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ABSTRACT 

A Kinetic Approach to the Inactivation of Zinc 

by Various Soil Constituents 

by 

Singara S. Sandhu, Doctor of Philosophy 

Utah State University, 1970 

Major Professor: Dr. R. L. Smith 
Department: Soils and Meteorology 

The adsorption reaction of zinc onto prochlorite, pyroxene, and 

biotite minerals, from dilute solution (water) was studied under 

isothermal condi tions by agitated nonflow experiment method. The 

equilibrium concentrat~on of zinc in the solution was de t ermined 

both by radioactive tracer technique and adsorption spectrophotometer 

methods. The data ~?ere collected at three temperatures. 

The data we re treated by the equation: 

where 9 is the fraction of total surface coverage and C is the 

equilibrium concent rat ion of zinc in solution, k1 and k_ 1 are the 

rate constan ts for the adsorption and reverse process and t is the 

time of reaction. 

The specific rate constant for the adsorpt ion reaction (k1) 

depends on the nature of the mineral and mineral particle fraction. 

The k1 inc reases with rise in temperat~re. The values for the 

desorption rate constant (k_ 1) are small, indicating that zinc ions 



are preferential l y adsorbed ove r other exchangeable ions in the 

system. 

The activation energy for the sorption process lay between 3 t o 

6 kcals/mole , eliminating chemical adsorption. The activation energy 

indicates the physical process of diffusion as the mechanism cont r ol ling 

step in the present study. The positive standard entropy of activation 

(6ST) is related to t he change in the volume of activation complex (6~) 

during the course of reacti on. 

The monolaye r capacities for the three minerals and mineral frac­

tions were evaluated. The percent of the surface area occupied by the 

adsorbed zinc ion was about 50 percent, 65 percent and 66 percent for 

prochlorite, pyroxene and biotite, respectively . This suggests that 

zinc is adsorbed on certain specific sites. The monolayer capacities 

inc rease as the temperature increases. 

The change in the standard free energy of adsorpt ion, - 6°G , with 

the increased fraction of surface coverage a llows speculation that : 

l. The sites are energetically heterogenous. 

2. There is mutual repulsion of adsorbed zinc ions at higher 

surface coverage. 

The data show that zinc ads orption onto the minerals used in the 

present study is exchange ads orption. The initial adsorption plateau 

in the case of prochlorite and pyroxene is described as a result of 

exchange of solution zinc for weakly adsorbed sodium. The change in 

the na ture of the curve beyond this region is speculated to the pro­

gressive exchange of other cations. The data for biotite are not 

conclusive and need further study. It appears that exchange adsorpt ion 

is a step wise process and more than one plateau may be obtained if t he 



system is allowed to reach its ultimate equilibrium where all the 

exchange sites are completely saturated by the adsorbate. The small 

diffe r en tial heat of adsorption (~ 0H) confirms the contention that the 

process is simply an exchange adsorption in the systems studied. 

(97 pages) 



INTRODUCTION 

Zinc (Zn) is one of the essential nutrients for plant growth. 

Un like the major nutrient elements, Zn is required in only infini­

tesimal amounts. Zinc deficiency, in most of the cases, is related 

to Zn supplying power of soil rather than the actual lack of e l ement 

in the soil, since most mineral soils contain 80 to 300 ppm of total 

Zn. However, exchangeab le Zn is usually less than one part per million; 

the remainder is fixed in unavailable form. Fixation may be defined 

as the process whe r eby a r eadily soluble plant nutrient is changed to 

less-soluble forms by reaction with inorganic or organic components of 

the soil, with the result that the elemen t becomes restricted in its 

mobility in the soil and suffers a decrease in its availability to the 

plant. 

Fixed Zn is often difficult to release in forms available to 

plants. Fixation mechanisms which have been postulated as contrib ut ing 

to Zn deficiency include organic complexes, precipitation of insoluble 

inorganic salts, and strong zinc-soil mineral interaction (adsorption). 

Prochlorite, biotite, and pyroxene are silicate minerals which 

occur ex tensively in soi ls. They are widely apart from each other in 

their structural and chemical composition and a re the representat ives 

of sheet and chain silicates. Despite the widespread occurrence of 

these minerals in t he soil system, relatively little data exist which 

specifically isolate the interaction be tween cations in solutions and 

the solid phase of these minerals. 
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The minerals and the crystalline solids found in the soil when 

dispersed in solution inherently posses an adsorptive potential because 

of the unsaturated forces which exist at the solid-liquid interfaces. 

The adsorptive potential found at the interfaces depends on the nature 

of the solid crystal and surface area exposed to the reac tion. Because 

the c lay size mineral fraction exposes a large surface area for adsorption 

reaction, it has been generally used as an adsorbent for adsorptive 

studies. However, the coarse mineral fraction can also be used for 

such purpose. 

The adsorption reaction of Zn in the soil differs from other 

cations due to certain properties of Zn which are inherent to its 

position in the periodic table. The zinc ion possesses an 18 electron 

outer shell, a small ionic radius, and a relatively large charge density. 

The coupling of these properties produces a cation with strong polariza­

bility; consideration of the polarization phenomena in the chemistry of 

soil Zn he lps explain the strong adsorpti on of Zn on minerals and also 

its tendency to fo rm numerous complexes. 

Relatively little is known regarding the chemistry and kinetics 

of Zn adsorption on mineral surfaces. The present study was undertaken 

to investigate the chemical nature of Zn interaction on some common 

soil-forming minerals which are widely different from each other in 

their structural and chemical composition . This involves the evaluation 

of (a) the thermodynamic functions of Zn adsorption on various mineral 

surfaces, (b) the relationship between the s pecific rate constants and 

various factors, such as temperature and surface area of the minerals 

exposed to the reaction mechanism, and (c) the activation energy, the 

standard free energy of activation, 6G0 +, the standard en thalpy of 



3 

activation, ~Ho+, and the standard entropy of activation, 6S 0 T, in an 

attempt to postula te a reaction mechanism of Zn adsorption on the surfaces 

of various mineral fractions . 
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REVIEW OF LITERATURE 

Fixation of Zn by inorganic colloids 

The adsorption reaction of Zn in the soil differs from those of 

other cations. Jones et al. (1936) showed that small concentrations 

of Zn replace calcium (Ca) quantitatively from the soil. However, a 

part of the adsorbed Zn was not replaceable by neutral salts solutions. 

Hibbard (1940) and Brown (1950) showed that a part of Zn added to the 

soil could not be extracted by solutions of neutral salts. They also 

gave evidence that this strongly bound Zn was associated with the mineral 

fraction of the soil rather than with the organic matter. The Aiken clay 

l oam soil used by Brown (1950) contained primarily kaolinite clay and 

had a distinct adsorption curve for Zn not shown by other soils studied. 

He found that in this case 24 hours shaking was necessary for complete 

adsorption of Zn, whereas in most of the other soils the equilibrium 

was reached within two hours. When the soil was saturated with different 

cations, the release of the adsorbed cations by Zn was in the order of 

+ ++ + ++ 
Na >Ca >K >Mg Equilibrium was reached in a much shorter time (eight 

hours) when the organic matter was removed . Acid extractants were more 

effective in removing adsorbed Zn than were the neutral salts. 

Elgabaly and Jenny (1943) studied the cation and anion adsorption 

in various systems of Zn salts and Zn saturated clays. They found that 

the uptake of Zn by clays from zinc chloride (ZnCl ) sys t em involved 

zn2+, ZnC l+, and Zn(OH)+. Some of the Zn adsorbed by clays was non-

replaceable. Later, Elgabaly (1950) reported that Zn could be fixed 

in the odd-third octahedral position in montmorillonite clays not filled 
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by aluminium. In magnesium (Mg) minerals, Zn could replace Mg, but 

Mg could not replace all the Zn adsorbed. The amount of Zn fixed was 

correlated with the loss in exchange capacity of the clays which was in 

cont r ast to the work of Brown (1950). 

Nelson and Melstead (1955) studied the reaction of Zn with certain 

soils and clay minerals and found that part of the Zn combined in a form 

that was extrac table by acid but not ammonium acetate. This acid-extracta­

b l e form increased wi th pH and time . They conc luded that sorption of acid­

soluble Zn had no effect on the cation exchange capacity of the clays. 

DeMumbrum and Jackson (1956) also have demonstrated the sorption of 

Copper (C u) and Zn by montmorillonite from dilute solutions of Cu and 

Zn containing 0.5N calcium acetate (Ca(0Ac) 2). 

The possibility that lime minerals may constitute a potential 

adsorptive phase for certain cations was recognized by Leeper (1952), 

who postulated that in calcareous soils calcium carbonate may be an 

important adsorbent of heavy metals. Jurinak and Bauer (1956) found 

t ha t Zn was ads orbed on the surface of calcite, while with dolamite 

and magnesite, Zn appears to penetrate into the crystal lattice and 

occupy vacant Mg sites. Seatz and Jurinak (1957) suggested that Zn 

may be adsorbed in a non-exchangeable form on commonly occurring lime 

minerals. 

Te ller and Hodgson (1960) studied the adsorption of Zn by layer 

silicates in dilute mineral suspensions . Detailed studies on mont­

morillonite and to a lesser extent on vermiculite, muscovite, and biotite, 

revea l ed the presence of at least two forms of specifically sorbed Zn, 

one of which was exchangeable by certain ions and the other, occurring 

in much smaller amounts, which was not exchangeable. The latter form 



6 

was considered to result from latti ce penetration; the forme r was asso-

c iated wi th surface groups. They also noted that the total amount and 

the relative portion of these forms of sorbed Zn depe nded on the pH of 

the system, the time of rea c tion, the mineral species used, and the 

amount of Zn added . Equilibrium was not r eadily attained but tended to 

approach a slow steady state after several days. 

Mangaroo , Himes, and McLean (1965) fo und that soils formed under 

neutral or s l ightly acid condi ti ons adsorbed greater amounts of Zn than 

soi l s formed under very acid conditions. The stability constant f o r soil-

zinc system afte r displacement of Zn by KC l and Cu(OAc) 2 was also highe r 

for the near neutral s oils. The organic matter content did not explain 

the difference in t he amounts of Zn adsorbed and retained. 

2+ 2+ 2+ 2+ 4+ 
Bower and Truog (1940) showed that Ca , Mg , Zn , Cu and Th 

were retained by montmorillonite and Miami soil in quantities greate r 

than the exchange capacity. The H+ Na+, K+ and Ba
2
+ gave closely 

agreeing values . It was conc luded that hydroxy ions such as Mg(OH)+, 

Ba(OH)+, and Fe(OH)
2
+ were in competition with the normal ions for ex-

change sites. 

Kinetics of adsorption from solution-systems 

Adsorption phenomena is usually divided into two catagories: 

physical adsorption and chemisorption. The forces associated with 

physical adsorption are generally considered to be of the Van der Waal 

type. They inc lude forces associated with dip ole orientation, adsorbate 

polarization, and the dispersion effec t. Although energetically weak 

in comparison to chemi cal re actions, Van der Waal 1 s forces make a 

contribution t o all interfacial attraction phenomena and are dominant 

in physical adsorption . 



Chemisorption, as its name implies, describes the surface reaction 

whose forces are of the same type as those associated with chemical 

reaction, i.e., forces associated with electron sharing, electron 

rearran gement as in ionic and covalent bonding, and surface radical 

forma t ion. Th i s concept was strongly emphasized by Langmuir (1916). 

The hea ts of adsorption which accompany chemisorption are usually of a 

magnitude whic h suggest chemical reac ti ons, and values of 20 to 100 K 

calories per mole of adsorbate are not uncommon. By contrast, the heat 

evolved in physical or Van der Waal adsorption are usually less than 10 

K cals pe r mole of adsorbate. 

An i mp ortant consequence of the concept of chemisorption is that 

afte r a surf ace has become covered with a single layer of adsorbed 

molec ul es, it is essentially saturated; additional adsorption (multi­

layer fo rmation) can occur only on the layer already formed. Langmuir 

(19 18) , Paneth and Vorwerk (1922) and Roberts (1935) have shown that a 

defini t e adsorption limit occurs, beyond which further molecules cannot 

be adso r bed readily. When the surface area is known, the limit is foun d 

to cor resp ond t o the existence o f a unimolecular layer. This resul t i s 

good eviden ce for the theory that chemical forces are involved in chemi­

sorp tion . 

I t was suggested by Taylor (1931) that chemisorption is frequently 

associ ated with an appreciable activation energy and may, therefore, be 

a relatively slow process; for this reason it is frequently referred to 

as ac tivated adsorption. The energies of activation are often of the 

orde r of 20 K cals per mole, and consequently the adsorption is extremely 

slow a t low temperatures. Under these conditions , Van der Waalrs 

adsorption, which requires little activation energy, will predominat e . 
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In most of the adsorption studies it has been assumed that all 

surfaces are energetically homogeneous and that adsorbed molecules are 

arranged in simple layers, but in reality the surfaces are never homo­

geneous (Laidler, 1965) from the molecular standpoint. Some surface 

sites will be more active than others and chemical processes will occur 

predominately on the most active sites, which Taylor (1931) referred 

to as active centers. The active cen ters may actually corresp ond to 

certain types of lattice defects. 

The complication that exists in connection with chemisorption is 

that there are interactions, usually of a repulsive nature, between 

atoms or molecules adsorbed side by sl.de on a surface. The first 

evidence f or this was obtained by Roberts (1935). He measured heats 

of adsorption of hydrogen on tungsten surface that was considered to 

be quite homogeneous . The heat was found to fall from about 45 K cals 

per mole for a bare surface to 15 K cals per mole for what was believed 

to be a fully covered surface. Later, Rideal and Trapnell (1950) and 

Trapne ll (1951) indicated that the surface was only 70 percent covered 

and that the heats of adsorption became c lose to zero when the surface 

is actually fully covered. If the surface is really homogeneous, this 

change in heat of adsorption must be due to repulsive interaction be tween 

the adsorbed molecules; when the surface is sparsley covered, the molecules 

are sufficiently far apart not to interact with each other, but the 

repulsive interactions become important as the coverage increases. 

Additi onal evidence for repulsive interaction has been obtained by Emmert 

and Kummer (1950) using an isotope method and by Weber and Laidler (1950) 

on the basis of measurements of rates of adsorption. 
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Research on adsorption pehnomena has generally been conce rned with 

equi librium isotherm analysis. It has been established that the amount 

o f adsorbate forming a monolayer on the adsorbent surface, after equilib­

rium is established, depends on various factors, including the nature of 

the adsorbent and the adsorbate, the temperature, and the concentration 

of the adsorbate solution. A number of adsorption isotherms equations 

have been suggested, some being empirical and others obtained theoret ically. 

Of the theoretical equations the simplest type is that of Langmuir (1916). 

This applies to the ideal case of adsorption on a perfectly homogeneous 

surface wi th no interactions between adsorbed molecules. 

Mechanisms of surface reactions are regarded as involving five 

consecutive s teps (Laidler, 1965) as follows: 

1 . Diffusion of the reac ting molecules to the surface. 

2. Adso rption of the molecules on the surface. 

3. Reaction on the surface. 

4. Desorption of the products. 

5. Diffusion of the desorbed products into the main body of 

the system. 

If a large enough surface is used and the concentration of the 

adsorbent solution is realtively small, steps four and five in the 

above scheme of reaction mechanisms are negligibly small and one of 

the initial 3 steps then becomes the rate determination step. Diffusion 

in a liquid, like many other physical processes, has an activation energy, 

but the magnitude of this is usually not greater than 5 K cals per mole 

(Frost and Pearson, 1961). The systems with an activation energy greater 

than this will usually have steps 2 and 3 as the rate determining process. 

Many of the reactions between solids and solutions involve diffusion as 
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the s l ow ste p (Laidler, 1965). 

Eley ( 1953 ) derived a kinet i c equation for unimolecular processes 

occ urr i ng i n condensed phases which includes adsorption. The ultimate 

e qua t 1on der i ved was 

log x - ____ Y __ = - At + constant 
2.3RTx 

where x = C(t) - C(eq); C(t ) is the concentration of the reactants at 

time t; C(eq) i s the con c entrat1on of the reactants at equilibrium; R 

i s t he unive rsal gas constant and T is the temperature . The factor A 

i ncorporates the specific rate constant k. 

Haque et al. (1968) used a slightly different form of the above 

equa t ion i n a kinetic study of the sorption of 2, 4-D on c lays. The 

equat ion used by Haque was 

ln(l-8) - y (l- e) - A' t + constant . 
RT 

When C
0

, C(w) and C(t) respectively, where the concentrations of 2,4-D 

at the beginning , a t equilib rium and at arbitrary time t, and y is a 

cons tant, th en 

whe r e 8 was defined as t he f raction of surface cove red . Their data 

appeared to fit the equation for 2 , 4-D adsorption by illite , kaolinite 

and mon tmorillonite. Rate constants, activation energies, free energies 

of act ivation, heats of ac tivat ion and entropies o f activation were 

ca lc ul ated fo r the sorption process. 
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The overall sorption process was explained in the light of the 

molecular structure of 2,4-D and the clay aggregates. The r a te constants 

depended on the nature of the c l ay and f el l between 2 and 22 x 10- 7 

seconds - 1 . The rate constants dec reased with an increase in surface 

area . The amount of 2,4-D sorbed per gram of clay was in the order of 

illite ' montmorillonite > kaolinite. The temperature was fo und to 

have little effec t on the amount of 2 , 4-D sorbed per gram of the clays. 

The activation energy was between 3 and 5 K cals per mole, indicating 

that diffusion was the rate con trolling step in the reaction mechanism. 

It was found that clays with the larger surface area gave the higher 

activa tion ene rgy . 

Weber and Rumer (1965) indicated that the rate-limiting step for 

removal of organic solutes from dilute aqueous solutions by porous 

active carbon in an agitated non-flow system is one of intraparti cle 

transport of the solute in the pores and capillaries of the adsorbent. 

Crank (1965) postulated that for a system in which intraparticle trans­

port is a rate limiting step, the data for uptake of solu t e from 

solution shoul d give a linear plo t as a function of the square roo t 

of time, f r om the time the adsorbent was introduced to the system. 

Accordingly, Weber and Gould (1966) obtained the rat e cons tants from 

the square of the slope of the straight line obtained from the plot 

of the amount of solute in milligrams removed f rom the solution per 

gram of carbon as a funct ion of the square root of time. The rate 

constants for the adsorption of the various organic pesticides on the 

273-micron ca rbon were found to be similar . They found that the ultimate 

capaci ty (mono l ayer capacity, Xm) was independent of the type of organic 

pesticides teste d by them, but it was found to decrease with increasing 
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temp era ture , s howing that adsorption was an exothermic process. 

Comparison of the values of activation energy (Ea) for the various 

pesticides and the n e utral and anionic species indicated that much 

higher activation energy is a s sociated with adsorption of neutral 

molecules than with the adsorp tion of anions . Weber and Goul d (1965) 

used the equation 

llH - ln x ) 
m2 

for the evaluation of the differential hea ts of ads orpti on . The 

values obtained by them we r e about 4 K cals per mole . They postulated 

that since water had to be readsorbed during the adsorption process 

from aqueous solution, the 6H values obtained were sma l l. 

Peterson and Kwei (1961) studied the kinetics of adsorption of 

polyvinyi acetate (PVAC) from dilute benzene solution onto the surface 

of chrome plate by radioactive tracer method, using the c14 
labelled 

polymer. The value of e, the fraction of surface covered, was considered 

as directly proportional to the amount of PVAC adsorbed. They found the 

initial rate of ads orption to be rapid. Th is early s tage of the ads orp-

tion f r om dilute s ol u t ions was rep r esented by a kinetic equation of the 

Langmui r t ype. The monolayer cap ac ity was reported to be a function of 

PVAC concentra tion, and as the c oncentration of solutions was increased 

- 4 beyond 1. 15 x 10 mol e pe r l ite r, the plateau region became less well 

defined . They concluded that the in i t i a l ads orp t i on of PVAC from dilute 

solution is two dimensional rather than t hree dimensiona l , with l it t le 

or no interaction between adsorbed molecu les up t o a f airly high surface 

coverage. The adso rp tion f r om concentra te d so lutions was, however, 

thought to be predominan tly th r ee di mensional . 
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MATERIALS AND METHODS 

Characteristics of minerals 

The minerals used for the present adsorption studies were procured 

from Ward's Na tural Science establishment. They were the American 

Petroleum Institute (API) r esearch project 49 's reference minerals. 

They were crushed in an iron mortar , pounded in a p orcelai n mortar and 

then fractioned by dry seiving using U. S. Standard Seive number 100, 

200 and 300 mesh with diame t er openings , in millimeters, as 0.149, 0.074, 

and 0.049 , respectively. The fraction pass ing through 100 but not th r ough 

200 mesh was the coarse material . The fraction that pas sed through 200 

but not through 300 mesh was the medium fraction and the one tha t passed 

through 300 mesh was the fine fraction. 

The surface area of the var i ous mineral frac tions was determined 

by the e thylene gycol method of Bower and Goe rtzen (1958). The cation 

exchange capacity and exchangeab le ca tions were determined by t he method 

of Bower, Rei tmeier and Fireman (1952) . The ca tion exchange capacity 

(CEC) expressed as net change Meq x l0-6/cm2 and exchangeable cations 

expressed as meq/100 grams of mineral fractions, along with some other 

mineral characteristics, are shown in Table 1. The minerals were found 

not to possess any exchangeable or soluble ca tions of iron and aluminium. 

Magnesium predominated in the exchange complex of prochlorite, whereas 

in biotite, Ca was the domina ting exchangeable cation. In addition to 

Ca, pyroxene (augi te ) con tained a considerable amount of exchangeable 

Na. The alkali characteristics of true micas are conspicuously absent 

in prochlorite. 



Table l. Characteristics of the minerals used
1 

in adsorpt ion studies 

Determinations Prochlorite 2 Biotite 

Fine 3 Medium 3 Coarse 3 Fine Med ium Coarse 

pH 8.2 8 . 2 8.3 9.3 9.4 9.5 

EMF (Mv/g) 0.22 0.24 0 . 25 0.50 0.56 0.65 

Surface area 
(cm2 x 104/g) 7.9 4.3 3.2 28.2 15. 8 9 . 6 

Net charge 
(meq 10-6/cm2) 2 . 9 2 . 8 2.5 2.0 2 . 2 2.7 

Exch cations 
(meq/100 g) 

Ca 3.74 2 .18 l. 76 40.2 25 .6 21.0 

Mg 14.04 7 . 12 5.94 8 . 66 5.34 2 . 78 

Na 2.95 1.69 1.62 0 . 86 0 . 64 0 . 41 

K 0 . 49 0.13 0.33 1.91 0 . 96 0.59 

Pyroxene 

Fine Medium 

9.5 9 . 6 

0 . 60 0 . 64 

16.3 6.3 

3 .31 3 . 03 

32 .5 22 . 7 

0 . 32 0 . 36 

17.22 5.65 

11.36 

Coarse 

9 . 7 

0.65 

4.9 

3 . 58 

22.5 

0.00 

4.50 

.... ..,. 



Tab le l. Continued 

De terminations Prochlorite2 Biotite Pyroxene 

Fine 
3 

Medium 3 Coarse 
3 Fine Medium Coarse Fine Medium Coarse 

Soluble cations 
(mg/100 g) 

Ca 1.44 0.63 0 . 52 2.09 2.01 l. 97 8.86 4.9 

Mg 3.10 1.44 1.14 8. 70 5 .98 5.80 3 .56 3.6 

Na 1.5 0 . 80 0. 72 16.66 10 .82 10.74 8 . 35 2 . 47 

K l. 76 0 . 86 0.49 30.0 20 . 0 20.17 13.90 5.25 

1Pro:hlorite was API Project 49, No. 1, Vermont, (MgFe+3Fe+2Al) (SiAl) o
1 

(OH)
8

; Biotite was API 
ProJect 49, No . 3, Canada, H4K

2
(MgFe)

6
Al

2
si

6
o24 ; Pyroxene was RPI P ro~ec~ 49 , No . 6 , Mexico, 

CaMg(Si03) 2 (MgFe) 2Si06 . 

5.0 

3.6 

2.18 

3.40 

2
shirozu (1958) performed the analysis and the results have been ~~oted ~y Deer, Howie and Zussman 
(1962b) Tab le 25, Anal 27, p. 143 . The composition is (Mg3 . 26Fe0 .84Feb.64All.09)Si2 . 86Al1 . 18o10 (0H) 8 

3Fraction size. 

>-' 

"' 
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X- ray di f f r ac t ometry 

X-ray di ffraction data were obtained wi t h se i mens X-ray defrac ti on 

e qui pment, using a copper target as a sour ce of X-rays. Random orienta­

tions of the fine fraction of each mineral we re prepared by seiving the 

sample powder directly onto the glass slides coa t ed with a thin veneer 

of pe troleum jelly. After allowing a few minutes fo r sufficient adhesion, 

the slides were inverted and the excess powder removed by tapping lightly 

on the side of the mount. The samples thus prepared were analyzed by 

X- ray di f f rac ti on. Al l diffractograms we re obtained with goniometer 

s canning spee ds of one degree two-theta per minute. 

The data obtained for proch l or ite were found t o compare very 

closely wi th the American Society for Testing Materials (ASTM) index 

card No . 2 .0028 and Shirozu's 1958 data of powder X-ray pa tterns for 

t he prochlorite mineral (Dee r, Howie and Zussman, 1962a). The X-ray 

da ta f or bio t i te were found to be similar to the one reported in ASTM 

1/ 1 i ndex c ard No. 2.0045. The da ta f or pyroxene compared favorably 

well wi th the ASTM index card No. 3.0623 and 3.0624. The X-ray data 

i ndicated that the minerals used in the present investigation are 

quite pure and free from contamination of other minerals. These data 

l ead to the approximate molecular formulas shown in Table 1. 

De s c ription of minerals 

Prochlorite : 2 :1:1(2 :2). It belongs to the chlorite group and 

occurs extensive l y i n soils, mainly inherited from mafic and other r ocks. 

The bas i c features of the atomic structure of chlorites were described 

by Pau ling (1930). The detail investigation by McMurchy (1936) and 

Engelha rdt (1942 ) established firmly that the structure is one of regularly 



{' 

0 
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Figure 1. Pr ojec tion of the ch l orite structure on 010 (after McMurchy, 1936) @ Hydroxal Plus >-' ..... 
() y ions 

• (Si A0 ) 



18 

alternating talc-like Y6z
8
o20 (0H) 4 and brucite-like Y

6
(0H)

12 
sheets . 

The pse udo-hexagonal networks of these componen ts have a pa rameter 

0 
approximately 5 .3 A, and the ce ll which results from their super-position 

has a = 5 . 3, b 9.2, c = 14.3 X, and a = 97 ° . 

The b and c cell dimensions in prochlorite depend on the ex t ent of 

s ubstitution in the te trahe dral and octahedral sheets and can be calc ulated 

by the equations from Hey ( 1954) 

b 
+3 +2 2 

(9 . 202 + 0.014 Fe +Fe ) + 0.023 Mn+ 

c = 13 . 925 + 0.15(Si-4) - 0.025 Fe+3 + 0.25 Mn+2 

The hydroxide interlayers, bruci te, are sandwic hed between the 

negatively charged mica-like laye rs as a replacement of K
2 

in mica 

structure. The Si-0 tetrahedron rotates about the X-axis, perpendicular 

to the layers, wh i ch aids in fitting tetrahedral and octahedral pa rts 

of the mica layer. The occupation of the tetrahedral sites by Si and 

Al and occupation of the octahedral sites by Fe, Mg and Al is non-random. 

The substitution of Al for Mg takes place in the brucite layer, giving 

r i se to the posi tive charge whic h is symme trically distributed between 

the hydroxi de interlayer and the mica sheet itself, balancing t he negative 

charge of the t e trahedral layer to some extent but not changing the nature 

of the negative charge distribution in the mica octahedral sheet. The 

change of mica -like mineral t o proch lorite slightly increases the CEC. 

Biotite: 2 :1. This is an iron rich trioctahedral mica which occurs 

ex t ensively in soils. This mineral may be f ormed in soil du r ing t he 

weathering process or may be directly inherited fr om t he soil forming 

rocks. In bioti te the octahedral cation sites of the mica struc ture, 
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ideally, are comple tely filled. Hend r icks and Jefferson (1939) gave the 

following cell parameters for biotite similar to the one used in the 

present study: for 2M, 

0 0 0 
a= 5.3 A, b 9.2 A, c = 10.1 A, 8 

The chemical composition for the biotite used in the present study can 

be represented approximately by H
4
K

2
(MgFe}

6
Al

2
si

6
o

24
, showing substitutions 

in the tetrahedral and octahedral sheets. Magnesium in the trioctahedral 

conf1guration is substituted by Fe+Z and also by trivalent ions (Fe+
3 

and 

Al+J) and Al replaces Si in t e trahedral sites, usually in the ratio of 

Al:S1 2 : 6 , and thus the net negative charge develops in the tetrahedral 

layer. The net negative charge is balanced by K, which is chemically 

bound between the two adjacent silica tetrahedrons . Biotite binds K 

suff ciently to eliminate any water expansion characteristics. 

Pyroxene (augite). The structure was described by Warren and Brag 

(1928). The augite is a ferromagnesium mineral, the structure of which 

consi sts of long chains of linked silica tetrahedra. It consists of a 

single chain in which 2 oxygens are shared in each tetrahedron. The 

pyroxene chains are linked laterally by cations like Ca, Mg, Fe, etc., 

in the manner shown in Figure 2. 

The Mg and Fe are in octahedral coordination by oxygens which them-

selves are linked to only one silicon, while the larger cations are sur-

rounded by eigh t oxygens, two of which are shared by neighboring tetra-

hedron in the chains . The cation to oxygen linkage, as shown in Table 2, 

is weaker than the silicon to oxygen linkage; as a result, these minerals 

have good cleavage and are fib rous. 



(S1ngle chai n tetrahedral ) 

End view of augite structure 

F;gure 2. Idealized structure of augite (drawn from Miller , 1965, p. ll) 
"' 0 
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The repeat distance along the length of the chain is approximately 

5.25 ~and this defines the parameter of the c axis. The b axis calculated 

0 
from Brown (1960) has been found to be about 8.91 A, 

The cell dimensions are: 

0 
b 8.890 + 0.00256(Fe) A. 

a=9.73,b 8. 91, c 
0 

5 . 25 A. 

Table 2. Molar energies of formation of cation to oxygen 
bonds in silicate minerals and glasses (reproduced 
from Miller, 1965, p. 71) 

Bond Bond 
Cation energies Cation energies 

cals cals 

Ca+2 
839 H+ (in OH) 515 

Mg+2 912 Ti+4 
2,882 

Fe 
+2 

919 Al+3 
1,878 

+ 
Na 322 Si+4 

3,100 

K+ 299 

The approximate unit cell formula derived from the chemical 

composi tion is given in Table 1. The substitution of Al for Si in 

the tetrahedral configuration seems t o be the source of the net 

negative charge where two Si have been substituted for by Al and the 

mineral has a high net char ge per square em. 
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Adso rbate solution 

Zinc is amphoteric in nature an d a change in the pH of the system 

will affec t its chemical activity. The minerals used f or the adsorption 

reactions had an a lkaline pH. It was thought desirable to use the adsorbate 

solution of the s ame pH as that of the adsorbent. It was a l so thought 

proper to eliminate the possibility of Zn prec ipitation , as zinc hydroxide 

(Zn(OH)
2
), in the system due to changes in pH of the solution when treated 

with the m nerals of high pH. In order t o achieve this, the Zn soluti on, 

which was 0.00 1~ wi th respec t t o stable Zn, was mixed with 0.2 me of 

trace r Zn and was pretreated with 0.0~ NaOH to bring the pH of the Zn 

so lution to that of an aqueous suspension of the respec tive mine rals . 

The treated solutions we re cured at 70 C for 2 hours, cooled and filtered 

through Whatman No . 40 filt e r paper . The concen t ration of Zn in th e 

filtrate was determined and is given in Table 3 . 

Table 3. The Zn concent ration at the respective pH of the aqueous 
suspens i ons of three minera l s 

Zn 
~lineral pH moles / L X 10 K 

cl 
sp 

Prochlorite 8.2 1.25 43.7 X 10-15 

Biotite 9.3 1.76 44 . 2 X 10-15 

Pyroxene 9.5 1 . 78 17 . 8 X 10- 15 

A pH of 8.8 has been r eported in the literature to be zero point 

cha rge (ZPC) fo r t he Zn i on. This should als o coincide with the minimum 
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solubility of Zn in an alkali system. Fulton and Swinehart (19 54) 

reported the solubility of Zn to be minimum at approximately 1 x 10-3M 

of dilute NaOH s olutions. 

The K values calculated here seem to be in good agreement with 
sp 

22.1 x 10- 17 reported by Jurinak and Inouye (1962) for a pH of 9.3. 

The Ksp va lues in the pH range of 8 .2 are not available from the 

literature , but the data reported here seem t o be reasonably good when 

c o ared with the K values of 9.1 x l0-
18 

and 7 x l0- 18 reporte d by ~ ~ 

Jurinak and Inouye (1962) and Fulton and Swinehart (1954) for pH values 

around neutrality. 

Method and procedure 

Agi t a t ed non-flow experiments were used to investigate both the 

kinetics and equilib r ia of adsorption . The adsorba t e solution was 

prepared in bulk and then diluted to the required concentrations of c
1

, 

c
112

, and c
114

. The solutions were placed in a constant temperature 

r oom overnight to allow them t o attain the desired temperature. Fifty 

mg of the fine and 200 mg of the coa rse mineral fractions in each case 

were trans ferred to a 50 ml polyethelene centrifuge tube. The reaction 

vesse l (polyethylene tube) was also placed in the constant temperature 

room overnight before 40 ml of Zn solu tion was transferred to it with 

an automatic burette. The tube was covered with a polyethylene film, 

and the mixture was agitated under isothermal conditions (in a constant 

temperature room, ± 1 C) on a shaker for the specified time. It has 

been r eported by Webe r and Morris (1963) that the rate of adsorption is 

independen t of the stirring rate and agitation. At predetermined time 

intervals of 2 , 4, 6 , and 8 hours, the shaking was briefly interrupted , 
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and t he tubes were removed and centrifuged fo r 15 minutes a t 3000 RPM. 

The supe rna tant liquid was transferred to 50 ml pyrex glass tubes and 

analyzed fo r An on a Perkin-Elmer model 303 atomic adsorpti on spectro­

photomete r using a digital r eadout attachmen t f or a direct ppm reading. 

An aliquot of the supernatant solution was analyzed for tracer Zn in a 

scintillat ion we ll counter, Nuclear Chicago, model 183 . For each s tudy 

three blanks were also run . 

The Langmui r equation used in the kinetic studies is based in 

principal on the formation of a monolayer capacity of adsorbate on the 

adsorbent surface . From this equa t ion the fraction of s urf ace covered, 

e, is derived. The adsorbate concentration in the solution in the 

kinetic study was so low that it did not wa rr an t a calculation of the 

monolayer adsorp tion capacity ; therefore an attempt was made t o us e 

higher concentrations of Zn solution var yin g from 0.5 mg / L to 20 mg / L 

without treating the solution with NaOH before the adsorption studies. 

In so doing it was postulated that po t ential ene rgy of the s ur face i s 

greater than the free energy change generated, due to a rise in pH of 

the system when the Zn solution was equilibra ted with the mineral 

frac tion. Therefore, Zn from the solution should not precip i tate as 

zinc hydroxide as long as there are adsorption sites available on the 

adsorbent surface and un til the monolayer adsorption capacity has been 

satisfied. 
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THEORY 

Langmuir isothe rm adsorption equations 

The relationship between the equilibrium concentration of a solute 

and the amount adsorbed at constant temperature defines the adsorption 

1sotherm. The Langmuir adsorption equation is used in this study to 

desc ribe the adsorption process. The assumptions used in its derivation 

are (a) tha t the surface is energetically homogeneous, (b) the energy 

of adsorption is cons tant , and (c) the adsorbate molecules are locali zed 

on speci fic sites without adsorbate interaction. 

The adsorption and desorption process may then be represented as 

k 
1 

c + s <===> e (1) 
k 
-1 

whe re C is the concentration of the adsorbate in solution, S is the 

act1vity of the vacant sites, and e is the fraction of surface covered 

by the adsorbate molecules. 

The Langmuir (1918) equation relating to this situation is as 

fol l ows : 

X/m 
Xm b C 

eq 
1 + b c 

eq 
(2) 

in which X/m represents the mg of solute adsorbed per gram of mineral 

at equilibrium concent ra tion , C Xm is the amount of adsorbate in 
eq 

mg adso rbed per gram of mineral t o form a complete monolayer; and b 
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denotes a constant (equilibrium cons tant, K ) related t o energy of 
eq 

ads orption. 

The l i near form of equation (2) is 

c 
~ 
X/m 

c 
1 + ~ 

bXm Xm (3) 

and 1s used to evaluate Xm. The r eciprocal of the slope of the straight 

line obtained by plot ting Ceq/X/m as a func tion of Ceq gives t he mono­

layer capacity, or adsorption maximum, for the various mineral surfaces 

and the Y intercept gives the value of b . 

Kine tic derivations 

In the present treatmen t it is assumed that the da t a fo r the 

adsorption of Zn by the mineral surface can be represented by kine tic 

equations of the Lan gmuir type (Peterson and Kwe i , 1961) : 

d8/dt k (1 - e )c - k e 
1 -1 

(4) 

where 8 is the frac tion of t otal surface coverage and C is the equi lib-

rium concen tr ation of Zn in solution , k
1 

and k_
1 

a r e the r a t e cons t ant s 

f o r the adsorption and the reverse process , and t is the t ime of reac tion . 

The va lue of 8 is considered to be directly p roport ional t o t he Xm , the 

monolaye r capacity. 8 is def i ned as: 

X/ m 
X 

m 

From equation (4) when the d8 /d t is zero , it follows that 

e /( 1 - e)c k / k 
1 -1 

Keq 

(5) 

(6) 
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The equations (2) and (6) are similar if b of equation (2) is 

substituted for K in equati on (6) and 9 is defined as in equation 
eq 

(5). Then equation (6) becomes : 

X/m 
Xm - X/m 

X/m(l + bC ) 
eq 

bC eq 

XmbC 
eq 

X/m 
XmbC 

eq 
l+bC eq 

An invariant equilibrium constant is obtained from systems 

(7) 

(8) 

(9) 

approaching ideality . However, the equilibrium function of 9/(1 - 9)C 

in i t s departure from constancy often indicates the nature of the 

factor responsible for non-ideality. The rearrangement of equation 

(6) gives: 

C/9 
k 

c + ----=1:. 
k 

1 (10) 

A plot of C/ 9 as a function C should give a straight line and 

theY intercept of the plot gives a value for k_ 1 /k 1 . 

The rate equation (4) when integrated, gives: 

(11) 
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k 
A plot of -log [1 - (1 + -=!) e] 

klC 
with a s lope of k

1
C/2 .303 from which 

vs t should give a straight line 

k , the rate constant for the 
1 

forward reaction, can be calculated . 

Energy of activation 

Hood (1878) found empirically that the rate constant k
1 

of a 

reaction varies with the abs olute temperature T by the law 

A' 
B - T (12) 

where B and A' are the constants. Van't Hoff (1884) gave theoretical 

significance to the law on the basis of the effect of temperature on 

equilibrium cons tant . Arrhenius (1889) extended this idea and showed 

that the variation of the equilibrium constant KC (in concentration 

units) obeys the l aw: 

dlnK 6E 
~=~ (13) 

where 6E is the internal energy change for the reaction. The equili-

brium condit ion for reaction in equation (1) can be formulated by 

equating two oppos ing reactions k
1

[S][C] = k_ 1[e ] where k and k_
1 

are 

the rate constants for the forward an d reverse reactions, respectively. 

The equilibrium constant is, therefore, equal to k
1

/k_
1 

and we have 

8/ [S][C] K or Kc 
eq (14) 

At l ow concentcations the reaction iscchor e equation (13) may there-

fore be written as 



dT 

dlnk 
-1 

dT 

t.E 

which may be split in two equations 

and 

dlnk
1 

dT 

E 

~ + N 
RT 

dlnk_ 1 = E_ 1 
--2 + N 

dT RT 
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(15) 

(16) 

(17) 

where E
1 

- E_
1 

= t.E. Experimentally , it has been found that N can 

be set equal to zero (Laidler, 1965) . The rate constant therefore is 

related to the temperature by equation of the form (Arrhenius equation) 

dlnk 1 = E1 

dT RT
2 (18) 

The equations (17) and (18) are interpreted to mean that when the 

reaction occurs between Sand C (equation 1), there exists an equili­

brium between S + C on the one hand, and the collision complex (e
0

) 

on the other . The e11 is known as the activated complex . The energy 

E
1 

or Ea that is required for the system to pass from the state S + C 

II 
to the activat ed state e is knmYn as the energy of activation. There 

may be many collision complexes (e
11

) in existence at a given time in 

the reaction system, but only those with the energy Ea are capable of 
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forming surface products directly and it is only these that are referred 

to as act ivated complexes. 



Initial state 
s + c 

Activated comp lex 
ell 

Ea 

'----

__ \_ __ 
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Final product (S - C) 

Fi gure 3 . Energy-barrierdiagram, showing the flow of activated 
complex in two directions 

The rate equation (18) integrates to 

- Ea + Constant 
RT 

where Ea is the energy of ac tivat ion and is assumed to be independent 

of t emperature over the temperature range studied. 

This equation may be re-written with the constant equal to ln A. 

k 
l 

Ae-Ea/RT z - Ea/RT 
p see (19) 

whe re A i s a constant known as the frequency factor, and has the same 
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units as the rate constant. A is equal to pZ where p is the stearic 

facto r and Z is the collision number expressed as cc mole-l sec-l for 

a bimolecular reaction. Equation (19) can be tested by plotting log 

k
1 

agains t the reciprocal of the absolute temperature and a straight 

l i ne should be ob tained with the slope= Ea/4 . 57. 

Thermodynamic of adsorption 

Ac ording t o the absolute rate theory (Laidler, 1965) , the equili-

brium between reac tants and the ac tivated complex may be expressed 

in terms of thermodynamical f un ctions as well as partition f unctions . 

Consider reac tants A and B forming the ac tivated complex XT. 

A+ B XT 

We can write 

[.KL] 
[A) [Bf eq (20) 

where FT, FA, and FB are the appropri a te partition functions and KT is 

regarded as a modified equilibrium constant between the reactants and 

the activated states . 

The proce ss shown by equation (1) can be written 

T- [_rU_J -K - [S)[C) eq -
F'f -Ea/RT 

FFe 
c s (21) 

The rate constant for the reac tion shown by equat ion ( 20 ) is 

expressed (Laidler, 1965) : 
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(22) 

wh e re k i s Boltzman's constant and h is Planck's constant. Comparison 

of (22 ) and (21) give s : 

(23) 

assumin g the transmission coefficient eq ual s one. If we follow the 

t he rmodynamic analogy a step farther, K~ can be expressed in terms of 

iiG 0 T, 

(24) 

whe re i\G0 'f i s the difference between the free ener gy of the activated 

complex a nd the reactants, when all are in their standard states (usually 

uni t concentration). 

Subst i tuting equation (23) we ge t: 

(25) 

-l -l 
If k

1 
is expressed in liters mole sec the s t andard state for 

t he fr ee ene rgy, enthalpy, and entropy, of ac t ivation is one mole per 

lite r. 

Gibb's standard free energy of activation is related t o s tand ard 

enthal py and entropy of activat i on by : 

( 26) 
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and equa t i on (25) can be written as 

(27) 

Frost and Pearson (1961), starting from equation (23), related 

~H oT t o Ea in solutions in the liquid state 

T 
~Ho_, RT2 dlnK 

(28) dT 

RT 2 
dlnk1 RT """d'f- (2 9 ) 

~HoT E - RT (30) 
a 

where Ea is the experimental energy of activation in the Arrhenius 

equat i on. Comparison of equations (19) and (27) gives: 

A 
-E /RT 

e a 
kT 
h 

e -

Substituting for ~Ho~ in equation (31) we obtain: 

t hus 

A -E / RT 
e a 

z -E /RT 
P s c a 

kT 
he A 

(31) 

(32) 

For t he re ac tions at at omi c or molecular levels, Z
5

c is of the 

same magnit ude as (k T/h); thus ~ So~ is associated with the stearic 

hinderance. In any event ~ So~ is expected to become more negative 
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for a reaction between two poly- atomic molecules than for a r eac tion 

between two atoms . 

Differential hea t or ads orpt ion and Gibbs free energy of adsorp tion 

The differential hea t of ad s orption, defin ed for this study, is 

the difference in the amount of hea t (energy) involved dur ing t he 

formation of monolayers measured at two t emperat ures. If a solid with 

X grams of adsorba t e adsorbs 6X grams of additional adsorbate with the 

evolution of 6Q calories of heat, 6Q is known as the differential heat 

of adsorption (Gregg, i961) . The differential heat of adso rption , 

though of limited signi ficance , still ind i cates whether the reaction 

is exothermic or endothermic. 

The different i al heat of adsorpti on for monolayer cover age may be 

calculated from maximum levels of adsorpt ion at two or more different 

temperatures by t he Van 't Hoff equation in the form (Weber and Gould, 

1966) 

6H 
(33) 

where Xrn
1 

and Xm
2 

ar e the monolayer capacities at temperature T1 and 

r
2

, respectively . Other terms have their usual meaning . 

The Gibb ' s standard f ree energy fo r the monolayer capaci t y i s 

calcula ted f r om 

- 6G 0 RTl nK (34) 

where K, the equi librium cons t ant, corre sponds to b in the l inear form 

of the Langmui r equat i on (3) . TheY i nter cep t gives this value for K. 
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RESULTS AND DISCUSSION 

Ionic fo rm (s ) of zinc 

The liter a ture does not present a clear picture about the structura l 

co mpos i t i on of Zn in aqua and alkali solutions. Emeleus and Anderson 

(1938) r eported that Schold ar isolat ed sodium zincate from concentrated 

solut1ons of sodium hydroxide . The formulas ·were determined as 

An(OH)
3

Na
3

H
2
0 and Zn(OH)

4
Na

2
2H

2
o. Jurinak and Thorne (1955) hypothesized 

zincate formation in a z inc-bentonite sys t em with an octahedral composi­

t ion . But the cho i ce of s tructure s for zn
2+ appears to be between the 

tetrahedral and t he outer orbital octahedr a l complexes. The e lectronic 

gr ound confi guration of An is (Ar)
18

(3d)
10

(4s)
2

. In acquir ing an oxida­

tive s t age of z n2+ , it loses 2 electrons from the 4s" shell and achieves 

a pseudo-iner t gas t ype configura tion. Hence, the 3d orbital is not 

avai l able f or bond fo rmation, and only the S and p orbitals can be used 

for the fo rmation of tetrahedra l complexes. The ionic or outer octahedral 

compl exes can be atta ined by the f ormation of bond in the emp t y 4d shell, 

but this will not be possible fo r the charged or l arge ligands because 

of ligand- l i gand repuls i on. The water has consider able orientation power 

because of its high di pole moment and is a comparatively large ligand. 

Therefore water and hydroxal groups , theoretically, may be predicted to 

form Zn t e trahedr al configur a tions rather than Zn outer orbi t a l oc tahedral 

st ructures. 

Stachelberg and Freghold (1940) used the polarographic research me thod 

to determi ne t he comp os ition of the Zn complex. These authors found a 

relationship between the wave potential of Zn r eduction and concen trat ion 
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of sodium hydroxide in solution varying from O.lN to 4. 0N. The 

coordination number of Zn complex anion was found to be 4, and the 

stability constant was reported to be 1 . 3 x l0-
17

. Korshunov and 

Khrulkova (1966) also investigated the coordinated structure of zn
2
+ 

by polarographic studies and concluded that zn2+ forms a tetrahedron . 

They reported that in the alkaline range of 0.2N t o 2N sodium hydroxide, 

zn2+ existed as a complex anion with hydroxal coord ination number of 

3 and 4 . They further commented that it is quite possible for zn
2
+ t o 

form complexes with a smaller percentage of hydroxal coordination in 

solutions that are poor by hydroxal ions. 

The ZPC for the zinc hydroxyl complex has been reported in litera-

ture to be at pH 8.8. Kalthoff and Kameda (1931) estimated that in a 

neutral solution the ratio of Zn2+ to Zn(OH)+ concentration is 1000 to 1. 

The solubility of zinc hydroxide in dilute a lkali (Fult on and Swinehart, 

1954) has a minimum at approximately 1 x 10- 3~ sodium hydroxide which 

approximates to the ZPC. The pH of the miner al-zinc solution systems 

used in this study, though variable (data not reported here), was not 

more than 8 . 8. Accordingly, it is safe to presume that in the present 

investigations Zn existed in tetrahedral coordination primarily as 

2+ + 
Zn(H

2
o)

4 
, though some may also be present as [Zn(H 2o) 3 (0H)] . Elgabaly 

and Jenny (1943) reported the uptake of Zn
2
+ by c lays from ZnCl sys tems 

in the form of zn2+ , Zn(OH)+, and (ZnCl)+. The s ubstitution of one water 

molecule by a hydroxyl group in the tetrahedral complex will not bring 

any major change in the cross sectional area of the Zn complex molecule 

because the radii of OH and H
2
o are similar . Therefore, to avoid 

complications, or.ly [Zn(H
2
o)

4
] 2+ will be used for evaluation of the 

fraction of surface covered. 
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The area of zinc tetrahedral c omplex ion 

The tumbling water molecule in bulk liquid occupies a vol ume of 

a r.omplete sphere . The water molecules in coordination with Zn, though 

oriented , still possess the vib r at i onal degree of freedom but for the 

sake of evaluation of the radius of the water molecule we assume water 

t o be a complete sphere. According to Pauling (1960), the covalent radius 

of the H in water i s 0. 30 R and that of oxygen in single bond is 0.66 R. 
Af t er correc tion for elec tronegativity , this radius of oxygen increases 

t o 0 . 74 R. The 0-H distance has been found to be 1.01 R by the neutron 

diffrac t ion method . The angle of configuration of two H atoms has been 

reported t o be 104 .5° . From these data the radius of a water molec ule 

sphere has been evaluated t o be 1.357 R, whereas the radius obtained 

from the cross sectional area of a water molecule, in the vapor phase, 

resting on the absorbent surface, is about 1.85 R (Gregg , 1961 , p. 51). 

Ass uming that coo rd ination of water with Zn
2+ ion forming a zinc 

tetrahed ron does no t bring distortion of any considerable extent and 

that each of the four water molecules still has 1 .357 R as its radius, 

then the r adius of zinc tetrahedron (presumed to be a sphere) can be 

calculated to be 3 . 104 R. This gives the cross sec t ional area of the 

Zn complex molecule about 29.34 sq R. 

Mode of adsorption reaction 

Each of the minerals used in the present study have a considerable 

ca tion exchange capacity . The t otal exchangeable cations for the fine 

f ractions of prochl orite, pyroxene and biotite are 21 . 22, 61 .40 , and 

51.53 meq/100 g , respect ively (Table 1). Table 4 shows the meq/100 g of 

Zn retained by these minerals as calculated from the monolayer capacity. 



Tab l e 4 . Zinc adsorp t ion data on prochlorite , pyroxene, and biotite 

Values pe r taini ng t o Values pe rt aining Area / Area/ 
Mine r al monolaye r caEacitl t o l ow cover age adsorbed ads orbed 
f rac t ion Temp * Zn++ Z ++ at b IIH0 - IIG0 K - IIG0 

n X 
m 

oc mg/g meq/100 g L K cal K cal e ~101, K cal j\ % 'M -M- -M- - M-

Prochlorite 10 1.1,2 1, , 31, .300 60 . 3 48 . 6 
Fine 20 1.1,8 1, . 53 2 .81, 0.332 2 . 1, 2 . 310 3.1, 2. 83 57.9 50.6 

30 1.60 1,. 89 0 . 706 .320 53.6 51,.7 

Coarse 10 0.57 l. 71, l. 45 .200 1.60 61.5 48.7 
20 0.58 1.77 l. 87 0.159 . 225 2 . 0 60 . 3 48 . 6 
30 0 .6 1. 83 0.301 . 230 58 . 5 50.1 

Pyr oxene 10 3.71, 11 . 43 .160 47.28 62.0 
Fine 20 4.00 12.23 l. 25 0.554 0.52 .260 1.69 l. 22 44.20 66.3 

30 4 . 38 13.39 l. 226 . 208 40 . 38 72.6 

Coarse 10 1. 10 3 . 36 . 119 47 . 7 61.5 
20 l. 24 3 . 79 1.02 0.487 0.048 . 166 1.18 0.39 42 .36 69.2 
30 1.36 4.16 0.612 . 170 38 . 64 75.9 

Bio t ite 10 6 . 78 20. 73 45.2 64.9 
20 7.09 21.68 0 . 72 7 0.513 0 . 554 43 . 2 67.9 
30 7.61 23. 27 0.10 0 . 615 40 . 3 73.3 

w 
* '"' Mean of 3 temperatures. 
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The Zn r e t ained represents about 20%, 19~ and 40% of the total exchange-

ab l e ca tions f o r these minerals. 

Mukherjee and Mitra (1946) have shown that a single cation may be 

held by a clay mineral with a wide range of bonding energies, and this 

is f undamentally related to the position on the silica-alumina packet 

at whi ch the cation is sorbed. Accordingly, there a re numerous types 

of energe t1cally heterogeneous sites on these minerals. It is reason-

able to t hi nk that some of the weakly held exchangeable cations are 

likel y t o be replaced first from their exchange sites to establish an 

equi l i br i um with the Zn ions in the s olution, and thus the reaction 

on t he mi neral surface may be hypothesized as an exchange adsorption. 

A similar idea was put forward by Elgabaly and Jenny (1943). 

Kel l ey (1948) pointed out that the replacing power of cations 

i ncr eases qualitatively with a t omic number of ions, Brown (1950) 

r e ported that the release of the adsorbed cations by Zn from an Aiken 

clay loam was in the order of Na+ > Ca++ > K+ > Mg++ > H+. In the 

present study , the calculated monolayer· capacity of Zn adsorbed by 

prochlor i te is close t o the amount of exchangeable sodium (about -
3 

meq / 100 g). 

The measured ini t ial adsorption plateau (Figures 4 and 5) is 

as sume d to be a result of the exchange of solution Zn for weakly 

ad sorbed Na . The increase in Zn adsorption beyond the i nit ia l plateau 

is asc ribed to the progressive exchange of other adsorbed cations on 

the sili cate mineral surface. The data for both prochlorite and 

pyroxene can be explained on the basis of the selective exchan ge of 

Na by Zn at a l ow equilibrium conc entration of Zn ion. 
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In the case of Zn adsorption by the fine fraction o f biotite 

(Figure 6), which is essentially a Ca-satura t ed mineral, both the 

exchangeable Na and K are low; hen ce , the exchange between Zn and the 

monovalent cations cannot account for the apparent adsorption plateau 

noted i n this case. The exchange mechanism is not apparent, but the 

subsequen t data to be discussed do suggest that exchange adsorption is 

operative . We may agree with Marshall (1949) and ass ume that bonding 

energy of Ca is not uniform and only the weakly held exchangeable Ca 

is initially replaced by the adsorp tion of Zn . The dat a on the biot ite 

are not conclusive and need additional study . 

Ion exchange is a diffusion process (Grim, 1968) and its rate 

depends on the_mobility of the ions in solution. The magnitude of the 

activation energy, Ea , (Table 5) shows that the diffusion in solution is 

the rate controlling step. These data - support the concep t of exchange 

adsorption by the minerals studied . 

The differential heat of adsorption, 6H0
, (Table 4) for the reaction 

is quite small , supporting the hypothesis of exchange adsorption. The 

heat involved in the course of an ion exchange reaction is usually small, 

about 2/K cal/mole (Grim, 1968), unless ion exchange is followed by some 

secondary reaction such as neutralization. 

The monolayer capacit ies for the various minerals are temperature 

sensitivive, and t he monolayer adsorption reac tions are endothermic in 

nature . It can be perceived that with a rise in temperatur e , the 

number of successful collisions between Zn and the exchange sites should 

increase and more of the exchangeable cat i ons can be replaced by Zn during 

the reaction. 
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Table 5. Rate paramete r s for the ad s orption of zinc molecules on minerals 

Mineral 
k_/kl kl k_ l 6H-'F fraction Temperature Ea 

M L-l x 10- 5 Sec-l M L- l -1 -4 Sec x 10 k ca l s M 
- 1 

Pr o chlori t e 

Fine 10 8 . 55 2 .52 
20 2.95 12.81 3.78 6.18 5.60 
30 17 . 09 4 . 16 

Coarse 10 14.33 6.87 
20 4 . 80 18 . 33 8 . 79 3.78 
30 21 . 50 10 . 32 

Pyroxene 

Fi ne 10 3 . 25 2 . 07 
20 5 . 95 5 .06 3 . 22 6.3 7 5 . 67 
30 7.58 4.83 

Coarse 10 3. 81 2 . 24 
20 8 . 45 6.64 3.89 4 . 87 
30 10 .46 6 . 24 

t> G"' 

2.31 

0.156 

t>s"' 

ES U 

2 . 16 

19.23 

-" 
"' 
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Isotherms and mon olayer formation 

The isotherms based on equation ( 2) for the ads orp ti on of Zn by 

line and coarse fractions of prochlorite, pyroxene and biotite minerals 

are presented i n Figures 4, 5, 6, 7, and 8 (see Appendix, Tables 8, 9, 

and 10) . The isotherms approach a limiting value of adsorption with 

increasing concentration of adsorbate i n solution. As the adsorbate 

concen tration was i ncreas ed to a re latively high level, a secondary 

adsorp r>on occurred in the prochlorite and pyroxene systems but did not 

occur n the biotite system. The monolayer sorption of added Zn is 

apparently complete up to an equilibrium concentration of about 1.54 x 

- 5 -1 - 5 -1 
10 moles L for prochlorite and 2.31 x 10 moles L · for pyroxene. 

In the case of biotite, the monolaye r adsorption seems to be completed 

at a higher equilibr i um concentra t ion. 

S>nce the multilayer adsorption at a solid-liquid interface is 

quite rare (DeBoer , 1953), the increase in adsorp tion beyond the mono-

layer may be at tributed partly to the precipitation of Zn as Zn(OH) 2 . 

Jurinak (1956) , st udyi ng Zn adsorption in calcite , hypothesized the 

increased adsorption beyond the monolaye r region was due to a second type 

of adsorption sites a t the inter face whi ch become important as the 

concentration of Zn ion exceeds the sa turation of type one sites . 

Only the monolayer region of adsorpt ion will be considered in this study. 

Figur es 9, 10, 11, 12 , and 13 show the linear plot for equat i on (3) 

for the iso therms discussed previously. The monolayer capaci ties of the 

Langmuir adsorption maximum (Xm) ob tained from the slope of the lines 

along with the constant b, related t o the ener gy of adsorption, at mono-

layer formatio n is given in Table 4 . Table 4 also shows the values for 

6H 0 and 6G0 for adsorp tion for monolayer formation, ob t ained by the 
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relation expressed in equations (33) and (34). The monolayer capacities 

are slightly temperature dependent· and increase with increasing tempera-

ture, reflecting . the endothermic nature of the adsorption reactions. 

The adsorption is usually- described as an exothermic process; 

accordingly the monolayer capacity (Xm) should decrease with increasing 

tempera ture. However, Haque et al. (1968) reported that temperature 

has little ef fect on the amount of 2,4-D adsorbed by clay minerals. 

Jur~nak (1956) reported that the retention of Zn by dolomite and 

calcium-magnesi te is endothermic, whereas the calcite showed an exothermic 

reac tion with adsorbate Zn solution. Reyes and Jurinak (1967), studying 

molybdate adsorption in iron oxide, found an increase in the Langmuir 

adsorption maximum (Xm) with a rise in temperature. They postulated 

the formation .of new active sites to justify this reaction and in support 

of this reported a slight increase in surface area. 

The variation in the -~Go of adsorption, with the progressive 

increase i n the fraction of surface covered by adsorbate molecules, has 

been useQ . tO define the adsorbate-adsorbate interaction at higher 

coverages or . to ~ cbaracterize the nature of site change with increased 

adsorption. McMillan (1947) and Zettlemoyer and Walker (1948), in an 

attempt to reason out the decrease in free energy of adsorption, 

hypothesized two kinds of adsorption sites which were mathemati cally 

treated by an equation of the Langmuir type. 

in which b
1 

and b
2 

are the equilibrium constants for stronger and 

weaker sites, respectively , and a is the fraction of the t otal surface 
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occupied by stronger s ites. The r est of the terms have thei r usual 

mean1ngs. 

The var ia tion in - 6G0 of adsorption values (Table 4) wi th the 

change in the fraction ·of• surface· area covered is very small in the 

case of pro ch lorite, whereas it is quite pronounced in the case of 

pyroxene . It i s difficult t o resolve from the present data the factor 

responsible fo r the change in - 6G0
, but it may be speculated tha t the 

f ollowing f ac t or s are involved. 

1 . The sites are energetically heterogeneous. 

2 . The mutua l r e puls ion of ad sorbed Zn i ons at higher su rface 

cove r age . 

3 . The dis t ance of the ini t ial adsorpt ion reac tion f rom equili-

brium. 

I t s eems resonable t o assume that the potential active s i tes on 

t he ad s orbent surface may be slightly temperature dependent and new 

si t es may become actively invo lved in adsorption with a rise in 

t empe r a ture . One type of active center can be more active (Laidler, 

(1965) f or the adsorption of one species and the other type of sites 

mor e ac tive f or the adsorption of other species. Further , temperature 

may a ls o a f fec t the ionic species of the adsorbate . Korshunov and 

Khrulkova (1966) reported that instability cons tants of co-ordination 

compounds of Zn are temperature dependent . It appears that the ratio 

u + 
of [Zn(H2o)

4
J t o [Zn(OH)(H2o) 3 ] will be low at low temperature (10 C), 

i. e ., a t a higher temperature the number of [Zn(H
2
o)

4
]
2+ ions will be 

grea t er than a t the lower tempera ture which might acco unt f or s o me o f 

t he incr ease i n ads or ption tha t is noted with increasing temperature. 
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The monolayer capacities calculated on a per gram basis of minerals 

1s 1n the order of biotite > pyroxene > prochlorite. A clearer picture 

of Zn adsorption can be realized if the results are regarded on the 

bas1s of area occupied by a single hydrated Zn ion on each of these 

minerals . 

At monolayer capacity, the fraction of available surface ar ea 

covered by prochlorite is approximately 48 to 55 percent, pyroxene 62 

t o 72 percen t,and bio tite 65 to 73 percent, which indicates a l oose 

adsorba t e film (Table 4) . The zinc-wate r tetrahedron can be visualized 

as s1 t ting f lat wi th its major axis perpendicular to the s urface . 

Since molecules are not closely packed, it implies that probably 

adsorption takes place on specific sites at the surface . DeBoer 

e t a l. (1962) postulated hydroxyl and oxygen atoms in alumina mono­

hydrate to be the probable sites of adsorption. 

The cell structure of all three silicate minerals is such as to 

give a b axi s dimension of approximat ely 9 R (prochlorite 9.2 R, 
bioti te 9 .2 R, pyroxene 8.9 R) having six oxygen, or hydroxyl and 

oxygen, at oms l ocat ed within this distance. This gives an atom to atom 

distance approximately equal to 1.78 R within the mineral s tructure. 

The radius of the Zn tetrahedron , by hypothesizing a spherical model, 

has been calculated to be 3.10 R, indicating tha t one Zn molecule wi l l 

cover almos t two sides to give an open packing as indicated i n Figure 

14 . 

Kinetics and thermodynamics of Zn adsorption 

It has been shown in the preceding discussions that at low coverage 

(o < 0.4) there is no interaction between the adsorbed Zn molecules, 
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Figure 14. The adsorp t ion of zinc tetrahedron molecule (thick l ines) 
on prochlorite (schematic ) along b and c direction. The 
shaded circles represent OH ions. 

and as such each adsorbed molecule would occupy the same fraction of 

the total adsorbent surface. The value of 6 can be considered as 

directly proportiona l to Xm, the monolayer capacity. The equilibrium 

values of 6 for three different s olution concentrations calculated 

from equation (5) along with C/6 for two mineral fractions are 

presented in Tab les 6 and 7 . 

C/6 as a functi on of C, equation (10), for various mineral 

frac tions is plotted in Figures 15, 16, and 17. The slope of the lines 

ln each case 1s approximately one, and the y intercept gives the value 

ot k_
1

/k
1

. These da ta are presented in Table 5. The reciprocal of 

k_
1

/ k
1 

has been interpreted as the value of keq and used f or the evalua­

ion ot 6G" of adsorption a t low coverage, The ratio of k_1 / k1 is 

constant, irres pective of temperature and concentration, but is deter-

mined by the nature of the adsorbent and the fract i on of surface 
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Table 6. Equilibrium adsorption data for proch1orite 

Concentration 10 c 20 c 30 c 

B C/o C/ 8 0 C(d 

mole L 
-1 mole L -1 mole L 

-1 
mole L -1 

X 10-S X 10-5 X 10- S X 10- 5 

Fine Fraction 

1. 247 0.300 4.156 0.308 4 . 048 0.310 4.022 
0.616 0.180 3.420 0.173 3 , 560 0.175 3 . 520 
0.308 0,099 3 .110 0.093 3.310 0,095 3.240 

Coarse Frac ti on 

l. 247 0 . 200 6.230 0.220 5 . 670 0 .210 5.930 
0.616 0.112 5.500 0.110 5 . 500 o.uo 5 .500 
0.308 0 . 060 5.130 0.059 5. 220 0 . 600 5.130 

Table 7. Equilibrium adsorption datd for pyroxene at 10 C 

Fine Frac t ion Coarse Frac t ion 
Concentration C/ 8 c;a 

mole L 
- 1 mole L 

-1 
mole L 

-1 

X 10-S X 10- 5 X 10- 5 

l. 770 0.160 ll, 060 0 .119 14.900 
0.893 0.116 7.700 0.088 10.140 
0.308 0.630 6.84 0 0 .054 9.400 
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covered (See Figures 15 and 16). 

The value of k_
1
/k

1 
was substituted into the integrated rate 

equation (11) and the kinetic data plotted as a function oft (time), 

in Figures 18, 19, 20, and 21 . A reasonably straight line was ob tained 

in each case wi th a slope of k1c/2.303. The values of k
1 

and k_
1 

are 

lis t ed in Table 5. 

As is indicated by the data, the uptake of the solute by the 

adsorbent was rapid, and a cons iderable amount of Zn was inactivated 

at zero hour. The adsorption from the Zn solution onto the minerals 

was almost complete in 4 hours. Although a considerab le amount of 

adsorbent surface was still available (6 < 0 . 4) for r eacti on a t the l ow 

concentration of Zn in solution , the diffusion of Zn i n solution appear s 

to be the rate l i miting step. 

The ra t e constants reported by Haque et al. (1968) fo r the 

adsorption of 2,4-D on the clay minerals were of the order of 10-7 sec-l 

whereas the value reported f or the adsorption of PAVS on chrome plate 

by Pe t e rs on and Kwei (1961) is in the order of 191 sec-
1

. Weber and 

-1 
Gould (1966) reported k

1 
values of 51.8 sec for the adsorption of 

2,4-D on active carbon but this was found to be dependent on the concentra-

tion of the adsorbate solution. The values of rate constants obtained 

here are quite high. It has been postulated in the previous discussion 

u + tha t Zn is adsorbed as Zn (H
2
o)

4 
or Zn (OH)(H2o)

3 
ion. The rate 

constan t s for the various minera l fractions indicate that diffusion 

is accelerated by electrostatic forces. The rate constants ar e some-

wha t depe ndent on the nature of the adsorbent surface and the surface 

areas. Rate cons tants are higher f or prochlorite than pyroxene , although 

the surface exposed for adsorption is higher in the latter . The r a t e 
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cons t ants s eem to be associated with the - 6G0 of adsorption f or the 

m1nera l s. I t is higher f o r prochlorite than for pyroxene (Tab l e 4) . 

The prochlorite is 2:2, hard and perfectly crystalline mine r al. ~he 

nega t ive charge that comes from the mica-like sheet is much highe r than 

the positive charge that has its origin in the brucite-like sheet , 

sandwiched between two mica-like sheets . Pyroxene is a chain silica t e , 

sott and f ibrous, where most of the negative charge comes hom subscitu-

Lion in the silica tetrahedral configuration. 

The source of the origin in the net negative charge will influence 

the t ype of flocculation and particle aggregation. The floc culation may 

be expect ed t o be more regular in prochlorite than in pyroxene. Hhen 

Zn molecules come in contac t with the mineral, it can adsorb on the 

s urface and a l so diffuse i n the aggregate, The rate of adsorption will 

be fas t e r than the rate of diffusion . In the present study, the r e act ion 

rate is rep res ented as the rate o f sorption which includes sorption as 

well as dif fusion. 

The rate constants are temperature dependent and increase with 

i ncreasing temperature, suggesting that inter-particle diffusion can 

be the reacti on limiting process. 

-4 -1 
The k_

1 
values have been calculated and are of the order of 10 sec 

The va lues of k_
1 

as compared to k
1 

are very small, showing that desorpt ion 

is neg l ig i ble. This is r easonable if one considers the magnitude of the 

surface a reas i nvolv ed and the l ow concentration of adsorbate. Because of 

the low k_
1 

va lues, it appea rs tha t Zn is preferentially adsorbed as 

compared wi t h any i ons that it r eplaces. 

The assumpt ion mad e by Haque et a l. (1968), that the des C' rpt ion 

reaction is s mall enough t o be neglected when a large surfac e is expos ed 
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and the concentra tion of adso rb a t e is small, does not appear to be 

JUStified in t heir case because they reported high values of k_1 . 

The Arrhenius law (equation 19) was tested by plotting log k1 vs 

the recip rocal of the absolute temperature as shown in Figures 22 and 23. 

A straight line with a s l ope of Ea/4 , 56 was ob tained. The activation 

energy , Ea , calcula ted by this r eac t ion, is presented in Table 5 . 

The mechanisms of surface reactions for bimolec ular process are 

regarded as involving five consecutive steps (Laidler, 1965) as follows: 

1 . Diffusion of the reacting molecule t o the surface. 

2. Adsorption of the molecules on the surface. 

3. Reaction on the surface. 

4 . Desorption of the produc ts. 

5. Diffusion of the adsorbed products. 

The va lues fo r the r eve rsal of the adsorp tion constant k_1 have 

been found t o be negligibly small (Tab le 5); therefore steps 4 and 5, 

in the ab ove scheme , as the reaction rate controlling process are 

ruled out and one of the initial three steps becomes the rate determin-

ing mechanism. 

The over- all process can be schematically depicted as 

Zn ion kl Zn ion th e k2 Adsorbed Zn ion 
in solution 

on 
s urface with a with Zn mole-

<== small surface cule fully flat-
k_l 

---> 
contac t tened 

(i) (ii) (iii) 

A somewhat similar conclusion was reached by Peterson and Kwei 

(1961) for the PVAS adsorption on the solid s urf ace . The Zn i on 

reo r ien tation on the s urface is likely t o be kinetically fast following 

the successful collision of the Zn ion with the solid surface. Step 
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two , adsorpt i on of Zn ion on the surface, is known t o be a fast process. 

Accordingly, diffus ion (step one) seems t o be the rate-me chanism control-

ling process in the systems studied. Di ff usion, being an endothermi c 

process, infers that the rate of uptake of Zn by mineral should in c rease 

with a rise in temperature, which is s upported by the rate constants 

reported in Table 5. In accord with the expec tations for i ntraparticle 

transport by diffusion as the rate-limiting mechanism, the experimental 

activation ene rgy values reported in Table 5 are all positive. Diffusion 

in a liquid (Laidler, 1965), like many other physical processes , has 

an activation energy, but the magnitude of this is generally a r ound 

5 K cals per mole. The activation energy va l ues (Table 5) va ry from 

about 3 K cals per mole to 6 K cals per mole, confirming the view that 

diffusion is the rate controlling mechanJ.sm. 

Comparison of the va lues of Ea for the mineral fractions indicates 

that it i s related to the surface area and structural composition of 

the minerals. The Ea is higher for prochlorite than for pyroxene 

when calcula ted on unit surface areas based and decreased with inc reasing 

parti c le size. 

The t hermodynamic constan ts, heat of a c tivation (6gT), Gibbs free 

energy of ac tivation (6 g~ ), and entropy of activation (6gT) for the 

a c tivated complex 8~, calculated from equations (30), (25) and (26), 

r espec tively, are presented in Table 5. The 6~ values for the 

activation reac tions are pos itive, supporting the contention in this 

study that the adsorption reac tions process is not the rate l imitin g 

step . The en tropy of activation for pyroxene is greater th an for 

prochlorite. 
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The hydrophylic nature of soil forming minerals has been explained 

by Van Olphen (1963) . In the present system the adsorbent and adsorbate 

both are present in a highly hydrated form but pyroxene , because of its 

fibrous soft nature and the presence of easily hydrated cations (Na+), 

is considered to be more hydrated than prochlorite. 

The larger entropy of activation in the case of pyroxene is 

expla ined on the basis of change in the volume of activation. Evans 

and Polany (1935) pointed out that there may be change in the volume 

of the reactants as they pass int o the activated state and also the 

volume change may result from reorganizat i on of the solvent molecules. 

Studies of a variety of reactions (Buchanan and Hamann, 1955) had lead 

to the conclusion that for reactions in which ions or fairly strong 

dipoles are concerned , the solvent effects are generally more important 

than the structural ones . If the electric field is weakened (Laidler, 

1965) when the activated complex is formed (as where two bodies of 

opposite signs come together) , there will be some release of bond 

s o lvent molecules and the volumes and entropies of activation will 

be positive. 
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SUMMARY AND CONCLUSIONS 

The studies reported here represent an attempt to apply the kinetic 

equation 

ae 
at k

1
(1- 8)C- k_

1
e (equation 4, theory) 

to the adsorption of Zn from s olution (water) onto mineral surfaces. 

The adsorption reaction of Zn from dilute solution was studies for 

proch lorite, pyroxene and biotite minerals, under isothermal condi t ions . 

Agitated nonflow experimen ts were used to investigate both the kinetics 

and equilibrium of Zn adsorption by these minerals. The equilibrium 

concentrat ion of Zn in the solution was determined both by radio-

ac tive trace r techniques and adsorpti on spectrophotometer meth ods. 

The data were collected at three temperatures. 

The data obtained were described fairly well by the above kinetic 

equa tion. The specific rate constant for t he f orwar d reaction depends 

on the na ture of the mineral and the mineral particle fraction . The 

specific rate constant (k
1

) is temperature sensitive and increases 

wi th rise i n temperatu re . 

The values for the desorption rate constant are very small, 

proving that the Zn ions are preferentially adsorbed ove r other desorbed 

exchangeable ions in the system . 

The activation energy f or the sorption process lay betwee n 3 t o 

6 K cals per mole, thus eliminating chemical adsorption. The activa-

tion ene rgy indicates the physi ca l process of diffusi on as the me chan ism 
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controlling step in the present study . The standard free energy of 

activation, 6~, enthalpy of activation, 6~•, and entropy of activation , 

~ 
6g~, were also eva luated for these reac tions. The pos itive 65 shows 

a change in the volume of activation complex during the course of 

reaction. 

The monolayer capacities for the three minerals and mineral 

fractions were evaluated. The percent of the surface area occ upied 

by adsorbed Zn i on was abou t 50 percen t, 65 percent, a nd 66 percent 

for prochlorite, pyroxene, and biotite, respectively. This suggests 

that Zn is adsorbed on ce rtain s pecif ic sites. The mono laye r capacities 

0 
increased as the t emperatur e in c reased. The decrease in - 6G with 

increased fraction of sur face cove ra ge allows speculation that: 

1 . The sites are energetical l y heterogeneous. 

2. There is mutual repulsion of adsorbed Zn ions at higher 

s ur face coverage. 

The data show that Zn adsorption onto the minerals used in the 

present study is exchange adsorption. The initial adsorption plateau 

in the case of proch lorite and pyroxene is described as a result of 

exchange of solution Zn for weakly ads orbed Na. The change in the 

nature of the curve beyond this region is speculated to be due to the 

progressive exchange of o ther ca tions . The data for the biotite are 

not conc lusive and need f urther s tudy. The present studies show that 

the exchange a dso rption (ion exchange) is a step wise process and more 

than one p latea u may be obtained if the system is allowed to reach its 

ultimate equilibri um whe re all the exchange sites are completely 

saturated by the ads orbate . 
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The differentia l heat of adsorption, ~~. for the ads orption 

reac tion is small. This supports the contention that exc hange adsorp­

t i on takes place in the systems studied. 
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Table 8. Isotherm data for zinc adsorption on proch1orite at three 
temperatures 

Fine fraction Coarse fraction 
Te mp. c C eq (X/m) C/X/ c eq m (X / m) C/ X/ m 

' l K mg / 1 mg/1 mg /g mg/1 mg / g 

303 0.5 0.083 0.334 1.500 0.08 7 0.083 6.053 
0.1 0.280 0.576 l. 725 0.273 0.145 6 . 877 
2.0 1.0 70 0. 744 2.675 1.080 0.184 10 . 860 
5 .0 3.761 0.976 5.125 3.557 0 . 289 17 . 301 

10.0 7.970 1.624 8.103 0.379 
20.0 14.060 4. 712 13.96 7 1. 347 

293 0.5 0.12 7 0. 302 1.655 0.103 0.079 6.313 
0.1 0.343 0.526 1.901 0. 360 0.128 7.813 
2.1 1.163 0.670 2.985 1.180 0.174 11.494 
5.0 4.073 0.741 6.747 4.097 0.241 20. 746 

10.0 8.290 1. 368 8 . 403 0.339 
20.0 14.800 4.160 14.907 1.480 

283 0.5 0.133 0.293 1.706 0.120 0.076 6.579 
1.0 0.420 0.464 2.150 0.400 0.120 8.333 
2.0 1.260 0.592 3.378 1.140 0.172 11.628 
5 . 0 4.127 0 . 698 7.163 3.970 0.220 22. 72 7 

10.0 8.427 1.211 8.377 0 .320 
20.0 14.923 4.667 14.943 1.134 
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Table 9. Isotherm data for zinc adsorption on pyroxene at three 
temperatures 

Fine f r action Coarse fraction 
Temp. c C eq (X/m) C/X/ 

m 
C eq (X/m) C/X/m 

± l K mg / 1 mg / 1 mg/g mg/1 mg/g 

303 0.5 0.013 0. 390 1.280 0 . 017 0 . 09 7 5.141 
1.0 0.030 0. 776 1 . 289 0.043 0.192 5.206 
2 .0 0 . 053 1.540 1.298 0.090 0.382 5.241 
5 .0 0.287 3. 770 1.326 0 . 570 0.886 5 .644 

10 . 0 4.347 4.522 2 . 211 3.620 1.276 7. 837 
20.0 10.483 7.614 9.963 2.007 

293 0.5 0.030 0.376 1. 325 0.023 0.097 0.14 3 
1.0 0.060 0.752 1.330 0.043 0.192 5.208 
2.0 0.130 1.496 1.335 0 . 100 0.380 5.263 
5 .0 0.383 3.694 1. 354 0.650 0.870 5.747 

10.0 5.293 3. 766 2.655 4.600 1.080 9.259 
20.0 12.200 6.240 11.953 1.609 

283 0 . 5 0.033 0.374 1. 336 0.040 0.092 5.435 
1.0 0.070 0.744 1.344 0 .083 0.183 5.452 
2.0 0.177 1.458 1.377 0.170 0.366 5.474 
5 .0 1. 237 3.010 1.661 1. 420 0.716 6.983 

10.0 5 .600 3.520 2.841 5 . 443 0.911 10.9 77 
20.0 12.601 5.9 19 12.453 1.519 
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Table 10 . Isotherm data for zinc adsorption on biotite at three 
t e mperatures 

Temp. c C eq X/m (C/X/ m) 

±l K mg/1 mg/1 mg /g 

303 0.017 1.586 

0 . 027 3. 9 78 1. 25 7 

10 1.053 7 . 158 1. 297 

15 4.870 8.104 1.851 

20 9 . 617 8.306 2.408 

293 2 0.020 1.584 

5 0.043 3.966 1.261 

10 1. 95 7 6 . 434 1.554 

15 6.003 7 .198 2.084 

20 11.250 7.000 2 .857 

283 0 . 037 1.570 

5 0.180 3.857 1. 970 

10 2. 710 5.832 1. 715 

15 6.767 6.586 2 . 278 

20 11.810 6.552 3.053 
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Table 11. Equilibrium isotherm data for zinc 
adsorption on minerals 

Fine fraction Coarse fraction 
Temp. c C eq X/M C eq X/M 

±1 K mg/1 mg/1 mg/g mg/1 

Prochlorite 

303 0.81 0.17 0.469 0.180 0.126 

0.40 0.05 0.280 0.060 0.068 

0.21 0.03 0.141 0.023 0.035 

293 0.81 0.24 0.308 

0.40 0.08 0.256 

0.21 0.03 0.137 

283 0.81 0.28 0.300 0.240 0.114 

0.40 0.08 0.256 0.080 0.064 

0.21 0.03 0 .141 0 . 030 0.034 

Pyroxene 

283 1.15 0.40 0.600 0.550 0.123 

0.58 0.035 0.436 0.024 0.111 

0 . 30 0.010 0.232 0 .020 0.056 



Table 12 . 

Time 

hours 

0 
2 
4 
6 

0 
2 
4 
6 

Isothermal adsorption of z inc at three tempera tures as influen ced by time 

Fine fraction Coarse fraction 
10 c 20 c 30 c 10 c 20 c 30 c 

C eq X/M C eq X/M C eq X/M C eq X/M C eq X/ M C eq X/M 

mg/ml mg / g mg/1 mg/g mg/1 mg/g mg/1 rng/g rng /1 rng/g mg/1 rng/g 

Prochlorite: C = 0.81 mg/1 

.60 .168 .58 .184 .47 .272 .66 .03 .61 .04 .53 .056 

.39 .336 .30 .408 .32 .392 . 30 .102 .28 .116 .24 .114 

.30 .408 .24 .456 .24 .456 .26 .110 .20 .122 .18 .126 

.28 . 425 .22 .472 .18 .504 .24 .114 .18 .126 .16 .130 

Pyroxene: C = 1.15 mg/1 

.847 .202 .78 .296 .73 .336 .893 .051 .71 .088 .65 .10 

.663 .390 .26 .712 .14 .808 • 700 .096 .27 .176 .12 .206 

.418 .5 86 .14 .808 .09 . 848 .553 .119 .14 .202 . 05 .224 

.410 .594 .12 .824 .06 .872 .545 .121 .11 .208 .03 .232 

"' ..., 
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