
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2014

Automated Reverse Engineering of Malware to Develop Network Automated Reverse Engineering of Malware to Develop Network

Signatures to Match with Known Network Signatures Signatures to Match with Known Network Signatures

Dan Sinema
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sinema, Dan, "Automated Reverse Engineering of Malware to Develop Network Signatures to Match with
Known Network Signatures" (2014). All Graduate Theses and Dissertations. 3315.
https://digitalcommons.usu.edu/etd/3315

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/3315?utm_source=digitalcommons.usu.edu%2Fetd%2F3315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

AUTOMATED REVERSE ENGINEERING OF MALWARE TO DEVELOP

NETWORK SIGNATURES TO MATCH WITH KNOWN NETWORK

SIGNATURES

by

Dan Sinema

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Dan Watson Dr. Ming Li
Major Professor Committee Member

Dr. Nicholas Flann Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014

ii

Copyright c© Dan Sinema 2014

All Rights Reserved

iii

ABSTRACT

Automated Reverse Engineering of Malware to Develop Network Signatures to Match

With Known Network Signatures

by

Dan Sinema, Master of Science

Utah State University, 2014

Major Professor: Dr. Dan Watson
Department: Computer Science

The detection of network-based malware is often reactionary; discovery generally hap-

pens after the malware has begun attacking the target system. Detecting the attack after

the fact affects the performance of the victim device and potentially the entire computer

network of the victim device. Intrusion detection systems are deployed to monitor network

traffic for malware attacks, but unfortunately these systems cannot preemptively detect ma-

licious behavior on a network. Automated reverse engineering is able to detect potentially

malicious network behavior of a binary offline prior to a network-based attack. Collecting

information found inside a binary, such as strings and function calls, compiling this informa-

tion into generated signatures, and then comparing to known network signatures allows for

malicious behavior of a binary to be discovered and quarantined before attacking a device

and network.

(72 pages)

iv

PUBLIC ABSTRACT

Automated Reverse Engineering of Malware to Develop Network Signatures to Match

With Known Network Signatures

Dan Sinema

Illicit software that seeks to steal user information, deny service, or cause general

mayhem on computer networks is often discovered after the damage has been done. The

ability to discover network behavior of software before a computer network is utilized would

allow administrators to protect and preserve valuable resources. Static reverse engineering

is the process of discovering in a offline environment how a software application is built

and how it will behave. By automating static reverse engineering, software behavior can

be discovered before it is executed on client devices. Fingerprints are then built from

the discovered behavior which is matched with known malicious fingerprints to identify

potentially dangerous software.

v

ACKNOWLEDGMENTS

I would like to thank Dr. Chad Mano for teaching class in my first semester in the

program that peaked my interest in computer security. I would also like to thank my many

committee members for their patience in waiting for me to finish this thesis. And especially

Dr. Dan Watson for helping me close this thesis out and pushing me to finish.

I am especially thankful for my family for the encouragement, support, and patience

that they showed me over the many late nights and weekends I spent working on this thesis.

Dan Sinema

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

ACRONYMS . viii

1 INTRODUCTION . 1
1.1 Related Works . 2

2 BINARY OBFUSCATION . 4

3 REVERSE ENGINEERING . 6
3.1 Static Analysis . 6
3.2 Dynamic Analysis . 7
3.3 Reverse Engineering Tools . 7

4 INFORMATION CONTAINED IN BINARY EXECUTABLES 9
4.1 Static Strings . 10
4.2 System Calls . 10
4.3 Other Static Data . 13

5 NETWORK SIGNATURES . 15
5.1 Intrusion Detection Systems . 15
5.2 Snort . 15
5.3 Anatomy of a Snort Rule . 16

6 BUILDING SIGNATURES . 20
6.1 Developing Network Signatures with Static Analysis 20
6.2 Design . 20
6.3 Implementation . 21
6.4 Building General Signatures Based on the String Data as a Catch-all 28
6.5 Matching Signatures . 28
6.6 Results . 29

7 FUTURE WORK AND DIRECTIONS . 31

8 CONCLUSION . 32

REFERENCES . 33

vii

APPENDICES . 37
Appendix A SinemaThesis.py . 38
Appendix B NetworkFunction.py . 52
Appendix C Backtrace.py . 57
Appendix D Boyer-Moore-Horspool Function 58
Appendix E Excluded Strings List . 59
Appendix F Snort Rules Used for the Experiment 61
F.1 Snort Community rules: . 61
F.2 Bleeding Snort rules: . 63
F.3 Emerging Threats Snort rules: . 63
F.4 Vorant IRC Bot Snort rules: . 64

viii

ACRONYMS

BSD Berkeley Software Distribution

C & C Command & Control

CIDR Classless Inter-Domain Routing

DNS Domain Name System

DDoS Distributed Denial of Service

FLIRT Fast Library Identification and Recognition Technology

FTP File Transfer Protocol

HIDS Host-based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

IDS Intrusion Detection System

IP Internet Protocol

IPX Internetwork Packet Exchange

IRC Internet Relay Chat

NIDS Network-based Intrusion Detection System

OSI Open Systems Interconnections

PE Portable Executable

TCP Transmission Control Protocol

UPX Ultimate Packer for eXecutables

1

CHAPTER 1

INTRODUCTION

Modern day malware is not isolated to pre-defined exploits like malware of the past [1].

Much of today’s malware connects over computer networks to centralized servers known

as a command and control servers (C & C servers). These servers send commands to the

malware instructing it to execute network or computer based exploits, massive coordinated

network attacks, or email spam [2]. When this type of malware infects a computer, the

computer becomes known as a zombie, and a collection of zombies is known as a botnet.

The communication channel between the zombie and the C & C server is typically standard

protocols such as internet relay chat (IRC) or hypertext transfer protocol (HTTP). The

botnet is controlled by a botmaster that issues singular commands to run in coordination

on the botnet. The command might be a distributed denial of service attack (DDoS), this

attack sends millions, upon millions of network packets from the zombies to a targeted

device; this deluge of network traffic overwhelms the targeted network device and leads to

it becoming unresponsive or possibly crashing.

Criminals and criminal organizations have used the threat of DDoS attack by botnets to

extract payments from corporations and organizations [3], recently botnets have been used

for political activism, attacking corporate competition, and even nations “weaponizing”

botnets to attack a rival nation’s infrastructure [4–6]. In a recent case, it is suspected a

company in the mining industry and a company in the wine-making industry used DDoS

to attack competitor’s websites [7]. In addition botnets are now being rented openly on the

Internet for relatively insignificant amounts of money [8]. Because of the seriousness of the

threat the research of detecting and neutralizing botnets is very relevant and important,

and reducing the number of bots will reduce the effectiveness of a botnet.

This thesis will show that an automated approach to reverse engineering of binaries

2

through static analysis is an effective method to build signatures of a binary’s network

behavior. Embedded in a binary is information that infers how and what it will send on

a network; although not as detailed as raw source code, enough information is disclosed

to identify network behavior. This information includes system calls, embedded strings,

and data flow paths. By using reverse engineering techniques the data needed for network

signatures can be identified, traced and extracted without the need to execute a binary

and capture live network data. The data when derived and combined together provides

enough information to build identifying signatures of a static binary’s network behavior.

The ability to discover network behavior before the malware is active on a live network can

prevent propagation of malware on other computers, denial of service or other exploits, and

generally can protect sensitive information. The automation of deriving network signatures

from a static binary is the primary contribution of this thesis.

The early chapters (2-4) give background on reverse engineering and the signature

format for this thesis. The remaining chapters discuss the reverse engineering process, the

data being sought after, and how the data is used to build signatures. Chapter 2 discusses

binary obfuscation as related to reverse engineering. Chapter 3 provides an overview of

the different reverse engineering methods used today and the tools used to automate the

reverse engineering process for this paper. Chapter 4 examines the various network system

calls and data contained in a binary that are used to build signatures. Chapter 5 looks

at the open source Snort Intrusion Detection System, and Snort rules which will be the

format of signatures produced by the implementation of this thesis. Chapter 6 will describe

the design and implementation of the network signatures, how the data is gathered and

compiled based upon the information described in previous chapters, and finally the process

of matching the generated network signatures and the known network signatures. Chapter

6 also includes the results the experiment based on this paper. Chapter 7 presents future

work and directions for this topic of research.

1.1 Related Works

There is considerable previous work on the subject of automated signature generation.

3

Kaur and Singh [9] provide an overview of the current automated signature generation sys-

tems, the authors divide the systems into two categories signature generation with attack

detection and signature generation without attack detection. The first category is systems

such as Honeycyber [10], ARBOR [11], Argos [12], and Hamsa [13] which mainly use dy-

namic analysis like honetnets and packet tracing for signature generation. The projects that

fall in the category of signature generation without attack detection are Hancock [14], F-

Sign [15], and Auto-Sign [16]. Hancock utilizes static disassembly to generate string based

signatures, the signatures are in a format for antivirus software. F-Sign generates byte-

string signatures based upon unique functions contained in the binary, the signatures are in

the eDare format. Auto-Sign generates signatures similar to F-Sign but in addition the final

signature is based on entropy. All of these systems simply create signatures to be used with

external IDSs in this paper not only are signatures auto-generated but those signatures are

then compared to known signatures to find matches or highly related signatures. While the

other systems rely on IDSs collecting data from a network connection, this paper performs

the matching of signatures offline.

4

CHAPTER 2

BINARY OBFUSCATION

Binary obfuscation is a common technique used by malware developers to frustrate

reverse engineers and attempt to prevent detection by anti-malware software. Packers and

obfuscators are software applications used to obfuscate malware binaries. In many cases

packers and obfuscators are legitimate software products used by legitimate developers to

reduce binary file size or protect their code from competitors or software crackers. For

example, a developer might use a packer to reduce the size of their application binary for

Internet downloading or to frustrate a reverse engineer the developer may use a packer to

encrypt parts of an application binary [17]. Obfuscators are primarily used for languages

such as Java and .Net, as these languages compile binaries into intermediate byte code to

run in virtual machines, and this intermediate byte code can be reversed to Java or .Net

source code without much effort. To protect intellectual property from software pirates and

competitors, developers often employ obfuscators to “scramble” the byte code making it

difficult to reverse the byte code into source code [17].

There are a number of different tools and techniques that can be used to detect if a

binary has been packed or obfuscated. A technique used to discover if a PE file (a Windows

binary) has been “packed” is to examine the PE file header and look for non-standard PE

sections. The UPX packer [18] is an example, that creates non-standard sections UPX0

and UPX1 that are generally not found in a non-packed binary. Figure 2.1 is the Microsoft

DUMPBIN utility output of a UPX packed binary and Figure 2.2 is the DUMPBIN output

of a non-UPX packed binary for comparison. Another method is to simply try to unpack

binaries with the various packing utilities to see if the file will unpack. And finally utilities

such as PEfile [19] examine a PE file and compare against known packer signatures to

determine if the file is packed and will try to determine which packer packed the file. Seitz

5

demonstrates how to use PyEmu [20] a Python library to extract the UPX0 and UPX1

sections of a UPX packed PE file without the use of the UPX packer [21].

C:\upx391w>dumpbin calc_upx.exe

Microsoft (R) COFF/PE Dumper Version 10.00.30319.01

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file calc_upx.exe

File Type: EXECUTABLE IMAGE

Summary

17000 .rsrc

88000 UPX0

3D000 UPX1

Figure 2.1: DUMPBIN Results of a Calc.exe packed by the UPX packer.

The investigation of binary obfuscation is a lengthy subject in itself and the tools for

packing and obfuscation are numerous and readily available. This paper will assume the

samples of malware have been stripped of packing or obfuscation prior to examination.

Although in a real world implementation the examination of binaries should be combined

with a de-obfuscation process.

C:\Windows\System32>dumpbin calc.exe

Microsoft (R) COFF/PE Dumper Version 10.00.30319.01

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file calc.exe

File Type: EXECUTABLE IMAGE

Summary

5000 .data

4000 .reloc

63000 .rsrc

53000 .text

Figure 2.2: DUMPBIN Results of the Calc.exe binary.

6

CHAPTER 3

REVERSE ENGINEERING

Two techniques are used today to reverse engineer binaries: static analysis or dynamic

analysis. In general, there are advantages and disadvantages to each; one is not necessarily

better than the other. Static analysis will be utilized for this paper and the experiment.

3.1 Static Analysis

Static analysis is the process of disassembling or decompiling a binary executable,

using a disassembler or decompiler, to generate human readable code [17]. Static analysis

allows a reverse engineer to have a more complete view of an executable [22] including code

branches and logic. In some cases static analysis can be completed quickly, because the

reverse engineer does not need to wait for the program to finish executing or to execute

the program over many different iterations with different variables to examine different

execution paths. Related, if the binary executable is viewed statically the reverse engineer

can safely reverse engineer without the need to quarantine the operating system to prevent

the malware from propagating to other computers or contacting C & C servers. But,

there are disadvantages to static analysis that should be considered. First and foremost

in order to effectively statically analyze a binary executable the reverse engineer should be

well-versed in low-level programming languages such as assembly and C. The source code

examined for static analysis is usually produced by disassemblers that generate assembly

source code or a decompiler that produces C or C-like source code. Decompilers tend

to not be as accurate in source code generation as disassemblers for assembly language

generation due to programming tricks or compiler optimizations, but even disassemblers

can be misled relatively easily. Malware authors are familiar with these limitations and

will add bits of code known as “junk bytes” random pieces of code used to obfuscate and

7

“opaque predicates” false branches that always resolve true or false regardless of input.

These confuse disassemblers [17] and result in assembly or source code that is deceptive or

incorrect. Other drawbacks of static analysis are self-modifying code or polymorphic code,

which is commonly found in malware; this code modifies the binary as it executes to change

behavior based on the executing environment. Theoretically, static reverse engineering

would be able to see this in the disassembly yet in practice this turns out to be difficult

because of the many code branches that would be present in the disassembled source code.

3.2 Dynamic Analysis

With dynamic analysis the reverse engineer examines the code executing on a system or

emulated system. The reverse engineer views the actual executed instructions, as opposed

to static analysis where the reverse engineer has to make an educated guess on which

instructions will be executed. The primary drawbacks of dynamic analysis is that malware

authors are aware of the fact that analysts execute the malware in quarantined environments

or under a debugger and place specific code in the malware to detect those situations [23].

The specific code tests the operating environment to see if it is a virtual machine by testing

instruction execution times [24] or using standard Windows calls to detect debuggers [17],

if detection is positive the applications will terminate. And finally setting up quarantined

environment can be cumbersome and time consuming to tweak the environment iterations

to fully test the malware.

3.3 Reverse Engineering Tools

3.3.1 Disassmebler

There are very few disassemblers on the market today, IDA Pro from Hex Rays [25] is

the most popular disassembler today and is the disassembler that is used for this paper’s

experiments. IDA Pro has support for many different processors, file formats, and available

as a executable on Windows, Mac OS X, and the Linux platforms. It also contains a broad

library (known as FLIRT) of signatures of standard library functions on Windows, Mac

8

OS X, and Linux. These library signatures allow a reverse engineer to discover or derive

the general behavior of the malware because of the examined executable’s use of standard

library functions.

3.3.2 Python

For this paper’s experiment the Python language is used for automation IDA Pro has

deep Python integration which allows automation of the disassembler. In addition Python

is somewhat of a de facto standard in the reverse engineering community. This is for a

couple reasons: first, the language is relatively easy to learn and the structure of scripts

are extremely readable. Second, Python as a scripting language allows for low-level access

to an operating system which is important for static analysis. Finally because of Python’s

popularity in the community there are a number of resources and code examples for reverse

engineers.

9

CHAPTER 4

INFORMATION CONTAINED IN BINARY

EXECUTABLES

The information contained inside a binary can give a reverse engineer clues about

the intended function of the binary and resources it might use. For instance if reverse

engineering can derive, through IDA Pro’s FLIRT signatures [26] that the WinSocket 2

library is linked to the binary; it can then be deduced that the binary most likely will use

a network for data acceptance and/or transmission. With the knowledge the WinSocket

2 library is linked to the binary, imported functions from the WinSocket 2 library, such

as socket() or bind() can be used to gather data about the binary. These imported

functions have data passed as arguments, by examining the arguments and following the

flow of function calls educated assumptions can be made about the network behavior and

the data to be sent on the network by the malware.

dsinema$ strings SDBOT05A.exe

...

GetOEMCP

SetStdHandle

LCMapStringA

LCMapStringW

FlushFileBuffers

bot started.

ctcp

raw PRIVMSG $1 :$chr(1)$2-$chr(1)

ping $1 10000 $2 50

udp $1 10000 2048 50

...

Figure 4.1: Sample output of the strings utility.

10

4.1 Static Strings

Binaries contain many static strings or static format strings, see Figure 4.1. The static

format strings are used by functions such as sprintf(), to allow for portions of a static

string to contain dynamic information, see Figure 4.2. Because sprintf() calls typically

precede send() calls, a more accurate signature can be produced if the output string of

sprintf() can be associated with a send() call. If that is not possible the strings can still

be used in a more general manner. IDA Pro is used to extract string information for the

experiment, the usage of the strings utility in Figure 4.2 is for illustration. The specifics

of how static strings are used for this paper are discussed in detail in Chapter 6.

%d, %d : USERID : UNIX : %s

Figure 4.2: Example of a format string.

4.2 System Calls

The automation process of this paper looks specifically for system calls that accept or

send data on a computer network. For Windows based systems these functions are contained

in the WinSocket 2 library found on all modern versions of Windows, and is based on the

BSD Sockets library [27]. Examining an Windows binary’s header will disclose the imported

libraries such as WinSocket 2, which is evidence that Socket functions exist in the targeted

binary. Figure 4.3 is a example of a small python script that will list the Windows import

address table (IAT). The output of the script at the end of the figure lists the linked libraries

for SDBOT05A.exe; WS2 32.dll is the WinSocket 2 library. For this paper’s experiment

IDA Pro provides this functionality; the script is for illustration.

The remaining part of this chapter examines some of the function calls that are used to

determine a binary’s network behavior and build signatures. Figure 4.4 from [27] illustrates

the flow of data in the WinSocket 2 library, the experiment of this paper follows the data

flow of the Socket functions.

11

#!/usr/bin/env python

Code can be found at http://tinyurl.com/lgg9zmu

import pefile

pe = pefile.PE(’SDBOT05A.exe’)

for entry in pe.DIRECTORY_ENTRY_IMPORT:

print entry.dll

Script Output:

dsinema$./import-pe.py

KERNEL32.dll

ADVAPI32.dll

SHELL32.dll

WS2_32.dll

WININET.dll

Figure 4.3: Python Script that Extracts Windows PE Import Address Table Including
Execution Results

4.2.1 socket()

The first function in the WinSockets 2 library that could be used for building signatures

is the socket() call. This call returns a descriptor or socket handle, which is used by

other WinSocket 2 functions to send and receive data in that socket. The socket() call

takes as arguments three integers afam, type, and protocol; afam is the address family

such as TCP/IP, IPX, or AppleTalk. The second argument is type, this value signifies

whether the TCP/IP data will be datagrams or a data stream. And finally protocol is an

integer that matches standard protocol numbers defined by IANA and found on Windows

systems in WINDOWS\system32\drivers\etc\protocol. As an example, if the socket()

function arguments are socket(AF INET, SOCK STREAM, 6) this would create a TCP/IP

socket (AF INET) of type TCP (SOCK STREAM) using the protocol of TCP (6).

4.2.2 bind()

The bind() function call is used only if the malware is acting as a server. In many

cases the malware behaves as both a client and a server, the bind() call will help identify

12

which way traffic flows for a socket. The bind() call takes as input a socket handle, a

sock addr structure, and an integer that is the length of the second argument [27]. The

socket handle is of interest because it can disclose what type of address family and protocol

is being used for the bind() call. The sock addr structure contains the IP address and

port number that the server will listen, of these two pieces of data the port number is the

most important. If the port number can be extracted from the bind() call it can be used in

signatures to match incoming connections to the malware. Typically malware does not use

hardcoded IP addresses or DNS host names but uses dynamically generated DNS names

to connect to command and control servers, while the port number will stay consistent.

An effective reactive measure against botnets has been to discover the DNS hostname

generation algorithm and then to take control of those DNS names, often referred to as sink

holing [28]. A discussion of sink holing is outside the scope of this paper, but is mentioned

for completeness.

4.2.3 send()

The send() function is utilized if the malware is a server or client. This function takes

as arguments the socket handle, the data message in the format of a C string, the length

of the data message, and finally some control bits that specify additional behavior. The

first two arguments are of most interest, first the socket handle allows the alignment of the

data with a socket handle in order to determine the destination of the data. The second

argument, the data message, is a pointer to a C string which is used to trace back to a

sprintf() function to extract the string. In many cases the string is the best identifier for

matching malware, because the string is exposed on computer networks.

4.2.4 sprintf()

The sprintf() function is not part of the sockets library, but it often used prior to a

send() call to populate the data message argument for send(). The sprintf() call takes

as arguments a C string that will receive the formatted data, a format string, and finally

the data for the variables in the format string. This function is important for this paper

13

due to the fact it is used to determine the data being passed to the send() function which

is directly associated to a socket handle.

4.3 Other Static Data

The other static data of interest in a binary are integers that are passed to functions

such as socket() or fields in structures such as sock addr. These structures are often

stored in the binary in a hexadecimal format and will be discussed more in Chapter 6.

14

Figure 4.4: Flow of WinSocket 2 function calls. [27]

15

CHAPTER 5

NETWORK SIGNATURES

5.1 Intrusion Detection Systems

Intrusion detection systems are hardware or software systems deployed on networks or

on host systems that attempt to detect suspicious behavior on a network or application

by comparing to pre-defined signatures of known malicious network traffic. There are two

types of IDSs, host-based intrusion detection systems (HIDS) and network-based intrusion

detection systems (NIDS) both systems can be distributed so that data, warnings, and

alerts can be aggregated to centralized management servers. This paper is only concerned

with NIDS and therefore will only discuss NIDS.

5.1.1 Network-based Intrusion Detection Systems

NIDS is a service that can run on a host or appliance and monitors the traffic on a

network segment. The network interface of the NIDS host is configured to a promiscuous

mode so that it can view network packets intended for all devices on the same network

segment [29]. The signature style of NIDS is typically human readable strings that signify

network traffic type, ports used, and strings contained in the data payload of network

packet. The signatures are then compared to live traffic by the NIDS parsing the network

packets and utilizing keyword pattern matching algorithms to to match packets with known

signatures [30]. If the packet matches a signature the operator is notified of the match and

can then take appropriate action. This paper we will develop NIDS style signatures from

information found in binaries by reverse engineering using static analysis.

5.2 Snort

Snort will be used as the signature reference platform for this paper. Snort is a popular

16

open source IDS that has an active development community, wide deployment and a large

number of bundled and community provided signatures [31]. The architecture of Snort is a

packet decoder, a detection system and an alert/logging subsystem. Because of the packet

decoder the rules can be simplistic, non-binary and user friendly [32]. This paper is not

concerned with the alert/logging subsystem or the detection system. To build signatures

to be utilized by the alert/logging subsystem or the detection system layers the only need

is to assure that the automated signatures are in the proper format for Snort. The packet

decoder is of interest because knowledge of the data that will be decoded from network

captures assists in determining what type of data is to be found when reverse engineering

a binary. The packet decoder is the first subsystem that will handle a network packet once

acquired by the packet capture system [31]. A network packet is passed through various

decoders for each OSI layer and placed into a data structure internal to Snort for further

processing [33]. The parsing will extract information from the packet such as a TCP session

(transport) over IP (network) on an Ethernet (data link) network, in addition the payload

data will be extracted from the packet. This internal data structure is used to compare

against the Snort rules created by the operator. This paper will not compare against the

internal data structure, but against Snort rules. This section provides an overview of the

Snort system for completeness.

5.3 Anatomy of a Snort Rule

The format of a Snort rule is quite simple, yet it is descriptive enough to build rules that

can match a small flow of packets out of a large stream of packets. The rule has essentially

two parts, a rule header and a rule option [31]; a sample rule can be seen in Figure 5.1.

Although the rule has two major parts, both portions contain many sub-options this paper

will only consider a subset of options that directly relate to Socket functions and static

strings.

5.3.1 Rule Header

The header of a Snort rule describes where the network packet is coming from, where

17

alert tcp any any -> 10.0.0.1/24 /

(content: "HTTP/1.x 404 Not Found"; msg:"HTTP error";)

Figure 5.1: Sample Snort rule.

the network packet is heading, and the transport protocol [31]. The first option of the

header section is the rule action which directs Snort what is to be done with a match, this

paper is not concerned about the various options for this field as it is outside of the scope.

For this paper all automated signatures created have the same rule action, hard coded with

the “alert” option from a configurable global setting.

The second option of the header section is protocol, this option informs Snort the type

of network protocol used by the network packet. For the generated signatures, this option

is based on data that is discovered from reverse engineering and information derived from

the socket() function arguments.

The third option is IP address, this option is used twice: once for incoming connections

and once for outgoing connections. The incoming and outgoing IP addresses are separated

by a directional operator which will be discussed later. The IP address sections allows

for different formats: the label “any” can be used as a wildcard, a single IP address, IP

address ranges in CIDR block format [31], or a variable can be used to define a common

network IP range. See Figure 5.2 for an example of a variable for the IP address option.

The IP address value is difficult to derive from static reverse engineering, in many cases

DNS addresses are used by botnets to allow C & C servers to be moved or the DNS

names dynamically generated which complicates detection. In cases where IP addresses

are hard coded the data is often hashed or in binary format and part of the ip addr data

structure which can be difficult or impossible to statically reverse engineer. For this paper’s

experiment $HOME NET and $EXTERNAL NET will be used for the signatures created,

this will allow the operator to globally define IP address ranges in a Snort rules file.

The forth option is the TCP/IP port used by the binary, like IP addresses this option

is used twice: once for incoming connections and once for outgoing connections. The format

18

var CORP_NET 10.0.1.0/24

Figure 5.2: Sample IP Address Variable.

of the port option is a wildcard label of ”any,” a single hardcoded port number, or a range

of port numbers in the format of a the starting port number in a contiguous range separated

by a colon to the ending port number. Figure 5.3 is an example of a range of ports defined

in a Snort rule.

22:53

Figure 5.3: Sample Port Variable.

The fifth and final option of the header section is the directional operator, this operator

signifies the flow of the network traffic for the rule. The directional operator has two

typographical formats, see Figure 5.4. Note there is not a left arrow for this reason the IP

addresses and ports will need to be moved to either side of the right arrow for behavior of

a left arrow. The double angle bracket signifies bi-directional traffic [31]. The directional

operator is be derived based on the send() or bind() calls and the associated socket handle.

-> <>

Figure 5.4: Directional Operators.

5.3.2 Rule Options

The rule options of a Snort rule is not strictly structured, but ordering can improve

performance [33]. Because this paper uses a subset of options, ordering for performance is

not considered. The options of concern for this paper are msg, flow, content, and pcre.

The msg option is used to give a brief description of the the rule, for this paper’s experiment

the name of the executable file being examined is used as the value for msg. The flow option

allows Snort to filter out rules that are not traveling in the direction of concerned flow. For

example if the flow option is set as to server Snort will only examine packets that are

19

flowing from the client to the server, this value is set according to the use of the Socket

function calls send() or bind() in the source code. The content and pcre are the core of

the options section, this is data that is populated from strings recovered during the reverse

engineering process. The content option is, in many cases, the exact string recovered. The

exception is a format string, the format variable placeholders removed prior to inclusion.

The pcre option is only used on format strings, the format variable placeholders are replaced

with PCRE classes for the appropriate data type. See Figure 5.5 as an example.

String format - %d, %d : USERID : UNIX : %s

PCRE format - \d+, \d+ : USERID :UNIX : \w+

Figure 5.5: Example of a format string converted to a PCRE.

20

CHAPTER 6

BUILDING SIGNATURES

This chapter details the design and architecture used to build network signatures from

binaries using static analysis. The process will use the data found in binaries, discussed in

Chapter 4 to build signatures based on Snort rule format discussed in Chapter 5.

6.1 Developing Network Signatures with Static Analysis

Section 6.2 will outline the general design for building the network signatures while

section 6.3 will detail the implementation of generating signatures. Finally section 6.4 will

discuss the method to match the generated signatures with existing Snort rules.

6.2 Design

The design of effective signature generation requires it to be specific enough to identify

and extract the necessary data from the binaries, yet at the same time flexible enough to ac-

commodate the different language nuances, compiler optimizations, and developer induced

code paths. With these requirements in mind the commonality of the targeted malware bi-

naries is the BSD Sockets library, therefore the design is based upon discovering the Socket

function call paths and the flow of data between the Socket functions. The current imple-

mentation is specific to Windows binaries, although to extend to other platforms would be

relatively simple as most modern operating systems use BSD Sockets as their network stack

or at least the basis of their network stack. The design of signature generation relies more

on the general features of BSD Sockets and less on the Windows specific implementation of

BSD Sockets. For the process of building signatures the data to be discovered in a binary

is TCP/IP protocol information, IP addresses, TCP/IP ports, payload data, and finally

any static strings in a binary. This data can be found as arguments to the various socket

21

function calls, therefore the implementation of this paper will be to discover call paths from

the send(), connect(), and bind() socket library functions to the socket() function; col-

lecting as much data as possible from the function arguments and combining the discovered

data together to build signatures. The Socket functions are associated to one another by a

socket handle, an integer, which is returned by a call to socket() and then passed as an

argument to the other Socket functions. The binaries targeted for this paper have multiple

socket() calls as they may act as both a client and a server, make connections to C & C

servers, search for infected peers on a local network, or execute local and network based

exploits. If there are multiple calls to socket() the Socket function calls will need to be

associated with the proper socket handle in order to build accurate signatures. Due to the

fact it is not possible to statically read socket handles as they are created at runtime and

the experiment for this paper only considers static analysis. Socket handles will need to be

simulated by mapping call paths from a Socket function to the associated socket() call

that created the socket handle.

6.3 Implementation

6.3.1 Enumeration of Socket Functions

To map call paths between the Socket functions they first need to be enumerated,

beginning with the socket() function call locations along with the containing functions.

Figure 6.1 is an example of a socket() call and the containing function irc connect()

The data from the enumeration will be placed in a custom Python class, discussed in

the next section, which has data structures and utility functions to ease building a call tree.

This same process is performed for bind(), send(), connect(), and other Socket functions

for future use.

6.3.2 NetworkFunction Python Class

NetworkFunction (code listed in Appendix B) is a Python class created for this pa-

per that is used for the enumeration of Socket functions, this class utilizes IDAPython to

22

DWORD WINAPI irc_connect(LPVOID param)

{

SOCKET sock;

SOCKADDR_IN ssin;

IN_ADDR iaddr;

LPHOSTENT hostent;

int err, rval;

char nick[16];

char *nick1;

char str[64];

BYTE spy;

DWORD id;

ircs irc;

...

sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

Figure 6.1: Example of a socket() function call from SDBOT5A.CPP

discover Socket function locations and cross references of the functions. The class accepts,

at instantiation, the name of the socket function as the argument which is then passed to

the IDAPython’s LocByName() to recover a linear address of the function in the binary.

See Figure 6.2 for an example of the linear address returned by LocByName(). With the

linear address of the socket function the returned location can be passed to IDAPython’s

XrefsTo() which will return linear address cross references of the passed function as seen

in Figure 6.3.

Python>hex(LocByName("socket"))

4076aa

Figure 6.2: Results for LocByName() with socket as the argument

In this example the function socket is passed to the LocByName() and the cross ref-

erences of socket are returned and stored in loc. The loc variable is then passed to

XrefsTo() and the result is enumerated to gather all cross references. This process is then

23

repeated for each of the Socket functions.

Python>loc = LocByName("socket")

for x in XrefsTo(loc):

print hex(x.frm)

401835

40196b

40675e

406f0d

407004

Figure 6.3: Results for XrefsTo() with the linear address of socket as the argument

6.3.3 Socket Function Arguments

Following the identification and location of the Socket calls, the next step is to locate

the arguments of the Socket functions and extract the argument data if possible. In some

cases the data is not accessible from static analysis because the data is created or collected

at runtime, in those cases the data will either be disregarded, because it is not germane to

the signature, or the data will be populated with a generic placeholder when appropriate.

An example would be the connect() function’s name argument which is a sockaddr data

structure. One of the fields of sockaddr is an IP address, extracting that IP address

can be very difficult as it could be generated at runtime, is obfuscated, or encrypted.

Using the wildcard $HOME NET or $EXTERNAL NET (Section 5.3.1) in place of the

sin addr feild of sockaddr not only resolves the issue of the inability to directly discover

the value, but more importantly provide a value that is common with many known SNORT

rules. The arguments for a function in assembly are pushed onto the stack prior to the

assembly instruction call. The arguments are pushed in reverse order; when parsing, this

is to be taken into account for the argument algorithm. Figure 6.4 is an example of the

socket(af, type, protocol) function [27] listed in IDA Pro, the arguments for socket()

were discussed in detail in section 4.2.1. The example in Figure 6.4 will use the getArgs()

function from backtrace.py [34] as a utility function to parse the Socket function arguments

(code listed in Appendix C).

24

.text:00401965 push 6 ; protocol

.text:00401967 push 1 ; type

.text:00401969 push 2 ; af

.text:0040196B call socket

Figure 6.4: IDA Pro Disassembly of a socket() Function Call

6.3.4 Enumeration of bind and send Functions

The same methods used to locate and enumerate the socket() function is also used

for the bind() and send() functions.

6.3.5 Bind Function Arguments

The use of bind() in a Socket-based application allows the application to accept in-

coming network connections and provide server functionality. Malware binaries often use

bind() to connect to other zombies or for executing software exploits, every malware bi-

nary examined in the experiment for this paper made at least one bind() call. The bind()

function is defined as bind(socket, localaddr, addrlen) [27]. The socket argument

has been discussed previous and is the same as in the send() function. The localaddr

argument is a sockaddr structure, which contains an IP address and port number. The

addrlen argument is the length of the localaddr argument. The port number field of the

sockaddr structure is of most interest and the process of extracting the port number will

be described in this section. The extraction process is similar to that used for sprintf(),

after identifying the location of the bind() call walk back in the assembly until a call to

htons() is reached. The htons() function converts an integer from host byte order to net-

work byte order [27]. Continue walking back from the htons() call until an assembly push

instruction is made, the argument of the push call is the port number of sockaddr. Figure

6.5 is an example of a bind() call from IDA Pro. The port number value is found on line

.text:00401983 it is the argument passed to the htons() call on line .text:0040199C. If

the push value is in hexadecimal format it is converted to decimal, for instance 71h hex-

adecimal would be converted to 113 decimal. Otherwise if the port number value is not

available, if for example it is created at runtime, the port number value of the generated

25

signature is set to any.

.text:00401983 push 71h ; hostshort

.text:00401985 mov dword ptr [esp+58h+name.sa family], eax

.text:00401989 mov [esp+58h+name.sa family], 2

.text:00401990 mov dword ptr [esp+58h+name.sa data+2], eax

.text:00401994 mov dword ptr [esp+58h+name.sa data+6], eax

.text:00401998 mov dword ptr [esp+58h+name.sa data+0Ah], eax

.text:0040199C call htons ; Call Procedure

.text:004019A1 lea ecx, [esp+54h+name]

.text:004019A5 push 10h ; namelen

.text:004019A7 push ecx ; name

.text:004019A8 push esi ; s

.text:004019A9 mov word ptr [esp+60h+name.sa data], ax

.text:004019AE call bind ; Call Procedure

Figure 6.5: IDA Pro Disassembly of a bind() Function Call from SDBOT5A.EXE

6.3.6 Send Function Arguments

The send() function is defined as send(socket, buffer, length, flags) [27]. The

only argument of concern is the buffer argument, it is passed to the send() function as a

reference, because of the limitations of static analysis the pointer reference cannot simply be

dereferenced, dereferencing will have to be simulated to access the buffer data. See Figure

6.6 for an example of send() function call in assembly. The lea assembly instruction in this

example loads the address of the send() buffer argument, buf, on to the stack. Discovering

the buffer argument’s variable name the sprintf() call that populates the buf can then

be located by walking back in the assembly.

.text:00401B3F push 0 ; flags

.text:00401B41 push ecx ; len

.text:00401B42 lea ecx, [esp+0D08h+buf]

.text:00401B46 push ecx ; buf

.text:00401B47 push esi ; s

.text:00401B48 call send

Figure 6.6: IDA Pro Disassembly of a send() Function Call

The buffer pointer is usually created with a call to sprintf(), this function allows

for the programmer to format a string by placing run-time variables into a static format

26

string. There is access to portions of the format argument of sprintf(), this string can be

used for building the signature. See Figure 6.7 for an example of the sprintf() C function.

char str[100];

char* pass_value = "my_password_value";

sprintf(str, "PASS %s\r\n", pass_value);

Figure 6.7: Example of a sprintf() function call.

The format argument of sprintf() is critical in building signatures for comparison to

Snort rules as many of the Snort rules are based upon packet payloads which contain text

strings. In Figure 6.7 the format string argument, "PASS %s\r \n", is combined with the

arguments that proceed to create a new string stored in the first sprintf() argument in this

example it would be str. Through static analysis the format string argument is available,

but the latter arguments are typically accessible at runtime. The format string argument

generally provides enough information to build an adequate signature for the thesis of this

paper. The format string variable is used to populate the content value of the generated

signature. In addition because the sprintf() format argument contains variables, the

format string argument maps well to regular expressions which allows for the creation of a

pcre value for the generated signatures. The pcre option provides more accuracy for Snort

rules, but the pcre option does have a drawback of significant performance degradation [29].

Because of the performance issue the pcre option will only be generated if a string contains

the sprintf() formatting variables and static text. To simulate dereferencing of the send()

buffer argument, begin by walking back the assembly from the send() linear address until a

sprintf() call is reached and is within the containing function of send() and sprintf().

Figure 6.8 is the disassembly of the sub 401AF0 function in SDbot5A.exe. This function is

a containing function of sprintf() and send().

If the sprintf() function can be located then the arguments are parsed, using the

same methods as described previously for socket() [34], focusing on the format argument

of sprintf(). When the name of the format argument is discovered it can then be walked

back in the assembly to locate the assembly language push instruction for the format

27

.text:00401AF0 ; int cdecl sub 401AF0(SOCKET s, int, int, char *Source,

int, int, int, char)

...

.text:00401B29 call sprintf ; Call Procedure

...

.text:00401B48 call send ; Call Procedure

Figure 6.8: IDA Pro Disassembly of the function sub 401AF0 from SDBOT5A.EXE

argument and the value being pushed. This value is typically an offset of the statically

defined format string. See Figure 6.9 for an example of the sprintf() call in assembly.

The offset value is the data used to build the content and pcre values of the generated

signatures.

6.3.7 Build Call Path from send() to socket()

The call path, for reasons discussed earlier, is reconstructed using IDA Pro’s cross

reference information for send() and socket(). The NetworkFunction class gathers cross

reference information for each of the functions and with NetworkFunction’s helper functions

cross references are matched. The process works as follows, after locating the send()

function IDA Pro’s GetFunctionName() and LocByName() [35] is utilized to identify a

function containing send(), which will be noted as function α. This function α is then

compared against socket()’s cross references, if the linear address of α is found in the

cross references the link is made between send() and socket(); if a match is not found

then the containing function of α, which will be noted as function β is then compared

against socket()’s cross references. This continues recursively until containing functions

are exhausted. It should be noted that matching containing functions might not be foolproof

as it relies on socket() appearing only once in a function. In practice the malware examined

made a socket() call only once per containing function, which allows for this method of

28

simulating socket handles to work consistently.

.text:00401B23 push offset aPassS ; "PASS %s\r\n"

.text:00401B28 push eax ; Dest

.text:00401B29 call sprintf

Figure 6.9: IDA Pro Disassembly of a sprintf() Function Call

6.4 Building General Signatures Based on the String Data as a Catch-all

Matching sprintf() format strings to a send() call is not always possible, due to the

method the malware was developed. For instance in SDBot05A.exe the format string arug-

ment is passed into the containing function of send() and then passed to send(). Although

this is traceable when manually reverse engineering the malware, automation proved to be

somewhat difficult with the available tools and scripting environment. The work around for

this limitation is to list all the strings found in a binary and attach to the content option and

where applicable the pcre option of a generated signature. The generated signature header

options would be set as a general header: alert tcp $HOME NET -> any $EXTERNAL NET

any, because socket() and therefore the socket handle are unknown. This does have the

potential to cause false positives due to common words and terms. The mediation used in

this paper is to create an excluded strings list, see Appendix E for a sample list. This list

contains strings commonly found in binaries created by compilers or behaviors of a pro-

gramming language, and are not directly created by the binary’s programmer. These words

are excluded from consideration for the content and pcre options in generated signatures.

The implementation of this mediation greatly reduced the false positive rate and as a side

effect decreased the time required to run the experiment.

6.5 Matching Signatures

This paper used many of the popular and publicly available Snort rules for signature

matching (list of rules used are found in Appendix F), it was not limited to solely Snort

rules for bots but included all available Snort rules. Based on my research many of the

bots contain source code for other exploits and network attacks, while the additional Snort

29

rules might not be specific to a bot, it does allow for more data to properly fingerprint a

binary. The matching of generated signatures to Snort rules is based on a weighted score

of matching the various parts of a generated signature to a known Snort rule. The header

section has the least amount of weight, values could be tcp or $HOME NET which are very

general and would have a high rate of matching. The header receives more weight if the

Snort rules are matched to specific IP addresses, hostnames or port numbers. The header

information receives 0.5 point if the values are general and a full 1.0 point if matches are

made on specific IP addresses, hostnames, or port numbers. The heavier weight in scoring

is placed on the content option of the Snort rule. The content score is based on letter

and word matches and the percentage of the string that is matched. Matching letters

prevents common single words from scoring as a match against the target string that could

be substantially longer. The threshold is set to 75% match on both letters and words in

order to notify the operator that there is a match. The algorithm used to find word matches

for this paper is the same algorithm used by Snort, Boyer-Moore [32]. This allows for a

partial simulation of real world network traffic and a Snort IDS.

6.6 Results

The implementation of this thesis was tested on a selection of malware bots, the bots

were compiled from source code and the binaries were not packed or obfuscated. The two

reasons for this choice is first with access to the source code the results found from im-

plementation can be confirmed, second as noted in Chapter 2 because binary obfuscation

is not considered in this paper, compiling the bots it can be assured that the binaries

are not packed or obfuscated. The results were positive for identifying bots in an au-

tomated process when comparing to known Snort rules. The bots analyzed for training

were Agobot3, Agobot-phat-glow, and SDBot-5A. For control the Google Chrome browser

version 29.0.1547.76 and the Firefox browser version 24.0, these applications also use the

WinSock API, were analyzed with the implementation of this thesis.

The summarized findings can be found in Table 6.1, the numbers represent the Snort

rules which were returned as matching the examined binary. For instance Agobot3 found 14

30

Binary Name Generated Signature Matches to Known Snort Rules

IRC AGOBOT SDBOT GTBOT SPYBOT HTTP FTP MAIL MISC.

akbot 11 0 1 0 0 278 11 5 13
aspergillus 0 0 0 0 0 0 7 4 2
BioZombie 1.5 Beta 0 0 0 0 0 0 0 0 0
C 15Pub-pre4 6 0 0 0 0 0 5 4 2
C 15Pub.exe 8 0 0 0 0 0 6 4 1
cftmon-dopebot 0 0 0 0 0 0 0 0 0
cftmon 0 0 0 0 0 0 0 0 0
ChodeBase 0 0 0 0 0 0 0 0 0
CYBER-v4.0 10 0 2 1 0 0 14 7 2
CYBER 10 0 2 1 0 0 12 7 2
CYBERBOTv2.2-Stable
.m0dd ownz.DreamWoRK 13 0 2 1 0 0 13 7 2
darkanal 11 0 0 1 0 0 14 7 3
DCI Bot 0 0 0 0 0 0 0 0 0
GellBot3 7 0 0 0 0 0 0 0 2
GigaBot-DCASS 13 0 4 1 0 292 15 7 5
H-Bot M0d 3-0 M0dd3d
by TH and Sculay 9 0 0 1 0 286 15 7 5

LiquidBot FixEd By Pr1muZ anD Ic3 13 0 4 1 0 287 14 7 5
NESbot v5 11 0 0 0 0 0 0 2 3
NEW bot by MSIT WIN 8 0 0 0 0 0 1 0 1
rBot-blowSXT 9 0 4 1 0 286 15 7 5
rBot-ciscobawt 9 0 4 1 0 286 15 7 5
rBot-Crackbot v1.4b 9 0 4 1 0 286 15 7 5
realmbot.exe 13 0 1 0 0 288 15 5 5
Reptilex 13 0 0 1 0 0 2 2 3
rxBot-drx-woopie 13 0 4 1 0 289 15 7 5
spybot 11 0 1 2 2 288 1 0 4
Spybot1.2c-full 12 0 1 2 2 294 0 0 4
Firefox 24.0 0 0 0 0 0 0 0 0 0
Chrome 29.0.1547.76 0 0 0 0 0 0 0 0 0

Table 6.1: Generated Signature Matches to Known Snort Rules

matching signatures for IRC and 18 for AGOBOT, the indication is this binary is a Agobot

bot or a derivative of Agobot. It should be noted that many bots analyzed also showed a

high rate of other HTTP, FTP, or mail exploits. This finding is consistent with the fact

that many bots contain application and protocol exploits that are executed by botmaster

from the C & C servers [36]. Therefore the identification of a binary should consider the

high rate of exploits in addition to IRC command & control traits. Spybot is an excellent

example of the need to examine the overall results, about 95% of the found signatures are

HTTP exploits and only about 3% are Spybot, SDBot, and GTBot IRC C & C traits. When

looking at overall functionality and purpose of bots [36] the relatively small percentage of

bot findings when compared to the percentage of exploit findings is consistent with the

behavior and purpose of the bots in a botnet.

31

CHAPTER 7

FUTURE WORK AND DIRECTIONS

This paper focused on static analysis of binaries, although there was positive success

in identifying malicious software it is certainly not fool-proof. To increase the ability to

more accurately identify malicious software, dynamic analysis could be employed and the

results of both dynamic and static analysis could be combined and compared to increase

the confidence of the findings. The open source project Cuckoo Sandbox [37] is based on

Python and could be extended to combine the results found in the implementation of this

thesis.

Another interesting direction would be to add visualization to the implementation in

this thesis. The visualization could be updated dynamically and allow the user to see the

genealogy and relationship of bots to other malicious software. Many of the bots examined

used the same exploits for HTTP and FTP, closer examination of these relationships could

provide more information on more efficient processes to detect the malware.

32

CHAPTER 8

CONCLUSION

It is estimated that today the average worker has 2.8 connected devices, with projec-

tions to this to reach 3.3 by 2014 [38]. Because of the proliferation of devices and accessibility

of computer networks the threat of malware has become an increasing concern for businesses

and computer users. The objective of this paper is to provide a proactive means to identify

malware before it appears on computer networks, thereby allowing for earlier detection and

identification. The approach of this paper is to recreate, as much as possible, the network

behavior of a malware sample for the purpose of identifying the software as malicious.

The results from the implementation of this paper indicate that malware network be-

havior can be identified offline through automated static analysis. The malware samples

tested against the implementation were identified not only by the IRC traffic, but also by

matching of known network exploits. Although not as precise as a network capture with

manual examination, the results proved enough information is present from automated

static analysis to identify malicious software.

33

REFERENCES

[1] J. Oltsik. (2013, Sep) Many security professionals don’t understand modern malware.

[Online]. Available: http://www.networkworld.com/article/2225474/cisco-subnet/

many-security-professionals-don-t-understand-modern-malware.html

[2] TrendMicro. (2006, November) Taxonomy of botnet threats. [Online]. Available:

http://www.cs.ucsb.edu/∼kemm/courses/cs595G/TM06.pdf

[3] J. Leyden. (2009, January) Techwatch weathers ddos extortion attack. [Online].

Available: http://www.theregister.co.uk/2009/01/30/techwatch ddos/

[4] M. Hines. (2008, January) Botnets: The new political activism. [Online]. Available:

http://www.infoworld.com/d/security-central/botnets-new-political-activism-392

[5] R. McMillan. (2010, October) Zeus hackers could steal corporate secrets too.

[Online]. Available: http://www.computerworld.com/s/article/9190239/Zeus hackers

could steal corporate secrets too?taxonomyId=17&pageNumber=1

[6] R. Lemos. (2008, April) Report: China’s botnet problems grows. [Online]. Available:

http://www.securityfocus.com/brief/726

[7] J. Leyden. (2011, March) Ddos botnet attacks gold miners and wine makers. [Online].

Available: http://www.theregister.co.uk/2011/03/09/gold mine site botnet/

[8] D. Danchev. (2010, May) Study finds the average price for rent-

ing a botnet. [Online]. Available: http://www.zdnet.com/blog/security/

study-finds-the-average-price-for-renting-a-botnet/6528

http://www.networkworld.com/article/2225474/cisco-subnet/many-security-professionals-don-t-understand-modern-malware.html
http://www.networkworld.com/article/2225474/cisco-subnet/many-security-professionals-don-t-understand-modern-malware.html
http://www.cs.ucsb.edu/~kemm/courses/cs595G/TM06.pdf
http://www.theregister.co.uk/2009/01/30/techwatch_ddos/
http://www.infoworld.com/d/security-central/botnets-new-political-activism-392
http://www.computerworld.com/s/article/9190239/Zeus_hackers_could_steal_corporate_secrets_too?taxonomyId=17&pageNumber=1
http://www.computerworld.com/s/article/9190239/Zeus_hackers_could_steal_corporate_secrets_too?taxonomyId=17&pageNumber=1
http://www.securityfocus.com/brief/726
http://www.theregister.co.uk/2011/03/09/gold_mine_site_botnet/
http://www.zdnet.com/blog/security/study-finds-the-average-price-for-renting-a-botnet/6528
http://www.zdnet.com/blog/security/study-finds-the-average-price-for-renting-a-botnet/6528

34

[9] M. S. Sanmeet Kaur, “Automatic attack signature generation systems: A review,”

Security & Privacy, vol. 11, no. 6, pp. 54–61, November/December 2013.

[10] M. Mohammed, H. Chan, and N. Ventura, “Honeycyber: Automated signature gener-

ation for zero-day polymorphic worms,” pp. 1–6, Nov 2008.

[11] Z. Liang and R. Sekar, “Automatic generation of buffer overflow attack signatures: an

approach based on program behavior models,” p. 224, Dec 2005.

[12] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: an emulator for fingerprinting zero-

day attacks for advertised honeypots with automatic signature generation,” vol. 40,

no. 4, pp. 15–27, 2006.

[13] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: Fast signature gen-

eration for zero-day polymorphic worms with provable attack resilience,” in IEEE

Symposium on Security and Privacy, 2006. IEEE, 2006, p. 15.

[14] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, “Automatic generation of

string signatures for malware detection,” in Proceedings of the 12th International

Symposium on Recent Advances in Intrusion Detection, ser. RAID ’09. Berlin,

Heidelberg: Springer-Verlag, 2009, pp. 101–120. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-04342-0 6

[15] A. Shabtai, E. Menahem, and Y. Elovici, “F-sign: Automatic, function-based signature

generation for malware,” in IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, vol. 41, no. 4. IEEE, 2011, pp. 494–508.

[16] G. Tahan, C. Glezer, Y. Elovici, and L. Rokach, “Auto-sign: an automatic signature

generator for high-speed malware filtering devices,” Journal in Computer Virology,

vol. 6, no. 2, pp. 91–103, 2010.

[17] E. Eilam, Reversing: Secrets of Reverse Engineering, R. Elliott, Ed. Indianapolis, IN:

Wiley Publishing, 2005.

http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1007/978-3-642-04342-0_6

35

[18] (2011, May) Upx: The ultimate packer for executables. [Online]. Available:

http://upx.sourceforge.net/

[19] E. Carrera. (2011, May) pefile is a python module to read and work with pe (portable

executable) files. [Online]. Available: http://code.google.com/p/pefile/

[20] (2008, September) pyemu - a python ia-32 emulator. [Online]. Available:

http://code.google.com/p/pyemu/

[21] J. Seitz, Gray Hat Python, 1st ed. San Francisco, CA: No Starch Press, 2009.

[22] C. Krugel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of obfus-

cated binaries,” in Proceedings of the 13th USENIX Security Symposium, vol. 1. The

USENIX Association, August 2004, p. 17.

[23] drupal. (2008, August) Appendix b: Source code - what techniques bots use. [Online].

Available: http://www.honeynet.org/node/56

[24] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario, “Towards an understand-

ing of anti-virtualization and anti-debugging behavior in modern malware,” in IEEE

International Conference on Dependable Systems and Networks with FTCS and DCC,

2008. DSN 2008., June 2008, pp. 177–186.

[25] Hex-Rays. (2011, June) Ida pro disassembler - multi-processor, windows hosted

disassembler and debugger. [Online]. Available: http://www.hex-rays.com/idapro/

[26] Hex-Rays. (2013, August) Ida f.l.i.r.t. technology: Overview. [Online]. Available:

https://www.hex-rays.com/products/ida/tech/flirt/

[27] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP Volume III Client-

Server Programming and Applications - Windows Sockets Version, 1st ed., M. Horton,

Ed. NJ: Prentice Hall, May 1997.

[28] M. Bowden, Worm: The First Digital World War, 1st ed. New York, NY: Alantic

Monthly Press, 2011.

http://upx.sourceforge.net/
http://code.google.com/p/pefile/
http://code.google.com/p/pyemu/
http://www.honeynet.org/node/56
http://www.hex-rays.com/idapro/
https://www.hex-rays.com/products/ida/tech/flirt/

36

[29] R. Alder, J. Dr. Everett F. (Skip) Carter, J. C. Foster, M. Jonkman, R. Marty, and

E. Seagren, Snort IDS and IPS Toolkit, 1st ed., T. Kohlenberg, Ed. Burlington, MA:

Syngress, 2007.

[30] J. Kelly, “An examination of pattern matching algorithms for intrusion detection sys-

tems,” Master’s Thesis, School of Computer Science, Carleton University, Ottawa,

Ontario, Canada, August 2006.

[31] I. Sourcefire. (2013, April) Snort :: Home page. [Online]. Available: http:

//www.snort.org/

[32] M. Roesch, “Snort—lightweight intrusion detection for networks,” in Proceedings of

LISA ’99: 13th Systems Administration Conference, USENIX, Ed., November 1999,

pp. 229–238.

[33] J. Koziol, Intrusion Detection with Snort, 2nd ed. Indianapolis, IN: Sams Publishing,

May 2003.

[34] A. Hanel. (2013, August) A script for automated backtracing in

ida. [Online]. Available: http://hooked-on-mnemonics.blogspot.com/2013/03/

a-script-for-automated-backtracing-in.html

[35] G. Erdélyi, E. Bachaalany, and I. Skochinsky. (2013, April) Idapython -

python plugin for interactive disassembler pro. [Online]. Available: https:

//code.google.com/p/idapython/

[36] P. Barford and V. Yegneswaran, “An inside look at botnets,” Advances in Information

Security, vol. 27, pp. 171–191, 2007.

[37] C. “nex” Guarnieri and C. S. Developers. (2013, April) Cuckoo sandbox - automated

malware analysis. [Online]. Available: http://www.cuckoosandbox.org/

[38] cisco. (2012, May) Cisco study: It saying yes to byod. [Online]. Available:

http://newsroom.cisco.com/release/854754/Cisco-Study-IT-Saying-Yes-To-BYOD

http://www.snort.org/
http://www.snort.org/
http://hooked-on-mnemonics.blogspot.com/2013/03/a-script-for-automated-backtracing-in.html
http://hooked-on-mnemonics.blogspot.com/2013/03/a-script-for-automated-backtracing-in.html
https://code.google.com/p/idapython/
https://code.google.com/p/idapython/
http://www.cuckoosandbox.org/
http://newsroom.cisco.com/release/854754/Cisco-Study-IT-Saying-Yes-To-BYOD

37

APPENDICES

38

Appendix A

SinemaThesis.py

Please see Appendix B and C for information about third party functions used in this

script.

#!/usr/bin/env python

###

I am using backtrace.py for some utility functionality ,

the script can be found at:

http://tinyurl.com/m72hr2n

#

I originally located it from the blog entry of the author,

Alexander Hanel at:

http://tinyurl.com/kalyo9f

#

###

import os

import sys

from string import ∗

from NetworkFunction import ∗

from SnortRuleParser import ∗

from backtrace import ∗

Defined Strings

snort rule action = ”alert”

flowbit name = lower(rstrip(GetInputFile(), ’ .exe’))

extern net = ”$EXTERNAL NET”

home net = ”$HOME NET”

one dir = ”−>”

any dir = ”<>”

any port = ”any”

pcre string = ”\w+”

pcre digit = ”\d+”

pcre hex = ”[0−9A−Fa−f]+”

int replace = ’%d’

str replace = ’%s’

hex replace = ’%x’

Other structs

regs = [”eax”, ”ebx”, ”ecx”, ”edx”, ”esi”, ”ebp”]

tcpip afam = { 2: ’AF INET’ }

tcpip types = { 1: ’SOCK STREAM’, 2: ’SOCK DGRAM’, 3: ’SOCK RAW’, 4: ’SOCK RDM’, 5: ’SOCK SEQPACKET’ }

tcpip protocol = {}

socket calls = {}

ports = {}

39

signatures = []

matching sigs = {}

IDAPython enumarated Functions, Structs, and Strings from the .exe

exe funcs = Functions()

exe excluded strs = []

exe structs = Structs()

exe strs = Strings()

socket funcs = NetworkFunction(”socket”)

bind funcs = NetworkFunction(”bind”)

connect funcs = NetworkFunction(”connect”)

listen funcs = NetworkFunction(”listen”)

accept funcs = NetworkFunction(”accept”)

send funcs = NetworkFunction(”send”)

recv funcs = NetworkFunction(”recv”)

snortRuleFileParser = CSnortRuleParser(’/Users/dsinema/Dropbox/Scripts/snort rules’)

def printStats() :

#

#

def printStats())

#

returns:

#

description : Print out the SNORT rules that were found to match

the examined binary.

#

#

for m in sorted(matching sigs):

print ”%d\t%s” % (matching sigs[m], m)

def addToMatchingSigs(sig):

#

#

def addToMatchingSigs(sig)

#

returns:

#

description : Add the passed SNORT rule to the matching sigs[]

structure .

#

#

if sig in matching sigs:

matching sigs[sig . strip ()] = matching sigs[sig] + 1

else :

matching sigs[sig . strip ()] = 1

def buildTCPIPProtocolDict():

#

#

def buildTCPIPProtocolsDict()

#

returns:

40

#

description : Read the protocols file from the host

filesystem and add contents to the

tcp protocol{} dictionary

#

#

protocols = open(’/etc/protocols’, ’ r ’)

for line in protocols :

if line . startswith(’#’):

pass

else :

tmp = line.split ()

tcpip protocol [int(tmp[1])] = tmp[2]

def buildExcludedStrs():

#

#

def buildExcludedStrs()

#

returns:

#

description : Read in the exclude text file and import

entries into a Python list −> exe excluded strs[]

#

#

f = file (”/Users/dsinema/Dropbox/Scripts/ExcludedStrings.txt”, ”r”)

for e func in exe funcs:

exe excluded strs .append(GetFunctionName(e func))

for e str in exe strs :

if ”. dll” in str(e str) :

exe excluded strs .append(strip(str(e str)))

elif ”.DLL” in str(e str) :

exe excluded strs .append(strip(str(e str)))

if str(e str) [0] == ’?’:

exe excluded strs .append(strip(str(e str)))

for f line in f :

exe excluded strs .append(strip(f line))

def buildSocketCalls() :

#

#

def buildSocketCalls()

#

returns:

#

description : This builds the socket func struct [] Python list

object. This list is used to keep track of the

socket calls in the examined binary.

#

#

if not socket calls :

socket func struct = []

for crefs in socket funcs .getcodexrefs() :

socket func struct .append(GetFuncOffset(crefs))

41

socket func struct .append(findSocketArgs(crefs))

socket calls [GetFunctionName(crefs)] = socket func struct

socket func struct = []

def BoyerMooreHorspool(pattern, text):

#

http://tinyurl.com/mabdzdd

#

bmh.py

#

An implementation of Boyer−Moore−Horspool string searching.

#

This code is Public Domain.

#

m = len(pattern)

n = len(text)

if m > n: return −1

skip = []

for k in range(256): skip.append(m)

for k in range(m − 1): skip[ord(pattern[k])] = m − k − 1

skip = tuple(skip)

k = m − 1

while k < n:

j = m − 1; i = k

while j >= 0 and text[i] == pattern[j]:

j −= 1; i −= 1

if j == −1: return i + 1

k += skip[ord(text[k])]

return −1

def findSocketHandle(func):

#

#

def findSocketHandle(func)

#

returns: func frm/func tmp − ea value

#

description : Find a socket() call related to this

function. This function is recursive

and will walk back until it is unable

to find cross references for containing

functions.

#

#

func tmp = ””

count = 0

hit main = 0

func name = GetFunctionName(func)

if socket funcs .matchfuncxrefs(func name):

return func name

else :

for x in XrefsTo(func):

count = count + 1

if XrefTypeName(x.type) == ’Data Offset’ and SegName(x.frm) != ’.text’: # exclude refs to

the non−text segments

42

pass

else :

func tmp = GetFunctionName(x.frm)

if func tmp == func name:

break

if socket funcs .matchfuncxrefs(func tmp):

return func tmp

else :

func frm = findSocketHandle(LocByName(func tmp))

if socket funcs .matchfuncxrefs(func frm):

return func frm

def findRegValue(address, reg):

#

#

def findRegValue(address, reg)

#

returns: val − string value

#

description : From the address passed in look for the

value of the register passed in. This looks

specifically for the assembly instructions

mov, xor, pop as these are typically used

to populate the registers .

#

#

regFound = 0

currentAddr = PrevHead(address, minea=0)

while regFound == 0:

if ’mov’ in GetDisasm(currentAddr) or ’lea’ in GetDisasm(currentAddr):

opt = GetOpnd(currentAddr,0)

if str(opt) == str(reg):

val = str(GetOpnd(currentAddr,1))

if val .endswith(’h’):

val = int(val [:−1], 16)

return val

elif ’xor’ in GetDisasm(currentAddr):

opt = GetOpnd(currentAddr,0)

if str(opt) == str(reg):

return ”0”

elif ’pop’ in GetDisasm(currentAddr):

opt = GetOpnd(currentAddr,0)

if str(opt) == str(reg):

currentAddr = PrevHead(currentAddr, minea=0)

val = str(GetOpnd(currentAddr,0))

return val

currentAddr = PrevHead(currentAddr, minea=0)

def funcArgs(address, num):

#

#

def funcArgs(address, num)

#

returns: addr − ea value

value − String value (NOTE: every value is cast to a string)

43

#

description : Locate and return the args for the function located

at the passed address

#

#

s = Backtrace()

addr, value = s.getArgs(address, num)

if value in regs :

if value.endswith(’h’):

value = str(int(value [:−1], 16))

else :

value = findRegValue(addr, value)

elif value.endswith(’h’):

value = str(int(value [:−1], 16))

return addr, str(value)

def findSocketArgs(address):

#

#

def findSocketArgs(address)

#

returns: arg1, arg2, arg3 − strings

#

description : Find the arguments for the socket()

function call . This function also maps

the numerical values for the arguments to

the protocol names and family names.

Example: 6 −> TCP

#

#

addr, arg1 = funcArgs(address, 1)

addr, arg2 = funcArgs(address, 2)

addr, arg3 = funcArgs(address, 3)

if arg1. isdigit () :

if int(arg1) in tcpip afam:

arg1 = tcpip afam[int(arg1)]

else :

pass

if arg2. isdigit () :

if int(arg2) in tcpip types:

arg2 = tcpip types[int(arg2)]

else :

if arg3. isdigit () :

if int(arg3) in tcpip protocol :

if int(arg3) == 6:

arg2 = tcpip types[1]

elif int(arg3) == 17:

arg2 = tcpip types[2]

if arg3. isdigit () :

if int(arg3) in tcpip protocol :

arg3 = tcpip protocol[int(arg3)]

else :

pass

44

return arg1, arg2, arg3

def sprintfArgValues(address, count):

#

#

def sprintfArgValues(address, count)

#

returns: tmp − string

#

description : Find the arguments values for the sprintf ()

function call .

#

#

tmp = []

x = count

currentAddr = PrevHead(address, minea=0)

while (x > 0):

if ’push’ in GetDisasm(currentAddr):

opt = GetOpnd(currentAddr,0)

if ’ offset ’ in opt:

off tmp = opt. lstrip (’ offset ’) . strip ()

off val = GetDisasm(LocByName(off tmp))

if ’db’ in off val :

off val = off val . lstrip (’db’). strip ()

if off val .endswith(’h’):

off val = str(int(off val [:−1], 16))

tmp.append(off val)

x = x − 1

else :

if opt.endswith(’h’):

opt = str(int(opt[:−1], 16))

tmp.append(opt)

x = x − 1

currentAddr = PrevHead(currentAddr, minea=0)

return tmp

def pcreSprintfFormat(format struct):

#

#

def pcreSprintfFormat(format struct)

#

returns: retval − string

#

description : Replace the printf format variables

in the string with PCRE compatible

variables .

#

#

carriage return = ’\\r’

new line = ’\\n’

retval = ””

for key in format struct.keys():

tmp list = format struct[key]

count = len(tmp list)

45

key = key.replace(carriage return , ””).replace(new line, ””) # strip off any returns and new lines

if key == ’%s’:

retval = None

else :

retval = retval + ”/”

for i , c in enumerate(key):

if c == ’%’:

var = str(tmp list .pop())

if key[i+1] == ’d’:

if var in regs :

retval = retval + pcre digit

else :

retval = retval + var

elif key[i+1] == ’s’:

if var in regs :

retval = retval + pcre string

else :

retval = retval + var

elif key[i+1] == ’x’:

if var in regs :

retval = retval + pcre hex

else :

retval = retval + var

elif key[i−1] == ’%’:

pass

else :

retval = retval + c

if retval :

if retval .count(”:”):

retval = retval. replace(”:”, ””)

retval = retval + ”/”

return retval

def sprintfFormatArg(address):

#

#

def sprintfFormatArg(address)

#

returns: retval − string

#

description : Remove all the printf format

varaibles .

#

#

sprintf dict = {}

retval = ””

addr, value = funcArgs(address, 2)

if ’ offset ’ in value:

tmp str = GetDisasm(addr)

tmp dict = tmp str.split(’ ; ’)

value = tmp dict[1]

value = value.strip ()

value = value.strip(’ ”. ’)

sprintf dict [value] = sprintfArgValues(addr, value.count(’%’))

retval = pcreSprintfFormat(sprintf dict)

46

return retval

else :

return None

def findSendData(address):

#

#

def findSendData(address)

#

returns: formatArg − string

#

description : Walks back from the send() function

call to find a sprintf () call . Looks for

first the assembly instruction call and

then for sprintf . This function will not

walk past the containing function.

#

#

func boundry = LocByName(GetFunctionName(address))

regFound = 0

currentAddr = PrevHead(address, minea=0)

while regFound == 0:

if currentAddr == func boundry:

return ””

else :

if ’ call ’ in GetDisasm(currentAddr):

opt = GetOpnd(currentAddr,0)

if ’ sprintf ’ in opt:

formatArg = sprintfFormatArg(currentAddr)

return formatArg

currentAddr = PrevHead(currentAddr, minea=0)

def commentFromPRCE(string):

#

#

def commentFromPRCE(string)

#

returns: string − string

#

description : Utility function that strips

the PCRE string of the PCRE

variables .

#

#

if string .count(”:”):

string = string.replace(”:”, ””)

if string .count(pcre string) :

string = string.replace(pcre string , ””)

if string .count(pcre digit) :

string = string.replace(pcre digit , ””)

if string .count(pcre hex):

string = string.replace(pcre hex, ””)

return string

def findPortFromBind(address):

47

#

#

def findPortFromBind(address)

#

returns: tmp − string

#

description : Walks back from the bind() function

call to locate the port argument. This

works similar to the findSendData function

above.

#

#

htons found = 0

push found = 0

currentAddr = PrevHead(address, minea=0)

while htons found == 0:

if ’ call ’ in GetDisasm(currentAddr):

htons found = 1

while push found == 0:

if ’push’ in GetDisasm(currentAddr):

value = str(GetOpnd(currentAddr,0))

if value.endswith(’h’):

value = str(int(value [:−1], 16))

return value

elif value in regs :

tmp = findRegValue(currentAddr, value)

if tmp.endswith(’h’):

tmp = str(int(tmp[:−1], 16))

return tmp

else :

return ”any”

else :

return ”any”

currentAddr = PrevHead(currentAddr, minea=0)

currentAddr = PrevHead(currentAddr, minea=0)

def buildPortInformation():

#

#

def buildPortInformation()

#

returns:

#

description : maps a port to a bind() function call

#

#

for brefs in bind funcs.getcodexrefs() :

port = findPortFromBind(brefs)

ports[GetFunctionName(brefs)] = port

def buildSnortSignatures():

#

#

def buildSnortSignatures()

#

48

returns:

#

description : The meat of the script this is the

function that creates the signatures .

#

#

#

snort rule = ””

buildPortInformation()

for screfs in send funcs.getcodexrefs() :

pcre tmp = findSendData(screfs)

if pcre tmp:

if bind funcs.matchfunc(screfs):

if bind funcs.getfunc(screfs) in socket calls :

if bind funcs.getfunc(screfs) in ports:

snort rule = snort rule action + ” ” + lower(socket calls[bind funcs.getfunc(screfs

)][1][2]) + ” ” + home net + ” ” + ports[bind funcs.getfunc(screfs)] + ” ”

+ one dir + ” ”+ extern net + ” ” + any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’flowbits : set , score6 ’

+ flowbit name + ’; ’

if ’tcp’ in snort rule :

snort rule = snort rule +’flow:from server, established ; ’

elif ’udp’ in snort rule :

snort rule = snort rule +’flow:from server, stateless ; ’

if pcre tmp:

snort rule = snort rule + ’content:”’ + commentFromPRCE(pcre tmp) + ’

”; ’

snort rule = snort rule + ’pcre:”’ + pcre tmp + ’”;’

else :

snort rule = snort rule action + ” ” + lower(socket calls[bind funcs.getfunc(screfs

)][1][2]) + ” ” + home net + ” ” + any port + ” ” + one dir + ” ”+

extern net + ” ” + any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’flowbits : set , score5 ’

+ flowbit name + ’; ’

if pcre tmp:

snort rule = snort rule + ’content:”’ + commentFromPRCE(pcre tmp) + ’

”; ’

snort rule = snort rule + ’pcre:”’ + pcre tmp + ’”;’

snort rule = snort rule + ’)’

signatures .append(snort rule)

else :

if findSocketHandle(screfs) in socket calls :

if findSocketHandle(screfs) in ports:

snort rule = snort rule action + ” ” + lower(socket calls[findSocketHandle(screfs)

][1][2]) + ” ” + home net + ” ” + ports[findSocketHandle(screfs)] + ” ” +

one dir + ” ”+ extern net + ” ” + any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’flowbits : set , score4 ’

+ flowbit name + ’; ’

if ’tcp’ in snort rule :

snort rule = snort rule +’flow:from server, established ; ’

elif ’udp’ in snort rule :

snort rule = snort rule +’flow:from server, stateless ; ’

if pcre tmp:

snort rule = snort rule + ’content:”’ + commentFromPRCE(pcre tmp) + ’

”; ’

49

snort rule = snort rule + ’pcre:”’ + pcre tmp + ’”;’

else :

snort rule = snort rule action + ” ” + lower(socket calls[findSocketHandle(screfs)

][1][2]) + ” ” + home net + ” ” + any port + ” ” + one dir + ” ”+

extern net + ” ” + any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’flowbits : set , score3 ’

+ flowbit name + ’; ’

if pcre tmp:

snort rule = snort rule + ’content:”’ + commentFromPRCE(pcre tmp) + ’

”; ’

snort rule = snort rule + ’pcre:”’ + pcre tmp + ’”;’

snort rule = snort rule + ’)’

signatures .append(snort rule)

def formatStringValue(string):

#

#

def buildSnortSignatures()

#

returns:

#

description : The meat of the script this is the

function that creates the signatures .

#

#

#

carriage return = ’\r’

new line = ’\n’

retval = ””

tmp str = ””

tmp str = string.replace(’\r’ , ””).replace(’\n’, ””)

if tmp str.count(’%’):

tmp list = tmp str.split ()

for i in range(0,len(tmp list)) :

retval = retval + tmp list[i]. replace(int replace , ””).replace(str replace , ””)

if i < (len(tmp list) − 1):

retval = retval + ” ”

else :

retval = tmp str

return retval

def pcreFromComment(string):

carriage return = ’\r’

new line = ’\n’

retval = ””

tmp str = ””

tmp str = string.replace(’\r’ , ””).replace(’\n’, ””)

if tmp str.count(’%’):

retval = retval + ”/”

tmp list = tmp str.split ()

for i in range(0,len(tmp list)) :

retval = retval + tmp list[i]. replace(int replace , pcre digit) . replace(str replace , pcre string) . replace(

hex replace, pcre hex).replace(”:”, ””)

if i < (len(tmp list) − 1):

retval = retval + ” ”

50

retval = retval + ”/”

else :

retval = ””

return retval

def stringSnortRules():

snort rule = ””

for s in exe strs :

if formatStringValue(str(s). strip ()) not in exe excluded strs :

for strrefs in XrefsTo(s.ea):

if SegName(strrefs.frm) == ’.text’:

if findSocketHandle(strrefs .frm) in socket calls :

if len(formatStringValue(str(s))) > 0:

snort rule = snort rule action + ” ” + lower(socket calls[

findSocketHandle(strrefs .frm)][1][2]) + ” ” + home net + ”

” + any port + ” ” + one dir + ” ”+ extern net + ” ” +

any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’

flowbits : set , score2 ’ + flowbit name + ’; ’

snort rule = snort rule + ’content:”’ + formatStringValue(str(s))

+ ’”;’

if len(pcreFromComment(str(s))) > 0:

snort rule = snort rule + ’ pcre:”’ + pcreFromComment(

str(s)) + ’”;’

else :

if len(formatStringValue(str(s))) > 0:

snort rule = snort rule action + ” ” + ”tcp” + ” ” + home net +

” ” + any port + ” ” + one dir + ” ”+ extern net + ” ” +

any port + ” (”

snort rule = snort rule + ’msg:”’ + GetInputFile() + ’”; ’ + ’

flowbits : set , score1 ’ + flowbit name + ’; ’

snort rule = snort rule + ’content:”’ + formatStringValue(str(s))

+ ’”;’

if len(pcreFromComment(str(s))) > 0:

snort rule = snort rule + ’ pcre:”’ + pcreFromComment(

str(s)) + ’”;’

if len(snort rule) > 0:

snort rule = snort rule + ”)”

if len(snort rule) > 0:

signatures .append(snort rule)

snort rule = ””

def findSignatureMatches(sigs, rules lib) :

for sig in sigs . rules :

sig word total = len(sig .contents. split ())

sig letter total = len(sig .contents)

for rule in rules lib . rules :

rule word total = len(rule.contents. split ())

rule letter total = len(rule.contents)

count = 0

if len(rule .contents) > 0:

if sig .contents in string .punctuation:

pass # This deals with

strings are punctuation (.,:;)

else :

51

s = BoyerMooreHorspool(sig.contents, rule.contents)

if s > −1:

if rule .hdr proto == sig.hdr proto:

count = count + 1

for port rule in rule .hdr ports:

for sig port in sig .hdr ports:

if sig port == port rule:

#print ”Port: ” + sig port

if sig port != ’any’:

count = count + 1

else :

count = count + 0.5

if ((sig word total/rule word total) ∗ 100) > 75:

if ((sig letter total / rule letter total) ∗ 100) > 75:

addToMatchingSigs(rule.msg)

else :

pass

def buildSnortRule():

buildTCPIPProtocolDict()

buildSocketCalls()

buildExcludedStrs()

buildSnortSignatures()

stringSnortRules()

signatureRuleParser = CSnortRuleParser(signatures)

findSignatureMatches(signatureRuleParser, snortRuleFileParser)

printStats()

buildSnortRule()

52

Appendix B

NetworkFunction.py

#!/usr/bin/env python

from idaapi import ∗

from idc import ∗

from idautils import ∗

class NetworkFunction:

def init (self , name=None):

self .name = name

self .address = None

self .codexrefs = []

self . funcxrefs = []

self .funcxrefsaddr = []

self .setaddress()

self . setfuncxrefs ()

self .setfuncxrefsaddr()

self .setcodexrefsTo()

###

Name: setaddress()

input variables : Nothing

#

Returns: Nothing

#

Description: This function sets the address of

the function name.

###

def setaddress(self) :

if self .name:

self .address = LocByName(self.name)

else :

self .address = None

###

Name: setxrefs ()

input variables : Nothing

#

Returns: Nothing

#

Description: This function sets the self . xrefs list

to xrefs for the NetworkFunction. This function

calls the XrefsTo() IDAPython function call

to walk the xrefs .

###

53

def setfuncxrefs (self) :

for xref in XrefsTo(self .address, 0):

funcName = GetFunctionName(xref.frm)

if self . funcxrefs .count(funcName) < 1:

self . funcxrefs .append(funcName)

#self. funcxrefs . sort()

def setfuncxrefsaddr(self) :

#print hex(self .address)

for xref in XrefsTo(self .address, 0):

#print hex(xref.frm)

func = get func(xref.frm)

if func:

#print hex(func.startEA)

if self .funcxrefsaddr.count(func.startEA) < 1:

#print ”func: %s” % hex(func)

self .funcxrefsaddr.append(func.startEA)

#self. funcxrefs . sort()

def setcodexrefsTo(self) :

for xref in CodeRefsTo(self.address, 1):

#print xref

#print hex(xref)

if xref :

self .codexrefs.append(xref)

#self.codexrefs. sort()

###

Name: getname()

input variables : Nothing

#

Returns: name of NetworkFunction object

#

Description: This function returns the name of

NetworkFunction

###

def getname(self):

if self .name:

return self .name

else :

return None

###

Name: getaddress()

input variables : Nothing

#

Returns: address of NetworkFunction object

#

Description: This function returns the address of the

NetworkFunction

###

def getaddress(self) :

if self .address:

54

return self .address

else :

return None

###

Name: getxrefs ()

input variables : Nothing

#

Returns: list of xrefs for function

#

Description: This function returns a list of address

of xrefs to NetworkFunction

###

def getcodexrefs(self) :

return self .codexrefs

def getfuncxrefs(self , num=None):

if num:

return self . funcxrefs [num]

else :

return self . funcxrefs

def getfuncxrefsaddr(self , num=None):

if num:

return self .funcxrefsaddr[num]

else :

return self .funcxrefsaddr

def getfunc(self , addr=None):

if addr:

for s in self .codexrefs:

#print ”s: %s” % hex(s)

if GetFunctionName(s) == GetFunctionName(addr):

return GetFunctionName(s)

else :

return None

else :

return None

###

Name: addxrefs()

input variables : address

#

Returns: Boolean

#

Description: This function adds to self . xrefs ,

this allows future proofing. The function

returns True if the address was added

successfully , and False if not.

###

def addxrefs(self , address=None):

if address:

55

func name = GetFunctionName(address)

self . xrefs .append(address) # add item to list

self . xrefs . sort() # sort the list after ...

if self . funcxrefs .count(func name) < 1:

self . funcxrefs .append(func name)

self . funcxrefs . sort()

error out in future ∗∗ TODO ∗∗

def addstring(self , string=None):

if string :

self . nearstrings .append(string)

###

Name: matchxrefs()

input variables : address

#

Returns: Boolean

#

Description: This function searches the self . xrefs to

find a match for the given address.

Returns True if found otherwise False.

###

def matchxref(self , address=None):

if address: # if address is valid , search

for xref in self . xrefs :

#print xref

if str(address) == str(xref):

return True

return False # Looped through list and address was not found

else :

return False

###

Name: matchname()

input variables : name

#

Returns: Boolean

#

Description: This function is a utility function to

match the name of the NetworkFunction

object with the given name.

###

def matchname(self, name=None):

if name == self.name:

return True

else :

return False

###

Name: matchaddress()

input variables : address

#

Returns: Boolean

56

#

Description: This function is a utility function to match

the address of the NetworkFunction object

with the given address.

###

def matchaddress(self, address=None):

if str(address) == str(self .address):

return True

else :

return False

def matchfuncxrefs(self , func name=None):

if func name:

if func name in self . funcxrefs :

return True

return False

else :

return False

def matchfunc(self, addr=None):

if addr:

for s in self .codexrefs:

#print ”s: %s” % hex(s)

if GetFunctionName(s) == GetFunctionName(addr):

return True

else :

return False

else :

return False

57

Appendix C

Backtrace.py

Backtrace.py was used for some utility functionality, the entire script can be found at

https://bitbucket.org/Alexander_Hanel/backtrace. This appendix will only include

the function getArgs() that was used from backtrace.py.

def getArgs(self , address, count):

’get specified (by count) argument and address’

pushcount = 0

instructionMax = 10 + count

currAddress = PrevHead(address,minea=0)

while pushcount <= count and instructionMax != 0:

if ’push’ in GetDisasm(currAddress):

pushcount += 1

if pushcount == count:

return currAddress, GetOpnd(currAddress,0)

instructionMax −= 1

currAddress = PrevHead(currAddress,minea=0)

return None, None

https://bitbucket.org/Alexander_Hanel/backtrace

58

Appendix D

Boyer-Moore-Horspool Function

A public domain implementation of the Boyer-Moore-Horspool algorithm found at

http://code.activestate.com/recipes/117223-boyer-moore-horspool-string-searching/

was used for the Boyer-Moore algorithm. The function is listed below for completeness.

def BoyerMooreHorspool(pattern, text):

An implementation of Boyer−Moore−Horspool string searching.

#

This code is Public Domain.

#

m = len(pattern)

n = len(text)

if m > n: return −1

skip = []

for k in range(256): skip.append(m)

for k in range(m − 1): skip[ord(pattern[k])] = m − k − 1

skip = tuple(skip)

k = m − 1

while k < n:

j = m − 1; i = k

while j >= 0 and text[i] == pattern[j]:

j −= 1; i −= 1

if j == −1: return i + 1

k += skip[ord(text[k])]

return −1

http://code.activestate.com/recipes/117223-boyer-moore-horspool-string-searching/

59

Appendix E

Excluded Strings List

This string list is used to cut down the false positives when searching for strings in a

binary to use for the Snort rule content option. Most of the strings are compiler generated

or used for language specifics used internally by the binary and runtime environment and

are typically not exposed on a network.

kernel32

GetProcAddress

LoadLibraryA

ExitThread

msvcrt

system

IsProcessorFeaturePresent

KERNEL32

runtime error

RegisterServiceProcess

Microsoft Visual C++ Runtime Library

Runtime Error!\n\nProgram:

Runtime Error!Program:

<program name unknown>

GetLastActivePopup

GetActiveWindow

MessageBoxA

InternetGetConnectedStateEx

IcmpSendEcho

60

IcmpCloseHandle

IcmpCreateFile

0123456789abcdefghijklmnopqrstuvwxyz

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789+- .*#hlL^ztjqZw’&@I

Process32Next

Process32First

CreateToolhelp32Snapshot

RegisterServiceProcess

runtime error

abnormal program termination

main thread

ActivateKeyboardLayout

AdjustWindowRect

AdjustWindowRectEx

AlignRects

AllowForegroundActivation

AllowSetForegroundWindow

AnimateWindow

AnyPopup

AppendMenuA

AppendMenuW

ArrangeIconicWindows

AttachThreadInput

...

61

Appendix F

Snort Rules Used for the Experiment

The Snort rules used in this experiment can be found:

F.1 Snort Community rules:

http://www.snort.org/snort-rules/

app-detect.rules

attack-responses.rules

backdoor.rules

bad-traffic.rules

blacklist.rules

botnet-cnc.rules

browser-chrome.rules

browser-firefox.rules

browser-ie.rules

browser-other.rules

browser-plugins.rules

browser-webkit.rules

chat.rules

content-replace.rules

ddos.rules

deleted.rules

dns.rules

dos.rules

experimental.rules

exploit-kit.rules

exploit.rules

file-executable.rules

file-flash.rules

file-identify.rules

file-image.rules

file-java.rules

file-multimedia.rules

file-office.rules

file-other.rules

file-pdf.rules

finger.rules

ftp.rules

icmp-info.rules

icmp.rules

imap.rules

indicator-compromise.rules

62

indicator-obfuscation.rules

indicator-scan.rules

indicator-shellcode.rules

info.rules

local.rules

malware-backdoor.rules

malware-cnc.rules

malware-other.rules

malware-tools.rules

misc.rules

multimedia.rules

mysql.rules

netbios.rules

nntp.rules

oracle.rules

os-linux.rules

os-mobile.rules

os-other.rules

os-solaris.rules

os-windows.rules

other-ids.rules

p2p.rules

phishing-spam.rules

policy-multimedia.rules

policy-other.rules

policy-social.rules

policy-spam.rules

policy.rules

pop2.rules

pop3.rules

protocol-dns.rules

protocol-finger.rules

protocol-ftp.rules

protocol-icmp.rules

protocol-imap.rules

protocol-nntp.rules

protocol-pop.rules

protocol-rpc.rules

protocol-scada.rules

protocol-services.rules

protocol-snmp.rules

protocol-telnet.rules

protocol-tftp.rules

protocol-voip.rules

pua-adware.rules

pua-other.rules

pua-p2p.rules

pua-toolbars.rules

rpc.rules

rservices.rules

scada.rules

scan.rules

server-apache.rules

server-iis.rules

server-mail.rules

server-mssql.rules

63

server-mysql.rules

server-oracle.rules

server-other.rules

server-samba.rules

server-webapp.rules

shellcode.rules

smtp.rules

snmp.rules

specific-threats.rules

spyware-put.rules

sql.rules

telnet.rules

tftp.rules

virus.rules

voip.rules

web-activex.rules

web-attacks.rules

web-cgi.rules

web-client.rules

web-coldfusion.rules

web-frontpage.rules

web-iis.rules

web-misc.rules

web-php.rules

x11.rules

F.2 Bleeding Snort rules:

http://www.bleedingsnort.com/downloads/bleeding.rules.tar.gz

bleeding-attack_response.rules

bleeding-dos.rules

bleeding-drop-BLOCK.rules

bleeding-drop.rules

bleeding-dshield-BLOCK.rules

bleeding-dshield.rules

bleeding-exploit.rules

bleeding-game.rules

bleeding-inappropriate.rules

bleeding-malware.rules

bleeding-p2p.rules

bleeding-policy.rules

bleeding-scan.rules

bleeding-virus.rules

bleeding-web.rules

bleeding.rules

F.3 Emerging Threats Snort rules:

http://www.emergingthreats.net/open-source/etopen-ruleset/

64

emerging-deleted.rules

emerging-dns.rules

emerging-dos.rules

emerging-drop.rules

emerging-dshield.rules

emerging-exploit.rules

emerging-ftp.rules

emerging-games.rules

emerging-icmp.rules

emerging-icmp_info.rules

emerging-imap.rules

emerging-inappropriate.rules

emerging-malware.rules

emerging-misc.rules

emerging-mobile_malware.rules

emerging-netbios.rules

emerging-p2p.rules

emerging-policy.rules

emerging-pop3.rules

emerging-rbn-malvertisers.rules

emerging-rbn.rules

emerging-rpc.rules

emerging-scada.rules

emerging-scan.rules

emerging-shellcode.rules

emerging-smtp.rules

emerging-snmp.rules

emerging-sql.rules

emerging-telnet.rules

emerging-tftp.rules

emerging-tor.rules

emerging-trojan.rules

emerging-user_agents.rules

emerging-virus.rules

emerging-voip.rules

emerging-web_client.rules

emerging-web_server.rules

emerging-web_specific_apps.rules

emerging-worm.rules

F.4 Vorant IRC Bot Snort rules:

http://www.vorant.com/files/irc-bot-snort-rules.txt}

irc-bot-snort-rules.rules

	Automated Reverse Engineering of Malware to Develop Network Signatures to Match with Known Network Signatures
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	ACRONYMS
	INTRODUCTION
	Related Works

	BINARY OBFUSCATION
	REVERSE ENGINEERING
	Static Analysis
	Dynamic Analysis
	Reverse Engineering Tools

	INFORMATION CONTAINED IN BINARY EXECUTABLES
	Static Strings
	System Calls
	Other Static Data

	NETWORK SIGNATURES
	Intrusion Detection Systems
	Snort
	Anatomy of a Snort Rule

	BUILDING SIGNATURES
	Developing Network Signatures with Static Analysis
	Design
	Implementation
	Building General Signatures Based on the String Data as a Catch-all
	Matching Signatures
	Results

	FUTURE WORK AND DIRECTIONS
	CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A SinemaThesis.py
	Appendix B NetworkFunction.py
	Appendix C Backtrace.py
	Appendix D Boyer-Moore-Horspool Function
	Appendix E Excluded Strings List
	Appendix F Snort Rules Used for the Experiment
	Snort Community rules:
	Bleeding Snort rules:
	Emerging Threats Snort rules:
	Vorant IRC Bot Snort rules:

