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ABSTRACT

A Mathematical Model of the Dispersion of a Concentrated Substance
For Use in the Great Salt Lake's South Arm
by
Anthony O. Righellis, Master of Science
Utah State University, 1978
Major Professor: Gary Z. Watters
Department: Civil Engineering

The ability to predict the dispersion of substances in the Great Salt
Lake is a requisite towards making responsible management decisions re-
lating to uses of the lake. The lake is a complex terminal body of water
and will require a fairly sophisticated mathematical model to properly
simulate the dispersion process in the lake. This finite element con-
vection-dispersion model is a first step towards developing a comprehensive
model.

The model provides a finite element solution to the two-dimensional
convection-dispersion equation and is capable of simulating steady or
unsteady-state situations. It utilizes a known velocity field, dispersion
coefficients, an introduced substance concentration, substance decay rates,
and the region geometry to produce a solution to a given convection-
dispersion problem.

At the present time, a quantitative verification of the model has not
been done, but qualitative use of the model indicates that it yields
reasonable solutions satisfying continuity to convection-dispersion prob-
lems. Problems tested utilize a uniform flow field and various methods of

introducing a substance, such as internal injections, established




concentration gradients, and diffusers. This model affords the options in
the approximating techniques of linear or quadratic interpolation functions,
the Galerkin or "upwinding" methods of weighted residuals, and a linearly
or quadratically varying velocity field. The model must use a continuous
flow field to produce a credible solution. The model does need improve-
ment in its ability to conserve mass in unsteady-state problems when intro-
ducing a substance into the modeled region and allowing dispersive trans-
port at the boundaries. Proper nodal spacing (mesh size) is also important
because a relatively coarse mesh size can result in poor approximations in

some areas of the region modeled.

(76 pages)




CHAPTER I

INTRODUCTION

The Great Salt Lake is a terminal lake about 75 miles in length and
30 miles in width. TIn 1959, the Southern Pacific Railroad Company cause-
way was constructed, dividing the lake into two distinctive parts or arms
(Figure 1). The north arm consists essentially of unstratified salt-
saturated water (brine). The south arm is composed of two layers of
different densities. The upper layer is unsaturated salt water (dilute
brine) and the more dense lower layer is brine. This phenomena occurs be-
cause nearly all of the fresh water surface inflow is into the south arm.
As a result, the south arm's surface is higher in elevation than the north
arm's surface causing the diluted brine to flow into the north arm, mixing
and becoming salt-saturated as evaporation occurs. This north arm brine
is now more dense causing a backflow into the south arm at the lake bottom.
Figure 2 illustrates this bi-directional flow.

Before the construction of the railroad causeway the lake was much
more homogeneous in nature. The causeway construction has caused a series
of problems between the salt companies bordering the south and north
shores and the Southern Pacific Railroad Company. The south shore salt
companies claim to be at a disadvantage in their operations because their
source of salts is from this newly diluted south arm. These companies
claim the causeway created the dilution. However, firm knowledge is
lacking concerning the actual mechanics of the lake's circulation and its
effect on salinity distribution.

This study is part of a coordinated effort to develop a knowledge of

the hydraulic characteristics of Great Salt Lake to assist in solving
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Figure 1. Map of Great Salt Lake.
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management problems of this nature. The work will be directed to develop-
ing a model which can be used to simulate the dispersion of a substance in
the south arm. In addition to the question as to how salinity is trans-
ported and distributed throughout the south arm, the convection and dis-
persion of pollutants is of interest. To address these problems, it is
necessary to know the mixing (dispersion) characteristics of Great Salt
Lake's south arm as well as the circulation currents. By making some
simplifying assumptions and using a differential mass balance a convection-
dispersion equation can be developed to represent dispersion processes.

This research on convection-dispersion is being carried out in con-
junction with three other works. A hydrodynamic lake model is being
developed to yield the needed velocity-field data for input into the
governing convection-dispersion equation. Studies concerned with the flow
through the causeway culverts and the porous embankments will provide
needed information for the boundary conditions necessary to complete the
hydrodynamic lake model.

The objective of this study is to develop a mathematical model which
can be used to simulate the convection and dispersion of a substance in the
dilute brine of the south arm's upper layer. This study is considered as
a first step towards developing a more comprehensive two-layer model. It
is possible that the main function of the lower layer within the lake may
be to act as a reservolr for passing salinity from the north arm to the
surface layer in the south arm. If this is the case, then an upper layer
model could be a low-cost preliminary solution to the Great Salt Lake
circulation problem.

Specifically, the objectives of this work are:




L. To develop a steady-state numerical model of the dispersion

of a concentrated substance.

2is To develop an unsteady-state numerical model of the dis-

persion of a concentration substance. This model will
include a source-sink term and a decay term.

3 Present examples illustrating the use of the model.

4. Determine the limitations of the model.

The dispersion of a concentrated substance will be modeled utilizing
the finite element method in numerically solving a convection-dispersion
equation. Two different methods of weighted residuals will be applied to
the steady state solution. They are the Galerkin method and the "upwinding"
method. The unsteady state will use the same methods as the steady state
except for the addition of the Crank-Nicolson technique for time stepping.
The boundary conditions and source-sink terms will be used to simulate

effects of external influences.




CHAPTER II

LITERATURE REVIEW

There are three distinct areas of concern that require researching.
The first is the theory of diffusion and the governing equations. Second
is the determination of practical values for the diffusion coefficient
when it becomes clear that the governing equations require the use of
such coefficients. The third area is the use of the finite element method

in developing a numerical solution to the governing equationms.

Dispersion and Diffusion

The current views on the concept and theory of dispersion and diffu-
sion are expressed by Holley (6). He explains the different mechanisms
that cause a substance to be dispersed and presents the governing equation
in various forms relating the use of specific coefficients to each method
of diffusion. Ippen (9) shows the mechanics of applying a differential
mass balance to obtain a convection-dispersion equation.

Many authors, such as Harleman (4) and Narayanan and Shankar (10),
deal with diffusion in estuaries, lakes or bays that are influenced by
by tidal action. These works are closely related to this study, but be-
cause of the influence of tidal actions, their results are of limited use.
The literature has been searched to find a method for calculating a value

for the diffusion coefficient.

Diffusion Coefficient

The search for methods to determine the diffusion coefficient was

somewhat unproductive. Adequate methods or sources of information are
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lacking. Various authors present different equations for determining the
values of the diffusion coefficient but none seem to be properly applicable
to this study because of tidal factors, irrelevant roughness coefficients,
and other nonapplicable parameters. For example, Narayanan and Shankar (10)
used Taylor's equation as given by Harleman (4). It shows that the diffu-
sion coefficient in the x and y directions are calculated using the
equations

D, = 77n|u|n5/6
Dy = 77n|v|n3/6
where n is Manning's roughness coefficient and u and v are the velocities
averaged over a tidal cycle in the x and y directions, respectively. The
value of h represents the water depth. This approach is not quite appli-
cable, except as a check on the order of magnitude, because it deals with
tidal oscillations, which do not occur in the Great Salt Lake. These
types of oscillations can greatly affect the diffusion coefficients and
do not bear directly on this study.

George (3) presents many methods in his dissertation including
Richardson's, "4/3 Law'", Taylor's equation utilizing Darcy-Weisbach's
friction factor, and other works. They all fall short in practical value
in relation to this work because of their dependence on factors that can
not be readily evaluated, such as assorted unknown coefficients and vague
length parameters.

Huyakorn (8) shows by an example that

Re » V

D= Pe

Pe = Re * Pr




where Pr is the Prandtl number, Pe is the Peclet number, Re is the
Reynolds number, V is the kinematic viscosity of the fluid, and D is the
diffusion coefficient. This might be of some use, but in a complex flow
field the Reynolds and Peclet numbers can be difficult to evaluate.

The diffusion coefficient is something that must be evaluated in
order to present an accurate solution to a modeling problem. Naraynan
and Shanker (10) show that for short-term transport, the process is
convection-dominated and an accurate diffusion coefficient is not necessary.
At present, it seems that the only way to determine an accurate value for
the diffusion coefficient is to monitor the dispersion of a substance in
the prototype then model the event with varying values for the diffusion

coefficient until agreement between the prototype and the model occurs.

Numerical Method

The finite element method is the numerical technique used to develop
a solution to the governing equation within a region. It is chosen over
the finite difference method because of its flexibility in node placement,
simple boundary conditions, and capabilities in approximating irregular
physical boundaries (Zienkiewicz (11), Huebner (7)). In applying the
finite element method, the Galerkin method of weighted residuals is
employed.

The Galerkin method of weighted residuals is chosen over the variation-
al method because of its clarity. The variational method cannot be applied
to all situations. In some cases it is not valid. Avoiding this possi-
bility is another reason for choosing the method of weighted residuals.

Zienkiewicz (11) and Huebner (7) explain the basics of the Galerkin method
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of weighted residuals as applied to the finite element method. They show
the mechanics of the method from the simple linear elements to the complex
quadratic isoparametric elements and more. A variation of the method
known as "upwinding' is a recent development in the finite element method.

Huyakorn (8) and Christie, et al. (2) show '"upwinding as applied to
a dispersion problem. It is an improvement over the standard Galerkin
procedure because it puts more weighting or emphasis on certain portions
of an element rather than weighting according to the shape function. This
tends to remove oscillatory solutions in a convection-dominated domain.
These methods are applied to both the steady and unsteady state solutionms.

The time-varying solution is developed using the Crank-Nicolson
technique as found in Carnahan-Luther-Wilkes (1) or others. The unsteady
state solution is necessary for situations where a substance is only in-
troduced for a finite period of time. This is a realistic case for a
pollutant. Salinity modeling probably will not require an unsteady state

solution since the source will not vary with time.
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CHAPTER III
THEORETICAL DEVELOPMENT

Diffusion

Fick's law
A substance will diffuse proportionally to its concentration gradient.

This process is known as Fick's law of diffusion. This first law states,

o= D A2
9s
where
m = the rate of transport of substance
(o) = concentration of diffusive substance
Dm = molecular diffusion coefficient
s = coordinate normal to the unit area through which it
passes.

This phenomena is caused by molecular diffusion. If there is no turbulence
this basic law applied to a mass balance within a differential control

volume would be the governing equation for the process of diffusion.

Turbulent diffusion

When a flow field (see Figure 3) is turbulent, the substance mixes
at a much greater rate than under Fickian diffusion. This is because of
the fluid's variance from its average motion. Applying a mass balance to
the differential control volume in Figure 3 and then time-averaging the
terms and utilizing an analogy to Fick's law yields the following

convection~-diffusion equation,
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(pew + gz— (pew) dz) dxdy 3
(pcv + 3 (pcv) dy) dxdz

«
4

(pcu) dydz

Y
/ ————P (pcu + z— (pcu) dx) dydz
X

(pcv)j dxdz / ‘
|

(pcw) dxdy

11

Figure 3. Differential control volume.
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where,

c = time averaged concentration of diffusive substance

X VI E = orthogonal coordinates (Cartesian)

a,v,w = time averaged velocities in x, y, and z directions,
respectively

Dm = molecular coefficient

ex,ey,ez = turbulent diffusion coefficients in x, y, and z directions,
respectively.

The turbulent diffusion coefficients are the result of turbulent mixing
and designate how the turbulent flow affects the diffusive process.

It can readily be seen how the combined diffusion coefficients
(Dm + ey, Dyt eys Dm + e,) for a turbulent flow field must be greater
than the diffusion coefficient in Fickian diffusion (Dm). This means
that turbulence increases the rate at which a substance will diffuse. The
turbulent diffusion coefficient is much larger than the Fickian diffusion
coefficient, so generally the Fickian coefficient is neglected in turbulent

flow.

Dispersion

In integrating Equation (1) in the z-direction to form a two-
dimensional equation, the effect of the vertically varying velocity on

convection must be accounted for. The velocity has been vertically
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averaged instead of represented in its actual varying profile. This pro-
file causes an additional lateral spreading when viewed in the x-y plane
and the phenomenon 1is referred to as dispersion. To compensate for this
event, the diffusion coefficients must be increased to accurately repre-
sent what occurs. Rewriting Equation (1) in two-dimensions, dropping the
bar notation, and adding a source-sink term and a decay term while changing
the diffusion coefficient to a dispersion coefficient gives the following

convection-dispersion equation,

g—i*-ug—i"'vg—;—g—x(ng—;—%(Dy%)+q+3=0 )
where,

¢ = concentration of dispersive substance

X,y = orthogonal coordinates (Cartesian)

D, ,Dy= dispersion coefficients in x and y directions, respectively

u,v = vertically averaged component velocities in x and y

directions, respectively

o = source-sink term

B = decay term (function of c)

t = time

The dispersion coefficient (also commonly referred to as "diffusion"
coefficient) is a combination of the molecular, turbulent, dispersive
effects. The above equation is what has been referred to in the previous

chapters as the governing equation.

Use of Convection-Dispersion Equation

Equation (2) is used to model the dispersion of a concentrated sub-

stance in a fluid. The only unknown variable is the concentration. All
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of the other parameters are considered known throughout the entire domain.
The physical geometry supplies all of the spatial information. The sub-
stance has its own decay rate. The source-sink term simulates physical
injections of substance. The velocities are supplied by either field or
laboratory measurements or the numerical steady state hydrodynamic model

referred to in Chapter I.

Assumptions Used in Model Application

Because this model is being developed to apply to the upper layer of
Great Salt Lake's south arm, any simplifying assumptions made should not
greatly detract from the model's ability to simulate the prototype. In
accordance with these objectives, three basic assumptions made about the

south arm's upper layer are incorporated in the model. They are as

follows:

L The south arm's upper layer has no variation in depth and
as a two-dimensional process is assumed. Since the layer's
depth is very small compared to its areal extent, the use
of a two-dimensional model seems justified.

2, The layer is of constant density and the dispersive sub-

stance does not change the layer's density.

w

The dispersive substance is well-mixed in the vertical
direction. The wind and wave action on the shallow

layer cause the mixing.

These assumptions allow the use of Equation (2) in developing a solution

in the upper layer of Great Salt Lake's south arm.
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Finite Element Representation of the

Convection-Dispersion Equation

The finite element method is chosen over other numerical methods be-
cause of its variable mesh size, natural boundary conditions, and capabil-
ities in approximating irregular physical boundaries. The method of
weighted residuals as applied to the finite element method is a way of

determining an approximate solution to a discretized continuum problem.

Method of weighted residuals

The method of weighted residuals is a technique for obtaining an
approximate solution to a differential equation by weighting the approxi-
mate solution and minimizing a residual error between the true and the
approximate solution. This approach in conjunction with the finite element
method uses a discrete element as its foundation. Setting the sum of the
'weighted residuals' over all of the elements to zero one finds a solution
for a set of nodal values over the domain. The nodal values, when sub-
stituted into the interpolation functions, yield an approximate solution
which best satisfies the problem within the limits of the discretization

and approximation schemes chosen.

Galerkinand "upwinding' methods

The Galerkin method is a common technique used to weight the governing
equation over an element and Huebner (7) and Zienkiewicz (11) give a good
account of the method for various types of elements. In the Galerkin
method, the weighting functions are identical to the interpolation (or

shape) functions. This is not the case in the '"upwinding'" method.




16
The '"upwinding" technique, as shown by Christie et al. (2), Heinrich
et al. (5), and Huyakorn (8), for convection-dispersion equations uses a
skewed weighting scheme. The interpolation functions are of the standard
form as used in the Galerkin method. The difference is in the equation's
weighting functions which are skewed with more emphasis (weighting) on the
portion of the element that is upwind (upstream). For a convection-
dominated problem this technique finds its justification in removing the
severe longitudinal oscillations which can occur with the Galerkin method.
The result is a splution with a better degree of accuracy, fewer numerical

oscillations, without too many additional computations.

Representation of Terms in the Convection-Dispersion Equation

Not all of the terms of the governing equation (Equation (2)) are de-
veloped in quite the same manner. There are five different groups of

terms. They are as follows:

ac ac
6 (S u— , v — (convective terms)

ox y

L) dc £ dc
2. - g;' (DX 5;-), - §;~(Dy 5;-) (dispersive terms)
3 a (source-sink term)

4, B (decay term)

dc

58 57 (time rate of change term)

The basic development of each group will be shown as it is used in the
model. The matrix{ W} represents the weighting functions. The matrices
{Nv} and {Nc} are the element's velocity and concentration shape functions,
respectively. Standard notation as found in Zienkiewicz (11) and Huebner

(7) will be used.
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Convective terms. All of the variables in the convective terms vary

from node to node, thus,

Fn{‘
(e) " ) 1
u (x,y) =[Nv} {u} [Nvl, NV, ooey NV u,
u
o)
(&) o
Ty = [Ney] (0}

The superscript (e) indicates the values of the variable for a particular
element but will be dropped in future equations as a convenience in
writing them. The subscripts on the expanded notation indicate the local
node numbers of the element. Combining the variables and applying the
weighting functions to create the inner product yields,
Weighted de (ij
Residual of u ;}7 _J = /(e) {w [Wv] { u} [ch] dxdy { c} (3)
D

Dispersive terms. The dispersion coefficients are assumed constant
over an element and require no interpolation functions. The dispersion
terms are integrated using Green's Theorem to create boundary terms within
the governing equation and reduce the order of the differential equation.
After this process, the inner product is taken with the weighting functions

and the weighted residual of these terms become:

Weighted r 5 5 (e)

A c _ 2 g oa iy
Residual of L~ = (Dx 5;9 = jﬁ(e) D_ {Wy } [hcx] dxdy {c} -
D

D, [Nc ] {c}{w}dy (4)
[S(e) i =
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Further mention of the line integral in the above equation will be made
later when the boundary conditions are discussed.
Source-sink term. The source-sink term is handled in the same manner
as the dispersion coefficients as it is constant over an element. This

term's formulation results in the following equality.

Weighted (&)

Residual of E ] = f {w}a dxdy (5)
NG

Decay term. The decay term is a first order reaction of the form B =
KC where K is the coefficient of decay. The coefficient will be constant
over an element and the term's formulation results in the following

equality.

Weighted
Residual of Ez(&):l = f K {W} [Ne] dxdy {c} (6)
D(e)

Time rate of change term. The time rate of change term cannot be

represented by the Galerkin or "upwinding" methods. Since the interpola-

tion functions are dependent only on spatial information, the derivative
of concentration with respect to time (g%-or é) cannot be expressed with
the interpolation functions ([Nt] = 0). This dilemma is solved by using
a finite difference representation of the rate of concentration change.

t + AL t
e =c

c =
At

Now, applying the interpolation functions, weighting functions, and taking
the inner product gives

9% T it Tl dede et HAE Sl o i .
- f(e){J[c]xy{} L f(e){}[l\k]xy{c;
; < o
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This model does not simply add the rate of change term to the convection-
dispersion equation as shown in Equation (2) for its unsteady state solu-
tion. This implicit method of time stepping is inherently stable but not
exceptionally accurate. A more accurate and inherently stable method is
the Crank-Nicolson method. This technique adds the time rate of change
term to the convection-dispersion equation and then averages the terms of
this.

(M (e} + [x]{c} ={£} (8)
where,

£ 7 AL i
e (e}

At

(M) and (K) are the so-called "mass'" and "stiffness" matrices, respectively.
This approach is better than the implicit method because it reduces the
numerical influence of the size of the time increment (Carnahan-Luther-

Wilkes (1)).

Types of elements used

The computer model developed has the capability to use three types of
quadrilateral elements in its solution process. They are described in
Table (1). The first type is an isoparametric element with quadratically
varying interpolation functions. This allows the element to have curvi-
linear sides. The second type of element has linearly varying interpola-

tion functions with linear sides. Zienkiewicz (11) gives a complete
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Table 1. Description of elements.
Type of Type of
Element Concentration Velocity No. of Nodes
No. Interpolation Interpolation on Element Remarks
Function Function
corner 4
All information
1 Quadratic Quadratic mid-side 4 processed at all
— | 8 nodes.
TOTAL 8
corner 4
All information
2 Linear Linear mid-side 0 processed at all
— 4 nodes.
TOTAL 4
Velocity informa-
corner 4 tion processed at
all 8 nodes.
3 Linear Quadratic mid-side 4 Concentration in-
— | formation pro-
TOTAL 8 cessed at corner
nodes only.

explanation of the first two types of elements that are used in the model.

Element No. 3 is a blend of the first two types of elements.

Boundary conditions

There are two types of boundary conditions incorporated in the

model -- Dirichlet and Neumann conditions. The Dirichlet condition is a

specified-value condition wherein a fixed value of concentration is

assigned to a boundary node. This means that the equation for this node

is eliminated, since no calculation is required. The Neumann condition is

Jej wp &

the natural boundary condition. el
P - y 9y 'y

It takes the form, Dy
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In our situation, these line integrals in the dispersive terms (see Equa-
tion (4)) become zero and do not have to be incorporated in the governing

equation or in the computer program. They are naturally satisfied.

Finite element convection-dispersion
equation

To put all this information into perspective, the following two equa-
tions below show the finite element formulation of the steady and unsteady
state versions of the governing equation.

Steady state.

[ f(e) W [nvw] fud Ne ] + () Dl (v} [Ncy] + Dy (W} [NCX] +
D

D, {wy} [Ncy] dxdy] {c}+aw]=1{r} (9)

Unsteady state.

N[ =

o

f {(wirwv] {ul[Ne ] + W}[nv] <v}[Ncy] +0_ tw e +
ot

D, {wyr[Ncy] + K {W}[Nc] dXdyf w

1 t + At 5 t

Bt f {W}[Nc] dxdy {c)F T A = (2 ot b
pte)

1 -
= ](e) (I[N dudy (e - {3 j’(e) ] () (Ne,) +
2 D

W[N] {v}[NC] + D, {w_}[Ne ] + D, {wy}[Ncy] -

K{W} [Nc] dxdyp {cF (10)
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CHAPTER 1V

MODELING TECHNIQUE AND PARAMETER DISCUSSION

The computer model uses a variety of parameters to simulate various
problem situations. This chapter will explain the use of these parameters
and demonstrate their application in solving a variety of convection-

dispersion problems.

Computer Model's Parameters

The model has seven main parameters for simulating various conditions.
They are as follows:

4 Degree of approximation - velocity and concentration

2. Dispersion coefficient

3 Velocity field

4, Boundary conditions

54 Steady or unsteady-state

6. Time varying source-sink terms
7' Time dependent decay term.

The effect of these parameters is independent of one another but some
thought is required when combining them to create a solution to a problem.

The following sections explain their purposes and uses.

Degree of approximation

The model can calculate an approximate solution to a problem using
either a linear or quadratic variation of the nodal concentration values.
The quadratic approach requires fewer nodes and elements to obtain a degree
of accuracy similar to that found with the linear case, but each element

requires more calculations. The choice of the degree of variation is
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dependent on the specific problem and the computer facility available to
execute the program. The quadratic variation can only use the Galerkin
method, whereas the linear variation has the option of using either the
Galerkin or "upwinding'" methods. In convection-dominated problems,
using the linear "upwinding'" method can give much more reasonable results

than the higher order quadratic Galerkin method.

Dispersion coefficient

The computer model approximates the dispersion process by allowing
the orthogonal components of the dispersion coefficient to vary from
element to element. The two component coefficients are constant over

each individual element, but need not be equal.

Velocity field

The velocity information is represented by nodal values of the ortho-
gonal velocity components. They can vary either linearly or quadratically
within a given element. If the velocities variation is linear then the
model's degree of approximation to the exact solution must be linear in
concentration (see Table 1). The quadratically varying velocities can be
used with either the linear or quadratic variation of concentration in the
model. The type of approximating method that should be used depends on
whether the problem is convection or dispersion-dominated.

The Galerkin method will give a good approximation to the exact solu-
tion of dispersion-dominated problems. If the domain is convection-
dominated then the "upwinding' method will give a better approximation to
the solution than the Galerkin method. The Galerkin method fails to
accurately approximate the solution because of the severe longitudinal

(cirection of the velocity) oscillatiomns which occur.




Boundary conditions

The use of the two types of boundary conditions, Dirichlet and
Neumann, can represent a multitude of conditions. The Dirichlet condi-
tion can simulate constant concentration boundaries, varying concentra-
tion boundaries, and single node specifications. The Neumann condition
can simulate solid boundaries, reflective boundaries, and transport bound-
aries. This section deals with their application as related to the com-
puter model.

The Dirichlet boundary condition is a specified-value condition. It
can simulate a constant concentration boundary condition by setting all of
the nodes on that boundary equal to a specific value. No nodes on that
boundary should be excluded from having that specific value. If there
are some nodes on that boundary that are not specified, then a serious
discontinuity problem can appear in the solution process. This constant
concentration boundary condition has an identically self-imposed
tangential gradient.

One way of establishing a tangential concentration gradient is by a
gradient boundary condition. This is done by specifying different con-
centration values for the nodes along a boundary. There are a multitude
of situations that can be simulated using this type of boundary specifica-
tion. The values must always vary to the degree of the interpolation
functions, which are linear or quadratic. The same caution on continuity
applies to the tangential gradient boundary conditions as well as to the
constant-concentration boundary condition.

Single node specifications should be used only under unsteady-state

conditions. Specifying independent nodes (nodes not sharing a set of
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interpolation functions) should only be done with nodes that are assured
of receiving negligible concentrations of substance. By specifying
these nodes with a value of zero and using a source term (to be explained
in a later section of this chapter) to establish a concentration gradient,
a solution of reasonable credibility can be obtained. This is because
time dependent problems are not only dependent on the boundary conditions
but also on the previous time steps information.

Dirichlet boundary conditions must be assigned to at least one node
in order for the governing equation to generate a unique solution to a
problem. The computer model's other basic type of boundary condition is
the Neumann conition and it simulates a completely different class of
boundary conditions.

A common use for the Neumann condition is to simulate a solid bound-
ary. Since there can be no transport across a solid boundary, the Neumann
boundary condition (g§»= 0) is an exact representation of a solid boundary.

A reflective boundary (axis of symmetry) is another common applica-
tion for the Neumann conditions. A reflective boundary means that a domain
must be symmetric about an axis. Using the axis of symmetry as a Neumann
boundary condition while modeling only half of the domain results in a
savings of computer storage and execution time in obtaining an approxi-
mate solution. In this case there is no net transport across this axis of
symmetry because of the use of the Neumann boundary condition. The
Neumann condition can also be used to approximate transport across
boundaries.

When a Dirichlet boundary condition is undesirable at a boundary the

: 3 ; s i
Neumann condition (5§-= constant) must be utilized. This condition can
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represent the gradient across a boundary. The present computer model is
only capable of using a homogeneous Neumann condition, g;»= 0. This means
that the dispersive transport across a boundary will be approximately zero
when represented by the Neumann boundary condition. This is a good approx-
imation for a transport boundary if the dispersive transport is small com-—
pared to the convective transport. The Neumann condition does not

restrict convective transport across a boundary.

Steady or unsteady-state

The model has the ability to simulate either steady-state or unsteady-
state problems. The steady-state solution process can only utilize the
aforementioned parameters (degree of approximation, dispersion coefficients,
velocity profile, and boundary conditions). The unsteady-state solution
also uses these parameters in addition to scurce-sink and decay terms.

The degree of approximation, dispersion ccefficient, velocity profile,

and decay terms are static parameters. This means that their values do
not change with time, even during an unsteady-state solution process. The
only dynamic parameters are the source-sink terms and the boundary condi-
tions. The source-sink and decay terms will be discussed in the next two
sections.

The unsteady-state solution process utilizes a discrete time incre-
ment to progress through time. This computer model has the capability of
changing the time increment during an execution. The time increment can
have three different values during a solution process. This allows the
use of a small time increment when there is rapid change occurring in the
domain and a large time increment when the domain is not experiencing

such a rapid change.
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Time varying source-sink terms

The parameter used to introduce or remove an amount of substance over
a finite period of time is the source-sink term. This term is constant
over an individual element, but can vary from element to element and from
time-step to time-step. It has its greatest value in an unsteady-state
solution process, but can be used in a steady-state problem.

The source-sink term can be used in a steady-state problem to simu-
late a physical injection of a continuous constant concentration value.
In the unsteady-state the source-sink term can simulate physical injec-
tions of slugs of concentrated substance. The unsteady-state simulation
is useful for monitoring an introduced pollutant, whereas the steady-

state simulation approximates a continuous source.

Time dependent decay term

The time dependent decay term is used when the substance being moni-
tored has the characteristic of decaying with time. This phenomena is
simulated by using a first-order reaction decay term. The rate of decay
is dependent on the concentration of substance present. The higher the
concentration present, the greater the rate of decay. This term is useful
when the model is monitoring concentrated substances such as biological

oxygen demand, absorbed or evaporating substances, etc.

Example Convection-Dispersion Problems

The following is a series of examples illustrating the use of the
various parameters in modeling a variety of convection-dispersion problems.
The first set of examples (Figures 4 through 10) are steady-state situa-

tions intended to show the use and affect of the degree of approximation,
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boundary conditions, and the interrelation of the dispersion coefficient
and the velocity profile. The second set of examples (Figures 4, 11
through 13) are unsteady-state situations intended to show the use and

affect of the source-sink term, boundary conditions, and time interval.

Steady-state examples

A standard domain (Figure 4) will be used as a control to show the
affect of the changing parameters. Figure 5a shows the node and element
placement for the linearly varying domain and Figure 5b shows the node
and element placement for the quadratically varying domain in the steady-
state examples.

Example 1. This first example has a restrictive set of boundary
conditions and a relatively high isotropic dispersion coefficient of
10.0 ftz/sec. All of the boundaries except for the reflective boundary
are constant concentration boundaries. The influent boundary has a value
of 0.0 while the solid and effluent boundaries carry a value of 1.0. The
reflective boundary is of course a Neumann boundary condition. This
example is simulating a diffuser on the solid boundary with the assumption
that the domain is long enough to allow the concentration to be uniform
when the fluid reaches the effluent boundary. Figure 6 shows the results
of the linear Galerkin method's solution to this example. The quadratic
Galerkin method gives an almost identical solution to this example.

Example 2. This example is the same as example 1 except that the
isotropic dispersion coefficient has been lowered by an order of magnitude
to 1.0 ftz/sec. Figures 7a and 7b show the severe longitudinal oscilla-~
tions that are generated using the Galerkin method for the linear and

quadratic elements, respectively. These results are not a satisfactory
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Figure 5a. Linear discretized domain for steady-state examples.
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Figure 5b. Quadratic discretized domain for steady-state examples.
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Figure 7a. Linear Galerkin solution of example 2 along reflective
boundary.
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Figure 7b. Quadratic Galerkin solution of example 2 along reflective
boundary.
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Figure 7c. Linear "upwinding" solution of example 2 along reflective
boundary.
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approximation to the solution because of the oscillations and the meaning-
less negative concentration values. The "upwinding' method as applied to
the linear elements gives a non-oscillatory solution, as shown in Figures
7c and 8. This approximate solution is more accurate than either Galerkin
solution, thus, illustrating the importance of using the "upwinding"
method in convection-dominated problems.

Example 3. In this example the isotropic dispersion coefficient is
10.0 ftz/sec. The boundary conditions are the same as in the previous
examples, except that the effluent boundary is now a Neumann condition
describing this boundary as a transport boundary (§§-= 0). This of
course assumes that the dispersive transport at the effluent boundary is
small compared to the convective transport across the boundary. This
simulates the same situation as in example 1 except that a uniform exit
concentration is no longer assumed. Figure 9 shows the approximate solu-
tion for the linear Galerkin method. It can readily be seen how this
boundary condition at the effluent boundary yields a different solution
when compared to example 1 (Figure 6).

Example 4. This example is different from the three previous
examples because of its boundary conditions. An isotropic dispersion co-
efficient of 10.0 ftz/sec is used with the Neumann boundary condition
describing all of the boundaries except for the influent boundary. The
influent boundary is a gradient boundary condition with a zero value for
concentration from 0.0 to 1.0 lbm/ft3 along the remaining 10 feet of the
boundary. The concentration's maximum value is at the reflective boundary.
This example simulates the inflow of a concentrated substance in the

middle of a flow field.
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Figure 10 shows the results of this example using the linear Galerkin
method. This technique of using a gradient Dirichlet boundary condition
can be used to simulate various steady-state problems, such as substance
introduced through an inlet pipe to a pond, estuary discharge into a lake,

etc.

Unsteady-state examples

The unsteady-state examples will use the domain shown in Figure 4,
but the discretization will not be the same as in the steady-state examples.
The elements will be smaller near the reflective boundary (Figure 11) to
allow a better resolution for approximating the exact solution in that
area of the domain.

Example 5. This example 1s identical to example 4 except that the
exact solution is approximated by an unsteady-state solution process in-
stead of a steady-state solution process. Figure 12 shows the concentra-
tion of substance with respect to time at a position 30 ft downstream of
the influent boundary along the reflective boundary. It can be seen that
the value of the concentration at that point approaches the concentration
calculated by the steady-state solution. Given enough time, the unsteady-
state solution should match the steady-state solution. This result will
always occur whenever a problem has no time varying (dynamic) parameters.

Example 6. This example is a dynamic problem that utilizes the
source term. The source 1s located over an element next to the reflective
boundary (element marked with a circle in Figure 11). The source supplies
10.0 lbs/ft3-sec of substance applied over the element linearly from t = 0O

to 5 = 1.0 seconds while using a time increment of 0.5 seconds., All of
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Solid Boundary

Influent Boundary
Effluent Boundary

[0]

Reflective Boundary

Figure 11. Linear discretized domain for unsteady-state examples.
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Figure 12. Concentration at a position 30 ft downstream of the influent
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the boundaries utilize the Neumann boundary condition except for a 15 foot
section at the upstream end of the solid boundary, which is a constant-
value boundary condition with a value of 0.0. The value of the isotropic
dispersion coefficient is 1.0 ftz/sec.

This example shows that a substance will disperse upstream for a
short period of time if the dispersive effect is strong enough to overcome
the convective effect. Figure 13 shows the concentration profile along

the reflective boundary at various times.
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CHAPTER V

PROBLEMS ASSOCIATED WITH THE APPLICATION OF THE MODEL

The computer model does a reasonable job in calculating an approxi-
mate solution to a convection-dispersion situation, but there are some
problems that must be addressed when using the model. These problems can
be categorized into two related and basic areas, conservation of mass and
discretization of the domain. This chapter explains the specific items

of importance and the problems associated with them.

Velocity Field

The velocity field is perhaps the most critical parameter used in
the model. It is extremely important that the nodal velocities preserve
continuity for each and every element in the discretized domain. If the
flow field Aoes not preserve continuity then erroneous results are com-
puted by the model. Generally speaking, severe oscillations in the
approximate solution will occur when fluid continuity is disregarded.

Determining the velocity field by hand is a cumbersome task for
almost any realistic situation. Continuity must be preserved for each
element when developing a flow field representative of a particular situa-
tion. The use of a hydrodynamic computer model is a necessity to properly
calculate the nodal velocities with the same degree of accuracy as em-

ployed in the convection-dispersion computer model.

Dispersive Transport at the Boundaries

When the model generates a solution it approximates the concentration

values in the domain at the discrete nodes. Based on these discrete
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concentration values and the interpolation functions, the gradients of
concentration in any direction can be calculated. Given a certain number
of nodes in an area near the boundary, the approximation of the normal
gradient of the concentration (gﬁ? can be determined. If the number of
nodes in that same area 1is increased (finer mesh size), then a better
approximation to the normal derivative can be calculated. The exact
solution occurs when the domain is discretized with an infinite number
of nodes, which of course is impossible.

The more nodes in the domain, the more costly the solution with re-
spect to computer time. Determination of the optimum mesh size for the
accuracy and cost desired is dependent on the problem and the capabili-
ties of the computer being utilized. In this model care must be taken
when discretizing the domain because any coarseness in the mesh size near
the boundaries yields a poor approximation to the Neumann boundary condi-
tion. Experience has shown that an extremely fine mesh size is needed
to adequately approximate the homogeneous Neumann boundary condition.
Since an evaluation of the natural boundary condition is used to determine
the dispersive mass transport across the boundaries, the accuracy of a
mass balance check of the domain is seriously impaired when a coarse mesh

size is used at the boundaries.

Introduction of Substance

Dynamically introducing a slug of substance over a finite period of
time into the domain results in a numerical error when calculating the
check for the conservation of mass of substance. It appears that the

abruptness of starting and stopping the injection of substance causes this
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lack of mass conservation. There are a few techniques available to re-
duce this problem.

The accuracy improves when a finer mesh size is used in the area of
the injection. Since the immediate effect is only over the elements next
to the injection area the finer mesh size helps minimize the abruptness
of the changes in the domain. The mass balance check can also be improved
by approximating a slug injection of substance with a gradual step-wise
increase and decrease of substance. This also helps reduce the abruptness
of a slug injection. For a maximum reduction of the mass balance dis-
crepancy it is recommended that both the mesh refinement and gradual in-

troduction of substance be used.

Discretization of the Domain

The nodal spacing (AX, AY) and the time interval (At) have quite an
effect on the accuracy of an unsteady-state solution. As mentioned
earlier in this chapter, the mesh size (nodal spacing) can play a criti-
cal role in various ways for properly modeling a region to obtain an
accurate solution. The interrelation between the nodal spacing and the
time interval can also be a source of trouble when attempting to model a
region.

The time interval should be determined with respect to the mesh size,
velocity field, and dispersion coefficients. The time interval should not
be so large as to allow the substance to convect or disperse past too
many nodes during each time step thus causing a poor representation of
the concentration profile in the domain. The time interval should also

not be so small as to prevent the substance from reaching any interior
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nodes in the first time step thus causing oscillations with large negative
concentration values in the domain. These negative values affect the
solution for the rest of the time steps in the unsteady-state process
causing the entire solution to be of questionable value. In any domain
with a varying mesh size and a complex velocity profile the determina-
tion of a proper time interval can be difficult.

The two methods of tramsport, convection and dispersion, are the
basis for determining the time interval with relation to mesh size. The
calculation of the rate of transport for the convective process is
straight-forward. It is simply the distance traveled divided by the
velocity. The calculation of the rate of transport for the dispersive
process 1s much more complicated. The dispersive transport is dependent
on the concentration gradient. Since this gradient varies with time and
position it becomes difficult to evaluate an appropriate rate of disper-
sive transport. In any case, the time interval selected will always
yield a stable but not necessarily accurate solution because the model

uses the inherently stable Crank-Nicolson method of time stepping.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The construction of this convection-dispersion computer model has
led to a good preliminary low-cost model which can be applied to Great
Salt Lake. It has also been useful in obtaining knowledge to be passed
on for future works on more complex models. The model develops reason-
able solutions to simple hypothetical situations, but more effort is
needed on the verification and improvement of this model as well as more
research in related areas.

The model is designed to simulate most of the situations that can
occur in two-dimensional convection-dispersion problems. The model has
some faults as well as some advantages as described in the following:

: 1% The model has the capability of using a variety of approxi-
mating techniques. The model can use linear or quadratic
interpolation functions for substance concentration, the
Galerkin or "upwinding" methods of weighted residuals, and
a linear or quadratic velocity variation.

2. The model simulates reasonably well the steady-state uniform
flow fields and accepts various methods of introducing the
substance, such as internal injections, established con-
centration gradients, and diffusers.

3 Continuity of the fluid in the domain is a requisite in
order for the model to compute a solution to a problem.
Severe oscillations in the approximate solution will

occur in the domain if continuity is disregarded.
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4. There are difficulties in conserving mass when making
abrupt changes in the time varying introduction of sub-
stances. When the abruptness of the changes in the
domain are minimized the model conserves mass with a
fair degree of accuracy. For the time period after the
injection of the substance, the model does conserve
mass.

S Dispersive transport at the boundaries also causes mass
conservation problems. Numerically approximating the
concentration's normal gradient at the boundaries (which
should be zero) results in undesired dispersive transport.
This error can be minimized with a fine mesh size. This
discrepancy in the conservation of mass is negligible com-
pared to the problems discussed earlier relating to the
introduction of a substance.

6. In convection-dominated problems the model develops
longitudinal oscillations in its approximate solution.

The "upwinding" technique helps minimize these severe
oscillations. Abrupt changes in the boundary condi-
tions also cause oscillations, but in this case the
"upwinding" method gives no aid in reducing them.
With a few improvements in the model some of the problems listed above can
be alleviated.

A general Neumann boundary condition, a nodal representation of the

dispersion coefficient, and a quadratic "upwinding" technique would be

definite improvements in the model. The Neumann condition can be improved
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by allowing the normal concentration gradient to have a non-zero value at
transport boundaries thus allowing dispersive transport across Neumann
condition boundaries. A refinement of the dispersion coefficient can
occur by letting it vary from node to node instead of being constant
over each element as found in this model. The creation of a quadratic
"upwinding" technique is the most difficult of the above mentioned im-
provements. Determining the optimum "upwinding" factors would be the
hardest part of creating a quadratic "upwinding" method, but this method
would have the ability to reduce the longitudinal oscillations found in
convection-dominated Galerkin solutions while giving a better approxima-
tion to the concentration's normal gradient than found in the linear
"upwinding" method.

A quantitative verification of the model should be done with a
physical prototype. By attempting to accurately model a physical situa-
tion insights into the usefulness of this model as well as ideas for
improvements can be obtained. A practical way of quantitatively deter-
mining the dispersion coefficient and the size of the time interval for
unsteady-state solutions would be additional benefits from physical
verification.

At the present time, it can be said that a good deal of practical
knowledge about the capability of the finite element method to represent
the convection-dispersion equation can be learned from using this com-
puter model. Many improvements are needed, but this research is a first
step in attempting to develop a model which can quantitatively determine

the dispersion of a substance in the Great Salt Lake.
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Appendix A

UNITS OF VARIABLES IN THE CONVECTION-DISPERSION EQUATION
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Table 2. Basic units

Dimensions English , Metric
L = length Foot ! Meter
F = force Pound Kilogram
T = time Second Second

Table 3. Variables used in model

Variables Units
Concentration FL™3
Velocity LT+
Distance L

. 4 Sl 2,.-1
Dispersion Coefficient LT
: -3,.-1
Source or Sink FL °T
Decay Coefficient 771
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Appendix B

USER'S GUIDE TO CONVECTION-DISPERSION MODEL




User's Guide to Convection-Dispersion Model

This appendix describes how to set up the data needed to execute
the computer model. The model has a variety of options. The follow-

ing is a step by step description of the input variables.

Type of model

There are five different types of models available in the comput-
er program. They are dependent on the type of element, degree of inter-
polation function, type of weighting technique, and velocity variation.
Table B-1 shows the five types of models and the commands needed to use
each type of model.

Input for program
Language: FORTRAN IV

Namelist If. This statement reads in the various control para-
meters that govern subsequent read statements and the solution process.
Logicals - set to true if desired (all values default to false).

UPWIND - "upwinding" technique in use, linear elements only.

ZERALF - make linear elements Galerkin. UPWIND must be
set to true.

LINVEL - linear velocity variation, UPWIND must be set
to true.

CONVEL - velocity is the same at all nodes (uniform flow-
field)

PGSM - print global stiffness matrix contributions and
load vector values.

CONDIF - dispersion coefficient is the same for all elements.

CPNCB - background concentration ig the same at all nodes,
STEADY must be set to false.




Table 4. Types of modeling techniques
Degree of
Degree of Velocity
Model | Type of | Concentration| Weighting Interpola- Commands
No. Element* | Interpolation| Technique t‘ion
Function Function

UPWIND = FALSE

1 Quadratic Quadratic Galerkin Quadratic | ZERALF = FALSE
(8 nodes) LINVEL = FALSE
UPWIND = TRUE

2 Linear Linear Galerkin | Quadratic | ZERALF = TRUE
(8 nodes) LINVEL = FALSE
UPWIND = TRUE

3 Linear Linear Upwinding ; Quadratic | ZERALF = FALSE
(8 nodes) LINVEL = FALSE
UPWIND = TRUE

4 Linear Linear Galerkin Linear ZERALF = TRUE
(4 nodes) LINVEL = TRUE
UPWIND = TRUE

5 Linear Linear Upwinding | Linear ZERALF = FALSE
(4 nodes) LINVEL = TRUE

*
Refer to Table

1 for further explanation.
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STEADY

ZERO

ZERD@M

ELINF@

REGI@N

C@PNDEC

PALP

CHDT

POWPFF

PHIPFF

PL@PFF

MSCK

FLAG

- Steady-state problem. If false, then it is an un-
steady-state problem.

- re-set concentrations to background concentration if
calculated values are less than the background
concentrations. STEADY must be set to false,

CPNCB must be set to true.

- print adjusted values as designated by ZER@. STEADY
must be set to false, CONCB must be set to true,
ZERP must be set to true.

- print input data by elements. Input data is always
printed by nodes.

- plot the domain by concentration values

- decay coefficient is the same for all elements.
STEADY must be set to false.

- print factors used in "upwinding'" technique,

UPWIND must be set to true.

- change time interval during unsteady-state executionm,
STEADY must be set to false.

- no scaling of domain plot with respect to concentra-
tion, REGIPN must be set to true.

- no decrease scaling of domain plot with respect to
concentration, REGIPN must be set to true.

- no increase scaling of domain plot with respect
to concentration, REGI@PN must be set to true.

- check mass balance.

- print mass balance information by element, MSCK
must be set to true.

Numericals - specify value desired (defaults in parenthesis).

NE
NN

NNC

NQP

- number of elements
- total number of nodes

- number of corner nodes,if UPWIND is set to false
then NNC is not necessary (0).

- number of Gaussian quadratic points for numerical
integration. Only allowable values are 2 and 3.
3 is recommended.
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NSC - number of source-sink term (0).

TC - unsteady-state solution's stop time, STEADY must be
set to false (0.0)

DT - initial time interval for unsteady-state solution,
STEADY must be set to false (0.0)

DT2 - second time interval for unsteady-state solution,
STEADY must be set to false, CHDT must be set to
true (0.0)

TIMECH - time at which time interval becomes DT2, STEADY must
be set to false, CHDT must be set to true (1.E6)

DT3 - final time interval for unsteady-state solution,
STEADY must be set to false, CHDT must be set to
true, TIMECH must be less than TCH2 (0.0)

TCH2 - time at which time interval becomes DT3, STEADY must
be set to false, CHDT must be set to true, TIMECH
must be less than TCH2 (1.E6)

JPRN - print interval of time steps, STEADY must be set
to false (1)

NSN@DS- number of monitored nodes for unsteady-state summary
table, STEADY must be set to false (0)

NODES(i) - nodes monitecred for unsteady-state summary table,
STEADY must be set to false, NSN@DS must be greater
than 0.

NBL - number of boundary nodes for mass check, MSCK must
be set to true (0)

NCAT - number of dynamic dirichlet conditions. STEADY must
be set to false.

Global coordinates. This read statement inputs the global coordi-

nates of the nodes.

Format: x-coordinate, y-coordiate (10X,2F10.0)
Number of cards: NN
Remarks: One node per card
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Global node numbers describing the elements. This read state-

ment gives the element's local node numbers their global node number-
ing. The element's local node numbers are to be numbered counter-clock-

wise as shown below.

/ g 7
7
2 g £
5 s

Format: Global nodes for element nodes 1,253,4,5,6,7,8. (5X,I5;
7110).

Number of Cards: NE

Remarks: One element per card. If LINVEL is set to true,
then the mid-side (even numbered) element nodes are
not inputed. Under this condition the format changes
to (5X,15,3120) and the program will list the mid-
side nodes as NNC+1.

When numbering the nodes in the domain and using models 2 or 3, number
the corner nodes first, then number the mid-side nodes such that the
numbering sequence is:

Corner nodes: 1 to NNC

Mid-side nodes: NNC+1 to NN

Velocity profile. This read statement inputs the X and Y-com-

ponents of the velocity at each node.
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Format: X-component of velocity, Y-component of velocity
(10X,2F10.0)

Number of Cards: NN

Remarks: One node per card. If CPNVEL is set to true then only
one card is needed to input the X and Y-components of
the velocity.

Disperston coefficient. This read statement inputs the dispersion

coefficient for each element.

terms

nodes

state

Format: Dispersion coefficient in X-direction for element i,
Dispersion coefficient in Y-direction for element i,
Dispersion coefficient in X-direction for element i+1,
Dispersion coefficient in Y-direction for element i+l,
ete, (8F10.0)

Number of Cards: Integer part of [(NE-1)/4]+ 1

Remarks: Four elements per card. If CONDIF is set to true then

only one card is needed to input the X and Y-directions
of the dispersion coefficient. The format becomes
(2F10.0)

Sources and sinks. This read statement inputs the source or sink
for the steady and unsteady-states.

Format: Element of source or sink, strength of source or
sink, start time of source or sink, finish time
of source or sink (5X,I5,3F10.0)
Number of Cards: NSC
Remarks: One source or sink per card. If NSC is set to 0
then there are no cards used. If STEADY is set to
true then the start and finish times are not used.
If STEADY is set to false then the start and finish
times are adjusted by the program to the nearest time
step. Use of source or sink should only occur
during initial time interval.

Concentration background. This read statement gives all of the

their initial concentration values at time zero for an unsteady-

problem.

Format: Concentration at node i, concentration at node i+1,
etc. (8F10.0)

Number of Cards: Integer part of ((N-1)/8)+1

where, N=NN for model 1,
N=NNC for all other models.

Remarks: Eight nodes per card. If STEADY is set to true then
read no cards. If CPNCB is set to true then only
one card is needed and the format becomes (F10.0)
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Decay coefficient. This read statement inputs the decay coefficient

for each element for an unsteady-state problem.

Format: Decay coefficient for element i, i+1, i+2, etc.
(8F10.0)

Number of Cards: Integer part of [ (NE-1)/8]+1

Remarks: Eight elements per card. If STEADY is set to true,
read no cards. If CONDEC is set to true then only
one card is needed and the format becomes (F10.0)

Boundary nodes. This read statement inputs the boundary nodes
of a domain for a mass balance check.

Format: Node i, node i+l, etc (8110)

Number of Cards: Integer part of [ (NBL-1)/8]+1

Remarks: Eight nodes per card. If MSCK is set to false then
no cards are read. Nodes must be listed in an order
consistant with the direction of the node numbering
of the elements. The nodes listed describe the edges
between them, so to have a proper mass check the
boundary edges should form a closed loop. If
there is more than one closed boundary loop then a
dummy node with a value of zero must be listed
between the multiple loops of boundary ncdes.

Dynamic Dirichlet condition nodes. This input statement describes

the nodes with specified-values for finite periods of time in an unsteady-
state solution.

Format: Node number, value of concentration, start time,
finish time (5X,I5,3F10.0)

Number of Cards: NCAT

Remarks: One node per card. If STEADY is set to true or NCAT
equals zero then no cards are read. The dynamic
Dirichlet condition supercedes the static Dirichlet
condition. The dynamic Dirichlet condition can not
affect nodes at time zero. This must be done
with the static Dirichlet condition. If a node
is specified as a dynamic Dirichlet node for
any finite period of time, it must be described
in that manner throughthe duration of the run.

Static Dirichlet condition nodes. This read statement reads

in the boundary nodes with static specified-values,
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Format: Node, value of concentration (I10,F10.0)
Number of Cards: Number of static Dirichlet nodes.
Remarks: One node per card., This read statement terminates
by reading an "end of file" card.
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Appendix C

FORTRAN IV - LISTING OF COMPUTER MODEL
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