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ABSTRACT 

Biogeochemistry of Selenium in Pariette Wetlands, Utah 

by 

Colleen Jones, Doctor of Philosophy 

Utah State University, 2014 

Co-Major Professors: Dr. Paul Grossl and Astrid Jacobson 
Department: Plants, Soils, and Climate 
 
 The Pariette Wetlands was constructed to provide wildlife habitat in an arid envi-

ronment. Elevated levels of selenium (Se) have been detected in water, soil, and biota. 

Selenium concentrations have ranged from below detection limit to four times the water 

quality criterium limit. Here we report on three interrelated research topics: 1) selenium 

mass balance and flux in water, 2) selenium accumulation, concentration and volatiliza-

tion of water and plant tissues; and 3) selenium sorption by upland and wetlands soils. 

 1) Mass balance and mass water flux of selenium for the Pariette Wetlands were 

studied. A comparison of inlet and outlet Se fluxes was used to determine the mass of Se 

stored. Selenium concentrations were higher at the inlet (2.1-16.3 µg L-1) than at the out-

let (2.0-14.0 µg L-1). The average amount of Se retention and/or loss was 75%. 

 2) Elevated levels of selenium (Se) in water, soil, and biota of the Pariette Wet-

lands, Utah. Twelve sample sites were selected to determine the spatial and temporal var-

iation of Se accumulation, concentration and volatilization. At the inlet, concentrations of 

waterborne Se during low-flow period (winter) were significantly higher than concentra-

tions during high-flow irrigation season (summer). Se concentrations in water at the out-

let were lower during the high-flow period ranging from. In contrast, plant tissue Se con-
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centration was lower at the inlet and higher at the outlet. Selenium volatilization results 

indicated that there were spatial and temporal differences among samples sites.  

 3) The physical and chemical properties were compared for two soils in the 

Pariette Draw of Utah. It appears that Se mobility is associated with the distribution of 

soluble salts. We surmise that soluble Se is regulated by the solubility of a sodium sele-

nate sulfate coprecipitate..  

 Knowledge gained about the mass balance, storage of Se, and the associated bio-

geochemical processes in water, plants, and soils that contribute to the accumulation or 

loss of Se in the wetlands will be beneficial to future land management decisions to min-

imize the impact of Se exposure to wildlife. 

 (115 Pages)
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PUBLIC ABSTRACT 

Biogeochemistry of Selenium in Pariette Wetlands, Utah 

by 

Colleen Jones, Doctor of Philosophy 

Utah State University, 2014 

Co-Major Professors: Dr. Paul Grossl and Astrid Jacobson 
Department: Plants, Soils, and Climate 
 
 Pariette Wetlands was constructed to provide wildlife habitat in an arid environ-

ment. Elevated levels of selenium (Se) have been detected in water, soil, and biota. Sele-

nium concentrations have ranged from below detection limit to four times the water qual-

ity criterium limit. Here we report on three interrelated research topics: 1) selenium mass 

balance and flux in water, 2) selenium accumulation, concentration and volatilization of 

water and plant tissues; and 3) selenium sorption by upland and wetlands soils. 

 1) Mass balance and mass water flux of selenium for the Pariette Wetlands were 

studied. A comparison of inlet and outlet Se fluxes was used to determine the mass of Se 

stored. Selenium concentrations were higher at the inlet (2.1-16.3 µg L-1) than at the out-

let (2.0-14.0 µg L-1). The average amount of Se retention and/or loss was 75%. 

 2) Elevated levels of selenium (Se) in water, soil, and biota of the Pariette Wet-

lands, Utah. Twelve sample sites were selected to determine the spatial and temporal var-

iation of Se accumulation, concentration and volatilization. At the inlet, concentrations of 

waterborne Se during low-flow period (winter) were significantly higher than concentra-

tions during high-flow irrigation season (summer). Se concentrations in water at the out-

let were lower during the high-flow period ranging from. In contrast, plant tissue Se con-
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centration was lower at the inlet and higher at the outlet. Selenium volatilization results 

indicated that there were spatial and temporal differences among samples sites.  

 3) The physical and chemical properties were compared for two soils in the 

Pariette Draw of Utah. It appears that Se mobility is associated with the distribution of 

soluble salts. We surmise that soluble Se is regulated by the solubility of a sodium sele-

nate sulfate coprecipitate. 

 Knowledge gained about the mass balance, storage of Se, and the associated bio-

geochemical processes in water, plants, and soils that contribute to the accumulation or 

loss of Se in the wetlands will be beneficial to future land management decisions to min-

imize the impact of Se exposure to wildlife. 
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CHAPTER 1 

INTRODUCTION 

 
 In the Western United States, there has been increasing concern over selenium 

(Se) contamination of public lands and waters resulting from irrigated agriculture and 

mining activities. Selenium is a naturally occurring element and is an essential trace ele-

ment required for structure and function of certain proteins in animals (Hoffman, 2002; 

Winkel et al., 2012). In excess amounts, however, Se is known to cause reproductive 

failures and abnormalities in egg-laying vertebrates such as birds, fish, amphibians, and 

reptiles (Hamilton, 2004; Lemly, 1985). Given the increasing occurrence of Se contami-

nation throughout the world, it can be anticipated that this problem will continue to pre-

sent challenges to land and wildlife managers (Lemly, 2002).  

 Since the early 1980s, high Se concentrations in agricultural drainage waters have 

been a major concern in the San Joaquin Valley, California (Seiler, 1995; Tanji et al., 

1986). Here, subsurface irrigation drainage water containing high levels of Se was dis-

charged and confined in Kesterson Reservoir, causing deformity of water bird embryos, 

ultimately leading to the reservoir closure in 1986 (Ohlendorf, 2002; Ohlendorf et al., 

1986; Ohlendorf et al., 1988a; Ohlendorf et al., 1988b; Presser, 1994). Similarly, Se con-

tamination has affecting some of Utah’s waters that also serve as wildlife refuges. The 

Pariette Draw flows into the Pariette Wetlands before reaching the Green River (Stephens 

et al., 1992). The middle Green River of the Uinta Basin area was identified as an area 

with significantly high Se contamination, and the Pariette Draw, a tributary to the middle 

Green River, was identified as one of the three areas of concern (Figure 1-1). 
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STUDY AREA 

 
 Our study area, the Pariette Wetlands, is located approximately one kilometer up-

stream of the confluence of Pariette Draw watershed and the Green River. The draw is 

located in the northeastern corner of Utah in the Uintah Basin (Figure 1-1). The Pariette 

Wetlands, the oasis of the Uinta Basin in Utah (Figure 1-2), encompasses 9,033 acres, 

2,529 of which are classified wetlands or riparian zones and is the largest BLM wetlands 

development in Utah. The wetlands contain diverse vegetation and wildlife in an arid 

climate. The site was developed in 1975 to improve waterfowl production and provide 

seasonal habitat for other species including ring-necked pheasant, mourning dove, 

sandhill and whooping cranes, and peregrine falcon. A wide variety of raptors including 

the bald eagle, harrier, and prairie falcon also use the area (Stephens et al., 1992; 

Zalunardo, 1979). Elevated levels of selenium have been measured in the Pariette Draw 

and Pariette Wetlands, which may be hazardous to wildlife within the drainage (Wingert 

and Adams, 2011). There is, therefore, a critical need to identify the factors associated 

with the biogeochemistry of Se and the flux within this aquatic ecosystem.  

 
SELENIUM BIOGEOCHEMISTRY 

 
 

In the environment, Se is found in five metastable valence states: selenate, SeO4
2-, 

(Se+6); selenite, SeO3
2-, (Se+4); elemental Se (Se0); selenides (Se-2) and organic forms of 

Se (Maher et al., 2010). Under oxidized conditions, it is present as the oxyanions selenate 

and selenite. Selenate is the primary bioavailable form of Se, and, thus, the form that pos-

es the greatest threat to the environment, especially under alkaline pH and aerobic condi-

tions. As Se is reduced, selenite forms stable complexes with iron and aluminum which 



 

 

3

are sorbed to soil and sediment particle surfaces and, consequently, are less mobile (Fig-

ure 1-3). However, both selenate and selenite, the oxidized form of Se, can occur in the 

same soil with the same conditions (Goldberg, 2011). Organic matter mineralization is 

associated with reduced redox potentials. At low redox potentials, Se forms insoluble el-

emental Se and metal selenides, which are unavailable to biota (Winkel et al., 2012). In 

its lowest oxidation state, Se forms metallic selenides (CuSe, FeSe2, etc), hydrogen 

selenide gas (H2Se) or proteinaceous Se (selenomethionine or selenocysteine) (Presser, 

1994). In aquatic ecosystems, cycling of Se occurs within the sediment pore waters, the 

water column and associated atmosphere (Figure 1-3). The major Se species in aquatic 

ecosystems can be categorized into four major groups: 1) inorganic Se, 2) volatile and 

methylated Se, 3) protein and amino acid Se, and 4) biochemical intermediates (Maher et 

al., 2010).  

Geologic processes such as weathering and soil genesis can mobilize sequestered 

Se from the lithosphere into the hydrosphere and atmosphere, causing Se to be more bio-

available. Selenium is found in many minerals of sedimentary deposits, metamorphic 

rocks, and hydrothermal veins. Bioalkylation in soils, water and plants can cause Se spe-

cies such as dimethyl selenide [(CH3)2Se], dimethyl diselenide [(CH3)2Se2], and other 

volatile organic Se to be released to the atmosphere. When Se volatilization is not ac-

counted for, there is major uncertainty in calculating Se budgets. The underlying mecha-

nism responsible for the mobilization of selenium in the atmosphere is the least under-

stood of the cycling of selenium (Maher, et al., 2010).  

 Since Se’s chemical forms are similar to sulfur (S), Se can be substituted in the 

cell as analogues to S containing biomolecules forming organic Se (Unrine et al., 2007). 
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Once incorporated into biomolecules such as in amino acids, Se then becomes part of 

proteins. Selenium is essential to the structure and function of some proteins and enzymes 

(Young et al., 2010). In human health, Se is an important component of several metabolic 

pathways, which include thyroid hormone metabolism, immune function, and antioxidant 

defense systems (Levander and Burk, 2006). However, overexposure to Se can cause 

short-term negative affects in humans such as fatigue and irritability, hair and fingernail 

changes, damage to peripheral nervous system. Long-term affects of Se are hair and fin-

gernail loss, nervous and circulation system dysfunction, and kidney and liver tissue 

damage (Ge and Yang, 1993). Se deficiency diseases as well as toxicosis have also been 

reported in the veterinary medicine literature (Tiwary et al., 2006).  

 Selenium toxicity to fish and waterfowl are of major concern in aquatic ecosys-

tems. Several investigators have reported bioaccumulation of Se. In Belews Lake, North 

Carolina and Martine Lake, Texas fish kills were reported as a direct result of Se released 

into the main basin of these lakes (Hamilton, 2004). Ten other studies were reviewed in 

which Se was identified as the potential cause of disappearance of several species of fish 

(Lemly, 1985).Waterfowl are also very sensitive to Se toxicity. Hatchability of eggs was 

significantly reduced when dietary Se was between 5 µg g-1 and 10 µg g-1. There was also 

evidence of grossly deformed embryos with missing eyes and beaks, edema of the head 

and neck, and distorted wings and feet (Ohlendorf, 2002). 

 
OBJECTIVES 

 
 The central hypothesis is that concentration of Se in water, soil, and plants influ-

ences the biogeochemistry of selenium which, in turn, influences the bioavailability of 
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selenium in the Pariette Wetlands, Utah. Our hypothesis is based on preliminary data as 

well as the published work of United States Geological Survey USGS reconnaissance 

study of the 1980’s (Stephens et al., 1992) and the TMDL study of the Utah Division of 

Water Quality (Wingert and Adams, 2011) whose studies suggest that the Se entering in-

to the wetlands is being lost through adsorption, volatilization and/or bioaccumulation. 

The overall objective of this study, therefore, was to measure levels of Se in water, soil 

and plants in the Pariette Wetlands. The rationale for our study is to identification the 

physical, chemical and biological factors associated with the biogeochemistry of Se in the 

Pariette Wetlands, Utah. Identification of the biogeochemical factors will help land man-

agers make better-informed decisions on how to direct their future management and res-

toration efforts.  

 
REFERENCES 

 
Ge, K.Y., and G.Q. Yang. 1993. The Epidemiology of Selenium Deficiency in the 

Etiologic Study of Endemic Diseases in China. Am. J.  Clin. Nutr. 57: S259-S263. 

Goldberg, S. 2011. Chemical Equilibrium and Reaction Modeling of Arsenic and 

Selenium in Soils. In: H. M. Selim, editor Dynamics and Bioavailability of Heavy 

Metals in the Rootzone. CRC Press, Boca Raton, FL. p. 65-92. 

Hamilton, S.J. 2004. Review of selenium toxicity in the aquatic food chain. Sci. Total 

Environ. 326: 1-31. doi:10.1016/j.scitotenv.2004.01.019. 

Hoffman, D.J. 2002. Role of selenium toxicity and oxidative stress in aquatic birds. 

Aquat. Toxicol. 57: 11-26. doi:10.1016/s0166-445x(01)00263-6. 



 

 

6

Lemly, A.D. 2002. Selenium assessment in aquatic ecosystems: A guide for hazard 

evaluation and water quality criteria. Springer,  New York. 

Lemly, A.D. 1985. Toxicology of Selenium in a Freshwater Reservoir: Implications for 

Environmental Hazard Evaluation and Safety. Ecotoxicol. Environ. Saf. 10: 314-338. 

Levander, O.A., and R.F. Burk. 2006. Update of human dietary standars for selenium. In: 

D. L. Hatfield, M. J. Berry and V. N. Gladyshev, editors, In Selenium: Its Molecular 

Biology and Role in Human Health. Springer, New York. p. 399-410. 

Maher, W., A. Roach, M. Doblin, T. Fan, S. Foster, R. Garrett, et al. 2010. 

Environmental Sources, Speciation, and Partitioning of Selenium. In: P. M. Chapman, 

W. J. Adams, M. L. Brooks, C. G. Delos, S. N. Luoma, W. Maher, H. M. Ohlendorf, 

T. S. Presser and D. P. Shaw, editors, Ecological Assessment of Selenium in the 

Aquatic Environment. CRC Press, New York. p. 47-92. 

Ohlendorf, H.M. 2002. The birds of Kesterson Reservoir: A historical perspective. Aquat. 

Toxicol. 57: 1-10. doi:10.1016/s0166-445x(01)00266-1. 

Ohlendorf, H.M., D.J. Hoffman, M.K. Saiki, and T.W. Aldrich. 1986. Embryonic 

mortality and abnormalities of aquatic birds: Apparent impacts of selenium from 

irrigation drainwater. Sci. Total Environ. 52: 49-63. doi:10.1016/0048-

9697(86)90104-x. 

Ohlendorf, H.M., R.L. Hothem, and T.W. Aldrich. 1988a. Bioaccumulation of Selenium 

by Snakes and Frogs in the San-Joaquin Valley, California. Copeia: 704-710. 

doi:10.2307/1445391. 



 

 

7

Ohlendorf, H.M., A.W. Kilness, J.L. Simmons, R.K. Stroud, D.J. Hoffman, and J.F. 

Moore. 1988b. Selenium toxicosis in wild aquatic birds. J. Toxicol. Environ. Health 

24: 67-92. 

Presser, T.S. 1994. The Kesterson effect. Environ. Manage. 18: 437-454. 

doi:10.1007/bf02393872. 

Seiler, R.L. 1995. Prediction of Areas Where Irrigation Drainage May Induce Selenium 

Contamination of Water. J. Environ. Qual. 24: 973-979. 

Stephens, D.W., B. Waddell, L.A. Peltz, and J.B. Miller. 1992. Detailed study of 

selenium and selected elements in water, bottom sediment, and biota associated with 

irrigation drainage in the middle Green River Basin, Utah 1988-90. U. S. G. Survey. 

Salt Lake City, Utah. 

Tanji, K., A. Lauchli, and J. Meyer. 1986. Selenium in the San-Joaquin Valley - A 

Challenge to Western Irrigation. Environment 28: 6-&. 

Tiwary, A.K., B.L. Stegelmeier, K.E. Panter, L.F. James, and J.O. Hall. 2006. 

Comparative toxicosis of sodium selenite and selenomethionine in lambs. J. Vet.  

Diag. Invest. 18: 61-70. 

Unrine, J.M., B.P. Jackson, and W.A. Hopkins. 2007. Selenomethionine 

biotransformation and incorporation into proteins along a simulated terrestrial food 

chain. Environ. Sci. Technol. 41: 3601-3606. doi:10.1021/es062073+. 

Wingert, S., and C. Adams. 2011. TMDLs for total dissolved solids, selenium, and boron 

in the Pariette Draw Watershed. Utah Department of Environmental Quality, Division 

of Water Quality. Salt Lake City, Utah. 



 

 

8

Winkel, L.H.E., C.A. Johnson, M. Lenz, T. Grundl, O.X. Leupin, M. Amini, et al. 2012. 

Environmental Selenium Research: From Microscopic Processes to Global 

Understanding. Environ.  Sci. Technol. 46: 571-579. doi:10.1021/es203434d. 

Young, T.F., K. Finley, A. W.J., J. Besser, W.D. Hopkins, D. Jolley, et al. 2010. What 

You Need to Know about Selenium. In: P. M. Chapman, W. J. Adams, M. L. Brooks, 

C. G. Delos, S. N. Luoma, W. A. Maher, H. M. Ohlendorf, T. S. Presser and D. P. 

Shaw, editors, Ecological Assessment of Selenium in the Aquatic Environment. CRC, 

New York. p. 7-46. 

Zalunardo, D. 1979. Myton Habitat Management Plan - Diamond Mountain Resource 

Area Vernal District. U.S. Department of the Interior, Bureau of Land Management.  

 



 

 

9

 

 

 
Figure 1-1: Three selenium “hotspots” of the Middle Green River in the Uinta Basin, 
Utah (green circles). 
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Figure 1-2: Water, and soil sample sites at BLM’s Pariette Wetlands, Utah.  
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Figure 1-3: Cycling of major Se species in aquatic environments (Maher et al., 2010). 
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CHAPTER 2 

SELENIUM MASS BALANCE AND FLUX IN WATER OF PARIETTE  WET-

LANDS, UTAH 

 
ABSTRACT  

 Selenium (Se) has potentially deleterious impact on the flora and fauna of aquatic 

ecosystems. As Se moves through a wetlands system, various processes such as sorption 

onto sediments, plant uptake, and volatilization into the atmosphere can attenuate Se re-

sulting in its storage in the wetlands. A comparison of inlet and outlet Se fluxes can be 

used to determine the mass of Se stored in a wetlands system. Inlet and outlet total Se 

concentrations and water discharge were measured at the Pariette Wetlands and used to 

calculate Se fluxes. Average flux at the inlet and outlet was compared to the flux occur-

ring during a wetter (2009) and drier (2012) than average year. Average water inflow was 

between 0.0 and 1.86 m3 s-1, and average water outflow ranged from 0.07 to 0.89 m3 s-1. 

Selenium concentrations were higher at the inlet (2.1-16.3 µg L-1) than at the outlet (2.0-

14.0 µg L-1). Retention and/or loss of Se in the Pariette Wetlands were on average 1,147 

kg year-1. The average amount of Se retention and/or loss in the wetlands ranged from a 

high of 86.4 % in 2009 to a low of 72.7% in 2012 with an overall retention average of 

75%. Most of the Se transported into the Pariette Wetlands is retained by the wetlands. 

Water movement through the Pariette Wetlands system did not appreciably alter annual 

Se attenuation rates. 
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INTRODUCTION 
 
 

 During the past forty years, there has been increasing concern about environmen-

tal concentration of selenium (Se) in aquatic ecosystems and its potentially deleterious 

impact on associated flora and fauna. Sources of Se span from natural (geochemical 

weathering, wildfires, and volcanic activity) to anthropogenic activities (agriculture, min-

ing, wastewater treatment and coal-fired power plants). In an aquatic ecosystem, water is 

the most important vector for mobilizing Se from the geosphere (Maher et al., 2010). 

During the 1980s, the relationship between selenium concentrations in wetlands 

and agricultural drain water became an environmental concern (Stephens et al., 1992). 

For example, in Kesterson Reservoir, California, subsurface agricultural drain water was 

identified as the source of Se. Selenium was further identified as the cause of embryo ab-

normalities and mortality for several species of aquatic birds (Ohlendorf et al., 1988). 

In 1983, the USFWS reported incidences of waterfowl mortality, birth defects, 

and reproductive failures in various locations throughout the United States. Irrigation 

drainage water was identified as the conduit transporting Se to these areas of elevated 

concentrations. The elevated concentration of Se prompted the United States Department 

of the Interior (USDOI) to identify the extent and nature of water quality issues intro-

duced by irrigated drainage water in the western United States (Stephens et al., 1992). 

In 1985, the USDOI began a program to determine whether irrigation–related 

contamination problems existed at irrigation projects, national wildlife refuges or wet-

lands constructed or managed by USDOI. The Pariette Draw flows into the Pariette Wet-

lands before reaching the Green River (Figure 2-1). The middle Green River of the Uinta 
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Basin area was identified as having significant high Se contamination. Pariette Draw, a 

tributary to the middle Green River, was identified as one of three areas of concern.  

The Pariette Wetlands was created in 1975 by the BLM to provide wildlife habitat 

in an arid environment and currently consists of 23 ponds (Zalunardo, 1979). The ponds 

are filled using water diverted from the Pariette Draw through a series of water diversions 

structures. These water structures (dikes, dams, outlet pipes and trickle tubes) were de-

signed to maintain constant water levels throughout the summer (D. Williams, personal 

communication, 2011).  

The BLM conducted a Se study in 1978-79 of various sites in Pariette Wetlands. 

Selenium concentrations ranged from below detection limit (1 µg L-1) at the inlet to 298 

µg L-1 at the outlet of Redhead Pond (Stephens et al., 1992). The standard Maximum Con-

taminate Level (MCL) of selenium for drinking water recommended by the United States 

Environmental Protection Agency (USEPA) is 50 µg L-1 (USEPA, 2012). The Utah State 

Water Quality standard for wildlife is 4.6 µgL-1 (Wingert and Adams, 2011). Pariette 

Draw at Redhead Pond exceeded the USEPA’s MCL, and the Utah State Water Quality 

standard by 500%.  

From the 1988 to 1990, USGS and USFWS agencies conducted an extensive re-

connaissance study. The water entering Pleasant Valley via the Pleasant Valley Canal 

(Figure 2-1) met the Utah Water Quality Se standard of less than 1 µg L-1. Selenium levels 

increased downstream to 9 µg L-1 at the inlet to the Pariette Wetlands, and then decreased 

to 1 µg L-1 at the outlet of the wetlands (Stephens et al., 1992). 

In 2008 and 2009, a subsequent Total Maximum Daily Load (TMDL) study by 

the Utah Division of Water Quality (UDWQ) reported similar results to the 1980s studies 
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in which the water entering Pleasant Valley was below the 4.6 µg L-1 wildlife water quali-

ty standard for selenium. As the water moved through Pleasant Valley, Se increased to 

17.4 µg L-1 until it reached the Pariette Wetlands. The Se concentration decreased as it 

moved through the wetlands to 3.9 µg L-1. An inverse correlation to flow was also found. 

During periods of low flow, the concentration of Se was high, and during periods of high 

flow concentration of Se was low (Wingert and Adams, 2011). Since little is known, 

however, about the biogeochemical processes governing Se in the Pariette Wetlands, the 

specific aim of our study is to estimate the influx, outflux and storage of Se concentration 

within the wetland, and to establish the association of Se concentration with seasonal 

changes. 

 
MATERIALS AND METHODS 

 
Surface grab water samples were collected monthly during the irrigation season 

(April to October) from the inlet and outlet of the Pariette Wetlands as well as from two 

sample sites within the wetlands (Desilt Pond and Gadwell Pond) from 1993 to 2012 

(Appendix A). Clean polyethylene bottles that had been rinsed three times in the field 

were used to collect water samples. Water samples collected in the field were stored in a 

cooler on ice until returned to the lab. At the lab, samples were filtered through a 0.45-µm 

Teflon membrane filter and acidified with trace-metal grade concentrated HNO3. Water 

samples were kept refrigerated at 4°C until ready for digestion and then analysis. The wa-

ter digestion method used was sulfuric acid-potassium peroxydisulfate (Cutter, 1986). 

The total Se was analyzed by hydride generation atomic absorption spectroscopy (HG-

AAS). 
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Water flow rates into and out of the wetlands were measured using the float 

method at the inlet below the Flood Control Structure and the outlet below Redhead Pond 

(Figure 2-1). Multi-probe data loggers were installed at the inlet and outlet to measure 

water-quality parameters (temperature, conductivity, pH, turbidity and dissolved oxygen) 

from June to September 2011 and from March to June 2012. Multi-probes were removed 

once the water levels were too low to take readings (Appendix A). 

Selenium fluxes into and out of Pariette Wetlands were calculated with Equation 

1: 

 F = Q* C*86,400 [1] 

where F=mass flux, g day-1; Q = inflow or outflow discharge, m3 s-1; C = Se concentra-

tion, g m-3, and 86,400s day-1 converts seconds to days (Stillings et al., 2007). Discharge 

from three different time periods were analyzed: 2009 (Table 2-1), 2012 (Table 2-2), and 

averaged data from 1993 to 2012 (Table 2-3). 

Since flow data were incomplete due to the closure and discontinued use in 1984 

of the USGS gauging stations above and below Pariette Wetlands, data during the opera-

tion of the USGS gauging station from 1975 to 1984 were used to estimate the transit 

time for water and waterborne Se water to move through the wetlands. Average monthly 

flow data from the USGS station at the inlet and outlet were combined with average 

monthly precipitation and evapotraspiration data obtained from the Utah Climate Center 

Myton Station and residence time (Table 2-3). Residence time was calculated with Equa-

tion 2: 

 τ    = V / Q * 86,400 [2] 
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where τ    = residence time, day; V = total volume of wetlands estimated from area and av-

erage depth of ponds and canals, m-3 (Table 2-4); Q = flow at the outlet, m3 s-1; and 

86,400s day-1 converts to time to days (Stillings et al., 2007). The total volume and flow 

of water for the wetlands varied depending on the season and the availability of irrigation 

return water. 

 
RESULTS AND DISCUSSION 

 
Key factors contributing to discharge were precipitation and irrigation return wa-

ter. On average, discharge increases in March due to spring runoff and decreases in April 

until the irrigation season begins. Then, discharge peaks in June and decreases in July and 

August. At the end of irrigation season, the area has a late rainy season (September 

through November) when discharge again increases (Figure 2-2). Average annual pre-

cipitation between 1993 and 2009 was 15.7 cm (Table 2-3). The total rainfall for 2009 

(Table 2-1) was 17.2 cm, and for 2012 (Table 2-2) was 9.6 cm. Most of the water enter-

ing the wetlands is diverted from the Duchesne River via the Pleasant Valley Canal (Fig-

ure 2-1). Approximately 4.25 m3 s-1 water are diverted during the irrigation season which 

spans from May to October. A few springs also provided a minimal source of water for 

the draw (Wingert and Adams, 2011).  

 On average the Se concentration of water at the inlet was greatest from December 

to March ranging from 16.6 to 12.4 µg L-1, and lowest during irrigation season (May 

through October) ranging from 4 to 4.8 µg L-1. At the outlet, the highest Se concentration 

occurred in December and January at 7.8 and 14 µg L-1 respectively and the lowest during 

irrigation season ranging from 2 to 2.6 µg L-1 (Figure 2-3).  
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Selenium concentration and flow were used to calculate flux. On average, the 

highest influx occurs in March (19.9 kg day-1) and the lowest in August (1.1 kg day-1). 

The outflux was highest in March (4.1 kg day-1) and lowest in July (0.2 kg day-1) (Figure 

2-4).  

A mass-balance for Se was created using the mass inflow, mass outflow and the 

retained components. Discharge at the inflow and outflow were used to calculate the in-

flux, outflux, and stored or lost Se for a year. The amount of Se retained or lost in the 

wetlands on average was 1,230.8 kg year-1. About 19.8 % of the selenium entering the 

wetlands exited the wetlands at the outlet. On average, then, 75% of the Se entering was 

retained within or lost from the wetlands. When the average storage was compared to a 

wetter than average year (2009, Figure 2-5) and a drier than average year (2012, Figure 

2-6), the wetter year retained more Se than a drier year 86.4% and 72.7% respectively. 

However, the difference in retention was not large enough to be significant.  

The estimate total volume of the wetlands is 1,971,377 m3 (Table 2-4). Residence 

time is the shortest during spring runoff in March (25.54 days), during peak irrigation 

season in June (33.99 days), and at the end of irrigation season in October (32.59 days). 

Residence time is longer during winter [December (313.42 days), January (220.24 days), 

and February (142.96 days)]. Other potential sources of water loss not accounted for in 

this study may be evaporation, evapotranspiration, and wetlands recharge, which were 

not directly measured during the study. Not enough data have been collected to calculate 

a hydrologic mass balance of the wetlands. 
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CONCLUSIONS 

 
 The mass of Se retained in the Pariette Wetlands is greater (% value of average 

retention) during wetter than average years, although the difference was not large. Re-

tained Se within the wetlands may be problematic to wildlife feeding in the area depend-

ing on the mechanism of removal of Se from the water. If Se is sorbed to sediments as 

controlled by pH and redox potentials, then Se is not available to wildlife. Also if plants 

and microbes volatilize Se, then Se will not be available to wildlife. However, if Se is 

accumulating in plants or in aquatic or benthic organisms that wildlife feed on, there is 

potential for bioaccumulation of Se to toxic levels detrimental to egg laying organisms 

such as waterfowl and fish (Lemly, 2002; Ohlendorf, 2002; Presser, 1994). Based on 

mass-balance calculations, the wetlands received its highest Se loads during spring runoff 

in March and again during peak irrigation season in June. March could be problematic for 

waterfowl in the wetlands because it is the beginning their breeding season. Further re-

search is needed to determine fate of Se stored in the wetlands and its mass-balance. 
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Table 2-1: Average monthly precipitation (mm) at Myton, Utah Climate Center Station; 
flow at inlet and outlet (m3 s-1); [Se] measured at inlet and outlet; influx of Se (g day-1) 
and outflux of Se (g day-1) during 2009. 

 
 

Date 

Monthly 
Precip. 
 (mm) 

Flow at 
Inlet 

(m3 s-1) 

[Se] at 
Inlet 

(µg L-1) 

 
Influx 

(g day-1) 

Flow at 
Outlet 
(m3 s-1) 

[Se] at 
Outlet 
(µg L-1) 

 
Outflux 
(g day-1) 

Se 
Storage 
(g day-1) 

3/10/2009 3.3 0.308 10.8 2,874 0.518 4.1 1,835 1,039 
4/21/2009 24.6 0.053 10.2 469 0.028 3.9 94 374 
5/11/2009 17.5 0.137 4.1 486 0.028 3.0 73 413 
6/22/2009 42.7 5.60 2.5 12,096 1.551 1.3 1,742 10,354 
7/20/2009 1.0 0.459 5.4 2,142 0.028 3.4 82 2,060 
8/4/2009 19.3 0.468 3.0 1,212 0.028 3.3 80 1,132 
9/10/2009 30.9 2.11 3.7 6,731 0.028 3.2 77 6,653 
11/3/2009 5.1 0.395 12.5 2,874 0.059 1.7 86 4,177 
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Table 2-2: Average monthly precipitation (mm) at Myton, Utah Climate Center Station; 
flow at inlet and outlet (m3 s-1); [Se] measured at inlet and outlet; influx of Se (g day-1) 
and outflux of Se (g day-1) during 2012.  

 
 

Date 

Monthly 
Precip. 
(mm) 

Flow at 
Inlet 

(m3 s-1) 

[Se] at 
Inlet 

(µg L-1) 

 
Influx 

(g day-1) 

Flow at 
Outlet 
(m3 s-1) 

[Se] at 
Outlet 
(µg L-1) 

 
Outflux 
(g day-1) 

Se 
Storage 
(g day-1) 

3/05/2012 0 0.703 9.3 5,668 0.413 4.2 1,504 4,164 
3/30/2012 2.3 0.388 7.9 2,642 0.265 1.6 376 2,267 
5/10/2012 0 0.703 1.8 1,084 0.413 1.8 659 425 
6/29/2012 5.8 0.703 2.5 1,535 0.413 1.2 430 1,105 
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Table 2-3: Average monthly precipitation (mm) and reference evapotranspiration mm d-1 

during 1993 to 2009 at Myton, Utah Climate Center Station; flow at outlet (m3 s-1); and 
calculated residence time of water averaged by month from data collected from the 
USGS gauging station from 1975 to 1984 above and below Pariette Wetlands.  

 
 

Month 

Monthly Pre-
cipitation 

(mm) 

 
ET 

(mm d-1) 

Flow at 
inlet 

(m3 s-1) 

Flow at 
outlet 

(m3 s-1) 

Residence 
Time 
(days) 

January 9.84 0.51 0.1204 0.10 220.24 
February 8.89 0.98 0.1484 0.16 142.96 
March 18.2 2.06 0.8484 0.89 25.54 
April 14.77 3.58 0.336 0.20 116.41 
May 28.56 4.69 0.5348 0.18 125.37 
June 16.67 6.28 1.98 0.69 32.99 
July 21.77 6.71 0.3024 0.17 135.81 
August 27.37 5.70 0.2632 0.17 138.11 
September 27.01 4.14 1.0612 0.25 92.60 
October 31.12 2.33 0.4816 0.7 32.59 
November 24.4 1.09 0.182 0.19 118.09 
December 7.32 0.59 0.196 0.07 313.42 
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Table 2-4: Area (m2) and estimated average depth of ponds and canals (m) used to calcu-
late total volume (m3) of water in Pariette Wetlands. 
Pond Area (m2) Average  

Depth (m) 
Volume (m3) 

Flood Control 27,357 0.61 16,677 
Desiltation 801,278 0.61 488,459 
First 12,302 0.30 3,750 
Felters Diversion 23,715 0.46 10,842 
First 1,983 0.61 1,209 
Felters 100,605 0.76 76,661 
Big Island 185,872 1.83 339,923 
Avocet 47,955 0.15 7,308 
Small Island 43,301 0.61 26,397 
Roberts 46,175 0.10 4,644 
Horseshoe 22,541 0.46 10,306 
Cattail 37,636 0.76 28,678 
Mallard 94,373 0.46 43,147 
Gadwall 283,604 0.91 259,327 
Shoveler 108,092 0.61 65,893 
Pintail 86,077 0.61 52,472 
Redhead 411,201 1.22 501,337 
Two Island Pond 9,105 0.76 6,938 
Millet Pond 88,707 0.15 13,519 
Swallow Pond 7,244 0.46 3,312 
Canal Pond 7,891 0.46 3,608 
Raccoon Pond 6,515 0.91 5,958 
Canal1 283 0.30 86 
Canal2 728 0.30 222 
Canal3 243 0.30 74 
Canal 4 2,064 0.30 629 

Total 2,456,849 15.04 1,971,377 
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Figure 2-1: Map of Pariette Draw and Wetlands, Utah, with multi-probe and water sam-
ple site locations. 
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Figure 2-2: Average flow at inlet (red circles) and outlet (blue triangles) of Pariette Wet-
lands, Utah with peaks represents high flow events during spring runoff, irrigation sea-
son, and fall rains (1993-2009). 
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Figure 2-3: Average waterborne Se concentrations at the inlet (red circles) and outlet 
(blue triangles) of Pariette Wetlands, Utah (1993-2009).



 

 

29

 
 

 
Figure 2-4: Average Se influx (red circles) and outflux (blue triangles) in g day-1 with 
75% retention of Se within Pariette Wetlands, Utah.  
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Figure 2-5: Se influx (red circles) and outflux (blue triangles) in g day-1 with 86.4% reten-
tion of Se within Pariette Wetlands, Utah during a wetter than average year (2009). 
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Figure 2-6: Se influx (red circles) and outflux (blue triangles) in g day-1 with 72.7% reten-
tion of Se within Pariette Wetlands, Utah during a drier than average year (2012). 
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CHAPTER 3 

SELENIUM IN WATER AND PLANT TISSUE AND ITS LOSS THR OUGH VO-

LATILIZATION IN THE PARIETTE WETLANDS, UTAH 

 
ABSTRACT 

 
 Elevated levels of selenium (Se) in water, soil, and biota of Pariette Wetlands, 

Utah may have detrimental effects on local wildlife. Twelve sample sites were selected to 

determine the spatial and temporal variation of Se concentration, accumulation and volat-

ilization in water and plant tissues from the Pariette Wetlands during the active growing 

season. At the inlet, concentrations of waterborne Se during low flow period (winter) 

were between 14.6 and 16.3 µg L-1, significantly higher than concentrations during high 

flow irrigation season (summer), which ranged from 2.1 to 4.6 µg L-1. Se concentrations 

in water at the outlet were lower during the high flow period ranging from 7.6 to 14 µg L-

1. In contrast, plant tissue Se concentration was lower at the inlet (0.26 ± 0.10 mg kg-1) 

and higher at the outlet (0.56 ± 0.57 mg kg-1). Selenium volatilization results indicated 

that there were spatial and temporal differences among samples sites. Rates were highest 

in the spring (from 0.01 to 0.049 µg day-1) during the peak growing season, and lowest in 

the fall ranging from 0.004 to 0.01 µg day-1 at the end of the growing season. Rates also 

were spatially different: highest at the wetlands’ inlet (0.0069 ± 0.0023 µg day-1) and 

lowest at its outlet (0.009 ± 0.007µg day-1). Our results indicate that vegetation removal 

of Se is a significant attenuation process, and that Se volatilization also contributes to the 

removal of Se from Pariette wetlands from the inlet to the outlet of the wetlands. 
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INTRODUCTION 
 

Selenium (Se) contamination is an important environmental issue in the western 

United States. Selenium is a metalloid that exists in five oxidative states; Selenate (Se6+), 

Selenite (Se4+), elemental Se (Se0), Selenide (Se2-), and organic Se. Selenate is the major 

species in an environment that is aerobic and pH from neutral to alkaline. Selenite and 

elemental Se dominate in anaerobic and lower pH environment. In certain areas, Se oc-

curs naturally in sedimentary rock formations, especially those formed from marine de-

posits during Tertiary and Cretaceous Ages (Seiler, 1995). Weathering of these for-

mations by natural or anthropogenic causes, such as precipitation, runoff, or irrigation 

return water can oxidize Se to the two more mobile species, selenate (SeO4
2-) and selenite 

(SeO3
2-). Once mobilized, Se becomes bioavailable to plants and animals. High concen-

trations of Se in aquatic ecosystems leads to the accumulation of bioavailable Se by wild-

life, causing damage and death (Bañuelos and Lin, 2007).  

Kesterson National Wildlife Refuge in the San Joaquin Valley, California, is an 

example of an environmental disaster caused by Se contamination due to agricultural 

drainage (Ohlendorf et al., 1986). At the inflow to Kesterson Reservoir, dissolved con-

centrations of Se exceeding the EPA’s Se criterion for toxic waste criterion of 1000 µg L-

1 resulted in high rates of embryonic deformity and death of aquatic wildlife (Presser, 

1994). 

Similarly, the middle Green River area of the Uinta Basin, Utah, has been identi-

fied as an area with significantly high Se contamination. Several studies conducted in the 

1980’s by the USGS, USFWS, and the BLM identified three areas of concern for Se con-

tamination, including Stewart Lake Waterfowl Management Area (SLWM), Ouray Na-
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tional Wildlife Refuge (ONWR), and Pariette Wetlands (Figure 3-2) (Stephens et al., 

1992). The concentration of dissolved selenium in irrigation drain water entering SLWM 

ranged from 14 to 140 µg L-1 exceeding the USEPA’s chronic criterion of 5 µg L-1. The 

selenium concentration in sediments collected from drain discharge in the inflow of 

SLWM ranged from 10 to 85 µg L-1 (Stephens et al., 1988). The source of Se contamina-

tion was believed to be inflow of shallow ground water and surface water from a sewage 

lagoon system that flowed through Mancos Shale and was known to be seleniferous 

(Stephens et al., 1992). Ouray National Wildlife Refuge (ONWR) water samples ranged 

from 9 to 93 µg L-1. In 1987, ONWR was closed for a short period of time after discovery 

of deformed American coot embryos. Consequently, the ponds containing elevated levels 

of selenium were drained and filled in with clean sediments (Stephens et al., 1988). The 

contaminated irrigation drain water that entered SLWM was diverted around SLWM and 

into the Green River (Naftz et al., 2005). 

The bioavailability of Se depends on the Se species. Selenate and some organic 

forms of selenium are soluble and available for plant uptake (Zhang et al., 2004). Plant 

uptake of Se occurs through the roots and is thus influenced by Se species concentration 

in water and sediment. Plants actively take up selenate through sulfate transport proteins. 

Selenite is taken up through passive diffusion and can be inhibited by phosphate. Some 

plants are Se accumulators that preferentially absorb Se over sulfur. However, non-Se 

accumulators are able to discriminate between selenate and sulfate. Non-Se accumulators 

will uptake sulfate instead of selenate. Selenium accumulation is determined by Se me-

tabolism of the plant and can be distributed throughout the plant. Distribution of Se spe-

cies depends on plant development in that selenate generally is concentrated in the older 
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leaves, and organic Se species in younger tissues. Younger leaves are sites of reduction of 

Se to organic forms.  

Loss of Se from plants occurs as a result of volatilization. This occurs when the 

plant has excess supplies of Se, and typically occurs from the roots (Maher et al., 2010). 

Plants are able to convert Se to organic forms that bioaccumulate in fish and wildlife 

(Lemly, 2002). Microbes, plants and animals convert inorganic Se to organic Se through 

biomethylation. Biomethlyation is an important pathway that converts toxic Se to nontox-

ic volatile forms of Se such as Dimethylselenide (DMSe) and dimethyldiselenide 

(DMDSe). Volatilization of Se is considered an effective technique for removing Se from 

contaminated sites (Hansen et al., 1998; Lauchli, 1993). Volatile Se should be consid-

ered, therefore, a component to explain the difference in Se concentrations in water at the 

input and output of the Pariette Wetlands. 

This paper reports the waterborne concentration of Se at the inlet and outlet from 

the Pariette Wetlands from March 30 to November 17 of 2012. In addition, distribution of 

Se in plants and volatilization by tissue-type, species, spatial, and season were also re-

ported. Preliminary data of seasonal variability of Se concentration at the inlet, and little 

to no variability at the outlet of the wetlands, suggests that selenium is being volatized by 

plants, accumulated by plants and animals or absorbed to sediments. 

 
MATERIALS AND METHODS 

 
Pariette Wetlands was constructed in 1975 by the BLM to provide wildlife habitat 

in an arid desert (Zalunardo, 1979). Over the last 30 years, various ponds have been add-

ed so that there are currently 23 ponds (Figure 3-1). The ponds are filled with water di-
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verted from the Pariette Draw. A series of structures (dikes, dams, outlet pipes and trickle 

tubes) were designed to maintain constant water levels throughout the summer (D. Wil-

liams, personal communication, 2011). 

Surface grab water samples were collected monthly during the irrigation season 

(April to October) from the inlet and outlet of the Pariette Wetlands during 2012. Clean 

polyethylene bottles that had been rinsed three times in the field were used to collect wa-

ter samples. Water samples collected in the field were stored in a cooler on ice until re-

turned to the lab. At the lab, samples were filtered through a 0.45-µm Teflon membrane 

filter, and acidified with metal grade concentrated HNO3. Water samples were kept re-

frigerated at 4°C until ready for digestion and then analysis. Digestion method used for 

water was sulfuric acid-potassium peroxydisulfate (Cutter, 1986). Total Se was analyzed 

using hydride generation atomic absorption spectroscopy (HG-AAS). 

During the active growing season, eleven wetlands and one upland sample sites 

were selected to determine if emergent plant bioaccumulation and volatilization affect Se 

retention within the wetlands. Wetlands sample sites were selected based on proximity to 

water sampling sites (inlet and outlet) and to the three predominant vegetation communi-

ties along the edge of the wetlands. Wetlands vegetation communities include common 

reed (Phragmites australis (Cav.) Trin. ex Steud.), cattail (Typha domingensis Pres. and 

Typha latifolia L.), and bulrush (Scirpus acutus Muhl. ex Bigelow) (Figure 3-1). Upland 

vegetation consisted of a desert shrub community with tufted hair grass (Deschampsia 

cespitosa (L.) P. Beauv.) as the predominant vegetation nearest the volatile Se passive 

trap.  



 

 

37

Passive trapping of gas-phase Se species was performed with activated charcoal 

air filters (BULK filter) cut to 15 cm x 9 cm and placed in a fiberglass window screening 

sleeve to prevent insects and debris from becoming lodged in the filters. Charcoal filters 

were deployed and collected every six weeks from March 30, 2012 to November 17, 

2012. Each passive filter was attached to the top of a PVC pipe that was attached to a five 

foot metal U-post. The filters were placed level with the top of last year’s growth of 

vegetation. After the six weeks, traps were collected and analyzed for adsorbed Se to-

gether with plant and soil samples. Filters were cut into smaller pieces to increase the sur-

face area for extraction and digestion using 6% H2O2 in 0.05 NaOH overnight, shaken, 

and then filtered to remove charcoal (Wu et al., 2003). Samples were then analyzed via 

inductively coupled plasma mass spectrometry (ICP-MS). The Se concentrations in the 

extracts were converted from µg L-1 to µg day-1 based on the length of time the filter was 

deployed.  

Plant samples were prepared by soaking them for 30 seconds in 0.3% sodium lau-

ryl sulfate, 1 mM HCL, and deionized water to remove surface contamination (Pilon-

Smits et al., 1999). Tissues were dried for 24 hours in a convection oven at 80°C. Dried 

plant tissue was then finely ground and digested with nitric acid following standard pro-

cedures (Zasoski and Burau, 1977). Samples were then analyzed using HG-AAS. 

Statistical analysis was performed with Deducer, a GUI interface for R (Fellows, 

2012). Multiple comparisons among site, species, tissue type and season were conducted 

using a generalized linear model.  



 

 

38

RESULTS AND DISCUSSION 
 

 Surface water samples collected from 1995 to 2012 showed spatial and seasonal 

variation with yearly average Se concentration at the inlet (5.81 ± 4.22 µg L-1) higher than 

the outlet (3.71 ± 3.62 µg L-1). Highest Se concentration occurred at low flow during win-

ter months (December, January and February). The lowest Se concentration occurred dur-

ing peak irrigation season (June, July and August) (Table 3-1), indicating that irrigation 

water addition to the wetlands tended to dilute soluble Se levels already in the wetlands. 

A mass balance of Se indicated that on average 75% of Se entering is being retained 

within the wetlands. 

There was a significant difference in Se concentration in parts of all species of 

sampled plant tissue (flower, vegetative material, and root) collected during the study pe-

riod (Table 3-2). The lowest mean value was for the flower portion of the plant, (0.28 ± 

0.11 mg kg-1 (n=18)), and the highest mean value was in the root tissue, (0.76 ± 0.68 mg 

kg-1 (n=23)). The vegetative portion of the plant had a mean Se of 0.34 ± 0.27 mg kg-1 

(n=6, Figure 3-2). Several studies have shown that Se uptake by plants begins with the 

roots, and depending on the Se species will determine the rate of translocation of Se from 

the root to shoot (Zayed et al., 1998).  

Bulrush and cattail had similar mean Se concentrations 0.48 ± 0.33 mg kg-1 

(n=27) and 0.55 ± 0.56 mg kg-1 (n=42). Common reed had a mean of 0.25 ± 0.11 mg kg-1 

(n=27), and tufted hair grass was significantly lower than all other plants sampled 0.16 ± 

0.06 mg kg-1 (n=6, Figure 3-3). A generalized linear model analysis to examine differ-

ences in Se concentration between species, time of sampling, and sampling location indi-

cated that species and date sampled were not significantly different during the sampling 



 

 

39

period. However, sample site was significantly different with wetlands sites having nota-

bly higher concentrations than the upland site (Figure 3-4). The highest mean Se concen-

tration and widest standard deviation was at the outlet to the wetlands and Redhead Pond 

0.56 ± 0.57 mg kg-1 (n=47). The next highest was at the Desilt Pond 0.41 ± 0.22 mg kg-1 

(n=25) and the lowest wetlands mean Se concentration was at the inlet at the Flood Con-

trol 0.26 ± 0.10 mg kg-1 (n=24). The upland sample site was significantly lower than the 

wetlands sites 0.16 ± 0.06 mg kg-1 (n=6).  

The Pariette Wetlands covers an area of approximately 3,000 acres.  Assuming 

that the aboveground dry matter (DM) biomass yield ranged from 2.15 to 11.50 kg m-2 

(Acharya and Adhikari, 2010) and the average aboveground Se concentration of plants in 

the wetland was 0.4 mg kg-1 DM, the total amount of Se accumulated and stored in the 

aboveground biomass would range from 10 to 60 kilograms, a relatively small fraction of 

the total amount of Se stored (1,150 kg Se) in the wetland (< 5%). 

In San Francisco, Se concentrations in wetlands plants ranged from 5 to 20 mg kg-

1 in root and shoot material (Hansen et al., 1998). On the lower Colorado River, Mexico, 

Se concentration in plants ranged from 0.03 to 0.17 mg kg-1 (Garcia-Hernandez et al., 

2000). A constructed wetlands near Las Vegas, Nevada, reported results of Se concentra-

tions in plant species similar to ours. The highest Se concentrations were in the cattail 

vegetative material 2.81 ± 0.53 mg kg-1 (Pollard et al., 2007). Our study, as well as the 

San Francisco study cited above, indicated consistently higher concentration of Se in the 

root than in the vegetative material of the plant (Hansen et al., 1998). Hansen et al. (1998) 

reported that as much as 30% of the waterborne Se concentration was reduced by the bio-

logical volatilization processes of the plant and associated microorganisms.  
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Among plant species there was no significant difference in volatile Se concentra-

tions collected by charcoal filters during the study period (Table 3-3). Tufted hair grass 

had the lowest mean of 0.00588 ± 0.00445 µg day-1, and the highest was bulrush with a 

mean of 0.0114 ± 0.01µg day-1. Common Reed and cattail means were 0.0104 ± 

0.00711µg day-1 and 0.00871 ± 0.00464 µg day-1, respectively (Figure 3-5).  

 Spatial differences were significant at a p value of < 0.005. Temporal differences 

were more significant at a p value of < 0.000005. The upland BLM (0.0059 ± 0.0044 µg 

day-1) and wetlands Flood Control (0.0069 ± 0.0023 µg day-1) sites were significantly 

different from one another (Figure 3-6). However, the Desilt Pond (0.014 ± 0.01µg day-1) 

was significantly different from all other sites except Redhead Pond (0.009 ± 0.007µg 

day-1) at the outlet of the wetlands. During spring and early summer (May and June) 

samples are significantly different from the late summer to fall sample periods (Figure 3-

7). In early spring (March and April), rising air temperatures, spring run-off, and spring 

showers contribute to the growth of both the upland and the wetlands plants. By early 

summer (June) precipitation drops off until late fall (October). In the fall a short rainy 

season occurs with enough precipitation to increase soil moisture for plant growth which 

occurs near the end of November before the first frost (Figure 3-8). 

 Rates of volatilization from vegetation at the Desilt Pond were statistically higher 

than all other sites except Redhead Pond. Generally, the greatest rate of volatilized Se 

was produced in the spring and early summer during the peak growing season. In the 

summer months (July and August), all sample sites decreased in volatilization as water 

availability decreased, except for the BLM site. After spring run-off during the summer 

months, the wetlands received only irrigation drainage return water. Occasionally during 
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the dry season, there was insufficient water to fill all the ponds, and some ponds dried. In 

the fall (September and October), the area had a short rainy season. Temperature and 

plant available water is significant enough for plants to continue growth. As a result, the 

November sample period had a slight increase in the rate of Se volatilization. Calderone 

et al. (1990) reported that volatilization rates were greatly influenced by temperature and 

organic amendments, and that volatilization was a significant mechanism for removing 

Se from sediments.  

Several researchers have reported similar results that constructed wetlands ex-

posed to Se contamination have higher concentrations at the inlet than at the outlet 

(Azaizeh et al., 2006; Dicataldo et al., 2010; Hansen et al., 1998; Karlson et al., 1990), 

indicating that the wetlands act as a sink for Se removal for water entering the wetlands. 

Most of the Se was immobilized as a result of sorption to sediments, as well as bioaccu-

mulation and volatilization by plants and microbes. Biological volatilization accounted 

for 10% to 30% of the Se removed from the wetlands (Hansen et al., 1998). In contrast, 

we calculated that the amount of Se that volatilized from the Pariette Wetland was insig-

nificant (0.02 to 0.03 kg Se year-1) compared to the total of 1,150 kg Se stored in the wet-

land.  The assumptions used to calculate the amount of Se volatilized were 1) the Pariette 

wetland covered an area of 3000 acres, 2) the volatility flags trapped volatile Se from a 1 

m2 underlying area, 3) plants were active for 200 days of the year, and 4) the average dai-

ly volatilization rate was 0.008 µg Se day-1.  

Volatilization can occur from the soil, soil/root interface, or even the plant cano-

py. Volatilization of Se by plants and microbes has been used as a means of bioremedia-

tion of Se from impacted sites. Weres et al. (1989) in a study using enclosures placed 
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over plants at Keterson Reservoir, California, concluded that volatilization rates increased 

over surfaces with the presence of decaying organic matter, increasing temperature, and 

parallel soil moisture. Zhang and Moore (1997) found in a wetlands system of Benton 

Lake, Montana, that the major producers of volatile Se were the plants and sediments. 

The rate of volatilization of Se increased with the increase of temperature, airflow rate, 

and decomposition of wetlands plants. 

The rate of volatilization is greatly influenced by the Se species in the water and 

soil. Energetically, plants and microbes more easily volatilize selenite and other organic 

forms of Se than selenate. Although Se species were not differentiated in this study, fu-

ture work will include speciation of water samples.  

Several researchers have demonstrated that the rate of Se volatilization by plants 

is greater when the available Se is in a more reduced form (selenite or selenomethionine) 

as compared to selenate (Bañuelos et al., 2005; Zhang and Frankenberg, 2001). Zhang 

and Moore (1997) suggest that the concentration of dissolved organic Se is a more im-

portant factor affecting Se volatilization by plants than dissolved inorganic Se. The data 

collected during this study was insufficient to determine if volatilization or bioaccumula-

tion is the greatest contributor to Se retention within the wetlands. 

 

CONCLUSIONS 

 
Large seasonal variability of Se concentration in water at the inlet and little to no 

variability at the outlet of the wetlands suggest that selenium is either being absorbed, 

volatized by plants, or being stored in the sediments. The main goal of our research was 

to determine if bioaccumulation and volatilization of Se is a contributing factor in the re-
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moval of Se, and if there were significant spatial and temporal differences in Se from the 

Pariette Wetlands. We conclude that volatilization of Se is occurring, and conditions such 

as temperature, organic material, and soil moisture influence the spatial and temporal dif-

ferences. Spatial differences are probably a result of reducing conditions within the wet-

lands as water saturated soils become anoxic. Anoxic conditions favor the less mobile 

forms of Se. As inlet water enters the wetlands, Se under oxidized conditions exists as 

selenate. Then under anoxic flooded conditions Se reduces to selenite, and volatilization 

may be accelerated. By the time it exits the Desilt Pond, much of the dissolved Se has 

been reduced, and either sorbed on to sediments or taken up by plants and organisms. By 

the time the water exits the outlet at Redhead Pond, much of the available Se has been 

removed. The temporal differences are the result of the seasonal changes in temperature 

and available water. Once the irrigation season ends, the incoming water to the wetlands 

are greatly reduced thus reducing the rate of volatilization until more water enters the 

wetlands during the rainy season in the fall.  It may be possible through management 

practices to remove Se from irrigation return water by manipulating water levels. An un-

derstanding of how plants and microbes influence Se volatilization rates ultimately may 

lead to improved best management practices that significantly reduce the environmental 

impacts of Se and future the of wetlands for wildlife and waterfowl.  

Selenium concentrations in plant tissue analyzed at Pariette Wetlands are near or 

below typical levels found in the Western United States. Additional studies of other 

plants and sediments within the wetlands are necessary to determine the extent of ecolog-

ical risk to local wildlife and to formulate possible mitigation actions. 
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Table 3-1: Monthly average of total selenium concentration of surface water collected 
from the inlet and outlet at Pariette Wetlands from 1995 through 2012. 
Month Inlet 

n 
Inlet 
[Se] (µg L-1) 

Outlet 
n 

Outlet 
[Se] (µg L-1) 

January 0  3 13.97 ± 4.31 
February 1 15.7 5 7.64 ± 5.03 
March 3 9.34 ± 1.92 8 3.92 ± 2.60 
April 2 11.15 ± 0.95 7 6.06 ± 3.59 
May 4 3.10 ± 0.84 12 2.53 ± 1.53 
June 3 2.44 ± 0.10 8 1.88 ± 0.98 
July 4 4.33 ± 2.84 8 1.86 ± 1.01 
August 5 3.70 ± 0.74 14 2.05 ± 1.04 
September 3 2.78 ± 0.66 7 2.26 ± 1.21 
October 0  4 2.33 ± 0.56 
November 2 10.15 ± 2.35 6 4.53 ± 1.94 
December 1 15.0 2 7.75 ± 5.25 
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Table 3-2: Selenium concentration of plants (F= flower, S=vegetative material, and 
R=Root) collected in Pariette Wetlands during 2012. 

 
 
 
 
 
 
 
 
 
 
 

Emergent Taxa Part n 
 

[Se]  
(mg kg-1) 

Bulrush F 5 0.22 ± 0.15 
Bulrush S 17 0.48 ± 0.29 
Bulrush R 9 0.57 ± 0.41 
Cattail F 7 0.32 ± 0.10 
Cattail S 25 0.38 ± 0.32 
Cattail R 10 1.11 ± 0.83 
Common Reed F 6 0.27 ± 0.05 
Common Reed S 19 0.23 ± 0.13 
Common Reed R 4 0.31 ± 0.09 
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Table 3-3: Se volatilization rates as measured by passive collection of gas-phase Se by 
charcoal filters in Pariette Wetlands from March 30, 2012, to November 17, 2012. 
Site / Species [Se] µg / 

day 
May 10, 
1012  

[Se] µg / 
day 
June 26, 
2012 

[Se] µg / 
day 
August 18, 
2012 

[Se] µg / 
day 
October 6, 
2012 

[Se] µg / day 
November 
17, 2012 

FC / Cattail 0.010 0.008 0.008 0.004 0.010 
FC / Bulrush 0.010 0.008 0.004 0.004 0.005 
FC / Phragmites 0.010 0.008 0.008 0.004 0.005 
DS / Phragmites 0.020 0.008 0.016 0.008 0.010 
DS / Bulrush 0.049 0.016 0.012 0.008 0.019 
DS / Cattail 0.015 0.016 0.004 0.004 0.010 
RH / Cattail 0.010 0.012 0.004 0.008 0.010 
RH / Bulrush 0.010 0.008 0.004 0.008 0.010 
RH / Cattail 0.024 0.012 0.008 0.004 0.005 
RH / Bulrush 0.024 0.012 0.008 0.004 0.005 
RH / Phragmites 0.029 0.012 <0.004 0.008 0.005 
BLM / Tufted 
Hair Grass 0.005 0.008 0.012 <0.004 0.005 
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Figure 3-1: Map of Pariette Draw and Pariette Wetlands’s Plant and Volatility Flag Sam-
ple Sites. 
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Figure 3-2: Box-and-whisker plot of Se concentration in inflorescence, leaf, root and 
stem associated with different plants species at twelve sample sites in Pariette Wetlands 
with upper quartile, lower quartile, and median represent by the box and line inside the 
box. Whiskers represent the maximum and minimum values of the data excluding the 
outliners as the black circles outside of the whiskers.  
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Figure 3-3: Box-and-whisker plot of Se concentration associated with the stems of tufted 
hair grass, bulrush, cattail, and common reed at twelve sample sites in Pariette Wetlands 
with upper quartile, lower quartile, and median represent by the box and line inside the 
box. Whiskers represent the maximum and minimum values of the data excluding the 
outliners as the black circles outside of the whiskers.  
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Figure 3-4: Box-and-whisker plot of Se concentration associated with different plant spe-
cies in the upland (BLM), and wetlands sites Flood Control (FC), Desilt Pond (DS), and 
Redhead Pond (RH) at twelve sample sites in Pariette Wetlands with upper quartile, low-
er quartile, and median represent by the box and line inside the box. Whiskers represent 
the maximum and minimum values of the data excluding the outliners as the black circles 
outside of the whiskers.  
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Figure 3-5: Box-and-whisker plot of Se volatilization rates from sites associated with dif-
ferent plants species in Pariette Wetlands with upper quartile, lower quartile, and median 
represent by the box and line inside the box. Whiskers represent the maximum and mini-
mum values of the data excluding the outliners as the black circles outside of the whisk-
ers.  
 



 

 

57

 

Figure 3-6: Box-and-whisker plot of Se volatilization rates in Pariette Wetlands at upland 
(BLM) and wetlands (FC = Flood Control; DS = Desilt Pond; and RH = Redhead Pond) 
sample sites with upper quartile, lower quartile, and median represent by the box and line 
inside the box. Whiskers represent the maximum and minimum of the data excluding out-
liners as the black circles outside of the whiskers.  
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Figure 3-7: Mean volatilization rates of Se at upland (BLM) and wetlands (FC = Flood 
Control; DS = Desilt Pond; and RH = Redhead Pond) sites during sampling period March 
30, 2012 to November 17, 2012. 
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a) 

b) 

Figure 3-8: a) Maximum air temperature and b) total precipitation from January 1 to De-
cember 31, 2012 from a Utah Climate Center Station Vernal 23 SSE located near Pariette 
Wetlands http://climate.usurf.usu.edu/. 
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CHAPTER 4 

ASSESSMENT OF SELENIUM MOBILIZATION IN ARID UPLAND AND 

WETLANDS SOILS OF PARIETTE DRAW, UTAH 

 
ABSTRACT 

 
Selenium (Se) mobilization in the soils of the Pariette Draw and subsequent ac-

cumulation into the Pariette Wetlands threaten wildlife. The physical and chemical prop-

erties for two soils in the Pariette Draw were compared: one arid soil (elevation 1467 m) 

and the other a formerly arid soil (elevation 1448 m) inundated by water following crea-

tion of wetlands from 1975. The soils were analyzed, and the influence of inundation by 

irrigation return water of Pariette Draw of Utah was assessed to obtain a better under-

standing of soil Se and salts in this system. It appears that Se mobility, especially in the 

wetlands soil, is associated with the distribution of soluble salts in the soil profile. Due to 

a fluctuating water table caused by inundation of irrigation return water and high evapo-

transpiration rates coupled with low precipitation, capillary migration is the dominant 

mechanism driving the distribution and accumulation of salts and soluble Se in the upper 

horizons (Byz) of the wetlands soil. The distribution of soluble salts and Se in the upland 

soil is typical of a downward gravity-driven hydrology process. Gypsum solubility regu-

lated sulfate levels within the Byz horizons of the wetlands soil. We surmise that soluble 

Se is regulated by the solubility of a sodium selenate sulfate coprecipitate. It appears that 

the relatively low concentration of Se in the local Pariette Wetlands soil is not the source 

and cause of Se responsible for adversely affecting wildlife in the wetlands. 
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INTRODUCTION 

 
Selenium (Se) is a naturally occurring trace element associated with various geo-

logic formations throughout the world; it is incorporated into the geosphere in a wide 

range of geologic sources such as phosphate rocks, black shale, coal, and crustal rocks 

(de Souza et al., 1999; Maher et al., 2010). The main geologic sources of Se are sedimen-

tary rocks formed from ancient, organic rich, marine basins formed from sediments ac-

cumulated during the Upper Cretaceous Period (Pollard et al., 2007). These sedimentary 

rocks are the parent material for the soils in this study, and they contain Se within their 

sulfide minerals (Wilber, 1980).  

Processes such as physical and chemical weathering and soil genesis can mobilize 

sequestered Se from the lithosphere into the hydrosphere and atmosphere, causing Se to 

be more bioavailable in the environment (Maher et al., 2010). Both natural processes and 

anthropogenic factors mobilize Se. Potential natural processes that mobilize Se include 

chemical weathering either by snowmelt or rainfall run-off, leaching from saline soils, 

and upwelling of shallow groundwater. Potential anthropogenic causes include irrigation 

return flows, animal waste, oil/gas well pads, and non-point sources in the watershed 

(Wingert & Adams, 2011). 

In the Western United States, wildlife deformities at Kesterson Reservoir and oth-

er sites led to investigations in the 1980’s of Se environmental contaminations (Presser et 

al., 1994). Selenium in irrigated return flow waters was identified as the source of con-

tamination in these areas (Presser et al., 1994; Stephens et al., 1992). Similarly, the mid-

dle Green River area of the Uinta Basin, Utah, was identified as an area with significantly 

high Se contamination. Several studies conducted in the 1980’s by the United States Geo-
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logical Survey (USGS), United States Fish and Wildlife Service (USFWS), and the Unit-

ed States Bureau of Reclamation identified three areas of concern for Se contamination.  

The three areas of concern are Stewart Lake Waterfowl Management Area 

(SLWM), Ouray National Wildlife Refuge (ONWR), and Pariette Wetlands (Figure 4-2) 

(Stephens et al., 1992). The concentration of dissolved selenium in irrigation drain water 

entering SLWM ranged from 14 to 140 µg L-1 this exceeds the U.S. Environmental Pro-

tection Agency (EPA)’s chronic criterion of 5 µg L-1. The selenium concentration in sed-

iments collected drain discharge in the inflow of SLWM ranged from 10 to 85 µg L-1 

(Stephens et al., 1988). The source of Se contamination was believed to be from inflow of 

shallow ground water and surface water from a sewage lagoon system that flows through 

Mancos Shale known to be seleniferous (Stephens et al., 1992). The contaminated irriga-

tion drain water that entered SLWM is currently diverted around SLWM and into the 

Green River (Naftz et al., 2005). Ouray National Wildlife Refuge water samples ranged 9 

to 93 µg L-1. In 1987, ONWR was closed for a short period of time after discovery of de-

formed American coot embryos. Consequently, the ponds containing elevated levels of 

selenium were closed, drained and filled in with clean sediments (Stephens et al., 1988). 

Pariette Wetlands water samples ranged from 1 to 7 µg L-1. Biota sampled during the 

same time contained Se concentrations intermediate between ONWR and SLWM. No 

deformed embryos were observed. However, the bioaccumulation factor of Se for 

Pariette Wetlands ranged 300 to 2,200 times the Se concentration between the water 

samples and biota (Stephens et al., 1992).  

Selenium has been measured over the last 20 years in the Pariette Draw and 

Pariette Wetlands at levels known to be hazardous to wildlife (Stephens et al., 1992; 
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Wingert and Adams, 2011). Maximum allowable concentrations in aquatic ecosystems 

for water borne Se was 2 µg L-1, and for sediment was 2 µg g-1 dry weight, according to 

Lemly (2002). High levels of Se exposure can cause reproductive failure and teratogenic 

deformities in oviparous organisms, such as birds and fish (Lemly, 1985). 

Pariette Wetlands is the United States Department of the Interior Bureau of Land 

Management’s (USDI BLM) largest wetlands development in Utah, and was created to 

provide wildlife habitat in a semi-arid desert of Pariette Draw. The Pariette Wetlands is 

an arid land oasis in the Uinta Basin located in northeastern Utah (Figure 4-1). The pri-

mary land uses within the draw (about 35 miles southwest of Vernal, Utah) are irrigated 

hay, pasture, and livestock grazing. Used as rangeland, the earea is also impacted by the 

oil and gas industry (Wingert and Adams, 2011). Pariette Wetlands was developed to im-

prove waterfowl production and provide seasonal habitat for migratory birds. The area 

contains diverse vegetation and wildlife in an arid climate (average annual precipitation - 

14.3 cm; mean annual air temperature 7.9°C). The wetlands comprises 23 ponds (Figure 

4-1), mainly filled with water diverted from the Duchesne River into the Pleasant Valley 

Canal from May to October for irrigation of farmland in Pleasant Valley. A few springs 

also provide a minimal source of water for the draw. As each pond fills, excess water 

flows over water control structures. After the last pond (Redhead Pond), approximately 

one kilometer upstream from the mouth of the Pariette Draw, the draw flows into the 

Green River (Stephens et al., 1988; Wingert and Adams, 2011). 

The Uinta Basin is a geologic structural basin, part of the physiographic region 

known as the Colorado Plateau. Formation of the Basin began during the Late Cretaceous 

Period, 70 to 80 million years ago, when the Uinta Arch rose slowly causing the Uinta 
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Basin to subside. Then during the Eocene Epoch, 55 to 34 million years ago, a large sa-

line lake call Lake Uinta helped form this basin (Stokes, 1986).  

Sediment deposits during the Eocene Epoch formed the Uinta and Green River 

Formations (Stokes, 1986). These two formations compose most of the surface of Pariette 

Draw, and are known to be seleniferous in areas (Stephens et al., 1992). Following this 

formation, a system of great interior lakes was formed, and Lake Uinta was one of these 

lakes. Next, the Green River Formation accumulated fine clastic sediments. After the 

deposition of the Green River Formation, a sharp uplift of the Uinta Mountains occurred 

(Fike and Phillips II, 1983). Then during Late Pleistocene Epoch, approximately 24,000 

years ago, glacial retreat of the Unita Mountains caused alluvial deposits of the Uinta 

Formation (Laabs et al., 2009). 

Soil surveys completed in 1995 by the Natural Resources Conservation Service 

(NRCS) indicate that the soils at and near the wetlands are classified within the Aridisol 

and Entisol Soil Orders (Leishman et al., 2003). Soil parent material originates from la-

custrine, fluvial and volcanic deposits. The area is a broad intermittent drainage with 

northwest to southeast descending slope. Unique landforms, considerable topographic 

relief, and deeply incised stream channels and washes characterize this area. The descrip-

tive local topography is badlands, and the plant community is a mixture of desert shrub in 

the upland with cattails and rushes within the wetlands (Leishman et al., 2003). Map units 

from Soil Survey indicate that both sites are of the Motto-Rock outcrop complex. Motto 

series taxonomic classification is loamy, mixed, superactive, mesic, Lithic Natrargids 

(Leishman et al., 2003). The landform is a structural bench with well-drained soils 

formed from slope alluvium over residuum derived from shale and sandstone. Natrargids 
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are Aridisols that have a natric horizon and do not have a pertrocalcic horizon within 100 

cm of the soil surface (Soil Survey Staff, 2010). To date, NRCS has no detailed infor-

mation listed about the salts and their association with each horizon. 

 After the 1980’s studies (Stephens et al., 1992), most of the Se research in the 

Uinta Basin focused on SLWM and ONWR. Not much has been added to help under-

stand the complex interaction involved with mobilization and accumulation of Se in 

Pariette Wetlands. There is no detailed information pertaining to salinity and selenium 

dynamics of the soils in the Pariette Draw. The objective of this study was to provide de-

tailed physical and chemical properties of two soils, one from the arid upland and the 

other from the margin of the wetlands in the Pariette Draw. Our goal was to obtain a bet-

ter understanding of the processes that regulate the distribution of Se in a typical arid soil 

compared to a soil affected by water in the Pariette Wetlands. Insight into how inundation 

by water has impacted the Se distribution and form in the soil will be essential to under-

standing these processes. The information gained will lead to management strategies that 

will mitigate Se, thus minimizing the risk of Se toxicity to wildlife in the Pariette Wet-

lands. 

 
MATERIALS AND METHODS 

 
Description of Study Area  

 
Two different pedons of the Pariette Draw (Figure 5-1) were examined on Sep-

tember 17, 2011: one somewhat poorly drained pedon inundated by irrigation return flow 

at the margin of the wetlands (Flood Control), and a second pedon on an arid upland just 

south of the wetlands (BLM Compound). Sites were selected in stable undisturbed areas 
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with representative native vegetation. The wetlands margin pedon was located down-

stream of the inlet to Pariette Wetlands below the Flood Control structure. The upland 

pedon was located upslope of the BLM compound building, and was not influenced by 

the inundation of water that created the current wetlands. The mean annual air tempera-

ture was 7.9°C, and the maximum monthly average temperature for June, July and Au-

gust was 30.5°C. The minimum monthly average temperature for December, January, 

and February was -14.0°C (Prono, 2008). The soil moisture and soil temperature regime 

was aridic and mesic. 

 
Field Methods 

 
Soils were exposed by backhoe excavation to a depth of at least 150 cm. Genetic 

horizons were identified based on morphological features including color, texture, struc-

ture, effervescence with HCl, and visible salt crystals. Soils were described in the field 

and samples were collected from each genetic horizon (Soil Survey Staff, 2009) (Appen-

dix B). 

 
Laboratory Analysis 

 
 Soil samples were air-dried, crushed and passed through a 2-mm sieve to remove 

coarse fragments. Saturated paste extracts were obtained using an automatic vacuum ex-

tractor. Saturation percentages were measured before extraction by weighing and oven-

drying part of the saturated paste and measuring the mass water content. Saturated paste 

extracts were analyzed for pH and electrical conductivity (ECe) (Soil Survey Staff, 
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2009). Soil ground to <0.25 mm was analyzed for calcium carbonate equivalent (CCE) 

(Fonnesbeck et al., 2013).  

A spl sample was taken from each saturated paste extract and submitted to the 

United States Geological Survey (USGS) in Denver for elemental analysis using induc-

tively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES), and hydride generation atomic absorption spectrome-

try (HG-AAS) (Taggert, 2002). Sodium Adsorption Ratio (SAR) was calculated using the 

elemental analysis results (Soil Survey Staff, 2009). The chemical equilibrium model 

PHREEQC (v. 3) (Parkhurst and Appelo, 1999) was used to predict ion activities in the 

extracts solutions at 25°C, saturated paste pH values, and redox potential associated with 

dry aerated  (pe = 20.66 – pH)   or wet, aerobic soils  (pe =15-pH)  (Azaizeh et al., 2003). 

Additionally, the USGS laboratory measured the total iron in the samples collected from 

each soil horizon. Pearson’s correlation test was used to test for significant correlation of 

ion concentration of the extract paste and ECe. Salts collected from the soil surface as 

well as clearly present white solids within the flood plain soil profile were analyzed by x-

ray diffraction (XRD). The XRD was done using a Panalytical X’Pert Pro X-ray Diffrac-

tion Spectrometer with monochromatic Cu K-alpha radiation. High Score software was 

used to index peaks and identify minerals. 

 
RESULTS AND DISCUSSION 

 
Morphological and Physical Properties 

 
The deep, somewhat poorly drained, wetlands-margin soil near the flood control 

structure was formed from alluvium and colluvium overlying colluvium derived from 
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sandstone and mudstone of the Uinta Formation. This pedon occurred on an east-

northeast-facing toeslope of a cliff with a slope gradient of 6%. The upland soil near the 

BLM Compound occurred on a south-southwest backslope of a ridge with a slope gradi-

ent of 8%. Based on climate data collected from a nearby Utah Climate Center Station at 

Myton, the mean annual precipitation was 14.3 cm, and mean annual air temperature was 

8.0 °C. Soil moisture regime was typic aridic, and the soil temperature regime was mesic. 

The upland site supported a desert shrub community composed of native vegetation dom-

inated by Indian rice grass (Achnatherum hymenoides), saltgrass (Distichlis spicata), 

greasewood (Sarcobatus vermiculatus) and rabbit brush (Ericameria nauseosa). The wet-

lands-margin site in the riparian and flood plain zone consisted primarily of graminoids; 

common reed (Phragmites australis), cattails (Typha domingensis and T. latifolia), and 

rushes (Scirpus acutus, S. maritimus, Eleocharis palustris, Juncus arcticus and 

S.pungens).  

Soil color is the most obvious feature of a profile, and can indicate chemical com-

position. The near-surface horizons of the wetlands-margin soil have a hue of 10YR and 

lower value, indicating the accumulation of organic matter turnover from the wetlands 

vegetation. At about 28 cm depth, chromas change from 3 to 2 (Table 5-1); change in 

chroma in the lower part indicated that the soil may be subject to saturation, facilitating 

the reduction and removal of Fe. Saturation of soils and sediments in the wetlands has 

caused the soluble salt to dissolve and mobilize, ultimately, precipitating in the horizons 

with visible gypsum veins (Byz1, Byz2, Byz3 and Byz4). The soils were moderately de-

veloped with subangular blocky structure in the solum, whereas the regolith was 
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structureless single grain weathered sandstone (below 113 cm). The texture was sandy 

loam throughout the pedon except for sandy clay loam in the Byz4 horizon.  

All horizons of the upland soil were 7.5YR and had chromas of 3, indicating that 

organic matter was low and the soil had not been subject to saturation. Several horizons 

had gravel lenses (Bk2 and Bk3), and alternating light and dark colored 1-cm thick sedi-

ment bands (2Bk4 and 2BCk). Carbonate coats around rock fragments and finely dissem-

inated carbonates were present throughout profile (Table 4-1).  

 
Soil Forming Processes and Classification 

 
The epipedon for the wetlands (Flood Control) pedon was ochric, and the diag-

nostic subsurface horizons were gypsic (41-131 cm) and sodic (6-152 cm). There were no 

other diagnostic characteristics, and the family particle size was fine-loamy (control sec-

tion 25-100 cm). Based on these diagnostic characteristics, the family classification was 

fine-loamy, mixed, superactive, mesic Sodic Haplogypsids (Soil Survey Staff, 2010). 

  The diagnostic epipedon for the upland pedon (BLM Compound) was ochric, and 

the diagnostic subsurface horizons were cambic (14-86 cm), calcic (86-109 cm), and 

sodic (14-154). A genetic characteristic was a lithologic discontinuity of gravel lens with 

alternating light and dark sediment bands that occur at 86 to 109 cm. The family particle 

size was sandy-skeletal over loamy (control section 25-100 cm). The family classification 

was sandy-skeletal over loamy mixed, superactive, mesic Sodic Haplocalcids (Soil 

Survey Staff, 2010). 
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Chemical Properties 

 

 The chemical properties of the upland and wetlands soils, especially with regard 

to the quantity and distribution of soluble salts in each profile, differed considerably. Hy-

drology was the main factor responsible for the difference in accumulation and distribu-

tion of soluble salts between the two soil profiles. The upland soil profile was typical of a 

well-drained, arid soil, where soluble salts and carbonate concentrations increased with 

depth due to a downward translocation of these materials transported via a gravity-driven 

hydrology. The ECe for the upland soil ranged from 0.54 to 2.62 dSm-1,
 which is not ex-

traordinarily high (Table 4-2 and Figure 4-5). 

In contrast, the ECe values of the wetland-margin soil were one order of magni-

tude higher than the upland soil ranging from 3.27 to 27.4 dSm-1 (Table 4-2 and Figure 4-

4). The wetland-margin had the highest ECe in mid layers of the soil profile (28 to 131 

cm), indicating an upward translocation and accumulation of soluble salts via capillary 

migration due to alteration of the water table associated with inundation of irrigation re-

turn flow into the wetlands. The migration of the soluble salts to the surface was also in-

fluenced by the seasonal high evapotranspiration rates and low annual precipitation. The 

predominate ions of the saturated paste extracts were sodium (Na+), calcium (Ca2+), sul-

fate (SO4
2-), and chloride (Cl-). A significant correlation (p<0.01) existed between ECe 

and the soluble ions in the saturated paste extract, especially SO4
2- (r2 = 0.96). The extract 

SO4
2- content in the Byz horizons of the wetlands soil was two orders of magnitude high-

er than in the upland soil. During soil genesis, soluble salts dissolve when in contact with 

water, translocate, and then precipitate as water recedes or evaporates. Carbonates will 

precipitate first, followed by gypsum and then sodium salts (Boettinger and Richardson, 
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2001). This distribution of salts in the wetlands soil profile as related to hydrology fol-

lowed a predicted sequence as proposed by the Hardie-Eugster model (Hardie and 

Eugster, 1970). The model predicts the following order of mineral formation upon con-

centrating the saline pore water solutions: calcite, gypsum, glauberite, thenardite, and hal-

ite. First Ca is partially removed from solution with the formation of calcite. Additional 

Ca is removed along with sulfate when gypsum precipitates. Due to increasing Na levels, 

Ca and sulfate continue to precipitate in the form of glauberite, and ultimately nearly 

complete removal of Ca favors the formation of thenardite, followed very closely by hal-

ite. In the wetland soil, we were able to measure the presence of calcium carbonate, gyp-

sum, glauberite, and thenardite, but not detect halite. Calcium carbonate levels were low-

er in the Byz horizons (28 to 131 cm) (Figure 4-4) but higher (>5% CCE) in the adjacent 

layers above and below the Byz horizons. A white precipitate could clearly be observed 

in the Byz horizons in the wetland profile, which was gypsum as identified by XRD. 

Likewise, the geochemical modeling indicated that gypsum (CaSO4*2H2O) solubility 

regulated the SO4
2- levels in the Byz horizons of the wetlands soil. With the exception of 

the topmost surface soil layers, the pH values for both soils exceeded 8.5 and were most 

likely buffered by sodium carbonate.  The upland soil on average had higher pH values 

than the wetlands soil. Surface salt crusts, which can be seen throughout the Pariette 

Draw, were collected and identified via XRD as being the mineral thenardite (Na2SO4). 

Iron solubility in both profiles also appeared to be regulated by hydrology, where 

the percent of total Fe demonstrated a similar distribution and accumulation pattern as the 

soluble salts (Figures 4-4 and 4-5).  The fluctuating high water table in the wetland-

margin soil resulted in fluctuating soil redox conditions and, subsequently, a dynamic 
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zone of Fe dissolution and precipitation of ferric oxides in the Byz horizons. The high 

surface area ferric oxides were loosely able to retain selenite and sulfate. Whereas in the 

upland profile the percent total Fe peaks lower in profile.  The patterns in the Figures 4-4 

and 4-5 gave valuable insight into effects of translocation of these salts, and the mobiliza-

tion of selenium in these soils. The upland soil had higher total Se levels (87 to 217 µg 

kg-1) than the wetlands soil (48 to 139 µg kg -1), and both soils had a lower value than 

440 µg kg -1, which is the estimated mean total Se content of soils worldwide (Kabata-

Pendias, 2011). Soluble Se concentrations measured in the saturated paste extracts for the 

each of the soil horizons differed between the two soils. In the upland soil, soluble Se 

could be detected only in the deepest horizons (86 to 154 cm) and ranged from 5.54 to 

15.12 µg kg -1, whereas in the wetlands soil soluble Se was present in all of the horizons, 

except the surface 6-cm horizon, and ranged from 14.6 to 57.1 µg kg -1. The wetlands 

profile had two to four times higher soluble Se concentrations than the upland profile 

(Figure 4-3). The lack of intense and prolonged reducing conditions allow for Se to be-

come oxidized. Oxidized Se became soluble and translocated from lower horizons to the 

Byz horizons in the wetland soil. Although the total Se concentrations measured in the 

wetland soil were nearly half that of the upland soil, a much greater proportion (21 to 

52%) of the Se was soluble and thus bioavailable in the wetlands soil (Table 4-2).  

In contrast, soluble salts concentrations increased with depth in the upland soil 

due to infiltration of water and dissolution and leaching of salts to lower horizons (Figure 

4-5) (Berger and Cooke, 1997). Several researchers have reported similar differences in 

soluble salts as a result of changes in water table as well as season. Berger (1997) exam-

ined three similar alluvial fans in salar basins of northern Chile. The calcium sulphate 
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distribution and other soluble salts were influence by a combination of groundwater, sur-

face flow and wind (Berger and Cooke, 1997). Eghbal (1989) investigated an alluvial fan 

in Carrizo Plain, California, where the overall salt concentrations were highest in the 

lower part of the profile away from Soda Lake due to leaching. The profiles closer to So-

da Lake had higher salt concentrations towards the surface due to movement of ground-

water (Eghbal et al., 1989).  

We surmise that soluble Se was most likely regulated by the solubility of a sodi-

um selenite-sulfate coprecipitate, due to the relatively low concentration of Se in the 

Pariette Wetlands soil. Background concentration of Se in California soils averaged 0.06 

± 0.084 mg/kg (Bradford et al., 1996). The soil of Pariette Wetlands does not appear to be 

the source of Se that is negatively impacting wildlife in the wetlands. Nor were soil Se 

levels high enough to result in significant Se bioaccumulation from plants growing in 

these soils, or to the organisms that feed on them. The high soil salinity levels in the wet-

lands would have a greater impact on vegetative growth than Se. The high soluble sulfate 

content in the wetlands soils would inhibit Se uptake by plants (Mackowiak and 

Amacher, 2008).  Most likely it is the exposure of water containing elevated levels of Se 

flowing through the wetlands that is the source of Se negatively impacting local wildlife. 

 
CONCLUSIONS 

 
Significant physical and chemical properties of the upland and wetlands soils dif-

fer as a result of alteration of the water table due to irrigation return water. Soluble Se 

concentrations were associated with soluble salt, and soluble salts levels were more than 

one order of magnitude greater in the wetlands profile than the upland profile. Capillary 
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migration was responsible for the translocation and accumulation of salts in the upper 

horizons (Byz horizons; 28 to 131 cm) of the wetlands soil, while lack of soluble salt and 

the distribution of CCE in the upland soil reflected downward translocation, typical of 

soils formed in arid climates. Within the Byz horizons of the wetlands soil, soluble salts 

were composed mostly of sulfates. Gypsum solubility regulated sulfate levels within the 

Byz horizons. Surface salt crusts within the wetlands soil were identified as thenardite 

(XRD and geochemical modeling). We surmised that soluble Se was most likely regulat-

ed by the solubility of a mixed sodium selenite-sulfate coprecipitate. It appears that the 

relatively low concentration of Se in the Pariette Wetlands soil was not the source and 

cause of Se responsible for adversely affecting wildlife in the wetlands. Instead, it is the 

exposure of water containing an elevated level of Se flowing through the wetlands that 

most likely is the source of Se negatively impacting animals.  
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Table 4-1: Physical properties of wetland and upland soil profiles from Pariette Draw, Utah. 

Horizon Depth (cm) Munsell Color  Texture Structure 
  Dry Moist  %RF Class %Clay  
Wetland Profile         
A 0-6 10YR 6/2 10YR 4/3  - SL 8 SBK  
Bw1 6-18 10YR 6/2 10YR 4/3  - SL 18 SBK  
Bw2 18-28 10YR 6/3 10YR 4/2  - SL 17 SBK  
Bkz 28-41 7.5YR 7/2 7.5YR 7/2  - SCL 22 SBK  
Bz1 41-62 7.5YR 6/2 7.5YR 4/2  1GR SL 19 SBK  
Bz2 62-101 7.5YR 6/2 7.5YR 5/2  1GR SL 19 SBK  
Bz3 101-113 7.5YR 6/2 7.5YR 4/2  3GR SCL 23 SBK  
Bz4 113-131 7.5YR 7/2 7.5YR 4/2  1GR SL 17 SBK  
2C 131-152 7.5YR 6/2 7.5YR 4/2  10GR & 60ST STXSL 11 SGR  
          
Upland Profile         
A 0-4 7.5YR 7/3 7.5YR 4/3  2GR SL 10 PL  
Bw 4-14 7.5YR 6/2 7.5YR 5/3  25GR GRCOSL 12 SBK  
Bk1 14-41 7.5YR 5/3 7.5YR 4/3  35GR GRVLCOS 6 SBK  
Bk2 41-54 7.5YR 6/2 7.5YR 4/3  50GR GRVLCOS 6 SBK  
2Bk3 54-86 7.5YR 6/3 7.5YR 5/4  35GR GRVLCOS 8 SBK  
2Bk4 86-109 7.5YR 7/3 7.5YR 5/2  - L 25 SBK  
2BC 109-125 7.5YR 6/3 7.5YR 5/3  - SIL 21 SBK  
2C 125-154 7.5YR 6/4 7.5YR 5/3  - FSL 12 MA  

Notes -  
Texture: GR = Gravelly, ST = stony, SL = sandy loam, SCL = sandy clay loam, STXSL = extremely stony sandy loam,  
GRSOSL = gravelly coarse sandy loam, GRVLCOS = very gravelly coarse sandy loam, L = loam, SIL = silt loam,  
FSL = fine sandy loam. 
Structure: SBK = subangular blocky, SGR= single grain, PL = platy, MA = massive. 
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Table 4-2: Chemical properties of soils from Pariette Draw, Utah. 
Horizon Depth 

(cm) 
pHp ECe  

(dS m-1) 
CaCO3 

Equiv. % 
FeTotal 

% 
SAR Ca2+  

(mg/kg) 
K+ 

(mg/kg) 
Mg2+ 

(mg/kg) 
Na+ 

(mg/kg) 
SO4

2- 

(mg/kg) 
See 

(µg/kg) 
SeTotal See / 

SeTotal 

 
               
Wetland               
A 0-6 8.10 3.27 4.64 1.4 10.60 27.60 11.67 2.74 218.69 172.49 <3.50 34.5 0.10 
Bw1 6-18 8.90 11.7 5.07 1.9 83.25 15.06 9.56 1.77 1,284.84 1,524.83 14.58 48.2 0.302 
Bw2 18-28 9.10 18.2 4.93 1.8 144.36 10.51 9.31 2.95 2,062.02 2,552.97 30.22 76.5 0.39 
Bkz 28-41 9.05 24.3 4.41 2.1 100.75 54.35 10.43 11.43 3,138.98 4,869.33 52.17 80.4 0.65 
Byz1 41-62 8.59 25.5 3.31 2.0 62.96 126.85 7.98 16.15 2,839.24 4,775.60 46.64 91.5 0.51 
Byz2 62-101 8.71 27.4 3.37 2.0 59.37 179.44 8.40 36.30 3,344.13 6,076.54 57.09 113.4 0.50 
Byz3 101-113 8.74 27.4 3.56 1.9 52.79 169.15 7.85 39.59 2,943.90 5,722.25 43.19 115.6 0.37 
Byz4 113-131 8.72 24.1 3.96 1.7 40.40 150.98 5.71 24.79 2,037.44 5,110.18 27.94 71.6 0.39 
2C 131-152 8.71 20.5 5.11 1.8 43.51 160.36 5.95 37.79 2,364.88 4,714.31 27.17 66.0 0.41 
               
Upland               
A 0-4 8.06 0.54 11.94 1.4 1.66 11.65 1.75 1.40 22.51 15.08 <3.50 119.6 0.029 
Bw 4-14 8.84 0.77 14.66 1.5 8.58 2.58 0.27 0.32 55.07 13.97 <3.50 131.4 0.026 
Bk1 14-41 8.83 1.19 9.25 1.3 19.52 1.51 0.29 0.32 101.46 85.35 <3.50 97.8 0.036 
Bk2 41-54 9.19 1.18 7.75 1.3 21.03 1.34 0.24 0.29 103.28 96.40 <3.50 95.8 0.037 
2Bk3 54-86 9.39 1.01 8.83 1.3 22.35 0.91 0.33 0.24 93.03 29.84 <3.50 56.7 0.061 
2Bk4 86-109 9.16 2.19 21.89 2.2 39.45 2.69 0.35 1.23 312.32 312.32 12.26 175.6 0.070 
2BC 109-125 9.02 2.40 12.37 2.6 42.36 3.87 0.66 2.18 421.92 502.78 15.12 126.4 0.11 
2C 125-154 9.03 2.62 6.92 1.9 30.31 4.17 0.47 2.06 303.94 409.34 5.54 70.5 0.08 
 
Note: < indicates that the concentration is below detection limit of the ICP-MS. 
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 Figure 4-1: Map of Pariette Draw and Pariette Wetlands study area (red box, expanded 
below), and locations of soil pedons (yellow circles).  



 

 

82

  
 

Figure 4-2: Map of Selenium “hotspots” identified during the 1980’s studies. 
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Figure 4-3: Photos of soil profiles of Wetlands and upland soils of Pariette Draw, Utah.  
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a) b) 
 

c) d) 

 

e)  f) 
 

 
 

 
 
c) d) 

 
e) f) 
Figure 4-4: Relationship to soil depth of wetland profile’s chemical properties: a) electri-
cal conductivity (dS m-1), b) pH of extract paste, c) % Total Fe, d) Calcium Carbonate 
Equivalent (%), e) Log 10 transformation total [Se] (µg kg-1), soluble [Se] (µg kg-1) and 
[SO4] (mg kg-1), and f) Log 10 transformation SAR and [Na] (mg kg-1).
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a)  b) 
 
 
 

 
 

 
 

 
 

 
 
 

c) d) 

 
e) f) 
Figure 4-5: Relationship to soil depth of upland profile’s chemical properties: a) electrical 
conductivity (dS m-1), b) pH of extract paste, c) % Total Fe, d) Calcium Carbonate 
Equivalent (%), e) Log 10 transformation total [Se] (µg kg-1), soluble [Se] (µg kg-1) and 
[SO4] (mg kg-1), and f) Log 10 transformation SAR and [Na] (mg kg-1). 
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CHAPTER 5 

 
SUMMARY AND CONCLUSIONS  

 
 We examined the biogeochemical partitioning of selenium (Se) in water, plant, air 

and sediments in the Pariette Wetlands. From this information we calculated a mass bal-

ance for Se in the Pariette Wetlands (Figure 5-1). The difference between inputs and out-

put or flux gave great insight to how much Se was being retained or stored in the wet-

lands. The average influx of Se was 1,530 kg year-1 and outflux was 380 kg year-1. On 

average 75% (1,150 kg year-1) of Se entering the wetlands was retained or stored by some 

biogeochemical process. Processes associated with Se retention included bioaccumula-

tion into the biota, volatilization by plants and animals, and sorption to sediments. In the 

Pariette Wetlands, Se sorption to sediments accounted for 95 to 99 % (1090 to 1140 kg 

Se) of the Se retained. Accumulation into plants only accounted for 10 to 60 kg Se re-

tained (< 5%) and volatilization was insignificant with less than 1 kg Se lost (Figure 5-1). 

The amount of Se being stored from year to year, the potential of bioaccumulation 

to local wildlife exposed, and the timing of exposure during their life history stage should 

be of great concern to stakeholders. Waterfowl exposed to high concentration of Se dur-

ing their reproductive stage will have a higher rate of reproductive failure and teratogenic 

deformities than any other life history event. Sources of exposure to wildlife include the 

water and food sources of their diet. Vegetation eaten in their diet was a significant cause 

of wildlife exposure to Se. 

 Future work should include continued collection of Se concentration in sediments, 

water, submergent vegetation, emergent vegetation, benthic macroinvertebrates, plank-
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ton, fish tissue and bird eggs. The data collected from these five ecosystem components 

could be used to develop a risk assessment to determine the extent of toxicological effects 

in fish and birds. Assessment of risk will compare hazard profiles using a Spatially Ex-

plicit Exposure Model (SEEM). The SEEM model can be used to predict potential risk in 

aquatic birds breeding in Pariette Wetlands. 
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5-1: Mass balance of selenium in the Pariette Wetlands, Utah. 
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Appendix A 
 
This appendix includes raw data collect by the Utah Division of Water Quality (1993-
2009) and Utah State University (2011-12). Water temperature was measured in degrees 
Celsius, pH in standard units, dissolved oxygen (DO) in mg/L, specific conductance 
(SpC) in µS/cm, flow in cubic meters per second, Total Dissolved Solids (TDS) in mg/L, 
Turbidity in NTU, and selenium (Se) concentration in µg/L. 

 
Pariette Wetlands inlet below Flood Control Structure  
Date Water 

Temp. 
(°C) 

pH DO 
(mg/L) 

SpC 
(µS/cm) 

Flow 
(cms) 

TDS 
(mg/L) 

Turbidity  
(NTU) 

[Se] 
(µg/ L) 

8/28/06 17.0  8.5 8.04 1,795 0.15 1,272  4.2 

2/26/07 1.0 8.3 11.92 5,040  1,630  15.7 
6/4/07 15.5 8.5 8.3 1,175 1.70 754  2.3 
8/6/07 30.0 8.7 6.3 2,450 0.221 1,732  4.9 
11/5/07  8.5  5,930  4,662  7.8 
12/3/07  8.6  5,630  4,710  15.0 
4/14/08 11.4 8.3 8.9 6,240 1.36 5,376  12.1 
5/19/08 16.3 8.3 8.2 1,580 1.70 1,162  3.4 
7/7/08      1,030  8.5 
8/11/08      1,046  3.4 
3/10/09 37.3 7.8 5.5 3,520 0.311 3,692  10.8 
4/21/09 22.9 8.3 7.0 6,575 0.054 5,414  10.2 
5/11/09 20.5 8.7 7.5 2,397 0.139 1,708  4.1 
6/22/09 17.0 8.2 8.1 1,093 5.6 754  2.5 
7/20/09 27.7 8.4 6.5 2,738 0.464 2,062  5.4 
8/4/09 25.0 8.5 6.9 1,192 0.473 816  3.0 
9/10/09 17.7 8.4 7.9 1,271 2.14 908  3.69 
11/3/09 4.8 7.4 10.57 4,744 0.399 3,880  12.5 
5/31/11     15.2*   3.1 
7/20/11     0.703*   1.8 
8/24/11 21.6 7.6 7.3 2,416 0.358* 1,789* 48.71 3.1 
9/9/11 16.7 7.3 8.1 1,260 0.703* 933* 1,241 2.5 
3/5/12 7.5 8.5 9.9 4,580 0.703* 3,391* 3.8 9.33 
3/30/12 7.88 7.5 9.8 5,410 0.703* 4,005* 1.53 7.88 
5/10/12 15.42 8.3 8.3 1,180 1.78* 874* 56.1 1.78 
6/29/12 21.69 8.6 7.2 4,410 2.53* 3,265* 20.04 2.5 
* Flow was calculated using 2009 trend data correlation between precipitation and flow. 
TDS was calculated by multiplying specific conductivity by a conversion factor of 0.74. 
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Pariette Wetlands at Desilt Pond outlet 
Date Water 

Temp. 
(°C) 

pH DO 
(mg/L) 

SpC 
(µS/cm) 

Flow 
(cms) 

TDS 
(mg/L) 

Turbidity  
(NTU) 

[Se] 
(µg/ L) 

12/8/08 3.0 8.3 9.2 2,961 0.037 4,084  7.7 
3/10/09 2.9 7.8 13.1 3,520 0.31 2,660  5.1 
4/21/09 16.0 8.2 8.5 5,078 0.068 3,986  5.4 
5/11/09 17.0 8.3 8.5 3,520 0.36 2,526  2.9 
6/22/09 20.9 8.1 10.1 1,380 1.36 958  1.3 
7/20/09 26.6 9.1 8.3 2,650 0.053 1,910  2.3 
8/4/09 26.3 9.1 8.6 2,938 0.31 2,118  2.2 
9/10/09 20.4 8.8 8.1 1,773 0.079 1,318  1.6 
11/3/09 8.6 7.0 10.4 3,937 0.17 2,974  3.6 
8/24/11        1.1 
8/24/11        1.3 
9/9/11        2.6 
9/9/11        2.9 
3/5/12        5.4 
3/30/12        2.3 
5/10/12        1.3 
6/29/12        1.0 
11/17/12        2.1 
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Pariette Wetlands outlet below Redhead Pond  
Date Water 

Temp. 
(°C) 

pH DO 
(mg/L) 

SpC 
(µS/cm) 

Flow 
(cms) 

TDS 
(mg/L) 

Turbidity  
(NTU) 

[Se] 
(µg/ L) 

7/22/93    3,440 0.028 2,574  <0.5 
8/17/93    2,350  1,780  1.0 
5/24/94 20.3  7.5 3,745 0.039 2,890  0.5 
6/22/94    3,335 0.037 2,430  0.5 
7/18/94    4,880  3,966  1.0 
8/17/94    6,036  4,664  <0.5 
9/20/94    4,978 0.028 4,092  2.0 
10/5/94    2,768 0.84 2,094  2.0 
10/18/94    2,279 2.83 1,578  2.0 
11/21/94    4,154 0.45 3,416  2.0 
3/2/95    4,925 0.028 4,224  4.0 
3/20/95    4,948 0.057 4,018  2.0 
4/20/95    5,922  4,886  0.5 
5/2/95    5,930 0.14 4,914  0.5 
5/23/95    2,580 0.42 1,904  1.0 
6/20/95    2,096 1.33 1,622  1.0 
8/4/95 22.2  7.2 1,738 0.18 1,172  <0.5 
10/24/95 8.8  9.7 1,962 0.99 1,436  2.0 
11/27/95 6.6  10.1 3,588 0.22 2,808  3.0 
1/24/96 1.0  11.7 5,152 0.11 4,378  8.0 
2/27/96 1.1  11.7 3,458 0.19 2,624  2.0 
4/10/96 6.1  10.2 4,577 0.028 3,656  2.0 
5/7/97 15.6  8.3 2,268 0.19 1,624  3.7 
5/20/96 14.4  8.5 2,732 0.057 2,020  3.8 
6/18/97 20.0  7.6 1,011 0.25 662  2.4 
7/17/97 24.4  6.9 2,833 0.028 2,032  2.4 
7/19/97 22.2  7.2 2,390 0.19 1,742  2.7 
8/25/97 21.0  7.4 2,550 0.14 1,088  2.3 
9/23/97 16.7  8.1 1,050 0.34 1,018  2.8 
4/20/98    5,350 0.028 1,448  11.0 
6/22/98 20.0  7.6 1,400 1.98 1,018  3.6 
7/20/98 16.7  8.1 2,048 0.028 1,448  2.4 
8/17/98 17.8  7.9 1,850 0.057 1,338  2.2 
9/21/98 16.7  8.1 1,479 0.057 1,054  2.1 
11/30/98 11.1  9.1 4,080 0.14 3,136  8.0 
1/20/99 7.2  9.9 5,540 0.057 4,140  18.0 
2/16/99 0.0  12.1 4,100 0.14 3,170  8.2 
3/15/99 10.0  9.3 4,180 0.028 3,280  9.4 
4/27/99    2,190 0.14 1,514  3.2 
5/11/99 13.3  8.7 1,500 0.17 1,064  2.1 
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7/12/99 26.1    0.14 1,272  2.6 
8/21/00 16.7  8.1 1,490 0.14 2,294  3.0 
10/29/00 5.2    0.22 1,568  3.3 
11/18/00 2.5    0.14 2,574  4,8 
12/16/00 0.2    0.14 3,869  13.0 
1/19/01 0.0    0.14 4,815  15.9 
2/10/01 0.0    0.14 4,688  16.9 
3/23/01 12.7    0.19 2,582  6.4 
4/27/01 20.0    0.042 3,244  11.7 
5/25/01 22.5    0.028 1,886  2.9 
7/17/01 27.1   2,520 0.059 1,792  <0.5 
9/14/01        4.3 
11/15/01 2.0 9.0 7.7 4,830 0.014 4,510  4.9 
8/28/06 22.0  7.2 2,720 0.17 1,928  1.9 
2/26/07 1.0  11.8 3,550  2,614  5.8 
6/4/07 16.9  8.0 3,990 0.15 2,836  2.8 
6/25/07    3,380 0.099 2,394  2.3 
8/6/07 21.5  7.3 4,810 0.0028 3,588  3.2 
11/5/07    4,940  3,788  4.8 
4/14/08 13.5  8.6 4,720 0.068 3,562  6.6 
5/19/08 20.2  7.4 6,020 0.71 4,872  5.5 
7/7/08    2,350  1,606  2.0 
8/11/08    4,210  6,146  3.2 
10/28/08 10.6 8.6 11.4 3,179 0.6 2,632  2.0 
12/8/08 0.4 7.9 8.1 3,328 0.0057 4,926  2.5 
2/24/09      4,476  5.3 
3/10/09 -0.2 7.9 11.0 4,476 0.52 3,504  4.1 
4/21/09 21.7 8.0 8.3 5,717 0.028 4,178  3.9 
5/11/09 19.5 8.2 12.9 5,947 0.028 4,686  3.0 
6/22/09 21.4 8.3 8.9 2,216 1.57 1,616  1.3 
7/20/09 24.3 7.9 8.6 4,216 0.028 2,876  3.4 
8/4/09 21.8 8.1 7.0 4,733 0.028 3,472  3.3 
9/10/09 23.8 8.0 7.7 4,774 0.028 4,172  3.2 
11/3/09 9.3 8.4 14.5 3,215 0.059 2,282  1.7 
5/31/11 21.4 8.5 7.4 3,610 0.53* 2,671* 0.158 1.5 
8/24/11 23.8 7.8 7.1 2,170 0.26* 1,606* 356 0.92 
9/9/11 19.0 7.9 7.7 2,440 0.70* 1,806* 462 0.7 
3/5/12 6.0 7.3 10.3 5,160 0.38* 3,818* 130 4.2 
3/30/12 15.5 7.5 8.2 4,490 0.38* 3,323* 80 1.6 
5/10/12 18.3 7.5 7.7 6,100 0.70* 4,514 381 1.8 
6/29/12 18.7 7.0 7.7 5,720 0.70* 4,233* 99 1.2 
* Flow was calculated using 2009 trend data correlation between precipitation and flow. 
TDS was calculated by multiplying specific conductivity by a conversion factor of 0.74. 
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Appendix B 
 
Soil Description: Upland Soil at BLM Compound 
The Upland Soil at BLM Compound sample site is a dry location on a backslope of a 
ridge of the Pariette Wetlands, Utah. The soil consists of deep, well-drained soil formed 
from alluvium over sandstone and mudstone of the Uinta Formation. This pedon occurs 
on a south-southwest backslope of a ridge with a slope gradient of 8%. The average an-
nual precipitation is 14.3 cm, and mean annual air temperature of 8.0°C. Soil moisture 
regime is aridic, and temperature regime is mesic. The presumed native vegetation is de-
sert shrub. (Colors are for dry soil unless otherwise noted). 
A - 0 to 4 cm; pink (7.5YR 7/3) sandy loam, brown (7.5YR 4/3) moist; moderate thin 
platy structure; soft, loose, slightly sticky, non-plastic; few fine and few very fine roots, 
common fine and common very fine pores; few carbonate coats around rock fragments; 
violently effervescent, moderately alkaline (pH 8.2); clear smooth boundary. 
Bw – 4 to 14 cm; pink (7.5YR 6/2) gravelly coarse sandy loam, brown (7.5YR 5/3) 
moist; weak fine subangular blocky parting to equal very fine subangular blocky struc-
ture; very hard, very friable, slightly sticky, non-plastic; few fine and few very fine roots, 
few fine and few very fine pores; few carbonate coats around rock fragments; violently 
effervescent, strongly alkaline (pH 8.6); clear smooth boundary. 
Bk1 – 14 to 41 cm; brown (7.5YR 5/3) very gravelly coarse sandy loam, brown (7.5YR 
4/3) moist; weak fine subangular blocky parting to equal very fine subangular blocky 
structure; soft, very friable, non-sticky, non-plastic; few fine and few very fine roots, few 
very fine pores; few carbonate coats around rock fragments, faint carbonate coats infused 
into the matrix adjacent to pores; violently effervescent, strongly alkaline (pH 8.8); clear 
smooth boundary. 
Bk2 – 41 to 54 cm; pinkish gray (7.5YR 6/2) very gravelly coarse sandy loam, brown 
(7.5YR 4/3) moist; weak fine subangular blocky parting to equal very fine subangular 
blocky structure; slightly hard, friable, non-sticky, non-plastic; common fine and few 
very fine roots, few very fine pores; few carbonate coats around rock fragments, faint 
carbonate coats infused into the matrix adjacent to pores; gravel lens at bottom of hori-
zon; violently effervescent, strongly alkaline (pH 8.9); clear smooth boundary. 
Bk3 – 54 to 86 cm; light brown (7.5YR 6/3) very gravelly coarse sandy loam, brown 
(7.5YR 5/4) moist; weak fine subangular blocky parting to equal very fine subangular 
blocky structure; slightly hard, very friable, non-sticky, non-plastic; f few very fine roots, 
few very fine pores; few carbonate coats around rock fragments, 3 cm gravel lens at bot-
tom of horizon; strongly effervescent, very strongly alkaline (pH 9); abrupt smooth 
boundary. 
2Bk4 – 86 to 109 cm; pink (7.5YR 7/3) loam; weak fine subangular blocky parting to 
equal very fine subangular blocky structure; soft, friable, slightly sticky, moderately plas-
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tic; few fine and few very fine roots, common fine and few very fine pores; finely dis-
seminated carbonates 1cm alternating light and dark sediment bands; violently efferves-
cent, strongly alkaline (pH 9); clear smooth boundary. 
2BC – 109 to 125 cm; light brown (7.5YR 6/3) silt loam, brown (7.5YR 5/3) moist; mod-
erate medium subangular blocky parting to weak fine subangular blocky structure; slight-
ly hard, friable, slightly sticky, moderately plastic; few very fine roots, common fine and 
common very fine pores; finely disseminated carbonates,1 cm soils band at bottom of 
horizon; violently effervescent, very strongly alkaline (pH 9); clear smooth boundary. 
2C – 125 to 154 cm; light brown (7.5YR 6/4) fine sandy loam, brown (7.5YR 5/3) moist; 
structureless massive; slightly hard very friable, non-plastic; few fine and few very fine 
roots, few fine and few very fine pores; finely disseminated carbonates,1 cm sediment 
band at 154 cm, few relic redox features at 139 cm; violently effervescent, very strongly 
alkaline (pH 9). 
TYPE LOCATION:  Uintah County, Utah; within the BLM’s Pariette Wetlands 35 miles 
southwest of Vernal, Utah; adjacent to the middle Green River; N 40.04675 W 
109.82999; elevation 1467 m. The current vegetation is desert shrub community with rice 
grass, salt grass, greasewood and rabbit brush. 
SMR: Aridic 
STR: Mesic 
Diagnostic epipedon: Ochric 
Diagnostic subsurface horizons: Cambic (14-86 cm), Calcic (86-109cm), and Sodic 
(14-154 cm) 
Other diagnostic characteristics: Lithologic discontinuity of gravel lens with alternat-
ing light and dark bands 86 to 109 cm 
Soil subgroup: Typic Haplocalcids 
Family particle size: sandy-skeletal over loamy (25-100 cm) 
Family Name: Sandy-skeletal over loamy, mixed, superactive, mesic, Sodic 
Haplocalcids 
 
Soil Description: Wetlands Soil at Flood Control 
The Pariette Wetlands flood control sample site consists of deep, somewhat poorly 
drained soil formed from alluvium and colluvium over colluvium sandstone and mud-
stone of the Uinta Formation. This pedon occurs on an east-northeast toeslope of a cliff 
with a gradient of 6%. Moisture regime is aridic, and temperature regime is mesic. The 
average annual precipitation is 14.3 cm, and mean annual air temperature is 8.80°C. The 
presumed native vegetation is desert shrub community with rice grass, salt grass, grease-
wood and rabbit brush. (Colors are for dry soil unless otherwise noted.) 
A - 0 to 6 cm; light brownish grey (10YR 6/2) sandy loam, brown (10 YR 4/3) moist; 
weak very fine subangular blocky structure; soft, very friable, slightly sticky and non-
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plastic; few very fine roots; few very fine pores; no rock fragments; strongly effervescent, 
moderately alkaline (pH 8.1); clear smooth boundary. 
Bw1 – 6 to 18 cm; light brownish grey (10YR 6/2) sandy loam, brown (10YR 4/3) moist; 
strong very coarse subangular blocky structure; hard, firm, slightly sticky and non-
plastic; common very fine, few fine and few moderate roots; few very fine and few fine 
pores; strongly effervescent, strongly alkaline (pH 8.9); clear smooth boundary 
Bw2 – 18 to 28 cm; pale brown (10YR 6/3) sandy loam, dark grayish brown (10YR 4/2) 
moist; weak fine parting to equal very fine subangular blocky structure; slightly hard, 
very friable, slightly sticky and non-plastic; few very fine, few fine and few moderate 
roots; few very fine pores; strongly effervescent, strongly alkaline (pH 8.9); clear smooth 
boundary. 
Bkz – 28 to 41 cm; pinkish gray (7.5 YR 7/2) sandy loam, brown (7.5YR 4/2) moist; 
moderate medium parting to equal fine subangular blocky structure; slightly hard, very 
friable, slightly sticky and moderately plastic; few coarse and few fine roots; few very 
fine and few fine pores; few coarse salt veins; strongly effervescent, strongly alkaline (pH 
9.0); clear smooth boundary. 
Byz1 – 41 to 62 cm; pinkish gray (7.5YR 6/2) sandy loam, brown (7.5YR 4/2) moist; 
moderate medium parting to equal fine subangular blocky structure; slightly hard, very 
friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine and 
fine pores; common coarse salt veins with weathered sandstone; slightly effervescent, 
strongly alkaline (pH 8.8); clear smooth boundary. 
Byz2 – 62 to 101 cm; pinkish gray (7.5YR 6/2) sandy loam, brown (7.5YR 5/3) moist; 
moderate medium parting to equal fine subangular blocky structure; slightly hard, very 
friable, slightly sticky and moderately plastic; common coarse, few very fine and few fine 
roots; few very fine and fine pores; common coarse salt veins with weathered sandstone; 
slightly effervescent, moderately alkaline (pH 8.4); clear smooth boundary. 
Byz3 – 101 to 113 cm; pinkish gray (7.5YR 6/2) sandy clay loam, brown (7.5YR 4/2) 
moist; weak fine parting to equal very fine subangular blocky structure; slightly hard, 
very friable, slightly sticky and slightly plastic; few very fine roots; few very fine pores; 
common coarse salt veins with weathered sandstone; slightly effervescent, moderately 
alkaline (pH 8.4); clear smooth boundary. 
Byz4 – 113 to 131 cm; pinkish gray (7.5 YR 7/2) very stony sandy loam, brown (7.5YR 
4/2) moist; moderate medium parting to equal fine subangular blocky structure; slightly 
hard, very friable, slightly sticky and slightly plastic; few very fine, fine, medium roots; 
few very fine pores; common coarse salt veins with weathered sandstone; slightly effer-
vescent, moderately alkaline (pH 8.4); clear smooth boundary. 
2C – 131 to 152 cm; pinkish gray (7.5YR 6/2) very stony sandy loam, brown (7.5YR 4/2) 
moist; structureless single grain; soft, very friable, slightly sticky and non-plastic; few 
very fine and fine roots; few fine and medium pores; common weathered sandstone; 
strongly effervescent, strongly alkaline (pH 8.6); clear smooth boundary. 
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TYPE LOCATION:  Uintah County, Utah; within the BLM’s Pariette Wetlands 35 miles 
southwest of Vernal, Utah; adjacent to the middle Green River; N 40.06969 W 
109.85906; elevation 1448 m. The presumed native vegetation is desert shrub community 
with rice grass, salt grass, greasewood and rabbit brush. 
SMR: Aridic 
STR: Mesic 
Diagnostic epipedon: Ochric 
Diagnostic subsurface horizons: Gypsic (41-131 cm) and Sodic (6-152 cm) 
Other diagnostic characteristics: none 
Soil subgroup: Sodic Haplogypsid 
Family particle size: Fine loamy (25-100 cm) 
Family Name: Fine-loamy, mixed, superactive, mesic, Sodic Haplogypsid 
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