Utah State University DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1977

A Study of Rest Period, Hardiness, and Bud Development of the 'Concord' Grape

Mervin Gayle Weeks Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Plant Sciences Commons

Recommended Citation

Weeks, Mervin Gayle, "A Study of Rest Period, Hardiness, and Bud Development of the 'Concord' Grape" (1977). *All Graduate Theses and Dissertations*. 3366. https://digitalcommons.usu.edu/etd/3366

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

A STUDY OF REST PERIOD, HARDINESS, AND BUD

DEVELOPMENT OF THE 'CONCORD' GRAPE

by

Mervin G. Weeks

A thesis submitted in partial fulfillment of the requirements for the degree

of

MASTER OF SCIENCE

in

Plant Science

Approved:

UTAH STATE UNIVERSITY Logan, Utah

ACKNOWLEDGMENTS

I wish to express my thanks to the Plant Science Department for making this research project possible.

I appreciate the help of Dr. LaMar Anderson for his advice, help and allowance of time while working to complete this study. I would also like to thank Arlo Richardson for his special help with the climatological data and statistical approach to chill unit requirements. Also I have appreciated the help, advice, and assistance of Dr. David R. Walker and Dr. Gaylen L. Ashcroft on my thesis. Dr. Schuyler Seeley's advice and encouragement was very valuable.

To my wife, three sons and daughter, thanks for their patience while spending valuable time on this research and thesis.

Nervin J. Weeks

TABLE OF CONTENTS

														Page
ACKNOWLED	GMENTS													ii
LIST OF T	ABLES													v
LIST OF F	IGURES													vii
ABSTRACT			•											ix
INTRODUCT	'ION .		•	•		•			•				•	1
REVIEW OF	LITERA	ATURE				•	•			·				4
•	irement iness I											÷	·	4
Base	iness I and Op	otimum	Ten	nper	atu	ires	s fe	or (Gro	wth	an	d	Ċ	
	Develo	opment		•		•	•		•	•	•	•	•	11
	Base t Optimu					:	:	:	:	÷	:	÷	:	11 12
Clim	ate and Stages Full F	s of G	rowt									to		13
The	Effects	s of E	nvir	onm	ent	or	F	rui	tD	eve	lop	men	t	13
	from H	Full B	1000	n to	Ha	irve	est	•	•	•	•	•	•	14
MATERIALS	AND ME	THODS		•		•			•		•			17
Rest	Studie	es .	•			•	•	•	•	•		•		17
	Growth Statis				·	:	:	:	:	:		:	:	17 18
	Hardin													18
Opti	mum Tem	perat	ure											19
Base	Temper	ature												24
Corr	elation	of B	ud S	stag	e w	ith	GI	ow	ing	De	gre	е		
	Hours		•	•		•	•	•		•	•	•	•	25
RESULTS														27
	Growth	cham	hore											27
	Statis				•	•	•	•	•	•	•	•	•	29
	Cold h					•	•	•	•	•	•	•	•	29
	JULU II													

TABLE OF CONTENTS (Continued)

															Fage
		mum													34
	Base	e ten	nper	ati	ure	·	•	•,	•	•	•	•	•	•	34
Corre	elati	on	of H	Bud	Sta	ges	wi	th	Gro	win	g D	egr	ee		
	Hour	s.	•	•	•	•	•	•	·	·	•	•		·	37
DISCUSSION	ι.	•											•		42
	Rest	stu	die	es											42
	Hard	lines	ss												46
	Opti	mum	ten	nper	ratu	res									46
	Base	e ten	nper	atu	ires										49
	Bud	pher	1010	gy	and	ma	tur	ity	•				• .	•	49
SUMMARY						•									52
LITERATURE	CI1	ED	•						•						54
APPENDIX															60
VITA .															96

Domo

LIST OF TABLES

Table		Page
1.	Description of phenological stages of 'Concord' grape	. 26
2.	GDH C accumulations for 'Concord' grapes from end of rest to full bloom for selected estimated chill unit requirements	. 30
3.	Preliminary phenoclimatography model for Concord grapes	
4.	Rate of bud break from samples of specific segments in comparison to random samples	44
5.	'Concord' grape rest studies, 1974-75	61
6.	'Concord' grape rest studies, 1975-76	62
7.	Hardiness studies, 'Concord' grape, 1974-75 .	63
8.	Hardiness studies, 'Concord' grape, 1975-76	64
9.	Comparison of accumulation CU's and GDH to time of sample collection	65
10.	'Concord' grape growth and bud stage using 830 CU's as rest requirement	66
11.	'Concord' grape growth and bud stages using 1400 CU's as rest requirement	67
12.	Two seasons (1974-75 and 1975-76) differences in GDH requirements to different chill unit exposure for 'Concord' grapes	68
13.	Regression for growing degree hours to percent soluble solids in 'Concord' grapes for the 1975 and 1976 seasons	69
14.	Fourteen years of heat units, full bloom, and harvest dates from Prosser, Washington	70

LIST OF TABLES (Continued)

Table		Page
15.	Daily temperature to CU and GDH accumulations, 1974-75	. 71
16.	Daily temperature to CU and GDH accumulations, 1975-76	. 84

LIST OF FIGURES

Fi	gur	e	Page
	1.	The custom-built freeze chamber built by Mallory Engineering Company, Salt Lake City, Utah. The automatic retrieval system is shown with a sample being extracted	. 21
1	2.	Growth chambers constructed of 51 mm thick styrofoam used for optimum and base temperature study	. 23
	3.	Days required for Concord grape samples collected on various calendar dates to reach 50 percent full bud swell in a 25 C growth chamber from the time samples were taken in the field	1 28
4	4.	The relationship between the standard deviation of the accumulation of Growing Degree Hours to full bloom for Concord grapes and selected accumu lations of chill units	1- 31
ł	5.	Relationship of Concord grape primary bud $\rm T_{50}$ to chill unit and growing degree hour accumulations during the 1974-75 and 1975-76 seasons	32
(3.	Relationship of Concord grape Cambium $\rm T_{50}$ to chill unit and growing degree hour accumulations during the 1974-75 and 1975-76 seasons	33
1	7.	Bud swell and growth on 'Concord' grape cuttings held at temperatures of 0, 5.5, 7, 10 C (32, 42, 45, 50 F) from April 18 to August 6, 1975	36
8	3.	Bud phenology stages of the 'Concord' grape from dormancy to full bloom	40
ę	э.	Regression of growing degree hours to percent soluble solids in Concord grapes for the 1975 and 1976 seasons	41
10).	Relationship of T_{50} temperatures of primary buds and cambium of Concord grape to daily maximum and minimum temperatures during the 1974-75 season	47

Page

LIST OF FIGURES (Continued)

Figure

11.	Relationship of T_{50} temperatures of primary buds and cambium of Concord grape to daily maximum and minimum temperatures during the		
	1975076 season	•	48
12.	Comparison of two growing seasons and chill units and growing degree hour accumulations the years of 1974-75 and 1975-76		50

ABSTRACT

A Study of Rest Period, Hardiness, and Bud Development of the 'Concord' Grape

by

Mervin Gayle Weeks, Master of Science Utah State University, 1977 Major Professor: Dr. J. LaMar Anderson Department: Plant Science

The length of the 'Concord' grape rest period was evaluated during 1974-75 and 1975-76. Cuttings were placed in a 25 C growth chamber every two weeks from October through April. Number of days to reach 50 percent full bud swell was plotted to determine rest completion. Seven years of weather data and full bloom dates of 'Concord' grapes from Prosser, Washington were statistically analyzed to give another estimate of rest completion. Rest was terminated after about 830 chill units.

During 1974-75 and 1975-76, T_{50} temperatures were determined every two weeks for both cambium and primary buds of 'Concord' grapes. The cambium ranged 2 to 10 C hardier than the primary buds. The T_{50} temperature pattern correlated with the minimum ambient air temperatures.

Cuttings, collected and placed in growth chambers, were analyzed for both optimum and base temperatures. Optimum bud growth and development occurred at 25 C. The base or temperature of first noticeable bud development was approximately 4.4 C.

Bud phenological stages were followed both years and a standard set of pictures of representative stages was compiled. The growing degree hours (GDH) from end of rest to first bud swell through full bloom to maturity were determined.

A regression line was plotted between the various GDH requirements for the percent soluble solids acquired during the 1975 and 1976 seasons. The GDH accumulation and soluble solids were well correlated with an r^2 value of 0.95 percent.

(106 pages)

INTRODUCTION

Climate and its effect upon plant life to survive within a given area have always been important. Whether a given plant species is able to adapt to a specific locale depends on several things. Does a given area have extreme cold and hot spells that would inhibit plant growth? Will a given area have sufficient cool temperatures to allow enough chilling to complete rest? Is the growing season long enough to allow the crop to mature? Within an area, what temperatures give maximum growth and how can these be correlated with phenological stages of plant development? These questions are often asked concerning any given agronomical or horticultural crop. The 'Concord' grape has been an important crop since its discovery at Concord, Massachusetts. It originated from seed planted by Ephraim W. Bull in the fall of 1843, and which bore fruit in 1849. He dug up a wild native fox-type (Vitis labrusca L.) grape plant growing beside a field fence and transplanted it into his garden where other grapes were growing, including 'Catawba'. He gathered seed from this wild vine and planted it. Among the seedlings that emerged was one vine which was outstanding and which he named and introduced as the 'Concord' grape (Tukey, 1966).

Since the introduction of the 'Concord' grape, climate and environment have had a curcial bearing on fruit quality, productivity, and maturity. The 'Concord' grape has long been the standard grape for comparison with other American and American hybrid types.

Temperatures during the growing season influence the growth, percent soluble solids achieved, and the time that fruit matures. Since grapes are a perennial crop, climatic conditions not only affect the current seasons crop but determine the fruiting potential for the following year as well. Weather has a major effect on fruit bud formation, maturity of the current seasons growth, and conditions existing during the dormant period.

In recent years a great interest has developed in the potential establishment of commercial grape production in Utah and adjacent states. Since Utah conditions are somewhat different from other grape growing areas, many questions about their performance under these conditions remain unanswered. Extensive work has been conducted for most other fruit in Utah to determine their rest intensity and bud development. Research on American type grapes (<u>Vistis</u> labrusca L.) in Utah or elsewhere is minimal.

A concise study to determine the requirements to break rest, the T_{50} hardiness level, and the base and optimum temperatures to which they will best respond, would help answer many questions about grape growing in

this area. The correlation of growing-degree-hours (GDH) with different stages of bud development from first swell to full bloom to maturity would be an effective tool to forecast harvest dates. Such information would enable growers to have more insight as to when to arrange picking and harvesting of crops. Information of this type could also enable prospective growers to determine which sites and localities would be best suited for commercial production of grapes. It is commonly accepted that site selection is the most critical factor in vineyard establishment (Stergios and Howell, 1977a).

The purposes of this study were: (1) to determine requirements in completion of rest, (2) hardiness with bud development, (3) to determine base and optimum temperature range for growth and development to which growth best responds, (4) to describe the stages of bud phenology, and (5) to determine the effects of environment on fruit development of 'Concord' grapes.

REVIEW OF LITERATURE

Many studies have been conducted concerning the effects of temperature on the 'Concord' grape. For convenience this literature review has been divided into five parts: (1) requirements for rest completion, (2) hardiness, (3) base and optimum temperatures to which growth best responds, (4) bud phenology, and (5) the effects of environment on fruit development.

Requirements Involved in Rest Completion

The terms, "bud dormancy" and "bud rest", will be used as defined by Samish (1954). Bud dormancy is generally associated with the temporary suspension of visible growth. Growth may be stopped by unfavorable external conditions, such as cold temperature or drought, and is also known as "quiescence", as suggested by Meyer and Anderson (1952). Bud rest is that period when growth will not proceed normally even in a favorable environment. It is generally believed that rest is due to internal factors and that the relative levels of various hormones in buds determine the onset and termination of rest (Kliewer and Soleimani, 1972).

To produce normal growth under favorable conditions however, it is necessary that rest be "broken" by a certain period of cold. The length of this period, which

differs with the cultivar and with the species as well as with physiological conditions, is termed "chilling requirement" (Samish, 1954). The rest requirement keeps buds from active growth during unusual mid-winter warm periods. Although very slow bud growth proceeds as long as rest continues, active growth will not commence until the afterrest period (Young et al., 1974). Richardson et al. (1974, 1975), using data from the literature and results of their own research, developed a model relating environmental temperature to the time of rest completion. The model is based on the accumulation of chill units where one chill unit equals one hour exposure at 6 C. The chilling contribution becomes less than one as the temperature drops or rises above the optimum value. A negative contribution to the chill unit accumulation occurs at temperatures above 15 C. Zero unit contribution occurs below 1 C. Chill unit accumulation begins in the fall after the day when the most negative chill unit accumulation has occurred.

With few exceptions, chilling is generally considered necessary to break bud rest in grapevines. Some <u>Vitis</u> species, e.g. <u>Vitis caribaa</u> which is indigenous to the Caribbean area, apparently require no chilling, whereas others, e.g. <u>Vitis davidii</u>, require extended chilling (Chandler, 1937). Even the <u>Vitis vinifera</u> cultivars, which are the leading commercial grapes, have a wide range of the amount of chilling required to terminate

bud rest (Kliewer and Soleiman, 1972).

Weaver et al. (1968) noted a large varietal difference in time required for grape buds to terminate rest. 'Pearl of Csaba' and several popular California seedless varieties terminated rest rapidly followed by 'Concord'. Weaver used number of days to 50 percent bud break as the criteria for determining termination of bud rest.

Alexander and Woodham (1962) observed that Thompson seedless vines growing in nutrient culture occasionally burst prematurely without going through a winter rest. Wine grape buds near the apex have been observed to break rest without a rest period if the shoot tips were removed (Kliewer and Soleimani, 1972). These observations and those of Weaver et al. (1975) indicated that bud-break of many samples and not just of that of the first bud, should be used to determine the termination of rest.

At Davis, California <u>V</u>. <u>vinifera</u> buds usually enter a rest state in autumn and do not emerge from it until about January (Weaver, McCune, and Coombe, 1961). Weaver et al. (1975) also found that apical cuttings of 'Carignane' grape canes collected in late fall and early winter were slower to break rest than cuttings from the basal or middle portions of the canes.

Eggert (1951) found that 'Concord' grapes require more than 3,000 hours exposure to temperatures below 7 C before more than 50 percent of the buds would develop

during a three-week period in the greenhouse. He ranked various species according to the hours of chilling required to break rest from the lowest to the highest as follows: red raspberry, black raspberry, prune, peach, currant, sweet cherry, pear, sour apple, 'Concord' grape, and blueberry. Leaf buds generally required slightly more chilling than flower buds to break rest.

The results of Magoon and Dix (1943) were not in agreement with those of Eggert. 'Concord' grapes in their study required between 1,200 and 1,400 hours of exposure to temperatures below 7 C to complete rest. It took 25 to 31 days for new growth after cuttings were placed in the greenhouse at temperatures between 18 to 24 C. Rest was considered broken or completed when there was little further increase in percent bud activity. Magoon and Dix also found that as the length of exposure time to cool temperature increased there was a progressive shortening of time required for grape plants to initiate growth.

Richey and Bowers (1924) found that from October 27, 1921 to January 8, 1922 the percentage of total carbohydrates increased in 'Concord' canes, stems, and roots. After January 8 a marked decrease of total carbohydrates occurred in all parts of the vine. Rest was completed by January 8, the high point in carbohydrate accumulation. The following decrease coincided quite closely with the initiation of growth of plants that previously had been

placed in the greenhouse under favorable growing conditions. A similar curve to that of total carbohydrates was shown for free reducing disaccharide and total sugar content. The high point in carbohydrate accumulation for each of the curves with these was January 8. There was a low point at this time for polysaccharide (starch).

Hardiness Levels

One of the greatest limiting factors in grape production is winter injury caused by sub-zero temperatures in early winter. Gladwin (1917) pointed out early in this century that winter injury of grapes could be traced to a lack of tissue maturity. Injury depended primarily upon the minimum temperature reached, and in most instances the damage seemed to occur during a single cold night (Potter, 1938).

'Concord' grape plant and bud hardiness have been reported to be influenced by vigor, crop load, soil type, fertility, and moisture conditions during the growing season prior to being exposed to cold temperatures (Clore et al, 1968). Cold injury to grapes can be associated with low temperatures occurring late in the fall or early winter before dormant vines have been preconditioned by temperatures below -2 C (Clore et al., 1974b); Mullner and Mayer, 1970). This natural hardening process is very important to prepare the vines for cold winter temperatures. In the

state of Washington cold temperatures that occur in November and December are more damaging than the same or even lower temperatures that occur in January and February (Hagood, 1975). As plants go into the dormant period, they become increasingly cold tolerant. They are less hardy during late fall and early winter, but increase in hardiness during mid-winter.

Increase in hardiness during the dormant period is usually associated with decreasing temperatures. The loss of hardiness corresponds with increasing temperatures (Proebsting, 1950). Climatic conditions prior to low temperatures determine the amount of cold damage that will occur. A frost following a warm spell or drought and strong winds cause more injury to plant tissues than when preceded by mild to calm cool weather (Hargood, 1975).

Hardiness in the 'Concord' grape seems to be more responsive to short daylength in the fall than in the vinifera grapes (Clore and Brummund, 1965).

According to Edgerton and Shaulis (1953) grape vines that have been pruned in the fall will have tissue more susceptible to winter injury near pruning wounds. Studies in Michigan showed that grapevines pruned 30 + 10buds per pound had superior cane hardiness to those pruned 60 + 10. There was as much a 3 C differenc in T_{50} temperatures of primary bud kill occurring in November, December, and April (Stergios and Howell, 1977b).

Stergios and Howell (1974) maintain that the 'Concord' grape node contains a compound bud, comprised of individual primary, secondary, and tertiary buds. The primary bud is more productive and less hardy than the secondary bud during periods of acclimation and deacclimation. Likewise, the primary bud is more susceptible to winter injury in the field (Clark, 1936; Wiggans, 1926). Defoliation of 'Concord' grape plants during August in southwestern Michigan resulted in a 1 to 5 C hardiness reduction. Defoliated plants acclimated slower in the fall and deacclimated earlier in the spring (Stergios and Howell, 1977b).

Low site versus high site vineyards were evaluated for hardiness. Grapes in low elevation sites developed greater hardiness due to exposure to lower air temperatures. However, the risk of cold injury to low-site plants was greater due to the more severe temperature fluctuations in early fall and late spring (Stergios and Howell, 1977a).

Clore et al. (1974a) evaluated canes of several grape cultivars including 'Concord' for bud survival from vineyards in Washington during the winters of 1972-73, and 1973-74. The hardiest 'Concord' buds found in both winters occurred when the temperatures were lowest. The lowest primary bud T_{50} of -33 C was recorded January 11, 1973. At the same time, the lowest T_{50} readings for secondary and tertiary buds also occurred at -37 and -34 C, respectively. The 'Concord' grape began to lose hardiness in late winter or early spring when heat units began to accumulate. Clore et al. (1974b) claim dehardening of the grapevine takes place when an average mean temperature of 10 C or more prevails following rest completion.

Base and Optimum Temperatures for Growth and Development

Base temperatures

The grapevine is considered to be a conservative plant because it does not rush into growth in early spring as do most deciduous fruit trees. The vine remains dormant until the mean daily temperature reaches about 10 C (Winkler et al, 1974). The base temperature used for the 'Concord' grape has been 10 C. Temperatures below 10 C do not contribute to any accumulation of heat units (Winkler, 1948, Winkler et al., 1974). Poenaru and Lazarescu (1959) reported, that in the northern vineyards of Europe, vines began growth at 8 C.

Studies by workers in Europe (Anonymous, 1968) on the bud break of a large number of wine varieties at low temperatures led to a definition of two distinct thresholds of growth in the grape plant. The first "real threshold" corresponds to a stage of development beyond which bud growth cannot continue. This threshold lies within narrow temperature limits, nearer to 0 C. The second or "apparent threshold" of growth is the temperature below which the rate of bud-break of shoot growth is so reduced that it ceases to be perceptible. This temperature is specific to each genotype. It varies from around 4 C for early varieties to 11 C for late varieties.

Optimum temperatures

In controlled outdoor growth chambers, Tukey (1958) found that the maximum growth rate for developing Concord berries during a 13-day period following bloom, occurred at mean daily temperatures approximating 26.1 C. Both higher and lower temperatures appeared to reduce the growth rate of the forming berries. The temperatures below optimum had more effect per degree on growth than did those temperatures above this optimum.

Tukey (1958) also found that raising the night temperatures higher than normal helped to increase size of berries. At harvest the greatest percentage of sugar was found in berries produced from the vine that grew in the 26.1 C exposure.

Kriedmann (1968), who measured changes in the concentration of CO_2 , found that the optimum temperature for photosynthesis by grape leaves was about 25 C.

Shaulis (1966) studied two levels of vine growth as affected by light intensity in controlled climate chambers for 14 day-night temperature combinations. At 185.8 lux/m² (2,000 foot candles) there was a maximum net assimilation rate at 25 C and minima (1/2 the maximum) at 5 and 30 C. High night temperatures were depressing. At 46.45 lum/m^2 (500 foot-candles) the maximum rate was at 15 C and minima at 5 and 30 C.

The soluble solids accumulation rates of fruit in full sunlight and 185.8 lux/m^2 (2,000 foot-candles) were similar. At 46.45 lux/m^2 (500 foot-candles), it was less, especially at the higher temperatures, night or day. The highest rate of fruit solid increase was at moderate night temperatures 10 and 15 C (Shaulis, 1966).

<u>Climate and Its Affect on the Phenological Stages of</u> Growth from First Bud Swell to Full Bloom

Little is mentioned in the literature of any definite set of phenological stages 'Concord' grapes goes through from first bud swell in the spring to full bloom.

Clore et al. (1974b) mention some of the recognizable stages of bud development: full bud swell, first leaf shoot, second leaf shoot, through fifth leaf shoot. The following stages of bud development have been established: first swell, full swell, bud burst, first leaf through seventh leaf, first bloom, and full bloom (Clore, 1975). Winkler et al. (1974) observed that the rudiments of the flower clusters were formed during the season preceding the year in which the flowers bloom. Temperature affects the bud development in the spring. Late pruning when the sap starts to run will delay growth approximately one week (Hagood, 1975).

The Effects of Environment on Fruit Development From Full Bloom to Harvest

Winkler et al. (1974) mentions that grapes of the vinifera varieties thrive best if no rain falls between blooming and harvest.

Poor fruit set of 'Sultana' in irrigated vineyards of Australia is sometimes attributed to excessive high heat and water stress at full bloom time (Alexander, 1966).

Spark and Larsen (1965, 1966) reported that seasonal variation in the percent of soluble solids is related to the percent foliage density of the plant. When the foliage density of the plant is higher, soluble solids are higher. Leaf area per unit of fruit is a limiting factor for soluble solids production. Early development of the maximal leaf area resulted in a longer period of photosynthetic activity and, therefore, greater production of soluble solids. The year to year variation in soluble soluds in a particular vineyard could probably be explained on the basis of constancy of the foliage density.

The variation of average soluble solids from year to year was considered to be a response to differences in temperature and light intensity between years (Spark and Larson, 1965).

Controlled day-temperature studies of fruit set in 'Concord' grapevines were conducted at University Park, Pennsylvania (Haeseler and Fleming, 1967). Low (15.6 to 18.3 C) and high (32 to 35 C) day-temperatures during the fruitset period were harmful to fruit-set. Under these conditions vegetative development was seriously impeded by low daytemperatures and excessively promoted by high daytemperatures. Lateral shoots often were produced when temperatures prevailed above 32 C, but these shoots produced fruit clusters which did not mature sufficiently for harvesting. Natural conditions and medium day-temperatures were considered more conducive to fruit set, berry growth, cluster development, and vegetative control.

Clore and Bryant (1958) reported that temperatures above 32.2 C appeared to reduce the efficiency of the 'Concord' grape plant to accumulate sugars. Delay of 'Concord' grape maturity in Washington State can be attributed to tempetatures over 32 C for extended periods of time (Clore et al., 1967).

Clore and Brummund (1964) reported above average crop maturity could be credited to above average solar radiation. If the skys were cloudy and overcast, then maturity is delayed and quality reduced. The larger the fruit load per vine, the greater the number of heat units required for the fruit to obtain acceptable quality (Clore and Brummund, 1960). Time of maturity also depends upon which period during the growing season the most favorable temperatures occur (Clore and Bryant, 1957).

Growth, development and maturation of 'Concord' grape is influenced by such factors as size of crop, culture practices, and weather conditions--especially temperature (Van Den Brink, 1974). Correlating average bloom and harvest dates of 'Concord' grape with temperature data, Van Den Brink (1974) has been able to predict harvest dates within an acceptable degree of accuracy and reliability, using 10 C as the base temperature. Temperature variations between seasons spread the maturity period of 'Concord' grapes in Michigan as much as three weeks.

MATERIALS AND METHODS

This study consisted of five parts: (1) evaluation of rest, (2) evaluation of cold hardiness, (3) development of optimum temperatures for growth, (4) determination of base temperature for growth, and (5) correlation of growingdegree-hours with bud development for 1974-75 and 1975-76. The experiments were conducted on eight-year-old own rooted 'Concord' grape vines, located at the Utah State University Horticulture Field Station, Farmington, Utah. The vines were trained to a modified 6-cane Kniffin system and balanced pruned to 30 + 10 buds annually.

Rest Studies

Growth chamber

To determine if rest was completed, cuttings of oneyear-old canes were collected biweekly beginning October 23, 1974 until May 6, 1975. From December to February, samples were collected weekly. The following year cuttings were collected biweekly from October 10, 1975 to April 19, 1976. Previous studies (Tukey, 1958) indicated that 25 C was the optimum temperature for bud development in a growth chamber. Cuttings were collected from four different plants, three cuttings per plant, with three to four buds per cutting. Each treatment consisted of approximately 40 buds. They were placed in beakers of water in a 25 C chamber to determine the length of time required for 50 percent or more of the buds to reach full swell stage. Rest was considered broken when the number of days to reach 50 percent full bud swell made a plateau (e.g., see Figure 3).

Statistical method

A recently developed statistical method of estimating the chill unit requirements for deciduous fruit trees from temperature and phenological data (Ashcroft, Richardson, and Seeley, 1977) was used to estimate the chill requirements for 'Concord' grapes from 7 years of climatological and phenological data recorded at Prosser, Washington (1962-1969).

Cold Hardiness Study

Clore (1974) stated that the basal buds were more prone to produce abundant fruit than buds beyond these. Therefore, the five or six most basal buds were used for this experiment. One-year-old wood was taken from four individual plants with 18 canes per plant. Each cane had at least one bud, or 18 buds minimum per collection data. Cuttings were divided into six separate groups with three canes each, placed in a freezing chamber.

Samples were collected every two weeks from early fall until visible signs of bud swell in the spring. Samples were transported in an insulated container to the laboratory

immediately after collection. The canes were randomly separated into plastic bags and given a cold treatment in a Sears deepfreeze programmed with Honeywell automatic controls that lowered the temperature 2 F per hour (Figure 1). An automatic retrieval system system was used to extract the samples from the freezing chamber at specified times and temperatures selected to bracket the estimated T_{50} temperature. Samples were kept at room temperature for two to three days before being analyzed.

Canes (bark, cambium, and phloem) and primary bud samples were then evaluated for viability using the browning test (Stergios and Howell, 1972). Cambium and primary bud hardiness was plotted graphically to determine the 50 percent survival temperature (T_{50}) (Proebsting and Mills, 1961; Proebsting, 1963). The buds were judged alive when they were all green and dead when their center portions browned (Stergios and Howell, 1974).

Optimum Temperature

Growth chambers constructed of 51 mm thick styrofoam (600 x 700 x 930 mm) were equipped with a Supersensitive relay 4-5300 and a Quickset Rustproof thermostat No. 4-235 F (American Instrument Co., Inc., Silver Springs, MD). Temperatures were maintained by a 100 watt incandescent light bulb to an accuracy of \pm 0.3 C (Figure 2).

Figure 1. The custom-built freeze chamber built by Mallory Engineering Company, Salt Lake City, Utah. The automatic retrieval system is shown with a sample being extracted.

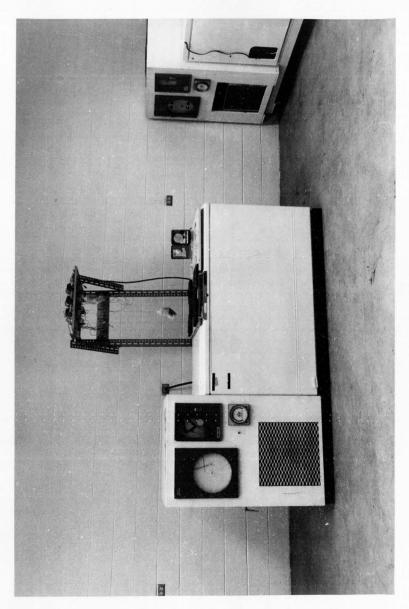
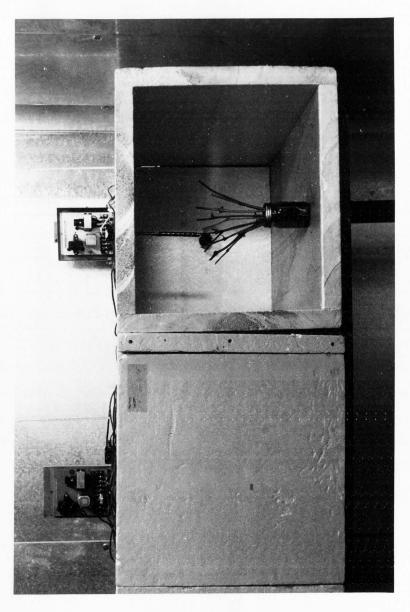



Figure 2. Growth chambers constructed of 51 mm thick styrofoam used for optimum and base temperature study. 'Concord' grape cuttings are shown in a beaker of water in one of the chambers.

Grape cuttings about 30 cm in length having three or four buds each were collected March 28, 1974; nine to ten canes were taken at random from four different plants and held in the chambers with the basal ends in a beaker of water. The canes were separated into four groups. Each group was placed with the basal end in a beaker of water and each of the four beakers was put into a chamber at 15, 20, 26, and 32 C, respectively. Samples were removed on April 23, 1974. The temperature at which optimum plant growth occurred was visually determined.

Base Temperature

Base temperature is defined as the temperature at which 'Concord' grape buds begin noticeable growth and development following rest completion.

Samples were collected in early spring before noticeable bud swelling had occurred. Three cuttings per plant, with three to four buds each, were selected at random from several plants. Cuttings were placed in beakers of water in the same growth chambers described above for the optimum temperature experiment. Chambers were placed in a 0 C cold room. Growth chamber temperatures were 0, 5.5, 7, and 10 C in 1975. In 1976, based on 1975 results, chambers were held at 3, 4.5, 5.5, and 8 C.

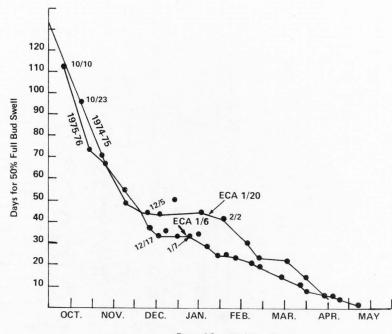
Correlation of Bud Stage with Growing Degree Hours

Daily maximum and minimum air temperatures were recorded with a thermograph in a standard weather shelter for the two years. The maximum and minimum values are given in Tables 15 and 16 (see Appendix).

Visual observations were taken periodically as grape buds began to swell and continued from spring through harvest of 1975 and 1976. A series of pictures were taken of the different stages of bud development in the field. Table 1 gives the description of grape phenological stages and their correlation to growing degree hours.

Soluble solid readings were taken in the field with a Bausch and Loam hand refractometer as fruit approached maturity. Five to six samples were taken at random and then averaged for the percent soluble solid reading.

Stage	Description
lst swell	Bud begins to increase in size and change to a lighter color
Full swell	Bud has increased to maximum size without any tip separation
Full burst	Tip of bud has burst open and started to spread
lst leaf	Leaf first makes a right angle with the main stem
2nd-8th leaf	Determined when each leaf first makes a right angle with the main stem
lst bloom	First bloom open on 50 percent of the clusters
50 % bloom	Half of flowers on 50 percent of the clusters open
75% bloom	Three-fourths of the flowers open on 50 percent or more of the clusters
Full bloom	Most of the flowers in the vineyard are open


Table 1. Description of phenological stages of 'Concord' grape

RESULTS

Rest Studies

Growth chambers

'Concord' grape cuttings held in the 25 C growth chamber all reached full bud swell except for the sample collected October 23, 1974. Two or three buds of this sample began to swell and develop by March 6, 1975, but growth was abnormal and did not reach the 50 percent full bud swell standards used by Weaver, Yeou-Der, and Pool (1968). Samples collected after October 23, 1974 reached 50 percent full bud swell if allowed sufficient time. The November 6, 1974 sample took 70 days to reach 50 percent bud swell with each sample collected afterwards requiring less time (Figure 3). Following January 14, 1975 the time required to break rest dropped consistently until the last sample collected on May 6, 1975 required only one day to reach the 50 percent full swell stage. Samples collected during the 1975-76 season had a comparable pattern. The first sample on October 10, 1975 reached 50 percent full bud swell January 30, 1976, 112 days later. Samples collected thereafter required less time with a noticeable difference following February 2, 1976. Cuttings were collected until April 14, 1976 which required 5 days to reach 50 percent full bud swell. It took a few more days during

Date of Sample Collection

Figure 3 • Days required for Concord grape samples collected on various calendar dates to reach 50 percent full bud swell in a 25 C growth chamber from the time samples were taken in the field. Data was collected from the years 1974-75 and 1975-76.

1975-76 for the samples to bud out following end of chill accumulation than in 1974-75. During 1974-75, it took 33 days to reach 50 percent full bud swell, whereas during 1975-76 it took 43 days.

Statistical method

Table 2 shows the different values of GDH C calculated for different chill unit estimates to full bloom. The standard deviation is plotted against chill units (Figure 4) to find the calculated chill unit requirement. Figure 4 shows graphically 830 chill units to be the point in the curve with less error in the standard deviation.

Cold hardiness

Cambium and primary bud T_{50} temperatures were comparable for both seasons. The cambium T_{50} was 2-10 C lower than the bud T_{50} each year. During 1974-75 the vines developed winter hardiness slower than 1975-76. Both the primary buds and cambium were hardier for 1974-75 than the 1975-76 season, and deacclimation was slower during Spring 1975.

The hardiest T_{50} temperatures, both cambium and primary bud, were recorded on February 6, 1975. The T_{50} temperatures are recorded in Figures 5 and 6 for both years.

During 1975-76 the lowest maximum T_{50} temperatures for cambium and primary buds were not recorded on the same

Chill unit					Year				
estimate	1962-63	1963-64	1964-65	1965-66	1966-67	1968-69	1969-70	Mean	S.D.
600	19566	16133	17189	15934	19280	16120	15548	17110	1658
700	19290	15689	16954	15823	19110	16010	15321	16884	1659
800	18848	15556	16871	15628	18862	15874	15164	16688	1571
900	18742	15378	16833	15534	18754	15757	15109	16587	1573
1,000	18649	15274	16697	15468	18592	15458	15000	16448	1577
1,100	18649	15138	16456	15333	18367	15252	14936	16303	1584
1,200	18474	14953	16291	15179	18316	15106	14746	16151	1607
1,300	18347	14762	15621	15122	18188	15081	14733	15979	1591
Full bloom*	6/9	6/9	6/3	5/28	6/9	5/31	6/5		
Harvest*	10/19	10/12	10.5	9/27	10.1	10.14	9/21 to 10/15		

Table 2. GDH C accumulations for 'Concord' grapes from end of rest to full bloom for selected estimated chill unit requirements

*Full bloom and harvest dates were obtained from Washington State Horticulture Association Proceedings (Clore, 1963-70). Dates correspond for Irrigated Agriculture Research and Extension Center, Prosser, Washington.

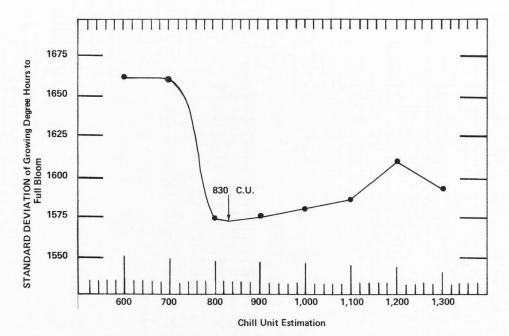


Figure 4
The relationship between the standard deviation of the accumulation of Growing Degree Hours to full bloom for Concord grapes and selected accumulations of chill units. The curve is based on data from Prosser, Washington 1962-1969.

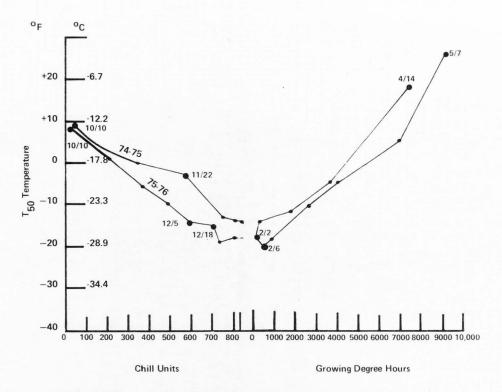


Figure 5 • Relationship of Concord grape primary bud T₅₀ to chill unit and growing degree hour accumulations during the 1974-75 and 1975-76 seasons.

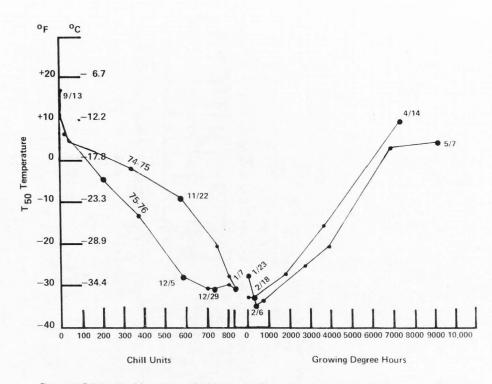


Figure 6 • Relationship of Concord grape Cambium T50^{to} chill unit and growing degree hour accumulations during the 1974-75 and 1975-76 seasons.

sample date. The lowest primary bud maximum T_{50} temperature was on December 29, where as the cambium was hardiest February 2 and 18, 1976. The T_{50} curves of the primary bud and cambium were generally parallel. With warmer airtemperatures in late winter and early spring of 1976 the vines deacclimated sooner than in 1975, thus losing their hardiness.

Optimum temperature


Cuttings from plants that had completed rest were allowed to develop under controlled temperatures in growth chambers in 1974. Growth in the 20 and 26 C chambers was normal. Grape shoot growth in the 32 C chamber appeared to be spindly and showed epinasty, whereas the growth was slow and rather minimal at 15 C.

The study tended to verify the results of Tukey (1958), who reported that 25 C appeared to be the optimum temperature for 'Concord' grape growth and development.

This study was not continued as this phase has been adequately described in the literature.

Base temperature

Bud growth and development took place at each of the selected growth chamber temperatures, except in the 0 C chamber during 1974-75. Figure 7 shows the bud swell growth rate comparison. At 5.5 C noticeable bud swell and growth

did take place. Growth and development occurred more rapidly at both 7 and 10 C temperatures.

The same experiment was repeated during 1976 with a narrower range of temperatures. The second experiment was shortened due to mechanical failure of the cold room in which the growth chambers were located. The experiment proceeded long enough, however, to notice visual swelling of the buds at the 4.5 C growth chamber.

Correlation of Bud Stages with

Growing Degree Hours

Determination of GDH values to reach each of the described stages of bud development are shown in Table 3. This table summarizes data collected from two growing seasons (1974-75 and 1975-76) and represents the average of the two years data.

Figure 8 is a series of pictures showing the standard phenology stages of the 'Concord' grapes from dormancy to full bloom.

Percent soluble solids were recorded for both years as the fruit approached maturity. An average percent soluble solids for each date sampled was correlated to the accumulated GDH and plotted in Figure 9. A regression line was plotted through the determined percent soluble solid values for 1975 and 1976 seasons. The calculated regression line has a r^2 value of 0.95 which shows a high correlation between GDH and percent soluble solids.

Stages		Physiodates			
	Chill units	GDH C	GDH F		
Begin chill unit accumulation	0				
End chill unit accumulation	830				
1. First swell		4,220	7,590		
2. Full swell		5,500	9,890		
3. Bud burst		6,490	11,680		
4. First leaf		7,360	13,240		
5. Second leaf		8,240	14,840		
6. Third leaf		9,050	16,290		
7. Fourth leaf		10,190	18,340		
8. Fifth leaf		12,080	21,740		
9. Sixth leaf		12,620	22,720		
0. Seventh leaf		15,940	28,700		
1. Eighth leaf		15,110	27,200		
2. First bloom		15,510	27,920		
3. Fifty percent bloom		16,190	29,150		
4. Seventy-five percent bloom		16,890	30,400		
5. Full bloom		17,880	32,180		

Table 3.	Preliminary	phenoclimatography	model	for	Concord
	grapes*				

*Above information based upon data collected from Horticulture Field Station, Farmington, Utah, 1974-75 and 1975-76 growing season. Figure 8. Bud phenology stages of the 'Concord' grape from dormancy to full bloom.

First Swell

Full Swell

Bud Burst

First Leaf

Fourth Leaf

50% Bloom

Second Leaf

Full Bloom

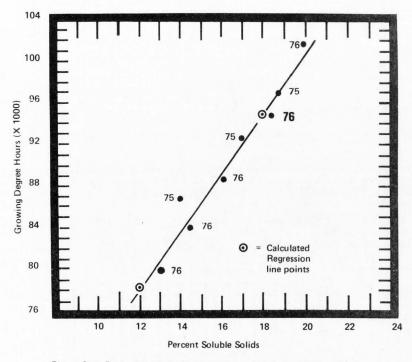


Figure 9 • Regression of growing degree hours to percent soluble solids in Concord grapes for the 1975 and 1976 seasons.

DISCUSSION

Rest studies

Magoon and Dix (1943) found that 'Concord' grapes require a rather short chill period when compared to tree fruits; whereas Eggert (1951) found that they require a longer chilling period similar to that of apples.

Grapes are much more conservative than tree fruits (that is, they respond more slowly to environmental factors). For example, 'Concord' grapes require 2 to 3 times more growing degree hours to reach full bloom than peaches, apples, prunes, cherries, and pears. Because grape buds develop slowly, the criterion used to determine end of rest for tree fruits (blooming in 2 weeks in a greenhouse) would not be expected to be a good criterion for grapes.

Other differences exist between the response of grapes and deciduous tree fruits. Grape samples collected early in the season can be "stressed out" of rest. Tree fruit buds are much more difficult (or impossible in some cases) to "stress out" of rest. For example, buds will develop in the greenhouse, albeit slowly, on grape samples collected early in the rest period, but buds do not develop on analogous fruit tree samples. These differences may be associated with the fruiting habit. Grape berries are produced on current season's wood, whereas the tree fruits are

produced on wood of the previous season. Whatever the cause, it does require that a different rest criterion be used for grapes than for the tree fruits.

The criterion used to determine end of rest involved plotting sampling date vs. days required for 50 percent full bud swell. Such a plot produced a plateau in the curve (see Figure 3). This plateau was considered to represent the end of rest. The plateau occurred, however, at 33 days in 1974-75 and at 43 days in 1975-76 (Figure 3). It would seem that the plateau should have occurred both years with the same number of days required to reach full bud swell. There are several possible reasons why the values were not the same for the two years. During the second year it was difficult to maintain a constant temperature in the studentconstructed chamber which did not have controls. This could have made some difference in the fact that the number of days to the same stage (full bud swell) was not the same at end of rest completion. The difference in time could also be the result of differences in sampling. It was determined (Table 4), as confirmed by Weaver et al. (1975), that there was a gradient in development from the base to apex of the cane, with basal buds developing much faster. If some samples contained more basal cuttings than others, sampling errors would occur.

The statistical method of determining rest completion (Ashcroft et al., 1977) was also used. Seven years of

		Numbe	r of buds brea	aking		
Collection date	or	Date analyzed 1975 Feb. 11	Stage	Date analyzed 1975 Feb. 18	Stage	break swell more
	Random					
Jan. 21, 1975	#1	l out 6	lst swell	5 out 6	3(full swell) 2(1st swell)	50%
Jan. 21, 1975	#2	l out 8	lst swell	3 out 8	3(full swell)	38%
Jan. 21, 1975	#3	2 out 6	lst swell	3 out 6	2(full burst) l(full swell)	50%
Jan. 21, 1975	#4	2 out 8	lst swell	7 out 8	l(lst leaf) 4(full swell) 2(lst swell)	63%
Jan. 21, 1975	Segments Base	9 out 9	lst swell	9 out 9	5(full burst) 4(full swell)	100%
Jan. 21, 1975	Middle	6 out 9	lst swell	6 out 9	2(lst leaf) 2(full burst) 2(full swell)	67%
Jan. 21, 1975	Apex	2 out 13	lst swell	7 out 13	l(full burst) 3(full swell) 3(lst swell)	31%

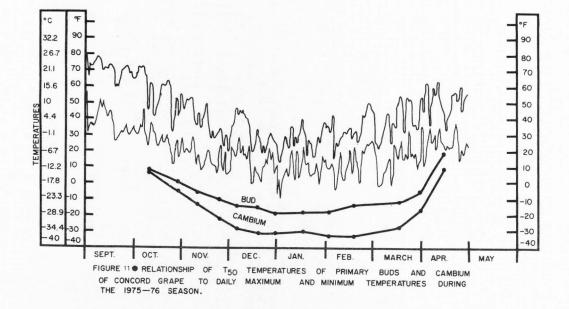
Table 4. Rate of bud break from samples of specific segments in comparison to random samples

temperature data from Prosser, Washington, and known fullbloom dates for 'Concord' grapes were used in application of the statistical method. Selecting different chill unit estimates, figuring the growing degree hours to full bloom, and plotting the standard deviation with the point of least error gives the chill unit requirement. This method seems to be accurate and reliable.

Another estimate of the chill unit requirement was used for comparison. If it were to be assumed that rest is completed when samples placed in the growth chamber reach full bud swell in two weeks, then the chill unit requirement would be around 1,400 for the 2 years data (1974-75 and 1975-76). In 1974-75 the standard of two weeks for bud growth to reach the full bud swell came on March 13, (1428 CU); in 1975-76, March 31 (1392 CU). Whereas using 830 chill units, the end of rest would be January 6, 1975 and January 20, 1976, respectively. The average of these two years at Farmington, Utah for GDH at full bloom would be 16,123 C (29,021 F) for the 1,410 CU requirement and 17,876 C (32,177 F) for the 832 CU requirement.

Statistical standard deviations (SD) were used to compare differences of GDH requirements to reach each of the bud phenology stages using 1,410 as the chill unit requirement vs 832 CU. Comparing 15 stages of bud development, the SD was 985.29 for 1,410 CU and 802.36 for 832 CU.

The SD for five more easily recognized stages were 1,111.89 (1,410 CU), and 845.40 (832 CU). The full bloom stage is easiest to recognize so it probably has the least error in the phenological observations. Therefore, full bloom is probably the best observation to use for comparison. The SD for full bloom stage was 999.8 for 1,410 CU and 340.83 for 832 CU (Appendix Tables 11 and 12). For the full bloom stage, the 832 estimate had 1/3 the SD and appears to be the most accurate.


Hardiness

An artificial freeze chamber to duplicate nature is difficult to use. Information received from running T_{50} temperatures on both cambium and primary bud for both 1974-75 and 1975-76 seasons are graphed in Figures 10 and 11. If T_{50} temperatures could have been taken every few days, the T_{50} 's might be closely correlated to changes in maximum and minimum temperatures. Generally speaking, when minimum temperatures continue to drop during a few days period, then T_{50} temperatures drop. After rest completion, if the maximum temperatures begin to rise, GDH accumulate, and when accumulation is substantial, dehardening will take place quite rapidly.

Optimum temperatures

Studies by other researchers indicate that low temperatures (15 C) and high temperatures (32 C) produce less than

optimum growth with 'Concord' grapes. It was found, supported by Tukey (1958), that 25 to 26 C temperatures were optimum for 'Concord' grape vine, flower bud, and fruit development.

Base temperatures

Determining the base temperature for 'Concord' grape growth was necessary to develop a working phenological model. Most \underline{V} . <u>vinifera</u> grapes have been assigned 10 C as the temperature at which noticeable growth and bud development begins. Results of this study indicate that the base temperature for 'Concord' grape is about 4.4 C.

Bud phenology and maturity

Little research has been done to standardize phenological stages of 'Concord' grape buds with GDH accumulation. With a standardized set of bud phenology stages, the GDH can be calculated following rest completion. Figure 12 shows a comparison for two growing seasons. These two years were quite different from each other. The 1974-75 season had a much cooler spring so development was slower, causing full bloom to be 17 days later in 1975-76. However, the GDH requirements for full bloom were very similar, 17,842 C (32,148 F) for 1974-75, and 17,782 C (31,936 F) for the 1975-76 season. This emphasizes the fact that grapes respond directly to temperature in their development,

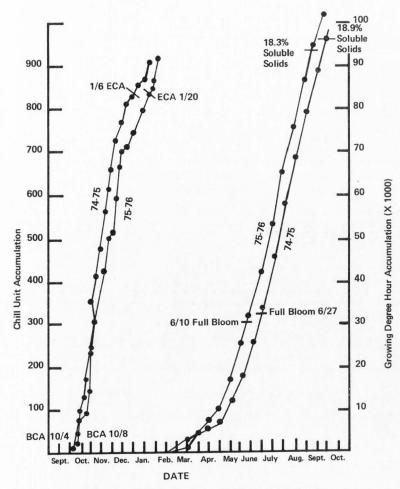


Figure 12 Comparison of two growing seasons and chill units and growing degree hour accumulations for the years of 1974-75 and 1975-76.

and that a GDH reference scheme is far superior to a calendar date reference scheme.

As shown in Figure 12, stages of soluble solid readings are close in GDH requirement for the two different years. This shows the value and accuracy in comparing one year at a particular percent soluble solids, to what would be required in a future year to reach that same percent. This information could be correlated with weather data of any given area to predict what percent of soluble solids could be expected, if one wished to grow 'Concord' grapes. Although soluble solids are probably dependent on GDH accumulation to a large extent, undoubtedly other factors of environment would be needed for a complete phenological model for soluble solids content.

SUMMARY

The requirements to complete rest in the 'Concord' grape were evaluated. The rest period was found to be approximately 830 chill units. Using weather data and full bloom dates from Prosser, Washington, the statistical method (Ashcroft et al., 1977) verified this duration of rest for 'Concord' grapes.

The cold hardiness of both primary buds and cambium was evaluated. T_{50} temperatures were taken every two weeks. The T_{50} temperature of the cambium was 2 to 10 c lower than that of the primary buds. When daily minimum temperatures dropped during the winter, the T_{50} temperature also dropped. After rest completion, temperatures above 4.4 C contributed to bud growth and development. These warm temperatures induced deacclimation causing T_{50} temperatures to rise.

The evaluation of the base temperature for 'Concord' grapes was conducted in a series of growth chambers. The base temperature was found to be approximately 4.4 C.

Optimum growth was found to be near 25 C.

Bud phenological stages were followed and a standard set of the various stages was developed. The different stages of bud development were correlated with GDH requirement from end of rest to each bud stage. 'Concord' grapes reach full bloom at approximately 17,800 GDH C (32,000 GDH F).

Grape development was followed from full bloom to maturity. A regression line was plotted between the various GDH requirements for the percent soluble solids acquired during the 1975 and 1976 seasons. GDH accumulation and soluble solids were correlated. Other environmental factors, such as pruning, fertilizing, and watering do effect maturity. Keeping the preceding factors constant, the accuracy of predicting harvest at a desired percent soluble solid can be achieved.

LITERATURE CITED

- Alexander, D. M. 1966. The effects of high temperature regimes or short periods of water stress on development of small fruiting Sultana vines. Proc. of the XVII Inter. Hort. Congr. 1:590.
- Alexander, D. M., and R. C. Woodham. 1962. Premature bursting of Sultana buds. Nature 195:206-207.
- Anonymous. 1968. A new concept of the threshold of growth in the vine. Vitis 7:201-205.
- Ashcroft, G. L., E. A. Richardson, and S. D. Seeley. 1977. A statistical method of determining chill unit and growing degree hour requirements for deciduous fruit trees. In Press.
- Brummund, V. P., and W. J. Clore. 1962. Some responses of grapes in Washington State to the 1962 growing season. Wash. State Hort. Ass. Proc. 58:133-135.
- Chandler, W. H., M. H. Kimball, G. L. Phillip, W. P. Tufts, and G. P. Weldon. 1937. Chilling requirements for opening of buds on deciduous orchard trees and some other plants in California. Univ. Of Calif. Agr. Exp. Sta. Bull. 611.
- Clark, J. H. 1936. Injury to the buds of grape varieties caused by low temperatures. Proc. Amer. Soc. Hort. Sci. 34:408-413.
- Clore, W. J. 1959. Some responses of Concord grapes to the 1959 growing season. Wash. State Hort. Ass. Proc. 55:103-105.
- Clore, W. J. 1974. Horticulturist, Washington State Univ. Irrigated Agr. and Ext. Center, Prosser Wash. Personal Communication, November 18.
- Clore, W. J. 1975. Horticulturist, Washington State University Irrigated Agr. Res. and Ext. Center, Prosser, Wash. Personal Communication, June 14.
- Clore, W. J., and V. P. Brummund. 1960. Some grape responses and problems in 1960. Wash. State Hort. Ass. Proc. 56:231-232.

- Clore, W. J., and V. P. Brummund. 1963. Some aspects of Washington State's 1963 grape crop. Wash. State Hort. Ass. Proc. 59:165-169.
- Clore, W. J., and V. P. Brummund. 1964. A quality year for grapes. Wash. State Hort. Ass. Proc. 60:135-139.
- Clore, W. J., and V. P. Brummund. 1965. Cold injury to grapes in eastern Washington 1964-65. Wash. State Hort. Ass. Proc. 61:145-146.
- Clore, W. J., and V. P. Brummund. 1965. 1965 grape production. Wash. State Hort. Ass. Proc. 61:145-146.
- Clore, W. J., V. P. Brummund, and G. H. Carter. 1966. 1966 grape production in Washington State. Wash. State Hort. Ass. Proc. 62:195-197.
- Clore, W. J., V. P. Brummund, and G. H. Carter. 1967. 1967 grape production in Washington State. Wash. State Hort. Ass. Proc. 63:206-210.
- Clore, W. J., V. P. Brummund, and G. H. Carter. 1968. Washington State grape production in 1968. Wash. State Hort. Ass. Proc. 64:185-188.
- Clore, W. J., V. P. Brummund, and G. H. Carter. 1969. 1969 - An eventful year in grape production in the state of Washington. Wash. State Hort. Ass. Proc. 65:197-201.
- Clore, W. J., and L. R. Bryant. 1957. The effect of certain climatic factors on the growth, production, and maturity of the Concord grape. Wash. State Hort. Ass. Proc. 53:92-94.
- Clore, W. J., and L. R. Bryant. 1958. Some effects of the 1958 growing season on Concord grape production. Wash. State Hort. Ass. Proc. 54:187-189.
- Clore, W. J., G. H. Carter, and R. D. Fay. 1970. Washington's 1970 grape season. Wash. State Hort. Ass. Proc. 66:223-226.
- Clore, W. J., R. D. Fay, M. A. Wallace, and V. P. Brummund. 1974a. Grape vine hardiness studies and variety testing. Economic development impact of an expanded winegrape industry in Washington. Wash. State Univ., Pullman, Wash.

- Clore, W. J., M. A. Wallace, and R. D. Fay. 1974b. Bud survival of grape varieties at sub-zero temperatures in Washington. Amer. J. Enol.Viticult. 25:24-29.
- Edgerton, L. J., and N. J. Shaulis. 1953. The effect of time of pruning on cold hardiness of Concord grape canes. Proc. Amer. Soc. Hort. Sci. 62:209-213.
- Eggert, F. P. 1951. A study of rest in several varieties of apple and in other fruit species grown in New York State. Proc. Amer. Soc. Hort. Sci. 57:169-178.
- Gladwin, F. E. 1917. Winter injury of grapes. New York Agr. Exp. Sta. Bull. 433.
- Haeseler, C. W., and H. K. Fleming. 1967. Response of Concord grapevines (<u>Vitis labrusca L.</u>) to various controlled day-temperatures. Pa. Agr. Exp. Sta. Bull. 739.
- Hagood, P. 1975. Practices to induce vine hardiness outlined by WSU horticulturist. The Goodgrape Grower 26:8.
- Kliewer, M. W., and A. Soleimani. 1972. Effect of chilling on budbreak in 'Thompson' seedless and 'Carignane' grapevines. Amer. J. Enol. Viticult. 23:31-34.
- Kriedemann, P. E. 1968. Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis 7:213-220.
- Magoon, C. A., and J. W. Dix. 1943. Observation on the response of grape vines to winter temperatures as related to their dormancy requirements. Proc. Amer. Soc. Hort. Sci. 42:407-412.
- Meyer, B. S., and Anderson D. B. 1952. Plant Physiology, 2nd ed. Chapman and Hall, Ltd. New York, N. Y., 784 pp.
- Mullner, L., and G. Mayer. 1970. Frostresistenzprufung bei Reben (<u>Vitis vinif</u>.) Mitteilungen Rebe und Wein Obstbau und Fruchteverwertung xx:258-266. Jahrgang. Klosterneuburg.
- Poenaru, I., and V. Lazarescu. 1959. The practical importance of an understanding of the leafing out of grape varieties (Trans. Title) English, French and German summary. Grachina Via Si Livada 8:23-28.

Potter, G. F. 1938. Low temperature effects on Woody plants. Proc. Amer. Soc. Hort. Sci. 36:185-195.

- Proebsting, E. L. 1959. Cold hardiness of Elberta peach fruit buds during four winters. Proc. Amer. Soc. Hort. Sci. 74:144-153.
- Proebsting, E. L. 1963. The role of air temperatures and bud development in determining hardiness of dormant Elberta peach fruit buds. Proc. Amer. Soc. Hort. Sci. 83:259-269.
- Proebsting, E. L., and H. H. Mills. 1961. Loss of hardiness by peach fruit buds as related to their morphological development in the pre-bloom and bloom period. Proc. Amer. Hort. Sci. 78:104-110.
- Richardson, E. A., S. D. Seeley, and D. R. Walker. 1974. A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortSci. 9:331-332.
- Richardson, E. A., S. D. Seeley, D. R. Walker, J. L. Anderson, and G. L. Ashcroft. 1975. Pheno-climatography of peach bud development. HortSci. 10:236-237.
- Richey, H. W., and H. A. Bowers. 1924. Correlation of root and top growth of the Concord grape and translocation of elaborated plant food during the dormant season. Proc. Amer. Soc. Hort. Sci. 21:33-39.
- Samish, R. M. 1954. Dormancy in woody plants. Ann. Rev. Plant Physiol. 5:183-203.
- Shaulis, N. 1966. Light intensity and temperature requirements for Concord grape growth and fruit maturity. Proc. of the XVII Inter. Hort. Congr. 1:588.
- Sparks, D., and R. P. Larsen. 1965. Effect of nitrogen on the fruit soluble solids of Concord grapes, Vitis labrusca L. Michigan Quart. Bull. 48:506-512.
- Sparks, D., and R. P. Larsen. 1966. Effect of shading and leaf area on fruit soluble solids of the Concord grape, <u>Vitis</u> <u>labrusca</u> L. Proc. Amer. Hort. Sci. 89:259-267.
- Stergios, B. T., and G. S. Howell. 1972. Evaluation of viability tests for cold stressed plants. J. Amer. Soc. Hort. Sci. 98:325-330.

- Stergios, B. G., and G. S. Howell. 1974. <u>In situ</u> destruction of dormant 'Concord' grape primary buds without secondary bud kill. HortSci. 9:120-122.
- Stergios, B. G., and G. S. Howell. 1977a. Effects of defoliation, trellis height, and cropping stress on the cold hardiness of Concord grapevines. Amer. J. Enol. Viticult. 28:34-42.
- Stergios, B. G., and G. S. Howell. 1977b. Effect of site on cold acclimation and deacclimation of Concord grapevines. Amer. J. Enol. Viticult. 28:43-48.
- Tukey, H. B. 1966. The story of the Concord grape. Fruit Variety Hort. Digest 20:54-55.
- Tukey, L. D. 1958. Effects of controlled temperatures following bloom on berry development of the Concord grape. Proc. Amer. Soc. Hort. Sci. 71:157-166.
- Van Den Brink, C. 1974. Predicting harvest data of the Concord grape crop in southwest Michigan. HortSci. 9:206-208.
- Weaver, R. J., Kang Yeou-Der, and R. M. Pool. 1968. Relation of plant regulators to bud rest in <u>Vitis</u> vinifera grapes. Vitis 7:206-212.
- Weaver, R. J., S. Lavee, and J. Johnson. 1975. Rooting and end of rest in 'Carignane' cuttings as affected by collection time and cane segment used. Amer. J. Enol. Viticult. 26:164-167.
- Weaver, R. J., S. B. McCune, and B. G. Coombe. 1961. Effects of various chemicals and treatments on rest periods of grape buds. Amer. J. Enol. Viticult. 12:131-142.
- Wiggans, G. B. 1926. A study of the relative value of fruiting shoots arising from primary and secondary buds of the Concord grape. Proc. Amer. Soc. Hort. Sci. 23:293-296.
- Winkler, A. J. 1948. Maturity test for table grapes The relation of heat summation to time of maturing and palatability. Proc. Amer. Soc. Hort. Sci. 51:295-298.
- Winkler, A. J., J. A. Cook, W. M. Kliewer, and L. A. Lider. 1974. General Viticulture, University of California Press. Berkeley and Los Angeles, California. 61 p.

Young, L. C. T., J. T. Weinberger, and J. P. Bennett. 1974. Growth of resting buds. J. Amer. Soc. Hort. Sci. 99:146-149. APPENDIX

Sample dates	Date 50% bud full swell	No. days to reach 50% bud full swell
Oct. 23	Never	Never
Nov. 6	Jan. 15	70
Nov. 22	Jan. 15	54
Dec. 10	Jan. 16	37
Dec. 17	Jan. 19	33
Dec. 21	Jan. 24	34
Jan. 1	Feb. 2	33
Jan. 7	Feb. 9	33
Jan. 14	Feb. 17	34
Jan. 21	Feb. 18	28
Jan. 29	Feb. 22	24
Feb. 4	Feb. 28	24
Feb. 11	Mar. 6	23
Feb. 21	Mar. 14	21
Feb. 26	Mar. 17	19
Mar. 13	Mar. 27	14
Mar. 25	Apr. 4	10
Apr. 1	Apr. 9	8
Apr. 10	Apr. 16	6
Apr. 18	Apr. 23	5
Apr. 23	Apr. 27	4
May 6	May 7	1

Table 5. 'Concord' grape rest studies, 1974-75

Sample dates		No. days to reach 50% bud full swell
Oct. 10	Jan. 30	112
Oct. 28	Jan. 9	73
Nov. 10	Jan. 15	66
Nov. 24	Jan. 11	48
Dec. 5	Jan. 18	44
Dec. 18	Jan. 30	43
Dec. 29	Feb. 17	50
Jan. 16	Feb. 29	44
Feb. 2	Mar. 14	41
Feb. 18	Mar. 19	30
Feb. 27	Mar. 21	23
Mar. 16	Apr. 7	22
Mar. 31	Apr. 14	14
Apr. 14	Apr. 19	5

Table 6. 'Concord' grape rest studies, 1975-76

Sample date	T ₅₀ primary bud	T ₅₀ cambium
Sept. 13		17 F
Sept. 27		11 F
Oct. 10	9 F	5 F
Oct. 23	5 F	3 F
Nov. 6	0 F	-2 F
Nov. 22	-3 F	-9 F
Dec. 10	-13 F	-21 F
Dec. 21	-14 F	-28 F
Jan. 7	-14 F	-31 F
Jan. 23	-18 F	-28 F
Feb. 6	-20 F	-35 F
Feb. 21	-19 F	-34 F
Mar. 13	-10 F	-26 F
Apr. 1	-5 F	-21 F
Apr. 22	5 F	3 F
May 7	26 F	4 F

Table 7. Hardiness studies, 'Concord' grape, 1974-75

Sample date	T ₅₀ primary bud	T_{50} cambium
Oct. 10	8 F	7 F
Oct. 28	1 F	-5 F
Nov. 10	-6 F	-13 F
Nov. 24	-10 F	-22 F
Dec. 5	-14 F	-28 F
Dec. 18	-15 F	-31 F
Dec. 29	-19 F	-31 F
Jan. 16	-18 F	-30 F
Feb. 2	-18 F	-33 F
Feb. 18	-14 F	-33 F
Mar. 16	-12 F	-28 F
Mar. 31	-5 F	-16 F
Apr. 14	18 F	9 F

Table 8. Hardiness studies, 'Concord' grape, 1975-76

Sample co Date	llection		Sample collection Date				
	CU's	GDH's	1975-76	CU's	GDH's		
Oct. 10	44		Oct. 10	26			
Oct. 23 Nov. 6	120 344		Oct. 28 Nov. 10	210 374			
Nov. 22	578		Nov. 24	492			
Dec. 10	752		Dec. 5	586			
Dec. 17	784		Dec. 18	710			
Dec. 21	810		Dec. 29	738			
Jan. 1	824		Jan. 16	808			
Jan. 6	ECA	0	Jan. 20	ECA	110		
Jan. 7 Jan. 14	844 852	0	Feb. 2 Feb. 18	898	110 288		
Jan. 21	896	54	Feb. 27		200		
Jan. 29	000	348	Mar. 16		1,756		
Feb. 4		416	Mar. 31		3,622		
Feb. 11		540	Apr. 14		7,384		
Feb. 21		744					
Feb. 26		800					
Mar. 13 Mar. 25		2,690 3,880					
Apr. 1		3,968					
Apr. 10		4,902					
Apr. 18		5,900					
Apr. 23		7,150					
May 6		9,118					
Dec. 17, 1	1974-Jan.	6, 1975	Dec. 5, 19	975-Jan. 2	20, 1976		
	's accumul H's accumu			s accumul 's accumu			
20 001	i 5 accune	liated					
			Dec. 5, 19				
				s accumul			
			880 GDH	's accumu	lated		

Table 9. Comparison of accumulation CU's and GDH to time of sample collection $% \left({\left[{{{\rm{CU}}} \right]_{\rm{T}}} \right)_{\rm{T}}} \right)$

		1974-7	75		1975-'	76	A
Stage	Date	CU's	GDH's	Date	CU's	GDH's	Ave GDH's
BCA ECA	10/4 1/6	834	Base 5,695	10/8 1/20	830	Base 4,063	
lst bud swell Full bud swell Full burst lst leaf shoot 2nd leaf shoot 3rd leaf shoot 4th leaf shoot 6th leaf shoot 6th leaf shoot 8th leaf shoot 8th leaf shoot 1st bloom 50% bloom	4/29 5/10 5/14 5/22 5/27 5/30 6/6 6/8 6/11 6/17 6/21		7,792 10,076 11,632 12,870 14,788 16,328 17,514 21,330 22,512 23,742 23,742 23,742 27,606	4/14 4/27 5/3 5/7 5/10 5/13 5/18 5/24 5/24 5/31 6/2 6/2		7,384 9,708 11,728 13,618 14,884 16,254 19,180 22,148 22,918 25,652 26,802 26,802 28,092	7,588 9,892 11,680 13,244 14,836 16,291 18,342 21,739 22,715 24,697 27,204 27,922 29,149
75% bloom Full bloom	6/23 6/25 6/27		30,206 31,396 32,418	6/4 6/6 6/10		29,394 31,936	30,395 32,177
Soluble solids	(%)			Solub	le sol	lids (%)	
14 17 18.9	9/12 9/23 10/1		86,824 92,354 96,054	13.0 14.4 16.0 18.3 19.8	8/20 8/27 9/3 9/13 9/24	79,2 84,1 88,7 94,6 101,2	12 28 78
		Full	Bloom				
St	andard	devia	tion =	340.83			
St	andard	error	=	241.00			

Table 10. 'Concord' grape growth and bud stage using 830 CU's as rest requirement

		1974-	75		1975-	76	
Stage	Date	CU's	GDH's	Date	CU's	GDH's	Ave GDH's
BCA ECA lst bud swell Full burst lst leaf shoot 2nd leaf shoot 3rd leaf shoot 4th leaf shoot 5th leaf shoot 7th leaf shoot 8th leaf shoot	10/4 3/13 4/29 5/10 5/14 5/22 5/27 5/30 6/6 6/8 6/11 6/17	1432	5,102 7,386 8,942 10,180 12,098 13,638 14,824 18,640 19,822 21,052 24,916	10/8 4/14 4/27 5/3 5/7 5/10 5/13 5/18 5/24 5/26 5/31 6/2	1392	Base 3,762 6,086 8,106 9,996 11,262 12,632 15,558 18,526 19,296 22,030 23,180	4,432 6,736 8,524 10,088 11,680 13,135 15,191 18,583 19,559 21,541 24,048
lst bloom 50% bloom 75% bloom Full bloom	6/21 6/23 6/25 6/27		26,352 27,516 28,706 29,728	6/2 6/4 6/6 6/10		23,180 24,470 25,772 28,314	24,766 25,993 27,239 29,021
Soluble solids	(%)			Solub	le sol	lids (%)	
14 17 18.9	9/12 9/23 10/1		84,134 89,664 93,364	13.0 14.4 16.0 18.3 19.8	8/20 8/27 9/3 9/13 9/24	75,67 80,49 85,10 91,05 97,60	0 6 6
		<u>Full</u>	Bloom				
St	andard	devia	ation =	999.85			
St	andard	erroi	• =	707.00			

Table 11. 'Concord' grape growth and bud stages using 1400 CU's as rest requirement

		CU's	GDH's	CU's		GDH's
BCA	10/4					
ECA	3/14	1392-142	8	830-834	*	
Full 1 Full 1 1st 1 2nd 1 3rd 1 4th 1 5th 1 6th 1 7th 1	ud swell bud swell burst eaf shoot eaf shoot eaf shoot eaf shoot eaf shoot eaf shoot eaf shoot		$1,340\\1,300\\836\\184\\836\\1,006\\734\\114\\526\\978\\1,736$			408 368 96 748 96 74 1,666 818 406 1,910 804
1st b 50% b 75% b Full 1	loom loom loom		3,172 3,046 2,934 1,414			2,240 2,114 2,002 482
Mean = SD =	ges (1,400 C = 1,381.2 = 1,111.89 = 497.25	<u>U's)</u>	$\begin{array}{rl} \text{Mean} &=& 1,3\\ \text{SD} &=& 9 \end{array}$		n =) =	802.36
5 Stag	ges * (830 Cl	J's)				
SD =	= 786.80 = 845.40 = 378.07					

Table 12. Two seasons (1974-75 and 1975-76) differences in GDH requirements to different chill unit exposure for 'Concord' grapes

- Table 13. Regression for growing degree hours to percent soluble solids in 'Concord' grapes for the 1975 and 1976 seasons
- X = % Soluble solids Y = GDH's Y = 44,911.54 + 2,770 x (% SS) Y = $a_0 - a_1 x$ $a_0 = 44,911.54$ $a_1 = +2,770$ $r^2 = 0.95$ r = .975 44,911.54 + 2,770 x 12% = 78,151.54 44,911.54 + 2,770 x 18% = 94,771.54

				eat unit				
Month	Ave.			ear				
	1924-69*	1957*	1958*	1959*	1960*	1961*	1962*	1963*
April	39							
May	273		102					
June	450	398	579	350	352	542	327	370
July	642	543	749	644	720	690	612	535
Aug.	592	494	692	498	516	721	545	618
Sept.	375	448	247	326	392	268	434	520
Oct.	62	16		73	90		58	186
Total	2433	1899	2369	1891	2070	2221	1976	2229
Full bloom		6/5	5/27	6/7	6/8	6/3	6/12	6/9
Harvest		10/1	9/16	10/14	10/7	9/21	10/12	10/19
		1964*	1965*	1966*	1967*	1968*	1969*	1978*
April						82	60	
May				36		256	368	232.5
June		306	434	390	446.5	442	584	507.0
July		638	668	577	698	698	623	647.9
Aug.		512	650	642	754.5	529	510	533.2
Sept.		319	340	424	537.5	356	376	213
Oct.		89	62			22	26	
Total		1864	2154	2069	2436.5	2385	2547	2134.0
Full bloom		6/9	6/3	5/28	6/9	6/3	5/31	6/5
Harvest		10/12	10/5	9/27	10/1	10/8	10/14	9/21· 10/1

Table 14.	Fourteen	years of heat	units,	full	bloom,	and	harvest	dates	from
	Prosser,	Washington							

1. References* Clore, W. J. et al. (1957-1970), Wash. State Hort. Assoc. Proc.

2. Heat units expressed in accumulative degree days above 50 F full bloom-harvest.

3. Heat units are obtained by the number of degrees above the monthly mean temp. of 50 F times number of days in the month.

4. Weather station at the Irrigated Agriculture Research and Extension Center, Prosser, Wash.

Month	Septembe	er Y:	nth <u>September</u> Yr. <u>1974</u> Crop <u>Concord grap</u>			
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	89	52				
2	87	51				
3	90	46				
4	91	45				
5	91	57				
6	85	49				
7	90	48				
8	90	58				
9	91	54				
10	90	55				
11	84	56				
12	68	36				
13	72	49				
14	73	50				
15	74	41				
16	80	42				
17	82	42				
18	82	48				
19	81	46				
20	82	44				
21	82	49				
22	83	45				
23	83	46				
24	84	45				
25	83	46				
26	82	45				
27	80	44				
28	69	33				
29	77	32				
30	80	38				

Table 15. Daily temperature to CU and GDH accumulations, $1974\!-\!75$

Month	October	Yr.	1974	Crop Concor	rd grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	81	40				
2	84	41				
3	83	52				
4	62	45	8	8		
5	59	41	14	22		
6	63	31	10	32		
7	70	35	6	38		
8	74	40	0	38		
9	73	45	-2	36		
10	68	38	8	44		
11	66	39	10	54		
12	66	49	0	54		
13	65	36	10	64		
14	67	35	6	70		
15	70	35	6	76		
16	69	38	6	82		
17	72	39	4	86		
18	72	38	4	90		
19	76	38	2	92		
20	79	41	-2	90		
21	70	38	4	94		
22	56	33	16	110		
23	62	43	10	120		
24	61	38	14	134		
25	65	40	10	144		
26	66	38	10	154		
27	63	38	12	166		
28	62	38	12	178		
29	52	43	16	194		
30	48	37	24	218		
31	44	37	24	242		

Month	November	Yr.	1974	Crop Concor	d grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	47	40	24	266		
2	55	36	18	284		
3	54	42	20	304		
4	52	27	12	316		
5	50	26	12	328		
6	52	29	16	344		
7	59	27	10	354		
8	55	32	16	370		
9	50	36	22	392		
10	50	27	14	406		
11	54	24	12	418		
12	56	28	14	432		
13	59	33	14	446		
14	60	30	12	458		
15	56	31	14	472		
16	55	27	12	484		
17	57	26	12	496		
18	51	35	20	516		
19	49	34	20	536		
20	58	26	12	548		
21	60	33	12	560		
22	58	37	18	578		
23	44	22	8	586		
24	52	24	12	598		
25	52	29	14	612		
26	48	25	14	626		
27	41	23	6	632		
28	46	22	12	644		
29	43	19	6	650		
30	43	17	8	658		

Month	December	Yr.	1974	Crop Concor	d grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH'S
1	43	19	6	664		
2	47	18	10	674		
3	53	22	10	684		
4	52	42	20	704		
5	45	34	18	722		
6	45	26	12	734		
7	42	30	12	746		
8	39	21	4	750		
9	37	14	2	752		
10	35	14	0	752		
11	34	17	0	752		
12	44	26	10	762		
13	39	28	6	768		
14	33	20	0	768		
15	34	26	0	768		
16	42	31	12	780		
17	38	26	4	784		
18	36	18	2	786		
19	38	23	4	790		
20	38	30	6	796		
21	44	30	14	810		
22	43	21	8	818		
23	28	4	0	818		
24	30	2	0	818		
25	29	5	0	818		
26	31	9	0	818		
27	35	8	0	818		
28	39	25	6	824		
29	33	19	0	824		
30	26	3	0	824		
31	30	9	0	824		

Month	Janua	ry Yr.	1975	Cro	p <u>Conco</u>	rd grapes	
Day	Max	Min	CU		Σ CU	GDH's	Σ GDH's
1	27	2	0		824		26.27
2	28	11	0		824		
3	34	4	0		824		
4	35	13	0		824		
5	34	16	0		824		
6	41	29	10	*ECA	834		
7	40	30	10		844	0	0
8	40	29	8		852	0	0
9	31	11	0		852	0	0
10	29	10	0		852	0	0
11	25	12	0		852	0	0
12	23	-4	0		852	0	0
13	30	3	0		852	0	0
14	32	6	0		852	0	0
15	36	11	0		852	0	0
16	35	16	0		852	0	0
17	42	17	8		860	4	4
18	46	30	14		874	30	34
19	45	18	10		884	14	48
20	43	17	6		890	6	54
21	39	21	6		896	0	54
22	35	16	0		896	0	54
23	40	14	4		900	0	54
24	45	30				24	78
25	55	36				144	222
26	55	33				126	348
27	34	17				0	348
28	38	15				0	348
29	29	0				0	348
30	28	4				0	348
31	40	18				0	348
*End d	chill a	accumulation	n				

Month	February	Yr. 1975	grapes	S	
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's
1	42	28		6	354
2	47	25		30	384
3	45	35		32	416
4	40	30		0	416
5	37	18		0	416
6	37	10		0	416
7	44	28		16	432
8	47	33		44	476
9	44	35		22	498
10	41	32		2	500
11	47	30		40	540
12	51	28		68	608
13	47	38		66	674
14	47	28		34	708
15	47	27		34	742
16	41	24		2	742
17	38	20		0	742
18	36	20		0	742
19	41	20		2	746
20	40	26		0	746
21	29	14		0	746
22	29	6		0	746
23	35	13		0	746
24	43	15		8	752
25	45	20		14	766
26	48	20		34	800
27	48	31		48	848
28	53	33		106	954

Month	March	Yr. <u>1975</u>	Crop Concord grapes	_
Day	Max	Min CU	Σ CU GDH's	Σ GDH's
1	66	32	244	1,198
2	64	37	258	1,456
3	57	30	132	1,588
4	58	27	134	1,722
5	58	31	148	1,870
6	54	39	158	2,028
7	54	37	140	2,168
8	60	35	194	2,362
9	52	35	104	2,466
10	50	33	74	2,540
11	49	27	50	2,590
12	50	28	58	2,648
13	48	27	42	2,690
14	46	33	36	2,726
15	51	25	60	2,786
16	47	32	42	2,828
17	40	22	0	2,828
18	57	32	144	2,972
19	68	39	326	3,298
20	66	43	346	3,644
21	53	30	92	3,736
22	51	32	82	3,818
23	43	29	10	3,828
24	43	29	8	3,836
25	45	38	44	3,880
26	41	23	2	3,882
27	29	13	0	3,882
28	29	12	0	3,882
29	35	11	0	3,882
30	49	25	46	3,928
31	46	34	38	3.966

Month	April	Yr. <u>1975</u>	Crop Concord grapes	
Day	Max	Min CU	Σ CU GDH's	Σ GDH's
1	41	21	2	3,968
2	45	16	14	3,982
3	56	28	116	4,098
4	57	36	166	4,264
5	61	40	252	4,516
6	60	34	188	4,704
7	43	29	36	4,740
8	46	27	26	4,766
9	46	30	30	4,796
10	52	35	106	4,902
11	53	36	120	5,022
12	58	40	216	5,238
13	60	29	160	5,398
14	53	30	94	5,492
15	56	41	202	5,694
16	56	33	138	5,832
17	46	32	34	5,866
18	46	32	34	5,900
19	58	32	154	6,054
20	56	39	180	6,234
21	63	34	280	6,514
22	69	45	408	6,922
23	60	39	228	7,150
24	68	32	268	7,418
25	68	32	266	7,684
26	48	28	42	7,726
27	45	31	24	7,750
28	44	31	18	7,768
29	45	31	24	7,792
30	56	29	120	7,912

Month	May	Yr. 1975	Crop Concord grap	bes
Day	Max	Min CU	Σ CU GDH'	s Σ GDH's
1	61	31	182	8,094
2	64	34	234	8,328
3	75	37	388	8,716
4	70	32	290	9,006
5	48	32	52	9,058
6	49	32	60	9,118
7	43	37	120	9,138
8	60	38	218	9,356
9	69	35	300	9,656
10	74	41	420	10,076
11	74	45	466	10,542
12	60	39	228	10,770
13	71	38	352	11,122
14	83	41	510	11,632
15	85	49	620	12,252
16	85	49	618	12,870
17	77	49	650	13,420
18	75	45	480	13,900
19	75	48	514	14,414
20	52	33	94	14,508
21	54	33	116	14,624
22	56	37	164	14,788
23	56	41	202	14,990
24	75	41	430	15,420
25	72	27	282	15,702
26	68	30	254	15,956
27	67	44	372	16,328
28	66	39	300	16,628
29	72	47	466	17,094
30	74	41	420	17,514
31	75	50	538	18,052

Month	June	Yr. <u>1975</u>	Crop Concor	d grapes	apes	
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's	
1	80	46		544	18,596	
2	83	51		630	19,226	
3	72	52		526	19,752	
4	71	43		406	20,158	
5	80	45		534	20,692	
6	88	49		648	21,330	
7	87	61		762	22,092	
8	69	46		420	22,512	
9	67	41		334	22,846	
10	78	40		452	23,298	
11	78	39		444	23,742	
12	86	47		602	24,344	
13	85	52		654	24,998	
14	82	54		662	25,660	
15	87	51		656	26,316	
16	84	56		692	27,008	
17	76	54		598	27,606	
18	68	44		384	27,990	
19	60	43		274	28,264	
20	66	42		334	28,598	
21	68	49		444	29,042	
22	78	45		512	29,554	
23	83	53		652	30,206	
24	84	55		682	30,888	
25	80	43		508	31,396	
26	77	39		432	31,828	
27	81	49		590	32,418	
28	83	42		522	32,940	
29	89	49		644	33,584	
30	89	56		718	34,302	

Month	July	Yr. <u>1975</u>	Crop Concord gr	apes
Day	Max	Min CU	Σ CU GD	H's Σ GDH's
1	92	51	68	0 34,982
2	95	55	73	4 35,716
3	88	59	74	6 36,462
4	90	60	76	4 37,226
5	91	58	74	8 37,974
6	91	56	72	6 38,700
7	94	61	78	6 39,486
8	95	72	87	0 40,356
9	94	69	85	2 41,208
10	94	66	82	8 42,036
11	79	65	76	2 42,798
12	87	67	82	2 43,620
13	88	63	78	8 44,408
14	90	61	77	4 45,182
15	90	63	79	2 45,974
16	89	67	82	8 46,802
17	88	57	72	6 47,528
18	89	64	80	0 48,328
19	93	62	79	2 49,120
20	94	60	77	6 49,896
21	96	61	79	2 50,688
22	95	63	80	6 51,494
23	92	57	74	0 52,234
24	93	59	76	6 53,000
25	95	59	77	0 53,770
26	95	58	76	0 54,530
27	98	60	78	6 55,316
28	93	60	77-	4 56,090
29	85	59	73	2 56,822
30	87	60	75	2 57,574
31	83	47	58	2 58,156

Month	August	Yr. <u>1975</u>	Crop Concord grapes			
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's	
1	79	47		548	58,704	
2	84	45		566	59,270	
3	92	50		668	59,938	
4	93	52		694	60,632	
5	94	57		750	61,382	
6	97	64		818	62,200	
7	97	66		832	63,032	
8	88	48		628	63,660	
9	91	52		686	64,346	
10	93	55		724	65,070	
11	92	63		800	65,870	
12	86	61		758	66,628	
13	85	54		676	67,304	
14	86	59		738	68,042	
15	85	59		732	68,774	
16	88	53		680	69,454	
17	90	59		754	70,208	
18	90	55		714	70,922	
19	87	65		804	71,726	
20	79	52		606	72,332	
21	78	51		586	72,918	
22	82	50		608	73,526	
23	87	57		720	74,246	
24	86	53		672	74,918	
25	80	42		496	75,414	
26	90	49		648	76,062	
27	90	58		744	76,806	
28	85	52		654	77,460	
29	83	46		570	78,030	
30	89	47		620	78,650	
31	88	52		672	79,322	

Month	September	Yr.	1975	Crop Concord	grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	89	66	- 11		818	80,140
2	75	40			418	80,558
3	83	44			546	81,104
4	82	46			562	81,666
5	82	45			550	82,216
6	85	44			562	82,778
7	88	46			604	83,382
8	87	52			666	84,048
9	85	55			688	84,736
10	79	61			814	85,450
11	79	56			654	86,104
12	81	60			720	86,824
13	80	54			640	87,464
14	81	50			600	88,064
15	83	50			618	88,682
16	82	54			656	89,338
17	81	53			636	89,974
18	69	46			418	90,392
19	70	35			312	90,704
20	69	35			300	91,004
21	75	37			390	91,394
22	79	41			474	91,868
23	80	41			486	92,354
24	82	40			490	92,844
25	82	41			502	93,346
26	82	45			550	93,896
27	77	40			444	94,340
28	78	38			432	94,772
29	74	40			406	95,178
30	74	44			456	95,634

Month	October	Yr	. <u>1975</u>	Crop Conce	ord grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	74	41			420	96,050
2	78	39				
3	82	40				
4	81	46				
5	82	43				
6	82	55				
7	76	40				
8	55	37	20	20		
9	68	32	6	26		
10	72	43	0	26		
11	71	47	-2	24		
12	51	44	20	44		
13	51	39	22	66		
14	55	38	20	86		
15	59	32	10	96		
16	65	33	10	106		
17	70	37	8	114		
18	71	39	4	118		
19	70	34	4	122		
20	70	36	6	128		
21	73	39	4	132		
22	71	35	4	136		
23	44	28	12	148		
24	41	21	8	156		
25	47	21	10	166		
26	62	32	12	178		
27	51	36	20	198		
28	55	25	12	210		
29	65	29	8	218		
30	64	37	12	230		
31	57	34	16	246		

Table 16. Daily temperature to CU and GDH accumulations, 1975-76

Month	November	Yr.	1975	Crop Concord	grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	55	28	14	260		
2	60	29	12	272		
3	62	31	10	282		
4	61	29	10	292		
5	62	28	8	300		
6	63	36	12	312		
7	55	38	20	332		
8	48	34	20	352		
9	45	21	10	362		
10	53	27	12	374		
11	43	25	10	384		
12	44	17	6	390		
13	50	19	10	400		
14	53	21	12	412		
15	59	24	8	420		
16	54	30	14	434		
17	45	30	14	448		
18	37	26	2	450		
19	42	21	8	458		
20	37	20	2	460		
21	38	20	2	462		
22	40	15	6	468		
23	41	26	8	476		
24	44	33	16	492		
25	42	25	8	500		
26	32	17	0	500		
27	38	29	6	506		
28	40	15	6	512		
29	29	16	0	512		
30	38	17	2	514		

Month	December	Yr.	1975	Crop Concor	rd grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	45	32	16	530		
2	45	30	14	544		
3	52	27	14	558		
4	56	26	10	568		
5	52	33	18	586		
6	55	38	20	606		
7	53	28	14	620		
8	55	33	16	636		
9	53	27	12	648		
10	50	28	14	662		
11	50	24	12	674		
12	48	33	18	694		
13	39	26	6	700		
14	29	9	0	700		
15	33	10	0	700		
16	43	20	6	706		
17	39	16	4	710		
18	37	15	0	710		
19	34	12	0	710		
20	28	10	0	710		
21	33	20	0	710		
22	28	20	0	710		
23	31	25	0	710		
24	35	21	0	710		
25	40	32	12	722		
26	41	24	8	730		
27	38	31	6	736		
28	36	15	2	738		
29	35	18	0	738		
30	33	21	0	738		
31	27	3	0	738		

Month	1 Janua	uary Yr.		3 Crop <u>Conce</u>	ord grape	l grapes		
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH'		
1	24	12	0	738				
2	22	0	0	738				
3	28	10	0	738				
4	34	14	0	738				
5	39	16	2	740				
6	37	19	2	742				
7	32	14	0	742				
8	45	27	12	754				
9	45	31	16	770				
10	38	20	2	772				
11	33	12	0	772				
12	39	30	8	780				
13	35	13	0	780				
14	39	15	4	784				
15	41	23	6	790				
16	50	33	18	808				
17	45	24	12	820				
18	41	21	6	826				
19	27	23	2	828				
20	37	16	2	*ECA 830	0			
21	35	14	0	830	0			
22	26	16	0	830	0			
23	26	16	0	830	0			
24	33	23	0	830	0			
25	39	18	4	834	0			
26	35	9	0	834	0			
27	42	16	6	840	4	4		
28	44	27	10	850	14	18		
29	48	23	12	862	36	54		
30	45	25		872	18	72		
31	46	23		884	24	96		
End	chill a	ccumulatio	n					

*End chill accumulation

Month	February	Yr.	1976	Crop Conco	rd grapes	
Day	Max	Min	CU	Σ CU	GDH's	Σ GDH's
1	44	19	8	892	10	106
2	42	19	6	898	4	110
3	53	20	10	908	70	180
4	51	23			58	238
5	25	19			0	238
6	31	6			0	238
7	35	9			0	238
8	33	17			0	238
9	38	30			0	238
10	39	18			0	238
11	42	12			4	242
12	42	12			2	244
13	41	19			4	248
14	43	21			6	254
15	45	31			24	278
16	38	24			0	278
17	41	17			2	280
18	42	33			8	288
19	43	25			8	296
20	36	23			0	296
21	38	10			0	296
22	42	12			4	300
23	53	20			68	368
24	51	31			76	444
25	56	29			120	564
26	60	33			182	746
27	60	35			196	942
28	56	34			142	1,084
29	56	37			164	1,248

Month	March	Yr. <u>1976</u>	Crop Concord grapes	
Day	Max	Min CU	Σ CU GDH's	Σ GDH's
1	51	28	68	1,316
2	35	14	0	1,316
3	35	10	0	1,316
4	32	8	0	1,316
5	35	9	0	1,316
6	36	10	0	1,316
7	40	14	0	1,316
8	45	18	14	1,330
9	50	19	46	1,376
10	54	23	82	1,458
11	52	26	72	1,530
12	35	9	0	1,530
13	48	15	30	1,560
14	47	35	52	1,612
15	45	32	24	1,636
16	57	26	120	1,756
17	63	29	192	1,948
18	65	37	270	2,218
19	60	25	146	2,364
20	42	25	4	2,368
21	54	29	100	2,468
22	64	26	190	2,658
23	62	43	298	2,956
24	63	27	184	3,140
25	60	29	160	3,300
26	46	26	26	3,326
27	46	29	28	3,354
28	44	19	12	3,366
29	44	26	14	3,380
30	50	24	52	3,432
31	64	26	190	3,622

Month	April	Yr. <u>1976</u>	Crop Concord grapes	
Day	Max	Min CU	Σ CU GDH's	Σ GDH's
1	64	46	358	3,980
2	55	21	88	4,068
3	67	25	216	4,284
4	73	32	324	4,608
5	71	45	432	5,040
6	46	36	44	5,084
7	60	36	202	5,286
8	70	39	348	5,634
9	66	41	324	5,958
10	67	31	248	6,206
11	74	42	432	6,638
12	67	45	382	7,020
13	60	36	202	7,222
14	57	35	162	7,384
15	53	33	104	7,488
16	43	31	10	7,498
17	50	34	78	7,576
18	52	32	92	7,668
19	53	33	104	7,772
20	66	33	250	8,022
21	66	45	372	8,394
22	67	48	418	8,812
23	62	39	· 252	9,064
24	72	24	268	9,332
25	70	26	254	9,586
26	44	31	18	9,604
27	55	28	104	9,708
28	65	34	246	9,954
29	66	36	274	10,228
30	66	33	250	10,478

Month	May	Yr. <u>1976</u>	Crop Concord grape	es
Day	Max	Min CU	Σ CU GDH's	s Σ GDH's
1	71	34	316	10,794
2	76	38	412	11,206
3	79	45	522	11,728
4	78	55	634	12,362
5	70	41	370	12,732
6	70	49	466	13,198
7	70	45	420	13,618
8	69	41	358	13,976
9	74	40	406	14,382
10	78	44	502	14,884
11	75	55	598	15,482
12	67	43	358	15,840
13	77	37	414	16,254
14	85	43	550	16,804
15	84	46	578	17,382
16	77	45	502	17,884
17	87	44	576	18,460
18	87	57	720	19,180
19	86	46	590	19,770
20	79	53	620	20,390
21	75	46	490	20,880
22	58	50	334	21,214
23	75	42	444	21,658
24	74	47	490	22,148
25	72	43	418	22,566
26	71	38	352	22,918
27	78	40	452	23,370
28	83	42	522	23,892
29	80	47	558	24,450
30	74	53	562	25,012
31	80	54	640	25,652

Month	June	Yr. <u>1976</u>	Crop <u>Concor</u>	d grapes	
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's
1	81	42		506	26,158
2	87	50		644	26,802
3	87	50		644	27,446
4	84	52		646	28,092
5	85	52		654	28,746
6	90	49		648	29,394
7	83	50		616	30,010
8	85	53		666	30,676
9	85	48		606	31,282
10	85	52		654	31,936
11	59	44		274	32,210
12	69	40		348	32,558
13	70	32		290	32,848
14	59	33		170	33,018
15	74	37		376	33,394
16	74	52		552	33,946
17	72	45		442	34,388
18	74	44		454	34,842
19	89	43		578	35,420
20	92	43		592	36,012
21	90	52		682	36,694
22	89	53		686	37,380
23	70	42		382	37,762
24	73	41		408	38,170
25	82	47		572	38,742
26	82	40		492	39,234
27	88	44		580	39,814
28	95	50		682	40,496
29	95	58		760	41,256
30	95	70		860	42,116

Month	July	Yr. <u>1976</u>	Crop Concord	grapes	
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's
1	92	58		752	42,868
2	85	52		652	43,520
3	94	50		678	44,198
4	95	55		732	44,930
5	95	56		742	45,672
6	98	58		770	46,442
7	98	61		794	47,236
8	97	63		810	48,046
9	99	60		788	48,834
10	99	62		806	49,640
11	97	65		826	50,466
12	88	68		834	51,300
13	88	55		704	52,004
14	90	53		690	52,694
15	95	56		744	53,438
16	98	62		802	54,240
17	97	65		826	55,066
18	80	58		688	55,754
19	83	57		696	56,450
20	88	55		704	57,154
21	91	57		738	57,892
22	92	57		740	58,632
23	98	62		804	59,436
24	97	61		794	60,230
25	91	60		768	60,998
26	91	57		736	61,734
27	93	58		756	62,490
28	93	57		744	63,234
29	93	69		850	64,084
30	90	67		830	64,914
31	86	59		738	65,652

Month	August	Yr. <u>1976</u>	Crop Concord g	grapes	
Day	Max	Min CU	Σ CU C	GDH's	Σ GDH's
1	84	57	-	704	66,356
2	86	62	7	768	67,124
3	86	62	5	770	67,894
4	85	55	6	388	68,582
5	87	48	6	520	69,202
6	88	50	(350	69,852
7	88	57	7	724	70,576
8	85	48	6	508	71,184
9	83	50	6	516	71,800
10	86	51	e	650	72,450
11	84	55	6	580	73,130
12	89	53	6	588	73,818
13	88	58	7	736	74,554
14	88	57	7	724	75,278
15	88	59	7	746	76,024
16	87	44	E	576	76,600
17	87	52	6	666	77,266
18	87	58	7	730	77,996
19	84	50	6	524	78,620
20	89	52	6	676	79,296
21	93	56	7	734	80,030
22	93	63	8	302	80,832
23	84	59	7	726	81,558
24	85	49	6	520	82,178
25	91	51	6	674	82,852
26	91	61	7	78	83,630
27	82	39	4	182	84,112
28	82	40	4	90	84,602
29	92	50	6	570	85,272
30	88	54	6	92	85,964
31	88	53	6	82	86,646

Month	September	Yr. <u>1976</u>	Crop Concord	grapes	
Day	Max	Min CU	Σ CU	GDH's	Σ GDH's
1	89	55		708	87,354
2	93	51		684	88,038
3	92	52		690	88,728
4	90	51		670	89,398
5	93	53		704	90,102
6	92	58		752	90,854
7	69	51		478	91,332
8	74	38		388	91,720
9	81	43		518	92,238
10	81	50		600	92,838
11	79	61		714	93,552
12	74	56		600	94,152
13	74	50		526	94,678
14	79	47		546	95,224
15	83	57		698	95,922
16	83	59		720	96,642
17	84	55		682	97,324
18	71	50		490	97,814
19	77	42		466	98,280
20	80	47		558	98,838
21	82	53		644	99,482
22	77	49		550	100,032
23	79	49		572	100,604
24	78	54		620	101,224
25	76	49		540	101,764
26	73	51		526	102,290
27	75	43		450	102,740
28	76	41		448	103,188
29	79	42		486	103,674
30	81	41		494	104,168

VITA

Mervin Gayle Weeks

Candidate for the Degree of

Master of Science

Thesis: A Study of Rest Period, Hardiness, and Bud Development of the 'Concord' Grape

Major Field: Plant Science

Biographical Information:

- Personal Data: Born at Vernal, Utah, January 15, 1947, son of Fred Elmer and Avis Olive Edwards Weeks; married Clara Jean Abplanalp December 20, 1968; four children-Jason Merv, Amber, Jarrod Rustun, and Jessik Marshall.
- Education: Attended elementary school at Central Elementary, Vernal, Utah; graduated from Ashley Valley Junior High, 1962 and Uintah High School in 1965; received the Bachelor of Science degree from Brigham Young University with a major in Horticulture, in 1973.
- Professional Experience: 1973 to present, research technician, Plant Science Department, Utah State University; Summer of 1972 research aide, Brigham Young University, and 1970-71 manager of golf course grounds at Vernal, Utah. During the above, time has been spent for several years raising small fruits and working in fruit and vegetable crops.