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ABSTRACT 
 
 

Advancing Digital Soil Mapping and Assessment in Arid Landscapes 
 
 

by 
 
 

Colby W. Brungard, Doctor of Philosophy 
 

Utah State University, 2014 
 
 
Major Professor: Dr. Janis L. Boettinger 
Department: Plants, Soils and Climate 
 
 

There is a need to understand the spatial distribution of soil taxonomic classes, the 

spatial distribution of potential biological soil crust, and soil properties related to wind erosion 

to address land use and management decisions in arid and semi-arid areas of the western USA. 

Digital soil mapping (DSM) can provide this information.  

Chapter 2 compared multiple DSM functions and environmental covariate sets at three 

geographically distinct semi-arid study areas to identify combinations that would best predict 

soil taxonomic classes. No single model or type of model was consistently the most accurate 

classifier for all three areas. The use of the “most important” variables consistently resulted in 

the highest model accuracies for all study areas. Overall classification accuracy was largely 

dependent upon the number of taxonomic classes and the distribution of pedons between 

taxonomic classes. Individual class accuracy was dependent upon the distribution of pedons in 

each class. Model accuracy could be increased by increasing the number of pedon observations 

or decreasing the number of taxonomic classes.  

Potential biological soil crust level of development (LOD) classes were predicted over a 

large area surrounding Canyonlands National Park in Chapter 3. The moderate LOD class was 



iii 
 

modeled with reasonable accuracy. The low and high LOD classes were modeled with poor 

accuracy. Prediction accuracy could likely be improved through the use of additional covariates. 

Spatial predictions of LOD classes may be useful for assessing the impact of past land uses on 

biological soil crusts.  

Threshold friction velocity (TFV) was measured and then correlated with other, easier-

to-measure soil properties in Chapter 4. Only soils with alluvial surficial rocks or weak physical 

crusts reached TFV in undisturbed conditions. All soil surfaces reached TFV after disturbance. 

Soils with weak physical crusts produced the most sediment. Future work on wind erosion in the 

eastern Great Basin should focus on non-crusted/weakly crusted soils and soils formed in 

alluvium overlying lacustrine materials. Soils with other crust types are likely not susceptible to 

wind erosion. Threshold friction velocity in undisturbed soils with weak physical crusts and 

undisturbed soils with surficial rocks was predicted using a combination of penetrometer, rock 

cover, and silt measurements.  

(170 pages) 
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PUBLIC ABSTRACT 
 
 

Advancing Digital Soil Mapping and Assessment in Arid Landscapes 
 
 

Colby W. Brungard 
 
 

Soil information is required for arid and semi-arid land management decisions such as 

permitting livestock grazing or planning vegetation restoration projects. However, traditional 

soil mapping methods may not provide adequate soil information, because the scale of mapping 

often requires dissimilar soils to be grouped together and there are no estimates of map 

uncertainty. Traditional methods are also often too costly or impractical to implement in large, 

remote, public arid and semi-arid rangelands. Digital soil mapping (DSM) may be able to 

overcome these limitations. Digital soil mapping is the creation of pixel-based soil maps using 

quantitative statistical models that relate easily measured biophysical environmental variables 

derived from geospatial data (e.g., slope and aspect from a digital elevation model) with more 

difficult to measure soil observations. 

We investigated DSM for producing soil information useful for land management 

decisions. Specifically we: 1) compared multiple DSM methods for predicting soil taxonomic 

classes, 2) predicted the spatial distribution of potential biological soil crust classes, and 3) 

measured threshold friction velocity, a necessary input for wind erosion modeling.  

Many existing soil use and management decisions are based on soil taxonomic classes; 

thus digital soil taxonomic class maps are useful for quantitative decision making. However, 

there are a large number of available DSM methods to produce such maps. Understanding 

which DSM method produces the most accurate soil taxonomic maps would contribute to 

robust management decisions. Comparison of DSM methods revealed that prediction accuracy 
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was more dependent upon the number of taxonomic classes and the number of observations of 

each taxonomic class, than the specific method chosen.  

Biological soil crusts (BSC) are important organisms in arid lands, but are highly 

susceptible to surface disturbance. Maps of BSC potential (BSC in the absence of disturbance) 

would be useful for understanding the impact of different land uses on BSC distribution. Digital 

soil mapping can be used to make such maps. We produced maps of low, moderate, and high 

potential BSC level-of-development classes. Accuracy assessment revealed that only the 

moderate level-of-development class was reliable. The map of the moderate BSC level-of-

development class is anticipated to be useful for assessing the impact of land use practices on 

BSC distribution.  

Proposed pumping in western Utah could reduce groundwater, thus reducing 

vegetation cover and exposing more soil surface area to wind erosion. Evaluating the potential 

impacts of proposed pumping requires the use of wind erosion models. Such models require 

inputs of threshold friction velocity (TFV), which is the minimum turbulence required to initiate 

wind erosion. However, TFV is difficult to measure, and we sought to predict TFV from easier to 

measure soil surface properties. We found TFV to be dependent upon soil surface type. Only 

undisturbed soils with weak physical crusts and some undisturbed soils with surficial rock 

fragments reached TFV. All soil surfaces reached TFV when disturbed. On average, soils with 

weak physical crusts were more susceptible to wind erosion, but great variability between 

surface types was found. Threshold friction velocity in undisturbed soils with weak physical 

crusts and undisturbed soils with surficial rock fragments was predicted using a combination of 

penetrometer force, percent rock cover, and silt concentration.  
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CHAPTER 1 
  

INTRODUCTION 
 
 

Soil information is critical to address social, economic and environmental issues because 

soils exert fundamental influences on ecosystem properties and processes (Baveye et al., 2011; 

Grunwald et al., 2011). In arid and semi-arid rangelands, soil information is required for land use 

and management decisions such as permitting livestock grazing or planning vegetation 

restoration projects. Traditionally, soil information is produced using manual air photo 

interpretation to identify areas of a landscape that share similar soil types. However, in arid and 

semi-arid rangelands traditional soil mapping methods may not provide the information 

necessary to assess land management decisions because the scale of mapping often requires 

dissimilar soils to be grouped together (Zhu et al., 2001). Additionally traditional soil mapping 

methods do not provide estimates of map uncertainty and are often too costly or impractical to 

implement in large, remote, public arid and semi-arid rangelands. Digital soil mapping (DSM) 

may be able to overcome these limitations.  

Digital soil mapping is the creation of spatially explicit soil information with estimated 

error from quantitative relationships between easily measured environmental covariates and 

more difficult to measure soil observations (Lagacherie, 2008; McBratney et al., 2003; Omuto et 

al., 2013). Environmental covariates are spatially explicit biogeophysical properties derived from 

remote sensing (e.g., surface reflectance from Landsat ETM+ imagery), digital elevation models 

(e.g., slope and aspect), and other geospatial information (e.g., geology maps). Soil observations 

are soil measurements obtained by field sampling and/or laboratory analysis. 

Digital soil mapping builds upon the fundamental soil state-factor equation:  

𝑠 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡)  (1-1) 
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which states that soil (s) is a function of climate (cl), organisms (o), relief (r), parent material (p) 

and time (t) (Jenny, 1941). Digital soil mapping adapts Equation 1-1 for quantitative spatial 

prediction to: 

𝑠𝑎|𝑠𝑐 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) + 𝜀  (1-2) 

where sa|sc are soil attributes (sa, e.g. percent clay) or classes (sc, e.g. soil depth classes), f is an 

empirical function, (𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) are soil forming factors (soil (s), climate (cl), organisms (o), 

relief (r), parent material (p), age (a) and spatial location (n)) represented by environmental 

covariates, and ε is estimated error (McBratney et al., 2003). Soil is included on the right hand 

side of the equation as existing soil information (i.e., soil maps) can be used to predict other soil 

classes or properties (McBratney et al., 2003).   

The objectives of this dissertation were to investigate the application of DSM techniques 

to produce spatially explicit soil information in arid and semi-arid rangelands in the western 

United States, with a particular focus on semi-arid rangelands in Utah. Digital soil mapping was 

used to predict soil taxonomic classes in three distinct semi-arid landscapes in the western USA 

(Chapter 2). Based on earlier work predicting the level of development of biological soil crusts in 

Canyonlands National Park (Brungard and Boettinger, 2012), DSM was applied to predict the 

spatial distribution of  potential biological soil crust in an area surrounding the park (Chapter 3). 

The measurement and prediction of threshold friction velocity, a necessary input for spatially 

explicit wind erosion modeling (Okin and Gillette, 2004), was also investigated (Chapter 4).   

Chapter 2 compares multiple DSM functions (f, Equation 1-2) and environmental 

covariate sets representative of s,c,o,r,p,a,n factors (Equation 1-2) for predicting soil taxonomic 

class distribution at three geographically distinct semi-arid study areas in the western USA 

(southern New Mexico, southwestern Utah, and northeastern Wyoming). Key components of 

DSM are the function and environmental covariates used to predict soil classes. Many different 
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environmental covariates and functions are available (McBratney et al., 2003), but there is a lack 

of information as to which sets of covariates and functions may be optimal in specific 

landscapes. Thus, the objectives of Chapter 2 were to compare multiple functions and 

environmental covariate sets to identify combinations that would best predict soil taxonomic 

classes in semi-arid rangelands.  

Chapter 3 investigates the application of DSM to predicting potential biological soil crust 

(BSC) level of development classes. Biological soil crusts are communities of cyanobacteria, 

microfungi, lichens, and mosses that form at the soil surface (Belnap et al., 2001). In arid and 

semi-arid areas they stabilize soil, reduce wind and water erosion, and are important sources of 

soil N and organic C (Belnap, 2002;  Belnap and Gillette, 1998; Bowker and Belnap, 2008). 

Because BSCs occur at the soil surface, BSCs are susceptible to surface disturbance (Belnap and 

Eldridge, 2003; Belnap et al., 2001; Kuske et al., 2012). As soil surface disturbance is often a 

direct result of land use practices and because recovery of BSCs from surface disturbance can be 

a lengthy process (Belnap, 1993), it would be useful to understand how past disturbance has 

affected BSC distribution. Such understanding requires knowledge of actual (existing) and 

potential BSC distribution. Actual BSC can be observed by field sampling. Potential BSC (BSC in 

the absence of major soil surface disturbance) must either be observed before soil surface 

disturbance occurs or inferred from an undisturbed area. Lack of pre-disturbance BSC 

observation on the Colorado Plateau in eastern Utah requires potential BSC be inferred from 

undisturbed areas. Canyonlands National Park has been protected from livestock grazing and 

mineral exploration for about 50 years (1964 - 2014), making it one of the best available areas 

on the Colorado Plateau to assess potential BSC development in the absence of major soil 

surface disturbance. Biological soil crust observations from Canyonlands National Park and 

environmental covariates representative of the factors controlling BSC distribution were 
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combined to predict potential BSC distribution over approximately 8300 km2 surrounding 

Canyonlands National Park.  

In contrast to Chapters 2 and 3, Chapter 4 investigates the measurement of threshold 

friction velocity (the minimum turbulence required for wind erosion to occur) and soil attributes 

(Sa, Equation 1-2) related to threshold friction velocity, as a first step towards spatially explicit 

wind erosion modeling. Wind erosion is a natural phenomenon in drylands worldwide. 

Anthropogenic surface disturbance and groundwater withdrawal can exacerbate wind erosion 

(Gill, 1996). Proposed groundwater pumping in the eastern Great Basin (Southern Nevada Water 

Authority Water Resource Plan 2009, http://www.snwa.com/assets/pdf/wr_plan.pdf) could 

influence soil wind erosion. To understand the spatial variability of soil wind erosion and to 

assess both, the impacts of anthropogenic soil surface disturbance, and the potential influences 

of ground water withdrawal on wind erosion in the eastern Great Basin, a spatially explicit wind 

erosion model could be used (Okin, 2008; Okin and Gillette, 2004). This model requires spatially 

explicit inputs of threshold friction velocity (TFV). Spatially explicit estimates of TFV could likely 

be produced using a DSM approach. Digital soil mapping of TFV requires multiple measurements 

of TFV, especially for large and heterogeneous areas, but TFV is time consuming and difficult to 

accurately measure. A method to estimate TFV from alternate measurements would be useful. 

Thus the objectives of Chapter 4 were to measure TFV in eastern Great Basin soils and to 

develop relationships between TFV and other easy-to-measure soil surface properties as a first 

step towards modeling wind erosion in the eastern Great Basin. 
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CHAPTER 2 
 

MACHINE LEARNING FOR PREDICTING SOIL CLASSES IN THREE SEMI-ARID LANDSCAPES1 
 
 
Abstract 
 

Mapping the spatial distribution of soil taxonomic classes is important for informing soil 

use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial 

distribution of soil taxonomic classes. Key components of DSM are the method and the set of 

variables, or environmental covariates, used to predict soil classes. Machine learning is a general 

term for a broad set of statistical models and algorithms. Many different machine learning 

models have been applied in the literature and there are different approaches for selecting 

variables for DSM. However, there is little guidance as to which, if any, machine learning model 

and variable set might be optimal for predicting soil classes across different landscapes.  

Our objective was to compare multiple machine learning methods and variable sets for 

predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western 

United States of America (southern New Mexico, southwestern Utah, and northeastern 

Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each 

study area were selected using conditioned Latin hypercube sampling (cLHS). Tested models 

included clustering algorithms, linear models, neural networks, tree based methods and support 

vector machine classifiers. Tested predictive variables were derived from digital elevation 

models and Landsat imagery, and were divided into three different sets: 1) variables selected a 

priori by soil scientists familiar with each area for input into cLHS, 2) the variables in set 1 plus 

                                                           
1 Co-authored by Colby W. Brungard and Janis L. Boettinger. Utah State University 4820 Old Main Hill, 

Logan, UT, 8432-4820. Michael C. Duniway. U.S. Geological Survey, Southwest Biological Science Center, 
2290 SW Resource Blvd, Moab, UT 84532. Skye A. Wills. National Soil Survey Center, Natural Resources 
Conservation Service – United States Department of Agriculture. 100 Centennial Mall North, Lincoln, NE 
68508. Thomas C. Edwards, Jr. U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit  
and  Department of Wildland Resources, Utah State University, Logan, UT 84322. 
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113 additional variables, and 3) variables selected by the classification method random forests 

as the “most important”.  

We were unable to identify a single model or type of model which was consistently the 

most accurate classifier for all three areas. However, random forests and bagged classification 

trees were among the three most accurate models for two of the three study areas. The use of 

the “most important” variables (variable set 3) consistently resulted in the highest model 

accuracies for all study areas. Overall classification accuracy in each area was largely dependent 

upon the number of soil taxonomic classes and the frequency distribution of pedon 

observations between taxonomic classes. Individual subgroup class accuracy was dependent 

upon the frequency distribution of soil pedon observations in each taxonomic class.   

Results suggest that several machine learning models are applicable for DSM, and that 

the model that returns the highest classification accuracy be used for subsequent spatial 

prediction. Results also indicate that variables selected by soil scientists as cLHS input variables 

may not be optimal for modeling soil classes and that some form of statistical variable selection 

should be applied. The number of soil classes is related to the inherent variability of a given 

area. The imbalance of soil pedon observations between classes is likely related to cLHS. 

Imbalanced frequency distributions of soil pedon observations between classes must be 

addressed to improve model accuracy. Solutions include increasing the number of soil pedon 

observations in classes with few observations or decreasing the number of classes.  

 
1. Introduction 
 

Maps that predict the spatial distribution of soil taxonomic classes are of interest in 

many countries because they inform soil use and management decisions. Digital soil mapping 

(DSM) of soil taxonomic classes has many advantages over conventional soil mapping 

approaches as it is better able to capture observed spatial variability and can reduce the need to 
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aggregate soil types based on a set mapping scale (Zhu et al., 2001). A key component of any 

DSM activity is the method used to define the relationship between soil observations and 

environmental variables. Many such methods have been investigated including expert systems 

(Smith et al., 2012, Van Zijl et al., 2012, Zhu et al., 2001), unsupervised classification (Boruvka et 

al., 2008; Triantifilis et al., 2012) and machine learning (Behrens and Scholten, 2006; Bui and 

Moran, 2003; Kim et al., 2012; Stum et al., 2010).  

Machine learning is a general term for a broad set of models and algorithms used to 

discover patterns in data and to make predictions (Witten et al., 2011). Although machine 

learning is most often applied to large databases, it is an attractive tool for learning about and 

making spatial predictions of soil classes because knowledge about relationships between soil 

classes and environmental variables is often poorly understood (Grunwald, 2006). Machine 

learning techniques have been used to model soil depth classes (Boer et al., 1996), biological soil 

crust classes (Brungard and Boettinger, 2012), soil drainage classes (Campling et al., 2002; Liu et 

al., 2008) and the presence/absence of diagnostic soil horizons (Jafari et al., 2012).  

Two general approaches have been applied to predicting soil taxonomic classes using 

machine learning. The first approach attempts to find and extract soil class-landscape 

relationships from existing digitized soil polygon maps when the exact locations (GPS 

coordinates) of soil pedon observations are unknown (Behrens et al., 2005; Grinand et al., 2008; 

Subburayalu and Slater, 2013). The second approach attempts to construct soil class-landscape 

relationships from soil pedon observations made by field sampling at known locations (Hengl et 

al., 2007; Kim et al., 2012; Stum et al., 2010). The choice of approach largely depends on the 

availability of soil pedon observations with known locations.  

There are a large number of available machine learning techniques (Kuhn and Johnson, 

2013), but there is a lack of information as to which machine learning technique may be optimal 
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in specific landscapes. Of the available peer-reviewed literature that used soil pedon 

observations to construct soil class-landscape relationships (Barthold et al., 2013; Jafari et al., 

2012; Kempen et al., 2012) few compared more than two machine learning models and none 

compared multiple machine learning models at more than one study area. The objective of this 

study was thus to compare multiple machine learning techniques for predicting subgroup 

classes in Soil Taxonomy (Soil Survey Staff, 1999) using soil pedon observations at three 

geographically distinct areas in the western United States of America (southern New Mexico, 

southwestern Utah, and northeastern Wyoming; Fig. 2-1). Each area was the focus of a digital 

soil mapping study and represents a broad range of semi-arid landscapes that have different 

soil-landscape relationships. Machine learning techniques were selected to represent several 

classes of machine learning methods, including discriminant analysis, classification trees, 

multinomial logistic regression, neural networks, and clustering methods.  

Recognizing that model performance depends on the variables used to represent soil-

landscape relationships, we also tested the influence of three groups of variables: 1) variables 

selected a priori by soil scientists familiar with each area (expert knowledge; Zhu et al., 2001), 2) 

the variables in set 1 plus 113 additional variables derived from digital elevation models and 

Landsat imagery at several resolutions that represented a large suite of potentially useful 

variables, and 3) a subset of variables identified as “most important” by the classification 

method random forests from sets 1 and 2. 

 Formally, we had two objectives: 1) test multiple machine learning methods to identify 

accurate classifiers; 2) compare multiple variable sets to identify those which resulted in the 

most accurate classification.  
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2. Methods 
  
2.1. Study Areas 
 
2.1.1 New Mexico (NM) 
 

The New Mexico (NM) study area is located on Otero Mesa in the northern reaches of 

the Chihuahuan Desert, approximately 130 km northeast of El Paso, TX, USA. Centered at 105.6° 

W longitude, 32.5° N latitude (Fig. 2-1) the area is approximately 190 km2. The underlying 

geology is primarily limestone and sandstone (Green and Jones, 1997). Soil parent material is 

primarily calcareous alluvium but also includes eolian sands and residuum.  Vegetation is a mix 

of shrublands (primarily creosote bush [Larrea tridentata] and tar bush [Florencia cernua]) and 

grasslands (primarily black grama [Boutaluoa eriopoda] and tobosa [Pleuraphis mutica Buckley]). 

Elevation ranges from 1430 to 1915 m. The soil moisture regime is aridic bordering on ustic. 

Mean annual precipitation is 354 mm, the majority of the precipitation arrives between June 

and December, and mean annual temperature is approximately 15 °C (PRISM Climate Group, 

Oregon State University, http://prism.oregonstate.edu/, accessed 4 March 2014).  

 
2.1.2 Utah (UT) 
 

The Utah (UT) study area is located in the eastern Great Basin physiographic province, 

approximately 14 km southwest of Milford, UT, USA.  Centered at 113° W longitude and 38° N 

latitude the area is approximately 300 km2 of mountainous terrain and associated alluvial fans 

formed from a complex mix of limestone, dolomite, quartzite, basalt, quartz monzonite, quartz 

latite, shale, sandstone, andesite, rhyolite, granite, and ash flows (Best et al., 1989). Elevation 

ranges from 1540 to 2100 m. Vegetation consists of shrubs (primarily Wyoming big sagebrush 

[Artemisia tridentata] and black sagebrush [Artemisia nova]) and bunch grasses (Indian ricegrass 

[Achnatherum hymenoides]) at lower elevations, while trees (primarily Utah Juniper [Juniperus 

osteosperma] and Singleleaf Pinyon [Pinus monophylla]) dominate higher elevations. The soil 

http://prism.oregonstate.edu/
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moisture regime is aridic bordering on xeric in lower elevations and xeric in higher elevations. 

Mean annual temperature and precipitation for the nearest weather station (Milford, UT) is 

11°C and 200 mm, respectively, the majority of the precipitation arrives in April and October 

(Western Regional Climate Center, 2013).  

 
2.1.3 Wyoming (WY) 
 

The Wyoming (WY) study area is located in the Powder River Basin of Wyoming, USA, 

part of the Northern Rolling High Plains (United States Department of Agriculture, 2006), 

approximately 43 km southwest from Gillette, WY. Centered at approximately 106° W longitude 

and 44° N latitude the area is approximately 296 km2. Geology in the area consists of variegated 

mudstone, sandstone, conglomerate, limestone, shale and coal (Cole and Boettinger, 2006; 

Green and Drouillard, 1994) . Topography is a mix of bedrock-controlled, low rolling hills and 

badlands (locally known as the “Powder River Breaks”) a system of steep, bedrock-controlled 

hills and gullies (gullies commonly > 6 m deep) with extremely high rates of erosion and low 

vegetation cover (Cole, 2004). Vegetation is characterized by a mixture of mid-stature cool 

season grasslands (bluebunch wheatgrass [Pseudoroegneria spicata] and needle-and-thread 

[Hesperostipa comata]) and sagebrush shrublands (Wyoming big sagebrush [Artemisia 

tridentata]) (United States Department of Agriculture, 2006). Elevation ranges from 1220 and 

1600 m. The soil moisture regime is aridic bordering on ustic. Mean annual temperature and 

precipitation is 8°C and 310 mm, respectively, with the majority of the precipitation falling 

between April and October (Western Regional Climate Center, 2013).  

 
2.2 Sampling 
 

Sampling locations for each study area were selected using conditioned Latin hypercube 

sampling (cLHS) (Minasny and McBratney, 2006). Variables used for input into cLHS were chosen 
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by soil scientists familiar with each study area and assumed to best represent soil-landscape 

relationships and anticipated soil forming processes in each area (variable set 1). The soil 

scientists who selected cLHS input variables for the NM study area had worked inside the study 

area and in similar landscapes for approximately ten years. The soil scientist who selected cLHS 

input variables for the UT study area had visited the area, performed three months of field 

sampling in a nearby area, and conducted a literature review to identify important variables in 

similar landscapes. The soil scientists who selected cLHS input variables for the WY area were 

Natural Resource Conservation Service (NRCS) soil scientists who were conducting traditional 

soil surveys in similar landscapes around the study area.  

In each area, soils were manually excavated to a depth of at least 100 cm, or root 

limiting layer if shallower, and were sampled and described according to Schoeneberger et al. 

(2003).  Soil Taxonomy (Soil Survey Staff, 1999) defines the following hierarchical levels of 

classification: order, suborder, great group, subgroup, and family. We chose to model at the 

subgroup class as this level of classification existed for the soils described in each study area. 

Rock outcrop and Badland were also included at the subgroup level. For each area, subgroup 

classes with only 1 observation were grouped with the most similar subgroup class. 

 
2.2.1 New Mexico cLHS 
 

Variables used for cLHS were derived from an October 2006 Landsat 5 TM image and a 

5-m Lidar digital elevation model (DEM). Imagery variables from Landsat were band 5 (short 

wave infrared) plus band 2 (green), band 5 minus band 2, and a normalized band 5/2 ratio 

([Band 5-Band 2]/[Band 5+Band 2]). Terrain attributes were aspect in degrees, elevation, slope, 

and a multipath wetness index (Shi, 2013) calculated at four slope resolutions (5, 10, 25, 35 m) 

from the DEM.  A categorical terrain classification was also used. Imagery variables were chosen 

for use in cLHS because they had been shown to correlate with soil surface properties. Slope and 
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the multipath wetness index, were chosen to represent potential soil moisture distribution.  

Aspect and elevation were chosen to represent microclimate and potential soil moisture (higher 

elevation, north-facing areas often have more potential soil moisture than lower elevation, 

south-facing areas. The terrain classification consisted of seven classes related to elevation and 

slope.  

Initially 200 potential sampling sites were identified, but because of logistical constraints 

it was impossible to visit all 200 sites. To select a smaller set of representative sampling 

locations cLHS was used to produce a hierarchical nested set of 175, 150, 125 and 100 potential 

sampling sites from the original 200 sites. All sites in the 100 subset were visited, plus an 

additional three sites. In total 103 soil sampling locations were observed (Fig. 2-2). Each soil 

observation was classified to family level in Soil Taxonomy. Ten subgroup classes were extracted 

from family names (Table 2-1).  

 
2.2.2 Utah cLHS 
 

Variables used for cLHS were derived from an atmospherically corrected (Chavez, 1996) 

July 31st 2000 Landsat 7 ETM+ image and a 10-m hydrologically correct DEM. A soil adjusted 

vegetation index (SAVI) was derived from the imagery using an L value of 0.5 (Heute, 1988). 

Terrain attributes were slope, inverse wetness index (Tarboton, 2013) and transformed aspect 

(a measure of northness vs. southness). Land cover and geologic type were also used. Land 

cover type was obtained from the Southwest Regional Gap Analysis Program (Lowry et al., 

2007). Geology was obtained from a United States Geological Survey 1:50,000 geology map 

(Best et al., 1989). Land cover and SAVI were chosen because it was anticipated that vegetation 

type and density was correlated with soil properties such as soil depth. Geologic type was 

chosen because the highly complex geology in this area was anticipated to exert a strong control 
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on potential pedogenesis. Terrain variables were chosen to represent microclimate, because 

microclimate heavily influences soil moisture, which in turn influences pedogenesis.  

 Three hundred locations were visited. Soils were excavated, described, and classified to 

family level. Subgroup classes were extracted from family names. Three soil observations were 

excluded from modeling as they were located in highly disturbed areas. This resulted in 297 soil 

observations in 15 subgroup classes (Fig. 2-3, Table 2-1).  

 
2.2.3 Wyoming cLHS 
 

Variables used for cLHS were derived from a Landsat 5 TM image and a 2-m Lidar DEM. 

Imagery variables were Normalized Difference Vegetation Index (NDVI) and band ratios 5/2 and 

5/7. Terrain derivatives were topographic wetness index, topographic position index, stream 

power index (Wilson and Gallant, 2000) and distance to the nearest road. All variables for cLHS, 

except distance to the nearest road, were selected using the Optimum Index Factor (OIF). OIF 

identifies the combination of input variables that maximize variability, with the lowest 

correlation among variables (Kienast-Brown and Boettinger, 2010). Distance to the nearest road 

was included for a vegetation sampling project not directly related to soil mapping.   

Similar to the NM study area, cLHS was used to select hierarchical nested sets of 150, 

100, and 50 potential sampling sites from 200 original sampling sites. Fifty-seven soil pedon 

observations were made: the set of 50 nested cLHS samples plus an additional seven pedon 

observations (Fig. 2-4). Each soil was excavated, described, and assigned to a soil series. 

Subgroup classes were extracted from each series using official soil series descriptions 

(https://soilseries.sc.egov.usda.gov/osdname.asp). This resulted in 5 subgroup classes (Table 2-

1). 

 
 

https://soilseries.sc.egov.usda.gov/osdname.asp
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2.3 Additional variables 
 

Additional terrain variables were created from a 5-m Lidar derived DEM for the NM 

study area, a 5-m auto-correlated DEM (Utah Automated Geographic Reference Center, 2013) 

for the UT study area and resampling the 2-m WY Lidar DEM to 5-m. Terrain variables were 

created in R (R Core Team, 2012) with the RSAGA package (Brenning, 2008). For each area the 

following terrain variables were created: slope, total curvature, plan and profile curvature, SAGA 

wetness index, catchment area, catchment slope, modified catchment area, convergence index, 

morphometric protection index (Yokoyama et al., 2002), multi-resolution index of valley bottom 

flatness and multi-resolution index of ridge top flatness (Gallant and Dowling, 2003), 

topographic position index, and terrain ruggedness index. Plan and profile curvature represent 

the rate of change parallel and perpendicular to the slope, respectively (Wilson and Gallant 

2000). Total curvature is the curvature of the surface itself (Wilson and Gallant 2000). 

Definitions of individual terrain variables can be found in Wilson and Gallant (2000) and Hengl 

and Reuter (2008).   

Estimated potential direct, diffuse, total, and the duration of incoming solar radiation of 

the approximate growing season in each area were also calculated. All potential incoming solar 

radiation was calculated for clear sky and standard atmosphere conditions, and represent 

potential solar radiation in the absence of clouds or significant amounts of atmospheric 

aerosols. All terrain and potential solar radiation variables were calculated at 5, 10, 30, 50, and 

100 m cell sizes. Digital elevation models with 10, 30, 50, and 100 m cell sizes were created from 

the 5-m DEMs by averaging over blocks of cells at these resolutions. The morphometric 

protection index calculated at 100-m cell size was not used because at this resolution there was 

no variance in the variable. This resulted in 89 terrain variables for each area.   
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For each area, we selected Landsat 5 TM imagery from 2 different dates. Each image 

pair consisted of an image acquired during a season of peak vegetation growth and a season of 

dormant vegetation. Each image was atmospherically corrected using the “Cost without Tau” 

method (Chavez, 1996) in the R Landsat package (Goslee, 2011). From each image the following 

variables were created: normalized band ratios 5/2, 5/7, 3/1, and 1/7; NDVI; six bands of the 

tasseled cap transformation (Crist and Kauth, 1986); and greenness above bare soil (GRABS) 

index (Jensen, 2005). This resulted in 24 imagery variables for each area. Total additional terrain 

and imagery variables for each area were 113 (variable set 2). 

These variables represent a wide range of topographic and spectral derivatives 

commonly used for DSM in the western USA (Boettinger, 2010), but the selected variables are 

not exhaustive of the potentially available variables. For example, in other DSM studies, Heung 

et al. (2014) included distance to the nearest stream/river and relative hydrological slope 

position. Behrens et al. (2010) used elevation differences from the center pixel of a DEM as 

predictor variables. Xiong et al. (2012) used variables such as LANDFIRE (Landscape fire and 

resource management tools project) vegetation maps and geospatial land cover maps as 

vegetation related variables. Poggio et al. (2013) used multi-temporal MODIS (Moderate 

Resolution Imaging Spectroradiometer) vegetation and drought indices. Taylor et al. (2013) used 

potential evapotranspiration from ASTER (Advanced Spaceborne Thermal Emission and 

Reflection Radiometer) imagery. Although a wide range of potential covariates does exist, we 

chose to incorporate the specific terrain and imagery variables in variable set 1+2, because they 

were easily calculated with the available software and imagery with which we were familiar, and 

because we anticipated these variables to adequately characterize soil distribution in these 

areas. 
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2.4 Variable selection 
 

For each study area we used random forests models (Liaw and Wiener, 2002; 

parameters mtry = default and ntree = 1000) to identify the most important variables from the 

set of all available variables (variable set 2). Random forests identifies important variables by 

generating multiple classification trees (a forest) using bootstrap sampling, randomly scrambling 

the variables in each bootstrap sample and reclassifying the bootstrap sample. The 

misclassification error of the bootstrap sample (termed the “out-of-bag” error) using the 

scrambled variable is compared to the misclassification error using the original variable and the 

percent difference is used as a measure of variable importance (Peters et al., 2007). Variables 

that are important will have a large increase in “out-of-bag” error.  

Using a similar approach to Xiong et al. (2012), we selected the “most important” 

variables by recursively eliminating the variable with the lowest importance until the random 

forests model reached a threshold after which model error significantly increased (Fig. 2- 

8). For the UT study area, although a set of 12 variables returned the lowest misclassification 

error, we selected a set of 6 variables as the “most important” for a more parsimonious model. 

Selected variables ranked by importance (variable set 3) are listed in Table 2-3. 

 
2.4 Modeling 
 

All modeling was performed using the caret package (Kuhn et al., 2013) in R (R Core 

Team, 2012). We tested 20 classification models for each area (Table 2-2). An accessible 

explanation of all tested models can be found in Kuhn and Johnson (2013). For each study area, 

70% of the soil pedon observations were used for model training (the training set) and 30% for 

model testing (the testing set; Table 2-1). Splitting observations into training and testing sets in 

such a manner is a standard approach taken in other DSM studies (e.g., Henderson et al., 2005; 

Tesfa et al., 2009). For the UT study area 18 additional validation pedons were added to the 
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testing set. These additional pedon observations consisted of both soil observations made 

during initial field work but, which were not part of the initial 300 cLHS locations, and several 

soil pedon observations collected specifically for validation after initial field work was 

completed.   

The goal of machine learning is to find a useful approximation of the function that 

underlies the predictive relationship between input variables and desired outcomes (Hastie et 

al., 2001). In this study input variables were derived from DEM’s and Landsat imagery and the 

desired outcomes were subgroup classes. Each type of model (e.g., support vector machines, 

neural networks) has specific and different required parameters (referred to as tuning 

parameters) that control how the relationship between input variables and outcomes is defined. 

These parameters must be optimized to generate the best “fit” possible between variables and 

outcomes. For each model we used 50-fold cross-validation to select optimal tuning parameters 

(Kuhn, 2014). Briefly, for each required model parameter (the number of required model 

parameters ranged between 0 and 4) ten potential candidate values were defined. This resulted 

in an n x 10 matrix of potential model tuning parameters, where n = the number of required 

parameters. Models were built using each set of tuning parameters and the average 

classification accuracy over the 50 folds was calculated. Optimal parameters were chosen as the 

set of tuning values that resulted in the highest classification accuracy (Kuhn, 2008).  For those 

models that did not require tuning parameters (bagged classification tree, linear discriminant 

analysis) the model was built only once and no optimization was possible. For several models 

final tuning parameters could not be determined (Table 2-2). 

We tested three sets of variables for each area: the soil scientist selected variables used 

as input into cLHS (variable set 1), the variables in set 1 plus the 113 additional terrain and 

imagery variables that we created (variable sets 1 + 2) and those variables that were identified 
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by random forests as the “most important” (variable set 3). Because some models required 

variables to have similar ranges (e.g., partial least squares), all environmental variables were 

centered and scaled to have mean = 0 and standard deviation = 1 before use. 

When using variable sets 1+2, any cLHS variable that was duplicated by the additional 

terrain and imagery variables (e.g., slope) was removed. Additionally, geologic type and distance 

to roads were removed from the UT and WY study areas, respectively; because the geology 

variable did not cover the entire study area, and distance to roads was included for another 

purpose not thought to be related to soil taxonomic classes (impact of disturbance on 

vegetation) in the initial cLHS.  

 
2.5 Model validation and comparison 
 

Models were validated by classifying the testing set (predicted vs. observed class). We 

used the percent correctly classified to assess model accuracy for each class. The percent 

correctly classified is the percent of the validation observations that were correctly classified for 

each subgroup type. Kappa analysis was also used for model comparison, where the kappa 

statistic (κ) (Congalton, 1991) is a measure of classification accuracy accounting for chance 

agreement (Congalton and Green, 1998). Accounting for change agreement is an important 

consideration when dealing with highly imbalanced classes as high classification accuracy could 

result from classifying all observations as the largest class (Congalton and Green, 1998). The κ of 

a random classifier would be 0 whereas a κ of 1 would indicate perfect classification (Congalton, 

1991). Kappa values greater than 0.80 represents strong agreement, values between 0.4 and 0.8 

represent moderate agreement, and values below 0.4 represent poor agreement (Congalton 

and Green, 1998). 
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3. Results  
 

The most accurate model for all three study areas was constructed using variable set 3 

(Figs. 2-5, 2-6, & 2-7); although there was little difference in maximum κ between variable sets 

for the UT study area (Fig. 2-6). The most accurate model (highest κ) for the NM study area (κ = 

0.55) was support vector machines using a radial basis function (SVMR) (Fig. 2-5). Bagging 

classification tree (BCT) was the most accurate model for the UT study area (κ = 0.13) (Fig. 2-6), 

whereas random forests (RF) was the most accurate model for the WY study area (κ = 0.69) (Fig. 

2-7). Several models had κ < 0 indicating they performed worse than a random classifier. The 

percent of correctly classified test set observations for each subgroup class (i.e. individual class 

accuracy) ranged between 0 and 100 percent (Table 2-1). The number of “most important” 

variables as determined by random forests for each study area ranged between six and ten and 

included terrain derivatives at multiple cell sizes as well as several Landsat derivatives (Table 2-

3). Spatial predictions using the most accurate model for each study area are shown in Figs. 2-9, 

2-10 and 2-11.  

 
4. Discussion 
 
4.1 Model performance 
 

No single model was consistently the most accurate classifier (had the highest κ) 

between study areas or between variable sets within an area (Figs. 2-5, 2-6, & 2-7); however, 

some model types were more often among the top performers. At the UT and WY study areas, 

both bagging trees and random forests were among the three models with the highest κ. If 

multiple model comparisons are not possible, these results suggest that bagging based tree 

models be investigated for soil type classification in landscapes that are characterized by 

complex geology and topography.  
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Maximum κ values for the NM and WY study areas, 0.55 and 0.69, respectively,  were 

similar to other published studies. For example, Hengl et al. (2007) had a κ of 54.2% (0.542) 

when modeling 15 World Resource Base (WRB) soil groups across Iran, and Kim et al. (2012) had 

a κ  of 78.9% (0.789) when modeling five soil series across 418 km2 in Florida, USA. Maximum κ 

for the UT study area (0.12) was significantly lower than for the other two study areas even 

though this area had the largest number of soil pedon observations (section 2.2.2; Table 2-1).  

As the model with the highest classification accuracy (maximum κ) for each study area is 

of most interest for predicting soil subgroup types we restrict further discussion to the models 

which resulted in the highest κ when discussing differences in classification accuracy between 

study areas. 

Differences in classification accuracy between study areas can be partially attributed to 

the number of soil subgroup classes and the frequency distribution (the balance of observations 

between subgroup classes) of soil pedon observations. The UT study area was the least 

accurately classified, had the most soil subgroup classes (n = 15), and the most skewed 

frequency distribution of soil pedon observations between subgroup classes. Two subgroup 

classes for the UT study area contained almost 70% of the total soil pedon observations (Table 

2-1). In contrast, the WY study area, the most accurately classified, had the fewest soil subgroup 

classes (n = 5) and a somewhat more balanced soil pedon observation distribution frequency. 

The classification accuracy, number of soil subgroup classes (n = 10) and soil pedon observation 

distribution frequency for the NM study area was between those of the UT and WY study areas. 

This suggests that overall classification accuracy will be highest when there are many soil 

observations, few soil classes, and the frequency distribution of soil observations between 

classes is approximately equal.  
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The frequency distribution of soil pedon observations heavily influenced individual soil 

subgroup class accuracies (Table 2-1). Classes with lower sampling frequencies were modeled 

less accurately. This finding is consistent with data presented by others (Barthold et al., 2013; 

Hengl et al., 2007; Kim et al., 2012; Marchetti et al., 2011; Stum et al., 2010; Taghizadeh-

Mehrjard et al., 2012) and is likely because there are simply not enough observations to 

separate such classes in feature space.  

The number of soil subgroup classes per study area appears related to the inherent 

variability of the given landscape. Areas with high geological and topographical complexity likely 

experience complex relationships between soil forming factors that lead to increased diversity in 

soil types. For example, the geologically and topographically complex UT study area had more 

subgroup classes than did the less complex NM or WY sites (Table 2-1).  

The frequency distribution of soil pedon observations between subgroup types in a 

study area is likely a result of the sampling strategy used to select sites. Conditioned Latin 

hypercube sampling is a stratified random sampling method designed to identify sampling sites 

which represent the multivariate distribution of input environmental variables and assumes that 

the input environmental variables are related to the variable of interest (Minasny and 

McBratney, 2006). Environmental variables used as input to cLHS for each study area were 

selected to represent broad soil-landscape relationships. Our results suggest that in complex 

landscapes where likely many different soil types exist, such input environmental variables 

result in adequate sampling of the most frequent soil types, but not of rare soil types (e.g., the 

UT study area).  

As accurate modeling of soil classes depends on the number of classes and the 

frequency distribution of soil pedon observations between classes (many classes with few 

observations = poor model performance) such imbalance must be addressed for accurate 
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modeling. There are two options to address such challenges: 1) increase observation number in 

classes with few observations and 2) decrease the number of classes.  

Increasing the number of observations in classes with few observations may be difficult 

given financial and logistical constraints, and because it is likely difficult to identify a priori which 

classes will need to be more intensively sampled. However, this might be addressed using a 

combination of cLHS and targeted sampling or case-based reasoning (Shi et al., 2009), where the 

soil surveyor could manually identify likely locations of rare soil types. This may be especially 

useful in arid and semi-arid regions where small localized areas often contain significant 

diversity when compared to the majority landscape.  

The second option is to decrease the number of taxonomic classes. This could be 

accomplished by: 1) combining similar classes and 2) modeling separate sub-areas. Combining 

similar subgroup classes could be accomplished by using higher taxonomic levels such as great 

group or suborder. Modeling higher taxonomic levels would likely increase model accuracy 

(Jafari et al., 2013), but a trade-off between taxonomic level and soil information usefulness 

exists. Many decisions about soil use and management are based on soil differences not 

captured by higher taxonomic levels (i.e., order, suborder, and great group), so combining 

subgroup classes into higher taxonomic levels may miss important differences in soil function 

and likely not provide useful information for soil management decisions. 

Ideally, DSM would be able to accurately model all levels of Soil Taxonomy including soil 

series. Soil series are the finest level of Soil Taxonomy (Soil Survey Staff, 1999) and two levels 

finer that what was predicted in this study. However, accurate predictions of soil series may not 

possible, because soil series are often defined by soil morphological diagnostic criteria which 

may not be well represented by DEM and remote sensing variables.   
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Similar classes could also be combined based on a particular soil property (e.g., bedrock 

contact). This would result in a focus on the specific property while excluding other potentially 

important soil properties. Likely any such decision to group classes by soil property types would 

best be made by the user of the soil information. A further option may be to combine classes 

with few observations into a single class denoted as “other soil classes.” This approach has been 

taken by others (Pahlavan Rad et al., 2014), but we decided against doing so, because we 

suspected that classes with few observations might be topographically and spectrally distinct 

and thus be accurately predicted. However; individual class accuracies (Table 2-1) do not 

indicate this to be the case, and so in retrospect such a pragmatic approach is probably wise.    

Modeling separate sub-areas might also decrease the number of taxonomic classes by 

reducing the area and thus the number of soil types considered in a model. For example, it is 

likely that the number of subgroup classes in one model would have been fewer had the UT 

study area been segregated into uplands and alluvial fan sub-areas. Although such an approach 

would increase the number of required models in proportion to the number of chosen sub-

areas, this is theoretically appealing as different pedo-geomorphic sub-areas are likely to have 

different relationships between subgroup classes and environmental variables (McBratney et al., 

2003).  

Another option to increase model accuracy could be to apply a weighting scheme to soil 

classes with few observations during model construction. This might improve classification 

accuracy, but for highly imbalanced datasets weighting can severely decrease the accuracy of 

the majority classes and result in apparent over prediction of the small classes (Stum et al., 

2010). Overall, increasing model accuracy is likely to require several of these options (increasing 

observation numbers, reducing class numbers, or the use of a weighting scheme), and that 

applicable options will best be identified on a project by project basis.  
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4.2 Variable set comparison 
 

Perhaps unsurprisingly, using all variables (set 1+2) resulted in the lowest maximum κ 

for all study areas (Figs. 2-5, 2-6 & 2-7). This is probably because many of the variables were 

unrelated to the factors that drove soil development in these areas, or were not at the correct 

scale. 

As variable set 1 was selected by soil scientists anticipating how soil-landscape 

relationships would be best represented for modeling, the fact that this variable set did not 

result in the most accurate models suggests that soil scientists may be unable to a priori identify 

optimal variables for predicting taxonomic classes. In hindsight, this is not entirely surprising 

given the complexity of soil taxonomic classes and the disparate kinds of knowledge needed to 

predict these relationships a priori. Soil taxonomic classes represent multiple soil forming factors 

operating over long periods of time (likely decades to millennia) at several scales. Thus choosing 

optimal predictive variables for modeling requires knowing both 1) how, and the scale at which, 

multiple soil forming factors vary across the landscape to produce soil taxonomic classes and 2) 

how those factors are best distinguished using spectral and topographic variables. Being able to 

do both requires extensive familiarity with the local landscape and an understanding of terrain 

modeling and remote sensing. This suggests a pressing need for further investigation into 

relationships between specific environmental variables and soil forming processes.  

In addition to producing models with the highest accuracy, variable set 3 may also 

provide information about the processes controlling soil type distribution across each study area 

landscape. The NM area mostly consists of broad, gently sloping, southward facing alluvial 

surfaces. More than half of the “most important” variables for this study area were related to 

catchment-scale patterns of potential soil moisture (multipath wetness index, catchment area 

and catchment slope; Table 2-3). We attribute this to the correlation of run-on/run-off 
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relationships, landscape stability, and soil formation observed in this region (Gile et al., 1981). 

Vegetation related variables (tasseled cap greenness band and the GRABS index) selected in 

variable set 3, were likely related to the strong control of soils in determining vegetation cover 

and composition in the study area  (Bestelmeyer et al., 2006, Duniway et al., 2010). Thus 

variables related to catchment scale patterns of potential soil moisture and vegetation indices 

may be the best predictors in similar landscape settings. Similar settings include the large 

alluvial fans and bajadas (coalesced alluvial fans) that extend from mountain fronts into the 

valleys of many semi-arid and arid landscapes. Interestingly, topographic shading is an 

important variable for both the UT and WY areas, but not the NM area. This is likely because 

landforms in the NM area are mostly southward facing with little vertical relief.  

The most important variables for the UT study area were related to topographic shading 

(diffuse insolation), slope, slope position, and terrain ruggedness (Table 2-3). The UT area was 

highly variable in topographic relief. This local topography strongly influences soil erosion and 

deposition as well as the amount of incoming solar radiation, which in turn influences soil 

distribution (Beaudette and O’Geen, 2009). As the UT area had the greatest geologic complexity 

between the three study areas, it is surprising that variables related to geology (Landsat band 

ratios 5/2, 5/7) were not among those identified as “most important”. This may be because the 

influence of local topography exerted a stronger effect on soil development than did the 

relatively larger scale influence of geology. In semi-arid steeply sloping uplands and 

mountainous erosional landscapes, variables related to soil erosion/deposition processes and 

solar radiation may be the most useful for predicting soil distribution.     

The WY area is generally composed of rounded hills which have been dissected by 

numerous small drainages and lacks the topographic relief of the UT area or the broad alluvial 

slopes of the NM area. The most important variables for this area were plan and total curvature, 
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topographic shading (diffuse insolation), catchment slope and Landsat band ratio 5/2 (Table 2-

3). As three of the seven “most important” variables were related to slope curvature which 

approximates flow convergence/divergence (Wilson and Gallant, 2000) and as topographic 

shading was also an important variable, it is likely that differences in soil moisture control soil 

development in this area. Landsat band ratio 5/7 is useful for distinguishing differences in 

geologic parent material (Inzana et al., 2003) and likely helps distinguish differences in inter-

bedded geologic types. For much of the northern rolling high plains and possibly for other areas 

with rolling hills, curvature, potential solar radiation and geological type are likely useful for 

modeling soil distribution.  

 
4.3 Spatial predictions 
 

Spatial predictions of subgroup classes using the most accurate model visually appear to 

represent expected soil distribution patterns for each study area (Figs. 2-9, 2-10, & 2-11). For 

the NM and WY study areas spatial predictions generally agree with published soil surveys 

although our predictions show much finer spatial detail. For the NM study area, soils with a 

bedrock contact (Lithic Ustic Haplocambids and Lithic Ustic Haplocalcids) were predicted on 

steeply sloping uplands. Calcic Petrocalcids (subsurface cemented CaCO3) were predicted on 

older, stable alluvial surfaces. Ustic Haplocambids (little soil development) were predicted on 

younger land surfaces (e.g. inset fans). Petronodic Ustic Haplocalcids (subsurface CaCO3 

concretions, maybe approaching cementation) were predicted on landforms intermediate 

between where Calcic Petrocalcids and Ustic Haplocambids were predicted. Ustic Haplargids 

(subsurface clay accumulation) were predicted on lower elevation run-in areas, where finer 

particles can accumulate. Also at lower elevations, on what are likely more active and recent 

geomorphic surfaces, Ustic Haplocalcids (subsurface CaCO3accumulation) were predicted. For 

the WY study area both Ustic Torriorthents (minimal development) and Badlands (steep hills 
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and gullies) were predicted on steeply sloping, dissected landforms near a stream channel 

where active erosion may be occurring. Ustic Haplargids (subsurface clay accumulation) were 

predicted on flatter, more stable upland surfaces that likely had enough time for clay to form 

and/or translocate in the subsoil.  

Although these results must be treated with caution given the low kappa value, the 

spatial patterns of predicted subgroup classes for the UT study area corresponded to our 

understanding of soil-landscape relationships. Lithic Xeric Haplocalcids (soils with a bedrock 

contact and subsurface accumulation of CaCO3) were predicted on steeply sloping uplands. 

Lithic Calciargids (bedrock contact and subsurface accumulation of CaCO3 and clay) were 

predicted on many concave areas of these steeply sloping uplands where potential soil moisture 

accumulation is higher, resulting in greater development of subsurface clay. Rock Outcrops were 

predicted on the steepest mountain faces where many cliffs and talus fields were observed. 

Xeric Haplocalcids (subsurface CaCO3) were predicted to occur on alluvial surfaces. Xeric 

Calciargids (subsurface CaCO3 and clay) were predicted on older more stable alluvial surfaces. 

Xeric Torriorthents (minimal development) were predicted on the youngest, most active alluvial 

surfaces. 

 
5. Conclusions 
 

This study provides insight into the use of machine learning for mapping the spatial 

distribution of soil taxonomic classes. We applied multiple machine learning models to three 

separate semi-arid study areas using three different sets of environmental variables, but no 

model was consistently the most accurate classifier. However, bagging classification trees and 

random forests were among the most accurate classifiers for two of the three areas, suggesting 

the utility of these models. To use machine learning for spatial prediction of soil classes several 

machine learning models should be applied and the most accurate selected.  
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Models built using variables identified as “most important” by random forests were 

more accurate than models built using either variables selected by soil scientists familiar with 

each area, or a large suite of available variables. Thus some form of variable selection should be 

incorporated as an explicit part of digital soil mapping activities. Variable selection also gives 

insight into the soil forming factors operating across a landscape.  

Machine learning models are most accurate when there are few soil classes and when 

the frequency distribution of soil pedon observations are approximately equal between classes. 

The number of soil subgroup classes depends on the inherent variability of each landscape. The 

frequency distribution of soil pedon observations depends on the sampling method. The use of 

cLHS results in many soil pedon observations in common soil classes and few observations in 

“rare” soil classes. One solution to this problem could include increasing the number of samples 

in rare classes by targeted sampling or case-based reasoning.   
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Table 2-1. Distribution of soil observations in each subgroup class for the three study areas.   

Subgroup Classes Pedonsa  % of totalb training setc testing setd % Correctly Classifiede 

NM 

     Ustic Haplocambid 27 26 19 8 100 

Petronodic Ustic Haplocalcid 22 21 16 6 67 

Calcic Petrocalcid 21 20 15 6 83 

Ustic Haplocalcid 13 13 10 3 67 

Ustic Haplargid 5 5 4 1 0 

Lithic Ustic Haplocalcid 4 4 3 1 0 

Ustic Petrocalcid 4 4 3 1 0 

Lithic Ustic Haplocambid 3 3 2 1 0 

Petronodic Ustic Calciargid 2 2 1 1 0 

Ustic Calciargid 2 2 1 1 0 

Total 103 100 74 29 

 UT 

     Xeric Haplocalcid 123 41 87 44 73 

Xeric Calciargid 85 29 60 28 43 

Lithic Xeric Haplocalcid 18 6 13 6 0 

Lithic Xeric Torriorthent 14 5 10 6 0 

Calcic Petrocalcid 13 4 10 4 0 

Lithic Calciargid 10 3 7 4 0 

Lithic Xeric Haplargid 6 2 5 2 0 

Xeric Torriorthent 6 2 5 1 0 

Durinodic Xeric Haplocalcid 4 1 3 2 0 

Xeric Haplodurid 4 1 3 1 0 

Lithic Xeric Calciargid 3 1 2 1 0 

Rock Outcrop 3 1 2 1 0 

Xeric Argidurid 3 1 2 1 0 

Xeric Haplargid 3 1 2 1 0 

Durinodic Xeric Calciargid 2 1 1 1 0 

Total 297 100 212 103 

 WY 

     Ustic Haplargid 26 46 19 7 100 

Ustic Torriorthent 21 37 15 6 83 

Badland 6 10 5 1 100 

Ustic Paleargid 2 4 1 1 0 

Ustic Torrifluvent 2 4 1 1 0 

Total 57 100 41 16   
a Total number of pedons per subgroup class. 
b Percent of total observations represented by each subgroup class.   
c Number of pedons in training set per subgroup class. 
d Number of pedons in testing set per subgroup class. 
e Percent of testing set observations correctly classified using the model with highest kappa. 
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Table 2-2. Classification models used to predict soil subgroup classes in each study area by variable set. An “x” indicates that optimal 
model parameters were able to be determined from a set of 10 candidate parameters.  
 

Model 
NM UT WY 

1 1+2 3 1 1+2 3 1 1+2 3 

Bagged Classification Tree (BCT) x x x x x x x x x 

Bi-Directional Self-Organizing Map (BDSOM) x x x x x x 
   Classification Tree (CT) x x x x x x x x x 

Flexible Discriminant Analysis (FDA) x x x x x x x x x 

Flexible discriminant analysis using MARS functions (BFDA) 
   

x x x x x 
 K Nearest Neighbors (KNN) x x x x x x x x x 

Learned Vector Quantization (LVQ) x 
 

x x 
 

x x 
 

x 

Linear Discriminant Analysis (LDA) x x x x x x x x x 

Linear Discriminant Analysis tuned by number of functions (LDA2) x x x x x x x x x 

Linear Support Vector Machines (SVML) x x x x x x x x x 

Multinomial Logistic Regression (MLR) x 
 

x x 
 

x x x x 

Nearest Shrunken Centroids (NSC) x x x x x x x x x 

Neural Networks using Model Averaging (ANNET) x x x x x x x x x 

Oblique Random Forests based on Linear Support Vector Machines (ORF) x x x x x x x x x 

Partial Least Squares (PLS) x x x x x x x x x 

Radial Basis Support Vector Machines (SVMR) x x x x x x x x x 

Random Forests (RF) x x x x x x x x x 

Shrinkage Discriminant Analysis (SDA) 

  
x x 

 
x x 

 
x 

Single-Hidden-Layer Neural Networks (NNET) x x x x x x x x x 

X-Y Fused Self-Organizing Map (XYSOM) x x x x x x       
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Table 2-3. “Most important” variables as selected by random forests for each study area. Numbers in parentheses indicate cell size if 
variable was derived from a digital elevation model. 
 

NM UT WY 

Multipath wetness index - slope calculated at 35 ma Diffuse insolation (100) Plan curvature (50) 

September tasseled cap greenness band Multi-resolution ridge top flatness (10) Total curvature (50) 

Catchment slope (100) Slope (30) Diffuse insolation (5) 

Multi-resolution valley bottom flatness (50) SAGA wetness index (5) Diffuse insolation (10) 

Catchment area (10) Modified catchment area (5) Plan curvature (5) 

September Landsat band ratio 5/7   Topographic ruggedness index (30) Catchment slope (10) 

September GRABS index 
 

October Landsat band ratio 5/2a 

Catchment slope (5) 
  Catchment area (100) 
  Catchment slope (50) 
  a variable was part of original cLHS variable set 
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Fig. 2-1. Study area locations in western USA. 
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Fig. 2-2. Spatial distribution of pedon observation locations in the NM study area overlain on 
google physical map. Total number of pedon observations was 103.  
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Fig. 2-3. Spatial distribution of pedon observation locations in the UT study area overlain on 
google physical map. Total number of pedon observations was 297.   
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Fig. 2-4. Spatial distribution of pedon observation locations in the WY study area overlain on 
google physical map. Total number of pedon observations was 57. 



44 
 

 
Fig. 2-5.Kappa for the NM study area. Model with highest kappa is the most accurate classifier. 
Abbreviations are as follows: Bagged Classification Tree (BCT), Bi-Directional Self-Organizing 
Map (BDSOM), Classification Tree (CT), Flexible Discriminant Analysis (FDA), Flexible 
discriminant analysis using MARS functions (BFDA), K Nearest Neighbors (KNN), Learned Vector 
Quantization (LVQ), Linear Discriminant Analysis (LDA), Linear Discriminant Analysis tuned by 
number of functions (LDA2), Linear Support Vector Machines (SVML), Multinomial Logistic 
Regression (MLR), Nearest Shrunken Centroids (NSC), Neural Networks using Model Averaging 
(ANNET), Oblique Random Forests based on Linear Support Vector Machines (ORF), Partial Least 
Squares (PLS), Radial Basis Support Vector Machines (SVMR), Random Forests (RF), Shrinkage 
Discriminant Analysis (SDA), Single-Hidden-Layer Neural Networks (NNET), X-Y Fused Self-
Organizing Map (XYSOM).  
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Fig. 2-6.Kappa for the UT study area. Model with highest kappa is the most accurate classifier. 
Abbreviations are as follows: Bagged Classification Tree (BCT), Bi-Directional Self-Organizing 
Map (BDSOM), Classification Tree (CT), Flexible Discriminant Analysis (FDA), Flexible 
discriminant analysis using MARS functions (BFDA), K Nearest Neighbors (KNN), Learned Vector 
Quantization (LVQ), Linear Discriminant Analysis (LDA), Linear Discriminant Analysis tuned by 
number of functions (LDA2), Linear Support Vector Machines (SVML), Multinomial Logistic 
Regression (MLR), Nearest Shrunken Centroids (NSC), Neural Networks using Model Averaging 
(ANNET), Oblique Random Forests based on Linear Support Vector Machines (ORF), Partial Least 
Squares (PLS), Radial Basis Support Vector Machines (SVMR), Random Forests (RF), Shrinkage 
Discriminant Analysis (SDA), Single-Hidden-Layer Neural Networks (NNET), X-Y Fused Self-
Organizing Map (XYSOM).  
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Fig. 2-7.Kappa for the WY study area. Model with highest kappa is the most accurate classifier. 
Abbreviations are as follows: Bagged Classification Tree (BCT), Bi-Directional Self-Organizing 
Map (BDSOM), Classification Tree (CT), Flexible Discriminant Analysis (FDA), Flexible 
discriminant analysis using MARS functions (BFDA), K Nearest Neighbors (KNN), Learned Vector 
Quantization (LVQ), Linear Discriminant Analysis (LDA), Linear Discriminant Analysis tuned by 
number of functions (LDA2), Linear Support Vector Machines (SVML), Multinomial Logistic 
Regression (MLR), Nearest Shrunken Centroids (NSC), Neural Networks using Model Averaging 
(ANNET), Oblique Random Forests based on Linear Support Vector Machines (ORF), Partial Least 
Squares (PLS), Radial Basis Support Vector Machines (SVMR), Random Forests (RF), Shrinkage 
Discriminant Analysis (SDA), Single-Hidden-Layer Neural Networks (NNET), X-Y Fused Self-
Organizing Map (XYSOM).  
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Fig. 2-8. Variable importance as represented by out of bag (OOB) error (misclassification error) 
using random forests. Random forests models were begun with the total available variables and 
the least important variable was iteratively removed. The set of “most important variables” 
were selected as those variables that returned the lowest OOB error and which had the fewest 
variables.  
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Fig. 2-9. Spatial predictions of subgroup classes for the NM study area using radial basis support 
vector machines (SVMR) overlain on an image of aspect. Only major subgroups visible at this 
scale are shown (7 of 10 subgroups).  
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Fig. 2-10. Spatial predictions of subgroup classes for the UT study area made using a bagging 
classification tree (BCT) overlain on a hillshade. Only major subgroups visible at this scale are 
shown (6 of 15 subgroups).  
 
 



50 
 

 
Fig. 2-11. Spatial predictions of subgroup classes for the WY study area made using random 
forests  (RF) overlain on a hillshade. Only major subgroups visible at this scale are shown (3 of 5 
subgroups).  
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CHAPTER 3 
 
SPATIAL PREDICTIONS OF POTENTIAL BIOLOGICAL SOIL CRUST LEVEL OF DEVELOPMENT CLASSES  

AROUND CANYONLANDS NATIONAL PARK  
 
Abstract 
 

Biological soil crusts (BSC) are key components of arid and semi-arid ecosystems, but are 

susceptible to surface disturbance. Surface disturbance is often a direct result of land use 

practices, thus it would be useful to understand how past disturbance has affected potential BSC 

distribution. Potential BSC (BSC in the absence of major soil surface disturbance) could be 

inferred from undisturbed areas. Canyonlands National Park is one of the best available areas on 

the Colorado Plateau to assess potential BSC development. Biological soil crust distribution 

depends upon climate and soil properties which can be represented by spatially explicit 

biophysical environmental covariates derived from remote sensing and terrain analysis. The 

objectives of this study were to use BSC observations from Canyonlands National Park and 

environmental covariates to predict potential BSC distribution over approximately 8300 km2 

surrounding Canyonlands National Park. 

Biological soil crust observations from Canyonlands National Park were obtained from a 

recent soil survey update. Observations consisted of seven level-of-development (LOD) classes 

representing a BSC development sequence. The seven LOD classes were combined into three 

broad LOD classes: low, moderate and high. Abiotic environmental covariates representative of 

soil properties and microclimate effects influencing BSC distribution were derived from Landsat 

7 ETM+ imagery and a 30 m digital elevation model. Stochastic gradient boosting, random 

forests and logistic regression models were compared for LOD class prediction.  

Moderate BSC LOD class distribution was predicted with reasonable accuracy. Although 

predicted spatial patterns of the low and high LOD classes appear plausible, poor accuracy 

metrics indicate that spatial predictions of these classes may not be reliable. Prediction accuracy 
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of all LOD classes could likely be improved through the use of additional covariates. Spatial 

predictions of LOD classes may be useful for assessing the impact of past land uses on biological 

soil crusts. Spatially explicit covariates related to soil/geological type and slope are the most 

important covariates for predicting potential BSC LOD classes. 

 
1. Introduction 
 

Biological soil crusts are communities of cyanobacteria, microfungi, lichens and mosses 

that form at the soil surface (Belnap et al., 2001). In arid and semi-arid areas they stabilize soil, 

reduce wind and water erosion, and are important sources of soil N and organic C (Belnap, 2002; 

Belnap and Gillette, 1998; Bowker and Belnap, 2008).  

Because they occur at the soil surface, biological soil crusts (BSCs) are susceptible to 

disturbance from a number of sources including livestock grazing, off-road vehicle traffic, mining 

exploration, and other natural and anthropogenic dynamics (Belnap and Eldridge, 2003; Belnap 

et al., 2001; Kuske et al., 2012). Recovery of BSCs following disturbance depends upon the type, 

severity and timing of the disturbance as well as the physical environment, but recovery times 

on the Colorado Plateau for cyanobacteria are around 40 years; recovery of lichens and mosses 

can be significantly longer (Belnap, 1993; Belnap and Eldridge, 2003) 

Because recovery from disturbance is a lengthy process and because surface 

disturbance is often a direct result of land use practices, it would be useful to understand the 

impact of different land use practices on the spatial distribution of BSCs. Understanding land use 

impacts on BSCs requires knowing both the actual and potential BSC cover in a given area 

(Bowker et al., 2006a). Actual (existing) BSC cover can be obtained by field observation. 

Potential BSC cover (biological soil crust in the absence of surface disturbance) must either be 

observed before surface disturbance occurs or inferred from undisturbed areas. Canyonlands 

National Park has been protected from livestock grazing and mineral exploration for about 50 
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years (1964 - 2014), potentially long enough for the influences of past disturbance on 

cyanobacteria dominated BSCs to be significantly reduced (Belnap, 1993), making it one of the 

best available areas on the Colorado Plateau to assess potential cyanobacteria dominated BSC 

development in the absence of major soil surface disturbance.  

The spatial distribution of biological soil crusts (BSCs) depends upon climate and soil 

properties. The timing and magnitude of precipitation, temperature, and potential 

evapotranspiration are the main controls of regional scale differences in BSC structure and 

composition (Belnap et al., 2001; Rosentreter and Belnap, 2003) . Soil physical and chemical 

properties as well as topography (slope and aspect) control differences  in BSC development and 

composition at local and landscape scales (Belnap et al., 2001; Rosentreter and Belnap, 2003). 

On the Colorado Plateau, soil texture, mineralogy (in particular gypsum and CaCO3 

concentrations) and depth are the most important soil properties influencing BSC development 

and distribution ( Bowker and Belnap, 2008; Bowker et al., 2006b). Soils on the arid to semi-arid 

Colorado Plateau are weakly developed, and soil properties generally reflect their geologic 

origins. Thus, geologic type may also be a factor influencing BSC development (Bowker and 

Belnap, 2008).  

Spatially explicit quantitative environmental covariates derived from remote sensing 

and terrain analysis (McBratney et al., 2003; McKenzie and Ryan, 1999) can represent many of 

the factors which influence the spatial distribution of BSCs. For example regional climate can be 

estimated using gridded spatial climate datasets such as PRISIM (PRISIM Climate Group, Oregon 

State University, http://www.prism.oregonstate.edu/mtd/) or DAYMET (Daily Surface Weather 

and Climatological Summaries, http://daymet.ornl.gov/). Landscape scale microclimate can be 

approximated by potential solar radiation (Beaudette and O’Geen, 2009). Digital elevation 

models can be used to calculate slope and aspect. Soil maps can represent soil properties 

http://www.prism.oregonstate.edu/mtd/
http://daymet.ornl.gov/
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(Bowker et al., 2006b; Brungard and Boettinger, 2012). In the absence of soil maps remote 

sensing can infer geologic types (Nield et al., 2007; Stum et al., 2010) and thus serve as proxies 

for soil properties.  

The level of cyanobacteria development in BSCs strongly influences BSC structure and 

function (Belnap, 2002; Belnap et al., 2008; Housman et al., 2006) and surface hydrology (Belnap 

et al., 2013). The level of cyanobacteria development in BSCs can be identified using level-of-

development classes (Belnap et al., 2008). Level-of-development (LOD) classes represent a 

development sequence and range from Class 1 to Class 6, with LOD Class 1 the least developed 

and LOD Class 6 the most developed. During a recent (2006-2009) soil survey update of 

Canyonlands National Park, U.S. Department of Agriculture - Natural Resources Conservation 

Service (USDA-NRCS) soil surveyors recorded LOD class observations at many locations.  

Because surface disturbance has a significant influence on BSC distribution, but 

knowledge of the spatial distribution of BSC potential on the Colorado Plateau is limited, our 

objectives were to produce spatial estimates of BSC potential. Specifically we hypothesized that 

BSC LOD class observations from soil survey data collected within Canyonlands National Park 

and environmental covariates representing the factors controlling BSC distribution could be 

used to accurately predict potential BSC LOD classes to a larger area surrounding Canyonlands 

National Park. Our ultimate goal is to provide land managers with a tool to compare potential 

BSC LOD classes with observations of existing BSC LOD classes to assess the impacts of land use 

and surface disturbance on ecosystem health.   

 
2. Methods 
 
2.1 Study area 
 

Canyonlands National Park (CNP) covers approximately 1370 km2 and is dissected by the 

Green and Colorado Rivers, which converge at the center of the park (Fig. 3-1). Average annual 
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temperature is 11.6 °C and average annual precipitation is 228.6 mm (Western Regional Climate 

Center, http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut1163). Elevation in CNP ranges between 

approximately 1130 m and 2190 m.  

Soil development in CNP is often minimal because of the arid environment and the 

bedrock controlled landscape; thus, soil properties are often highly dependent upon the 

underlying geology. Geology in CNP consists mostly of highly eroded, interbedded sandstone 

and shale, but areas of limestone and mudstone also exist (Baars, 2003). Areas of windblown 

sand, rock fall debris, and alluvial deposits also occur (Billingsley et al., 2002). 

Vegetation consists of grasses, shrubs, and trees common to the Colorado Plateau 

including galleta (Hilaria jamesii), indian ricegrass (Stipa hymenoides), basin big sagebrush 

(Artemisia tridentata var. tridentata), Bigelow’s sagebrush (Artemisia bigelovii), blackbrush 

(Coleogyne ramosissima), four-wing saltbush (Atriplex canescens var. canescens), graystem 

rabbitbrush (Chrysothamnus nauseosus var. gnaphalodes), green ephedra (Ephedra viridis var. 

viridis), two-needle pinon (Pinus edulis), Utah juniper (Juniperus osteosperma),  and Gambel’s 

oak (Quercus gambelii var. gambelii) (Tendick et al., 2012). Adjacent to the rivers riparian 

vegetation such as Freemont cottonwood (Populus fremontii), coyote willow (Salix exigua) and 

tamarisk (Tamarix spp.) exist (Tendick et al., 2012).  

A study area including and surrounding CNP was designated based on the similarity of 

geology and elevation. The area covered by all geologic units that occurred inside CNP was 

identified using a 1:500,000 geology map (Hintze et al., 2000). This area was then clipped to the 

same elevation range as inside CNP using the values from a 30-m digital elevation model (DEM, 

section 2.4). This resulted in a study area of approximately 8300 km2.   

 
 
 

http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut1163
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2.2 Biological soil crust observations 
 

 Observations of BSC level-of-development (LOD) classes (Belnap et al., 2008) were 

obtained from a recent (2006-2009) soil survey update of Canyonlands National Park (CNP). 

Observations consisted of the six BSC LOD classes (Fig. 3-2) and observations of BSC absence 

(class 0), for a total of seven classes. At each location the dominant LOD crust class in an 

approximately 20 m2 area was recorded (personal communication Cathy Scott, project leader for 

Canyonlands soil survey update). There were a total of 954 BSC LOD class observations inside 

CNP (Fig. 3-1).  

Previous spatial modeling of individual LOD classes inside CNP showed significant 

confusion between similar LOD classes (Brungard and Boettinger, 2012). Consequently, the 

seven LOD classes were combined into three broad LOD classes (Table 3-1): low, moderate and 

high (Table 3-1). Class combination was based on the ecohydrological characteristics of 

individual LOD classes identified by  Belnap et al. (2013), who found that LOD class 1 had the 

lowest infiltration and most runoff while LOD classes 5 and 6 had the greatest infiltration and 

lowest runoff. Level-of-development classes 2, 3, and 4 were similar to each other and had 

intermediate run off and infiltration rates. These combined LOD classes were likely similar to the 

BSC classes used by Belnap and Gillette (1997) for assessing potential wind erosion on the 

Colorado Plateau.  

The low class in this study is a combination of LOD classes 0 and 1 and represents both 

the absence of biological soil crust (class 0) as well as very weakly developed cyanobacteria 

crusts (class 1). The moderate class is a combination of LOD classes 2, 3, and 4, and represents 

moderately developed cyanobacteria crusts. The high class is a combination of LOD classes 5 

and 6. Although LOD class 6 indicates very well developed cyanobacteria-dominated crust or a 

well-developed lichen-moss crust often associated with calcareous and gypsiferous soils 
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(personal communication J. Belnap), the few observations of LOD class 6 required its 

combination with LOD class 5.   

 
2.3 Environmental covariates  
 

Environmental covariates representative of soil, landscape and microclimate factors 

related to BSC development at the landscape level (Bowker et al., 2006a; Bowker et al., 2006b) 

were derived from Landsat 7 ETM+ imagery and a 30 m digital elevation model (DEM) (Table 3-

2). Only abiotic covariates were chosen in an effort to reduce the influence of potential 

vegetation disturbance in areas outside of CNP.  

Normalized band ratios were generated from two atmospherically corrected (Chavez, 

1996) and mosaicked Landsat 7 ETM+ images acquired in June 2000. A normalized band ratio 

(NBR) was defined as:  

𝑁𝐵𝑅 =
𝑏1 − 𝑏2

𝑏1 + 𝑏2
 

where b1 and b2 are individual bands from the Landsat 7 ETM+ sensor that represent different 

portions of the electromagnetic spectrum. Individual bands used in normalized band ratios were 

band 7 (short wave infrared [2.09-2.35 µm]), band 5 (short wave infra-red [1.55-1.75 µm]), band 

2 (green) and band 1 (blue). Normalized band ratios 5/7, 5/2, and 5/1 were used to discriminate 

between different geologic types (Inzana et al., 2003; Nield et al., 2007; Stum et al., 2010).  

Digital elevation model derivatives used to represent potential microclimate were 

generated from a 30 m DEM, which was derived by resampling a 5 m DEM to 30 m (Utah 

Automated Geographic Reference Center, 2013). Elevation was used as a proxy for potential 

precipitation and temperature (Bowker et al., 2006a); higher elevations are normally correlated 

with higher precipitation and lower temperature. Yearly diffuse potential solar radiation, 

potential direct solar radiation, and the duration of potential solar radiation were used as 
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measures of microclimate; greater solar radiation was expected to increase soil temperatures 

and decrease soil moisture. Soil maps were important covariates for predicting BSC LOD classes 

inside CNP (Brungard and Boettinger, 2012), but soil maps were not used as covariates in this 

study, because much of the area outside of CNP does not have publically available soil maps.   

 
2.4 Model building and analysis 
 

Stochastic gradient boosting (De’ath, 2007;  Moisen et al., 2006), random forests (Cutler 

et al., 2007; Peters et al., 2007) and logistic regression were compared for predicting potential 

LOD classes. All modeling, analysis and prediction was performed using the caret (Kuhn, 2013) 

and raster (Hijmans, 2014) packages in R statistical software (R Core Team, 2013). Because 

stochastic gradient boosting in the R statistical software is implemented only for a two class 

problem (random forests and logistic regression can use dependent variables with more than 

two classes), BSC LOD observations were treated as presence-absence observations, and a one-

versus-all approach was taken. Each class (coded as 1) was modeled against all other classes 

(each coded as zero). This was repeated for the remaining LOD classes, resulting in nine separate 

models (three for each LOD class).  

 
2.4.1 Stochastic gradient boosting 
 

Stochastic gradient boosting (SGB) is a sequence of bagged (sampling with replacement) 

classification trees, with successive trees built using re-weighted versions of the data (De’ath, 

2007). For each tree, observations are classified based on the current sequence of trees and the 

classification error calculated. Classification error is then used to weight observations in the next 

tree in the sequence. Thus increasing the chance that incorrectly classified observations will be 

correctly classified in the next tree. The final classification of each observation is determined by 

the weighted majority of classification across the sequence of trees (De’ath, 2007). Accurate 
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classification depends upon three tuning parameters: the number of trees (ntree), the number 

of nodes in each tree (depth), and a learning rate that avoids sub-optimal models (shrinkage). 

The improvement in classification error attributed to each covariate is summed within each tree 

and averaged across the entire ensemble to yield an estimate of covariate importance (Kuhn 

and Johnson, 2013).  

 
2.4.2 Random forests 
 

Random forests (RF) is an ensemble (forest) of bagged classification trees (typically 500 

to 1000). In contrast to SGB, RF classification trees are independent and the classification of 

samples does not depend upon previous trees in the ensemble. For each tree, decision nodes 

are split using a random subset of available covariates, resulting in low correlations between 

trees. RF has two required tuning parameters: the number of covariates tried at each node 

(mtry) and the number of trees in the forest (ntree). The mtry parameter must be optimized for 

accurate classification, whereas RF is not highly sensitive to ntree values greater than the default 

(500). Classification of a new sample is the majority vote of the ensemble. Classification 

probability of a new sample is the proportion of the forest that classifies each observation into 

the class of interest (Kuhn and Johnson, 2013). Covariate importance is estimated by randomly 

permuting the values of each covariate one at a time for each tree. The difference in predictive 

performance between the original sample and the permuted sample when aggregated across 

the entire forest is an indication of the importance of that covariate (Kuhn and Johnson, 2013).  

 
2.4.3 Logistic regression 
 

Logistic regression (LR) is a member of the family of generalized linear models and is 

used when the response variable is a categorical variable (Kempen et al., 2009). The probability 

that individual observations belong to the class of interest is modeled using the relationship 
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between the log of the odds ratio and a linear combination of covariates (Kempen et al., 2009; 

Kuhn and Johnson, 2013).  

 
2.4.4 Model training and testing 
 

Observations of the low (n = 353) and moderate (n = 490) crust LOD classes were split 

into training (about 80%) and testing (about 20%) datasets (Table 3-1, Fig. 2-1). The training 

dataset was used for model construction and the testing dataset was used to test model 

accuracy for low and moderate LOD classes. Splitting observations into training/testing sets is a 

common practice for predicting other soil-related attributes (e.g., soil depth, Tesfa et al., 2009). 

Because relatively fewer observations existed for the high LOD class (n = 111), it was anticipated 

that splitting observations into separate training and testing datasets would result in too few 

observations for accurate model training; thus, all high LOD class observations were used for 

model construction. Estimates of model accuracy for the high LOD class were derived using 

bootstrap sampling repeated 100 times. Bootstrap sampling is sampling with replacement and 

divides a given dataset into two parts referred to as in-bag and out-of-bag samples. The in-bag 

sample is the same size as the original dataset (some observations are sampled more than once 

while other observations are not sampled). Out-of-bag samples (those samples not used in 

model construction, about 30% of the data) are used to assess model accuracy (Kuhn and 

Johnson, 2013). 

 
2.4.5 Model tuning and accuracy 
 

Bootstrap sampling repeated 100 times was used to test multiple sets of required tuning 

parameters for SGB (ntree, depth) and RF (mtry). Default values for SGB shrinkage (0.01) and RF 

ntree (500) parameters were used. Logistic regression had no required tuning parameters. The 

tuning parameters that returned the highest area under the receiver operator characteristic 
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curve (AUC) for each model were selected as optimal (Table 3-3). Receiver operating 

characteristic curves (ROC) are useful for assessing model performance when two classes exist 

(Fielding and Bell, 1997; Moisen et al., 2006; Zweig and Campbell, 1993). Accurate models will 

have an AUC near 1 and poor models will have an AUC near 0.5 (Moisen et al., 2006).  

Model accuracy was quantified with AUC, sensitivity, and specificity. Sensitivity (or true 

positive rate) is the proportion of observed presences that are predicted as presences, and as 

such, is the probability that the model will correctly classify a presence (Allouche et al., 2006; 

Kuhn and Johnson, 2013; Moisen et al., 2006). Conversely, specificity (or true negative rate) is 

the proportion of observed absences that are predicted as absences, and as such, is the 

probability that the model will correctly classify an absence (Allouche et al., 2006). Sensitivity 

quantifies errors of omission, specificity quantifies errors of commission (Allouche et al., 2006). 

Sensitivity and specificity range between 0 and 1, with values closer to one indicating better 

classification. Multiple models are equal in overall model performance if sensitivity and 

specificity are equal between models (Allouche et al., 2006). 

For the low and moderate LOD classes, AUC, sensitivity, specificity, were calculated by 

classifying the test dataset. For the high LOD class, which lacked a separate test dataset, 

sensitivity, specificity, and AUC were taken as the mean value from bootstrap sampling used 

during model optimization.  

Model accuracy for the moderate LOD class was also assessed using an independent 

validation set of 11 LOD class observations (Table 3-1, Fig. 3-1). These observations were from 

fenced exclosures, built between 1957 and 1978, which excluded livestock, and in some cases, 

deer and elk. These exclosures were the only known areas outside of CNP which have been 

excluded from major soil surface disturbance for approximately the same length of time as CNP. 
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Brier scores were used to assess model accuracy at these locations (Brier, 1950; Mason, 2004). 

For a binary response variable, the Briar score (BS) is:  

𝐵𝑆 =  
1

𝑁
∑(𝑓𝑡 − 𝑂𝑡)2

𝑁

𝑡=1

 

where N is the number of locations being predicted as a particular class, ft is the predicted 

probability of a particular class at the observation location, and Ot is the actual class observation 

(0 if not the predicted class of interest, 1 if the predicted class of interest). Models that predict a 

high probability of the actual observed class will have a low Brier score and be considered the 

most accurate model.  

Visual assessment of BSC LOD spatial prediction was used to evaluate the ability of each 

model to predict meaningful spatial patterns. In the absence of clear differences in model 

accuracy metrics and predicted spatial patterns between models, the model with the highest 

sensitivity was chosen as the most accurate model for each LOD class.  

 
2.4.6 Spatial prediction 
 

Spatial prediction of potential LOD classes to the larger area surrounding Canyonlands 

National Park was accomplished by applying the most accurate of each LOD class to the 

environmental covariates covering the study area. This resulted in spatial predictions (maps) of 

potential LOD class probabilities. Pixel values in each map represented LOD class probability of 

occurrence. The final LOD class map was created by stacking predicted probability maps and 

identifying the LOD class with the highest probability of occurrence at each pixel. Prediction 

confidence was taken as the specific probability value associated with the identified class at 

each pixel. Pixels with higher probability values indicated greater confidence in the final LOD 

classification at each pixel.   
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2.4.7 Variable importance 
 

For LOD classes where SGB or RF was deemed the most accurate model, covariate 

importance was taken directly from the variable importance scores of these models. For LOD 

classes where LR was the most accurate model, variable importance was estimated using the 

AUC as there are no internal variable importance measures for LR. In this case each covariate 

was used in place of predicted probabilities to calculate the AUC. If a covariate could perfectly 

separate the classes there would be a cutoff value for the covariate that would achieve an AUC 

of 1 and irrelevant covariates would have a AUC of 0.5 (Kuhn and Johnson, 2013). Because 

variable importance scores from different model types are reported on different scales, all 

variable importance scores were standardized to fall in the range 0 to 1 for between model 

comparisons.  

 
3. Results and discussion 
 
3.1 Modeling 
 
  The low LOD class was poorly predicted by all models, indicated by sensitivity < 0.5 and 

specificity around 0.9. No one model was a significantly better predictor of the low LOD class 

(Table 3-4). However, RF was chosen to produce spatial predictions for the low LOD class 

because sensitivity was slightly higher and spatial predictions did not reveal any significantly 

erroneous patterns. 

  No single model was a significantly better predictor of the moderate LOD class (Table 3-

4). Sensitivity, specificity and AUC were similar between models, and were all about 0.7. 

However, given the high spatial variability of LOD classes and the large spatial extent over which 

LOD classes were observed, we considered models with sensitivity and specificity values of 0.7 

to be highly accurate. This suggests that moderate LOD class spatial predictions are reliable. 

Although relatively high sensitivity values suggested that SGB was the most accurate model for 
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predicting the moderate LOD class (Table 3-4), Brier scores from the independent validation 

dataset (0.140, 0.124, 0.095, for SGB, RF, and LR, respectively) indicated that LR may be a more 

accurate classifier. Thus, LR was chosen to produce spatial predictions of the moderate LOD 

class. 

 The high LOD class was the least accurately modeled LOD class (Table 3-4). AUC for LR 

was 0.53, indicating that the LR model was only slightly better than a random classifier. 

Although AUC values for both SGB and RF were similar to those for the moderate LOD class 

(both were approximately 0.7, Table 3-4), AUC values for the high LOD class reflect the large 

imbalance between sensitivity and specificity. Sensitivity was close to or equal to zero, while 

specificity was close to or equal to one. Sensitivity values indicate that presence observations 

were almost never correctly classified, regardless of the model used. Sensitivity values indicate 

that all models were able to correctly classify absence observations most of the time. Low 

sensitivity and high specificity is likely because the high LOD class is only associated with specific 

soil properties which may not have been adequately captured by the chosen environmental 

covariates. Visual inspection of predicted probabilities revealed that only SGB predicted any 

pixels with probabilities > 0. As SGB also had a slightly higher sensitivity than the other models, 

SGB was chosen to produce final predictions. Spatial predictions of the high LOD class are not 

anticipated to be highly accurate.  

Model accuracy could potentially be improved through the use of additional 

environmental covariates such as the grain size index (Xiao et al., 2006), climatic parameters 

(e.g. PRISIM climate surfaces, http://www.prism.oregonstate.edu/), or spatial predictions of 

specific soil properties (e.g surface texture) from digital soil mapping (McBratney et al., 2003; 

Sanchez et al., 2009). Detailed soil maps were the strongest predictor of actual BSCs inside CNP 

(Brungard and Boettinger, 2012), thus model accuracy would also likely improve if detailed soil 

http://www.prism.oregonstate.edu/
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maps were available over the entire study area. Strongly developed BSCs in the high LOD class 

commonly only occur on specific geological substrates (e.g. Carmel formation), thus detailed 

geology maps would likely be useful for improving high LOD class model accuracy. Overall 

similarity in accuracy metrics between models in each LOD class suggests that use of different 

modeling techniques would likely not result in increased predictive accuracy.  

 
3.2 Spatial prediction 
 
 Spatial predictions of potential LOD class probabilities are presented in Figs. 3-3, 3-4, & 

3-5. In general, predicted probabilities are lowest in highly dissected landscapes around the 

rivers. Predicted probabilities are highest on flatter, more stable surfaces farther away from the 

rivers. Both the low and moderate LOD class probabilities have similar ranges in predicted 

probabilities (Figs. 3-3 & 3-4 legends), while the high class has a much lower range of predicted 

probabilities (Fig. 3-5 legend).  

Existing biological soil crusts in CNP exhibit highly heterogeneous spatial patterns; many 

different LOD classes can often be found within the area covered by one pixel (30 m) (personal 

observation). Because of such spatial variability, predicted LOD class probabilities should be 

interpreted as the likelihood that a particular LOD class would be the dominant LOD class, not 

the only LOD class, in the absence of 50 years of soil surface disturbance. Predicted probabilities 

will likely be more useful for assessing the impact of disturbance on LOD classes over large 

areas, than for site specific assessment.    

Based on accuracy metrics (Table 3-4 and Brier scores), moderate LOD class predicted 

probabilities are likely reliable, particularly when considering the spatial variability of biological 

soil crusts in this area. Given the low accuracy metrics for the low and high LOD classes, 

predicted probabilities for these classes must be treated with caution. Relatively low maximum 

predicted probabilities of the high LOD class (0.51, Fig. 3-5) and model specificity near 1, suggest 
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that the high LOD class probability map may indicate areas where the high LOD class likely 

would not occur.  

The final LOD class map shows the study area is dominantly predicted to be the low and 

moderate LOD classes (Fig. 3-6). In general the low LOD crust class was predicted in alluvial 

drainages and areas of steep cliffs and canyons, where frequent, natural soil erosion is likely to 

result in little biological soil crust development. The moderate class was predicted on large 

nearly level surfaces (Fig. 3-6), which likely have more stable soils than steep cliffs and canyons. 

Some areas (e.g., in the southwest) were predicted to be the high LOD class. These areas may 

have specific geology types (e.g., limestone or gypsum) associated with highly developed BSC. 

Final LOD class prediction confidence is highest in broad, relatively flat areas and lowest in areas 

dominated by cliff and canyon landscapes (Fig. 3-7).   

Spatial predictions of potential biological soil crust LOD classes, prediction confidence, 

and individual LOD class probabilities provide knowledge of what dominant BSC might be in the 

absence of 50 years of soil surface disturbance. Spatial predictions of the moderate LOD class 

are anticipated to provide a useful spatially explicit decision support tool for land managers 

when assessing land use impacts and resource allocation. For example, predicted probabilities 

of the moderate LOD class could be compared to observations of actual crust. If an area has a 

high predicted probability of the moderate LOD class and actual LOD class observation was the 

low LOD class, it may be that surface disturbance has changed the LOD class in that area. 

Assuming that disturbance history at that site is known, or can be inferred, this may provide 

estimates of how land use activities affect the moderate LOD BSC class. Conversely if visiting an 

area with high predicted probability the moderate LOD class and actual crust class is the high 

LOD class than the spatial predictions are likely wrong. Spatial predictions of the moderate LOD 

class may also prove useful to land managers, because high predicted class probabilities (Fig. 3-
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4) and high model confidence (Fig. 3-7) occur on broad, nearly level, landforms where potential 

surface disturbance from grazing or other land use activities is likely to be concentrated. Given 

the low accuracy metrics, it is unknown if spatial predictions of the low and high LOD classes 

would prove useful as spatially explicit decision support tools for land managers. If used, spatial 

predictions of low and high classes must be treated with caution.  

 
3.3 Variable importance 
 

The most important covariates for predicting the low and moderate LOD classes were 

normalized band ratios 5/2 and 5/1 (Fig. 3-8). As soil characteristics in this area are driven 

primarily by the underlying geological substrate, the importance of NBR 5/2 and 5/1 for the low 

and moderate LOD classes are likely a result of the ability of these band ratios to discriminate 

between different geologic types (Stum et al., 2010) and thus capture differences in soil physical 

and geochemical properties important to these two classes.   

Slope was the most important covariate for the high LOD class (Fig. 3-8), and is likely 

related to the comparatively narrower range of slope values for this class (standard deviation = 

8.6 vs. 19.3 and 13.3, for the low and moderate LOD classes, respectively). Although less 

important than slope, normalized band ratio 5/7 was also an important covariate of the high 

LOD class. This band ratio has been found helpful for distinguishing areas of surficial gypsum 

(Nield et al., 2007). In CNP and nearby areas, Bowker et al. (2006a) and Bowker and Belnap 

(2008) found moss and lichen cover positively associated with calcareous and gypsic soils. High 

LOD classes are associated with increased moss/lichen content (Belnap et al., 2008), thus it may 

be that normalized band ratio 5/7 is distinguishing areas of calcareous and/or gypsic soils which 

favor high LOD classes. As gypsiferous soils are relatively rare in this study area the lack of 

optimal soil characteristics required for high BSC development may help explain the few 

observations and thus poor model performance of the high LOD class. 
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4. Conclusions 
 

We spatially predicted moderate BSC LOD class distribution to a large area surrounding 

CNP with reasonable accuracy. Prediction validation using observations in areas protected from 

major surface disturbance outside of CNP suggests that spatial predictions of the moderate LOD 

class do indeed represent potential biological soil crust distribution in areas outside CNP.  

Although predicted spatial patterns of the low and high LOD classes appear plausible, poor 

accuracy metrics indicate that spatial predictions of these classes may not be reliable. Model 

specificity suggests that high LOD class predicted probabilities class may be most useful for 

determining areas where this class likely would not occur. Prediction accuracy for all LOD classes 

could likely be improved through the collection of additional observations or the use of 

additional covariates. 

Spatial predictions of LOD class probabilities and the final class map may be useful for 

assessing the impact of past land use practices on BSCs. Spatially explicit covariates related to 

soil/geological type and slope are the most important covariates for predicting potential BSC 

LOD classes. 
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Table 3-1. The number of observations per combined LOD class in the training, testing and 
validation datasets. Numbers in parentheses indicate the original LOD classes assigned to each 
combined LOD class. Training data was used for model construction. Testing observations was 
used to validate model parameters. No separate testing data was used for the high LOD class 
because of few observations. Validation observations consisted of an independent dataset of 
LOD classes observations inside livestock and deer exclosures approximately the same age as 
CNP.  No observations of Low and High LOD classes were available in the validation dataset.    
 

Combined LOD Class Training Testing Validation 

Low (0, 1) 283 70 0 

Moderate (2, 3, 4) 392 98 11 

High (5, 6) 111 0 0 
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Table 3-2. Covariates, the source of the covariate, and the rational for inclusion. All covariates had a resolution of 30 m.  
 

Environmental variable Source Reason for inclusion 

Elevation DEM Proxy for temperature and precipitation 

Slope DEM Representative of topography 

Diffuse Potential Solar Radiation (DiPSR) DEM Proxy for microclimate 

Duration of Potential Solar Radiation (DuPSR) DEM Proxy for microclimate 

Total Potential Solar Radiation (TPSR) DEM Proxy for microclimate 

Normalized Landsat Band Ratio 5/7 (NBR 5/2) Landsat 7 ETM+  Proxy for soil/geologic properties 

Normalized Landsat Band Ratio 5/2 (NBR 5/7) Landsat 7 ETM+  Proxy for soil/geologic properties 

Normalized Landsat Band Ratio 5/1 (NBR 5/1) Landsat 7 ETM+  Proxy for soil/geologic properties 
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Table 3-3. Optimal model parameters for SGB and RF, and area under the receiver operator 
characteristic curve (AUC) for each LOD class. Optimal model parameters were selected as those 
parameters that returned the highest AUC estimated by bootstrap sampling repeated 100 times. 
 

LOD class 
Model 
Parameters 

Model 

SGBa RFb LRc 

Low 

ntree 300 500 - 

depth 3 - - 

mtry - 1 - 

AUC 
 

0.74 0.76 0.67 

     

Moderate 

ntree 350 500 - 

depth 2 - - 

mtry - 1 - 

AUC 

 

0.69 0.70 0.66 

     

High 

ntree 1000 500 - 

depth 3 - - 

mtry - 1 - 

AUC 

 

0.69 0.69 0.53 
a depth only required for SGB 
b mtry only requried for RF 
c tuning parameters not required for LR 

 
 
 
 
 

  



76 
 

Table 3-4. Accuracy metrics for each model by LOD class. 
 

  

Model 

LOD Class Metric SGB RF LR 

Low 

AUC 0.73 0.74 0.71 

Sensitivity 0.41 0.47 0.46 

Specificity 0.91 0.90 0.93 

     

Moderate 

AUC 0.74 0.76 0.71 

Sensitivity 0.76 0.71 0.72 

Specificity 0.59 0.71 0.64 

  
   

Higha 

AUC 0.69 0.69 0.53 

Sensitivity 0.07 0.02 0.00 

Specificity 0.97 0.99 1.00 
a mean values from resampling not separate test set 
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Fig. 3-1. The project area location in southeastern Utah, overlain on Google Earth Terrain 
imagery. The dashed line is the area to which spatial predictions were extrapolated. The solid 
line is Canyonlands National Park. Blue diamonds and red circles are training and testing 
observations of LOD classes from Soil Survey data, respectively. Green squares are validation 
observations inside fenced enclosures. 
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Fig. 3-2. Biological soil crust LOD classes used by soil surveyors in Canyonlands National Park. 
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Fig. 3-3. Low LOD class predicted probability using RF. Irregular white areas inside the prediction 
area are areas masked because of clouds in the Landsat 7 ETM+ imagery used to derive 
covariates. 
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Fig. 3-4. Moderate LOD class predicted probability using logistic regression. Irregular white areas 
inside the prediction area are areas masked because of clouds in the Landsat 7 ETM+ imagery 
used to derive covariates. 
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Fig. 3-5. High LOD class predicted probability using stochastic gradient boosting. Irregular white 
areas inside the prediction area are areas masked because of clouds in the Landsat 7 ETM+ 
imagery used to derive covariates. 
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Fig. 3-6. Final LOD classification from combining all predicted probabilities and extracting the 
class with the highest value. White areas inside prediction area were masked out because of 
clouds in the Landsat 7 ETM+ imagery used to produce environmental covariates. 
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Fig. 3-7. Final LOD classification confidence from combining all predicted probabilities and 
extracting the highest value. Values closer to 1 indicate higher confidence in final LOD 
classification. White areas inside prediction area were masked out because of clouds in the 
Landsat 7 ETM+ imagery used to produce environmental covariates 
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Fig. 3-8. Covariate importance for each LOD class. Importance scores for the low, moderate, and 
high LOD classes were taken from random forests, AUC estimates, and stochastic gradient 
boosting, respectively. 
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CHAPTER 4 
 

THRESHOLD FRICTION VELOCITY OF LACUSTRINE AND ALLUVIAL SOILS BEFORE AND AFTER 
DISTURBANCE IN THE EASTERN GREAT BASIN, USA    

 
Abstract 
 

A spatially explicit wind erosion model could be used to assess the potential impacts of 

anthropogenic soil surface disturbance and proposed ground water withdrawal on wind erosion 

in the eastern Great Basin, USA. Such a model requires input of threshold friction velocity (TFV), 

the minimum turbulence required for wind erosion to occur. Little is known about TFV of soils in 

the eastern Great Basin. Additionally TFV is time consuming and difficult to accurately measure. 

A method to estimate TFV from alternate measurements would be useful. The objectives of this 

research were threefold: 1) to measure TFV in eastern Great Basin lacustrine and alluvial soils, 2) 

to assess the impact of soil disturbance on TFV, and 3) to develop relationships between TFV 

and alternate measures of soil properties as a first step towards spatial modeling of wind 

erosion in the eastern Great Basin.  

Threshold friction velocity was measured with a portable open-bottomed wind tunnel at 

33 sites in alluvial and lacustrine soils in Snake Valley, a broad valley on the Utah/Nevada 

border. The amount of sediment mobilized at TFV and alternate easy-to-measure soil surface 

properties thought likely correlated with TFV were also measured. Soil surfaces were assigned to 

one of five crust classes: biological crust, hard salt crust, surficial rock fragments, hard physical 

crust, and weak physical crust. Threshold friction velocity and sediment production were 

compared between undisturbed and disturbed soil surface conditions for each crust class. 

Multiple linear regression was conducted to find relationships between TFV and alternate soil 

surface properties.  

Only soils with surficial rock fragments or weak physical crusts reached TFV in 

undisturbed conditions. Average TFV was lowest and average sediment production highest for 
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soils with undisturbed weak physical crusts. All crust classes reached TFV after disturbance. 

After disturbance, average TFV was lowest and average sediment production highest for 

disturbed weak physical crusts. Disturbance reduced TFV and sediment production on soils with 

surficial rock fragments and weak physical crusts.  

All disturbed soils and undisturbed soils with surficial rock fragments or weak physical 

crusts would likely be susceptible to wind erosion in the eastern Great Basin. Soils with weak 

physical crusts are expected to be the most susceptible to wind erosion. Soils with biological 

crusts, hard salt crusts, and hard physical crusts, while likely to reach TFV when disturbed, may 

not be highly susceptible to erosion. Future work on wind erosion in the eastern Great Basin 

should focus on non-crusted/weakly crusted soils and soils formed in alluvium overlying 

lacustrine materials. Soils with other crust types are likely not susceptible to wind erosion.  

Threshold friction velocity in undisturbed soils with weak physical crusts and surficial rock 

fragments could be predicted using a combination of penetrometer resistance, rock fragment 

cover, and silt concentration (%). It is unlikely that TFV in disturbed soils could be predicted 

using any of the measured soil surface properties. 

 
1. Introduction 
 

Aeolian dust from arid lands is an important biogeochemical flux in many ecosystems 

(Lawrence and Neff, 2009; Painter et al., 2010; Reynolds et al., 2006) and can impact human 

health (Goudie and Middleton, 2006). The eastern Great Basin is a major source of aeolian dust 

in the western USA (Prospero et al., 2002) and dust from lacustrine surfaces in the eastern Great 

Basin often impacts air quality in Salt Lake City and other areas along Utah’s Wasatch front 

(Hahnenberger and Nicoll, 2012).  

Aeolian dust is the result of wind erosion of soil. Soil wind erosion occurs when wind-

induced shear stress exceeds the cohesive forces of the soil surface to resist particle 
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detachment (Goudie and Middleton, 2006). Wind erosion does not occur uniformly across a 

landscape. Instead, wind erosion is often a “hot spot” phenomenon (Gillette, 1999),  exhibiting 

high spatial variation (Gillette et al., 1997; Hahnenberger and Nicoll, 2014; Sweeney et al., 

2011). Identifying areas susceptible to wind erosion is important for land managers responsible 

for understanding and managing the impacts of various land use practices (e.g., off-highway 

vehicle use and livestock grazing), as anthropogenic soil surface disturbance often increases 

wind erosion (Belnap and Gillette, 1998; Belnap et al., 2007; Miller et al., 2012; Okin et al., 

2001). Proposed groundwater extraction from eastern Great Basin valleys to meet southern 

Nevada population growth requirements (Southern Nevada Water Authority Water Resource 

Plan 2009, http://www.snwa.com/assets/pdf/wr_plan.pdf) could also influence wind erosion, as 

groundwater withdrawal has resulted in increased wind erosion from similar areas, such as 

Owens Valley, California (Gill, 1996). 

To understand the spatial variability of soil wind erosion and to assess both the impacts 

of anthropogenic soil surface disturbance, and the potential influences of ground water 

withdrawal on wind erosion, a spatially explicit wind erosion model could be used (Okin, 2008; 

Okin and Gillette, 2004). This model requires threshold friction velocity as an input.  

Threshold friction velocity (TFV) is the minimum friction velocity required for wind 

erosion to occur, and represents the ability of a soil surface to resist wind erosion (Shao and Lu, 

2000). Friction velocity is one measure of turbulence intensity and is expressed in units of 

velocity. Threshold friction velocity is reached when near-surface wind shear transfers enough 

kinetic energy to the soil surface to overcome the gravitational and cohesive forces retarding 

soil particle movement (Shao and Lu, 2000).   

Threshold friction velocity depends upon soil particle size distribution, but surface 

roughness (Marticorena and Bergametti, 1995), aggregate stability (Eldridge and Leys, 2003), 

http://www.snwa.com/assets/pdf/wr_plan.pdf


88 
 

rock fragments (Batt and Peabody, 1999), soil moisture (Fécan et al., 1998), physical and 

biological soil crusts (Belnap and Gillette, 1998; Zhang et al., 2008), and surface salt (King et al., 

2011) also influence TFV.  

Multiple measurements of TFV in different soil-landscape units are required for accurate 

spatial modeling of wind erosion, particularly for large areas with high spatial heterogeneity; 

however, it is time-consuming and difficult to accurately measure. A method to estimate TFV 

from alternate measurements would be useful. Okin and Gillette (2004) used soil surface 

texture to estimate TFV, but they found information from soil survey maps of the Jornada Basin, 

NM, too general for accurate spatial estimates of TFV. In the Colorado Plateau and Mojave 

Desert, Li et al. (2010) found TFV to be correlated with soil surface penetrometer 

measurements, soil surface disturbance created by impact from an air gun, and percent rock 

cover.   

Although wind erosion is common in the eastern Great Basin, particularly on soils 

developed in lacustrine parent material and/or recently disturbed soils (Hahnenberger and 

Nicoll, 2014), little is known about the TFV of soils in this region. Furthermore, soils formed in 

lacustrine sediments in the eastern Great Basin are dominantly derived from carbonate-rich 

parent material and likely have different properties than soils in the Mojave Desert and 

Colorado Plateau, where TFV has most often been studied (Belnap and Gillette 1997; Belnap et 

al., 2007; Gillette et al., 1982; Marticorena et al., 1997).  

The objectives of this research were threefold: 1) to measure TFV in eastern Great Basin 

lacustrine and alluvial soils, 2) to assess the impact of soil disturbance on TFV, and 3) to develop 

relationships between TFV and easier-to-measure soil properties as a first step towards spatial 

modeling of wind erosion in the eastern Great Basin.  
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2. Methods 
 
2.1 Study area  
 

Snake Valley is a broad, hydrologically closed, north-south trending valley in the eastern 

Great Basin on the Utah/Nevada border (Fig. 4-1). Major landforms include alluvial fans and fan 

piedmonts with relatively coarse-textured soils surrounding lake plains with fine-grained 

lacustrine materials on the valley floor. Both wet and dry playas occur in the lowest elevations. 

Relict beaches and sand bars from Pleistocene Lake Bonneville also exist (Hintze and Davis, 

2003).  

In areas heavily influenced by Lake Bonneville, vegetation is dominantly greasewood 

[Sarcobatus vermiculatus], shadscale [Atriplex confertifolia], and Nevada tea 

[Ephedra nevadensis] (personal observation). In near-playa environments, vegetation is mostly 

salt grass [Distichlis spicata], alkali sacaton [Sporobolus airoides], and pickleweed [Salicornia 

spp.]. Halogeton [Halogeton] and cheat grass [Bromus tectorum] grow between shrubs in some 

areas. A few ranches exist where ephemeral streams enter the valley. Average annual 

precipitation is 161 mm; average annual temperature is 10.4 °C (Western Regional Climate 

Center, historical climate summary for Eskdale, UT, http://www.wrcc.dri.edu/cgi-

bin/cliMAIN.pl?ut2607).  

All sampling was performed in the Millard County, UT, portion of Snake Valley 

(approximate center 39° 16’ 05” N, 113° 53’ 17” W), below the Bonneville shoreline of Lake 

Bonneville (Currey et al., 1984). Sampling sites were selected to capture anticipated soil 

variability in the following sediments: alluvium, mixed alluvial/lacustrine materials, lacustrine 

gravel and lacustrine sand (Hintze and Davis, 2003). 

 
2.2 Threshold friction velocity and mobilized sediment measurement 
 

http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut2607
http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut2607
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  Threshold friction velocity (TFV) was estimated using the 15 cm x 240 cm portable, 

open‐bottomed wind tunnel (Fig. 4-2) described by Belnap et al. (2007) and  Li et al. (2010). A 

pre-weighed fiberglass filter (pore-size approximately 1 μm) was inserted into the sampling 

frame at the end of the expansion chamber to capture mobilized sediment.  

All measurements of wind speed were recorded in units of pressure (inches of water 

column [in.wc.]) using a Fluke 922 Airflow Meter/Micromanometer (range ± 16 in.wc., 

resolution 0.001 in.wc., accuracy ± 1 % + 0.01 in.wc., www.fluke.com/922) attached to a pitot 

tube inside the wind tunnel. Measurements of pressure at a constant wind speed at seven 

heights above the soil surface (0, 0.318, 0.635, 1.27, 2.54, 5.08, 7.62 and 10.16 cm) were 

referred to as a velocity profile. Wind tunnel design required that all sites be within about 20 m 

of a road, but care was taken to avoid areas disturbed during road construction and 

maintenance. All field sampling was conducted during July 2012, and 33 separate sites were 

visited.  

Wind tunnel measurements were performed on both the existing “undisturbed” soil 

surface and a disturbed surface at each sampling location. Care was taken to avoid any 

disturbance before wind tunnel placement on the undisturbed soil surface. The disturbed soil 

surface was created by driving a 1/2-ton truck once forward and then once in reverse so that 

that only the front wheels passed twice over the surface.  

Threshold friction velocity was defined as the velocity at which particles of the soil 

surface, or small rock fragments on the soil surface, began overall continuous forward 

movement (Li et al., 2010). For soil surfaces that lacked loose particles on the soil surface, TFV 

was defined as the velocity at which the integrity of the soil surface crust was compromised and 

fragments of the soil surface were detached and blown away (Belnap and Gillette, 1997; Belnap 

et al., 2007; Marticorena et al., 1997).  

http://www.fluke.com/922
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Threshold friction velocity measurement protocol for both undisturbed and disturbed 

soil surfaces is shown in Fig. 4-3. At each site the wind tunnel was placed on the soil surface and 

the pitot tube set at exactly 7.62 cm above the soil surface. Wind speeds were then gradually 

increased until either overall forward movement of the soil surface, or small rock fragments on 

the soil surface, was observed (i.e., TFV was reached) or a predetermined pressure of about 0.3 

in.wc. was reached. This pressure approximated a wind speed of 13 ms-1 (1300 cm/s, this paper 

will use units of cm/s to conform to units used in related TFV literature) and was chosen so that 

collected sediment amounts would be comparable to Belnap et al. (2007). This predetermined 

pressure also allowed the calculation of TFV in the event that the wind velocity changed before 

a velocity profile could be recorded (see Equations 4-4 and 4-5 below).  

Pressure measurements were converted to velocity (cm/s) using:  

𝑉 = √
2∗𝜌𝑤∗𝑔∗ℎ𝑤

𝜌𝑎
∗ 100  (4-1) 

where V = velocity (cm/s), ρw is the density of water (1000 kg/m3), g is the acceleration of gravity 

(9.8 m/s2), hw is measured pressure (inches of water column, converted to meters) from the 

airflow meter and ρa is the density of moist air (kg/m3). Temperature, barometric pressure and 

dew point necessary for the calculation of ρa were averaged over the 30 minutes nearest the 

time each velocity profile was recorded from a nearby weather station (Salt Desert Shrub East, 

Nevada EPSCOR Snake Range Transect Stations, http://www.wrcc.dri.edu/GBtransect/).  

Wind velocity profiles were then fit to the log wind profile law, also known as the law of 

the wall (Li et al., 2010):  

𝑈 =  
𝑢∗

𝑘
ln (

𝑧

𝑧0
)  (4-2) 

which can be re-written in linear form as:  

ln(𝑧) =  
𝑘

𝑢∗ 𝑈 + ln(𝑧0)  (4-3) 

http://www.wrcc.dri.edu/GBtransect/
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where z is the height of the pitot tube above the soil surface (cm), u* is actual friction velocity 

(cm/s), k is von Kármán’s constant (set to 0.4), U is mean wind velocity at height z (cm/s), and z0 

is aerodynamic roughness height (cm). Assuming neutral conditions (no heating induced 

buoyancy) inside the wind tunnel when overall forward movement of the soil surface was 

observed (i.e., when TFV was reached), regression of the natural log of z (height above soil 

surface; cm) against U (mean wind speed; cm/s), allows the estimation of TFV from regression 

parameters (Wiggs, 1997; Zhang et al., 2008).  

If wind velocity did not change between the time when overall forward movement of 

the soil surface was observed and measurement of the velocity profile, TFV was calculated from 

velocity profiles recorded when overall forward movement of the soil surface was observed as:  

𝑢∗ =
𝑘

𝑎
   (4-4) 

where u* = TFV (cm/s), k = von Kármán’s constant (0.4) and a = regression slope. 

When wind velocity likely changed between the time when overall forward movement 

of the soil surface was observed and measurement of the velocity profile (this happened if 

mobilized sediment saturated the fiberglass filter and wind velocities slowed before the velocity 

profile was measured), TFV was calculated from predefined pressure velocity profiles as:  

𝑢∗ =
𝑈𝑘

ln(
𝑧

𝑧0
) 
   (4-5) 

where u* = TFV (cm/s), U = wind speed (cm/s) at TFV measured at 7.62 cm above the soil 

surface, k = von Kármán’s constant (0.4), z = 7.62 cm, and z0 = aerodynamic roughness height 

(regression intercept).  

Incorrect measurements were removed before performing regressions. Measurements 

were assumed to be incorrect if wind speeds at higher pitot tube heights were less than wind 
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speeds at lower pitot tube heights. Incorrect measurements likely occurred because the pitot 

tube was not perfectly aligned with wind flow along the wind tunnel.  

Estimates of TFV measurement uncertainty (Table 4-1) were calculated by correcting 

measurements for instrument error and substituting upper and lower 95% regression coefficient 

confidence intervals for 𝑎 in Equation 4-4. Plots of measured wind speed profiles at TFV for each 

sampling site (Figs. A-1 to A-20), and technical details of TFV measurement accuracy are 

reported in the Appendix A. 

Following methods in Belnap et al. (2007), the amount of mobilized sediment from each 

soil surface was recorded as the weight of the filter plus the weight of sediment trapped in the 

expansion chamber minus pre-measurement filter weight. Measurements were converted to 

g/m2 by dividing sediment weight by wind tunnel footprint area. If TFV was greater than 1300 

cm/s, sediment weights collected at 1300 cm/s and TFV were combined to obtain final sediment 

weight.  

 
2.3 Soil surface properties 
 
2.3.1 Field methods 
 

Following Li et al. (2010), soil surface resistance to wind erosion was estimated using the 

average area of soil (cm2) displaced by a 760 Pumpmaster air gun shot at 45° to the soil surface 

and the average force required for a penetrometer (QA Supplies FT101) to be pushed 0.6 cm 

into the soil surface at 45°. Fifteen replicates of the air gun and penetrometer measurements 

were recorded at each wind site.  

Soil aggregate stability was measured according to Herrick et al., (2001). Briefly, four 6-8 

mm soil aggregates were soaked and repeatedly dipped in tap water then assigned to 1 of 6 

classes based on how quickly aggregates slaked. The average class number was reported. 

Physical crust thickness (measured to the nearest 0.5 cm) and biological soil crust class (Belnap 
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et al., 2008) were recorded at each site. Each measurement was made within 5 m of the wind 

tunnel location.  

At each site, a 15-cm2 aluminum frame was used to sample the soil surface to a depth 

equal to the thickness of the physical crust or 1 cm if no physical crust was present. These 

samples were sieved to <0.85-mm (U.S. Department of Agriculture, 2014) and both < 0.85-mm 

and ≥ 0.85-mm size fractions were bagged and transported back to the laboratory. 

 
2.3.2 Laboratory methods 
 

Both < 0.85-mm and ≥ 0.85-mm size fractions were air-dried and weighed. Average 

field-moist water content was 0.4% except for site #33 which had a field-most water content of 

14.3%. After weighing, both < 0.85-mm and > 0.85-mm size fractions were combined and gently 

crushed to break up aggregates. This composite sample was then sieved to <2-mm. All 

subsequent laboratory analysis was performed on the < 2-mm fraction. Sand, silt, and clay 

concentrations were determined by three experienced soil scientists using the texture by feel 

method 

(http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/kthru6/?cid=nrcs142p2_054311). 

Soils were classified into USDA texture classes (Schoeneberger et al., 2003b). Soil texture classes 

were mostly silt loam and silty clay loam, however clay, clay loam, loam, sandy clay loam, and 

sandy loam also occurred.  

Electrical conductivity (EC) was measured using an Accumet XL30 conductivity meter on 

the supernatant following settling of most particles from a 1:4 soil:water mix, which was used 

instead of the standard 1:1 suspension because of the expansive nature of the clays in these 

soils. Soil pH was measured using colorimetric field indicators. Inorganic carbon was measured 

using an improved pressure calcimeter method (Fonnesbeck et al., 2013) and reported as % 

calcium carbonate equivalent (CCE). The soil properties of ten percent of the samples were 

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/edu/kthru6/?cid=nrcs142p2_054311


95 
 

measured in duplicate to estimate measurement error. Standard deviation for pH, EC, and CCE 

was 0.1, 0.9 dS/m, and 1.0 %, respectively.  

Percent rock fragment cover (defined as > 1-mm) was estimated using image analysis 

(Booth et al., 2005; Cagney et al., 2011; Duniway et al., 2012; Nguyen et al., 2007). Prior to 

installation of the wind tunnel, a steel frame equal in size to the footprint of the wind tunnel 

was carefully placed on the soil surface and two 12.1-megapixel photos were taken 

approximately 1.5 m directly above the frame. Rock fragments > 1-mm were clearly 

distinguishable in each image (0.3 mm/pixel ground sample distance). Photos were merged and 

eight line-point transects spaced evenly along the length of the steel frame. Line transects 

consisted a semi-transparent image of a 15-cm ruler scaled to the inside of the steel frame. The 

distance of each transect intersected by rock fragments > 1-mm was measured and percent rock 

fragment cover estimated as the total distance along all line-point transects (120 cm) minus the 

total distance not intersected by rock fragments. 

 
2.4 Soil surface classes 
 
 Based on dominant soil surface characteristics, each sampling site was classified to one 

of five soil surface classes: biological crust, hard salt crust, surficial rock fragments, hard physical 

crust, and weak physical crust (Fig. 4-4). Soil surfaces in the biological crust class consisted of 

well-developed, dark cyanobacteria biological soil crusts (Belnap et al., 2008). Soil surfaces in 

the hard salt crust class had obvious salt accumulation at the surface and vegetation at these 

sites was dominantly salt-tolerant grasses. The surficial rock fragments class consisted of both 

well-developed desert pavement and hard physical crusts with significant amounts of surface 

rock fragments. Soil surfaces in the hard physical crust class had obvious, strong polygonal 

cracking. Soil surfaces in the weak physical crust class were either very weak (average resistance 

to penetrometer = 2.1 kg) or lacked a coherent soil crust.  
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We observed hard physical crusts to occur in fine-grained sediment in lake plains and 

dry playas (Peterson, 1981) and, based on nearby soil pedon descriptions, we interpreted many 

of these surfaces as exposed sub-surface soil horizons of clay accumulation (argillic or natric 

horizons). Hard salt crusts were dominantly located in soils formed in fine-grained lacustrine 

material (Hintze and Davis, 2003) where near-surface saline groundwater caused salt 

efflorescence. Surficial rock fragments were found in lacustrine sand and gravel, as well as 

mixed alluvial and lacustrine sediment (Hintze and Davis, 2003). Weak physical crusts mostly 

occurred in fine-grained lacustrine sediment, but also occurred in mixed alluvial and lacustrine 

sediment (Hintze and Davis, 2003).  

 
2.5 Statistical analysis 
 

Multiple linear regression was used to test relationships between TFV and the following 

variables: percent rock cover, average aggregate stability class, air gun disturbance area, 

penetrometer resistance, crust thickness, ratio of > 0.85 mm size fraction weight/total soil 

weight, electrical conductivity, pH, calcium-carbonate-equivalent, sand, silt, and clay. 

Relationships were tested for both undisturbed and disturbed soil surfaces, but only 

undisturbed soil surface observations that reached TFV were included in the analysis. All analysis 

was performed using R statistical software (R Core Team, 2012).  

 
3. Results and discussion 
 
3.1 Threshold friction velocity and sediment production 
 
3.1.1 Undisturbed soil surfaces 
 

Threshold friction velocity was not reached at undisturbed sites with biological and hard 

salt crusts (Table 4-1). Threshold friction velocity was reached at only two of the eight 

undisturbed sites with a hard physical crust (sites 9 and 23, Table 4-1). Site 9 had a very thin, 
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curled clay veneer. Site 23 was located in the former Baker Creek marsh which dried when 

water from Baker Creek was allocated for irrigation (pers. comm. Eskdale farm manager, Eskdale 

UT). It is likely that undisturbed soils with hard salt crusts, biological crusts, and the majority of 

undisturbed soils with hard physical crusts did not reach TFV because cohesive forces in these 

soil crusts were strong enough to resist the turbulence generated by the wind tunnel.  

Threshold friction velocity was reached in 8 of the 12 undisturbed sites with surficial 

rock fragments. The four sites with surficial rock fragments that did not reach TFV (Sites 10, 25, 

29, and 30, Table 4-1) were located on alluvial fans above the Provo shoreline, but below the 

Bonneville shoreline of Lake Bonneville (Currey et al., 1984) and contained little lacustrine 

material. Sites with surficial rock fragments that reached TFV appeared to be in relatively recent 

(late Holocene, Hintze and Davis, 2003) alluvium deposited over lacustrine material (personal 

observation). All sites with a weak physical crust reached TFV (Table 4-1). Average TFV for soils 

with surficial rock fragments and weak physical crusts was 119.0 cm/s and 106.1 cm/s, 

respectively (Fig. 4-5A). Average sediment production for undisturbed weak physical crusts was 

193.8 g/m2. This was greater than average sediment production from undisturbed soils with 

surficial rock fragments (159.8 g/m2), but both surface types had high variability in sediment 

production (Fig. 4-5B).  

Similar to Snake Valley, soils with hard salt crusts and well-developed physical and 

biological crusts from the Mojave Desert and Colorado Plateau did not reach TFV (Belnap and 

Gillette, 1997; Gillette et al., 1982; Li et al., 2010; Marticorena et al., 1997). Threshold friction 

velocities for “loose-silty” soils (Marticorena et al., 1997) in the Mojave Desert were similar to 

TFVs of soils with weak physical crusts in Snake Valley, suggesting that for non-sandy lacustrine 

soils, non-crusted/weakly crusted soils are the most susceptible to wind erosion.  
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3.1.2 Disturbed soil surfaces 
 
 All sites reached TFV after disturbance (Table 4-1). Average TFV was lowest for 

disturbed weak physical crusts (43.2 cm/s), followed by disturbed biological soil crusts (56.9 

cm/s), disturbed hard physical crusts (66.9 cm/s), disturbed hard salt crusts (80.6 cm/s), and 

disturbed soils with surficial rock fragments (84.4 cm/s, Fig. 4-5C). Disturbance reduced average 

TFV for soils with surficial rock fragments and weak physical crusts by 34.6 cm/s and 62.9 cm/s, 

respectively.  

 Average sediment production after disturbance was lowest for biological crusts (14.4 

g/m2), followed by hard physical crusts (18.2 g/m2), hard salt crusts (35.7 g/m2), surficial rock 

fragments (79.7 g/m2) and weak physical crusts (163.7 g/m2). Soils with biological crusts, hard 

physical crusts, and hard salt crusts produced relatively little sediment after disturbance (Fig. 4-

5D). This is because disturbance resulted in few wind erodible aggregates. Soils with biological 

crusts likely had particles “glued” together with polysaccharides and filaments resulting in larger 

aggregates that were more resistant to wind erosion (Mazor et al., 1996; Tisdall and Oades, 

1982). Disturbance loosened few particles from the soil surface of hard physical and hard salt 

crusts, where at some sites there was little evidence that the truck tire had passed over the soil 

surface. Sediment collected from soils with hard salt crusts (Sites 13, 18, & 33, Table 4-1) 

appeared to be a mixture of both salt crust and soil particles. The exception was Site 33, where 

sediment appeared to consist entirely of surface salt. Site 33 was nearest the playa and had the 

thickest salt crust. Therefore, disturbance may not result in erosion of soil particles such as sand, 

silt, and clay.  

Disturbance reduced average sediment production for soil surfaces with surficial rock 

fragments and weak physical crusts compared to undisturbed soil surfaces. The reduction in 

average sediment production following disturbance was greater for soils with surficial rock 
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fragments (80.1 g/m2) than for soils with weak physical crusts (30.1 g/m2). This reduction in 

sediment production after disturbance is surprising, but is likely because disturbance compacted 

loose particles on weak physical crusts (personal observation), while possibly burying or 

compacting loose gravel on soils with surficial rock fragments.  

Similar to Belnap and Gillette (1997), Belnap et al, (2007), Gillette et al. (1982) and 

Marticorena et al. (1997), disturbance of the soil surface reduced TFV. Contrary to Belnap et al., 

(2007), disturbance generally reduced sediment production (compare Fig. 4-5B and 4-5D). This 

may be the result of differences in the methods of applied disturbance (trampling vs. passage 

with a truck) or differences in soil texture, as the soils tested by Belnap et al. (2007) were much 

sandier. 

 
3.2 Predicting TFV from soil properties 
 

Percent silt was the best predictor of undisturbed TFV for weak physical crusts (Table 4-

2, Fig. 4-7). Penetrometer force and percent rock cover were the best predictors of undisturbed 

TFV for soils with surficial rock fragments (Table 4-2, Fig. 4-6). In a similar study on Colorado 

Plateau and Mojave Desert soils, Li et al. (2010) found mean air gun displacement area as well as 

penetrometer force and percent rock cover significant predictors of TFV. The lack of statistically 

significant relationships between TFV and mean air gun displacement in these soils is likely a 

result of surface crust strength. Soils tested by Li et al. (2010), which reached TFV, were sandy or 

had only weak biological or physical crusts, and had maximum penetrometer and mean air gun 

displacement area measurements of approximately 1.1 kg and 50 cm2, respectively. All soils in 

this study had penetrometer measurements > 1.3 kg and a maximum air gun displacement area 

of 12 cm2 (data not shown).    
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No significant predictors of disturbed TFV for soils with surficial rock fragments, weak 

physical and hard physical crust classes were found. Insufficient observation numbers prohibited 

meaningful regressions for disturbed biological or hard salt crusts. 

For developing spatially explicit estimates of TFV for input into a spatial wind erosion 

model, undisturbed soils with biological, hard salt, and hard physical crusts might be assumed 

not to reach TFV based on these wind tunnel measurements. TFV in undisturbed soils with weak 

physical crusts and surficial rock fragments could be predicted using a combination of silt 

concentration (%), penetrometer force, and percent rock cover measurements. Spatially explicit 

estimates of TFV in disturbed soils could not be developed using any of the measured soil 

surface properties.   

 
4. Conclusions 
 

This study reports wind tunnel measured threshold friction velocities and sediment 

production for undisturbed and disturbed lacustrine and alluvial soils in the eastern Great Basin.  

We found that the nature of the soil surface (biological crust, hard salt crust, surficial rock 

fragments, hard physical crust, and weak physical crust) can be used to help explain differences 

in wind tunnel measured TFV and sediment production. Undisturbed soils with surficial rock 

fragments and weak physical crusts had lower TFVs, and thus are more susceptible to wind 

erosion, than soils with biological crusts, hard salt crusts, and hard physical crusts. However, it is 

important to note that in this study TFV was measured with a 15-cm high wind tunnel, which 

physically restricted large scale (e.g., 2-km) turbulent eddies. Therefore, we cannot rule out that 

TFV of undisturbed soils with biological crusts, hard salt crusts, and hard physical crusts would 

not be reached in natural conditions. We expect that in undisturbed conditions, soils with weak 

physical crusts would produce more sediment than soils with surficial rock fragments, but there 

may be high variability in sediment production.  
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When disturbed, soils with weak physical crusts are expected to be the most susceptible 

to wind erosion, as they had the lowest average TFV and produced relatively large amounts of 

sediment compared with other soil surface types. Although soil surfaces with surficial rock 

fragments had relatively high TFVs in our study, such surfaces can also produce relatively large 

amounts of sediment if TFV is exceeded. Soils with biological crusts, hard salt crusts, and hard 

physical crusts, while likely to reach TFV when disturbed, may not be highly susceptible to 

erosion, because relatively little sediment was produced from these surface types. Future work 

on wind erosion in the eastern Great Basin should focus on non-crusted/weakly crusted soils 

and soils formed in alluvium overlying lacustrine materials. Soils with other surface types are 

likely less susceptible to wind erosion.  

Our study results indicate that in the eastern Great Basin, which is dominated by 

carbonate-rich lacustrine and alluvial soils, spatially explicit estimates of TFV in undisturbed soils 

with weak physical crusts and surficial rock fragments could be produced using a combination of 

penetrometer force, percent rock fragment cover, and silt concentration (%). It is unlikely that 

spatially explicit estimates of TFV of disturbed soils could be produced using any of the 

measured soil surface properties.  
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Table 4-1. Threshold friction velocity of undisturbed and disturbed soil surfaces. Min. and Max. TFV are the minimum and maximum 
possible TFV values using 95% confidence intervals of regression parameters derived from adding and subtracting instrument error to 
measured pressure (Appendix A). Values with a greater than symbol (>) indicate TFV was not reached and TFVs were designated as being 
greater than the friction wind speed obtained from the actual velocity profile. Sediment is the amount of sediment collected in the wind 
tunnel at TFV. r2 is the coefficient of determination obtained by regression of log z (height above soil surface; cm) against U (mean wind 
speed; cm/s). 
 

  
Undisturbed Disturbed 

Surface type 
Site 
ID 

R2 
Min. 
TFV 

(cm/s) 

 TFV 
(cm/s) 

Max. 
TFV 

(cm/s) 

Sediment 
(g/m2) 

R2 
Min. TFV 

(cm/s) 
 TFV 

(cm/s) 

Max. 
TFV 

(cm/s) 

Sediment 
(g/m2) 

Biological 04 
  

>217.4 
  

0.974 62.9 69.2 79.0 6.6 

Biological 05 
  

>145.7 
  

0.974 58.1 64.6 77.0 24.1 

Biological 32 
  

>206.5  
  

0.993 35.6 36.9 38.9 12.5 

Hard salt 13 
  

>190.1  
  

0.953 54.9 60.8 73.9 38.4 

Hard salt 16 
  

>179.9  
  

0.843 80.0 103.5 164.3 15.5 

Hard salt 17 
  

>316.2  
  

0.973 39.4 41.6 47.4 13.3 

Hard salt 18 
  

>218.1  
  

0.823 48.9 77.5 167.5 86.2 

Hard salt 33 
  

>191.7  
  

0.869 92.8 119.6 180.2 24.9 

Surficial rocks 01 0.990 87.1 93.3 101.9 370.3 0.967 68.0 75.8 89.4 179.9 

Surficial rocks 03 0.994 102.8 107.6 114.2 236.8 0.971 47.8 53.2 61.0 129.9 

Surficial rocks 06 0.982 110.7 123.7 141.3 34.1 0.994 104.7 110.5 117.3 120.5 

Surficial rocks 07 0.980 97.3 107.2 121.7 7.8 0.993 110.1 101.0 105.3 12.6 

Surficial rocks 10 
  

>153.0  
  

0.988 45.9 52.6 60.9 74.4 

Surficial rocks 12 0.993 109.4 117.2 127.1 42.1 0.959 55.5 63.9 78.1 62.4 

Surficial rocks 21 0.938 115.0 139.7 181.4 49.1 0.988 75.4 87.8 102.5 16.2 

Surficial rocks 24 0.963 134.7 152.9 182.3 120.6 0.994 104.7 110.9 119.4 122.7 

Surficial rocks 25 
  

>144.2  
  

0.978 123.9 137.6 157.6 97.1 

Surficial rocks 26 0.974 98.5 110.1 127.7 408.9 0.994 40.8 42.0 43.2 15.1 

Surficial rocks 29 
  

>232.7  
  

0.911 42.5 53.1 74.7 22.0 

Surficial rocks 30 
  

>272.7  
  

0.916 149.7 123.9 222.8 103.9 
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Hard physical 02 
  

>146.9  
  

0.999 93.8 103.2 112.2 6.3 

Hard physical 08 
  

>155.6  
  

0.991 53.3 57.3 62.9 7.3 

Hard physical 09 0.954 104.9 124.0 154.7 73.6 0.953 56.9 76.3 106.8 4.1 

Hard physical 15 
  

>146.7  
  

0.941 87.6 105.2 136.2 19.1 

Hard physical 23 0.951 80.3 93.6 116.8 221.1 0.873 31.6 51.4 98.9 87.2 

Hard physical 27 
  

>172.0  
  

0.877 26.7 35.5 56.1 7.3 

Hard physical 28 
  

>175.2  
  

0.975 54.2 61.5 72.3 11.3 

Hard physical 31 
  

>214.2  
  

0.935 37.3 44.4 58.4 2.7 

Weak physical 11 0.931 81.0 99.1 163.3 177.3 0.989 34.7 36.6 39.1 54.4 

Weak physical 14 0.970 102.9 111.0 123.7 556.9 0.978 49.9 51.9 57.3 29.9 

Weak physical 19 0.943 59.2 79.8 130.3 116.4 0.991 43.2 52.3 65.6 10.9 

Weak physical 20 0.962 82.9 99.8 126.9 156.5 0.977 36.0 31.2 31.8 586.4 

Weak physical 22 0.965 123.6 141.0 168.3 77.9 0.947 37.2 43.9 54.4 136.6 

Missing values indicate TFV not reached 

Minimum and maximum TFV from 95% confidence intervals of measurements corrected for instrument error.  
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Table 4-2. Multiple linear regressions that best predict undisturbed TFV for soils with surficial 
rock fragments and weak physical crusts.  
   

Crust Type Intercept 
Silt  
(%) 

Penetrometer 
(kg) 

Rock Cover 
(%) 

R2 P 
RMSE  
(cm/s) 

Surficial rock fragments -32.21 - 6.338 1.797 0.92 0.002 5.02 

Weak physical crust 169.20 -1.126 - - 0.93 0.008 5.26 
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Fig. 4-1. Study area location in Snake Valley, Utah, adjacent to the Nevada border. Points 
overlain on air photo represent crust class locations measured for TFV.  
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Fig. 4-2. Clear plastic main working section of the portable wind tunnel used to measure TFV. 
Honeycomb flow straightener is located to the right. The expansion chamber and filter (not in 
photo) are located to the left. Wind travels along wind tunnel from right to left. Yellow and black 
tubes connect the pitot tube inside the wind tunnel to the Fluke 922 airflow 
meter/micromanomter.  
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Fig. 4-3. Threshold friction velocity measurement procedure. 
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Fig. 4-4. Photos of representative sites from each soil surface type. From top to bottom: 
biological crust (A), hard salt crust (B), surficial rock fragments (C), hard physical crust (D), and 
weak physical crust (E). The steel frame in each photo is equal to the wind tunnel footprint.  
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Fig. 4-5. Dot-boxplots of threshold friction velocity (TFV; top, A and C) and the amount of 
sediment produced (bottom, B and D) by surface type for undisturbed (left; A and B) and 
disturbed (right; C and D) soil surfaces. TFV for soils with undisturbed biological crusts, hard salt 
crusts, and hard physical crusts were not reached. Individual points are actual measurement 
values and have been slightly offset to avoid over plotting.  
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Fig. 4-6. Plot of measured vs. predicted TFV for undisturbed soils with surficial rock fragments. 
Threshold friction velocity was predicted using penetrometer and percent rock cover 
measurements. RMSE is the root mean square error of estimation (cm/s).  
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Fig. 4-7. Plot of measured vs. predicted TFV for undisturbed soils with weak physical crusts. 
Threshold friction velocity was predicted using silt concentration (%). RMSE is the root mean 
square error of estimation (cm/s). 
 

 
 

  



116 
 

CHAPTER 5 
 

CONCLUSIONS 
 
 

This dissertation explored the application of digital soil mapping for producing spatially 

explicit soil information that may be useful for arid and semi-arid land management in the 

western United States. Chapter 2 provided insight into the use of machine learning for digital 

soil mapping of soil taxonomic classes. No machine learning model was consistently the most 

accurate classifier; however, bagging classification trees and random forests were among the 

most accurate classifiers for two of the three areas, suggesting the utility of these models. 

Models were most accurate when built using covariates identified with a quantitative covariate 

selection technique. Prediction accuracy was greatest when there were few soil taxonomic 

classes and when the frequency distribution of soil observations was approximately equal 

between taxonomic classes.  

Chapter 3 applied digital soil mapping to predict potential biological soil crust (BSC) 

level-of-development (LOD) class distribution over a large area surrounding Canyonlands 

National Park. Spatial predictions of moderate BSC LOD class potential were reasonably 

accurate. Spatial predictions of low and high BSC LOD class potential were likely not reliable. 

Prediction accuracy was dependent upon the relationship between each LOD class and the 

predictor covariates. Prediction accuracy could likely be improved through the use of additional 

covariates. However, some classes may be difficult to model. Spatial predictions of BSC LOD 

class probabilities and the final class map may be useful for assessing the impact of land use 

practices on BSC distribution.  

Chapter 4 reported measured threshold friction velocities (TFV) and sediment 

production for undisturbed and disturbed lacustrine and alluvial soils in the eastern Great Basin.  

The nature of the soil surface was useful to explain differences in TFV and sediment production. 
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Undisturbed soils with surficial rock fragments and weak physical crusts had lower TFVs, and 

thus were more susceptible to wind erosion, than soils with biological crusts, hard salt crusts, 

and hard physical crusts. However, it is important to note that in this study TFV was measured 

with a 15-cm high wind tunnel, which physically restricted large scale (e.g., 2-km) turbulent 

eddies. Therefore, we cannot rule out that TFV of undisturbed soils with biological crusts, hard 

salt crusts, and hard physical crusts would not be reached in natural conditions. 

When disturbed, soils with surficial rocks or weak physical crusts had low TFV and 

produced relatively large amounts of sediment. When compared with other soil surface types, 

soils with surficial rock fragments or weak physical crusts are likely the most susceptible to wind 

erosion. Threshold friction velocity in undisturbed soils with surficial rock fragments and weak 

physical crusts could be predicted using a combination of penetrometer force, percent surface 

rock cover, and silt concentration (%). Threshold friction velocity in disturbed soils could not be 

predicted using any of the measured soil surface properties.  

Taken together, the results from Chapters 2 and 3 illustrate the utility of digital soil 

mapping for producing spatially explicit soil information with known error useful for the 

management of arid and semi-arid lands. Additionally the results from these chapters reveal the 

dependence of digital soil mapping prediction accuracy on the number of available 

observations. Digital soil mapping predictions have the lowest error when many observations 

are available. Because observations for digital soil mapping are dependent upon the method 

used to identify sampling locations, sampling strategies must be considered when applying 

digital soil mapping. One must also consider that some classes may be difficult to model within 

the study area regardless of the number of observations, such as with the high level-of-

development biological soil crust class in Chapter 3. 
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While not directly an application of digital soil mapping, the results from Chapter 4 

provide a first step towards using digital soil mapping to provide the soil information necessary 

to understand and manage the impacts of soil disturbance and potential groundwater 

withdrawal on wind erosion in arid and semi-arid areas. For example, it is likely possible to use 

digital soil mapping to derive soil surface types, percent rock fragment cover, or silt 

concentration, and to identify areas that require further field sampling, to produce spatially 

explicit estimates of TFV.  

Ultimately, the rapid and reliable production of soil information with known error is 

essential for land management decisions. The results of this dissertation demonstrate that 

digital soil mapping can provide such information.  
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APPENDIX A. THRESHOLD FRICTION VELOCITY MEASUREMENT ERROR ESTIMATION  
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A.1 Rational for estimating TFV measurement uncertainty 
 

Threshold friction velocity was measured using the same wind tunnel as multiple 

previous studies (Belnap and Gillette, 1997, Belnap and Gillette, 1998, Belnap et al., 2007, 

Gillette et al., 1980, Gillette et al., 1982, Gillette, 1988, Li et al., 2010, and Marticorena et al., 

1997), but implemented a digital micromanometer to measure wind velocities. All previous 

studies used a manual manometer. The use of a digital micromanometer allowed the estimation 

of measurement error.  

 
A.2 TFV measurement uncertainty estimation methods 
 

Uncertainty in threshold friction velocity measurements resulted from three sources: 

technician error, instrument error, and regression parameter uncertainty. Technician error was 

the inability of wind tunnel technicians to visually estimate the exact moment when TFV 

occurred, and to record a wind velocity profile at that instant. This was particularly noticeable 

when TFV occurred at very low wind velocities. We were unable to quantify this source of error, 

but it is likely minimal.  

Instrument error was the inherent micromanometer measurement error and was a 

function of measurement magnitude (lower pressures had greater error) and temperature 

(Fluke 922 user’s manual, http://assets.fluke.com/manuals/922_____umeng0100.pdf). Because 

instrument error was not constant, adding and subtracting instrument error from each 

measurement resulted in two different regression coefficients and thus two different TFV 

estimates. Regression parameter uncertainty was the uncertainty associated with each 

regression coefficient used to calculate TFV (Equations 4-4 and 4-5, Chapter 4, section 2.2). Plots 

of measured wind speed profiles with corrections for measurement error and regression 

uncertainty for undisturbed and disturbed soil surfaces at TFV are presented in Figs A-1 to A-9, 

and A-10 to A-18, respectively. 

http://assets.fluke.com/manuals/922_____umeng0100.pdf
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To quantify the relative influence of instrument error and regression parameter 

uncertainty on the estimation of threshold friction velocity, TFV was calculated using two inputs 

to Equation 4-4 (Chapter 4, section 2.2). These inputs were: 1) regression coefficients from 

measurements corrected for ± instrument error, and 2) upper and lower 95% confidence 

interval bounds of the regression coefficient using the initial measurements. The input that 

resulted in the widest range of TFV values was considered the largest source of uncertainty. 

 
A.3 TFV measurement uncertainty 
 

Regression coefficient uncertainty was the largest overall source of TFV uncertainty (Fig. 

A-19). Regression coefficient uncertainty, measured as confidence interval width, is a function of 

both the linearity of the regression and the number of observations used in the regression. 

Regression coefficient uncertainty is greatest when the regression deviates from linear and 

there are relatively few observations.  

In addition to increasing TFV uncertainty, deviance from linearity (measured with the 

coefficient of determination, r2) impacts the validity of TFV estimates. The law-of-wall is valid 

only when a log-linear relationship between height and velocity exists. When the regression is 

not log-linear, TFV is not valid.   

Based on our observations, deviance from linearity was largely the result of convection. 

Mitigating convection could be done by operating the wind tunnel when environmental 

conditions reduce convection from soil surface heating, such as in the spring and autumn or 

during the morning and evening. If the wind tunnel is operated when convention is likely, 

shading the wind tunnel and micromanometer is necessary (optimal micromanometer 

temperature is < 28 °C). Shading the wind tunnel would have the additional benefit of increasing 

operator comfort, thereby helping to minimize operator error.  
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In addition to mitigating convection, a practical way to ensure high linearity could be 

through the use of a pre-programed spreadsheet designed to automatically calculate TFV and 

uncertainty. If used on a laptop or tablet computer, uncertainty could be assessed at the time 

the wind profile is measured and if non-linear, another wind profile collected. If this is not 

possible, multiple wind profiles should be recorded at TFV.  

Regression parameter uncertainty is also influenced by the number of observations used in 

the regression; more observations result in narrower confidence intervals. To investigate the 

impact of adding additional observations on TFV uncertainty, we simulated five additional 

observations for a highly log-linear wind profile (Table 4-1, Chapter 4, undisturbed site 3, r2 = 

0.994). Simulated pitot tube heights were taken midway between existing heights (e.g. 5.08 cm 

between 2.54 and 7.62 cm). Simulated wind velocities at these heights were derived using the 

regression equation for this wind profile with random error added to each observation. Random 

error was constrained to the interval of the regression residual standard deviation.  

Adding additional observations reduced TFV uncertainty up to 46.5% (Fig. A-20). As 

additional observations require very little additional time to measure, and as it is difficult to 

collect more than five additional measurements at set heights within the wind tunnel, we 

recommend that wind speeds be recorded at twelve pitot tube heights (the original seven, plus 

an additional five) for every wind profile.    

Although not as significant as regression parameter uncertainty, instrument error does 

influence TFV uncertainty, particularly for wind profiles that have low regression parameter 

uncertainty (e.g. disturbed sites 7 and 20, Fig. A-19). Uncertainty in TFV resulting from 

instrument error could be reduced by measuring wind profiles in units of velocity (cm/s) instead 

of units of pressure (inches of water column), even though instrument error is greater for units 

of velocity. This reduction in TFV uncertainty when using units of velocity is because required 



124 
 

velocity measurement correction changes regression parameters relatively little compared to 

required pressure measurement corrections. This is particularly noticeable for low wind 

velocities.   

The lowest absolute TFV uncertainty using Equation 4-4 was 12.9 cm/s (disturbed site 

32, r2 = 0.993, Table 4-1, Fig. A-19) which may approximate the lower boundary of achievable 

TFV accuracy under common field conditions using the Fluke 922 

airflowmeter/micromanometer. Uncertainties in previously published TFV values using this wind 

tunnel and a manual manometer (Belnap and Gillette, 1997, Belnap and Gillette, 1998, Belnap 

et al., 2007, Gillette et al., 1980, Gillette et al., 1982, Gillette, 1988, Li et al., 2010, and 

Marticorena et al., 1997) are likely not less than this value.   

 
A.4 TFV measurement uncertainty conclusions.  
 

Threshold friction velocity measurement uncertainty is mostly a function of regression 

parameter uncertainty. Future users of this micromanometer and wind tunnel should ensure 

that all measured velocity profiles are highly log-linear (generally r2 > 0.98), should take wind 

speed readings at twelve pitot tube heights, and should measure wind profiles in units of 

velocity.  
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Fig. A-1. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
1-4. Blue dots represent measured values. Lines represent regressions and estimated error using 
Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-2. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
5-8. Blue dots represent measured values. Lines represent regressions and estimated error using 
Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-3. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
9-12. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-4. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
13-16. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-5. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
17-20. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-6. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
21-24. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-7. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
25-28. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-8. Measured wind speed profiles of the undisturbed soil surfaces at TFV for sampling sites 
29-32. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-9. The measured wind speed profile of the undisturbed soil surface at TFV for sampling 
site 33. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-10. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
1-4. Blue dots represent measured values. Lines represent regressions and estimated error using 
Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-11. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
5-8. Blue dots represent measured values. Lines represent regressions and estimated error using 
Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-12. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
9-12. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-13. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
13-16. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-14. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
17-20. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-15. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
21-24. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-16. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
25-28. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-17. Measured wind speed profiles of the disturbed soil surfaces at TFV for sampling sites 
29-32. Blue dots represent measured values. Lines represent regressions and estimated error 
using Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-18. The measured wind speed profile of the disturbed soil surface at TFV for sampling site 
33. Blue dots represent measured values. Lines represent regressions and estimated error using 
Equation 4-4. Text in upper left corners are the coefficient of determination (r2) for each 
regression.  
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Fig. A-19. Sources of uncertainty in TFV measurement for undisturbed and disturbed soils. Only 
undisturbed sites that reached TFV are shown in the upper figure.  
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Fig. A-20. Percent decrease in TFV uncertainty with added simulated observations.  
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