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ABSTRACT 

Calculating Willingness-to-Pay as a Function of Biophysical Water Quality 

and Water Quality Perceptions 

by 

Carlos G. Silva, Master of Science 

Utah State University, 2014 

Major Professor: Dr. Paul Jakus 

Department: Applied Economics 

When estimating economic value associated with changes in water quality, recreation 

demand models typically depend upon either (i) biophysical measures of water quality as 

collected by natural scientists or (ii) the perception of water quality by recreationists.  

Models based upon biophysical metrics (such as oxygen concentration, pollutant 

concentrations, Secchi depth measurements, etc.) operate on the assumption that people can 

perceive and respond to these metrics, or respond to factors that are, indeed, correlated with 

the biophysical measure.  Economists have often estimated willingness-to-pay (WTP) 

measures associated with unit changes in biophysical measures without examining the 

degree to which the measures are truly correlated with perceptions.  Recreation demand 

models that are based upon respondents’ perceptions of water quality necessarily assume that 

perceptions correlate well with the measures used by scientists to evaluate water quality.  
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Again, WTP for unit changes in perceptions have been estimated without examining the 

relationship to the underlying biophysical measures.  The relationship between biophysical 

metrics and perceptions is rarely addressed, yet it has profound implications for water quality 

management and policy.  Consider a federal or state agency wishing to manage the quality of 

its waters in an economically efficient way.  Through mandated water quality monitoring 

regulations, an agency may have many years of biophysical measurements, but these 

measures are in no way linked to people’s perceptions of water quality and, thus, to WTP.        

Using biophysical measures of water quality and recreation use data recently 

collected in Utah, this study links technical measures of water quality at a water body to 

survey respondents’ perceptions of water quality at the same site.  This approach is akin to 

estimating an ecological production function wherein biophysical measures are “inputs” to 

water quality perceptions (the output).  Truncated Negative Binomial models of water-based 

recreation are used to estimate welfare effects of changes in water quality as measured 

through (i) unit changes in biophysical measures, (ii) unit changes in perceptions, and (iii) 

unit changes in biophysical as they change perceptions through the ecological production 

function.   

 

(73 pages) 
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PUBLIC ABSTRACT 

Calculating Willingness-to-Pay as a Function of Biophysical Water Quality 

and Water Quality Perceptions 

Carlos G. Silva 

 

When estimating economic value associated with changes in water quality, recreation 

demand models typically depend upon either (i) biophysical measures of water quality as 

collected by natural scientists or (ii) the perception of water quality by recreationists.  

Models based upon biophysical metrics (such as oxygen concentration, pollutant 

concentrations, Secchi depth measurements, etc.) operate on the assumption that people can 

perceive and respond to these metrics, or respond to factors that are, indeed, correlated with 

the biophysical measure.  Economists have often estimated willingness-to-pay (WTP) 

measures associated with unit changes in biophysical measures without examining the 

degree to which the measures are truly correlated with perceptions. Using biophysical 

measures of water quality and recreation use data recently collected in Utah, this study links 

technical measures of water quality at a water body to survey respondents’ perceptions of 

water quality at the same site.  This approach is akin to estimating an ecological production 

function wherein biophysical measures are “inputs” to water quality perceptions (the output).  

Truncated Negative Binomial models of water-based recreation are used to estimate welfare 

effects of changes in water quality as measured through (i) unit changes in biophysical 
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measures, (ii) unit changes in perceptions, and (iii) unit changes in biophysical as they 

change perceptions through the ecological production function.   
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INTRODUCTION 

As concern with the health of ecosystems and habitats increases, policy makers must 

consider how changes in environmental policy decisions and management affect the health 

of ecosystems (Hanley, Barbier, and Barbier, 2009). The growing level of concern with 

ecosystem services can be seen in academic fields such as ecology and environmental 

economics where one may observe a rapidly growing literature in recent years. A key 

aspect of this literature focuses on simply defining the term “ecosystem services” where, 

generally, all definitions assess the links between the functions of the ecosystems and 

services that benefit plant and animal populations, particularly as they relate to humans 

(Barbier, 2011).  Fisher and Turner (2008) stated that “ecosystem services are the aspects 

of ecosystems utilized (actively or passively) to produce human well-being.” Ecosystem 

functions can be defined as “the capacity of natural processes and components to provide 

goods and services that satisfy human needs, directly or indirectly” (De Groot, 1992). 

While previous research has made significant progress in developing ecological 

production functions in the areas of pollination of agricultural crops (Kremen et al, 2007) 

and carbon sequestration (Nelson et al., 2009),  the current understanding of ecological 

production functions for most ecosystem services remains limited (Environmental 

Protection Agency, 2009). The difficulties in creating a comprehensive framework for 

integrated assessment and valuation of ecosystem services still remain even after a 

substantial amount of study (De Groot, Wilson, and Boumans, 2002). Establishing a clear 

link between ecosystem functions and its benefits has proven challenging, and examining 

this linkage is a priority research area (Environmental Protection Agency, 2009).  
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One of the main challenges faced by researchers is the sheer complexity of structures 

and processes that lead to ecosystem functions. Measuring the value of direct and indirect 

use of ecosystems is difficult because many ecosystem services are not exchanged in a 

market (Mendelsohn and Olmstead, 2009). De Groot et al. (2002) state that the first step in 

simplifying the complex problem is to translate structures and processes into a limited 

number of ecosystem functions. He advocates dividing ecosystem functions into four main 

categories: Regulation, Habitat, Production, and Information. Each of these categories is 

composed of a number of constituent functions. Information functions provide people with 

services such as the opportunity for cognitive development, the chance to enjoy scenery or 

outdoor sport activities, or the use of nature for scientific research or as a creative tool. The 

recreational function, an Information function, can be expressed as the idea that natural 

ecosystems provide a variety of options for recreational activities such as fishing, 

swimming and boating. According to De Groot et al. (2002), the demand for natural areas 

where one can come to rest or recreate will presumably continue to increase, based on 

population growth, increasing affluence and leisure time.  

The goods and services provided by the recreation function differ from those 

provided by marketed goods.  Marketed goods have marginal values that are known by 

individuals whereas non-market goods and services such as air quality and water quality 

have values that are often not known by its users. While many recreation sites such as 

lakes, beaches, rivers and public parks may charge an entrance fee, those fees often do not 

represent the actual value of the public good but rather a cost associated with staffing and 

maintaining the site.  Economists have devised a number of different methods to calculate 

the monetary value of non-market goods and services. These methods can be divided into 
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two main groups; Stated Preference (SP) methods and Revealed Preference (RP) methods. 

In general, SP methods pose direct questions to people regarding the values they hold, 

where changes in environmental quality are built into hypothetical scenarios. Popular SP 

techniques include Contingent Valuation and Choice experiments.  In contrast, RP 

approaches find the analyst observing individuals’ consumption of goods that differ in the 

“amount” of environmental quality that is associated with the goods.  Popular RP 

techniques include Hedonic Price Method, Abatement Cost Analysis and Travel Cost 

Model (TCM).  

In this study we will focus on the Recreation function of ecosystem services, using 

the Travel Cost Model to calculate the value of changes in the recreation services provided 

by lakes in Utah.  We will combine recreation use data collected via mail survey in 2011 

with biophysical measures of water quality collected by the Utah Division of Water 

Quality.  The primary goal is to analyze the relationship between the biophysical measures 

of water quality at Utah lakes, people’s perceptions of water quality at those same lakes, 

and the impact of water quality on trip behavior. Recreation demand models often assume 

that individuals respond in the same manner to changes in both types of measurement (for 

example, water clarity as measured technically by Secchi depth, or as a perceived measure, 

where clarity is estimated by the recreationist) and that the estimated value of changes in 

water quality should be the same regardless of the measurement. Many economic studies 

have been conducted under this assumption even though biophysical measures may not 

easily understood or accurately perceived by general population. 

This study estimates recreation trip demand functions using (1) biophysical measures 

of water clarity and water color and, (2) perceived measures of water clarity and water 



4 

 

color.  We find recreation demand behavior is statistically unrelated to biophysical 

measures but that demand is responsive perceived water quality.  We then establish a 

statistical link between biophysical and perception measures by estimating an ecological 

production function, where the “input” is a biophysical measure and the “output” is 

perceived water quality. Having established this functional linkage, willingness to pay for a 

number of hypothesized changes in water quality are presented using the “linked” model.  

This study adds to the literature by creating a path that associates changes in biophysical 

measures to changes in perceptions, which then affect individuals’ recreation behavior. 
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TRAVEL COST MODEL 

When individuals decide to use any recreational area, there are associated costs and 

benefits. The travel cost model is a method used for calculating consumer surplus (CS) 

values related to environmental services offered by recreation sites. Since it was proposed 

by Harold Hotelling in 1947 to estimate the recreational value of US national parks, travel 

cost models have been widely used in environmental economics. In the travel cost model, 

quantity is measured as the number of trips taken to a site while price is measured by the 

cost to travel to a specific site. This can help us arrive at the idea that individuals would 

travel more often to recreational sites that are closer to their home when compared to sites 

that are further.  This can be explained by the knowledge that travel costs associated with 

closer sites are lower, leading to more trips to such sites. The travel cost model has the 

same characteristics as a demand function, meaning when price (Travel Cost) increases 

then quantity (Trips) decreases, ceteris paribus. Just as with a standard demand function, 

the travel cost demand function is downward sloping. 

In order to calculate travel cost, economists estimate out of pocket costs, which are 

generally driving costs associated with driving to and from the site, and the opportunity 

cost of travel time, which is typically measured using a fraction of the wage rate which can 

be capture by individual’s income (Parsons, 2003). Economists have not agreed on the 

precise fraction to use, but the literature has adopted values ranging from one-third of the 

wage to the full wage (Feather and Shaw, 1999). 

This leads to the simple single-site travel cost model: 

      (   ) ( ) 
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where r is the number of the trips taken by an individual in a given season to a specific site 

and tcr is the trip cost of reaching site. Figure 1 illustrates the travel cost demand, where the 

horizontal axis measures the number of trips taken and the vertical axis measures the travel 

cost.  

 The sum of areas A and B is the total willingness to pay for r
1 

trips. Area B (    

   ) represents total cost of taking r
1
 trips, whereas area A measures consumer surplus, 

which is also known as the individual’s access value for the site. That is, if the site was to 

close for a season, the individual would lose the value captured in Area A (Parsons, 2003). 

While this simple model can provide insight into trip-making behavior, other factors are 

also relevant to individual’s decision in whether or not to visit a recreational site. 

 

Figure 1 Travel cost demand function 
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For example, factors such as site quality, income, and distance to substitute 

recreational sites, may affect trip demand, making trip costs alone a less precise way of 

estimating demand for recreational sites. Adding these new factors to our previous equation 

(1) leads to the following: 

      (               ) ( ) 

where tcr still represents our travel cost to the site, tcs is a vector of trip costs to substitute 

recreation sites, I is income, wqr is water quality at site r, and z is a vector for all other 

demographic variables that could influence the number of trips (Parsons, 2003).  Equation 

(2) can be written as a linear function, 

                                    ( ) 

where the βi’s are coefficients to be estimated using econometric methods, and   is the error 

term. 

A mathematical approach to measure consumer surplus is given by the integral of the 

demand curve over price, 

   ∫  
       

   
(              )    ( ) 

where, again, tc
1 
is the individual’s trip cost and tc

choke
 is the choke price. This gives a value 

equivalent to Area A in figure 1. While in theory we will include the travel cost measures 

related to substitute sites in our study, we only used the travel cost for the site visited by the 

respondent. One of the problems with including the price of the substitute sites in a single 

equation model is that travel costs to many sites tend to be highly correlated. If one decides 

not to include all sites, the question of which sites should be included as a substitute can 

also be very challenging. While bias estimates may be a concern with regards of omitting 

the substitute sites, based on Kling (1989) this issue may not arise. She goes on to state that 
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"if the omitted price is uncorrelated with the included own price, there is no bias to the 

welfare estimate of either a price or quality change." 

As one might expect, changes in site quality can affect the number of trips an 

individual takes. Envision a scenario where an individual visits a recreational site r
1
 times, 

when water quality level equals    
  . If all other parameters and variables are constant, 

what happens when water quality level decreases to    
  ? The change in wqr would shift 

the demand curve to the left, and the individual would take r
2
 trips. This effect is shown in 

figure 2 as a shift from f (tc,    
 ) to f(tc,    

 ), with the corresponding decrease in the 

number of trips from r
1

 to r
2

. 

 

Figure 2 Decreasing water quality 
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Based on the function f (tc,    
 ), our original consumer surplus is the triangular area 

a-b-tc.  We can see that when water quality decreases to (    
 ) the individual will be less 

satisfied with each visit to the site, leading to r
2
 number of trips; this would give the 

individual a consumer surplus captured by the area d-c-tc.  The difference between the 

consumer surplus of these two scenarios will represent the economic loss suffered by the 

individual as a result of water quality reduction, this loss is captured by the area of a-b-c-d 

(Parsons, 2003). 

While water quality is often represented in TCM by biophysical measures, often 

because these data may be relatively accessible. Studies have shown that individuals’ 

decisions are not only affected by the overall concentration of nutrients but also by their 

perceptions. One of the early papers analyzing water quality perceptions was written by 

Bishop, Aukerman, and Connor (1970). In their study, they created a survey where they 

analyzed four groups of recreationists (swimmers, boaters, fishermen and sightseers) in 

order to better understand their preferences, the study used psychological research as a 

basis for better understanding of preferences. The study showed that clarity, cleanliness and 

color of water can affect the number of trips taking to a site. Looking into how individuals’ 

emotions have a cognitive and behavioral aspect, they were able to recognize that changes 

in water quality does not have the same level of behavioral response through all groups, 

with swimmers and anglers more sensitive to perceived water quality problems (e.g., 

clarity, odor, litter, fish kills, etc.) than boaters or sightseers. The study also shows that 

individuals will notice poor water quality more often than good water quality, meaning that 

improvements in lakes with lower water quality would have been more easily perceived by 

visitors when compared to improvements in lakes with higher water quality. Dinius (1981) 
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used a visual perception test comprised of slides where different levels of litter and dyes 

were artificially added to water to gauge individual’s attitudes towards water bodies with 

different overall qualities. The litter changed the appearance of the water surface while the 

dye changed the color. In short, all individuals were presented with five photos, one for 

each site, where the only change in the water was aesthetic (i.e. litter, discoloration). Using 

this approach, Dinus  found that participants related an increase in litter to a decrease in the 

actual water quality. 

While perception measures are most often qualitative or ordinal variables (e.g., very 

good, good, bad, very bad); biophysical measures are continuous variables (e.g., nutrient 

concentration, oxygenation). Without a clear connection between the qualitative variables 

and the continuous variables, models using such measures could lead to different results. 

Understanding the connection between the inputs (biophysical) and outputs (perceptions) of 

an ecosystem function is important for accurate valuation. 
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ECOLOGICAL PRODUCTION FUNCTION 

In the past decade, the number of ecosystem services studies has been rising 

exponentially (Fisher et al., 2009, p. 643). Services provided by ecosystems are extensive, 

including biodiversity, resource quality (e.g., drinking water quality), land cover types, 

resource quantities (e.g., surface water and groundwater availability) and species 

populations that generate use value (e.g., harvested species and pollinator species) (EPA, 

2009). Governmental entities, such as the Environmental Protection Agency have increased 

their focus on improving tools to value ecosystem services. One such tool is the Ecological 

Production Function (EPA, p. 30). 

An ecological production function (EPF) is similar to the production function, in that 

the EPF is used to define the relationship between inputs and outputs. In neoclassical theory 

of the firm a single input production function can be denoted by,  

    (  ) ( ) 

where the function measures the amount of output y that can be produced with x1 units of 

input 1. The same concept can be extended to n inputs, leading to the function: 

    (         ) ( ) 

In this case the function would measure the maximum amount of output y that can be 

produced with x1 units of input 1, x2 units of input 2, etc. The same practice can be extended 

to ecological production functions, where the biophysical inputs of an ecological system 

would provide individuals with services (output). While an ecological production function 

does not have a specific functional form, one can better understand the ecological 

production function through a neoclassical production function (figure 3). For example, 

presence of phosphorous, nitrogen, and some Chlorophyll in a waterbody can be helpful in 
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providing a good overall aquatic health. One can connect the presence of such elements to 

stage one and two of the production function, where the presence of those inputs (x = 

nitrogen, phosphorous or chlorophyll) would provide benefits for the aquatic system 

(output y). As the levels of such elements increase the benefits associate with each unit 

increase start to diminish. At a certain point a high concentration of these elements 

(eutrophication) can modify the ecosystem (e.g. fish type) and/or modify other attributes 

that people perceive (e.g. water clarity, water color). An undesired level of eutrophication 

can be seen as stage III in a neoclassical production function. One common effect of 

eutrophication is algal blooms; Chislock et al. (2013) stated that after the death of algal 

blooms, the microbial decomposition creates anoxic zones ‘dead zones,’ which are areas 

lacking oxygen to support organisms. According to Carpenter (2005) some of the 

consequences of eutrophication are excessive plant production, blooms of harmful algae 

and fish kills; this generates economic losses related to wildlife production, increases the 

cost of water purification for human use and results in the loss of recreational amenities. 

The reduction in the number of fish and overall wildlife will eventually lead to a lower 

number of individuals visiting the lakes. While traditional production function and an EPF 

are similar, the inputs to an EPF are not fully controlled by humans. An EPF captures the 

relationship between the biophysical inputs of an ecological system and the services that 

the system provides (EPA 2009; Boyd and Krupnick, 2013). Another important aspect is 

that the well-defined relationship between inputs and outputs in a production function is 

often complex and uncertain in an ecological production function. Many researchers have 

added to the ecological production function literature over the years, Kremen et al. (2007) 

were able to create a model that linked changes in ecosystem conditions to the level of 
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pollination of agricultural crops and their yields; they were able to analyze the effect of 

land use on habitat and foraging behavior pollinators.  

 

Figure 3 Neoclassical production function 

 

Nelson et al. (2009) used a spatially explicit modeling tool to estimate economic 

values of ecosystem services, biodiversity conservation and commodities in the Willamette 

Basin of Oregon. The study used Integrated Valuation of Ecosystem Services and 

Tradeoffs (InVEST) to estimate ecosystem values for three scenarios (Conservation, Plan 

Trend and Development). The Plan Trend scenario was based on implementation of current 

policies and recent trends; the Development scenario was based on a loosening of current 

policies; and the Conservation scenario focused on ecosystem protection and restoration. 

One of the software’s main features is the analysis of how human activities can affect 

production and value of ecosystem services. The software uses process models to evaluate 

scenarios and capture the changes in ecosystem services based on an ecological production 
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function approach. Changes in land characteristics over the different scenarios were 

“mapped” to changes in water service, soil conservation, carbon sequestration, biodiversity 

conservation and commodity production value. The study takes into account the tradeoffs 

between the services provided by the ecosystem and compares each scenario overall gains. 

The researchers concluded that the Conservation scenario produced the largest gains. The 

value that individuals place on biophysical production of such ecosystem services is a 

crucial input in such analysis: the authors assumed that all carbon sequestration provided 

value to all individuals in the world. The authors state: “…clear links need to be made 

between the biophysical provision [of ecosystem services] and their ultimate use by 

people.”  

Since ecological production functions do not have a defined functional form, it can be 

challenging to illustrate the relationship between the ecological systems and the ecosystem 

services being analyzed. Providing a functional form to any economic model can be a 

puzzling task to a researcher. As Griffin, Montgomery, and Rister (1987) have stated, “The 

researcher … is never in a position to know the true functional form…” noting that, “… the 

practicing economist makes many decisions in the course of constructing an appropriate 

model.” 

An EPF is also useful in understanding how the regulator actions can affect 

ecosystem services important to the public (EPA 2009). As the EPA stated, “The ecological 

production function is a critical tool [in]… estimating how the ecological response will 

affect the provision of ecosystem services” ( EPA 2009). Boyd and Krupnick (2013) stated 

that an “…ecological-production base approach to commodity definition has important 

implications for the quality and interpretation of stated and revealed willingness to pay 
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(WTP) estimates.” An Ecological Production Function can be used to link the biophysical 

measures of water quality to one or more ecosystem service end points that can be 

perceived by the general population. After quantifying the relationship between a 

biophysical measure and an endpoint, one can include the ecosystem service end point as 

an independent variable in a valuation model and then analyze the value of those changes 

(Griffiths et al. 2009).  

 

 

 

 

 

 

 

 

 

Figure 4 can be helpful in illustrating the models used in this thesis. Arrows one and two 

(larger arrows) show the conventional models, where the researcher makes a direct 

connection from changes in biophysical (arrow 1) or perception measures (arrow 2) to the 

behavioral response. Arrows three and four illustrate the ecological production function 

approach used in this thesis. In this model, the biophysical measures (e.g. Secchi depth 

concentration) affect perceptions (arrow 3), and changes in perception would lead to 

behavioral response (arrow 4), such as the number of trips taken.  

 

1 2 

3 Biophysical/Chemic

al Measures 

Perception of Water 

Quality 

Behavioral Response 

4 

Figure 4 Ecological production function approach 
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METHODS 

Ordinary Least Squares 

The ordinary least squares (OLS) regression model is one of the most widely used 

models in economic analysis because of its simplicity and applicability. A general model 

can be illustrated in matrix form 

      ( ) 

where vector Y ( n x 1) is the dependent variable, X (n x k) is representing the explanatory 

variables, β (k x 1) is a vector of parameter to be estimated and   (n x 1) is a vector of error 

term. The parameters are calculated as: 

  (   )     ( ) 

 As an illustration of our application, the model can be rewritten as: 

                                 ( ) 

where   is the error term; βs are the estimated parameters of the model, and they describe 

the directions and strengths of the relationship between r (number of trips) and the factors 

used to determine r in the model (Woolridge, 2012).  

The classical assumptions about OLS are: 

 The regression is linear in parameters, with an additive error term 

 The error term is normally distributed with zero mean and constant variance 

 The error term is not correlated with the independent variables 

 No perfect multicollinearity between independent variables 
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The recreational data used in this paper is based on nonnegative integer values. Count 

data models are well suited for this type of data. While in principle we could analyze these 

data using OLS regression, the use of a distribution that accounts for integer values can 

improve on OLS model (Greene, 2011).  

Poisson 

The Poisson model is not based on the assumption that the dependent variable is 

continuous. While OLS has a normal distribution (figure 5), the Poisson is a non-symmetric 

distribution defined over non-negative integer values (figure 6), and is well suited for 

modeling counts of observations. Poisson regression is more appealing than OLS for travel 

cost demand analysis because people can only take a non-negative integer number of trips 

to the recreational sites. When the number of trips taken by the individual any given season 

is assumed to be generated by a Poisson process, the probability of observing the number of 

trips an individual i makes during a season is given by: 

  (  )  
 (   )  

  

   
            (  ) 

where λ is the expected number of trips, and r is the observed number of trips. 

Similar to equations (3) and (9), λ is assumed to be a function of the variables specified in 

the demand model. Greene (2011) notes the most common formulation for    is the loglinear 

model: 

       
  (  ) 
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Figure 5 Normal distribution 

 

 

Figure 6 Example of a non-symmetric integer distribution 
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Similar to equation (9) we can parameterize equation (11) as follow: 

   (  )                             (  ) 

Substituting equation (12) into equation (10) yields the probability of observing an 

individual taking r trips as a function of travel cost to the site, travel cost to other sites, 

income, water quality and individual characteristics (Parsons, 2003). The model is 

estimated using the method of maximum likelihood. Cameron and Trivedi (1998) stated 

that the interpretation of coefficients in Poisson model is different from the OLS model 

because of its exponentiation; the equation below demonstrates this phenomena: 

 

  [  |  ]

     
    (              )    (  ) 

They go on to state that while a one unit change in the water quality (wqr) regressor leads to 

a change in conditional mean by the amount     in a linear model, a one unit change in the 

wqr regressor in a Poisson model would lead to a change in the conditional mean by an 

amount of  [  |  ]    . The Poisson coefficients can be interpreted as “…for a one unit 

change in the independent variable, the log of dependent variable is expected to change by 

the value of the regression coefficient” (Piza, 2012). 

Negative binomial 

A key restriction of the simple Poisson model is that the mean ( ) equals its 

variance (Greene, 2011). If this assumption does not hold, and the variance is greater than 

the mean, the model is characterized as “overdispersed”. One of the most common models 

to use when data are overdispersed is the Negative Binomial model. Just as in the Poisson 
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model, the mean of the negative binomial distribution is λ but the variance is λ+(λ
2
/α), 

where α is the dispersion parameter (Hubbard, n.d.). The probability of observing the 

number of trips an individual makes during a season is given by: 

  (  )  (
 

    
)
  (    )

 (    ) ( )
(

  
    

)
  

(  ) 

where Γ is the gamma function and, as previously stated, α is the dispersion parameter. 

Hubbard (n.d.) goes on to state that the negative binomial model is a more general model 

than the Poisson, as the dispersion parameter (α) gets large while λ is fixed, the negative 

binomial would converge to a Poisson distribution. We can use the property of the gamma 

distribution where  ( )  (   )  and make a substitution to rewrite equation (14) as: 

  (  )  
 (    )

 ( )   
( ) (   )   

  
  

   
 

 (    )

 ( )(    )  
 

 

(  
  
 )

 (  )
 

where  

  
 

    
(  ) 

Reinstating the fact that we are taking the limit as α→∞ holding λ fixed, we arrive at the 

Poisson model (equation 10). 

Truncated negative binomial model 

We have one final econometric concern: Our data does not include individuals that 

take zero trips; this model will be truncated at zero. Based on this we will use the truncated 

negative binomial model in our analysis of biophysical and perception measures. The 

negative binomial model allows a positive probability of observing an outcome of zero. In 
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this study we are only concerned with individuals that made trips to the lakes (i.e. integer 

values equal to or greater than one). To obtain the probability distribution for the truncated 

negative binomial model, one would need to divide equation (14) by one minus the 

probability of zero trips, where the probability of zero trips in the negative binomial model 

will be stated as     ( ); by doing this we would rescale the old distribution. As stated in 

Grogger and Carson (1991), “The common statistical structure of truncated estimators 

follows from the fundamental probability relationship.” This relationship is captured in the 

conditional probability formula. Using that formula, it is possible to calculate the 

distribution of the truncated probability function by inputting the probability of observing 

some number of trips in the numerator and the probability of being at or above the 

truncation limit in the denominator (i.e. one minus the probability of zero trips). Grogger 

and Carson (1991) illustrated this distribution as: 

  (    |   )  
 (    )

 (    ) ( )
(
 

 
  )

  

[  
 

 
  ]

 (    )

[     ( )]
  (  ) 
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DATA 

This study dataset came from the Utah’s Lakes & Rivers Recreation Survey 2011, 

organized by the Utah Division of Water Quality. The initial dataset had 1,411 observations. 

Since this study is concerned with only individuals who participated in water recreation 

activities in Utah lakes, respondents who stated that they had not visited Utah lakes in the 

last 12 months were deleted from the dataset (425 observations deleted). Our perceptions 

data focused on the lake visited most frequently, so respondents who failed to indicate the 

lake visited most often were also deleted from the dataset (68 observations deleted). Further, 

individuals with a primary or secondary residence on a lake can affect our calculations 

because they violate a basic assumption of the travel cost model, which is that trips should 

not be multipurpose; these observations were also deleted from the dataset (65 observations 

deleted). The initial dataset was then merged with datasets of travel distance from each zip 

code to each lake and a set of lake characteristics. Key water quality variables were the 

Trophic State Index (TSI) for Chlorophyll, Phosphorous and Secchi depth; and the 

differences between the TSI measure of Chlorophyll and Phosphorous, and the difference 

between Chlorophyll and Secchi depth1. Throughout this paper we will refer to the Trophic 

State Index for Secchi depth as TSI (SD) and the Trophic State Index for Chlorophyll as 

TSI(Chla). Six lakes visited by respondents did not have water quality measures, so those 

observations were also deleted from the dataset (117 observations deleted). We then deleted 

individuals with incomplete information for the questionnaire questions regarding water 

clarity and water color perceptions.  

                                                 
1
 Other characteristics included: elevation (m), surface area (Ha), number of boat ramps, 

number of campgrounds, fish stock and indicator variables for Blue Ribbon Fishery and 

State Parks. 
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We also deleted individuals for whom travel costs could not be estimated because of 

lack of information (e.g. Income), individuals who were identified to be outliers in our letter 

value analysis and those individuals that traveled more than 150 miles (one way). This last 

group was dropped to avoid mixing multipurpose trips and single purpose trips, as well as 

day trips and overnight trips. The final dataset contain 522 observations. While calculating 

the travel cost values, the cost of $0.2231 per mile of driving was acquired from AAA 

(2010). A relatively conservative estimate of 50 miles per hour was used in the calculation of 

the opportunity cost of time equation. The following table shows the general summary 

statistics for the dataset of this study. 

Table 1  Summary statistics 

Variable Mean Std. Dev. Min Max 

Travel cost (U.S. Dollars) 46.0 41.1 2.0 236.6 

Number of trips (Per Season) 7.9 9.5 1 80 

Income (U.S. Dollars) 80028.7 46104.0 25000 200000 

Distance from lake (Miles) 46.5 35.9 2.9 148.7 

N 

   

522 

     

     

Trophic state index 

Carlson’s (1977) trophic state index is used as the biophysical measure of water 

clarity and water color. This index uses three different variables that can independently 

compute algal biomass: Total phosphorous, Secchi depth, and Chlorophyll. In this thesis 

we only focus on Secchi depth and Chlorophyll measures.  

The TSI for Secchi depth can be calculated as follows: 

   (  )     [  
              

    
] (  ) 
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where a Secchi depth of 1 meter would yield a TSI value of 60. TSI values based on 

Chlorophyll micrograms per liter (ug/L) concentration is calculated according to: 

   (    )     [  
                       

    
]  (  ) 

Here, a concentration of 1 ug/L would yield an index value of 30.6. We may simplify the 

equations as follows:  

   (  )              (  )    (  ) 

   (   )              (    ) (  ) 

The index ranges from 0 to 100, where an increase in TSI of 10 units would be equivalent 

to reducing Secchi depth by half. With respect to Chlorophyll, its concentration would 

double with every 7 unit increase in chlorophyll.  

Table 2 Summary statistics trophic state index (by Lakes) 

Variable Mean Std. Dev. Min Max 

Average TSI(SD) 48.9 10.18 32.1 79.8 

Average TSI(Chla) 37.6 11.0 19.8 68.0 

N 

   

76 

 

The dataset used contained two different measures for each average and maximum TSI. 

The average TSI measure was created using multiple measurements throughout the year 

and across many years. For any given lake the average was computed, this average TSI 

value will be presented in this thesis as TSI (SD) and TSI (Chla). We do not use the 

maximum value found for any lake. This represents extreme value that in many cases, 

occurred years before 2011. Please refer to Appendix 1 for the full table where the 
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summary statistics for TSI (SD) and TSI (Chla) are presented for each lake in the dataset. 

In using an average over time, we recognize that our TSI contains measurement error thus 

biasing our TSI variable coefficient toward zero. It is important to note that there while 

such measurement error exist, there is no variation between TSI (SD) measures within the 

same lake, the bias from measurement error would make our hypothesis testing results 

more “conservative.” 

The table below based on Carlson and Simpson (1996) shows what attributes are 

expected in a north temperate lake based on different levels of TSI values. The table does 

not take into account characteristics that tend to vary based on latitude or elevation of the 

lake. 

Relationship between survey and lake trophic status 

The survey questions from Utah’s Lakes and Rivers Recreation Survey 2011 were 

created based on lakes’ trophic status. Question 10 captured perceived water depth, and 

was directly linked to the trophic status of the lake.

 

Figure 7 Question 10 extracted from Utah's Lakes & Rivers Recreation Survey 2011 
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Table 3 Potential changes in north temperate lake based on algal biomass change along the trophic state gradient. 

TSI Chla (ug/L) SD (m) TP (ug/L) Trophic Status Attributes Fisheries & Recreation 

<30 <0.95 >8 <6 

Oligotrophy 

Clear water, oxygenated 

hypolimnion. 

Salmonid fisheries dominate 

30-40 0.95—2.6 4—8 6—12 
Hypolimnion in shallower lakes 

may become anoxic in summer. 

Salmonid fisheries in deep lakes only 

40-50 2.6—7.3 2—4 12—24 

 

Mesotrophy 

Water moderately clear, but 

increasing probability of 

hypolimnetic anoxia in summer. 

Hypolimnetic anoxia results in loss of 

salmonids. 

50-60 7.3—20 1—2 24—48 

 

 

Eutrophy 

Decreased transparency, Anoxic 

hypolimnia during the summer, 

macrophyte problems may be 

evident. 

Warm-water fisheries only.  Bass may 

dominate. 

60-70 20—56 0.5—1 48—96 

Blue-green algae dominate during 

the summer, algal scums probable 

and macrophyte problems 

Nuisance macrophytes, algal scums, 

and low transparency may discourage 

swimming and boating. 

70-80 56—155 0.25—0.5 96—192 
 

Hypereutrophy 

 

Dense algae and macrophytes 

during summer 

 

>80 >155 <0.25 192—384 
Algal scums, few macrophytes Rough fish dominate; summer fish 

kills possible 

Based on Carlson and Simpson, 1996
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If we convert feet to meters and use equation 18, each choice would correspond to a 

range of TSI (SD) values. For example, the first choice (12 or more feet) would correspond 

to a value less than 41.3 in the TSI (SD) scale. The second choice (six to 12 feet) would 

range from 41.3 to 51.3. The third choice (one to six feet) would range from 51.3 to 77.1, 

whereas the fourth choice would imply a TSI (SD) value greater than 77.1. Comparing 

those values to the ranges given in table 3, we can see that each group is closely connected 

to a specific Trophic Status (oligotrophic, mesotrophic, eutrophic and hypereutrophic). 

Based on that, we can recognize that the first choice on question 10 was representing an 

oligotrophic status, the second choice a mesotrophic status, the third choice represented a 

eutrophic status and the fourth choice represented hypereutrophic status. In question 10 

(figure 7), the first option was coded as 1, second as 2 and so on; participants that chose the 

option “Don’t Know” were coded as missing value. Table 4 shows the percentage 

distribution for the option choices. 

Table 4 Ordinal coding and distribution of survey question 10 

Question 10 

Option Choice Frequency Percentage 

1 (More than 12’) 43 8.24% 

2 (6’ — 12’) 116 22.22% 

3 (1’ — 6’) 262 50.19% 

4 (Less than 1’) 101 19.35% 

Total 522 100.0 

 

It is important to note that water clarity has two main components: Materials 

dissolved in the water and materials suspended in the water (algae and silt); out of those 
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components algae population is usually the one that varies the most (Shaw, Mechenich,  

and Klessig, 1993). The presence of color in the water may reduce light penetration, which 

can affect algae growth. Algae decomposition stages may impart a green, brown or even 

reddish color to the water. Although the human activities can affect lake water quality, all 

lakes follow a natural aging process which would lead to a change from oligotrophic to 

eutrophic. Finally, we need to note that, even though changes in color and clarity are 

perceived differently by different individuals, overall trophic status does not change widely 

without external influences.  

In order to better understand the data, trophic classifications were cross-tabulated 

against individuals’ perceptions of clarity. The first three columns of table 5 recreate 

portions of Carlson’s trophic status. Some 138 respondents visited lakes classified as 

oligotrophic; these lakes had an average TSI(SD) equal to 34.0 (column 4, table 5). The 

average “perceived clarity” as measured by Question 10 was 2.5 (column 5). Almost 13% 

of respondents said clarity was greater than 12 feet; just under 34% said clarity was 

between six and 12 feet. About 47% reported clarity between one and six feet. Finally, 

5.8% of respondents said clarity at oligotrophic lakes was less than one foot. Subsequent 

rows of table 5 link perceptions to biophysical measures of water quality for lakes 

classified by the Department of Water Quality as mesotrophic, eutrophic and 

hypereutrophic. The fact that individuals were interviewed after they have visited the site 

could lead to confirmation bias related to the overall water quality, perhaps leading 

respondents to report better clarity than they actually experienced. Based on table 5, such 

confirmation bias appear to not have a high impact on the overall pattern for the answers in 

question 10. As one can see there is a pattern that illustrates the fact that individuals appear 
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to be relatively consistent with their perception of water clarity. One can see the pattern in 

columns 6 through 9: as clarity in a lake declines (the mean TSI(SD) increases) those 

visiting the lake are less likely to perceive a “clear” lake and more likely to perceive a lake 

that is much less clear. Table 6 reports similar information for those choosing to visit the 

most popular lakes in our sample.  

The Pearson’s chi square test was used to test whether the rows and columns of the 

clarity response (table 5) are independent. The test rejected the null hypothesis that the 

rows and columns are independent, this is important since it can show that individuals’ 

perceptions distribution do change with different trophic classifications. 

While the question related to water color (question 11) in the lake visited during the 

summer did not have a direct link to trophic classifications, color perception may be 

important to understand individuals’ trips to lakes. Figure 8 shows the question:

 

Figure 8 Question 11 extracted from Utah's Lakes & Rivers Recreation Survey 2011 

The ordinal coding scheme for question 11 was similar to that of question 10. Just 

as in the previous question the first option was coded as one, the same process follows for 

the next choices; participants that chose the option “Don’t Know” were coded as missing 

value. Table 7 shows the percentage distribution for question 11. 
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Table 5 Tabulation of trophic classification against clarity 

TSI 
Secchi depth 

(meters) 

Trophic 

Classifications 

Mean 

TSI(SD) 

Mean 

Perc. Clarity 

Responses to Question 10 (Clarity) 

N > 12 ft 6—12 ft 1—6 ft < 1 ft 

0-40 >8-4 Oligotrophy 34.0 2.5 13.0% 33.4% 47.8% 5.8% 138 

40-50 4-2 Mesotrophic 44.0 2.7 10.6% 24.3% 53.0% 12.1% 198 

50-70 2-0.5 Eutrophic 57.4 3.0 3.2% 14.3% 61.9% 20.6% 126 

>70 0.5-<0.25 Hypereutrophic 79.6 3.7 0% 6.7% 21.7% 71.6% 60 

 

Table 6 Tabulation observing 10 lakes most visited 

Lake TSI(SD) 
Mean Perc. 

Clarity 

Responses to Question 10 (Clarity)  

> 12 ft 6—12 ft 1—6 ft < 1 ft N 

Strawberry Reservoir 32.3 2.7 4.3% 31.8% 57.5% 6.4% 47 

Bear Lake 34.1 2.4 17.7% 32.3% 43.5% 6.5% 62 

Flaming Gorge Res. 36.5 2.4 19.2% 34.6% 38.5% 7.7% 16 

East Canyon Reservoir 42.5 2.8 0.0% 33.3% 55.6% 11.1% 18 

Deer Creek Reservoir 42.8 2.6 12.9% 22.5% 51.6% 13.0% 31 

Rockport Reservoir 43.9 3.1 8.3% 8.3% 50.0% 33.4% 12 

Jordanelle Reservoir 44.8 2.9 0.0% 21.0% 68.4% 10.6% 19 

Pineview Reservoir 50.4 3 0.0% 19.5% 61.0% 19.5% 41 

Willard Bay Reservoir 68.8 3.1 2.9% 8.6% 62.9% 25.7% 35 

Utah Lake 79.8 3.6 0.0% 5.6% 24.1% 70.3% 54 
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Table 7 Ordinal coding and distribution of survey question 11 

Question 11 

option choice Frequency Percentage 

1 (No green tint) 98 18.77% 

2 (Slight greenish tint) 296 56.70% 

3 (Dark greenish tint) 128 24.53% 

Total 522 100.00% 

 

Based on the answers gathered from the survey response it appears that most of the 

lakes in the survey (81.23%) were perceived to have a greenish tint. It is important to note 

that the results do not indicate that most lakes have a greenish tint but instead it shows that 

most of the individuals surveyed perceived some level of greenish tint in the waterbody 

visited most often. 

Three dummy variables for primary recreation activities at lakes were created; one 

for individuals who stated that boating was their primary activity, one for individuals who 

fish (warm water fishing and cold water fishing were coded the same) and one for 

individuals who stated that their primary activity was swimming. All other choices were 

combined and used as our base activity choice. A respondent saying that boating was their 

primary activity was coded as a one, and zero if not. The activity variables highlight visitor’s 

whose primary activity involves some contact with the water; our omitted category includes 

lake visitors whose primary activity did not involve contact with the water.  

Summary statistics based on individuals’ primary activity are reported in table 8.
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Figure 9 Question 7 extracted from Utah's Lakes & Rivers Recreation Survey 2011 

 

Table 8 Summary statistics based on primary activity 

Variable 
Swimmer Boater Angler Near Shore Activity 

Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev. N 

TSI(SD) 51.43 16.89 54 54.82 15.85 130 45.53 12.20 189 46.36 13.56 149 

TSI(Chla) 36.19 12.88 54 40.99 11.70 130 38.72 9.94 189 36.02 12.01 149 

Water Clarity (Q10) 2.91 0.83 54 2.95 0.82 130 2.75 0.83 189 2.72 0.87 149 

Water Color  (Q11) 2.02 0.63 54 2.04 0.63 130 2.10 0.66 189 2.02 0.68 149 

Number of Trips 

(Per Season) 7.29 8.89 54 9.20 11.65 130 8.21 8.82 189 6.54 8.07 149 
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RESULTS 

The travel cost demand literature has generally taken two different paths when 

including water quality measures in the demand function. One includes biophysical 

measures of water quality in the demand function assuming that these measures can be 

perceived, or are highly correlated with outcomes that can be directly observed. The second 

approach eschews biophysical measures and uses direct measures of water quality 

perceptions. We will estimate both types of models, and then link individuals’ perceptions 

to biophysical measures. The perception measures chosen were water clarity and water 

color. Our biophysical measures are two measures of the Trophic State Index (TSI). While 

this index theoretically has no upper bound, in practice it can range from 0 to 100; where 

higher values correspond to higher biomass concentration in a waterbody (Carlson, 1977). 

Our two TSI measures as previously stated, are calculated from Secchi depth and the 

concentration of Chlorophyll in water. 

Prior to running any regressions we examined our survey responses to understand the 

relationship between water quality and perceptions. Responses to the water color question 

(Q11) lead one to believe that very green lakes are preferred. The academic literature finds 

that individuals enjoy lakes that look more “natural” (Smith, Croker, and Farlane, 1995). 

The authors state that even though blue water is preferred to yellow water, the latter may be 

acceptable if it is perceived as “natural.” This is very important in understanding 

individuals’ preference for certain water color. In our dataset we only take into account the 

intensity of greenish tint, with no other measure of individuals’ water color preference. 

Taking that limitation into consideration our WTP estimates focus only on changes in water 
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clarity. We do not fully understand visitor’s water color preferences, so we have no 

hypothesis concerning the sign of the water color variable in the demand model.  

Modeling Results 

Preliminary Poisson modeling indicated that the mean number of trips was not 

equal to the variance of trips. Using the likelihood-ratio test that alpha (from equation 14) 

equal to 0, one concludes that alpha is significantly different from zero. This indicates that 

the simple Poisson should not be used; instead, we adopt the negative binomial regression. 

Further, the minimum number of trips is one so the appropriate model is the truncated 

negative binomial.  

Table 9 (column 2) provides the estimated parameters for the biophysical model, 

which attempts to capture how individuals’ number of trips can be affected by changes in 

biophysical measures of water clarity. The perception model (table 9, column 3) shows 

how the number of trips are affected by perception measures of water quality. With the 

exception of Ln (surface area) which is highly significant in the perception model, all other 

variables included in both models had the same level of significance and sign. As expected, 

the Travel Cost variable had a negative sign. The data shows that swimmers are not 

significantly different from individuals whose primary activities did not include contact 

with the waterbody and that, all else equal both anglers and boaters visit lakes more 

frequently than swimmers or those who do not contact the water. The ln (alpha) shows that 

the use of a negative binomial model is appropriate.  

In the biophysical model the TSI (Chla) variable had a positive sign, which shows a 

correlation between higher numbers of trips to lakes with darker greenish tint water body. 

The TSI (SD) has a negative sign, meaning that individuals respond negatively to increases 
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in TSI (SD). However, both TSI measures are not significant within a 10% confidence 

level. When comparing the biophysical measures to the perception measures, even though 

the biophysical variables were not significant within 10% confidence (table 9, column 2), 

both measures (biophysical and perception) follow the same direction. The Water Clarity 

variable, which takes into account the answers from Question 10, has a negative sign. That 

is, individuals appear to enjoy lakes with higher perceived clarity levels. The Water Color 

variable had a positive sign, which shows a correlation between higher numbers of trips as 

lakes have a darker greenish tint.  

Table 9 Truncated negative binomial results (biophysical & perceptions model) 

dependent variable: number of trips 

Variables Biophysical Model Perceptions Model 

Travel Cost -0.005 -0.005 

 (-3.88)*** (-4.31)*** 

TSI(SD) -0.006 - 

 (-1.06) - 

TSI(Chla) 0.009 - 

 (1.25) - 

Water Clarity - 

- 

-0.187 

(-2.83)*** 

Water Color (Green) 

 

- 

- 

0.253 

(2.93)*** 

Swimmer 0.146 0.159 

 (0.75) (0.83) 

Boater 0.377 0.370 

 (2.59)*** (2.57)*** 

Angler 0.258 0.235 

 (1.90)* (1.78)* 

Ln(surface area) 0.041 0.054 

 (1.77)* (2.47)** 

Intercept 1.524 1.497 

 (5.60)*** (5.37)*** 

Ln (alpha) 0.301 0.251 

 (2.34)** (1.99)** 

N 522 522 

          * p<0.1; ** p<0.05; *** p<0.01, z-value in parentheses 
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Our water quality variables (clarity and color) share the same signs across the two 

models, yet the biophysical measures are statistically insignificant. This indicates that 

either (1) biophysical measures of water quality are imperfectly perceived by people or, (2) 

behavioral responses are governed only by perceptions, or both. This creates an issue for 

those who manage water quality in that the biophysical metrics used to assess water quality 

do not match up with peoples’ perceptions of water quality. If, however, a functional 

relationship between perception and biophysical measures of water quality can be 

established then one may use this relationship to link biophysical measures to behavioral 

response and, thus, measures of consumer surplus. 

Linking biophysical measures to perceptions 

Given the way in which perceptions were measured, we may use the ordered probit 

model to link perceptions to biophysical measures. The ordered probit model is based on 

the idea that there is a qualitative order in the responses being analyzed in the survey. As 

Greene (2011) shows, the model is built around a latent continuous variable, y* which can 

be calculated from the following linear combination: 

  
    

     (  ) 

yi  is an observed ordinal variable with an indicator outcome of one, two, three, etc, if,  

                
    (  ) 

where j=1,…,m and ϱ’s are unknown parameters to be estimated. We apply this general 

model to water quality perceptions, where the responses to the water clarity question (Q10) 

from question 10 (Clarity) is the observable ordinal dependent variable. We note that y* 

can be interpreted as an individual’s own scale of water clarity, which is unobservable. This 
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individual scale depends on measurable factors x (i.e., the biophysical measures) and other 

unobservable factors〖 ε〗_. If y* crosses a certain unknown threshold, the individual will 

report first choice, then second choice and so on. Since there are a limited number of 

choices, the person chooses the option that is closer to his/her own scale. 

We can calculate the probability that individual i will select choice j based on the 

equation below: 

     (    )   (       
    )   (     

  )   (       
  ) (  ) 

where  ’s are unknown parameters to be estimated with β, and F is the standard normal 

cumulative distribution function. Below we have an example of the probabilities for a 

question with four categories: 

 (       )   (     
  ) (    ) 

 (    |  )   (     
  )   (       

  ) (    ) 

 (    |  )   (     
  )   (       

  ) (    ) 

 (       )     (       
  ) (    ) 

 

The ordered probit output for Water Clarity as a function of TSI(SD) and Water 

Color as a function of TSI(Chla) are given in table 10.  
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Table 10 Linking biophysical metrics of water quality to perceptions 

Perception Measure Clarity Color (Green) 

TSI(SD) 0.038 - 

 (10.26)*** - 

TSI (Chla) - 0.013 

 - (3.02)*** 

   0.286 -0.396 

 (1.58) (-2.28)** 

   1.229 1.197 

 (6.92)*** (6.67)*** 

   2.809 - 

 (13.85)*** - 

Chi-square(1) 111.99 

 

9.14 

P for equation  0.000 0.003 

N 522 522 

*p<0.1; ** p<0.05; *** p<0.01 , z-value in parentheses 

 

In both ordered probit models the signs for the biophysical measures were positive 

and significant. As TSI (SD) increases, the probability of a person choosing higher ranked 

choices (less clarity) also increases. That is, increases in TSI (SD) lead to lower perceived 

water clarity. Similarly, an increase in TSI (Chla) leads to a higher perceived greenish tint 

in the water. Taken together, our ordered probit models do a good job, statistically, linking 

perceptions to biophysical models.  

Using ordered probit results to estimate willingness to pay 

Using the results from table 10 we will calculate a probability weighted perceptions 

measure that is functionally linked to the biophysical measures. The theoretical format for 

calculating the weighted probability models is the same for the Water Clarity and Water 

Color functions.  
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Where the weighted perception can be expressed as: 

                    ∑ ( )

 

   

  (  ) 

where j is the option chosen in the questionnaire (i.e. one, two, etc.). The table below (table 

11) can be helpful in visually understanding how the weighted probability perception is 

calculated. 

Table 11 Example of Probabilities for Bear Lake and Utah Lake 

  Bear Lake 

Utah 

Lake 

TSI(SD) 34.1 79.8 

P(1) 15.94% 0.33% 

P(2) 31.93% 3.48% 

P(3) 45.78% 38.52% 

P(4) 6.35% 57.67% 

Probability Weighted Clarity 

Perception 2.43 3.54 

Mean Survey Response 2.39 3.65 

 

One can see in table 11 that the mean response and the weighted perception values 

are very close to each other. Similar results were found for other lakes, so our model appear 

to be consistent with individuals’ perception of water quality. We will use the perceptions 

model (table 9, column 3) to calculate the number of trips as a function of travel cost, 

respondent characteristics, with the probability weighted perception value for the lake 

replacing the raw perception measure. This version of the model allows one to account for 

the relationship between perception and biophysical measures. We will then estimate WTP 

based on how changes in biophysical measures can influence the probability weighted 

perception. Using the standard bootstrapping technique of repeated sampling with 
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replacement we may then examine any statistical differences between WTP calculated 

using the weighted perception measure and WTP based on the observed perception.  

Estimating mean willingness to pay 

In this section we will show the results from five different methods of calculating the 

mean willingness to pay (WTP) for an improvement in water quality for the ten most visited 

lakes in the dataset. The first two estimates will be based on the models estimated from the 

truncated negative binomial model (table 9). The next three estimates will be based on the 

link between biophysical and perception measures. Based on Haab and McConnell (2002), 

the seasonal welfare measure for the truncated negative binomial model is given by: 

    
      

             
(  )  

where the number of trips (Trip 1) can be estimated from table 9, and the denominator is the 

coefficient of Travel Cost (table 9). To measure the change in welfare associated with a 

change in water quality, one calculates: 

    
             

             
(  ) 

where just as in the previous equation, where Trip 1 is the baseline number of trips, Trip 2 is 

the number of trips after water quality improvement, and the denominator is the coefficient 

of Travel Cost (table 9). 

Using the coefficients from the truncated negative binomial model based on the 

biophysical measures (table 9, column 2) we can estimate the number of trips at baseline 

conditions (Trip 1) where the TSI (SD) values are stated as Baseline TSI (SD) on table 12.  A 

second estimate of the number of trips (Trip 2) under a 25% improvement in water quality is 
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then calculated, the mean TSI (SD) for such improvement is stated on table 12 as Improved 

TSI (SD). After, the willingness to pay associated with the change in water quality for each 

individual is calculated, we then compute the mean WTP per lake. 

Table 12 Mean willingness to pay for 25% improvement in water clarity, biophysical model 

Lake Visitors 
Baseline 

TSI(SD) 

Improved 

TSI(SD) 

MWTP after reducing 

TSI(SD) by 25% 

Strawberry Reservoir 47 32.3 24.23 $60.91  

    (-$102.67 — $224.50) 

Bear Lake 62 34.1 25.58 $51.11  

    (-$81.92 — $184.14) 

Flaming Gorge Reservoir 16 36.5 27.38 $50.62  

    (-$92.46 — $193.70) 

East Canyon Reservoir 18 42.5 31.88 $73.83  

    (-$128.12 — $275.77) 

Deer Creek Reservoir 31 42.8 32.1 $91.97  

    (-$148.36 — $332.30) 

Rockport Reservoir 12 43.9 32.93 $90.07  

    (-$161.07 — $341.21) 

Jordanelle Reservoir 19 44.8 33.6 $94.65  

    (-$168.08 — $357.38) 

Pineview Reservoir 41 50.4 37.8 $101.83  

    (-$150.02 — $353.67) 

Willard Bay Reservoir 35 68.8 51.6 $142.32  

    (-$189.59 — $474.23) 

Utah Lake 54 79.8 59.85 $193.45  

    (-$287.46 — $674.35) 

 95% confidence bounds stated in parentheses 

 

The 95% confidence interval for WTP is based on 1000 bootstrapped samples from the data. 

Given the statistical insignificance of the biophysical metrics in the baseline model, the fact 

that the 95% confidence interval overlap zero is not surprising.  

When calculating the WTP for perceptions, the same strategy used in table 12 was 

again used in table 13. This time we used the coefficients from table 9, column 3, where we 

estimated the number of trips at baseline conditions (Trip 1), but instead of using the TSI 
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(SD) values we use the stated perception of water clarity. A second estimate of the number of 

trips (Trip 2) under perceived improved water quality is then calculated. In order to calculate 

Trip 2, we shifted perception values of clarity by one unit (i.e. if perception of clarity equal 

to 4 change to 3, from 3 to 2, from 2 to 1; and if perception of clarity is equal to 1, no 

changes were made). The mean value for improved clarity is stated in table 13 as Improved 

Clarity. Just as in the previous table the change in welfare associated with a change in water 

quality is calculated, its value is stated in the fifth column. Table 12 and 13 show that 

MWTP measures differ for water clarity improvements. The WTP point estimates are 

roughly 3-4 times larger for the perceptions model than the biophysical model.  

It is important to note that a 25% reduction in TSI (SD) is not the same as shifting 

perception of Water Clarity by 1 unit, because without a linking model we cannot correlate 

how TSI (SD) relates to a shifting in perceived water clarity. Based on a reasonable thought 

process, it is possible to consider that in a four value increments a shifting by one unit would 

be close to a change of 25% when compared to a scale that ranges from 0 to 100. Our highest 

observed TSI (SD) value is 79.8, meaning that an improvement of 25% would change its 

trophic classification. If the highest TSI (SD) was above 80, then an improvement of 25% 

would not lead to a change in trophic classification. Based on the lack of certainty of how 

changes in TSI (SD) shifts 1 unit of clarity, this study uses three different approaches in the 

linked models. Looking back at tables 12 and 13, it is difficult to choose which one is the 

better estimate of WTP.  
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Table 13 Mean willingness to pay for one unit improvement in water clarity, perceptions 

model 

Lake Visitors 
Baseline 

Clarity 

Improved  

Clarity 

MWTP after shifting 

perception of Clarity by 

1 unit 

Bear Lake 62 2.39 1.56 $170.34  

    (-$81.57 — $422.25) 

Flaming Gorge Reservoir 16 2.44 1.63 $148.71  

    (-$97.91 — $395.32) 

Deer Creek Reservoir 31 2.64 1.77 $230.13  

    (-$66.93 — $527.19) 

Strawberry Reservoir 47 2.65 1.7 $252.19  

    (-$130.76 — $635.14) 

East Canyon Reservoir 18 2.78 1.78 $231.75  

    (-$78.38 — $541.93) 

Jordanelle Reservoir 19 2.89 1.89 $286.14  

    (-$98.46 — $670.74) 

Pineview Reservoir 41 3.00 2.00 $252.80  

    (-$66.10 — $571.70) 

Rockport Reservoir 12 3.08 2.17 $228.48  

    (-$57.23 — $514.19) 

Willard Bay Reservoir 35 3.11 2.14 $283.03  

    (-$75.66 — $641.72) 

Utah Lake 54 3.65 2.65 $292.54  

    (-$57.61 — $642.69) 

95% confidence bounds stated in parentheses 
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LINKED BIOPHYSICAL TO PERCEPTIONS MODEL 

In calculating WTP, we now used the weighted perception probability values created 

from the ordered probit models (table 10) as a substitute for the “raw” Water Clarity and 

Water Color perception values in the truncated negative binomial model of perceptions (table 

9, column 3). Equation 26 shows how the weighted perception is calculated, where the P (j) 

change as TSI (SD) changes (equation 24).  Any change in TSI (SD) will change the 

weighted perception probability values; these new values were used to calculate the number 

of trips at the baseline and improved TSI (SD) values. The standard welfare measure for a 

Poisson model then applies (equation 28). 

Improving water clarity by reducing TSI (SD) by 25% 

When our highest TSI(SD) value (79.8) at Utah Lake is reduced by 25%, its new 

TSI(SD) value would be 59.85. Thus we would expect that the mean perception (Water 

Clarity) value to move from 3.54 to 3.11 (table 14, last row). Similarly, our lowest TSI(SD) 

value is 32.2 at Strawberry Reservoir; a 25% improvement reduces this to 24.23. Using our 

linking model, the probability weighted water quality perception moves from 2.37 to 2.14 

(table 14, row 2). Calculations are shown for other lakes in table 14.
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Table 14 Mean WTP using “Linked biophysical to perception model” reduction in TSI (SD) by 25% 

Lake Visitors Baseline 

 TSI(SD) 

Improved  

TSI(SD) 

Baseline 

Weighted 

Perceptions 

Improved 

Weighted 

Perceptions 

MWTP after 

reducing TSI(SD) by 

25% 

Strawberry Reservoir 47 32.3 24.23 2.37 2.14 $55.96  

      (-$23.61 — $135.53) 

Bear Lake 62 34.1 25.58 2.42 2.17 $52.27  

      (-$22.31 — $126.86) 

Flaming Gorge Res. 16 36.5 27.38 2.49 2.23 $46.88  

      (-$28.12 — $121.88) 

East Canyon Res. 18 42.5 31.88 2.66 2.36 $64.17  

      (-$16.66 — $145.02) 

Deer Creek Res. 31 42.8 32.1 2.67 2.37 $76.32  

      (-$19.77 — $172.41) 

Rockport Reservoir 12 43.9 32.93 2.70 2.39 $75.51  

      (-$20.80 — $171.83) 

Jordanelle Reservoir 19 44.8 33.6 2.72 2.41 $81.55  

      (-$21.35 — $184.44) 

Pineview Reservoir 41 50.4 37.8 2.87 2.53 $83.90  

      (-$18.13 — $185.94) 

Willard Bay Res. 35 68.8 51.6 3.31 2.91 $105.13  

      (-$16.94 — $227.20) 

Utah Lake 54 79.8 59.85 3.54 3.11 $117.55  

      (-$17.19 — $252.28) 

 95% confidence bounds stated in parentheses 
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Comparing table 14 (columns five and six) to table 13 (columns one and two) we 

can see that a change of 25% in TSI(SD) does not correspond to the same level of 

changes when observing the Improved Clarity to Improved Weighted Perception. While 

the initial values for clarity and weighted perceptions are relatively close, a 25% change 

in TSI (SD) does not correspond to a one-unit change in perception when “passed 

through” the linking model. While the MWTP values of table 14 appear to have the same 

ratio difference between table 12 and 13, the MWTP values in table 14 are much closer to 

the values from the biophysical model (table 12). As the MWTP values start to increase, 

the difference between values of both tables also rises. The confidence interval on table 

14 is relatively smaller than that of table 12. 

Improving water clarity by reducing TSI (SD) to center value of improved trophic 

classification 

Table 3 shows that the range of TSI values between each trophic classification is not 

the same so it may be reasonable to believe that reducing TSI (SD) to the middle of the next 

“better” trophic status would be a reasonable policy goal. For example, if TSI (SD) for a lake 

is 78 (hypereutrophic), it would change to 60 (eutrophic). Lakes with TSI (SD) values lower 

than 40 (oligotrophic) would not change. If the TSI (SD) were equal to a value ranging from 

40 to 50, the new value would be changed to the mean of our lakes in the oligotrophic 

trophic classification since the middle level of the oligotrophic trophic classification (20) and 

is below any values found in the dataset for TSI (SD). 
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Table 15 Mean WTP using “link biophysical to perception model” change TSI (SD) to center value of improved trophic classification 

Lake Visitors 
Baseline 

TSI(SD) 

Improved  

TSI(SD) 

Baseline 

Weighted 

Perceptions 

Improved 

Weighted 

Perceptions 

MWTP after changing Trophic 

Classification for TSI(SD) 

Strawberry Reservoir 47 32.3 32.3 2.37 2.37 $ - 

   
   

 
Bear Lake 62 34.1 34.1 2.42 2.42 $ - 

   
   

 
Flaming Gorge Reservoir 16 36.5 36.5 2.49 2.49 $ - 

       

East Canyon Reservoir 18 42.5 35 2.66 2.45 $44.66  

      (-$11.29 — $100.61 ) 

Deer Creek Reservoir 31 42.8 35 2.67 2.45 $55.07  

      (-$13.91 — $124.06) 

Rockport Reservoir 12 43.9 35 2.7 2.45 $60.64  

   
   (-$16.42 —$137.71) 

Jordanelle Reservoir 19 44.8 35 2.72 2.45 $70.97  

   
   (-$18.36 — $160.30) 

Pineview Reservoir 41 50.4 45 2.87 2.73 $34.43  

   
   (-$6.91 — $75.77) 

Willard Bay Reservoir 35 68.8 45 3.31 2.73 $152.34  

Utah Lake  54 79.8 60 3.54 3.11 

(-$26.51 — $331.20) 

$116.55 

($-17.01 — 250.10) 

95% confidence bounds stated in parentheses 
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In the previous table we can see that even though we modified the way that changes 

in TSI (SD) occur, it appears that the improved weighted perceptions (table 15, column 6) is 

not really close to the improved clarity perception values (table 13, column 4). The first 3 

rows of table 15 do not present MWTP since there were no change in their TSI(SD) since 

those lakes are classified as oligotrophic. Compared to table 12, the values provided on the 

previous table have a narrower confidence interval, though one should note that the MWTP 

changes are not uniform since moving to the center value of a better trophic classification 

can represent different value changes for each lake. For example, Pineview Reservoir had an 

improvement in TSI(SD) of 5.4 units, while Willard Bay Reservoir had a change of 23.8 

units. One may observe that the “larger” change for Willard Bay Reservoir generated a much 

larger increase in welfare than Pineview Reservoir, even though both reservoirs were moving 

from “eutrophic” status to “mesotrophic” status. The MWTP for improving Willard Bay 

Reservoir is over four times as large as the MWTP to improve the quality of Pineview 

Reservoir. 

Improving water clarity by changing TSI (SD) by 1.5 meters 

If we observe table 3, we can see that the range of values between each trophic 

classification is not the same, but on average each of those classifications are roughly 1.5 

meters (4.92 feet) apart in measured Secchi depth. We now estimate MWTP for 1.5 meters 

improvement in clarity.  
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Table 16 Mean WTP using “link biophysical measure to perception” based on change in meters 

Lake Visitors 
Baseline 

TSI(SD) 

Improved 

TSI(SD) 

Baseline 

Weighted 

Perceptions 

Improved 

Weighted 

Perceptions 

MWTP after 

improving water 

clarity by 1.5 meters 

Strawberry Reservoir 47 32.3 29.42 2.37 2.29 $19.74  

      (-$8.12 — $47.60) 

Bear Lake 62 34.1 30.87 2.42 2.33 $19.46  

      (-$8.10 — $47.01) 

Flaming Gorge Reservoir 16 36.5 32.75 2.49 2.39 $18.80  

      (-$11.06 — $48.67) 

East Canyon Reservoir 18 42.5 37.17 2.66 2.51 $31.37  

      (-$7.78 — $70.52) 

Deer Creek Reservoir 31 42.8 37.4 2.67 2.52 $37.72  

      (-$9.33 — $84.78) 

Rockport Reservoir 12 43.9 38.13 2.7 2.54 $38.69  

      (-$10.21 — $87.60) 

Jordanelle Reservoir 19 44.8 38.73 2.72 2.56 $43.10  

      (-$10.80 — $96.98) 

Pineview Reservoir 41 50.4 42.15 2.87 2.65 $53.54  

      (-$11.07 — $118.15) 

Willard Bay Reservoir 35 68.8 49.69 3.31 2.86 $118.32  

      (-$19.49 — $256.13) 

Utah Lake 54 79.8 51.9 3.54 2.91 $175.48  

      (-$28.24 — $379.20) 

 95% confidence bounds stated in parentheses 
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Just as in table 14 and 15, table 16 confidence interval is narrower than that of table 

12. It appears that table 16 MWTP values appears to get approach the values in table 12 as 

MWTP increases. Just as in table 14, MWTP values rises as one goes down the rows in table, 

this can be attributed to the fact that constant level changes give the impression of higher 

improvements in “dirtier” lakes when compared to cleaner lakes After using the last 

approach where Secchi depth was changed by 1.5 meters, a visual examination appears to 

show that none of the three models fully captures how a change in biophysical measure 

would correspond to unit change in the perception model. In order to fully understand 

whether any of those models are close to explaining such changes we will use the 

convolution method.  Using the perception model and each of the three linked models, we 

estimated new WTP distributions using standard bootstrapping techniques of repeated 

sampling with replacement. Based on Poe, Giraud, and Loomis (2005), we use the 

convolution method by calculating various sampling schemes of the difference       , 

where X is the WTP distribution of the perception model and Y is the WTP distribution for 

the linked model, where the indicator z would designate which of the three models would be 

used (change by 25%; change to the middle of trophic classification; change in meters). The 

significance of the differences is computed by the number of negative values as a proportion 

of all paired differences. The null hypothesis is that the difference between the distributions 

is equal to 0. The model related to change in TSI (SD) by 25% was the only model where the 

null hypothesis was not rejected at the 5% confidence level, its value was 0.080. The models 

related to change in trophic classification and change in meters and had the respective 0.041 

and a 0.047 level of significance. The table below exemplifies the results of the test.  



51 

 

Table 17 Comparison of WTP distributions of weighted models to WTP distribution of 

baseline perceptions model 

Linked Model Test Statistic Different WTP Distribution  

Reduce TSI(SD) by 25% 0.08 No 

Reduce TSI(SD) to center of 

trophic classification 0.04 Yes 

Reduce TSI(SD) based on 1.5 

meters improvement in Sight 

depth 0.05 Yes 

 

Since the linked model where the TSI (SD) is reduced by 25% can also be directly 

compared to the distribution of our baseline biophysical model we also compared such 

distribution. Its value was 0.43, meaning that we could not rejected the null hypothesis that 

the distributions are different from each other. 
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CONCLUSION 

In this study we have attempted to understand changes in trip behavior by exploring 

the relationship between the biophysical measures of water quality and people’s perception 

of water quality.  Water quality in travel cost models have generally been estimated in one of 

two ways: Using biophysical measures or using perceived water quality.  The first approach 

requires the analyst to assume that biophysical measures can be perceived by the respondent, 

and the second presumes that a measure of perceived water quality can be ‘translated’ back 

to some metric that is useful to the natural scientists. What is missing is the link between 

biophysical and perceived measures of water quality, and how changes in biophysical 

measures relate to a person’s perception of water quality. Further, the two approaches for 

including water quality in a travel cost model could lead to different models and thus, 

different welfare estimates associated with changes in water quality.  

Using the knowledge that water clarity is related to TSI (Secchi depth), and that TSI 

(Chlorophyll) accounts for the greenish tint in the water, simple models that link perceptions 

and biophysical measures were estimated. We used the “linkage” models three different 

ways: (i) postulating a fixed percentage change in the biophysical measures, (ii) postulating 

fixed change of 1.5 meters in Secchi depth measure (improved water clarity) at all lakes, (iii) 

postulating an improvement to the next best level of quality, where the improvement was to 

the mid-point of the next best trophic classification. After calculating all three different ways 

of changing biophysical measures, we used the convolution method to understand the 

difference between the distribution of WTP estimated with the original perceptions model 

and the three estimates that account for the link between biophysical and perception 

measures. The model using the percentage levels [approach (i)] was the only model where 
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the null hypothesis that the difference between WTP distributions was equal to zero was not 

rejected. The same approach (i) was also compared with the original biophysical model WTP 

distribution the null hypothesis again was not rejected. 

 Future studies should focus on a closer examination of the model linking biophysical 

and perception measures.  Increasing the sample size would be beneficial to understanding 

overall perception levels. Some lakes in the data only had a unique visitor or a couple 

visitors. While this is not enough to remove such individuals from our sample, increasing the 

sample size would help to create a more representative model of perceptions across a broader 

variety of lakes. Further, the different preferences and activities of people, as revealed by 

different primary activities, may affect perceptions of water quality.  Our linkage models did 

not investigate this possibility.  The implication is that if a certain lake is being used 

primarily for warm water fishing and the anglers are interested in a certain variety of fish, the 

water quality level desired may be different than when compared to swimmers or boaters. 

Even though the results did not show a perfect link when using the convolutions 

model, this paper shows that such a link should be analyzed. The use of a large dataset would 

be beneficial to better understand such a link and in identifying the prospective differences 

between lakes and groups visiting the lakes. Different levels of water quality may be 

preferred by different groups. Finally this paper raises the question of whether regulators 

should focus on maintaining the water quality level desired based on primary activity of lake 

or improving all lakes to the same water quality level. 
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Appendix 1 

Lake Name TSI(SD) TSI(Chla) 
Mean 

Clarity 

Mean 

Shades of 

Green 

Number 

of 

Visitors 

Fish Lake 32.11 23.62 2.75 2.00 4 

Strawberry Reservoir 32.31 34.34 2.66 2.38 47 

Bear Lake 34.10 23.60 2.39 1.68 62 

Marsh Lake 36.44 32.25 1.00 2.00 1 

Flaming Gorge Reservoir 36.49 34.47 2.44 1.81 16 

Duck Fork Reservoir 37.40 23.80 1.00 1.00 1 

Tony Grove Reservoir 37.68 31.85 2.00 1.50 2 

Huntington Reservoir 38.46 27.45 2.00 2.00 1 

Lyman Lake 38.78 28.54 2.33 1.33 3 

Tropic Reservoir 39.34 21.57 2.00 2.00 1 

Porcupine Reservoir 40.15 32.92 2.60 1.60 5 

Silver Lake Flat 40.69 27.14 2.75 2.25 4 

Starvation Reservoir 41.02 35.11 2.75 1.75 4 

Mantua Reservoir 41.51 40.80 2.78 2.44 9 

Navajo Lake 41.53 24.74 2.14 2.14 7 

Tibble Fork Reservoir 42.08 20.06 3.11 2.33 9 

Mirror Lake 42.11 32.04 2.00 1.80 5 

Whitney Reservoir 42.50 31.92 3.00 1.50 2 

East Canyon Reservoir 42.51 34.90 2.78 2.11 18 

Joes Valley Reservoir 42.61 23.32 1.00 3.00 1 

Deer Creek Reservoir 42.84 43.69 2.65 2.06 31 

Quail Creek Reservoir 43.06 21.61 2.56 2.11 9 

Causey Reservoir 43.51 26.24 3.00 3.00 3 

Scout Lake 43.64 27.26 1.00 2.00 1 

Moon Lake 43.70 42.61 3.00 2.00 1 

Big Sand Wash 

Reservoir 43.71 27.20 3.00 2.00 1 

Rockport Reservoir 43.91 39.49 3.08 2.17 12 

Currant Creek Reservoir 44.01 27.90 2.67 2.67 3 

Jordanelle Reservoir 44.82 38.09 2.89 2.26 19 

Washington Lake 45.25 29.07 2.75 2.00 4 

Smith and Morehouse 

Reservoir 45.49 29.44 2.25 1.75 4 

Sand Hollow 45.58 25.59 1.50 1.50 4 

Woodruff Creek 

Reservoir 45.79 39.67 4.00 2.00 1 



 

 

Trial Lake 46.04 29.95 1.67 1.67 3 

Panguitch Lake 46.11 49.72 2.50 2.00 4 

Kens Lake 46.69 30.57 2.50 2.00 2 

Puffer Lake 46.75 40.08 3.00 2.00 1 

Wall Lake 47.15 27.16 3.00 2.00 1 

Huntington Lake North 47.31 19.77 4.00 1.00 1 

LaBaron Reservoir 47.74 39.77 3.00 3.00 1 

Scofield Reservoir 47.77 68.01 2.17 2.00 6 

Echo Reservoir 47.98 41.01 3.00 1.89 9 

Mill Hollow Reservoir 48.19 45.95 3.00 2.00 1 

Bridger Lake 48.21 46.56 3.50 2.00 2 

Butterfly Lake 48.25 37.24 2.00 2.00 1 

Blanding City Reservoir 48.96 27.19 2.00 2.00 2 

Yankee Meadow 

Reservoir 49.23 48.84 1.50 1.50 2 

Settlement Canyon 

Reservoir 49.81 38.54 3.00 1.50 4 

Spirit Lake 49.90 40.59 3.00 2.00 1 

Pelican Lake 50.25 40.84 2.00 2.50 2 

Lower Gooseberry 

Reservoir 50.39 38.29 3.00 2.00 1 

Pineview Reservoir 50.40 40.89 3.00 2.00 41 

Birch Creek Reservoir 50.76 44.59 3.00 2.00 1 

Red Fleet Reservoir 50.91 35.43 2.00 2.00 2 

Hyrum Reservoir 51.58 39.94 3.10 2.10 10 

Gunlock Reservoir 52.47 38.53 3.00 1.75 4 

Piute Reservoir 52.49 40.34 2.50 2.00 2 

East Park Reservoir 52.92 32.92 3.00 2.00 1 

Upper Enterprise 

Reservoir 53.74 51.12 2.00 1.50 2 

Palisades Lake 53.99 32.79 2.80 2.40 5 

Matt Warner Reservoir 54.64 58.96 3.00 2.00 1 

Newcastle Reservoir 54.69 55.84 3.00 3.00 1 

Payson Lake 55.01 44.48 3.00 2.00 4 

Grantsville Reservoir 55.54 37.31 4.00 3.00 1 

Baker dam reservoir 56.51 57.54 3.00 2.00 1 

Kents Lake 59.28 50.94 2.00 2.00 1 

Salem Pond 60.28 61.94 3.00 3.00 1 

Gunnison Reservoir 61.07 32.93 3.00 3.00 1 

Newton Reservoir 62.64 52.18 3.33 2.00 3 

Yuba 63.54 45.19 3.67 2.00 3 

Otter Creek Reservoir 65.52 47.59 3.00 2.33 3 

Willard Bay Reservoir 68.78 42.12 3.11 2.17 35 



 

 

Mona Reservoir 76.78 50.70 2.00 2.00 1 

Gunnison Bend 

Reservoir 78.43 26.51 4.00 2.00 3 

Cutler Reservoir 78.74 60.15 4.00 1.50 2 

Utah Lake 79.81 60.82 3.65 2.24 54 

Fish Lake 32.11 23.62 2.75 2.00 4 

Strawberry Reservoir 32.31 34.34 2.66 2.38 47 

Bear Lake 34.10 23.60 2.39 1.68 62 

Marsh Lake 36.44 32.25 1.00 2.00 1 

Flaming Gorge Reservoir 36.49 34.47 2.44 1.81 16 

Duck Fork Reservoir 37.40 23.80 1.00 1.00 1 
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