration), then it is most profitable to replant as many of the plants in the field will have been killed. Table 24 shows the profitability of the Utah Hybrids 544 (medium season), 330 (short season), and 216 (very short season). From the table, it is apparent that the short-season variety (Utah Hybrid 330) is the most profitable for replanting in Cache Valley.

The final decision, that of when to harvest, is contingent upon all of the preceding decisions and their outcomes. The chances are remote that there will be no setbacks during the growing season and that selection of a harvest date will merely be a matter of checking for optimum maturity. It is more reasonable to suppose that some of the factors mentioned earlier (frost, late planting date, precipitation) will have interferred with maturity so that it now becomes necessary to extend the growing season. This is a prime consideration since starches are deposited in the corn during the last growth stage.

There were three methods discussed in the previous section for determining the degree of maturity of the corn plant. This study recommends use of the accumulated growing degree days (GDD) to maturity for determining the approximate date of maturity. As this date approaches,

it is recommended that the farm manager use one of the two field tests discussed in order to determine exact harvest time.

Although the farmer in Cache Valley might be tempted to harvest by mid-September, it is recommended that harvest be deferred until at least the last week of September to allow for greater maturity, but not pushed beyond mid-October. The farm manager would be pressing his luck to go past the first ten days of October as precipitation begins to accumulate more rapidly after that date.

The threat of frost is probably not as serious as is the problem of excessive precipitation. Fall frosts will not force early harvest unless the plant is frosted in the stalks below the ears. Excessive precipitation, on the other hand, may render fields impassable by heavy harvesting equipment.

Trying to pinpoint an exact time of harvesting is like trying to predict on the stock market exactly when to sell a given stock—it can't be done. About all one can do is to study the indicators, be appraised of the risks involved, and know what risks they are willing to take in return for the potential of increased benefits. This study has attempted to equip the farm manager with a set of criteria that will enable him to employ a more systematic approach to the decision problems that, in the final analysis, he alone must make.

#### BIBLIOGRAPHY

- Andersen, Jay C., Harold H. Hiskey, and Suwaphot Lackawathana. "Application of Statistical Decision Theory to Water Use Analysis in Sevier County, Utah". <u>Water Resources Research</u>, VII (June 1971), 443-452.
- Ashcroft, Gaylen L. and W. J. Derksen. Freezing Temperature Probabilities in Utah. Agricultural Experiment Station, Utah State University Bulletin 439. 1963, pp. 3-35.
- Bullock, J. Bruce and S. H. Logan. "A Model for Decision Making Under Uncertainty". <u>Agricultural Economics Research</u>, XXI (October 1969), 109-115.
- Chernoff, H. and L. E. Moses. <u>Elementary Decision Theory</u>. New York: John Wiley and Sons, Inc., 1959.
- Christensen, Rondo A., Lynn H. Davis, and Stuart H. Richards. Enterprise Budgets for Farm and Ranch Planning in Utah. Agricultural Experiment Station, Utah State University Research Report 5. April 1973, pp. 1-61.
- Davis, Lynn H. Maximizing Incomes From Sevier County Farms. Agricultural Experiment Station, Utah State University Bulletin 451. March 1965, pp. 3-22.
- Dean, Gerald W. Decision theory models in range livestock research. Economic research in the use and development of range resources. Recreation use of the range resources decision theory models in range livestock research. Committee on the Economics of Range Use and Development of Western Agricultural Economics Research Council, Report 8, San Francisco, California, August 1966, pp. 111-138.
- Dillon, John L. and Earl O. Heady. Theories of choice in relation to farmer decisions. Agricultural and Home Economics Experiment Station, Iowa State University Research Bulletin 485. October 1960, pp. 905-928.
- Eidman, Vernon R., Gerald W. Dean, and Harold O. Carter. "An Application of Statistic Decision Theory to Commercial Turkey Production". Journal of Farm Economics, IL (1967), 852.
- Halter, A. N. A review of decision-making literature with a view of possibilities for research in decision-making processes of western ranchers. Economic research in the use and development of range resources. Development and evolution of research in range management decision making. Committee on the Economics of Range Use and Development of Western Agricultural Economics Research Council, Report 5, Laramie, Wyoming, July 1963, pp. 1-28.

- Halter, Albert N. and Gerald W. Dean. <u>Decisions Under Uncertainty</u>. Cincinnati, Ohio: South-Western Publishing Co., 1971.
- Hill, Kenneth Wilford. Professor of Plant Science, Utah State University. Personal interview, August 12, 1975.
- Hill, R. W., R. J. Hanks, J. Keller, and P. V. Rasmussen. Predicting corn growth as affected by water management: An example. Department of Agricultural and Irrigation Engineering, Utah State University, Logan, Utah. September 1974, pp. 1-18.
- Lakawathana, Suwaphot. An Application of Statistical Decision Theory to Farm Management in Sevier County, Utah. Unpublished MS thesis, Utah State University Library, Logan, Utah. 1970, pp. 1-79.
- Luce, R. D. and H. Raiffa. <u>Games and Decisions</u>. New York: John Wiley and Sons, Inc., 1958.
- Lyon, Milo E. Watershed Planning Staff Engineer, Salt Lake City, Utah. Consumptive Use Computer Program. 1970.
- May, Donald M. The effects of various nitrogen and moisture levels on the production of silage corn, grain corn, and sweet corn. Unpublished MS thesis, Utah State University Library, Logan, Utah. 1958.
- McAllister, DeVere R. Grain and Silage Corn Trials for Utah-1973. Plant Science Department, Utah State University, Logan, Utah.
- McAllister, DeVere R. More and Better Corn Silage Through Timely Harvest, "It's the Grain That Counts". Plant Science Department, Utah State University, Logan, Utah. August 1974.
- McAllister, DeVere R. Silage Corn Trials for Utah-1974. Plant Science Department, Utah State University, Logan, Utah.
- McConnen, R. J. Decision theory and range livestock operations. Economic research in the use and development of range resources. Adjustments in the range livestock industry. Committee on the Economics of Range Use and Development of Western Agricultural Economics Research Council, Report 3, Ft. Collins, Colorado, August 1961, pp. 61-90.
- McKinsey, J. C. C. <u>Introduction to the Theory of Games</u>. McGraw-Hill Book Company, Inc., 1952.
- "Modern Corn Production". <u>The Farm Quarterly</u>, Cincinnati, Ohio. 1966, p. 290.
- Nielson, Rex F. Corn Trials, 1953-1966. Department of Soil Science and Biometeorology, Utah State University, Logan, Utah.
- Raiffa, Howard and Robert Schlaifer. <u>Applied Statistical Decision Theory</u>. Division of Research Graduate School of Business Administration, Harvard University. Boston, Mass. 1961.

- Richardson, E. Arlo and Gaylen L. Ashcroft. "Freeze-Free Seasons of State of Utah"—Map and Table (Published jointly by Utah Agricultural Experiment Station, Utah State University, Logan, Utah and Department of Commerce, ESSA, Environmental Data Services).
- Richardson, E. Arlo. Utah State Climatologist, Department of Soil Science and Biometeorology, Utah State University. Personal interview, August 1975.
- Statistical Reporting Service, U. S. Department of Agriculture. Utah Agricultural Statistics—1973. Salt Lake City, Utah.
- Statistical Reporting Service, U. S. Department of Agriculture. Utah Agricultural Statistics—1975. Salt Lake City, Utah.
- U. S. Department of Commerce, Weather Bureau. Climatological Data, Utah—1952-1975.
- U. S. Department of Commerce, Weather Bureau. Climatological Summary, Climatography of the United States No. 20-42, Utah State University, Logan, Utah, 1941-1970.
- U. S. Department of Commerce, Weather Bureau. Climatological Summary, Climatography of the United States No. 20-42, Richfield, Utah, 1925-1954.
- Walker, Odell L., Earl O. Heady, Luther G. Tweeten, and John T. Pesek. Application of game theory models to decisions on farm practices and resource use. Agricultural and Home Economics Experiment Station, Iowa State University Research Bulletin 488. December 1960, pp. 979-1007.

APPENDIX

|                | Temp.          | GDD between<br>last spring |     |             |     |       |                |    | GDD between planting | _   | Yie       | eld (    | tons     | act | re)       | vari | ety       |
|----------------|----------------|----------------------------|-----|-------------|-----|-------|----------------|----|----------------------|-----|-----------|----------|----------|-----|-----------|------|-----------|
| Frost<br>dates | (Degrees<br>F) | and first<br>fall frosts   |     | nting<br>te |     | gence | Harve:<br>date |    | and harvest<br>dates |     | 80<br>TDN | 54<br>DW | 4<br>TDN |     | 30<br>TDN |      | 16<br>TDN |
| 1966 May 23    | 27             | 2177.5                     | May | 3           | May | 8     | Sept.          | 21 | 2412.0               | 6.4 | 4.2       | -        | -        | -   | -         | 3.8  | 2.7       |
| 1966 May 23    | 27             | 2177.5                     | May | 24          | May | 29    | Sept.          | 21 | 2177.5               | 6.7 | 4.4       | -        | -        | -   | -         | 4.4  | 3.0       |
| 1966 Oct. 4    | 27             |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1966 Oct. 5    | 32             |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1966 Oct. 10   | 29*            |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1966 Oct. 13   | 3 32           |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1966 Oct. 14   | 4 21           |                            |     |             |     |       |                |    |                      | *   |           |          |          |     |           |      |           |
| 1965 May 3     | 30             | 1962.5                     | May | 3           | May | 16    | Sept.          | 21 | 1985.0               | 8.3 | 5.5       | 6.9      | 4.5      | 7.0 | 4.9       | 4.6  | 3.2       |
| 1965 May 5     | 30             |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1965 May 6     | 25             |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1965 May 7     | 26             |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |
| 1965 Sept. 1   | 17 32          |                            |     |             |     |       |                |    |                      |     |           |          |          |     |           |      |           |

Table 29. Yields compared with frost dates and their intensities for the years 1959-1966

| Francis        | Temp           |                            |                  |        |                 | GDD between planting | Yi            | eld (ton:     | s/acre)       | variety       |
|----------------|----------------|----------------------------|------------------|--------|-----------------|----------------------|---------------|---------------|---------------|---------------|
| Frost<br>dates | (Degree:<br>F) | s and first<br>fall frosts | Planting<br>date |        | Harvest<br>date | and harvest<br>dates | 680<br>DW TDN | 544<br>DW TDN | 330<br>DW TDN | 216<br>DW TDN |
| 1965 Sept.     | 18 24          |                            |                  |        |                 |                      |               |               |               |               |
| 1965 Sept.     | 19 32*         |                            |                  |        |                 |                      |               |               |               |               |
| 1965 Sept.     | 20 28*         |                            |                  |        |                 |                      |               |               |               |               |
| 1965 Sept.     | 24 32          |                            |                  |        |                 |                      |               |               |               |               |
| 1964 May 2     | 30             | 1771.0                     | May 11           | May 17 | Sept. 14        | 1992.5               | 6.5 3.8       | 5.9 3.8       | 6.2 4.3       | 5.5 3.9       |
| 1964 May 3     | 25             |                            |                  |        |                 |                      |               |               |               |               |
| 1964 May 4     | 25             |                            |                  |        |                 |                      |               |               |               |               |
| 1964 May 5     | 32             |                            |                  |        |                 |                      |               |               |               |               |
| 1964 Aug. 3    | 0 32           |                            |                  |        |                 |                      |               |               |               |               |
| 1964 Sept.     | 19 31*         |                            |                  |        |                 |                      |               |               |               |               |
| 1964 Sept.     | 27 31*         |                            |                  |        |                 |                      |               |               |               |               |
| 1963 Oct. 2    | 4 29*          | 2381.0                     | May 8            | May 17 | 0ct. 2          | 2381.0               | 9.4 6.5       | 7.2 5.0       | 7.1 5.0       | 5.7 4.0       |
| 1963 Oct. 2    | 7 25           |                            |                  |        |                 |                      |               |               |               |               |

|                | Temp.          | GDD between<br>last spring |                  |           |                 | GDD between planting | Yie           | eld (tons     | acre)         | variety       |
|----------------|----------------|----------------------------|------------------|-----------|-----------------|----------------------|---------------|---------------|---------------|---------------|
| Frost<br>dates | (Degrees<br>F) | and first<br>fall frosts   | Planting<br>date | Emergence | Harvest<br>date | and harvest<br>dates | 680<br>DW TDN | 544<br>DW TDN | 330<br>DW TDN | 216<br>DW TDN |
| 1963 Oct. 2    | 28 26          |                            |                  |           |                 |                      |               |               |               |               |
| 1963 Oct. 3    | 31 30          |                            |                  |           |                 |                      |               |               |               |               |
| 1962 May 1     | 30*            | 1769.0                     | May 4            | May 10    | Sept. 10        | 1990.5               | 7.1 4.0       | 6.6 4.3       | 6.6 4.4       | 4.9 3.4       |
| 1962 June 7    | 7 30           |                            |                  |           |                 |                      |               |               |               |               |
| 1962 Sept.     | 9 30           |                            |                  |           |                 |                      |               |               |               |               |
| 1962 Sept.     | 30 29          |                            |                  |           |                 |                      |               |               |               |               |
| 1961 May 3     | 31*            | 2222.0                     | May 4            | May 16    | Sept. 24        | 2288.0               | 7.9 5.5       | 8.3 5.8       | 9.1 6.4       | 7.9 5.5       |
| 1961 May 5     | 24             |                            |                  |           |                 |                      |               |               |               |               |
| 1961 May 6     | 26             |                            |                  |           |                 |                      |               |               |               |               |
| 1961 May 8     | 32*            |                            |                  |           |                 |                      |               |               |               |               |
| 1961 May 13    | 3 30           |                            |                  |           |                 |                      |               |               |               |               |
| 1961 Sept.     | 14 32          |                            |                  |           |                 |                      |               |               |               |               |
| 1961 Sept.     | 22 30*         |                            |                  |           |                 |                      |               |               |               |               |

|                | Temp.          | GDD between<br>last spring |                  |         |                 | GDD between planting |               | ield (      | tons  | acre)        | variety       |
|----------------|----------------|----------------------------|------------------|---------|-----------------|----------------------|---------------|-------------|-------|--------------|---------------|
| Frost<br>dates | (Degrees<br>F) | and first<br>fall frosts   | Planting<br>date |         | Harvest<br>date | and harvest<br>dates | 680<br>DW TDN | 544<br>DW 1 |       | 330<br>W TDN | 216<br>DW TDN |
| 1961 Sept. 2   | 24 30          |                            |                  |         |                 |                      |               |             |       |              |               |
| 1961 Sept. 2   | 25 30*         |                            |                  |         |                 |                      |               |             |       |              |               |
| 1961 Sept. 2   | 7 30*          |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 May 18    | 32             | 1735.5                     | June 21          | June 26 | Sept. 23        | 1735.5               |               | 5.3 2       | .8 5  | 6 3.2        | 4.7 3.1       |
| 1960 May 19    | 32             |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 May 24    | 31*            |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 June 21   | 31*            |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 Oct. 9    | 32             |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 Oct. 13   | 32             |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 Oct. 14   | 28*            |                            |                  |         |                 |                      |               |             |       |              |               |
| 1960 Oct. 15   | 27             |                            |                  |         |                 |                      |               |             |       |              |               |
| L960 Oct. 16   | 30*            |                            |                  |         |                 |                      |               |             |       |              |               |
| 1959 May 3     | 28*            | 2019.0                     | May 8            | May 16  | Sept. 17        | 2125.5               | 5.8 3.7       | 6.0 4       | .1 6. | 2 4.3        | 4.834         |

|               | Temp.          | GDD between<br>last spring |                  |           |                 | GDD between planting | Yi            | eld (ton      | s/acre)       | variety       |
|---------------|----------------|----------------------------|------------------|-----------|-----------------|----------------------|---------------|---------------|---------------|---------------|
| rost<br>lates | (Degrees<br>F) | and first<br>fall frosts   | Planting<br>date | Emergence | Harvest<br>date | and harvest<br>dates | 680<br>DW TDN | 544<br>DW TDN | 330<br>DW TDN | 216<br>DW TDN |
| 1959 May 5    | 27             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 May 7    | 30             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 May 10   | 30             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 May 21   | 28             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 May 22   | 29             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 Sept. 2  | 9 32*          |                            |                  |           |                 |                      |               |               |               |               |
| 1959 Sept. 3  | 30*            |                            |                  |           |                 |                      |               |               |               |               |
| 1959 Oct. 2   | 30*            |                            |                  |           |                 |                      |               |               |               |               |
| 1959 Oct. 3   | 31             |                            |                  |           |                 |                      |               |               |               |               |
| 1959 Oct. 8   | 27*            |                            |                  |           |                 |                      |               |               |               |               |

\*Locally heavy frosts

Source: Data compiled from Tables 30, 31, 32, and 37.

|                        |            |   |   |   |   | - |   |   |   |      | _  |    |       | 1y        |     |      | ires | 5  |    |    |    |    | _       |    |    |    |          |          |                 | _  |
|------------------------|------------|---|---|---|---|---|---|---|---|------|----|----|-------|-----------|-----|------|------|----|----|----|----|----|---------|----|----|----|----------|----------|-----------------|----|
| Station                |            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9    | 10 | 11 | 12    | )ay<br>14 |     |      | 18   | 19 | 20 | 21 | 22 | 23 | 24      | 25 | 26 | 27 | 28       | 29       | 30              | 31 |
|                        |            |   |   |   |   |   |   |   |   |      |    |    |       | <br>      |     | <br> |      |    |    |    |    |    |         |    |    |    |          |          | 195             |    |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   | 1000 |    |    | 10.00 |           | 100 | 1000 |      |    |    |    | -  |    |         |    |    |    |          |          |                 |    |
| Logan USU              | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       | <br>      |     | <br> |      |    |    |    |    |    |         |    |    |    |          |          |                 |    |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       |           |     |      |      |    |    |    |    |    |         |    |    |    | 42       | 52       | 38              | 42 |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       | <br>      |     | <br> |      |    |    |    |    |    |         |    |    |    | 73       | 54       |                 | 76 |
| Logan USU              | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       |           |     |      |      |    |    |    |    |    |         |    |    |    |          |          | 48<br>37        |    |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       |           |     |      |      |    |    |    |    |    |         |    |    |    | 49       | 39       | 35              | 3  |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       |           |     |      |      |    |    |    |    |    |         |    |    |    | 86<br>45 | 88<br>48 | 64              |    |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   |      |    |    |       |           |     |      |      |    |    |    |    |    | - C. C. |    |    |    | 64       | 64       | 195<br>74<br>43 | 6  |

Table 30. Minimum and maximum daily temperatures for selected weather stations in Cache Valley for key months in the growing season, 1952-1975

|                        |            |   |   |   |   | _ |   |   |   |   |    | -  |    |           |  | ires | 5  |    |    |    |    |    |    |    |    |    |    |          |          |
|------------------------|------------|---|---|---|---|---|---|---|---|---|----|----|----|-----------|--|------|----|----|----|----|----|----|----|----|----|----|----|----------|----------|
| Station                |            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0ay<br>14 |  | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30       | 31       |
| Logan USU              | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    |    |    |          |          |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 28 |    | 42       | 3        |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 69 | 81 | 79       | 5        |
| Logan USU              | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    |    | 41 | 78<br>51 | -        |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 30 | 36 | 42       | 3        |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 67 |    | 82       | 8        |
| Logan USU              | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    |    |    | 48       | 80<br>54 |
| Logan USU<br>Exp. Sta. | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 46 | 50 | 43       | 4        |
| Lewiston               | Max<br>Min |   |   |   |   |   |   |   |   |   |    |    |    |           |  |      |    |    |    |    |    |    |    |    |    | 79 |    | 79       | 7        |

|           |     |    |    |    |    |    |    |    | -  |    |    |    |    |    |          |    |    |    | ITes | 5  |    |    |    |    |    |    |    | _  |    |     |    |    |
|-----------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|----|----|----|------|----|----|----|----|----|----|----|----|----|----|-----|----|----|
| Station   |     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |    | ay<br>14 |    |    |    | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29  | 30 | 31 |
| Station   |     | -  | -  | -  | 4  |    |    |    |    |    | 10 |    | 16 | 15 | 1.4      | 15 | 10 | 1/ | 10   | 15 | 20 |    | LL | 25 | 24 | 25 | 20 | 61 | 20 | 23  | 30 | 5. |
| Logan USU | Max |    |    |    |    |    | 77 |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    | 73 |    |     |    | 78 |
|           | Min | 45 | 49 | 39 | 36 |    |    | 52 | 51 | 49 | 48 | 47 | 43 | 45 | 43       | 40 | 45 | 43 | 45   | 44 | 38 | 36 | 38 | 39 | 41 | 40 | 45 | 47 | 48 | 52  |    | 49 |
| Logan USU | Max | 73 | 75 | 75 | 65 | 75 | 77 | 77 | 70 | 67 | 68 | 60 | 56 | 59 | 60       | 61 | 61 | 66 | 68   | 68 | 51 | 51 | 58 | 62 | 55 | 67 | 73 | 77 | 79 | 76  | 76 | 80 |
| Exp. Sta. | Min | 39 | 46 | 38 | 37 | 42 | 41 | 56 | 48 | 47 | 44 | 44 | 44 | 45 | 43       | 39 | 44 | 43 | 43   | 42 | 39 | 35 | 38 | 37 | 40 | 38 | 42 | 44 | 44 | 47  | 48 | 46 |
|           |     |    |    |    |    |    |    |    |    | _  |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    | May |    |    |
| Lewiston  | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    |     |    |    |
|           | Min | 20 | 30 | 32 | 30 | 30 | 38 | 40 | 43 | 38 | 45 | 40 | 40 | 39 | 39       | 30 | 3/ | 39 | 40   | 40 | 40 | 52 | 48 | 45 | 45 | 45 | 45 | 44 | 4/ | 42  | 42 | 30 |
| Logan USU | Max | 65 | 66 | 73 | 76 | 78 | 84 | 80 | 66 | 66 | 74 | 78 | 74 | 59 | 64       | 57 | 69 | 76 | 80   | 84 | 88 | 87 | 84 | 83 | 84 |    | 88 | 87 | 86 | 85  |    | 8  |
|           | Min | 37 | 40 | 43 | 45 | 46 | 56 | 44 | 40 | 44 | 47 | 51 | 44 | 41 | 41       | 41 | 43 | 46 | 50   | 51 | 52 | 54 | 55 | 54 | 53 | 55 | 56 | 54 | 52 |     |    | 4  |
| Logan USU | Max | 63 | 70 | 71 | 74 | 77 | 76 | 76 | 66 | 69 | 76 | 75 | 58 | 61 | 61       | 65 | 74 | 77 | 82   | 86 | 87 | 87 | 83 | 82 | 83 | 83 | 85 | 85 | 85 | 81  | 76 | 74 |
| Exp. Sta  | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    |     |    |    |
|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    | May |    |    |
| Lewiston  | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    |     |    |    |
|           | Min | 43 | 38 | 26 | 41 | 26 | 39 | 30 | 34 | 36 | 32 | 34 | 35 | 37 | 54       | 41 | 38 | 37 | 34   | 34 | 34 | 27 | 44 | 38 | 34 | 40 | 39 | 41 | 31 | 40  | 38 | 3  |
| Logan USU | Max | 76 | 75 | 49 | 58 | 58 | 60 | 61 | 67 | 71 | 73 | 64 | 70 | 81 | 84       | 80 | 80 | 60 | 62   | 61 | 55 | 54 | 66 | 60 | 62 | 72 | 71 | 64 | 57 | 65  | 68 | 6  |
|           | Min | 45 | 39 | 29 | 34 | 32 | 40 | 41 | 43 | 44 | 35 | 40 | 40 | 47 | 53       | 50 | 39 | 41 | 37   | 35 | 35 | 31 | 38 | 45 | 41 | 45 | 41 | 40 | 38 | 43  | 42 | 3  |
| Logan USU | Max | 75 | 75 | 50 | 58 | 58 | 56 | 64 | 66 | 66 | 56 | 68 | 78 | 83 | 83       | 75 | 73 | 56 | 56   | 53 | 45 | 58 | 58 | 61 | 69 | 69 | 60 | 53 | 61 | 60  | 58 | 6  |
| Exp. Sta. | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    | 34 |    |    |    |    |    |    |    |    | 41  |    |    |
|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    | une |    |    |
| Lewiston  | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |          |    |    |    |      |    |    |    |    |    |    |    |    |    |    |     |    |    |
|           | Min | 35 | 36 | 39 | 46 | 42 | 46 | 50 | 42 | 45 | 38 | 36 | 42 | 47 | 52       | 54 | 43 | 45 | 46   | 56 | 49 | 53 | 54 | 50 | 53 | 52 | 49 | 45 | 41 | 43  | 37 |    |
| Logan USU | Max | 69 | 75 | 78 | 84 | 82 | 87 | 90 | 72 | 80 | 84 | 73 | 84 | 93 | 87       | 90 | 82 | 85 | 88   | 88 | 83 | 89 | 92 | 91 | 91 | 90 | 88 | 68 | 67 | 69  | 57 |    |
|           | Min | 43 | 46 | 49 | 52 | 52 | 59 | 49 | 48 | 56 | 44 | 46 | 49 | 59 | 55       | 62 | 52 | 54 | 56   | 55 | 58 | 60 | 62 | 59 | 61 | 60 | 50 | 53 | 46 | 49  | 39 | 1  |

\_\_\_\_\_

|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    | ten        |     |     | ires | 3  |    |    |            |           |    |     |    |    |    |      |    | _   |
|-----------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|-----|-----|------|----|----|----|------------|-----------|----|-----|----|----|----|------|----|-----|
|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    | of         |     |     |      |    |    |    |            |           |    |     |    |    |    |      |    |     |
| Station   |     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15         | 16  | 17  | 18   | 19 | 20 | 21 | 22         | 23        | 24 | 25  | 26 | 27 | 28 | 29   | 30 | 1.1 |
| Logan USU | Max | 72 | 77 | 82 | 80 | 86 | 87 | 87 | 77 | 83 | 83 | 84 | 91 | 90 | 89 | 88         | 86  | 87  | 86   | 85 | 93 | 91 | 90         | 94        | 91 | 88  | 88 | 67 | 58 | 60   | 69 |     |
| Exp. Sta. | Min | 38 | 41 | 42 | 48 | 47 | 57 | 47 | 46 | 58 | 42 | 40 | 48 | 59 | 64 | 54         | 49  | 51  | 50   | 60 | 54 | 57 | 59         | 56        | 58 | 57  | 51 |    |    |      |    |     |
| Lewiston  | Max | 00 | 00 | 06 | 07 | 06 | 00 | 70 | 76 | 06 | 00 | 02 | 04 | 01 | 00 | 07         | 0.2 | 0.0 | 01   | 04 | 01 | OF | 0.5        | 0.0       | 04 | 0.5 | 00 |    |    | y 19 |    |     |
| Lewiscon  | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |    |            |     |     |      |    |    |    |            |           |    |     |    |    |    |      |    |     |
| Logan USU | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |    |            |     |     |      |    |    |    |            |           |    |     |    |    |    |      |    |     |
|           | Min | 47 | 52 | 56 | 47 | 57 | 58 | 58 | 44 | 49 | 49 | 54 | 60 | 63 | 61 | 59         | 60  | 59  | 57   | 63 | 59 | 58 | 61         | 56        | 57 | 59  | 64 | 64 | 56 | 52   | 57 |     |
| Logan USU | Max | 80 | 78 | 79 | 79 | 86 | 86 | 86 | 71 | 84 | 89 | 90 | 90 | 90 | 87 | 83         | 92  | 94  | 90   | 91 | 92 | 91 | 92         | 95        | 97 | 97  | 93 | 91 | 91 | 89   | 88 |     |
| Exp. Sta. | Min | 43 | 49 | 59 | 45 | 45 | 52 | 53 | 39 | 43 | 48 | 50 | 54 | 62 | 60 | 61         | 55  | 56  | 59   | 57 | 55 | 58 | 57         | 53        | 59 | 59  | 58 |    |    | 47   |    |     |
| Lewiston  | Max | 89 | 89 | 90 | 91 | 91 | 93 | 94 | 95 | 92 | 93 | 95 | 87 | 76 | 82 | 86         | 89  | 93  | 81   | 79 | 78 | 79 | 78         | 83        | 83 | 83  | 80 |    |    |      |    |     |
|           | Min | 61 | 55 | 57 | 50 | 51 | 45 | 48 | 39 | 55 | 43 | 49 | 55 | 50 | 34 | 39         | 40  | 42  | 57   | 52 | 51 | 45 | 41         | 39        | 42 | 48  | 47 | 43 | 47 | 41   | 39 | 4   |
| Logan USU | Max | 83 | 88 | 88 | 90 | 90 | 90 | 93 | 92 | 93 | 92 | 92 | 94 | 87 | 76 | 83         |     | 88  | 91   | 70 | 80 | 80 | 80         |           | 83 | 84  | 82 | 81 | 84 | 85   | 85 |     |
|           | Min | 63 | 60 | 61 | 58 | 56 | 58 | 55 | 53 | 61 | 59 | 58 | 57 | 55 | 47 | 46         |     | 55  | 59   | 54 | 53 | 51 | 50         |           | 49 | 53  | 55 | 52 | 51 | 47   | 52 | 1   |
| Logan USU | Max | 85 | 85 | 82 | 82 | 78 | 90 | 91 | 94 | 93 | 91 | 92 | 82 | 82 | 80 | 83         | 86  | 91  | 90   | 74 | 76 | 79 | 79         | 82        | 83 | 81  | 81 | 83 | 81 | 80   | 78 | -   |
| Exp. Sta. | Min | 63 | 58 | 59 | 57 | 57 | 53 | 54 | 49 | 58 | 53 | 58 | 58 | 55 | 40 | 46         | 49  | 50  | 62   | 52 | 54 | 50 | 47         | 45        | 49 | 54  | 52 |    |    |      |    |     |
| Lewiston  | Max | 77 | 90 | 07 | 02 | 01 | 02 | 00 | 01 | 00 | 02 | 00 | 00 |    | 00 | <i>c</i> . | "   | 61  | 70   |    | 67 | EO | <i>c</i> . | <b>61</b> | 62 | FO  | 50 |    |    | t.   |    |     |
| Lewiscon  | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |    |            |     |     |      |    |    |    |            |           |    |     |    |    |    |      |    |     |
| Logan USU | Max | 81 | 75 | 81 | 86 | 84 | 80 |    | 89 | 83 | 86 |    | 89 | 85 | 82 | 80         | 65  | 67  | 64   | 71 | 66 | 69 | 60         | 65        | 64 | 64  | 60 | 55 | 54 | 55   | 53 |     |
|           | Min | 44 | 48 | 45 | 56 | 51 | 48 |    | 57 | 45 | 48 |    | 55 | 60 | 55 | 51         | 44  | 46  | 47   | 50 | 45 | 49 | 37         | 43        | 44 | 45  | 43 | 40 | 35 | 32   | 33 |     |
| Logan USU | Max | 75 | 78 | 85 | 85 | 83 | 83 | 87 | 86 | 81 | 89 | 89 | 85 | 85 | 80 | 73         | 62  | 62  | 61   | 61 | 65 | 65 | 60         | 60        | 61 | 61  | 58 | 54 | 45 | 52   | 51 |     |
| Exp. Sta. |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |            |     |     |      |    |    |    |            |           |    |     |    |    |    |      |    |     |

|           |            |    |    |    |    |             |      |        |    |         |    |    |    | Dai | 1. | ter | nper | atu | TPO  |    |    |    |    |    |    |    |    |    |           |            |    |    |
|-----------|------------|----|----|----|----|-------------|------|--------|----|---------|----|----|----|-----|----|-----|------|-----|------|----|----|----|----|----|----|----|----|----|-----------|------------|----|----|
|           |            |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     | mor  |     | a cu |    |    |    |    |    |    |    |    |    |           |            |    | -  |
| Station   |            | 1  | 2  | 3  | 4  | 5           | 6    | 7      | 8  | 9       | 10 | 11 | 12 |     |    |     |      |     | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |    |           |            | 30 | 31 |
|           |            |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           | , 19       |    |    |
| Lewiston  | Max<br>Min |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |
| Logan USU | Max        | 57 | 59 | 63 | 65 | 67          | 73   | 70     | 49 | 51      |    | 62 | 69 | 64  | 63 | 64  | 72   | 63  | 65   | 70 | 65 | 66 | 58 | 58 | 65 | 73 | 71 | 61 | 62        | 52         | 45 | 48 |
|           | Min        |    |    |    |    |             | 0.00 |        |    | 100.000 |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            | 32 |    |
| Logan USU | Max        |    |    |    |    | - · · · · · |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |
| Exp. Sta. | Min        |    | 30 | 31 | 34 | 36          | 47   | 38     | 27 | 40      | 46 | 40 | 44 | 32  | 34 | 34  | 38   | 30  | 30   | 26 | 33 | 28 | 42 | 50 | 39 | 47 | 28 |    | 27<br>Jav | 30<br>196  |    | 2: |
| Lewiston  | Max        | 63 | 65 | 60 | 59 | 63          | 66   | 71     | 69 | 77      | 85 | 88 | 88 | 72  | 66 | 72  | 71   | 66  | 47   | 58 | 70 | 57 | 60 | 65 | 67 | 67 | 75 |    |           |            |    | 82 |
|           | Min        | 30 | 46 | 39 | 40 | 39          | 34   | 34     | 39 | 38      | 40 | 43 | 47 | 43  | 30 | 29  | 40   | 30  | 33   | 30 | 32 | 47 | 34 | 38 | 30 | 32 | 34 | 49 | 34        | 34         | 41 | 44 |
| Logan USU | Max        |    |    |    |    |             |      | 10.100 |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            | 81 |    |
|           | Min        | 38 | 42 | 39 | 40 | 36          | 40   | 40     | 43 | 43      | 50 | 53 | 55 | 42  | 37 | 40  | 46   | 37  | 33   | 32 | 37 | 52 | 32 | 44 | 35 | 37 | 43 | 51 | 41        | 45         | 52 | 51 |
| Logan USU | Max        | 64 | 64 | 63 | 60 | 65          | 68   | 70     | 70 | 77      | 83 | 88 | 86 | 83  | 67 | 72  | 70   | 67  | 60   | 57 | 69 | 69 | 61 | 63 | 65 | 66 | 75 | 72 | 70        | 80         | 82 | 82 |
| Exp. Sta. | Min        |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |
|           |            |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           | e 19       |    |    |
| Lewiston  | Max        |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |
|           | Min        | 41 | 37 | 38 | 38 | 35          | 37   | 44     | 48 | 36      | 38 | 37 | 38 | 38  | 45 | 52  | 43   | 51  | 42   | 44 | 37 | 25 | 32 | 42 | 36 | 38 | 42 | 44 | 42        | 39         | 39 |    |
| Logan USU | Max        | 82 | 81 | 84 | 87 |             |      | 86     | 81 | 81      | 78 | 74 | 73 | 81  | 82 | 81  | 76   | 81  | 78   | 85 | 83 | 72 | 70 | 80 | 80 | 85 | 89 | 87 | 86        | 88         | 87 |    |
|           | Min        | 51 | 51 | 52 | 51 |             |      | 48     | 53 | 47      | 49 | 48 | 50 | 52  | 55 | 57  | 52   | 56  | 50   | 57 | 53 | 37 | 40 | 49 | 51 | 54 | 56 | 56 | 57        | 53         | 55 |    |
| Logan USU | Max        |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |
| Exp. Sta. | Min        | 47 | 47 | 47 | 44 | 42          | 46   | 55     | 51 | 43      | 46 | 44 | 47 |     | 51 | 51  | 49   | 61  | 49   | 55 | 49 | 31 | 40 | 45 | 46 | 48 | 50 |    |           | 49<br>v 19 |    |    |
| Lewiston  | Max        | 91 | 87 | 84 | 88 | 86          | 87   | 85     | 88 | 90      | 87 | 89 | 92 | 93  | 94 | 96  | 95   | 97  | 96   | 99 | 99 | 99 | 97 | 90 | 89 | 94 | 10 |    |           |            |    | 8  |
|           | Min        |    |    |    |    |             |      |        |    |         |    |    |    |     |    |     |      |     |      |    |    |    |    |    |    |    |    |    |           |            |    |    |

|           |            |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    | ires | 5   | _  |     |     |    |     |    |     |    |    |      |    |   |
|-----------|------------|-----|----|-----|-----|-----|----|-----|----|----|-----|----|-----|----|-----|-----|-----------|----|------|-----|----|-----|-----|----|-----|----|-----|----|----|------|----|---|
| Station   |            | 1   | 2  | 3   | 4   | 5   | 6  | 7   | 8  | 9  | 10  | 11 | 12  |    | -   |     | mor<br>16 |    | 18   | 19  | 20 | 21  | 22  | 23 | 24  | 25 | 26  | 27 | 28 | 29   | 30 | 3 |
| oracion   |            | -   |    |     |     |     | 0  |     |    |    | 10  |    | 14  | 15 | 14  | 1.5 | 10        | 11 | 10   | 1/  | 20 |     |     | 25 | 2.4 |    | 20  |    | 20 |      | 30 | - |
| ogan USU  | Max        | 87  | 89 | 84  | 81  | 87  | 87 | 89  | 86 | 90 | 89  | 88 | 90  | 92 | 94  | 94  | 95        | 95 | 97   | 98  | 98 | 99  | 100 | 97 | 7   | 90 | 94  | 96 | 97 | 92   | 95 | 9 |
|           | Min        | 56  | 57 | 56  | 55  | 60  | 59 | 59  | 57 | 59 | 62  | 59 | 56  | 57 | 64  | 58  | 55        | 64 | 67   | 65  | 61 | 65  | 62  | 65 |     | 60 | 64  | 57 | 67 | 64   | 65 | 6 |
| ogan USU  | Max        | 90  | 89 | 83  | 86  | 83  | 87 | 87  | 89 | 91 | 87  | 88 | 91  | 95 | 94  | 95  | 96        | 95 | 95   | 97  | 98 | 99  | 97  | 95 | 92  | 93 | 99  | 97 | 95 | 95   | 95 | 8 |
| Exp. Sta. | Min        | 49  | 52 | 54  | 49  | 54  | 59 | 55  | 51 | 53 | 58  | 51 | 49  | 62 | 55  | 52  | 52        | 54 | 59   | 58  | 57 | 58  | 58  | 66 | 54  | 56 | 56  |    |    |      |    |   |
|           |            | ~ ~ | ~~ | ~ . | ~ ~ | ~ ~ |    | ~ ~ |    |    | ~ ~ |    | ~ . |    | ~ ~ | ~   |           |    | ~ ~  | ~ ~ |    | ~ ~ | ~ - |    |     |    | ~ ~ |    |    | . 19 |    |   |
| Lewiston  | Max<br>Min |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    |      |    |   |
|           | min        | 20  | 41 | 49  | 4/  | 47  | 49 | 44  | 50 | 41 | 52  | 50 | 49  | 22 | 59  | 20  | 44        | 51 | 41   | 43  | 40 | 50  | 42  | 34 | 42  | 22 | 30  | 30 | 34 | 34   | 39 | - |
| Logan USU | Max        | 84  | 87 | 86  | 93  | 90  | 92 | 89  | 92 | 91 | 91  | 95 | 93  |    | 93  | 93  | 84        | 56 | 76   | 84  | 90 | 93  | 92  | 82 | 66  | 66 | 70  | 84 | 75 | 74   |    | 9 |
|           | Min        | 61  | 54 | 53  | 58  | 57  | 60 | 58  | 56 | 61 | 59  | 61 | 60  |    | 62  | 59  | 46        | 40 | 45   | 50  | 56 | 63  | 71  | 37 | 42  | 41 | 48  | 49 | 43 | 45   |    |   |
| ogan USU  | Max        | 85  | 88 | 95  | 91  | 91  | 90 | 92  | 91 | 91 | 94  | 95 | 95  | 92 | 94  | 85  | 76        | 75 | 85   | 90  | 95 | 93  | 91  | 65 | 66  | 71 | 83  | 81 | 73 | 84   | 90 | 8 |
| Exp. Sta. | Min        | 60  | 49 | 53  | 54  | 52  | 54 | 52  | 52 | 51 | 60  | 55 | 56  | 59 | 63  | 55  | 46        | 37 | 45   | 48  | 52 | 55  | 44  | 35 | 43  | 36 | 40  | 47 | 38 | 38   | 46 | 5 |
|           |            |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    | t.   |    |   |
| ewiston   | Max        |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    |      |    |   |
|           | Min        | 56  | 56 | 58  | 54  | 53  | 48 | 50  | 39 | 38 | 36  | 46 | 42  | 48 | 41  | 41  | 38        | 55 | 37   | 36  | 38 | 50  | 46  | 36 | 35  | 39 | 42  | 38 | 42 | 36   | 37 |   |
| Logan USU | Max        | 87  | 78 | 84  |     | 85  | 85 | 84  | 83 | 76 | 81  | 81 | 77  | 87 | 84  | 77  | 78        | 82 | 81   | 79  | 82 | 81  | 71  | 69 | 73  | 74 | 80  | 83 | 82 | 77   | 81 |   |
|           | Min        | 57  | 58 | 61  |     | 54  | 54 | 57  | 48 | 50 | 49  | 57 | 55  | 56 | 47  | 47  | 48        | 51 | 50   | 47  | 50 | 50  | 48  | 43 | 46  | 48 | 50  | 49 | 54 | 49   | 47 |   |
| Logan USU | Max        | 80  | 85 | 83  | 85  | 84  | 85 | 82  | 80 | 81 | 84  | 87 | 87  | 86 | 83  | 79  | 83        | 78 | 79   | 84  | 83 | 79  | 70  | 73 | 75  | 82 | 85  | 85 | 79 | 82   | 80 |   |
| Exp. Sta. | Min        |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    |      |    |   |
|           |            |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    | . 1  |    |   |
| Lewiston  | Max        |     |    |     |     |     |    |     |    |    |     |    |     |    |     |     |           |    |      |     |    |     |     |    |     |    |     |    |    |      |    |   |
|           | Min        | 38  | 31 | 31  | 32  | 32  | 33 | 46  | 40 | 32 | 33  | 36 | 40  | 31 | 26  | 26  | 25        | 27 | 33   | 29  | 30 | 32  | 33  | 30 | 33  | 27 | 28  | 26 | 34 | 37   | 16 |   |
| Logan USU | Max        | 77  | 78 | 76  | 78  | 76  | 77 | 77  | 71 | 49 | 47  | 52 | 56  | 55 | 49  | 51  |           | 60 | 66   | 67  | 63 | 61  | 67  | 70 | 71  | 67 | 64  | 68 | 54 | 49   | 47 |   |
|           | Min        | 47  | 43 | 47  | 45  | 45  | 47 | 51  | 48 | 33 | 33  | 37 | 42  | 33 | 29  | 33  |           | 30 | 39   | 40  | 40 | 43  | 43  | 41 | 44  | 34 | 38  | 32 | 34 | 37   | 24 |   |

-----

|           |     |    |     |    |    |     |    |    |     |    |    | _  |    |    | _  | -  | -   | -   | ires | 5  |    |    |    |    |    | _  |    |    |    |            |    | _  |
|-----------|-----|----|-----|----|----|-----|----|----|-----|----|----|----|----|----|----|----|-----|-----|------|----|----|----|----|----|----|----|----|----|----|------------|----|----|
|           |     |    |     |    |    |     |    |    |     |    |    |    |    | I  | ay | of | mor | nth |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
| Station   |     | 1  | 2   | 3  | 4  | 5   | 6  | 7  | 8   | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16  | 17  | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29         | 30 | 3  |
| Logan USU | Max | 78 | 77  | 79 | 79 | 79  | 79 | 75 | 64  | 44 | 52 | 51 | 55 | 50 | 50 | 60 | 62  | 69  | 67   | 66 | 70 | 67 | 74 | 72 | 66 | 65 | 71 | 65 | 49 | 47         | 50 | 50 |
| Exp. Sta. | Min | 42 | 39  | 38 | 41 | 39  | 39 | 48 | 42  | 32 | 35 | 36 | 41 | 32 | 28 | 27 | 27  | 30  | 37   | 33 | 35 | 36 | 36 | 34 | 37 | 30 | 31 |    |    | 36<br>196  |    | 24 |
| Lewiston  | Max | 73 | 62  | 60 | 60 | 52  | 50 | 50 | 65  | 76 | 80 | 63 | 52 | 65 | 62 | 55 | 56  | 71  | 65   | 75 | 68 | 70 | 80 | 93 | 95 | 95 | 91 |    |    |            | 51 |    |
| Sewiscon  | Min |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
| Logan USU | Max | 72 | 77  | 64 | 71 | 64  | 55 | 61 |     | 67 | 77 | 81 | 69 | 56 | 69 | 63 | 52  | 61  | 72   | 69 | 77 | 75 | 76 | 81 | 86 | 85 | 87 |    | 86 | 77         |    |    |
|           | Min | 41 | 41  | 37 | 39 | 27  | 30 | 38 |     | 41 | 52 | 40 | 38 | 36 | 41 | 41 | 38  | 39  | 43   | 42 | 55 | 46 | 47 | 52 | 50 | 52 | 56 |    | 57 | 54         |    |    |
| Logan USU | Max | 74 | 72  | 67 | 65 | 52  | 60 | 60 | 65  | 71 | 80 | 67 | 60 | 67 | 65 | 58 | 57  | 71  | 69   | 76 | 76 | 73 | 80 | 83 | 84 | 84 | 81 | 79 | 84 | 83         | 74 | 79 |
| Exp. Sta. | Min | 36 | 40  | 31 | 38 | 24  | 26 | 38 | 32  | 37 | 49 | 38 | 39 | 30 | 34 | 33 | 37  | 34  | 42   | 40 |    | 42 | 42 | 45 | 51 | 52 |    |    |    | 56<br>e 19 | 49 | 39 |
| Lewiston  | Max | 80 | 66  | 67 | 66 | 70  | 75 | 78 | 82  | 84 | 90 | 86 | 77 | 72 | 76 | 75 | 82  | 84  | 88   | 88 | 88 | 89 | 88 | 84 | 88 | 89 | 90 |    |    |            |    |    |
|           | Min |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
| Logan USU | Max | 73 | 80  | 61 | 65 | 70  | 72 | 83 | 82  | 88 | 86 | 88 | 88 | 77 | 79 | 83 | 84  | 86  | 92   | 94 | 93 | 94 | 93 | 94 | 90 | 92 | 93 | 90 | 91 | 89         | 92 |    |
|           | Min | 58 | 45  | 44 | 47 | 47  | 49 | 54 | 54  | 52 | 55 | 55 | 56 | 48 | 50 | 59 | 56  | 58  | 60   | 62 | 60 | 60 | 59 | 61 | 59 | 60 | 60 | 66 | 61 | 61         | 65 |    |
| Logan USU | Max |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
| Exp. Sta. | Min |    | 40  | 40 | 47 | 47  | 45 | 45 | 48  | 47 | 49 | 50 | 53 | 44 | 46 | 49 | 50  | 52  | 50   | 48 | 53 | 53 | 53 | 55 | 55 | 54 | 54 |    |    |            |    |    |
|           |     | ~~ | ~ ~ | ~  |    | ~ . |    |    | ~ . |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    | y 1        |    |    |
| Lewiston  | Max |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
|           | Min | 42 | 39  | 46 | 60 | 50  | 55 | 56 | 53  | 52 | 50 | 48 | 46 | 46 | 56 | 49 | 53  | 56  | 49   | 49 | 54 | 51 | 46 | 52 | 56 | 62 | 56 | 58 | 54 | 60         | 58 | 57 |
| Logan USU | Max |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
|           | Min | 52 | 55  | 61 | 60 | 56  | 58 | 66 | 61  | 61 | 60 | 58 | 58 | 58 | 62 | 59 | 61  | 60  | 62   | 58 | 60 | 59 | 58 | 62 | 65 | 64 | 65 | 66 | 64 | 68         | 67 | 6  |
| Logan USU | Max |    |     |    |    |     |    |    |     |    |    |    |    |    |    |    |     |     |      |    |    |    |    |    |    |    |    |    |    |            |    |    |
| Exp. Sta. | Min | 45 | 45  | 53 | 61 | 52  | 58 | 62 | 54  | 55 | 54 | 51 | 51 | 53 | 60 | 55 | 57  | 59  | 54   | 56 | 59 | 56 | 52 | 50 | 51 | 50 | 59 | 62 | 56 | 64         | 63 | 60 |

\_

|           |            |            |    |    |    |    |    |     |     |    |    |    |    |     | ily |     |    |     |    | s  |    |    |     |    |     |     |    |                  |    |      |      |    |
|-----------|------------|------------|----|----|----|----|----|-----|-----|----|----|----|----|-----|-----|-----|----|-----|----|----|----|----|-----|----|-----|-----|----|------------------|----|------|------|----|
|           |            |            |    |    |    |    |    |     |     |    |    |    |    |     | Day | of  | mo | nth |    |    |    |    |     |    |     |     |    |                  |    |      |      |    |
| Station   |            | 1          | 2  | 3  | 4  | 5  | 6  | 7   | 8   | 9  | 10 | 11 | 12 | 13  | 14  | 15  | 16 | 17  | 18 | 19 | 20 | 21 | 22  | 23 | 24  | 25  | 26 | 27               | 28 | 29   | 30   | 3  |
| Lewiston  | Max        |            |    |    |    |    |    |     |     |    |    |    |    |     |     |     |    |     |    |    |    |    |     |    |     |     |    |                  | 4  |      | 0.00 | -  |
|           | Max<br>Min | 51         | 54 | 53 | 54 | 59 | 62 | 56  | 56  | 55 | 91 | 91 | 82 | 85  | 89  | 93  | 81 | 88  | 90 | 95 | 87 | 89 | 90  | 90 | 79  | 83  | 82 | 89               | 90 | 77   | 80   | 80 |
|           |            |            |    |    | 24 | 37 | 02 | 20  | 00  | 55 | 50 | 52 | 01 | 54  | 47  | 49  | 23 | 48  | 41 | 48 | 64 | 52 | 48  | 49 | 50  | 55  | 51 | 48               | 50 | 56   | 48   | 49 |
| Logan USU | Max        | 87         | 93 | 95 | 96 | 93 | 91 | 85  | 84  | 89 | 86 | 93 | 85 | 81  | 88  | 86  | 84 | 78  | 81 |    | 96 |    | 88  | 92 | 88  | 80  | 83 | 84               | 00 | 90   | 07   | 0. |
|           | Min        | 58         | 64 | 67 | 64 | 67 | 65 | 59  | 59  | 57 | 63 | 62 | 60 | 58  | 56  | 61  | 57 | 56  | 59 |    | 64 |    |     |    |     |     |    |                  |    | 62   |      |    |
| Logan USU | Max        | 03         | 05 | 06 | 06 | 02 | 05 | 0.0 | 0.0 | 07 | ~~ | ~~ |    | ~ ~ | ~ ~ |     |    |     |    |    |    |    |     |    |     |     |    |                  |    |      |      |    |
| Exp. Sta. | Max        | 54         | 60 | 58 | 58 | 63 | 62 | 57  | 60  | 8/ | 90 | 90 | 88 | 86  | 88  | 90  | 81 | 87  | 93 | 96 | 92 | 90 | 91  | 90 | 88  | 83  | 83 | 90               | 91 | 89   | 81   | 8  |
|           | Min        |            | 00 | 20 | 50 | 05 | 02 | 57  | 00  | 55 | 57 | 50 | 00 | 22  | 52  | 51  | 57 | 50  | 52 | 57 | 69 | 57 | 53  | 54 | 59  | 57  | 54 |                  |    |      |      |    |
| Lewiston  | Max        | 77         | 68 | 71 | 75 | 80 | 84 | 85  | 82  | 75 | 75 | 78 | 65 | 70  | 77  | 84  | 73 | 76  | 60 | 50 | 57 | 50 | 53  | 52 | 55  | 61  |    | < 0 <sup>°</sup> | 10 | t. 1 |      |    |
|           | Min        | 59         | 42 | 33 | 33 | 36 | 44 | 45  | 43  | 53 | 44 | 51 | 36 | 33  | 29  | 47  | 46 | 50  | 51 | 44 | 41 | 40 | 27  | 32 | 28  | 27  | 33 | 26               | 35 | 52   | 29   |    |
|           |            |            |    |    |    |    |    |     |     |    |    |    |    |     |     |     |    |     |    |    |    |    |     |    |     | - / | 55 | 20               | 35 | 41   | 20   |    |
| Logan USU | Max        | 80         | 81 | 64 | 72 | 76 | 78 | 81  | 81  | 82 | 75 | 75 | 77 | 69  | 72  | 77  | 82 | 70  | 77 | 56 | 55 | 54 | 52  | 57 | 60  |     | 64 | 68               | 69 | 62   | 55   |    |
|           | Min        | 03         | 43 | 39 | 41 | 48 | 55 | 54  | 53  | 52 | 50 | 53 | 40 | 40  | 40  | 54  | 58 | 54  | 49 | 44 | 44 | 41 | 34  | 35 | 34  |     | 33 | 37               | 37 | 45   | 34   |    |
| Logan USU | Max        | 82         | 78 | 67 | 75 | 80 | 85 | 85  | 81  | 74 | 74 | 77 | 78 | 72  | 77  | 8/1 | 81 | 75  | 60 | 50 | 50 | 50 | 5.2 |    | 5.2 |     |    | -                |    |      |      |    |
| Exp. Sta. | Min        | 58         | 42 | 34 | 36 | 41 | 50 | 46  | 43  | 53 | 48 | 52 | 38 | 36  | 32  | 50  | 55 | 53  | 47 | 43 | 44 | 40 | 30  | 34 | 30  | 30  | 69 | 70               | 67 | 67   | 60   |    |
|           |            |            |    |    |    |    |    |     |     |    |    |    |    |     |     |     |    |     |    |    |    |    |     |    |     |     |    |                  | 1- |      |      |    |
| Lewiston  | Max        | 64         | 68 | 74 | 76 | 76 | 78 | 75  | 81  | 76 | 77 | 73 | 70 | 67  | 57  | 58  | 63 | 58  | 65 | 75 | 65 | 45 | 59  | 70 | 59  | 63  | 64 | < 0 <sup>-</sup> |    | 10   | -    | 71 |
|           | Min        | 27         | 34 | 41 | 51 | 41 | 40 | 43  | 44  | 48 | 39 | 45 | 36 | 42  | 38  | 37  | 38 | 41  | 33 | 41 | 41 | 36 | 36  | 33 | 44  | 35  | 38 | 41               | 40 | 45   | 39   | 41 |
| Logan USU | Max        | 56         | 67 | 72 | 72 | 78 | 81 | 81  | 75  | 78 | 82 | 78 | 76 | 60  | c., |     |    |     | 50 | -  |    |    |     |    |     |     |    |                  |    |      |      |    |
| 0         | Min        | 35         | 41 | 42 | 52 | 50 | 50 | 49  | 54  | 54 | 56 | 54 | 40 | 41  | 43  | 38  | 30 | 00  | 30 | 10 | /4 | 63 | 62  | 59 | 72  | 64  | 59 | 66               | 63 | 58   | 65   | 75 |
|           |            |            |    |    |    |    |    |     |     |    |    |    |    |     |     |     |    |     |    |    |    |    |     |    |     |     |    |                  |    |      |      |    |
| Logan USU | Max        | 65         | 69 | 74 | 76 | 78 | 79 | 80  | 81  | 81 | 77 | 73 | 68 | 62  | 62  | 56  | 64 | 63  | 68 | 74 | 73 | 55 | 60  | 70 | 66  | 60  | 64 | 63               | 58 | 64   | 73   | 70 |
| Exp. Sta. | Min        | <b>3</b> 0 | 38 | 45 | 49 | 44 | 45 | 48  | 49  | 53 | 43 | 48 | 37 | 41  | 38  | 37  | 36 | 43  | 34 | 42 | 39 | 35 | 41  | 35 | 42  | 38  | 38 | 43               | 40 | 41   | 43   | 43 |
| Lewiston  |            |            |    |    |    |    |    |     |     |    |    |    |    |     |     |     |    |     |    |    |    |    |     |    |     |     |    | 1                |    | . 10 | 100  |    |
| Lewiston  | Max        | 6/         | 30 | 6/ | 32 | 63 | 52 | 64  | 73  | 80 | 85 | 83 | 82 | 84  | 79  | 65  | 70 | 73  | 84 | 86 | 82 | 86 | 84  | 87 | 90  | 93  | 94 | 02               | 00 | 07   | 00   |    |
|           | Min        | 41         | "  | 4/ | 52 | 40 | 29 | 29  | 54  | 38 | 40 | 43 | 45 | 43  | 41  | 41  | 36 | 38  | 42 | 44 | 56 | 45 | 48  | 49 | 51  | 47  | 48 | 49               | 48 | 47   | 53   |    |

|                        |            |     |     |    |          |     |     |    |     |     |    |    |    |     | 1y |     |     |    | ires | 5  |    |    |    |     |    |     |    |          |    | 1    |     |     |
|------------------------|------------|-----|-----|----|----------|-----|-----|----|-----|-----|----|----|----|-----|----|-----|-----|----|------|----|----|----|----|-----|----|-----|----|----------|----|------|-----|-----|
|                        |            |     |     |    |          |     |     |    |     |     |    |    |    |     | ay |     |     |    |      |    |    |    |    |     |    |     |    |          |    |      |     |     |
| Station                |            | 1   | 2   | 3  | 4        | 5   | 6   | 7  | 8   | 9   | 10 | 11 | 12 | 13  | 14 | 15  | 16  | 17 | 18   | 19 | 20 | 21 | 22 | 23  | 24 | 25  | 26 | 27       | 28 | 29   | 30  | 31  |
| Logan USU              | Max        | 73  | 79  | 75 | 76       | 59  | 66  | 52 | 68  | 73  | 80 | 81 | 86 | 84  | 82 | 80  | 69  | 72 | 74   | 78 | 86 | 82 | 85 | 84  | 88 | 90  | 92 | 93       | 92 | 89   | 76  |     |
|                        | Min        | 47  | 46  | 55 | 33       | 37  | 42  | 34 | 40  | 47  | 53 | 54 | 54 | 51  | 48 | 54  | 42  | 44 | 53   | 51 | 51 | 55 | 56 | 58  | 58 | 60  | 57 | 66       | 57 | 59   | 59  |     |
| Logan USU              | Max        | 74  | 73  | 73 | 58       | 64  | 65  | 63 | 70  | 78  | 85 | 85 | 83 | 85  | 86 | 75  | 69  | 73 | 83   | 86 | 82 | 84 | 85 | 89  | 90 | 92  | 92 | 91       | 90 | 89   | 85  |     |
| Exp. Sta.              | Min        | 43  | 42  | 48 | 34       | 40  | 40  | 30 | 35  | 38  | 46 | 58 | 50 | 46  | 53 | 51  | 46  | 40 | 45   | 49 | 57 | 49 | 52 | 54  | 54 | 52  | 52 |          |    |      |     |     |
| Lewiston               | Max        | 00  | 95  | 85 | 83       | 01  | 01  | 02 | 02  | 01  | 02 | 04 | 02 | 75  | 77 | 91  | 02  | 00 | 97   | 97 | 02 | 04 | 04 | 05  | 00 | 05  | 07 |          |    | y 19 |     | 0.5 |
| Dewiscon               | Min        |     |     |    |          |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    |          |    |      |     |     |
| Logan USU              | Max        | 87  | 83  | 83 | 85       | 82  | 88  | 87 | 88  | 93  | 89 | 89 | 91 |     | 70 | 82  | 81  | 82 | 88   | 87 | 85 | 91 | 94 | 78  | 82 | 91  | 79 | 86       | 81 | 85   | 89  | 89  |
|                        | Min        | 63  | 53  | 54 | 53       | 54  | 58  | 57 | 57  | 54  | 58 | 57 | 59 | 54  | 48 | 51  | 52  | 54 | 57   | 55 | 55 | 57 | 62 | 56  | 59 | 57  | 58 | 55       | 53 | 56   | 59  | 60  |
| Logan USU              | Max        | 86  | 86  | 83 | 82       | 87  | 88  | 88 | 92  | 90  | 89 | 92 | 92 | 87  | 75 | 82  | 83  | 87 | 88   | 84 | 90 | 93 | 91 | 83  | 89 | 85  | 84 | 80       | 85 | 87   | 87  | 8   |
| Exp. Sta.              | Min        | 60  | 50  | 50 | 47       | 46  | 55  | 52 | 53  | 51  | 52 | 51 | 68 | 51  | 47 | 47  | 48  | 52 | 50   | 50 | 52 | 49 | 59 | 61  | 64 | 55  | 53 |          |    |      |     |     |
| Logan USU              |            | 0.0 | 0.5 |    | 00       | 0.5 |     | ~  | 0.0 | 0.0 | ~  |    | 07 | ~ 1 | ~~ |     | 07  | 00 | 00   |    | ~~ |    | -  | 0.0 |    |     | 00 |          |    | . 1  |     |     |
| Logan 030              | Max<br>Min |     |     |    |          |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    | 90<br>63 |    |      |     |     |
| Logan USU              | Max        | 84  | 87  | 88 | 86       | 81  | 83  | 88 | 89  | 89  | 86 | 83 | 91 | 92  | 94 | 96  | 94  | 86 | 88   | 87 | 90 | 86 | 80 | 75  | 80 | 88  | 89 | 82       | 77 | 75   | 70  | 75  |
| Exp. Sta.              | Min        | 48  | 49  | 55 | 61       | 49  | 45  | 51 | 57  | 69  | 50 | 46 | 49 | 51  | 51 | 52  | 57  | 57 | 56   | 52 | 49 | 56 | 57 | 39  | 39 | 41  | 50 |          |    |      |     |     |
| 1                      |            |     |     |    |          | 0.0 | 0.0 |    | ~   | -   |    |    |    | 00  | -  | 0.0 | 0.0 | ~  | ~    | ~  |    |    |    | -   |    | 0.1 | -  |          | _  |      | 196 |     |
| Logan USU              | Max<br>Min |     |     |    | 85<br>50 |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    | 80<br>53 |    |      |     |     |
| I                      |            | ~ ~ | ~ ~ |    | ~ -      | ~ * | ~ - |    |     |     |    |    |    | ~   |    | ~ . | ~-  |    | ~ ~  | ~~ |    |    |    |     |    |     |    |          |    |      |     |     |
| Logan USU<br>Exp. Sta. | Max        |     |     |    |          |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    |          |    |      |     |     |
|                        |            |     |     |    |          |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    |          |    | 19   |     |     |
| Lewiston               | Max<br>Min |     |     |    |          |     |     |    |     |     |    |    |    |     |    |     |     |    |      |    |    |    |    |     |    |     |    |          |    |      |     |     |

-

|                        |            |    |    |     |    |    |    |    |    | _  |    |    |     |    | 11y |     |     |     | ires | 5  |    |     |     |    |     |     |    |    |    |      |    |      |
|------------------------|------------|----|----|-----|----|----|----|----|----|----|----|----|-----|----|-----|-----|-----|-----|------|----|----|-----|-----|----|-----|-----|----|----|----|------|----|------|
|                        |            |    |    |     |    |    |    | _  |    |    |    |    |     |    | ay  |     |     |     |      |    |    |     |     |    |     |     |    |    |    |      |    |      |
| Station                |            | 1  | 2  | 3   | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12  | 13 | 14  | 15  | 16  | 17  | 18   | 19 | 20 | 21  | 22  | 23 | 24  | 25  | 26 | 27 | 28 | 29   | 30 | 3    |
| Logan USU              | Max        | 72 | 58 | 65  | 70 | 73 | 79 | 81 | 72 | 70 | 65 | 73 | 58  | 58 | 70  | 77  | 72  | 71  | 78   | 80 | 79 | 79  | 76  | 84 | 71  | 65  | 66 | 75 | 79 | 80   | 81 | 7    |
|                        | Min        | 43 | 40 | 42  | 46 | 48 | 48 | 55 | 47 | 48 | 38 | 39 | 38  | 38 | 44  | 44  | 42  | 45  | 48   | 48 | 46 | 51  | 56  | 56 | 51  | 48  | 45 | 46 | 49 | 53   | 49 | 5    |
| logan USU              | Max        | 67 | 64 | 68  | 72 | 77 | 80 | 80 | 72 | 70 | 71 | 65 | 63  | 68 | 74  | 71  | 70  | 75  | 78   | 77 | 78 | 80  | 82  | 75 | 70  | 67  | 74 | 77 | 81 | 79   | 79 | 7    |
| Exp. Sta.              | Min        | 41 | 38 | 39  | 44 | 42 | 41 | 50 | 48 | 48 | 37 | 35 | 37  | 33 | 39  | 43  | 36  | 41  | 45   | 43 | 41 | 44  | 48  | 48 | 51  | 47  | 42 | 42 | 43 | 49   | 44 | 4    |
| LICH                   |            |    |    |     |    |    |    |    |    |    |    |    | ~   |    |     |     |     | ~ ~ |      |    |    |     |     |    |     |     |    |    |    | e 19 |    |      |
| Logan USU<br>Exp. Sta. | Max<br>Min |    |    |     |    |    |    |    |    |    |    |    |     |    |     |     |     |     |      |    |    |     |     |    |     |     |    |    |    |      |    |      |
| xp. sta.               | min        | 40 | 40 | 40  | 44 | 45 | 41 | 40 | 40 | 41 | 40 | 49 | 42  | 04 | 50  | 45  | 51  | 49  | 4/   | 51 | 54 | 57  | 41  | 43 | 44  | 40  | 41 |    |    | v 19 |    |      |
| ewiston                | Max        | 79 | 93 | 92  | 93 | 90 | 90 | 83 | 94 | 93 | 89 | 89 | 82  | 86 | 88  | 85  | 89  | 85  | 91   | 85 | 90 | 92  | 94  | 92 | 94  | 95  | 89 |    |    |      |    |      |
|                        | Min        | 37 | 54 | 48  | 51 | 50 | 47 | 50 | 56 | 57 | 54 | 45 | 46  | 46 | 51  | 54  | 48  | 44  | 47   | 44 | 45 | 51  | 59  | 56 | 56  | 49  | 46 | 39 | 39 | 48   | 43 | 1    |
| ogan USU               | Max        | 79 | 82 | 91  | 92 | 90 | 88 | 84 | 94 | 93 | 90 | 85 | 82  | 81 | 87  | 87  | 88  | 88  | 87   | 85 | 90 | 91  | 95  | 92 | 95  | 92  | 87 | 82 | 84 | 89   | 90 |      |
|                        | Min        | 51 | 56 | 62  | 63 | 62 | 56 | 60 | 70 | 64 | 65 | 53 | 51  | 55 | 59  | 58  | 58  | 57  | 56   | 55 | 60 | 62  | 67  | 66 | 69  | 59  | 50 | 48 | 53 | 58   | 58 | is a |
| Logan USU              | Max        | 91 | 90 | 90  | 88 | 88 | 88 | 93 | 93 | 87 | 87 | 84 | 85  | 85 | 85  | 86  | 85  | 90  | 90   | 89 | 90 | 92  | 90  | 94 | 92  | 91  | 87 | 84 | 88 | 90   | 89 |      |
| Exp. Sta.              | Min        | 42 | 63 | 53  | 63 | 52 | 51 | 55 | 46 | 52 | 57 | 50 | 48  | 49 | 54  | 50  | 52  | 48  | 52   | 48 | 53 | 56  | 62  | 61 | 57  | 55  | 47 |    |    |      |    |      |
| Lewiston               |            | 00 |    | 0.0 | 00 |    | ~~ |    | ~~ |    |    |    | ~~  |    |     | ~ . | ~ ~ | ~ ~ |      | ~~ | ~~ | ~ ~ |     |    | ~ ~ | ~ · |    |    |    | . 1  |    |      |
| Lewiston               | Max<br>Min |    |    |     |    |    |    |    |    |    |    |    |     |    |     |     |     |     |      |    |    |     |     |    |     |     |    |    |    |      |    |      |
|                        |            | 40 | 45 | 51  | 50 | 40 | ,, | 01 | ,, | 01 | 50 | 52 | 50  | 40 | 51  | 55  | 47  | 24  | 40   | 40 | 50 | 45  | 4.5 | 4) | 51  | 54  | 43 | 40 | 40 | 40   | 47 |      |
| Logan USU              | Max        |    |    |     |    |    |    |    |    |    |    |    |     |    |     |     |     |     |      |    |    |     |     |    |     |     |    |    |    |      |    |      |
|                        | Min        | 60 | 56 | 64  | 62 | 59 | 63 | 62 | 62 | 66 | 64 | 64 | 60  | 62 | 64  | 63  | 59  | 62  | 60   | 59 | 57 | 59  | 57  | 59 | 65  | 62  | 56 | 56 | 54 | 52   | 59 | 1    |
| ogan USU               | Max        | 91 | 90 | 89  | 88 | 91 | 89 | 88 | 90 | 90 | 89 | 90 | 92  | 95 | 95  | 93  | 92  | 94  | 89   | 88 | 87 | 87  | 81  | 81 | 84  | 85  | 85 | 86 | 85 | 90   | 88 |      |
| Exp. Sta.              | Min        | 55 | 51 | 60  | 61 | 52 | 60 | 64 | 59 | 65 | 61 | 55 | 56  | 56 | 57  | 57  | 52  | 57  | 54   | 56 | 51 | 48  | 48  | 51 | 50  | 59  | 48 |    |    |      |    |      |
| ewiston                | Mare       | 72 | 7/ | 0.2 |    | 00 | 00 |    | 00 | 0/ | 01 | 01 | 0.0 | 00 |     | 60  | 00  |     | 70   | () | 77 | 70  |     | 75 | 70  | 75  | 70 |    |    | t.   |    |      |
| Lewiscon               | Max<br>Min |    |    |     |    |    |    |    |    |    |    |    |     |    |     |     |     |     |      |    |    |     |     |    |     |     |    |    |    |      |    |      |

\_

|           |     |     |    |    |     |    |     |    |    |     |    |    |    |     |    | ten |    |    | ires | 5  |    |    |    |    |    |     |    |    | _  |      |    | _ |
|-----------|-----|-----|----|----|-----|----|-----|----|----|-----|----|----|----|-----|----|-----|----|----|------|----|----|----|----|----|----|-----|----|----|----|------|----|---|
|           |     |     |    |    |     | _  |     | -  |    |     |    |    |    |     |    | of  |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
| Station   |     | 1   | 2  | 3  | 4   | 5  | 6   | 7  | 8  | 9   | 10 | 11 | 12 | 13  | 14 | 15  | 16 | 17 | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25  | 26 | 27 | 28 | 29   | 30 | 3 |
| ogan USU  | Max | 74  | 80 | 79 | 85  | 82 | 84  | 69 | 81 | 86  | 86 | 82 | 87 | 87  |    | 72  | 80 | 75 | 69   | 61 | 74 | 76 | 69 | 75 | 75 | 73  | 76 | 80 | 81 | 81   | 81 |   |
|           | Min | 55  | 53 | 54 | 54  | 56 | 63  | 59 | 56 | 55  | 57 | 58 | 59 | 56  |    | 50  | 50 | 48 | 53   | 51 | 54 | 48 | 48 | 48 | 45 | 49  | 49 | 51 | 52 | 53   | 54 |   |
| ogan USU  | Max | 76  | 81 | 86 | 88  | 87 | 78  | 81 | 86 | 88  | 87 | 90 | 91 | 85  | 71 | 80  | 68 | 71 | 65   | 76 | 76 | 67 | 77 | 74 | 75 | 80  | 82 | 83 | 83 | 83   | 85 |   |
| xp. Sta.  | Min | 51  | 48 | 49 | 46  | 50 | 62  | 58 | 52 | 53  | 52 | 49 | 51 | 55  | 48 | 43  | 42 | 47 | 51   | 49 | 50 | 48 | 44 | 45 | 43 | 42  | 42 |    |    |      |    |   |
| ewiston   | Max | 97. | 02 | 92 | 02  | 01 | 9/. | 02 | 90 | 76  | 70 | 77 | 70 | 61. | 52 | 45  | 71 | 72 | 71   | 71 | 62 | "  | 62 | 60 |    | 56  | 62 |    |    | . 19 |    | , |
| -CWISLOII | Min |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           |     |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
| ogan USU  | Max |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           | Min | 54  | 50 | 53 | 55  | 57 | 51  | 51 | 52 | 52  | 44 | 48 | 48 | 42  | 41 | 42  | 42 | 42 | 46   | 45 | 45 | 41 | 41 | 47 | 33 | 34  | 40 | 29 | 32 | 34   | 36 |   |
| ogan USU  | Max | 84  | 83 | 84 | 81  | 76 | 78  | 80 | 80 | 78  | 78 | 80 | 73 | 53  | 66 | 70  | 73 | 73 | 74   | 69 | 78 | 67 | 70 | 64 | 58 | 68  | 65 | 59 | 56 | 64   | 50 | - |
| Exp. Sta. | Min | 45  | 42 | 44 | 50  | 55 | 47  | 44 | 43 | 54  | 48 | 43 | 52 | 43  | 35 | 38  | 36 | 37 | 40   | 40 | 42 | 36 | 37 | 45 | 29 | 43  | 38 |    |    |      |    |   |
| ewiston   | Max | 61. | 56 | 50 | 1.6 | 61 | 1.2 | 57 | 5/ | 55  | 65 | 62 | 50 | 69  | 70 | 77  | 70 | 96 | 72   | 70 | 91 | 9/ | 90 | 76 | 72 | 77  | 70 |    |    | 190  |    |   |
| Sew13con  | Min |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           |     |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
| Logan USU | Max |     |    | -  |     | _  |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           | Min | 43  | 30 | 26 | 29  | 33 | 32  | 35 | 39 | 40  | 43 | 38 | 38 | 45  | 49 | 49  | 56 | 52 | 44   | 48 | 57 | 51 | 52 | 48 | 46 | 54  | 53 | 48 | 44 | 42   | 44 |   |
| ogan USU  | Max | 60  | 45 | 45 | 56  | 56 | 56  | 67 | 55 | 62  | 64 | 68 | 69 | 77  | 76 | 78  | 83 | 81 | 78   | 84 | 83 | 81 | 77 | 71 | 76 | 78  | 77 | 75 | 59 | 61   | 65 |   |
| Exp. Sta. | Min | 40  | 30 | 25 | 25  | 32 | 38  | 37 | 40 | 40  | 47 | 36 | 32 | 45  | 45 | 43  | 43 | 48 | 39   | 43 | 45 | 48 | 49 | 43 | 38 | 55  | 50 |    |    |      |    |   |
| ewiston   | Max | 71  | 75 | 70 | 71  | 70 | 75  | 02 |    | = 0 | 17 |    |    | 70  | 70 | 71  | 70 |    | 5.2  |    |    |    |    |    | 76 | 00  | 01 |    |    | e 1  |    |   |
| Lewiston  | Min |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           |     |     |    |    |     |    | 51  | 40 | 40 | - 5 | -1 | 45 | 40 |     |    |     | 50 | 40 |      | -1 | 30 | -1 | -0 | 42 |    | - 5 | 51 | 51 | 54 |      | 50 |   |
| ogan USU  | Max |     |    |    |     |    |     |    |    |     |    |    |    |     |    |     |    |    |      |    |    |    |    |    |    |     |    |    |    |      |    |   |
|           | Min | 45  | 53 | 49 | 48  | 54 | 53  | 46 | 44 | 42  | 43 | 42 | 44 | 43  | 46 | 51  | 51 | 47 | 43   | 42 | 41 | 45 | 40 | 45 | 50 | 51  | 60 | 63 | 57 | 57   | 57 |   |

|           |            |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    | ires | 5   |     |    |     |     |    |    |    |       |    |      |    | _ |
|-----------|------------|----|-----|----|----|----|-----|-----|-----|----|----|-----|----|----|----|----|----|----|------|-----|-----|----|-----|-----|----|----|----|-------|----|------|----|---|
|           |            |    |     |    |    |    |     |     |     |    |    |     |    |    |    | of |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
| Station   |            | 1  | 2   | 3  | 4  | 5  | 6   | 7   | 8   | 9  | 10 | 11  | 12 | 13 | 14 | 15 | 16 | 17 | 18   | 19  | 20  | 21 | 22  | 23  | 24 | 25 | 26 | 27    | 28 | 29   | 30 | 3 |
| Logan USU | Max        | 77 | 78  | 75 | 78 | 75 | 75  | 71  | 60  | 67 | 68 | 65  | 71 | 69 | 74 | 72 | 70 | 62 | 65   | 62  | 66  | 64 | 67  | 76  | 82 | 89 | 91 | 84    | 84 | 85   | 86 |   |
| Exp. Sta. | Min        | 43 | 56  | 48 | 43 | 54 | 51  | 47  | 44  | 45 | 42 | 45  | 41 | 48 | 43 | 48 | 50 | 47 | 43   | 40  | 38  | 43 | 39  | 42  | 44 | 48 | 52 | 1.2.1 |    |      |    |   |
|           |            |    | 0.0 | 00 |    | ~~ | 0.0 | ~ - | ~ * | ~  |    | ~ 7 | ~~ | ~~ | ~~ | ~~ | ~~ | ~~ |      | ~ ~ | ~ ~ | ~  | ~ · | ~ ~ | ~  |    |    |       |    | y 19 |    |   |
| Lewiston  | Max<br>Min |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
| Logan USU | Max        |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
|           | Min        | 56 | 58  | 54 | 60 | 53 | 53  | 57  | 60  | 63 | 54 | 57  | 59 | 63 | 67 | 62 | 58 | 53 | 54   | 61  | 61  | 62 | 58  | 59  | 54 | 54 | 57 | 60    | 64 | 62   | 63 | 6 |
| ogan USU  | Max        | 89 | 93  | 87 | 88 | 85 | 87  | 91  | 93  | 92 | 87 | 90  | 93 | 92 | 87 | 88 | 88 | 94 | 93   | 92  | 90  | 90 | 90  | 91  | 89 | 89 | 90 | 93    | 93 | 93   | 94 |   |
| Exp. Sta. | Min        | 47 | 51  | 49 | 47 | 48 | 48  | 51  | 50  | 60 | 49 | 54  | 59 | 59 | 63 | 55 | 51 | 53 | 58   | 52  | 51  | 55 | 55  | 58  | 49 | 47 | 50 |       |    | . 19 |    |   |
| Lewiston  | Max        | 90 | 80  | 80 | 01 | 03 | 87  | 01  | 02  | 01 | 03 | 02  | 87 | 87 | 85 | 86 | 90 | 91 | 99   | 01  | 69  | 69 | 71. | 91  | 07 | 96 | 96 |       |    |      |    |   |
| DEWISCON  | Min        |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
| Logan USU | Max        | 86 | 88  | 88 | 92 | 90 | 90  | 87  | 92  | 92 | 95 | 88  | 82 | 81 | 86 | 83 | 89 | 84 | 90   | 87  | 71  | 68 | 76  | 83  | 89 | 84 | 87 | 82    | 71 | 63   | 67 |   |
| U         | Min        |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
| Logan USU | Max        | 86 | 87  | 91 | 95 | 93 | 90  | 92  | 90  | 93 | 90 | 88  | 86 | 85 | 85 | 87 | 85 | 87 | 88   | 85  | 68  | 73 | 81  | 85  | 86 | 85 | 80 | 70    | 67 | 75   | 76 |   |
| Exp. Sta. | Min        | 64 | 50  | 52 | 56 | 61 | 56  | 60  | 62  | 57 | 56 | 52  | 54 | 54 | 51 | 51 | 59 | 51 | 51   | 55  | 38  | 40 | 43  | 47  | 51 | 47 | 48 | 39    | 44 | 35   | 32 | 4 |
|           |            |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    | t.   |    |   |
| Lewiston  | Max        |    |     |    |    |    |     |     |     |    |    |     |    |    |    |    |    |    |      |     |     |    |     |     |    |    |    |       |    |      |    |   |
|           | Min        | 53 | 35  | 30 | 31 | 33 | 35  | 39  | 39  | 44 | 34 | 32  | 33 | 33 | 42 | 46 | 35 | 34 | 46   | 26  | 28  | 42 | 31  | 34  | 34 | 39 | 35 | 26    | 34 | 39   | 34 |   |
| ogan USU  | Max        | 80 | 66  | 69 | 75 | 82 | 85  | 86  | 83  | 78 | 79 | 79  | 82 | 83 | 84 | 83 | 70 | 74 | 80   | 67  | 67  | 68 | 68  | 70  | 73 | 72 | 80 | 66    | 70 | 75   | 77 |   |
|           | Min        | 62 | 41  | 41 | 44 | 48 | 48  | 50  | 56  | 49 | 46 | 47  | 49 | 49 | 53 | 51 | 47 | 49 | 50   | 36  | 39  | 41 | 41  | 44  | 45 | 49 | 39 | 37    | 40 | 48   | 48 |   |
| Logan USU | Max        | 79 | 66  | 74 | 81 | 83 | 83  | 81  | 81  | 79 | 78 | 81  | 83 | 84 | 81 | 79 | 78 | 80 | 77   | 66  | 68  | 70 | 71  | 74  | 77 | 82 | 81 | 71    | 77 | 79   | 77 |   |
| Exp. Sta. | Min        | 54 | 38  | 35 | 36 | 39 | 40  | 43  | 39  | 47 | 37 | 38  | 39 | 42 | 47 | 47 | 41 | 40 | 49   | 31  | 34  | 40 | 36  | 39  | 39 | 39 | 35 | 31    | 39 | 41   | 40 | 1 |

|           |            |     |    |    |    |    |    |      |     |    |    |    |    |    | 1y    |    |    |    | res | 5  |    |    |    |    |    |    |    |    |    |      |    |   |
|-----------|------------|-----|----|----|----|----|----|------|-----|----|----|----|----|----|-------|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|------|----|---|
|           |            |     |    |    |    |    |    |      |     |    |    |    |    |    | Day   |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
| Station   |            | 1   | 2  | 3  | 4  | 5  | 6  | 7    | 8   | 9  | 10 | 11 | 12 | 13 | 14    | 15 | 16 | 17 | 18  | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |    |    |      |    | 3 |
|           |            | ~~~ |    |    |    |    |    |      |     |    |    |    |    | -  |       | -  |    |    |     |    |    |    |    |    |    |    |    | -  |    | 196  | _  |   |
| Lewiston  | Max<br>Min |     |    |    |    |    |    |      |     |    |    |    |    |    | 100 m |    |    |    |     |    |    |    |    |    |    |    |    |    | -  |      |    |   |
|           | min        | 30  | 29 | 29 | 22 | 30 | 21 | 25   | 22  | 22 | 30 | 22 | 22 | 30 | 44    | 45 | 41 | 40 | 22  | 20 | 40 | 40 | 40 | 29 | 43 | 43 | 42 | 21 | 20 | 30   | 45 | 4 |
| ogan USU  | Max        | 74  | 71 | 56 | 63 | 63 | 42 | 42   | 47  | 45 | 53 | 59 | 65 | 71 | 66    | 68 | 74 | 79 | 64  | 71 | 73 | 62 | 66 | 71 | 61 | 58 | 60 | 58 | 65 | 70   | 76 | 8 |
|           | Min        | 49  | 38 | 31 | 40 | 36 | 27 | 27   | 33  | 35 | 40 | 39 | 44 | 45 | 46    | 46 | 48 | 48 | 40  | 48 | 52 | 47 | 45 | 43 | 39 | 42 | 42 | 39 | 43 | 47   | 53 | 5 |
| Logan USU | Max        | 72  | 70 | 65 | 65 | 62 | 44 | 49   | 47  | 55 | 62 | 68 | 72 | 71 | 70    | 72 | 78 | 77 | 72  | 74 | 70 | 68 | 72 | 68 | 60 | 63 | 61 | 65 | 72 | 78   | 82 | 8 |
| Exp. Sta. | Min        |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
|           |            |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    | e 19 |    |   |
| Lewiston  | Max        | 70  | 72 | 76 | 76 | 76 | 76 | 79   | 79  | 81 | 82 | 74 | 78 | 80 | 67    | 72 | 72 | 65 | 68  | 75 | 78 | 80 | 85 | 86 | 87 | 60 | 72 | 66 | 60 | 73   | 78 |   |
|           | Min        | 47  | 41 | 39 | 42 | 38 | 44 | 50   | 45  | 42 | 50 | 46 | 49 | 47 | 47    | 45 | 47 | 40 | 38  | 41 | 43 | 45 | 47 | 46 | 57 | 51 | 45 | 46 | 40 | 44   | 47 |   |
| Logan USU | Max        | 69  | 71 | 71 | 75 | 73 | 74 | 79   | 78  | 79 | 79 | 73 | 78 | 80 | 66    | 71 | 72 | 65 | 67  | 75 | 78 | 78 | 82 | 85 | 86 | 60 | 72 | 63 | 64 | 71   | 77 |   |
| 0         | Min        | 46  | 49 | 46 | 48 | 48 | 51 | 54   | 47  | 55 | 55 | 54 | 55 | 47 | 51    | 49 | 49 | 49 | 46  | 48 | 51 | 53 | 55 | 57 | 55 | 50 | 47 | 46 | 44 | 49   | 53 |   |
| Logan USU | Max        | 73  | 73 | 78 | 76 | 76 | 81 | 80   | 80  | 81 | 75 | 80 | 83 | 74 | 72    | 73 | 68 | 68 | 75  | 88 | 86 | 85 | 87 | 87 | 82 | 73 | 65 | 66 | 73 | 79   | 85 |   |
| Exp. Sta. | Min        |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
|           |            |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    | y 1  |    |   |
| Lewiston  | Max        |     |    |    | -  |    |    | 1000 | 100 |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
|           | Min        | 46  | 44 | 46 | 48 | 45 | 45 | 48   | 50  | 56 | 50 | 51 | 49 | 41 | 46    | 49 | 53 | 56 | 57  | 60 | 52 | 52 | 55 | 50 | 47 | 59 | 50 | 52 | 51 | 52   | 64 | 6 |
| Logan USU | Max        | 85  | 77 | 76 | 82 | 86 | 81 | 84   | 86  | 87 | 88 | 88 | 87 | 79 | 83    | 89 | 91 | 84 | 84  | 82 | 81 | 82 | 88 | 78 | 82 | 84 | 75 | 84 | 87 | 92   | 91 | 7 |
| 0         | Min        | 52  | 49 | 53 | 58 | 60 | 50 | 59   | 56  | 65 | 59 | 61 | 56 | 50 | 41    | 49 | 62 | 61 | 59  | 60 | 55 | 56 | 60 | 57 | 55 | 60 | 54 | 59 | 61 | 62   | 69 | 6 |
| Logan USU | Max        | 85  | 79 | 84 | 88 | 88 | 87 | 87   | 87  | 88 | 88 | 89 | 88 | 85 | 91    | 92 | 86 | 86 | 86  | 81 | 81 | 87 | 87 | 85 | 86 | 81 | 86 | 90 | 93 | 94   | 91 | 8 |
| Exp. Sta. |            |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
|           |            |     |    |    |    |    |    |      | -   |    | -  |    |    |    |       |    |    |    | -   |    | -  | -  |    |    |    |    |    |    |    | . 1  |    |   |
| Lewiston  | Max        |     |    |    |    |    |    |      |     |    |    |    |    |    |       |    |    |    |     |    |    |    |    |    |    |    |    |    |    |      |    |   |
|           | Min        | 52  | 52 | 49 | 50 | 45 | 43 | 44   | 46  | 50 | 55 | 57 | 59 | 60 | 50    | 53 | 48 | 55 | 52  | 50 | 46 | 53 | 45 | 53 | 43 | 45 | 43 | 44 | 43 | 40   | 36 | : |

\_

|           |            |    |    |    |    |    |    |    |    | _  |    |    |    |    |    |    |    |    | ires | 5  |    |    |    |    |    |    |    |    |     |     |     |   |
|-----------|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|-----|-----|-----|---|
|           |            |    |    |    |    |    |    |    |    |    |    |    |    |    |    | of |    |    |      |    |    |    |    |    |    |    |    |    |     |     |     |   |
| Station   |            | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28  | 29  | 30  | 3 |
| Logan USU | Max        | 83 | 84 | 84 | 84 | 82 | 84 | 84 | 89 | 92 | 92 | 88 | 90 | 89 | 79 | 81 | 80 | 83 | 79   | 71 | 72 | 79 | 67 | 73 | 75 | 80 | 81 | 77 | 84  | 82  | 72  | 6 |
|           | Min        | 64 | 55 | 56 | 55 | 55 | 52 | 56 | 60 | 64 | 62 | 65 | 66 | 61 | 56 | 59 | 57 | 62 | 58   | 52 | 52 | 53 | 49 | 54 | 52 | 58 | 51 | 54 | 56  | 49  | 38  | 4 |
| Logan USU | Max        | 86 | 87 | 86 | 86 | 84 | 86 | 91 | 93 | 94 | 89 | 92 | 91 | 85 | 84 | 83 | 87 | 84 | 78   | 72 | 81 | 75 | 74 | 75 | 82 | 80 | 78 | 85 | 83  | 80  | 72  | 7 |
| Exp. Sta. | Min        | 59 | 54 | 57 | 52 | 50 | 49 | 47 | 53 | 55 | 56 | 60 | 62 | 60 | 52 | 57 | 53 | 59 | 55   | 49 | 47 | 53 | 45 | 53 | 46 | 51 | 46 |    |     |     |     | - |
| Lewiston  | Man        | 75 | 70 | 00 | 70 | 70 | 10 |    | 70 | 10 | 17 | 71 |    | 75 | 70 | 70 | 10 | 10 | 12   |    | -  | 12 | 50 |    |    | 34 | 70 |    |     | . 1 |     |   |
| Lewiscon  | Max<br>Min |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |     |     |     |   |
|           | min        | 54 | 39 | 40 | 22 | 41 | 49 | 42 | 43 | 39 | 30 | 40 | 39 | 30 | 30 | 49 | 30 | 30 | 22   | 29 | 20 | 32 | 30 | 3/ | 28 | 33 | 39 | 40 | 40  | 39  | 21  |   |
| Logan USU | Max        | 72 | 77 | 79 | 78 | 71 | 76 | 55 | 68 | 67 | 68 | 74 | 77 | 75 | 76 | 67 | 67 | 40 | 40   | 49 | 53 | 58 | 54 | 67 | 63 | 67 | 74 | 76 | 75  | 48  | 52  |   |
|           | Min        | 47 | 52 | 54 | 42 | 48 | 49 | 47 | 47 | 44 | 49 | 52 | 51 | 47 | 50 | 50 | 37 | 31 | 26   | 31 | 33 | 38 | 43 | 42 | 37 | 42 | 48 | 51 | 40  | 38  | 35  |   |
| Logan USU | Max        | 78 | 80 | 79 | 75 | 77 | 64 | 70 | 68 | 69 | 75 | 78 | 76 | 76 | 75 | 68 | 65 | 41 | 51   | 56 | 61 | 57 | 69 | 67 | 71 | 76 | 75 | 75 | 66  | 54  | 63  |   |
| Exp. Sta. | Min        | 37 | 45 | 49 | 36 | 43 | 50 | 44 | 45 | 40 | 40 | 44 | 44 | 40 | 46 | 50 | 36 | 32 | 24   | 32 | 28 | 36 | 39 | 39 | 32 | 38 | 44 | 55 | 38  | 38  | 31  |   |
|           |            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |     | 19  |     |   |
| Lewiston  | Max        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |     |     |     |   |
|           | Min        | 29 | 31 | 35 | 40 | 38 | 40 | 44 | 46 | 52 | 46 | 38 | 34 | 42 | 41 | 33 | 50 | 38 | 32   | 34 | 38 | 44 | 46 | 26 | 31 | 37 | 39 | 41 | 49  | 46  | 46  |   |
| Logan USU | Max        | 63 | 71 | 78 | 81 | 82 | 83 | 82 | 81 | 81 | 72 | 61 | 48 | 57 | 63 | 59 | 68 | 69 | 63   | 67 | 73 | 78 | 79 | 53 | 59 | 72 | 78 | 81 | 84  | 83  | 83  | - |
|           | Min        | 39 | 43 | 46 | 50 | 51 | 52 | 51 | 50 | 55 | 44 | 37 | 36 | 42 | 45 | 33 | 47 | 41 | 36   | 40 | 45 | 49 | 46 | 31 | 36 | 45 | 49 | 52 | 56  | 56  | 54  | 1 |
| Logan USU | Max        | 73 | 79 | 83 | 83 | 84 | 84 | 82 | 82 | 74 | 60 | 60 | 58 | 65 | 65 | 68 | 70 | 66 | 68   | 74 | 78 | 80 | 70 | 60 | 75 | 81 | 84 | 87 | 84  | 85  | 81  |   |
| Exp. Sta. | Min        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |     |     |     |   |
|           |            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    | Jun | e 1 | 966 |   |
| Lewiston  | Max        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |    |     |     |     |   |
|           | Min        | 38 | 37 | 37 | 34 | 30 | 33 | 50 | 49 | 41 | 52 | 42 | 34 | 34 | 41 | 45 | 46 | 46 | 45   | 48 | 49 | 54 | 51 | 36 | 46 | 35 | 39 | 45 | 46  | 58  | 53  |   |
| Logan USU | Max        | 77 | 78 | 77 | 71 | 64 | 67 | 73 | 67 | 71 | 75 | 75 | 68 | 67 | 70 | 83 | 82 | 83 | 82   | 81 | 88 | 87 | 85 | 67 | 77 | 71 | 73 | 86 | 90  | 93  | 91  |   |
|           | Min        | 47 | 46 | 52 | 41 | 36 | 40 | 54 | 50 | 51 | 52 | 50 | 42 | 44 | 50 | 50 | 53 | 54 | 55   | 58 | 57 | 62 | 51 | 43 | 50 | 30 | 48 | 53 | 58  | 50  | 64  |   |

-

|              |      |    |    |     |    |    |    |     |    |     |     |    |    | Da | ily | ter | nper | rati | ire | s  |    |    |    |    |    |    |    |    |     |      |     |     |
|--------------|------|----|----|-----|----|----|----|-----|----|-----|-----|----|----|----|-----|-----|------|------|-----|----|----|----|----|----|----|----|----|----|-----|------|-----|-----|
|              |      |    |    |     |    |    |    |     |    |     |     |    |    | ]  | Dav | of  | mon  | hth  |     |    |    |    |    |    |    |    |    |    |     |      |     |     |
| Station      |      | 1  | 2  | 3   | 4  | 5  | 6  | 7   | 8  | 9   | 10  | 11 | 12 | 13 | 14  | 15  | 16   | 17   | 18  | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28  | 29   | 30  | 31  |
| Logan USU    | Max  | 79 | 78 | 78  | 70 | 69 | 75 | 73  | 74 | 78  | 77  | 76 | 68 | 76 | 83  | 85  | 85   | 82   | 86  | 87 | 87 | 85 | 75 | 76 | 73 | 75 | 87 | 91 | 95  | 92   | 00  |     |
| Exp. Sta.    | Min  | 41 | 58 | 48  | 42 | 34 | 38 | 57  | 50 | 45  | 57  | 45 | 39 | 39 | 45  | 51  | 33   | 51   | 50  | 50 | 52 | 69 | 50 | 39 | 57 | 36 | 47 | 48 | 54  | 57   | 63  |     |
| Lewiston     | Mass | 01 | 20 | 00  | 00 | 07 | 00 | 0.0 | ~~ | ~ 7 |     | ~- | ~~ | ~~ | ~ ~ |     |      |      |     |    |    |    |    |    |    |    |    | :  | Jul | y 19 | 966 |     |
| Lewiscon     | Max  | 91 | 69 | 90  | 80 | 87 | 90 | 93  | 92 | 87  | 85  | 87 | 88 | 89 | 88  | 90  | 92   | 90   | 94  | 95 | 95 | 95 | 91 | 92 | 93 | 92 | 91 | 92 | 93  | 95   | 96  | 92  |
|              | Min  | 39 | 20 | 41  | 43 | 42 | 43 | 41  | 53 | 47  | 49  | 53 | 52 | 49 | 46  | 45  | 49   | 58   | 54  | 50 | 51 | 60 | 50 | 49 | 52 | 57 | 51 | 49 | 52  | 46   | 57  | 6   |
| Logan USU    | Max  | 88 | 85 | 87  | 80 | 86 | 88 | 94  | 91 | 86  | 87  | 87 | 86 | 89 | 88  | 89  | 91   | 88   | 92  | 94 | 95 | 95 | 89 | 90 | 91 | 92 | 90 | 91 | 92  | 94   | 93  | 94  |
|              | Min  | 65 | 65 | 50  | 53 | 55 | 54 | 61  | 65 | 60  | 60  | 62 | 63 | 60 | 59  | 60  | 62   | 67   | 63  | 62 | 65 | 64 | 60 | 58 | 62 | 65 | 64 | 63 | 64  | 61   | 62  | 67  |
| Logan USU    | Max  | 83 | 86 | 81  | 86 | 89 | 94 | 91  | 89 | 88  | 87  | 88 | 89 | 89 | 89  | 90  | 91   | 93   | 95  | 95 | 98 | 95 | 93 | 98 | 94 | 92 | 94 | 95 | 95  | 05   | 96  | 8-  |
| Exp. Sta.    | Min  | 68 | 69 | 45  | 47 | 50 | 49 | 55  | 60 | 57  | 54  | 58 | 65 | 53 | 59  | 61  | 55   | 64   | 63  | 63 | 61 | 66 | 56 | 53 | 59 | 62 | 52 | 55 | 59  | 52   | 52  | 67  |
| Lewiston     | Marr | 00 | 00 | 0.0 | 07 | ~~ |    | 0.0 |    |     | ~ ~ |    |    |    |     |     |      |      |     |    |    |    |    |    |    |    |    | 4  | Aug | . 19 | 966 |     |
| Lewiston     | Max  | 90 | 90 | 93  | 87 | 88 | 91 | 89  | 91 | 87  | 87  | 87 | 89 | 84 | 87  | 86  | 90   | 94   | 94  | 87 | 82 | 78 | 77 | 83 | 87 | 89 | 91 | 89 | 74  | 84   | 86  | 8:  |
|              | Min  | 20 | 20 | 64  | 49 | 50 | 4/ | 43  | 42 | 41  | 44  | 47 | 46 | 39 | 47  | 43  | 43   | 48   | 59  | 59 | 46 | 36 | 33 | 37 | 40 | 40 | 52 | 37 | 36  | 45   | 43  | 44  |
| Logan USU    | Max  | 85 | 88 | 90  | 74 | 87 | 90 | 88  | 89 | 91  | 86  | 86 | 88 | 81 | 86  | 84  | 88   | 92   | 93  | 87 | 83 | 74 | 75 | 81 | 84 | 88 | 91 | 86 | 73  | 85   | 85  | 83  |
|              | Min  | 63 | 65 | 67  | 55 | 61 | 57 | 57  | 54 | 64  | 57  | 58 | 54 | 51 | 58  | 56  | 57   | 62   | 62  | 60 | 55 | 46 | 49 | 51 | 57 | 58 | 62 | 49 | 50  | 52   | 53  | 53  |
| Logan USU    | Max  | 90 | 92 | 85  | 89 | 92 | 89 | 90  | 92 | 90  | 88  | 90 | 83 | 88 | 87  | 90  | 94   | 95   | 94  | 84 | 78 | 77 | 83 | 86 | 90 | 92 | 90 | 78 | 86  | 86   | 83  | 70  |
| Exp. Sta.    | Min  | 59 | 62 | 65  | 53 | 52 | 52 | 50  | 49 | 60  | 50  | 54 | 49 | 45 | 52  | 49  | 51   | 53   | 52  | 58 | 52 | 40 | 40 | 43 | 45 | 47 | 67 | 42 | 43  | 58   | 48  | 4.8 |
|              |      |    |    |     |    |    |    |     |    |     |     |    |    |    |     |     |      |      |     |    |    |    |    |    |    |    |    |    | Sen | + •  | 196 | 6   |
| Lewiston     | Max  | 68 | 64 | 65  | 80 | 83 | 84 | 85  | 86 | 87  | 88  | 85 | 80 | 81 | 78  | 57  | 53   | 69   | 79  | 85 | 81 | 83 | 86 | 87 | 87 | 83 | 79 | 64 | 69  | 73   | 75  | -   |
|              | Min  | 49 | 51 | 39  | 39 | 39 | 43 | 42  | 46 | 41  | 45  | 53 | 43 | 38 | 35  | 36  | 35   | 36   | 36  | 44 | 44 | 42 | 41 | 43 | 50 | 45 | 40 | 37 | 37  | 39   | 45  |     |
| Logan USU    | Max  | 69 | 64 | 65  | 78 | 82 | 85 | 85  | 85 | 86  | 87  | 84 | 80 | 80 | 76  | 59  | 52   | 69   | 79  | 82 | 79 | 83 | 83 | 87 | 87 | 85 | 70 | 62 | 65  | 71   | 75  |     |
|              | Min  | 51 | 51 | 49  | 49 | 49 | 49 | 46  | 50 | 45  | 44  | 47 | 43 | 46 | 44  | 40  | 40   | 40   | 39  | 53 | 49 | 51 | 52 | 46 | 59 | 57 | 48 | 45 | 45  | 46   | 50  |     |
| Logan USU    | Max  |    |    |     |    |    |    |     |    |     |     |    |    |    |     |     |      |      |     |    |    |    |    |    |    |    |    |    |     |      |     |     |
| Exp. Sta.    | Min  | 52 | 52 | 45  | 45 | 46 | 50 | 50  | 61 | 47  | 53  | 58 | 52 | 52 | 42  | 30  | 39   | 40   | 60  | 02 | 50 | 00 | 00 | 00 | 0/ | 50 |    | 08 | 13  | 16   | 14  |     |
| - up · ocu · | In   | 36 | 52 | 45  | 45 | 40 | 50 | 30  | or | 4/  | 22  | 30 | 32 | 52 | 42  | 39  | 30   | 40   | 42  | 48 | 50 | 4/ | 4/ | 48 | 22 | 21 | 44 | 45 | 40  | 41   | 44  |     |

|           |     |    |    |    |      |    |    |    | _  |    |    |    |    |    | 1y  |    |     |      | res | 5  |      | _  |    |    |    |    |    |    |    |      |    |    |
|-----------|-----|----|----|----|------|----|----|----|----|----|----|----|----|----|-----|----|-----|------|-----|----|------|----|----|----|----|----|----|----|----|------|----|----|
|           |     |    |    |    |      |    |    |    |    |    |    |    |    | I  | Day | of | mor | nth  |     |    |      |    | -  |    |    |    |    |    |    |      |    |    |
| Station   |     | 1  | 2  | 3  | 4    | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15 | 16  | 17   | 18  | 19 | 20   | 21 | 22 | 23 | 24 | 25 | 26 |    |    | 29   |    | 31 |
|           |     |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    | . 19 |    |    |
| Lewiston  | Max |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    |      |    |    |
|           | Min | 32 | 41 | 37 | 27   | 28 | 33 | 35 | 33 | 35 | 26 | 30 | 35 | 33 | 21  | 17 | 18  | 19   | 25  | 20 | 21   | 33 | 15 | 16 | 25 | 24 | 24 | 24 | 27 | 24   | 23 | 26 |
| Logan USU | Max | 66 | 71 | 62 | 54   | 62 | 69 | 71 | 72 | 69 | 63 | 67 | 68 | 62 | 33  | 42 | 49  | 54   | 56  | 53 | 61   | 61 | 45 | 46 | 56 | 61 | 64 | 69 | 68 | 62   | 66 | 65 |
|           | Min | 42 | 46 | 38 | 35   | 39 | 42 | 46 | 43 | 40 | 40 | 41 | 44 | 31 | 25  | 25 | 27  | 29   | 29  | 34 | 34   | 32 | 24 | 26 | 36 | 37 | 40 | 41 | 42 | 40   | 38 | 38 |
| Logan USU | Max | 72 | 67 | 59 | 65   | 71 | 74 | 74 | 72 | 68 | 70 | 70 | 67 | 57 | 44  | 50 | 55  | 58   | 55  | 65 | 61   | 60 | 47 | 60 | 64 | 67 | 71 | 71 | 67 | 69   | 67 | 6  |
| Exp. Sta. | Min | 35 | 48 | 34 | 27   | 32 | 36 | 40 | 39 | 36 | 29 | 35 | 42 | 32 | 21  | 20 | 24  | 26   | 27  | 25 | 38   | 32 | 20 | 38 | 29 | 28 | 27 | 31 | 32 | 30   | 30 | 33 |
|           |     |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    | 196  |    |    |
| Lewiston  | Max |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    |      |    |    |
|           | Min | 23 | 25 | 30 | 30   | 34 | 33 | 41 | 39 | 41 | 38 | 35 | 32 | 30 | 35  | 36 | 37  | 39   | 46  | 49 | 39   | 42 | 44 | 45 | 50 | 51 | 39 | 43 | 45 | 49   | 44 | 37 |
| Logan USU | Max | 37 | 44 | 48 | 53   | 59 | 53 | 62 | 70 | 72 | 74 | 55 | 46 | 48 | 53  | 57 | 66  | 71   | 77  | 75 | 70   | 73 | 80 | 85 | 87 | 82 | 69 | 71 | 74 | 71   | 61 | 59 |
|           | Min | 22 | 25 | 30 | 35   | 37 | 39 | 43 | 47 | 49 | 38 | 35 | 34 | 32 | 37  | 40 | 43  | 46   | 49  | 49 | 47   | 50 | 52 | 56 | 58 | 52 | 46 | 46 | 51 | 49   | 46 | 4  |
| Logan USU | Max | 42 | 47 | 53 | 60   | 55 | 62 | 69 | 73 | 75 | 72 | 51 | 50 | 53 | 58  | 65 | 72  | 77   | 77  | 76 | 76   | 81 | 86 | 87 | 86 | 79 | 73 | 75 | 75 | 73   | 61 | 6  |
| Exp. Sta. | Min | 19 | 29 | 30 | 30   | 39 | 37 | 45 | 42 | 45 | 38 | 33 | 35 | 31 | 34  | 37 | 39  | 41   | 56  | 46 | 41   | 45 | 46 | 50 | 60 | 51 | 41 | 54 | 50 | 47   | 54 | 41 |
|           |     |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    | 196  |    |    |
| Lewiston  | Max |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    |      |    |    |
|           | Min | 30 | 40 | 30 | 31   | 43 | 27 | 24 | 28 | 30 | 35 | 40 | 46 | 44 | 41  | 40 | 34  | 35   | 35  | 35 | 45   | 45 | 36 | 38 | 34 | 34 | 34 | 41 | 39 | 46   | 51 | 34 |
| Logan USU | Max | 74 | 74 | 69 | 72   | 75 | 67 | 47 | 56 | 66 | 72 | 72 | 68 | 67 | 57  | 50 | 53  | 57   | 64  | 67 | 72   | 75 | 66 | 60 | 55 | 57 | 63 | 61 | 68 | 79   | 83 | 67 |
|           | Min | 46 | 49 | 41 | 44   | 48 | 29 | 31 | 38 | 41 | 45 | 46 | 45 | 44 | 41  | 39 | 33  | 38   | 44  | 45 | 48   | 50 | 41 | 42 | 39 | 40 | 40 | 47 | 47 | 54   | 54 | 44 |
| Logan USU | Max | 76 | 75 | 75 | 77   | 74 | 67 | 57 | 68 | 75 | 75 | 69 | 69 | 61 | 57  | 52 | 60  | 65   | 69  | 74 | 75   | 70 | 62 | 60 | 59 | 59 | 62 | 70 | 82 | 84   | 84 | 7  |
| Exp. Sta. | Min | 40 | 46 | 34 | 39   | 51 | 28 | 28 | 31 | 35 | 39 | 55 | 45 | 45 | 39  | 38 | 33  | 35   | 38  | 39 | 62   | 52 | 40 | 41 | 35 | 37 | 38 |    |    |      |    | 38 |
|           |     |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      | _  |    | _  |    |    |    |    |    | 19   |    |    |
| Lewiston  | Max |    |    |    |      |    |    |    |    |    |    |    |    |    |     |    |     |      |     |    |      |    |    |    |    |    |    |    |    |      |    |    |
|           | Min | 28 | 35 | 32 | - 39 | 40 | 44 | 46 | 40 | 38 | 39 | 39 | 36 | 41 | 41  | 45 | 35  | - 38 | 42  | 42 | - 39 | 36 | 38 | 39 | 45 | 48 | 47 | 48 | 40 | 38   | 43 | 4  |

-----

|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    | ires | 5  |       |    |    |    |    |    |    |     |    |    |    |    |
|-----------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|------|----|-------|----|----|----|----|----|----|-----|----|----|----|----|
|           |     |    |    |    |    |    |    |    |    |    |    |    |    |    | )ay |    |    |    |      |    |       |    |    |    |    |    |    | ~ ~ |    |    |    |    |
| Station   |     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15 | 16 | 17 | 18   | 19 | 20    | 21 | 22 | 23 | 24 | 25 | 26 | 27  | 28 | 29 | 30 | 3  |
| Logan USU | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |      |    |       |    |    |    |    |    |    |     |    |    |    |    |
|           | Min | 30 | 41 | 35 | 40 | 46 | 50 | 56 | 50 | 48 | 46 | 48 | 48 | 47 | 47  | 48 | 41 | 45 | 52   | 50 | 44    | 42 | 44 | 46 | 52 | 56 | 59 | 59  | 47 | 49 | 53 | 47 |
| Logan USU | Max | 67 | 71 | 69 | 69 | 75 | 78 | 80 | 79 | 79 | 80 | 79 | 79 | 78 | 78  | 78 | 73 | 79 | 81   | 78 | 76    | 74 | 78 | 83 | 83 | 85 | 85 | 85  | 82 | 84 | 88 | 77 |
| Exp. Sta. | Min | 42 | 37 | 33 | 41 | 40 | 42 | 57 | 54 | 41 | 43 | 43 | 45 | 54 | 45  | 48 | 40 | 44 | 50   | 46 | 42    | 38 | 41 | 43 | 47 | 55 | 59 |     |    | 43 |    | 43 |
| ewiston   | Max | 48 | 51 | 62 | 70 | 74 | 77 | 76 | 57 | 60 | 61 | 47 | 52 | 56 | 50  | 58 | 69 | 76 | 82   | 82 | 81    | 77 | 59 | 70 | 65 | 73 | 77 |     |    |    |    | 64 |
|           | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |      |    |       |    |    |    |    |    |    |     |    |    |    | -  |
| Logan USU | Max | 44 | 54 | 64 | 69 | 75 | 77 | 76 | 53 | 60 | 55 | 43 | 50 | 56 | 50  | 55 | 69 | 77 | 82   | 83 | 82    | 74 | 61 | 69 | 62 | 71 | 76 | 80  | 75 | 64 | 73 | 62 |
|           | Min | 30 | 31 | 35 | 45 | 45 | 51 | 43 | 41 | 42 | 39 | 31 | 33 | 37 | 34  | 38 | 39 | 51 | 51   | 55 | 51    | 44 | 45 | 54 | 48 | 50 | 52 | 52  | 48 | 48 | 45 | 38 |
| Logan USU | Max |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |      |    | 11.00 |    |    |    |    |    |    |     |    |    |    |    |
| Exp. Sta. | Min | 29 | 32 | 34 | 36 | 46 | 54 | 38 | 40 | 42 | 38 | 30 | 36 | 35 | 31  | 32 | 39 | 43 | 44   | 56 | 44    | 44 | 40 | 49 | 46 | 45 | 41 |     |    |    |    | 33 |
| Lewiston  | Max | 68 | 74 | 78 | 73 | 60 | 48 | 68 | 64 | 64 | 60 | 66 | 71 | 74 | 70  | 66 | 73 | 55 | 51   | 55 | 64    | 50 | 70 | 51 | 63 | 69 | 75 | -   |    | 19 | -  | 58 |
|           | Min |    |    |    |    |    |    | -  |    |    |    |    |    |    |     |    |    |    |      |    |       |    |    | _  |    |    |    |     |    |    |    | -  |
| Logan USU | Max | 68 | 73 | 77 | 74 | 60 | 49 | 65 | 62 | 64 | 62 | 66 | 71 | 74 | 69  | 66 | 73 | 53 | 49   | 53 | 62    | 57 | 70 | 70 | 62 | 68 | 75 | 81  | 79 | 72 | 70 | 5  |
|           | Min | 44 | 51 | 52 | 47 | 40 | 40 | 49 | 42 | 43 | 41 | 45 | 52 | 51 | 44  | 45 | 45 | 32 | 33   | 39 | 42    | 42 | 43 | 40 | 43 | 46 | 54 | 52  | 53 | 51 | 48 | 44 |
| Logan USU | Max | 76 | 79 | 79 | 74 | 58 | 68 | 69 | 67 | 58 | 68 | 72 | 76 | 75 | 68  | 74 | 73 | 53 | 56   | 64 | 62    | 70 | 62 | 64 | 68 | 76 | 84 | 81  | 78 | 74 | 63 | 6  |
| Exp. Sta. | Min | 34 | 38 | 47 | 43 | 37 | 48 | 54 | 36 | 42 | 37 | 48 | 46 | 48 | 41  | 41 | 43 | 37 | 35   | 35 | 42    | 37 | 41 | 38 | 39 | 41 | 45 |     |    |    |    | 4  |
| Lewiston  | Max | 46 | 58 | 63 | 72 | 77 | 75 | 71 | 67 | 60 | 58 | 62 | 63 | 67 | 75  | 71 | 80 | 82 | 80   | 75 | 74    | 71 | 62 | 71 | 66 | 75 | 70 |     |    | 19 |    | 84 |
|           | Min |    |    |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |      |    |       |    |    |    |    |    |    |     |    |    |    |    |
| Logan USU | Max | 46 | 56 | 63 | 71 | 77 | 73 | 70 | 67 | 58 | 54 | 61 | 63 | 65 | 69  | 75 | 80 | 82 | 78   | 73 | 71    | 70 | 63 | 57 | 68 | 74 | 68 | 73  | 75 | 78 | 79 | 8  |
|           | Min | 28 | 29 | 39 | 46 | 48 | 49 | 48 | 48 | 39 | 39 | 37 | 40 | 41 | 44  | 49 | 50 | 58 | 47   | 49 | 49    | 41 | 38 | 40 | 43 | 46 | 44 | 46  | 53 | 55 | 56 | 5  |

|           |            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     | nper |    | ires | 5   | _   |    |    |    |    |    |    |          |    |           |     |   |
|-----------|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------|----|------|-----|-----|----|----|----|----|----|----|----------|----|-----------|-----|---|
|           |            |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     | mor  |    |      |     |     |    |    |    |    |    |    |          |    |           |     |   |
| Station   |            | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15  | 16   | 17 | 18   | 19  | 20  | 21 | 22 | 23 | 24 | 25 | 26 | 27       | 28 | 29        | 30  | 3 |
| Logan USU | Max        | 58 | 65 | 74 | 78 | 78 | 75 | 68 | 68 | 58 | 63 | 65 | 68 | 70 | 76 | 83  | 85   | 83 | 78   | 75  | 75  | 64 | 60 | 70 | 76 | 75 | 75 | 78       | 80 | 82        | 83  | 8 |
| Exp. Sta. | Min        | 23 | 30 | 33 | 39 | 43 | 45 | 50 | 45 | 35 | 35 | 33 | 34 | 36 | 38 | 45  | 46   | 45 | 45   | 55  | 49  | 48 | 35 | 37 | 41 | 42 | 37 |          |    | 48        |     | 4 |
| Lewiston  | Max        | 52 | 50 | 57 | 68 | 63 | 67 | 67 | 66 | 62 | 70 | 67 | 74 | 76 | 78 | 75  | 79   | 83 | 83   | 81  | 79  | 69 | 66 | 72 | 78 | 79 | 51 |          |    |           |     | 7 |
|           | Min        |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |      |    |      |     |     |    |    |    |    |    |    |          |    |           |     |   |
| Logan USU | Max        | 49 | 48 | 58 | 70 | 64 | 64 | 65 | 65 | 61 | 69 | 68 | 69 | 75 | 77 | 75  | 77   | 91 | 81   | 81  | 79  | 65 | 65 | 71 | 79 | 77 | 51 | 56       | 63 | 70        | 72  | 7 |
|           | Min        | 36 | 32 | 37 | 43 | 40 | 42 | 44 | 50 | 43 | 44 | 39 | 43 | 52 | 52 | 48  | 48   | 53 | 55   | 54  | 55  | 46 | 41 | 42 | 51 | 48 | 37 | 38       | 42 | 44        | 46  | 5 |
| Logan USU | Max        | 50 | 58 | 70 | 69 | 69 | 67 | 68 | 67 | 70 | 71 | 70 | 77 | 78 | 78 | 78  | 82   | 83 | 84   | 80  | 77  | 67 | 73 | 79 | 81 | 70 | 58 | 65       | 71 | 73        | 75  | 8 |
| Exp. Sta. | Min        | 38 | 28 | 35 | 34 | 37 | 38 | 40 | 41 | 39 | 48 | 35 | 36 | 50 | 52 | 38  | 46   | 49 | 50   | 51  | 53  | 41 | 42 | 42 | 52 | 45 | 33 |          |    | 39<br>197 |     | 4 |
| Lewiston  | Max        | 67 | 76 | 59 |    |    | 76 | 78 | 78 | 79 | 75 |    |    | 71 | 56 | 61  | 56   | 61 | 69   | 65  | 63  | 50 | 61 | 69 | 74 | 78 | 74 |          |    | 77        |     | 7 |
|           | Min        | 33 | 43 | 34 |    |    | 34 | 38 | 43 | 42 | 48 |    |    |    |    |     |      |    |      |     |     |    |    |    |    |    |    |          |    | 50        |     |   |
| Logan USU | Max        | 66 | 70 | 58 | 62 | 69 | 75 | 75 | 76 | 77 | 75 | 58 | 67 | 72 | 53 | 62  | 53   | 59 | 69   | 66  | 58  | 48 | 59 | 70 | 74 | 76 | 76 | 78       | 85 | 77        | 74  | 6 |
|           | Min        | 42 | 46 | 42 | 41 | 44 | 48 | 50 | 51 | 52 | 49 | 40 | 48 | 35 | 40 | 38  | 39   | 41 | 36   | 42  | 34  | 35 | 40 | 38 | 44 | 52 | 53 | 60       | 57 | 52        | 44  | 4 |
| Logan USU | Max        | 75 | 73 | 65 | 70 | 76 | 76 | 77 | 79 | 78 | 76 | 70 | 73 | 74 | 64 | 65  | 62   | 70 | 70   | 63  | 46  | 58 | 70 | 75 | 78 | 78 | 82 | 82       | 79 | 78        | 72  | 7 |
| Exp. Sta. | Min        | 38 | 47 | 39 | 38 | 37 | 39 | 47 | 46 | 60 | 55 | 36 | 42 | 33 | 41 | 35  | 37   | 37 | 33   | 42  | 34  | 36 | 34 | 41 | 42 | 47 | 48 |          |    |           |     | 3 |
| 1         | Man        | 70 |    |    | ~~ | -  | ~  |    |    |    |    | -  | ~  | ~~ | ~~ | ~ ~ | 100  |    | 0.0  | 0.0 | 0.2 | ~  | 00 | ~~ | ~  | ~  |    |          |    | e 19      | 974 |   |
| Lewiston  | Max<br>Min |    | // | 81 |    | 50 |    | ~~ |    |    | 12 |    |    |    |    |     |      |    |      |     |     |    |    |    |    |    |    | 86<br>54 |    |           |     |   |
| Logan USU | Max        | 72 | 75 | 80 | 80 | 76 | 58 | 61 | 52 | 62 | 69 | 78 | 82 | 88 | 90 | 93  | 93   | 94 | 92   | 91  | 91  | 83 | 79 | 89 | 91 | 93 | 91 | 82       | 87 | 88        | 87  |   |
|           | Min        | 44 | 46 | 54 | 54 | 51 | 44 | 49 | 38 | 43 | 48 | 47 | 55 | 59 | 63 | 63  | 68   | 63 | 62   | 64  | 63  | 54 | 58 | 62 | 64 | 63 | 58 | 56       | 56 | 61        | 64  |   |
| Logan USU | Max        | 75 | 80 | 82 | 81 | 74 |    | 63 | 64 | 76 | 80 | 83 | 89 | 93 | 94 | 97  | 95   | 95 | 93   | 92  | 90  | 84 | 90 | 93 | 94 | 92 | 92 | 88       | 90 | 90        | 92  |   |
| Exp. Sta. | Min        | 40 | 43 | 49 | 51 | 50 | 42 | 45 | 35 | 39 | 42 | 46 | 49 | 51 | 55 | 57  | 54   | 60 | 55   | 62  | 63  | 50 | 51 | 55 | 53 | 57 | 53 | 49       | 49 | 58        | 51  |   |

|           |      |    |    |    | -  |    |    |    |    |    |    |    |    | Da | ily | ter | nper | atu | ires | 3  |    |    |    |    |    |    |    |    |     |     |    |
|-----------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|------|-----|------|----|----|----|----|----|----|----|----|----|-----|-----|----|
|           |      |    |    |    |    |    | -  |    |    | -  |    |    |    | 1  | Day | of  | mon  | nth | 1000 |    |    |    |    |    |    |    |    |    |     | 100 |    |
| Station   |      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15  | 16   | 17  | 18   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28  | 29  | 30 |
|           |      |    |    |    |    |    |    | -  |    |    |    |    |    |    |     |     |      |     |      |    |    | -  |    |    |    |    |    | 1  | May | 197 | 75 |
| ogan USU  | Max. | 58 | 62 | 72 | 70 | 48 | 45 | 45 | 54 | 64 | 70 | 73 | 70 | 70 | 80  | 82  | 82   | 79  | 75   | 72 | 43 | 51 | 55 | 53 | 70 | 68 | 64 | 65 | 66  | 69  | 72 |
| Exp. Sta. | Min. | 28 | 36 | 41 | 31 | 30 | 28 | 35 | 37 | 35 | 37 | 45 | 40 | 36 | 37  | 46  | 48   | 48  | 41   | 36 | 30 | 32 | 36 | 41 | 45 | 27 | 29 | 38 | 40  | 36  | 40 |

Source: U. S. Department of Commerce, Weather Sureau. Climatological Data, Utah-1952 1975.

|        | GDD  |      |      |       |          |      |      |      |  |
|--------|------|------|------|-------|----------|------|------|------|--|
| Day of |      |      |      | Month | and year |      |      |      |  |
| month  | May  | May  | June | May   | May      | May  | May  | May  |  |
|        | 1952 | 1953 | 1953 | 1954  | 1955     | 1956 | 1957 | 1958 |  |
| 1      | 11.5 | 0.0  | 12.0 | 0.0   | 10.5     | 6.5  | 11.5 |      |  |
| 2      | 15.0 | 1.5  | 7.0  | 2.5   |          |      |      | 6.5  |  |
| 3      |      |      |      |       | 2.0      | 9.0  | 12.5 | 10.0 |  |
|        | 16.0 | 1.5  | 8.0  | 7.0   | 0.5      | 10.5 | 12.5 | 10.5 |  |
| 4      | 12.0 | 6.5  | 10.5 | 11.0  | 7.0      | 11.5 | 7.5  | 12.0 |  |
| 5      | 12.5 | 10.5 | 9.5  | 12.0  | 13.5     | 7.5  | 12.5 | 13.5 |  |
| 6      | 12.0 | 12.5 | 8.5  | 12.0  | 13.0     | 10.0 | 13.5 | 13.5 |  |
| 7      | 14.5 | 11.5 | 8.5  | 13.0  | 13.0     | 12.5 | 16.5 | 13.0 |  |
| 8      | 11.0 | 4.0  | 8.0  | 15.5  | 12.0     | 10.5 | 10.0 | 8.0  |  |
| 9      | 6.0  | 0.0  | 14.5 | 17.5  | 6.5      | 10.5 | 8.5  | 9.5  |  |
| 10     | 9.0  | 0.0  | 19.0 | 18.0  | 10.5     | 7.5  | 9.0  | 13.0 |  |
| 11     | 13.5 | 2.5  | 17.5 | 11.5  | 12.5     | 2.5  | 5.0  | 12.5 |  |
| 12     | 15.0 | 3.0  | 22.5 | 14.0  | 14.0     | 0.0  | 3.0  | 4.0  |  |
| 13     | 12.0 | 5.5  | 15.5 | 14.0  | 12.5     | 1.0  | 4.5  | 5.5  |  |
| 14     | 12.5 | 8.5  | 14.5 | 13.5  | 12.0     | 5.0  | 5.0  | 5.5  |  |
| 15     | 4.5  | 7.5  | 11.5 | 13.5  | 3.0      | 9.5  | 5.5  | 7.5  |  |
| 16     | 2.0  | 9.0  | 18.0 | 16.5  | 3.5      | 12.0 | 5.5  | 12.0 |  |
| 17     | 7.5  | 9.0  | 17.5 | 15.5  | 6.5      | 14.5 | 8.0  | 13.5 |  |
| 18     | 10.0 | 7.5  | 17.5 | 16.5  | 10.0     | 15.0 | 9.0  | 16.0 |  |
| 19     | 11.0 | 6.5  | 17.5 | 17.0  | 13.5     | 17.5 | 9.0  | 18.0 |  |
| 20     | 8.5  | 3.0  | 12.0 | 17.0  | 15.5     | 15.5 | 0.5  | 18.5 |  |
| 21     | 1.5  | 4.0  | 14.5 | 13.5  | 16.0     | 16.5 | 0.5  | 21.5 |  |
| 22     | 0.5  | 5.0  | 17.0 | 3.5   | 11.5     | 16.5 | 4.0  | 17.0 |  |
| 23     | 10.0 | 5.0  | 17.5 | 9.0   | 12.0     | 15.5 | 6.0  | 16.0 |  |
| 24     | 7.5  | 2.0  | 17.0 | 12.5  | 12.0     | 16.0 | 2.5  | 16.5 |  |
| 25     | 14.0 | 9.0  | 12.0 | 12.5  | 4.0      | 14.0 | 8.5  | 18.0 |  |
| 26     | 10.0 | 9.5  | 13.0 | 5.5   | 6.5      | 14.5 | 11.5 | 17.5 |  |
| 27     | 12.0 | 11.0 | 11.0 | 5.0   | 5.0      | 9.5  | 13.5 | 17.5 |  |
| 28     | 15.0 | 11.5 | 18.0 | 6.0   | 8.0      | 7.0  | 14.5 | 21.0 |  |
| 29     | 15.5 | 7.5  | 18.0 | 8.0   | 14.0     | 10.0 | 13.0 | 15.5 |  |
| 30     | 11.0 | 7.5  | 25.0 | 8.0   | 13.0     | 15.5 | 13.0 | 13.0 |  |
| 31     | 15.5 | 12.5 |      | 7.0   | 11.0     | 18.0 | 15.0 | 12.0 |  |

Table 31. Growing Degree Days for selected growing season months from 1952 through 1975, calculated for Utah State University Experiment Station, (50°-86° F method).

|        | GDD            |       |       |       |       |       |  |  |  |
|--------|----------------|-------|-------|-------|-------|-------|--|--|--|
| Day of | Month and year |       |       |       |       |       |  |  |  |
| month  | May            | June  | July  | Aug.  | Sept. | Oct.  |  |  |  |
|        | 1959           | 1959  | 1959  | 1959  | 1959  | 1959  |  |  |  |
| 1      | 12.5           | 11.0  | 15.0  | 24.0  | 12.5  | 1.0   |  |  |  |
| 2      | 12.5           | 13.0  | 14.0  | 21.5  | 14.0  | 3.0   |  |  |  |
| 3      | 0.0            | 16.0  | 19.0  | 20.5  | 17.5  | 5.5   |  |  |  |
| 4      | 4.0            | 15.0  | 14.5  | 19.5  | 17.5  | 8.5   |  |  |  |
| 5      | 4.0            | 18.0  | 18.0  | 17.5  | 16.5  | 10.0  |  |  |  |
| 6      | 3.0            | 21.5  | 19.0  | 19.5  | 16.5  | 9.0   |  |  |  |
| 7      | 7.0            | 18.0  | 19.5  | 20.0  | 18.0  | 7.5   |  |  |  |
| 8      | 8.0            | 13.0  | 10.5  | 18.0  | 22.0  | 0.0   |  |  |  |
| 9      | 8.0            | 20.5  | 17.0  | 22.0  | 15.5  | 0.5   |  |  |  |
| 10     | 3.0            | 16.5  | 18.0  | 19.5  | 18.0  | 3.0   |  |  |  |
| 11     | 9.0            | 17.0  | 18.0  | 22.0  | 20.0  | 8.0   |  |  |  |
| 12     | 14.0           | 18.0  | 20.0  | 20.0  | 20.0  | 8.0   |  |  |  |
| 13     | 16.5           | 22.5  | 24.0  | 28.5  | 21.0  | 5.5   |  |  |  |
| 14     | 16.5           | 25.0  | 23.0  | 15.0  | 16.5  | 6.5   |  |  |  |
| 15     | 12.5           | 20.0  | 22.0  | 16.5  | 12.0  | 8.0   |  |  |  |
| 16     | 11.5           | 18.0  | 20.5  | 18.0  | 16.0  | 8.0   |  |  |  |
| 17     | 3.0            | 18.5  | 21.0  | 18.0  | 16.0  | 6.0   |  |  |  |
| 18     | 3.0            | 18.0  | 22.5  | 24.0  | 15.5  | 5.5   |  |  |  |
| 19     | 1.5            | 22.5  | 21.5  | 13.0  | 15.5  | 5.0   |  |  |  |
| 20     | 0.0            | 20.0  | 20.5  | 15.0  | 17.5  | 6.0   |  |  |  |
| 21     | 4.0            | 21.5  | 22.0  | 14.5  | 17.5  | 5.0   |  |  |  |
| 22     | 4.0            | 22.5  | 21.5  | 14.5  | 5.0   | 3.0   |  |  |  |
| 23     | 5.5            | 21.0  | 19.5  | 16.0  | 5.0   | 7.5   |  |  |  |
| 24     | 9.5            | 22.0  | 22.5  | 16.5  | 5.5   | 10.0  |  |  |  |
| 25     | 9.5            | 21.5  | 22.5  | 17.5  | 5.5   | 10.0  |  |  |  |
| 26     | 5.0            | 18.5  | 22.0  | 16.5  | 4.0   | 4.0   |  |  |  |
| 27     | 1.5            | 8.5   | 22.0  | 16.5  | 2.0   | 3.5   |  |  |  |
| 28     | 5.5            | 4.0   | 21.0  | 19.0  | 0.0   | 3.5   |  |  |  |
| 29     | 5.0            | 5.0   | 18.0  | 15.0  | 1.0   | 0.0   |  |  |  |
| 30     | 4.0            | 9.5   | 19.5  | 14.0  | 0.5   | 0.0   |  |  |  |
| 31     | 8.0            |       | 28.5  | 14.0  |       | 0.0   |  |  |  |
| Total  | 211.0          | 516.0 | 616.5 | 556.0 | 384.0 | 161.0 |  |  |  |

|        | GDD   |       |         |         |       |       |  |  |  |
|--------|-------|-------|---------|---------|-------|-------|--|--|--|
| Day of |       |       | Month a | nd year |       |       |  |  |  |
| month  | May   | June  | July    | Aug.    | Sept. | Oct.  |  |  |  |
|        | 1960  | 1960  | 1960    | 1960    | 1960  | 1960  |  |  |  |
| 1      | 7.0   | 15.0  | 18.0    | 22.5    | 19.5  | 14.0  |  |  |  |
| 2      | 7.0   | 16.5  | 19.0    | 18.0    | 21.0  | 13.5  |  |  |  |
| 3      | 6.5   | 17.0  | 18.5    | 19.5    | 20.5  | 14.5  |  |  |  |
| 4      | 5.0   | 17.5  | 18.0    | 20.0    | 20.0  | 14.5  |  |  |  |
| 5      | 7.5   | 15.5  | 18.5    | 19.0    | 18.0  | 14.5  |  |  |  |
| 6      | 9.0   | 17.0  | 22.5    | 20.0    | 18.5  | 14.5  |  |  |  |
| 7      | 10.0  | 17.5  | 20.5    | 19.0    | 16.0  | 12.5  |  |  |  |
| 8      | 10.0  | 14.0  | 18.5    | 19.0    | 15.0  | 7.0   |  |  |  |
| 9      | 13.5  | 13.5  | 19.5    | 18.5    | 15.5  | 0.0   |  |  |  |
| 10     | 16.5  | 11.0  | 22.0    | 23.0    | 17.0  | 1.0   |  |  |  |
| 11     | 18.0  | 13.0  | 19.5    | 20.5    | 18.0  | 0.5   |  |  |  |
| 12     | 18.0  | 15.0  | 18.0    | 21.0    | 18.0  | 2.5   |  |  |  |
| 13     | 16.5  | 18.5  | 24.0    | 22.5    | 19.5  | 0.0   |  |  |  |
| 14     | 8.5   | 17.0  | 20.5    | 24.5    | 16.5  | 0.0   |  |  |  |
| 15     | 11.0  | 15.5  | 19.0    | 20.0    | 14.5  | 5.0   |  |  |  |
| 16     | 10.0  | 15.0  | 19.0    | 13.0    | 16.5  | 6.0   |  |  |  |
| 17     | 8.5   | 19.0  | 20.0    | 12.5    | 15.5  | 9.5   |  |  |  |
| 18     | 5.0   | 18.0  | 22.5    | 17.5    | 14.5  |       |  |  |  |
| 19     | 3.5   | 20.0  | 22.0    | 18.0    | 17.0  |       |  |  |  |
| 20     | 9.5   | 15.0  | 21.5    | 19.0    | 16.5  |       |  |  |  |
| 21     | 9.5   | 10.0  | 22.0    | 20.5    | 14.5  |       |  |  |  |
| 22     | 5.5   | 14.5  | 22.0    | 18.0    | 10.0  |       |  |  |  |
| 23     | 6.5   | 15.0  | 26.0    | 7.5     | 11.5  |       |  |  |  |
| 24     | 7.5   | 17.5  | 20.0    | 8.0     | 12.5  |       |  |  |  |
| 25     | 8.0   | 18.0  | 21.0    | 10.5    | 16.0  |       |  |  |  |
| 26     | 12.5  | 17.5  | 21.0    | 16.5    | 17.5  |       |  |  |  |
| 27     | 11.0  | 18.5  | 25.5    | 15.5    | 17.5  |       |  |  |  |
| 28     | 10.0  | 18.0  | 24.0    | 11.5    | 14.5  |       |  |  |  |
| 29     | 15.0  | 18.0  | 24.5    | 17.0    | 16.0  |       |  |  |  |
| 30     | 16.0  | 18.0  | 26.0    | 18.0    | 15.0  |       |  |  |  |
| 31     | 16.0  |       | 24.5    | 21.0    |       |       |  |  |  |
| fotal  | 318.0 | 485.5 | 657.5   | 551.0   | 492.5 | 129.5 |  |  |  |

|        |       |       | GDD          |       |       |
|--------|-------|-------|--------------|-------|-------|
| Day of |       |       | Month and ye | ır    |       |
| month  | May   | June  | July         | Aug.  | Sept  |
|        | 1961  | 1961  | 1961         | 1961  | 1961  |
| 1      | 12.0  | 18.0  | 17.5         | 20.0  | 20.0  |
| 2      | 11.0  | 8.5   | 18.0         | 23.0  | 14.0  |
| 3      | 8.5   | 8.0   | 19.5         | 22.0  | 8.5   |
| 4      | 7.5   | 8.5   | 19.5         | 22.0  | 12.5  |
| 5      | 1.0   | 10.0  | 18.5         | 24.5  | 15.0  |
| 6      | 5.0   | 15.0  | 22.0         | 23.5  | 17.5  |
| 7      | 5.0   | 17.5  | 24.0         | 21.5  | 17.5  |
| 8      | 7.5   | 18.0  | 20.0         | 23.0  | 15.5  |
| 9      | 10.5  | 17.5  | 20.5         | 20.5  | 13.5  |
| 10     | 15.0  | 18.5  | 20.0         | 21.5  | 12.0  |
| 11     | 8.5   | 17.5  | 18.5         | 21.0  | 14.5  |
| 12     | 5.0   | 14.0  | 18.5         | 23.0  | 14.0  |
| 13     | 8.5   | 14.5  | 19.5         | 20.5  | 11.0  |
| 14     | 7.5   | 15.0  | 23.0         | 19.0  | 13.5  |
| 15     | 4.0   | 16.0  | 20.5         | 18.5  | 17.0  |
| 16     | 3.5   | 18.0  | 21.5         | 19.0  | 18.0  |
| 17     | 10.5  | 19.0  | 22.5         | 18.0  | 14.0  |
| 18     | 9.5   | 18.0  | 20.0         | 19.0  | 9.5   |
| 19     | 13.0  | 1.8.0 | 21.0         | 21.5  | 4.5   |
| 20     | 15.5  | 19.5  | 22.5         | 27.5  | 4.0   |
| 21     | 11.5  | 19.5  | 20.5         | 21.5  | 4.0   |
| 22     | 15.0  | 19.5  | 19.0         | 19.5  | 1.5   |
| 23     | 16.5  | 20.5  | 18.0         | 20.0  | 4.0   |
| 24     | 17.5  | 20.5  | 18.5         | 22.5  | 1.5   |
| 25     | 18.0  | 20.0  | 18.0         | 20.0  | 7.5   |
| 26     | 18.5  | 20.0  | 22.5         | 18.5  | 9.5   |
| 27     | 14.5  | 24.5  | 24.0         | 19.0  | 10.0  |
| 28     | 17.0  | 20.0  | 21.0         | 20.0  | 8.5   |
| 29     | 19.5  | 19.5  | 25.0         | 27.0  | 8.5   |
| 30     | 12.0  | 18.0  | 24.5         | 16.0  | 5.0   |
| 31     | 14.5  |       | 23.0         | 16.5  |       |
| otal   | 343.0 | 511.0 | 641.0        | 639.0 | 326.0 |

|        |       |       | GDD          |       |       |
|--------|-------|-------|--------------|-------|-------|
| Day of |       |       | Month and ye | ar    |       |
| month  | May   | June  | July         | Aug.  | Sept  |
|        | 1962  | 1962  | 1962         | 1962  | 1962  |
| 1      | 7.5   | 12.0  | 23.0         | 17.0  | 16.0  |
| 2      | 9.5   | 11.5  | 18.0         | 18.0  | 18.0  |
| 3      | 12.0  | 11.5  | 16.5         | 20.5  | 17.5  |
| 4      | 13.0  | 4.0   | 16.0         | 23.5  | 17.5  |
| 5      | 14.0  | 7.0   | 18.0         | 15.5  | 18.0  |
| 6      | 14.5  | 7.5   | 20.5         | 16.5  | 17.5  |
| 7      | 15.0  | 6.5   | 19.0         | 18.5  | 16.5  |
| 8      | 15.5  | 10.0  | 19.5         | 21.5  | 14.5  |
| 9      | 17.0  | 14.0  | 18.5         | 27.5  | 8.5   |
| 10     | 13.5  | 17.5  | 19.0         | 18.0  | 14.0  |
| 11     | 11.5  | 21.5  | 18.5         | 17.5  | 16.5  |
| 12     | 9.0   | 16.5  | 27.0         | 18.0  | 17.5  |
| 13     | 6.0   | 17.5  | 18.5         | 18.5  | 15.5  |
| 14     | 6.0   | 19.5  | 12.5         | 18.5  | 16.5  |
| 15     | 3.0   | 13.0  | 16.0         | 19.0  | 17.0  |
| 16     | 7.0   | 9.5   | 16.5         | 21.5  | 17.5  |
| 17     | 6.5   | 11.5  | 19.0         | 21.5  | 17.5  |
| 18     | 9.0   | 16.5  | 18.0         | 21.0  | 18.0  |
| 19     | 12.0  | 18.0  | 17.0         | 19.0  | 19.0  |
| 20     | 11.5  | 19.5  | 19.0         | 18.0  | 20.5  |
| 21     | 2.5   | 17.0  | 18.0         | 21.0  | 12.0  |
| 22     | 5.0   | 18.5  | 22.5         | 18.5  | 14.5  |
| 23     | 10.0  | 20.0  | 22.0         | 12.5  | 16.0  |
| 24     | 8.0   | 20.0  | 25.0         | 15.0  | 15.5  |
| 25     | 5.0   | 19.0  | 20.0         | 18.0  | 15.5  |
| 26     | 7.0   | 19.0  | 18.5         | 18.0  | 16.0  |
| 27     | 6.5   | 22.0  | 15.5         | 16.5  | 12.5  |
| 28     | 4.0   | 19.5  | 17.5         | 13.5  | 10.5  |
| 29     | 7.0   | 18.0  | 18.0         | 12.5  | 8.5   |
| 30     | 11.5  | 20.0  | 18.5         | 10.0  | 7.0   |
| 31     | 10.0  |       | 19.0         | 12.5  |       |
| Total  | 289.5 | 457.5 | 584.5        | 557.0 | 461.5 |

|        |       |       | G       | DD       |       |       |
|--------|-------|-------|---------|----------|-------|-------|
| Day of |       |       | Month a | and year |       |       |
| month  | May   | June  | July    | Aug.     | Sept. | Oct.  |
|        | 1963  | 1963  | 1963    | 1963     | 1963  | 1963  |
| 1      | 8.5   | 11.0  | 18.0    | 20.5     | 13.5  | 17.0  |
| 2      | 7.0   | 12.5  | 24.5    | 18.5     | 15.5  | 16.5  |
| 3      | 9.0   | 8.5   | 19.5    | 23.0     | 18.0  | 17.0  |
| 4      | 11.0  | 5.5   | 24.5    | 23.5     | 18.0  | 15.5  |
| 5      | 13.5  | 7.0   | 19.0    | 19.0     | 18.0  | 15.5  |
| 6      | 15.0  | 7.5   | 18.5    | 23.0     | 20.0  | 14.0  |
| 7      | 15.0  | 8.5   | 20.5    | 25.0     | 19.5  | 15.0  |
| 8      | 11.0  | 9.0   | 18.0    | 22.5     | 19.0  | 15.0  |
| 9      | 10.0  | 9.0   | 19.0    | 25.5     | 19.5  | 16.0  |
| 10     | 10.5  | 6.5   | 21.5    | 23.5     | 19.0  | 14.0  |
| 11     | 7.5   | 13.0  | 17.0    | 20.5     | 18.0  | 15.0  |
| 12     | 6.5   | 15.5  | 17.5    | 21.0     | 18.5  | 12.5  |
| 13     | 9.0   | 22.0  | 17.5    | 21.0     | 20.0  | 1.5   |
| 14     | 12.0  | 10.0  | 19.5    | 21.5     | 10.5  | 8.0   |
| 15     | 10.5  | 8.0   | 18.0    | 21.5     | 11.5  | 10.0  |
| 16     | 10.0  | 15.0  | 18.5    | 19.0     | 9.0   | 11.5  |
| 17     | 12.5  | 15.0  | 18.0    | 21.5     | 10.5  | 11.5  |
| 18     | 14.0  | 15.0  | 19.0    | 20.0     | 8.0   | 12.0  |
| 19     | 13.5  | 17.0  | 18.0    | 21.0     | 13.0  | 9.5   |
| 20     | 14.0  | 18.0  | 19.5    | 18.5     | 13.0  | 14.0  |
| 21     | 15.0  | 18.5  | 21.0    | 18.5     | 8.5   | 8.5   |
| 22     | 16.0  | 12.5  | 24.0    | 15.5     | 13.5  | 10.0  |
| 23     | 12.5  | 16.5  | 23.5    | 16.0     | 12.0  | 7.0   |
| 24     | 10.5  | 17.5  | 21.5    | 17.0     | 12.5  | 4.0   |
| 25     | 8.5   | 15.0  | 20.5    | 22.0     | 15.0  | 9.0   |
| 26     | 12.0  | 15.5  | 18.0    | 17.5     | 16.0  | 7.5   |
| 27     | 13.5  | 18.0  | 20.5    | 18.0     | 16.5  | 4.5   |
| 28     | 15.5  | 18.0  | 18.0    | 17.5     | 16.5  | 3.0   |
| 29     | 14.5  | 17.0  | 18.5    | 18.0     | 16.5  | 7.0   |
| 30     | 14.5  | 14.5  | 19.0    | 21.5     | 17.5  | 0.0   |
| 31     | 14.0  |       | 18.0    | 15.5     |       | 0.0   |
| otal   | 366.5 | 396.5 | 608.0   | 626.5    | 456.5 | 321.5 |

|        |       |       | GDD          |       |       |
|--------|-------|-------|--------------|-------|-------|
| Day of |       |       | Month and ye | ar    |       |
| month  | May   | June  | July         | Aug.  | Sept  |
|        | 1964  | 1964  | 1964         | 1964  | 1964  |
| 1      | 5.0   | 13.5  | 18.0         | 25.0  | 16.5  |
| 2      | 0.0   | 17.0  | 18.5         | 18.0  | 8.0   |
| 3      | 0.0   | 12.5  | 18.0         | 19.0  | 12.0  |
| 4      | 3.0   | 14.0  | 18.0         | 21.0  | 15.5  |
| 5      | 3.0   | 14.5  | 17.5         | 23.5  | 16.5  |
| 6      | 3.0   | 13.0  | 18.0         | 21.0  | 16.5  |
| 7      | 8.5   | 12.5  | 18.5         | 23.0  | 15.5  |
| 8      | 2.5   | 5.0   | 18.0         | 24.0  | 15.5  |
| 9      | 6.0   | 8.5   | 23.0         | 21.5  | 14.5  |
| 10     | 7.0   | 9.0   | 18.0         | 21.0  | 14.0  |
| 11     | 9.0   | 7.5   | 20.0         | 19.0  | 14.0  |
| 12     | 9.5   | 10.5  | 22.5         | 20.0  | 16.5  |
| 13     | 13.5  | 9.5   | 22.5         | 19.5  | 17.0  |
| 14     | 13.0  | 12.0  | 24.5         | 18.0  | 15.5  |
| 15     | 14.0  | 11.0  | 20.5         | 19.0  | 14.5  |
| 16     | 16.5  | 10.0  | 18.5         | 22.0  | 14.0  |
| 17     | 15.5  | 6.0   | 19.5         | 18.5  | 15.0  |
| 18     | 14.0  | 7.5   | 22.0         | 18.5  | 13.5  |
| 19     | 17.0  | 6.0   | 19.0         | 20.0  | 8.0   |
| 20     | 16.5  | 8.0   | 18.5         | 9.0   | 9.0   |
| 21     | 15.5  | 7.0   | 20.5         | 11.5  | 10.0  |
| 22     | 13.5  | 8.5   | 20.5         | 15.5  | 10.5  |
| 23     | 10.5  | 13.0  | 22.0         | 17.5  | 12.0  |
| 24     | 13.0  | 16.0  | 18.0         | 18.5  | 13.5  |
| 25     | 16.5  | 18.0  | 18.0         | 17.5  | 16.0  |
| 26     | 13.5  | 19.0  | 18.0         | 15.0  | 15.5  |
| 27     | 12.5  | 24.0  | 20.5         | 10.0  | 10.5  |
| 28     | 4.5   | 19.5  | 22.5         | 8.5   | 13.5  |
| 29     | 5.5   | 18.5  | 23.0         | 12.5  | 14.5  |
| 30     | 7.5   | 19.5  | 23.0         | 13.0  | 13.5  |
| 31     | 11.0  |       | 21.5         | 15.0  |       |
| lotal  | 300.0 | 370.5 | 620.5        | 555.0 | 412.5 |

|        |       |       | GDD          |       |       |
|--------|-------|-------|--------------|-------|-------|
| Day of |       |       | Month and ye | ar    |       |
| month  | May   | June  | July         | Aug.  | Sept  |
|        | 1965  | 1965  | 1965         | 1965  | 1965  |
| 1      | 11.0  | 11.5  | 17.5         | 22.5  | 14.0  |
| 2      | 10.0  | 11.5  | 14.5         | 20.0  | 15.0  |
| 3      | 7.5   | 14.0  | 17.0         | 21.5  | 14.5  |
| 4      | 7.5   | 13.0  | 19.0         | 19.0  | 12.5  |
| 5      | 6.0   | 13.0  | 18.0         | 17.0  | 13.5  |
| 6      | 0.0   | 15.0  | 18.0         | 18.0  | 7.0   |
| 7      | 0.0   | 16.0  | 19.5         | 18.0  | 10.0  |
| 8      | 0.0   | 15.0  | 19.0         | 19.5  | 9.0   |
| 9      | 2.5   | 15.5  | 24.5         | 20.5  | 9.5   |
| 10     | 6.0   | 14.5  | 19.0         | 21.0  | 12.5  |
| 11     | 9.0   | 15.5  | 21.5         | 23.0  | 14.0  |
| 12     | 11.0  | 18.0  | 18.5         | 24.0  | 13.0  |
| 13     | 10.5  | 12.0  | 17.5         | 22.5  | 13.0  |
| 14     | 10.0  | 11.0  | 18.0         | 18.0  | 12.5  |
| 15     | 11.0  | 11.5  | 19.5         | 20.0  | 9.0   |
| 16     | 14.0  | 9.0   | 21.5         | 20.0  | 7.5   |
| 17     | 13.5  | 9.0   | 21.0         | 21.5  | 0.0   |
| 18     | 11.0  | 12.5  | 22.0         | 16.5  | 0.5   |
| 19     | 12.0  | 18.0  | 19.5         | 11.0  | 3.0   |
| 20     | 10.0  | 18.0  | 17.0         | 15.5  | 5.5   |
| 21     | 9.0   | 17.5  | 19.5         | 14.0  | 3.5   |
| 22     | 11.0  | 18.0  | 21.5         | 12.0  | 9.5   |
| 23     | 9.0   | 18.0  | 19.0         | 14.0  | 8.5   |
| 24     | 5.0   | 18.5  | 18.5         | 16.0  | 10.5  |
| 25     | 6.5   | 11.5  | 20.5         | 15.0  | 13.0  |
| 26     | 5.5   | 7.5   | 19.0         | 14.0  | 12.5  |
| 27     | 7.5   | 8.0   | 20.5         | 7.5   | 15.0  |
| 28     | 11.0  | 11.5  | 21.0         | 16.5  | 8.0   |
| 29     | 14.0  | 14.5  | 18.0         | 15.0  | 2.0   |
| 30     | 16.0  | 17.5  | 26.0         | 11.0  | 6.5   |
| 31     | 15.0  |       | 23.5         | 12.5  |       |
| otal   | 272.0 | 416.0 | 599.0        | 536.5 | 284.5 |

|        |       |       | G       | DD      |       |       |
|--------|-------|-------|---------|---------|-------|-------|
| Day of |       |       | Month a | nd year |       |       |
| month  | May   | June  | July    | Aug.    | Sept. | Oct.  |
|        | 1966  | 1966  | 1966    | 1966    | 1966  | 1966  |
| 1      | 11.5  | 14.5  | 25.5    | 22.5    | 9.5   | 11.0  |
| 2      | 14.5  | 18.0  | 27.5    | 24.0    | 8.5   | 8.5   |
| 3      | 16.5  | 14.0  | 15.5    | 25.0    | 14.5  | 4.5   |
| 4      | 16.5  | 10.0  | 18.0    | 19.5    | 17.0  | 7.5   |
| 5      | 17.0  | 9.5   | 18.0    | 19.0    | 19.0  | 10.5  |
| 6      | 17.0  | 12.5  | 18.0    | 19.0    | 18.0  | 12.0  |
| 7      | 16.0  | 15.0  | 20.5    | 18.0    | 18.0  | 12.0  |
| 8      | 16.0  | 12.0  | 23.0    | 18.0    | 24.5  | 11.0  |
| 9      | 13.5  | 14.0  | 21.5    | 23.0    | 18.0  | 9.0   |
| 10     | 5.0   | 17.0  | 20.0    | 18.0    | 19.5  | 10.0  |
| 11     | 5.0   | 13.0  | 22.0    | 20.0    | 20.0  | 10.0  |
| 12     | 4.0   | 9.0   | 25.5    | 16.5    | 17.0  | 8.5   |
| 13     | 7.5   | 13.0  | 19.5    | 18.0    | 15.5  | 3.5   |
| 14     | 7.5   | 16.5  | 22.5    | 19.0    | 8.5   | 0.0   |
| 15     | 9.0   | 18.0  | 23.5    | 18.0    | 2.0   | 0.0   |
| 16     | 10.0  | 17.5  | 20.5    | 18.5    | 10.0  | 2.5   |
| 17     | 8.0   | 16.5  | 25.0    | 19.5    | 15.0  | 4.0   |
| 18     | 9.0   | 18.0  | 24.5    | 19.0    | 17.5  | 2.5   |
| 19     | 12.0  | 18.0  | 24.5    | 21.0    | 16.0  | 7.5   |
| 20     | 14.0  | 19.0  | 23.5    | 15.0    | 17.0  |       |
| 21     | 20.0  | 27.0  | 26.0    | 13.5    | 18.0  |       |
| 22     | 10.0  | 12.5  | 21.0    | 16.5    | 18.0  |       |
| 23     | 5.0   | 13.0  | 19.5    | 18.0    | 18.0  |       |
| 24     | 12.5  | 15.0  | 22.5    | 18.0    | 20.5  |       |
| 25     | 15.5  | 12.5  | 24.0    | 18.0    | 15.5  |       |
| 26     | 17.0  | 18.0  | 19.0    | 26.5    | 13.5  |       |
| 27     | 18.5  | 18.0  | 20.5    | 14.0    | 9.0   |       |
| 28     | 19.5  | 20.0  | 22.5    | 18.0    | 11.5  |       |
| 29     | 18.5  | 21.5  | 19.0    | 22.0    | 13.0  |       |
| 30     | 23.5  | 24.5  | 19.0    | 16.5    | 12.0  |       |
| 31     | 19.0  |       | 26.5    | 14.5    |       |       |
| lotal  | 408.5 | 477.0 | 678.0   | 586.0   | 454.0 | 134.5 |

|        |      |      |      |      |         | GDD  |      |      |      |      |
|--------|------|------|------|------|---------|------|------|------|------|------|
| Day of | N.   |      |      |      | Month a |      |      |      |      |      |
| month  | May  | May  | May  | May  | May     | May  | May  | May  | June | May  |
|        | 1967 | 1968 | 1969 | 1970 | 1971    | 1972 | 1973 | 1974 | 1974 | 1975 |
| 1      | 0.0  | 13.0 | 8.5  | 3.0  | 13.0    | 4.0  | 0.0  | 12.5 | 12.5 | 4.0  |
| 2      | 0.0  | 12.5 | 10.5 | 6.5  | 14.5    | 7.5  | 4.0  | 11.5 | 15.0 | 6.0  |
| 3      | 1.5  | 12.5 | 9.5  | 10.0 | 14.5    | 12.0 | 10.0 | 7.5  | 16.0 | 11.0 |
| 4      | 5.0  | 13.5 | 9.5  | 13.0 | 12.0    | 14.0 | 9.5  | 10.0 | 16.0 | 10.0 |
| 5      | 2.5  | 12.5 | 12.5 | 14.0 | 4.0     | 14.0 | 9.5  | 13.0 | 12.0 | 0.0  |
| 6      | 6.0  | 8.5  | 14.0 | 15.0 | 9.0     | 12.5 | 8.5  | 13.0 | 4.0  | 0.0  |
| 7      | 9.5  | 3.5  | 18.5 | 13.0 | 11.5    | 9.0  | 9.0  | 13.5 | 6.5  | 0.0  |
| 8      | 11.5 | 9.0  | 16.5 | 5.0  | 8.5     | 9.0  | 8.5  | 14.5 | 7.0  | 2.0  |
| 9      | 12.5 | 12.5 | 14.5 | 5.5  | 4.0     | 4.0  | 10.0 | 19.0 | 13.0 | 7.0  |
| 10     | 11.0 | 12.5 | 15.0 | 0.0  | 9.0     | 6.5  | 10.5 | 15.5 | 15.0 | 10.0 |
| 11     | 0.5  | 12.0 | 14.5 | 1.0  | 11.0    | 7.5  | 10.0 | 10.0 | 16.5 | 11.5 |
| 12     | 0.0  | 9.5  | 14.5 | 3.0  | 13.0    | 9.0  | 13.5 | 11.5 | 18.0 | 10.0 |
| 13     | 1.5  | 5.5  | 16.0 | 3.5  | 12.5    | 10.0 | 14.0 | 12.0 | 18.5 | 10.0 |
| 14     | 4.0  | 3.5  | 14.0 | 4.0  | 9.0     | 13.0 | 15.0 | 7.0  | 20.5 | 15.0 |
| 15     | 7.5  | 1.0  | 14.0 | 9.5  | 12.0    | 16.5 | 14.0 | 7.5  | 21.5 | 16.0 |
| 16     | 11.0 | 5.0  | 11.5 | 14.0 | 11.5    | 17.5 | 16.0 | 6.0  | 25.0 | 16.0 |
| 17     | 13.5 | 7.5  | 14.5 | 16.5 | 1.5     | 16.5 | 16.5 | 10.0 | 23.0 | 14.5 |
| 18     | 16.5 | 9.5  | 15.5 | 16.5 | 3.0     | 14.0 | 17.0 | 10.0 | 20.5 | 12.5 |
| 19     | 13.0 | 12.0 | 14.0 | 20.0 | 7.0     | 15.0 | 15.5 | 6.5  | 24.0 | 11.0 |
| 20     | 13.0 | 18.5 | 13.0 | 15.5 | 6.0     | 12.5 | 15.0 | 0.0  | 24.5 | 0.0  |
| 21     | 15.5 | 11.0 | 12.0 | 10.0 | 10.0    | 7.0  | 8.5  | 4.0  | 14.0 | 0.5  |
| 22     | 18.0 | 6.0  | 14.0 | 11.0 | 6.0     | 5.0  | 11.5 | 10.0 | 18.5 | 2.5  |
| 23     | 18.0 | 5.0  | 16.5 | 10.0 | 7.0     | 10.0 | 14.5 | 12.5 | 20.5 | 1.5  |
| 24     | 23.0 | 4.5  | 16.5 | 11.0 | 9.0     | 13.0 | 16.5 | 14.0 | 19.5 | 10.0 |
| 25     | 15.0 | 4.5  | 20.0 | 14.0 | 13.0    | 12.5 | 10.0 | 14.0 | 21.5 | 9.0  |
| 26     | 11.5 | 6.0  | 22.0 | 15.0 | 17.0    | 12.5 | 4.0  | 16.0 | 19.5 | 7.0  |
| 27     | 14.5 | 10.0 | 23.5 | 15.0 | 15.5    | 14.0 | 7.5  | 20.5 | 18.0 | 7.5  |
| 28     | 12.5 | 16.0 | 16.0 | 10.0 | 14.0    | 15.0 | 10.5 | 17.0 | 18.0 | 8.0  |
| 29     | 11.5 | 17.0 | 17.0 | 11.5 | 12.0    | 16.0 | 11.5 | 15.5 | 22.0 | 9.5  |
| 30     | 7.5  | 18.0 | 19.0 | 11.5 | 6.5     | 18.0 | 12.5 | 11.0 | 18.5 | 11.0 |
| 31     | 7.5  | 11.0 | 13.5 | 9.0  | 5.5     | 18.0 | 15.0 | 11.0 |      | 13.0 |

Source: Drawn from Table 30.

|        |          |           | Degree Day | Day         | and the second second |      | DD 1959 | 9-1966 | ;   |
|--------|----------|-----------|------------|-------------|-----------------------|------|---------|--------|-----|
| Week   | Lewiston | Logan USU | Richfield  |             |                       |      | iment   |        |     |
| begins | mean     | mean      | mean       | month       |                       |      | July    |        |     |
|        |          |           |            |             |                       |      |         |        |     |
| Apr 5  | 26       | 25        |            | 1           | 9.4                   | 13.3 | 19.1    |        |     |
| Apr 12 | 41       | 40        |            | 2           | 8.9                   | 13.6 | 19.3    |        |     |
| Apr 19 | 44       | 44        |            | 3           | 7.5                   | 12.7 | 20.3    |        |     |
| Apr 26 | 45       | 45        |            | 4           | 8.4                   | 10.9 | 18.4    |        |     |
| May 3  | 58       | 59        | 74         | 5           | 8.3                   | 11.8 | 18.2    |        |     |
| May 10 | 66       | 64        | 77         | 6           | 8.3                   | 13.6 | 19.6    |        |     |
| May 17 | 69       | 67        | 84         | 7           | 9.6                   | 13.9 | 20.3    |        |     |
| May 24 | 82       | 84        | 97         | 8           | 8.8                   | 12.0 | 18.3    |        |     |
| May 31 | 77       | 80        | 97         | 9           | 10.1                  | 14.1 | 20.4    |        |     |
| Jun 7  | 91       | 94        | 109        | 10          | 9.6                   | 13.8 | 19.7    |        |     |
| Jun 14 | 101      | 107       | 116        | 11          | 9.7                   | 14.8 | 19.4    |        |     |
| Jun 21 | 110      | 119       | 121        | 12          | 9.6                   | 14.6 | 20.9    |        |     |
| Jun 28 | 118      | 128       | 128        | 13          | 11.0                  | 16.2 | 20.4    |        |     |
| Jul 5  | 126      | 144       | 132        | 14          | 10.1                  | 15.8 | 20.4    |        |     |
| Jul 12 | 130      | 152       | 134        | 15          | 9.4                   | 14.1 | 18.9    |        |     |
| ul 19  | 132      | 158       | 135        | 16          | 10.3                  | 14.0 | 19.5    |        |     |
| ul 26  | 136      | 159       | 138        | 17          | 9.8                   | 14.3 | 20.8    |        |     |
| ug 2   | 131      | 152       | 135        | 18          | 9.3                   | 15.4 | 21.3    |        |     |
| ug 9   | 129      | 148       | 132        | 19          | 10.8                  | 13.4 | 20.3    |        |     |
| ug 16  | 126      | 149       | 129        | 20          | 11.8                  |      | 20.3    |        |     |
| ug 23  | 119      | 134       | 125        | 21          | 10.9                  |      | 21.2    |        |     |
| ug 30  | 114      | 125       | 121        | 22          | 10.0                  |      | 21.5    |        |     |
| ep 6   | 107      | 114       | 115        | 23          | 8.9                   |      | 21.2    |        |     |
| ep 13  | 95       | 97        | 111        | 24          | 10.4                  |      | 20.8    |        |     |
| ep 20  | 81       | 79        | 97         | 25          | 10.9                  |      | 20.6    |        |     |
| ep 27  | 75       | 75        | 91         | 26          | 11.4                  |      | 19.8    |        |     |
| ct 4   | 65       | 60        | 80         | 27          | 10.7                  |      | 21.1    |        |     |
| ct 11  | 53       | 49        | 67         | 28          | 10.9                  |      | 20.9    |        |     |
| ct 18  | 40       | 36        | 62         | 29          | 12.4                  |      | 20.5    |        |     |
| ct 25  | 29       | 28        | 53         | 30          | 13.1                  |      | 20.5    |        |     |
|        |          | 20        |            | 31          | 13.2                  |      | 23.1    |        |     |
|        |          |           | Mon<br>tot | thly<br>als | 314                   | 454  | 626     | 575    | 409 |

Table 32. Mean growing degree days using the 50°-86° F method, for various time periods and stations in Utah

Source: Drawn from Table 30.

|        | Growing Degree Days, 50° | 'r Base - 86°r Ma |                                                      |
|--------|--------------------------|-------------------|------------------------------------------------------|
| County | Community                | Elevation         | Silage corn<br>May 3-Sept 13<br>22 weeks<br>133 days |
| Cache  | Lewiston                 | 4480              | 2059                                                 |
|        | Logan                    | 4785              | 2275                                                 |
| Sevier | Richfield                | 5270              | 2236                                                 |

Source: E. Arlo Richardson, Utah State Climatologist, Department of Soil Science and Biometeorology, Utah State University. Personal interview, August, 1975.

| Year     | <pre>\$ Value/Ton</pre> | =     |
|----------|-------------------------|-------|
| <br>1953 | 7.00                    | <br>- |
| 1954     | 7.50                    |       |
| 1955     | 7.50                    |       |
| 1956     | 7.00                    |       |
| 1957     | 6.50                    |       |
| 1958     | 6.50                    |       |
| 1959     | 7.00                    |       |
| 1960     | 8.00                    |       |
| 1961     | 8.00                    |       |
| 1962     | 7.40                    |       |
| 1963     | 7.60                    |       |
| 1964     | 8.20                    |       |
| 1965     | 8.40                    |       |
| 1966     | 9.80                    |       |
| 1967     | 8.60                    |       |
| 1968     | 8.10                    |       |
| 1969     | 8.30                    |       |
| 1970     | 9.80                    |       |
| 1971     | 10.00                   |       |
| 1972     | 11.50                   |       |
| 1973     | 14.50                   |       |
| 1974     | 17.20                   |       |

Table 33. Prices for corn silage in Utah from 1953 through 1974

Source: Statistical Reporting Service, U.S. Department of Agriculture. Utah Agricultural Statistics—1973. Salt Lake City, Utah.

|                    |      | Growi | ing Degree 1 |      |      |
|--------------------|------|-------|--------------|------|------|
|                    | 2000 | 2200  | 2400         | 2500 | 2600 |
| 14 - 1 - 1 - 1 - 1 | to   | to    | to           | to   | to   |
| Jtahybrid          | 2100 | 2300  | 2500         | 2600 | 2700 |
| 216                | x    |       |              |      |      |
| 330                |      | x     |              |      |      |
| 544A               |      |       | x            |      |      |
| 680                |      |       |              | x    |      |
| 54-40              |      |       |              |      | x    |
| 644                |      |       |              | x    |      |
|                    |      |       |              |      |      |

Table 34. Growing Degree Days to maturity for Utah hybrids with an attached comparison of several other brands and their growing degree days to maturity

|                  | 10.00              |                        |                                |                              |                               | Growing                                         | Degree D                                                          | ays                                                     |                                                        |                                                      |                             |                                                                  |
|------------------|--------------------|------------------------|--------------------------------|------------------------------|-------------------------------|-------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| Brand            | 2000<br>to<br>2100 |                        | 2100<br>to<br>2200             |                              | 2200<br>to<br>2300            |                                                 | 2300<br>to<br>2400                                                |                                                         | 2400<br>to<br>2500                                     |                                                      | 2500<br>to<br>2600          | 2600<br>to<br>2700                                               |
| Northrup<br>King | KE408<br>KE410     | KC 3<br>PX417<br>PX418 | KE4 35<br>PX420<br>PX13<br>HSE | PX442<br>N.King<br>HS1       | PX446<br>PX448<br>HS1         | РХ20<br>РХ466<br>РХ476<br>НS2                   | PX480<br>PX529<br>KE497<br>PX519<br>PX40<br>PX525<br>PX529<br>HS2 | PX545<br>PX556<br>PX47E<br>PX48<br>HS3<br>KM589         | PX50A<br>PX65<br>PX610<br>PX610A<br>PX614<br>SP622     | PX616<br>PX606<br>PX611<br>PX627<br>PX63<br>PX670    | KT626<br>KT623A             | KT680<br>PX72<br>PX661<br>PX675<br>PX77<br>PX79<br>PX677<br>PX76 |
| DeKalb           | 007<br>29          | DK22<br>XL301          | XL11<br>XL302                  | 45<br>XT138<br>XL311<br>XL10 | XL14<br>XL304                 | XL12<br>XL15A<br>XL16<br>XL21<br>XL306<br>XL307 | XL19<br>XL22B<br>XL24<br>XL316                                    | XL22<br>XL23<br>XL322<br>XL325<br>XL38<br>XL38<br>XL338 | XL42<br>XL43<br>XL54<br>XL45A<br>XL44<br>XL49<br>XL343 | XL347<br>XL64<br>XL66<br>XL363<br>XL364              | XL361<br>442<br>XL415A      | XL72A<br>XL372<br>XL74<br>XL80<br>XL81<br>XL84<br>XL85           |
| Pioneer          | 3894               | 3985<br>3990           | 3980<br>3981<br>3976           | 3965<br>3853                 | 3935<br>3816<br>3959<br>3956A | 3932A<br>3937<br>3740                           | 3784<br>3785<br>3780<br>3764<br>3778                              | 3773<br>3543<br>3724<br>3538<br>3570                    | 3571<br>3588<br>3517<br>3520<br>3575                   | 3381<br>3385<br>3388<br>3390<br>3505<br>3507<br>3366 | 3206<br>3291<br>3367<br>314 | 3369A<br>3368<br>3306<br>3195                                    |

108

|                        |       |                                |                |                                  | Growing                | Degree                                    | Days                      |                             |                                     |                         |                                           |
|------------------------|-------|--------------------------------|----------------|----------------------------------|------------------------|-------------------------------------------|---------------------------|-----------------------------|-------------------------------------|-------------------------|-------------------------------------------|
| Brand                  |       |                                |                |                                  |                        |                                           |                           |                             |                                     |                         |                                           |
| Funk's                 | G4082 | G43<br>G4160<br>G4170<br>G5150 | G4175<br>G5145 | G4110<br>G4180<br>G4263<br>G4195 | G10A<br>G4252<br>G4240 | G5207<br>G4222<br>G4292<br>G4343<br>G4404 | G4 360<br>G4 366<br>G4444 | G4 384A<br>G444 5<br>G44 55 | G4465<br>G4567<br>G4505             | G4595<br>G4599<br>G4641 | G4646<br>G4697<br>G4628<br>G4757<br>G5757 |
| PAG                    | SX42  | SX47<br>22                     | SX48<br>7120   | SX44<br>SX67                     | 46<br>SX76             | SX240<br>SX33<br>58<br>64                 | 7316<br>SX69              | SX53<br>SX71<br>272<br>7333 | SX7<br>SX454<br>315<br>SX56<br>SX83 | 315<br>344              | SX93<br>SX92<br>SX98<br>SX39<br>SX17A     |
| Idahybrid<br>Utahybrid |       | 216                            |                |                                  | 330<br>30-30           | 30-50                                     | 45-70                     | 544A                        | 45-90                               | 680<br>54 <b>-</b> 40   |                                           |

Source: Steve Regan Co., Salt Lake City, Utah.

| May | Prob.<br>of<br>320 | Prob.<br>of<br>28 <sup>0</sup> | June | Prob.<br>of<br>32 <sup>0</sup> | Prob.<br>of<br>28° | Sept. | Prob.<br>of<br>32 <sup>0</sup> | Prob.<br>of<br>28° | Oct. | Prob.<br>of<br>32 <sup>0</sup> | Prob.<br>of<br>28 <sup>0</sup> |
|-----|--------------------|--------------------------------|------|--------------------------------|--------------------|-------|--------------------------------|--------------------|------|--------------------------------|--------------------------------|
| 1   |                    |                                |      |                                |                    |       |                                |                    |      |                                |                                |
| 2   |                    | .55                            | 1 2  | .20                            |                    | 1 2   |                                |                    | 1 2  |                                | 25                             |
| 3   |                    | .50                            | 3    | .20                            |                    | 3     |                                |                    | 3    | .65                            | .25                            |
| 4   | .85                | . 50                           | 4    | .15                            |                    | 4     |                                |                    | 4    | .70                            | . 30                           |
| 5   | .05                | .45                            | 5    | •15                            |                    | 5     |                                |                    | 5    | .70                            | . 30                           |
| 6   |                    | .43                            | 6    |                                |                    | 6     | .05                            |                    | 6    | .75                            | . 35                           |
| 7   | .80                | .40                            | 7    |                                |                    | 7     | .05                            |                    | 7    | •/5                            |                                |
| 8   |                    |                                | 8    |                                |                    | 8     |                                |                    | 8    | .80                            | .40                            |
| 9   | .75                | .35                            | 9    | .10                            |                    | 9     |                                |                    | 9    | .00                            | .40                            |
| 10  |                    |                                | 10   |                                |                    | 10    |                                |                    | 10   | .85                            | .45                            |
| 11  |                    | . 30                           | 11   |                                |                    | 11    | .10                            |                    | 11   | .05                            | .50                            |
| 12  | .70                |                                | 12   |                                |                    | 12    |                                |                    | 12   |                                | .55                            |
| 13  |                    |                                | 13   |                                |                    | 13    |                                |                    | 13   | .90                            | • • • •                        |
| 14  | .65                | .25                            | 14   |                                |                    | 14    | .15                            |                    | 14   |                                | .60                            |
| 15  |                    |                                | 15   | .05                            |                    | 15    |                                |                    | 15   |                                |                                |
| 16  | .60                | .20                            | 16   |                                |                    | 16    | .20                            |                    | 16   |                                | .65                            |
| 17  |                    |                                | 17   |                                |                    | 17    |                                |                    | 17   |                                |                                |
| 18  | .55                |                                | 18   |                                |                    | 18    | .25                            |                    | 18   | .95                            | .70                            |
| 19  |                    | .15                            | 19   |                                |                    | 19    |                                |                    | 19   |                                |                                |
| 20  | .50                |                                | 20   |                                |                    | 20    | . 30                           | .05                | 20   |                                | .75                            |
| 21  |                    |                                | 21   |                                |                    | 21    |                                |                    | 21   |                                |                                |
| 22  | .45                |                                | 22   |                                |                    | 22    | .35                            |                    | 22   |                                | .80                            |
| 23  |                    | .10                            | 23   |                                |                    | 23    |                                |                    | 23   |                                |                                |
| 24  | .40                |                                | 24   |                                |                    | 24    | .40                            |                    | 24   |                                | .85                            |
| 25  |                    |                                | 25   |                                |                    | 25    |                                | .10                | 25   |                                |                                |
| 26  | .35                |                                | 26   |                                |                    | 26    | .45                            |                    | 26   |                                |                                |
| 27  |                    |                                | 27   |                                |                    | 27    | .50                            |                    | 27   |                                | .90                            |
| 28  | . 30               |                                | 28   |                                |                    | 28    | .55                            | .15                | 28   |                                |                                |
| 29  |                    | .05                            | 29   |                                |                    | 29    |                                |                    | 29   |                                |                                |
| 30  |                    |                                | 30   |                                |                    | 30    | .60                            | .20                | 30   |                                |                                |
| 31  | .25                |                                |      |                                |                    |       |                                |                    | 31   |                                |                                |

Table 35. A 130 day frost free growing season frost probability table

Source: E. Arlo Richardson, and Gaylen L. Ashcroft. Freeze-Free Seasons of State of Utah-Map and Table. Published jointly by Utah Agricultural Experiment Station, Utah State University, Logan, Utah, and Department of Commerce, ESSA, Environmental Data Services.

|        |        |      | Varieties |         |      |
|--------|--------|------|-----------|---------|------|
|        | Basic  |      | Utah H    | lybrids |      |
| Stages | Model* | 216  | 330       | 544     | 680  |
| Plant  |        |      |           |         |      |
|        | 80     | 80   | 80        | 80      | 80   |
| Emerge |        |      |           |         |      |
|        | 850    | 800  | 838       | 916     | 955  |
| Tassel | 270    | 24.0 | 265       | 200     |      |
| Silk   | 370    | 348  | 365       | 398     | 415  |
| OTIK   | 140    | 132  | 138       | 151     | 157  |
| Milk   |        |      | 150       |         | 1.57 |
|        | 840    | 790  | 829       | 905     | 943  |
| Mature |        |      |           |         |      |
| Totals | 2280   | 2150 | 2250      | 2450    | 2550 |

Table 36. Growth stages of corn in GDD.

\*Model and Program developed by Dr. R. J. Hanks, and P. V. Rasmussen, Utah State University.

| Variety       | Yield in<br>tons per<br>acre dry<br>weight | Maturity* | Percent<br>dry<br>weight | Year |
|---------------|--------------------------------------------|-----------|--------------------------|------|
| Utahybrid 680 | 7.8                                        |           |                          | 1953 |
| 544           | 8.4                                        |           |                          |      |
| 330           | 6.8                                        |           |                          |      |
| Utahybrid 680 |                                            | 1.3       |                          | 1954 |
| 544           | 7.3                                        | 2.0       |                          |      |
| 330           | 7.0                                        | 1.0       |                          |      |
| Utahybrid 680 |                                            | 1.3       |                          | 1955 |
| 544           |                                            | 2.0       |                          |      |
| 330           |                                            | 1.3       |                          |      |
| 216           | 6.1                                        | 1.0       |                          |      |
| Utahybrid 680 |                                            | 1.9       |                          | 1956 |
| 544           |                                            | 1.8       |                          |      |
| 330           |                                            | 1.1       |                          |      |
| 216           | 5.7                                        | 1.0       |                          |      |
| Utahybrid 680 |                                            | 1.6       |                          | 1957 |
| 544           |                                            | 2.1       |                          |      |
| 330           |                                            | 1.1       |                          |      |
| 216           | 5.1                                        | 1.0       |                          |      |
| Utahybrid 680 |                                            | 1.0       |                          | 1958 |
| 544           | 8.2                                        | 1.0       |                          |      |
| 330           | 7.9                                        | 1.0       |                          |      |
| 216           | 4.8                                        | 1.0       |                          |      |
| tahybrid 680  | 5.8                                        | 2.8       |                          | 1959 |
| 544           | 6.0                                        | 1.5       |                          |      |
| 330           | 6.2                                        | 1.0       |                          |      |
| 216           | 4.8                                        | 1.0       |                          |      |
| tahybrid 544  | 5.3                                        | 4.4       | 20                       | 1960 |
| 330           | 5.6                                        | 3.9       | 22                       |      |
| 216           | 4.7                                        | 2.4       | 23                       |      |
| tahybrid 680  | 7.9                                        | 1.0       | 30                       | 1961 |
| 544           | 8.3                                        | 1.0       | 30                       |      |
| 330           | 9.1                                        | 1.0       | 38                       |      |
| 216           | 7.9                                        | 1.0       | 41                       |      |

| Table 37. | Silage yield | data | for | Utah | Hybrid | corn | trials | in | the | years |
|-----------|--------------|------|-----|------|--------|------|--------|----|-----|-------|
|           | 1953 through | 1966 |     |      |        |      |        |    |     |       |

|           |     | Yield in<br>tons per<br>acre dry |           | Percent<br>dry |      |
|-----------|-----|----------------------------------|-----------|----------------|------|
| Variety   |     | weight                           | Maturity* | weight         | Year |
| Utahvbrid | 680 | 7.09                             | 3.9       | 27             | 1962 |
|           | 544 | 6.57                             | 2.9       | 30             |      |
|           | 330 | 6.58                             | 2.1       | 34             |      |
|           | 216 | 4.85                             | 1.0       | 38             |      |
| Utahybrid | 680 | 9.40                             | 1.2       | 29.4           | 1963 |
|           | 544 | 7.20                             | 1.0       | 31.4           |      |
|           | 330 | 7.10                             | 1.0       | 37.6           |      |
|           | 216 | 5.72                             | 1.0       | 39.1           |      |
| Utahybrid | 680 | 6.5                              | 3.7       | 22.9           | 1964 |
|           | 544 | 5.9                              | 3.0       | 22.5           |      |
|           | 330 | 6.2                              | 1.2       | 29.0           |      |
|           | 216 | 5.5                              | 1.0       | 32.0           |      |
| Utahybrid | 680 | 8.3                              | 2.1       | 29             | 1965 |
|           | 544 | 6.9                              | 2.4       | 27             |      |
|           | 330 | 7.0                              | 1.0       | 36             |      |
|           | 216 | 4.6                              | 1.0       | 46             |      |
| Jtahybrid | 680 | 6.4                              | 2.0       | 27             | 1966 |
|           | 544 | 5.5                              | 1.0       | 29             |      |
|           | 216 | 3.8                              | 1.0       | 36             |      |
|           | 216 | 4.4                              | 1.4       | 26             |      |
|           | 544 | 5.8                              | 1.6       | 28             |      |
|           | 680 | 6.7                              | 2.0       | 25             |      |

Source: Rex F. Nielson, Corn Trials, 1953-1966. Department of Soil Science and Biometeorology, Utah State University, Logan, Utah.

\*Key: 1.0 Dent 2.0 Hard dough 3.0 Soft dough 4.0 Milk 5.0 Kernels not formed

|           |                   |        |      |          | Yield     |         |         |        |
|-----------|-------------------|--------|------|----------|-----------|---------|---------|--------|
| Variety   | Year              | Tassel | Silk | maturity | *tons/ac. | Planted | Harvest | GDD    |
| Utahybrid | 1959              | 7/18   | 7/22 | 1.0      | 4.8       | 5/8     | 9/17    | 2125.5 |
| 216       | 1960              |        |      | 2.4      | 4.7       | 6/21    | 9/23    | 1735.  |
|           | 1961              | 7/14   |      | 1.0      | 7.9       | 5/4     | 9/14    | 2288.0 |
|           | 1962              | 7/21   | 7/25 | 1.0      | 4.85      | 5/4     | 9/10    | 1990.  |
|           | 1963              | 7/24   | 7/28 | 1.0      | 5.72      | 5/8     | 10/2    | 2381.0 |
|           | 1964              | 7/20   | 7/26 | 1.0      | 5.5       | 5/11    | 9/14    | 1992.  |
|           | 1965              | 7/18   | 7/23 | 1.0      | 4.6       | 5/3     | 9/20    | 1985.0 |
|           | 1966              |        |      | 1.0      | 3.8       | 5/3     | 9/21    | 2412.0 |
|           | 1966 <sup>a</sup> |        |      | 1.4      | 4.4       | 5/24    | 9/21    | 2177.5 |
| Utahybrid | 1959              | 7/25   | 7/28 | 1.0      | 6.2       |         |         |        |
| 330       | 1960              |        |      | 3.9      | 5.6       | 6/21    |         |        |
|           | 1961              | 7/21   |      | 1.0      | 9.1       | 5/4     |         |        |
|           | 1962              | 8/1    | 8/4  | 2.1      | 6.58      | 5/4     |         |        |
|           | 1963              | 7/27   | 7/29 | 1.0      | 7.10      | 5/8     |         |        |
|           | 1964              | 7/31   | 8/4  | 1.2      | 6.2       | 5/11    |         |        |
|           | 1965              | 7/26   | 7/29 | 1.0      | 7.0       | 5/3     |         |        |
| Utahybrid | 1959              | 7/27   | 8/1  | 1.5      | 6.0       |         |         |        |
| 544       | 1960              |        |      | 4.4      | 5.3       | 6/21    |         |        |
|           | 1961              | 7/25   |      | 1.0      | 8.3       | 5/4     |         |        |
|           | 1962              | 8/1    | 8/5  | 2.9      | 6.57      | 5/4     |         |        |
|           | 1963              | 7/29   | 8/3  | 1.0      | 7.20      | 5/8     |         |        |
|           | 1964              | 8/1    | 8/6  | 3.0      | 5.9       | 5/11    | 1       |        |
|           | 1965              | 7/30   | 8/5  | 2.4      | 6.9       | 5/3     |         |        |
|           | 1966              |        |      | 1.0      | 5.5       | 5/3     |         |        |
|           | 1966              |        |      | 1.6      | 5.8       | 5/24    |         |        |
| tahybrid  | 1959              | 8/1    | 8/5  | 2.8      | 5.8       |         |         |        |
| 680       | 1960              |        |      |          |           |         |         |        |
|           | 1961              | 7/26   |      | 1.0      | 7.9       |         |         |        |
|           | 1962              | 8/8    | 8/13 | 3.9      | 7.09      |         |         |        |
|           | 1963              | 8/8    | 8/10 | 1.2      | 9.40      |         |         |        |
|           | 1964              | 8/5    | 8/11 | 3.7      | 6.5       |         |         |        |
|           | 1965              | 8/1    | 8/5  | 2.1      | 8.3       |         |         |        |
|           | 1966              |        |      | 2.0      | 6.7       |         |         |        |
|           | 1966              |        |      | 2.0      | 6.4       |         |         |        |

Table 38. A comparison of several years data taking one Utah Hybrid at a time

a<sub>Replant</sub>.

\*See Table 37.

Source: Drawn from Tables 31, 32, and 37.

114

|       |      |      | Pree | ripitatio<br>Yea |      | ches |      |      |
|-------|------|------|------|------------------|------|------|------|------|
| Dates | 1959 | 1960 | 1961 | 1962             | 1963 | 1964 | 1965 | 1966 |
|       |      |      |      |                  |      |      |      |      |
| May 1 | 1.81 | 1.30 | .41  | 1.63             | 2.10 | 1.26 | .29  | .82  |
| 2     | 1.03 | 1.30 | .31  | 1.63             | 2.06 | 1.82 | .21  | .22  |
| 3     | .73  | 1.07 | . 31 | 1.63             | 1.86 | 1.69 | .21  | .13  |
| 4     | .71  | 1.28 | .35  | 1.54             | 1.39 | 1.57 | .21  | .13  |
| 5     | .71  | 1.28 | .35  | .82              | .89  | 2.28 | .51  | .13  |
| 6     | .71  | 1.28 | .08  | .82              | .89  | 2.28 | .41  | .08  |
| 7     | .71  | 1.01 | .18  | .82              | .89  | 2.28 | .41  | .08  |
| 8     | .71  | .84  | .18  | .82              | .92  | 1.97 | .68  | .08  |
| 9     | .71  | .84  | .18  | .82              | .97  | 1.97 | .81  | . 30 |
| 10    | .21  | .84  | .18  | .69              | .68  | 1.77 | .81  | 1.02 |
| 11    | .00  | . 84 | .18  | .69              | .26  | 1.98 | .81  | 1.12 |
| 12    | .00  | .56  | .18  | .01              | .30  | 1.98 | .81  | 1.12 |
| 13    | .00  | .42  | .18  | .15              | . 30 | 1.98 | .81  | 1.12 |
| 14    | .00  | .42  | .21  | .27              | . 30 | 1.98 | 1.07 | 1.12 |
| 15    | .00  | .42  | .41  | .44              | .23  | 1.76 | 1.07 | 1.12 |
| 16    | .26  | .42  | .53  | .53              | .23  | 1.15 | 1.07 | 1.12 |
| 17    | .26  | .22  | .53  | .53              | .23  | 1.10 | 1.07 | 1.12 |
| 18    | . 30 | .06  | .52  | .53              | .23  | 1.10 | 1.07 | 1.12 |
| 19    | . 30 | .06  | .52  | .53              | .23  | .21  | .77  | 1.12 |
| 20    | . 30 | .06  | .52  | .56              | .23  | .21  | .88  | 1.12 |
| 21    | . 30 | .06  | . 38 | 1.26             | .23  | .21  | .88  | 1.12 |
| 22    | . 50 | .05  | .38  | 1.35             | .20  | .21  | .55  | 1.17 |
| 23    | . 54 | .05  | . 38 | 1.35             | .15  | .21  | .42  | .95  |
| 24    | . 54 | .05  | . 38 | 1.42             | .15  | .21  | .99  | .15  |
| 25    | .61  | .05  | . 38 | 1.45             | .14  | .00  | .99  | .05  |
| 26    | 1.05 | .05  | . 38 | 1.51             | .10  | .00  | 1.00 | .05  |
| 27    | 1.78 | .19  | . 38 | 2.04             | .00  | . 30 | 1.00 | .05  |
| 28    | 1.78 | .19  | .35  | 1.97             | .00  | . 37 | .74  | .05  |
| 29    | 1.78 | .19  | .15  | 1.92             | .00  | .94  | .74  | .05  |
| 30    | 1.54 | .19  | .13  | 1.92             | .00  | .97  | .74  | .05  |
| 31    | 1.54 | .19  | .13  | 2.22             | .00  | .97  | .74  | .05  |

Table 39. Precipitation accumulated over the 14 day period ending with the dates listed, (in inches), at Utah State University Experiment Station

|       |      |      |      | Pre  | cipitatic<br>Yea |      | ches |      |      |
|-------|------|------|------|------|------------------|------|------|------|------|
| Dates | 5    | 1959 | 1960 | 1961 |                  | 1963 | 1964 | 1965 | 1966 |
| Sept  | . 14 | .00  | .44  | .04  | .00              | .47  | .04  | 1.62 | .79  |
| •     | 15   | .51  | .09  | .04  | .00              | .47  | .08  | 1.62 | . 64 |
|       | 16   | .56  | .07  | .06  | .00              | .47  | .04  | 2.35 | . 59 |
|       | 17   | .56  | .16  | .18  | .00              | 1.86 | .04  | 2.35 | . 59 |
|       | 18   | .61  | .16  | 1.08 | .00              | 1.86 | .10  | 2.35 | . 59 |
|       | 19   | .67  | .12  | 1.75 | .00              | 2.18 | .10  | 2.27 | . 59 |
|       | 20   | .93  | .12  | 1.80 | .00              | 2.19 | .10  | 1.01 | . 59 |
|       | 21   | 1.07 | .12  | 1.80 | .02              | 2.30 | .10  | .98  | . 59 |
|       | 22   | 1.07 | .22  | 1.80 |                  | 2.34 | .10  | .80  | . 59 |
|       | 23   | 1.07 | .22  | 1.85 | .02              | 2.34 | .10  | .73  | . 59 |
|       | 24   | 1.09 | .22  | 1.85 | .02              | 2.34 | .10  | .73  | . 59 |
|       | 25   | 1.45 | .22  | 1.85 | .02              | 2.34 | .10  | .73  | . 54 |
|       | 26   | 1.62 | .22  | 1.85 | .02              | 2.34 | .10  | .73  | .55  |
|       | 27   | 1.74 | .20  | 1.85 | .08              | 2.04 | .10  | .73  | .65  |
|       | 28   | 2.02 | .20  | 1.85 | .25              | 2.04 | .10  | .73  | . 32 |
|       | 29   | 1.59 | .20  | 1.85 | . 31             | 2.04 | .06  | .86  | .21  |
|       | 30   | 1.54 | .20  | 1.79 | . 31             | .65  | .06  | .13  | .21  |
| Oct.  | 1    | 1.54 | .10  | 1.67 | . 31             | .65  | .06  | .13  | .21  |
|       | 2    | 1.49 | .10  | .77  | . 31             | .33  | .00  | .13  | .21  |
|       | 3    | 1.43 | .10  | .10  | . 31             | . 32 | .00  | .13  | .21  |
|       | 4    | 1.17 | .10  | .05  | . 31             | .15  | .00  | .13  | .21  |
|       | 5    | 1.03 | .10  | .05  | .68              | .00  | .00  | .13  | .21  |
|       | 6    | 1.03 | .00  | .05  | .76              | .00  | .00  | .13  | .21  |
|       | 7    | 1.19 | .06  | .14  | .84              | .00  | .00  | .13  | .21  |
|       | 8    | .17  | .58  | .15  | .84              | .00  | .00  | .13  | .21  |
|       | 9    | .95  | 1.07 | .21  | .84              | .00  | .00  | .13  | .19  |
|       | 10   | .78  | 1.14 | .46  | .78              | .00  | .00  | .13  | .10  |
|       | 11   | .66  | 1.26 | .46  | .61              | .00  | .00  | .13  | .00  |
|       | 12   | . 38 | 1.28 | .46  | .55              | .19  | .00  | .17  | .00  |
|       | 13   | . 30 | 1.64 | .46  | .55              | .83  | .00  | .04  | .41  |
|       | 14   | . 30 | 1.64 | .46  | 1.03             | .83  | .00  | .04  | .41  |
|       | 15   | .30  | 1.64 | .46  | 1.04             | .83  | .00  | .04  | .41  |
|       | 16   | .30  | 1.64 | .46  | 1.04             | .83  | .00  | .04  | .41  |
|       | 17   | .30  | 1.64 | .46  | 1.04             | .83  | .00  | .04  | .41  |
|       | 18   | .30  | 1.64 | .46  | .65              | .83  | .00  | .04  | .41  |
|       | 19   | .30  | 1.64 | .46  | . 57             | .83  | .00  | .04  | .41  |
|       | 20   | .30  | 1.64 | .46  | .49              | .83  | .00  | .04  | .41  |
|       | 21   | .14  | 1.58 | . 32 | .49              | .83  | .00  | .04  | .41  |

| Table 39. Con | ntinued |  |
|---------------|---------|--|
|---------------|---------|--|

|          |      |      |      | Years |      |      |      |
|----------|------|------|------|-------|------|------|------|
| Dates    | 1952 | 1953 | 1954 | 1955  | 1956 | 1957 | 1958 |
| Sept. 14 | .15  | .00  | .26  | .00   | .06  | .00  | . 50 |
| 15       | .15  | .00  | .26  | .00   | .06  | .00  | .50  |
| 16       | .15  | .00  | .14  | .00   | .06  | .00  | . 50 |
| 17       | .15  | .02  | .14  | .03   | .06  | .00  | . 50 |
| 18       | .15  | .02  | .14  | .03   | .06  | .05  | . 50 |
| 19       | .15  | .02  | .14  | .36   | .06  | .62  | .50  |
| 20       | .15  | .02  | .14  | .36   | .06  | .62  | . 50 |
| 21       | .13  | .02  | .14  | . 36  | .06  | .62  | . 50 |
| 22       | .13  | .02  | .14  | .36   | .06  | .62  | .50  |
| 23       | .13  | .02  | 1.85 | .36   | .06  | .62  | .44  |
| 24       | .13  | .02  | 1.85 | . 39  | .05  | .62  | .49  |
| 25       | .05  | .02  | 1.71 | .69   | .00  | .62  | .46  |
| 26       | .03  | .02  | 1.71 | 1.22  | .00  | .62  | . 33 |
| 27       | .03  | .02  | 1.71 | 1.22  | .00  | .62  | .05  |
| 28       | .00  | .02  | 1.71 | 1.22  | .00  | .62  | .05  |
| 29       | .00  | .02  | 1.71 | 1.22  | .00  | .62  | .05  |
| 30       | .00  | .02  | 1.71 | 1.22  | .00  | .62  | .05  |
| Oct. 1   | .00  | .00  | 1.71 | 1.19  | .00  | .62  | .05  |
| 2        | .00  | .00  | 1.71 | 1.19  | .00  | .66  | .05  |
| 3        | .00  | .00  | 1.71 | .86   | .00  | . 31 | .05  |
| 4        | .00  | .00  | 1.74 | .86   | .00  | . 57 | .05  |
| 5        | .00  | .00  | 1.79 | .86   | .00  | . 57 | .05  |
| 6        | .00  | .00  | .08  | .86   | .00  | . 57 | .05  |
| 7        | .00  | .00  | .08  | .86   | .00  | . 57 | .05  |
| 8        | .00  | .00  | .08  | .83   | .00  | .57  | .00  |
| 9        | .00  | .00  | .08  | .53   | .00  | .57  | .00  |
| 10       | .00  | .00  | .08  | .00   | .00  | . 57 | .00  |
| 11       | .00  | .00  | .08  | .17   | .00  | . 57 | .00  |
| 12       | .00  | .00  | .08  | .17   | .30  | . 57 | .00  |
| 13       | .00  | .00  | . 34 | .17   | . 31 | . 57 | .00  |
| 14       | .00  | .00  | . 34 | .17   | .31  | .63  | .00  |
| 15       | .00  | .17  | . 34 | .17   | .31  | .63  | .00  |
| 16       | .00  | .17  | . 34 | .17   | .31  | . 54 | .00  |
| 17       | .00  | .17  | . 34 | .17   | .31  | . 32 | .00  |
| 18       | .00  | .17  | .31  | .17   | .31  | .06  | .00  |
| 19       | .00  | .17  | .26  | .35   | .31  | .06  | .00  |
| 20       | .00  | .17  | .26  | .64   | .31  | .06  | .03  |
| 21       | .00  | .17  | .26  | .74   | . 31 | .06  | .03  |

Source: U.S. Department of Commerce, Weather Bureau. Climatological Data, Utah-1952-1975.

| Dates      | Snow<br>total<br>(inches) | Max.<br>depth<br>(inches) | Snow<br>fall<br>(inches) | On ground<br>(inches) |
|------------|---------------------------|---------------------------|--------------------------|-----------------------|
| 1959 Sept. | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov.       | 0                         | 0                         |                          |                       |
| 960 Sept.  | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov. 4     |                           |                           | 3.6                      | 4.0                   |
| 5          |                           |                           | .5                       |                       |
| 9          |                           |                           | 1.0                      |                       |
| 961 Sept.  | 0                         | 0                         |                          |                       |
| Oct.       | 19.0                      |                           |                          |                       |
| Oct. 22    |                           |                           | 4.5                      | 5.0                   |
| 28         |                           |                           | 6.2                      | 6.0                   |
| 29         |                           |                           | 5.3                      | 9.0                   |
| Nov.       | 3.3                       |                           |                          |                       |
| 962 Sept.  | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov.       | 0                         | 0                         |                          |                       |
| 963 Sept.  | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov. 7     | Т                         | Т                         | 4.0                      | 4.0                   |
| 16         |                           |                           | 3.5                      | 3.0                   |
| 17         |                           |                           |                          | 2.0                   |
| 18         |                           |                           |                          | 1.0                   |
| 964 Sept.  | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov. 11    | 1.0                       | 1.0                       | 3.0                      | 3.0                   |
| 12         |                           |                           | Т                        | 1.0                   |
| 13         |                           |                           | 2.0                      | 3.0                   |
| 14         |                           |                           |                          | 2.0                   |
| 65 Sept.   | Т                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Nov. 24    | 6.7                       | 5.0                       | 3.4                      | 3.0                   |
| 25         |                           |                           | 5.6                      | 7.0                   |
| 26         |                           |                           | .8                       | 6.0                   |

| Table 40. | Snow | fall  | data, | 1959-1974, | at | Utah | State | University | Experi- |
|-----------|------|-------|-------|------------|----|------|-------|------------|---------|
|           | ment | Stati | on    |            |    |      |       |            |         |

### Table 40. Continued

| Dates          | Snow<br>total<br>(inches) | Max.<br>depth<br>(inches) | Snow<br>fall<br>(inches) | On ground<br>(inches) |
|----------------|---------------------------|---------------------------|--------------------------|-----------------------|
| 1966 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           | 0                         | 0                         |                          |                       |
| Oct. 13        |                           |                           | .5                       | 1.0                   |
| 14             |                           |                           | 4.5                      | 5.0                   |
| 21             |                           |                           | Т                        | Т                     |
| Nov.<br>Nov. 8 | 3.0                       | 3.0                       | 8.5                      | 9.0                   |
| Nov. 8         |                           |                           | .3                       | 7.0                   |
| 10             |                           |                           | .3                       | 5.0                   |
| 11             |                           |                           | T.                       | 3.0                   |
| **             |                           |                           |                          | 5.0                   |
| 1967 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           | 0                         | 0                         |                          |                       |
| Nov.           | .4                        | 1.0                       |                          |                       |
| 1968 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           | 0                         | 0                         |                          |                       |
| Oct. 17        | 0                         | Ū                         | Т                        |                       |
| Nov.           | 12.8                      | 6.0                       |                          |                       |
| 1969 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           | 0                         | 0                         |                          |                       |
| Oct. 11        | 0                         | 0                         | Т                        |                       |
| 13             |                           |                           | Т                        |                       |
| Nov.           | Т                         | 0                         |                          |                       |
| Nov. 16        |                           |                           | Т                        |                       |
| 18             |                           |                           | .5                       | 1.0                   |
| 1970 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           |                           | 2.0                       |                          |                       |
| Oct. 7         |                           |                           | Т                        |                       |
| 10             |                           |                           | Т                        |                       |
| 11             |                           |                           | T                        |                       |
| 27             |                           | т                         | T                        |                       |
| Nov.           |                           | 1                         |                          |                       |
| .971 Sept.     | 0                         | 0                         |                          |                       |
| Oct.           |                           | 4.0                       |                          |                       |
| 0ct. 1         |                           |                           | 2.0                      | 2.0                   |
| 18             |                           |                           | 5.0                      | 5.0                   |
| 19             |                           |                           | T                        | 3.0                   |
| 27<br>28       |                           |                           | Т                        | Т                     |
| 28             |                           |                           | 6.0                      | 6.0                   |
| 31             |                           |                           | 3.0                      | 2.0<br>3.0            |

## Table 40. Continued

| Dates      | Snow<br>total<br>(inches) | Max.<br>depth<br>(inches) | Snow<br>fall<br>(inches) | On ground<br>(inches) |
|------------|---------------------------|---------------------------|--------------------------|-----------------------|
| 1971 Nov.  |                           | 3.0                       |                          |                       |
| Nov. 1     |                           |                           | 2.0                      | 3.0                   |
| 2          |                           |                           | Т                        | 1.0                   |
| 3          |                           |                           |                          | 1.0                   |
| 1972 Sept. | 0                         | 0                         |                          |                       |
| Oct.       |                           | Т                         |                          |                       |
| Oct. 29    |                           |                           | 1.2                      | 2.0                   |
| 30         |                           |                           | Т                        | 1.0                   |
| 31         |                           |                           |                          | Т                     |
| Nov.       | 1.0                       | 29.0                      |                          |                       |
| Nov. 15    |                           |                           | Т                        |                       |
| 27         |                           |                           | .3                       | Т                     |
| 29         |                           |                           | .8                       |                       |
| 1973 Sept. | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Oct. 29    |                           |                           | .1                       |                       |
| 30         |                           |                           | .2                       |                       |
| Nov.       | 3.0                       | 26.0                      |                          |                       |
| Nov. 5     |                           |                           | 1.4                      |                       |
| 22         |                           |                           | 2.8                      | 3.0                   |
| 1974 Sept. | 0                         | 0                         |                          |                       |
| Oct.       | 0                         | 0                         |                          |                       |
| Oct. 22    |                           |                           | Т                        |                       |
| Nov.       | 0                         | 0                         |                          |                       |
| Nov. 28    |                           |                           | Т                        |                       |

Source: U.S. Department of Commerce, Weather Bureau. Climatological Data, Utah-1952-1975.

|          |                      | Probabilities |     |     |  |
|----------|----------------------|---------------|-----|-----|--|
|          | Inches precipitation |               |     |     |  |
| Dates    | .4                   | .6            | .8  | 1.0 |  |
| Sept. 6  | .18                  | .11           | .07 | .04 |  |
| Sept. 13 | .24                  | .15           | .09 | .05 |  |
| Sept. 20 | .24                  | • 16          | .10 | .07 |  |
| Sept. 27 | • 21                 | • 14          | .09 | .06 |  |
| 0ct. 4   | • 26                 | •16           | •10 | •06 |  |
| 0ct. 11  | • 33                 | • 21          | •13 | .08 |  |
| Oct. 18  | • 33                 | • 22          | •15 | •10 |  |
| Oct. 25  | • 35                 | • 24          | •17 | •11 |  |

| Table 41. | Lewiston, Utah   | precipitation | means and | probabilities | for |
|-----------|------------------|---------------|-----------|---------------|-----|
|           | one-week periods |               |           |               |     |

Source: E. Arlo Richardson, Utah State Climatologist, Department of Soil Science and Biometeorology, Utah State University. Personal interview, August, 1975.

#### VITA

#### James L. Anderson

#### Candidate for the Degree of

Master of Science

- Thesis: A Decision Theory Approach to a Resource Management System In Corn Production
- Major Field: Economics
- Biographical Information:
  - Personal Data: Born at Gooding, Idaho, April 18, 1946, son of Marvin J. and Erma H. Anderson; married Betty Packer November 26, 1969; three children—Heidi Sue, Katie, and Lisa.
  - Education: Attended elementary school in Gooding, Idaho; graduated from Gooding High School in 1964; attended Ricks College from 1964-1966; received the Bachelor of Science degree from Utah State University, with a major in Economics and minors in Math and Chemistry, in 1972; completed requirements for the Master of Science degree in Economics, at Utah State University in 1975.
  - Professional Experience: 1974 to 1975, teacher, secondary level, Logan, Utah; 1971 to 1974, teacher, secondary level, Afton, Wyoming; 1971, economic research at the Utah Water Research Laboratory.