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Abstract. Particulate emissions from agricultural sources vary from dust created by 
operations and animal movement to the fine secondary particulates generated from ammonia 
and other emitted gases. The development of reliable facility emission data using point 
sampling methods designed to characterize regional, well-mixed aerosols are challenged by 
changing wind directions, disrupted flow fields caused by structures, varied surface 
temperatures, and the episodic nature of the sources found at these facilities. We describe a 
three-wavelength lidar-based method, which, when added to a standard point sampler array, 
provides unambiguous measurement and characterization of the particulate emissions from 
agricultural production operations in near real time. Point-sampled data are used to provide 
the aerosol characterization needed for the particle concentration and size fraction calibration, 
while the lidar provides 3D mapping of particulate concentrations entering, around, and 
leaving the facility. Differences between downwind and upwind measurements provide an 
integrated aerosol concentration profile, which, when multiplied by the wind speed profile, 
produces the facility source flux. This approach assumes only conservation of mass, 
eliminating reliance on boundary layer theory. We describe the method, examine 
measurement error, and demonstrate the approach using data collected over a range of 
agricultural operations, including a swine grow-finish operation, an almond harvest, and a 
cotton gin emission study.  

Keywords: aerosol characterization, agriculture emission measurement, system error, flux 
measurement 

1 INTRODUCTION

The movement of urban populations into agricultural production areas, combined with the 
increasing size of these facilities to capture economies of scale and meet global food needs, 
has elevated the issue of agricultural production emissions to national attention. Accurate 
measurement of specific operations and whole facility aerosol emissions, especially those that 
contain large percentages of organic matter, are technically challenging. Currently, 
regulations of Concentrated Agricultural Feeding Operations (CAFO) and other particulate 
emission sources are based on multiple point-sampled measurements taken near these 
facilities and combined with models to account for wind and time variation [1]. The 
combination makes it difficult to determine the effectiveness of specific conservation and 
management practices.  

The accuracy and cost of emission and management practice studies could be reduced if it 
were possible to directly measure the flux of emissions from a facility and its components in 
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near real time. While the concept behind the measurement of a physical flux is intuitively 
simple—the mass transport of material from a defined surface in a defined time—in 
environmental applications, actual measurement is difficult. Taken in its simplest form, mass 
flux can be defined as the mean amount of material moving through a defined area per unit 
time. In a pipe or closed container, flux can be measured as accurately as desired, by defining 
the accuracy of the sensors and the velocity of movement. Extensive work has been 
conducted over the past century to develop methods that extend this concept to uncontained 
fluxes, such as momentum, water vapor, heat, and carbon dioxide from natural and managed 
surfaces [2]. 

While initial studies were limited to mean measurements and derived diffusion 
coefficients by the slow response of available sensors, the general availability of robust, fast-
response sensors have made eddy correlation flux measurement the method of choice for flux 
determination in the atmospheric boundary layer [3][4]. Emission measurements from 
agricultural sources, however, challenge the assumptions and costs associated with this 
method. The uniform flow disruptions of scattered, variable-sized and roofed buildings, 
surface treatments, and mobile sources, combined with unconfined wind vectors make mean 
determination difficult. In this paper, we discuss the potential of using remote sensing to 
surround a facility or operation with the equivalent of a vast number of rapid response sensors 
to map the emission plume and track its movement. Toward this approach, we utilize a multi-
wavelength lidar calibrated using standard point sensors. The combination allows us to build 
real time and averaged particulate mass concentration fields, which are combined with the 
mean wind field to produce the flux measurement.  

Aerosol sounding techniques for the retrieval of physical aerosol parameters from multi-
wavelength lidar measurements have been reported since the 1980s and have made major 
progress in the past five years [5][6][7][8][9][10]. Unambiguous and stable retrieval of 
aerosol physical parameters using lidar can require up to twelve empirically derived 
quantities, which are not easily derived optically [11]. The instrumentation required to 
provide both multi-wavelength elastic scatter lidar and Raman information is expensive, 
complicated to operate, and often immobile. To date, a significant database of atmospheric 
aerosol characteristics has been obtained using a combination of satellite and ground-based 
observations [12][13]. Using this database, several researchers have shown that the physical 
properties of assumed aerosols can be successfully retrieved based on measurements of 
backscatter coefficients at only three wavelengths [6][14][15]. However, since agricultural 
aerosols may differ from the database, direct characterization must be part of the 
measurement.  

The Aglite lidar is a robust, agile, and easily operated system that displays emitted 
particulate distributions in a few seconds under most meteorological and diurnal conditions. 
The system uses three wavelengths combined with information derived from an array of point 
sensors to distinguish between different types and sizes of particulate emissions. The resulting 
combination of point samplers and scanning lidar provides near real time measurements of 
facility operations, which can be used to evaluate emission fluxes and operational approaches 
to minimize them.  

2 MEASUREMENTS AND METHODS 

The lidar system is developed around a monostatic laser transmitter and 28-cm receiver 
telescope (Fig. 1). The laser is a three-wavelength, 6W, Nd:YAG laser, emitting at 1.064 
(3W), 0.532 (2W) and 0.355 (1W) m with a 10 kHz repetition rate [16]. Backscattered 
energy at the visible and UV wavelengths is detected using photon-counting photo-multiplier 
tubes, while the IR reflection is detected using an APD photon Counting Module. The 
minimum system range gate is 6 m; however, the range resolution for this data is ~12 m, 
limited by the laser pulse width. A measurement integration time of 1 second was used for all 
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data presented in this paper.  The lidar is vertically orientated, with a turning mirror turret to 
direct the beam -10 to + 45  vertically and  140  horizontally from the top of a small trailer. 
Lidar scan rates from 0.1 – 1 /s are used to develop the 3D map of the source(s), dependent 
on range and concentration of the aerosol [16]. 

Fig. 1. The three wavelength Aglite lidar at dusk, scanning a harvested wheat field. 

The lidar equation (1) describes the lidar return signal as a function of range z for 
wavelength :

z
zz

z
z

zAcLPzP
020 2exp

2
.   (1)

The term P (z) is the measured reflected power for distance z and is measured in photon 
counts. P0 is the output power of the lidar, L is the lidar coefficient, which represents system 
efficiency, c is the speed of light,  is the pulse width of the lidar, A (z) is the effective area 
function, which includes the geometric form factor (GFF), (z) is the atmospheric backscatter 
coefficient, and (z) is the atmospheric extinction coefficient. The backscatter and extinction 
coefficients are functions of temperature, pressure, humidity, and the background and emitted 
aerosols.  

Expected signal-to-noise ratios (SNR) calculated by Marchant [16] using synthetic data 
for the Aglite lidar at 20 and 100 percent emitted power and 1 s, full range resolution are 
shown in Fig. 2. These plots were made using system calibration constants measured in the 
field. Standard temperature and pressure and zero percent humidity were assumed. The 
background aerosol was assumed to have the same properties as the continental average 
aerosol from the OPAC aerosol database [12]. In these plots, SNR is defined as the ratio of 
the mean aerosol backscatter amplitude over the standard-deviation of the aerosol backscatter. 
Because the noise is not correlated, SNR can be increased by both time and range averaging 
[15].  

Journal of Applied Remote Sensing, Vol. 3, 033510 (2009)                                                                                                                                    Page 3

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 11/08/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Fig. 2. Aerosol backscatter 1s SNR for the Aglite lidar, corrected for molecular backscatter, as a 
function of range for 20% and full power levels and two PM10 background loadings. Chart color 

represents laser wavelength (red – IR, green – visible, blue – UV). 

2.1 Aerosol Information 

The solution of (1) requires knowledge of the optical parameters of the both the background 
and source aerosols, which need to be measured at one or more reference points upwind 
(background) and downwind (background plus source) of the facility. In our approach [17], 
both optical and aerodynamic mass faction sensors are utilized to develop these parameters 
(see Fig. 3B). Aerodynamic mass fraction samples are collected using MiniVols (Airmetrics, 
Eugene, OR.), which are portable, self-contained, filter-based impactor particulate samplers. 
Chow (2006) demonstrated that PM2.5 and PM10 concentrations measured by MiniVols in 
California’s San Joaquin Valley did not differ statistically from the concentrations measured 
by the collocated Federal Reference Method (FRM) samplers [18].  

We have also conducted extensive calibration and intercalibration comparisons of the 
MiniVols against FRM samplers located at an air quality sampling site in Logan, Utah, 
operated by the Utah Division of Air Quality. In-situ particle size profiles are collected in 
parallel with the MiniVol samplers using Aerosol Profilers, Model 9722 (Met One 
Instruments, Inc., Grants Pass, OR.) This Optical Particle Counter (OPC) uses a laser to count 
and size particles at a sampling rate of l/min with a sheath flow of 2 l/min. The counts are 
grouped into eight user-specified size bins from 0.3 to >10 µm (0.3-0.5, 0.5-0.6, 0.6-1.0, 1.0-
2.0, 2.0-2.5, 2.5-5.0, 5.0-10.0, and 10µm in our studies). The OPCs can be read out at a 
range of times from 2 – 60 s per sample.  

2.2 Lidar Retrieval Calibration 

The details of our lidar calibration and aerosol retrieval process are discussed in detail by 
Marchant [19] and Zavyalov [11]. The lidar return power from range z for a single scatter is 
shown in (1). In the case of two distinct classes of scatters, (z) and (z) represent the total 
backscatter and extinction from the sum of a background scattering component plus an 
emission source scattering component. The background scattering component represents 
homogeneous scatterers, including both background aerosol scattering and molecular 
scattering, which is expected to be constant over the relatively short ranges near the ground 
where Aglite is used. These contributions of aerosol scatterers to these coefficients are 
derived from aerosol sampler data, while the contributions due to molecular scattering are 
calculated using data from portable met-stations. The algorithm used to retrieve aerosol 
physical parameters from a raw Aglite lidar signal shown schematically in Fig. 3B involves 
four major steps [11][21], which account for the geometrical form factor of the telescope 
receiving optics and scattered sunlight background radiation. The routine then calculates the 

A B

Background = 10 µg/m3 Background = 50 µg/m3

A B

Background = 10 µg/m3 Background = 50 µg/m3
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optical parameters (backscatter and extinction coefficients) of the background and source 
aerosols at three wavelengths. A solution to the lidar equation for two scatterers was shown 
by Fernald [22]. The algorithm uses Klett’s form of the solution, which is mathematically 
equivalent, but in a more compact form. 

An in-situ OPC instrument is used to provide the reference point values needed for Klett’s 
solution [22]. This OPC is mounted at the top of a calibration tower and the lidar beam path is 
directed past it off to the side. The backscatter coefficients of the background aerosols are 
calculated using Mie theory and the particle size distribution measured by the OPC, while the 
molecular backscatter coefficients are calculated using the current temperature, pressure, and 
humidity as measured by meteorological instruments. These measured backscatter 
coefficients provide the reference values needed by Klett’s retrieval equation. These 
backscatter coefficients are divided by the return power measured at the reference range, 
resulting in calibration constants for the lidar measurement.  When the lidar is not pointed 
past this calibration tower, these calibration constants are used to determine backscatter 
values at the reference range. 

The main assumptions in the retrieval process are: a bi-modal lognormal aerosol size 
distribution, aerosol particles are spherical and the aerosol index of refraction, mode radii, and 
mode geometric standard deviations are constant in time and space. The mode radius 
describes the peak value of a mode, while geometric standard deviation describes the width of 
a mode. Once the particle size distribution and number concentration parameters are 
estimated, the mass concentration of particles with different size ranges (for example PM1.0,
PM2.5, PM10) is calculated using aerodynamically sized information of the particulate 
chemical composition and concentration measured by the MiniVol samplers. Fig. 3A shows a 
calibration experiment arrangement, where multiple OPC and PM samplers are arrayed 
together for estimation of MCF (Mass Conversion Factor) used to convert optical data 
measured with OPC and lidar to mass concentration units. Twenty-minute lidar stares at the 
tower under uniform conditions were used in this case to develop error performance data on 
the lidar and retrieval processes [17]. 

Fig. 3.(A) An example of the array of particulate mass and optical particle counters used in the lidar 
calibration. (B)The retrieval process used to convert lidar returns to particulate mass fraction [16]. 

2.3 Wind and Environmental Information 

Wind profile information is provided by cup anemometers (Met One Instruments, Inc., Grants 
Pass, OR) located at 2.5, 3.9, 6.2, 9.7 and 15.3m on two portable towers. These towers also 
support an array of aerosol samplers. The tower based wind information is supplemented by 
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tethered balloon profiles collected at 5 min. intervals to observe boundary layer structure. The 
wind, humidity, temperature and OPC data are transmitted to the lidar- and data-processing 
trailers for storage and experiment management.  

2.4 Flux Measurement Method  

The lidar’s capability to accurately sample 3D aerosol concentrations entering and leaving an 
operation in near real time (1-3 minutes) makes it possible to measure facility emissions with 
approximately twice that time resolution. Fig. 4A shows the concept behind our approach, 
where the facility is treated as one would calculate the source strength in a bioreactor. In this 
approach, the source strength is determined using the mean flow rate through the reactor and 
the difference in reactive species concentration entering and leaving the vessel. The scanning 
lidar samples the mass concentration fields entering and leaving the facility, while standard 
anemometers provide the mean wind speed profile. This same simple relationship applies to 
defining a box large enough that no source material escapes through the top or side.  

In applying this method, the downwind face of the box has to be far enough from the 
facility that the anemometers provide an accurate wind speed profile. Fig. 4B shows an 
example of our lidar-derived concentration data. The location-concentration plot pattern from 
scanning up one side, across the top, and down the other resembles a common staple used to 
clip papers together and is referred to as a “staple scan.” The data from the top of the box are 
monitored such that no source particulate transport passes through the top. The data for the 
left side panel of the staple provide the background concentration entering the box, while 
those on the right provide the background plus facility concentration leaving the box. The 
short-term flux is calculated by multiplying the area integrated mass concentration difference 
by the wind speed during the scan.  

Flux In Flux Out

Lidar Scan 

Wind Direction 

A B

Flux In Flux Out

Lidar Scan 

Wind Direction 

Flux In Flux Out

Lidar Scan 

Wind Direction 

A B

Fig. 4. (A)Conceptual illustration of the scheme for using lidar to generate time-resolved local area 
particulate fluxes. (B) An example of a “staple” lidar scan over the facility showing aerosol 

concentrations on the three sides of the box. 
The flux equation in the integral form for calculating emission is: 

hr
UD drdhChrChrvF

,

,,                                   (2) 

where  is the average wind speed component, the direction of which defines the long axis 
of the box, CD – C  forms the mass concentration difference upwind and downwind, 
integrated over the range (width) and height of the exit plume. In our routine, F is 
conceptually calculated as:  
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H
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0 0

     (3) 

where R0 and R are the near and far along beam edges of the box and H0 and H form the top 
and bottom of the box. (In many cases, H0 is set above eye level and concentration is 
extrapolated to the ground to avoid illuminating personnel and animals.) The r h term is 
the individual area element for which each flux component is calculated by each step in the 
double summation.  

3 FLUX MEASUREMENT ERROR ESTIMATION

Since the flux measurement (f) is a function of several variables, nxxxf ,,, 21 , and the 
uncertainty of each variable, xi, is known, the uncertainty of f can be calculated. If the 
variables are assumed to be independent, the flux error can be expressed as the square-root of 
the sum of the squares of the uncertainty induced by each individual variable (Met One 
Instruments, Inc., Grants Pass, OR). That is,  

                

2

1
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x
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which for our flux calculations breaks out as: 
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or

ij
i j
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2/1

222     (6) 

where is the wind speed in the direction perpendicular to the lidar scan (cos  corrected). 
Components that are crosswise to the box do not contribute to the flux error because the box 
is defined large enough that none of the source material leaves through the sides or top. 
Specific terms in our error analysis include , the concentration terms, and the mass 
conversion factor (MCF), which is included in Equation (6) as a constant in the concentration 
calculation.  Additional understanding of the flux error estimate can be seen from additional 
rearrangement.  Substituting averaged parameters over the inferred area from Eq. 2 to Eq. 5, a 
simplified equation can be obtained:  

,

2 2 22 22 2 2

2 2
0 0) )

2
( (

D UD U

D U D U

CC Cv vF A A

C CF v C A v C A
(6a)

Typically the mass concentration errors are the same from the downwind and upwind 
sides. In this case, the right hand side approximation is valid. As shown by Zavyalov [17] the 
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errors are now shown in fractional form.  In this form, two things become obvious that are not 
as easily seen in the earlier form. First, the center term includes a 2, which enters in because 
the flux requires both upwind and downwind calculations. The second is the relationship 
between the values of CD and CU. When the two terms are of similar size, their difference in 
the denominator quickly dominates over the other terms. 

 Wind speed and direction errors are dominated by sampling issues and not by the 
instrument calibration as we are estimating the wind field for a parameter averaged over a 
200-300 m area at a particular time. For this error calculation, we estimate the wind errors 
using the standard deviation of the direction and velocity over a 20-min. sampling period. For 
our field campaigns described in this analysis, these errors are typically 10-15% of the wind 
value. We set our wind dataloggers to collect 1-min. averages and standard deviations to 
provide a quality control value for the flux data.  

Short term error calculations after Marchant [16] for the Aglite system and the Zavyalov 
[17] particulate volume concentration retrieval calibration as applied in the flux calculation 
are shown in Table 1. To understand the flux error, we consider that the sides of the flux box 
include data collected over about one minute and ranging from 600 to 1000 m. In the flux 
calculation, the range and scan data are rolled into the single flux number.  Flux error analysis 
data were collected during a calibration stare past the OPC-MiniVol array with the beam 
horizontal to the ground and an upwind scan taken after the stare. The upper section shows 
the SNR ( Cv/Cv) for a (1-sec) stare without OPC noise, while the lower section shows the 
measured system (lidar plus OPC) volume concentration SNR for the lidar measurement 
during the 1-min scan time typically used for flux measurements, as in [18]. 

Table 1 data were collected in system performance experiments under stable aerosol 
conditions with continental aerosol. For these measurements, the system was operating at 
~5% power, and OPC measured particulate background concentrations were 9.0, 25.4, and 
50.2 g/m3 (MCF=1).  

Table 1. Aglite lidar 1- and 60-second aerosol signal to noise ratios (SNR) measured at 5% power under 
uniform conditions at the ranges normally used in flux measurements [16][17]. 

Lidar SNR (Average/standard deviation) during a horizontal stare 
Range PM 600 m 700 m 800 m 900 m 1000 m 
PM2.5 9.0 69 66 63 60 57 
PM10 25.4 6.3 6.0 5.7 5.4 5.2 
TSP 50.2 4.4 4.2 4.0 3.8 3.7 
Concentration Calibration SNR (Lidar and OPC) during a 60 sec stare 
PM2.5 9.0 239 229 218 208 197 
PM10 25.4 22 21 20 19 18 
TSP 50.2 15 15 14 13 13 

These values can be compared with the overall SNR calculated for the system in Fig. 2,
where SNR is given in terms of backscatter. The SNR for increasing particle diameter 
decreases as the particle size to wavelength ratio increases. 

A flux calculation example, with the error estimates and magnitude data demonstrating 
the primary terms of (6), and the resultant hourly average flux or emission strength estimate 
obtained using the Aglite system are shown in Table 2. These data are typical values from our 
system precision experiments, and are designed to show the experienced precision.  
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Table 2. Example Aglite lidar system derived aerosol average emission flux component measurement 
error and estimated flux error determined for uniform conditions.

PM
Bin 

Wind 
Dir ( )

CD-CU (µg/m3)    
@ MCF = 1 MCF CD-CU

(µg/m3)
Wind 
(m/s) 

Area
(m2)

Mass Flux 
(g/s)

PM2.5 330 9.2 0.70 0.002 3.04 0.3 2.19 0.21 4.7 0.69 1000 0.01 0.005 

PM10 330 9.2 21.0 0.58 2.10 0.3 44.10 0.64 4.7 0.69 1000 0.21 0.043 

TSP 330 9.2 57.4 2.24 1.88 0.3 107.91 17.7 4.7 0.69 1000 5.07 0.11 

4 FLUX MEASUREMENT EXAMPLES AND RESULTS  

In this section, we show three examples where the Aglite system is applied to agricultural 
system analysis, and we compare those examples with traditional sampler/model results. Each 
example illustrates the system’s effectiveness for long- and short-term measurements and 
shows lessons learned as the system has evolved.  

4.1 Swine Finishing Facility Measurements 

The Aglite measurement system was applied to an Iowa swine feeding emissions experiment 
August 24 – September 8, 2005. The swine farm data provided a uniform, fixed, nearly 
constant flux demonstration (except for periods when road dust plumes from a nearby county 
road occurred). The fairly steady wind and steady operations during this experiment provided 
ideal conditions for demonstrating the flux calculation method. The facility consisted of three 
separate parallel barns, each housing around 1250 pigs, with 1.4-m tall screen-vented 
windows running along nearly the length of the north and south sides of the barns. The areas 
of the facility not used for barns, feed-bin footprints, or access roads were covered with 
maintained grass. Cultivated fields surrounded the facility with corn to the north, south and 
west and soybeans to the east. The barns were located ~650 m from the lidar. A 20-meter 
tower was sited between two of the barns to support the aerosol and micrometeorological 
instruments (three heights). A particulate diagnostic trailer was located 50 m in the general 
downwind direction from the barns. Other instrument support towers were located around the 
facility.

Example single scans of the upwind (CU, PM10 only) and downwind (CD) staple face show 
the mass concentration values for PM10, PM2.5 between 400 and 900 m from the lidar (Fig. 5). 
The figure shows the typical structure observable in a uniform background and typical plume 
profile. Each vertical scan was collected in approximately 1.25 minutes.  

The vertical profile of horizontal mass concentration difference of the downwind minus 
upwind layers can be easily obtained from these data (Fig. 5C). Single scan differences, of 
course, do not account for accumulation or depletion in the measurement box due to wind 
speed variation during a scan, for input background variation, or for storage in or flushing of 
the box due to the existing large scale wind eddy structure (i.e. we do not attempt to measure 
the same air mass at the upwind and downwind scans). Negative features can be observed in 
the individual profiles. Several scans are required to achieve a meaningful mean estimate of 
the facility emission. For calculation efficiency, we calculate flux through the downwind 
surface first and then the upwind flux, differencing the flux rather than concentration. 
Choosing an area that fully includes the source plume but not a lot of extra area eliminates the 
need to spend resources calculating for pixels that difference to zero. The CD and CU area 
average measurements provide aerosol mass concentration ( g/m3), which, when multiplied 
by the wind speed (m/s), provides the area average flux (FD &FU, g/m2s). Differencing (FD-
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FU) and integrating over the plume area provides the facility emission estimate (FS, g/s) for 
that staple.

Fig. 5. Single upwind (A) and downwind (B) PM10 scans of the swine facility airmass showing the 
distribution of the background and facility leaving plume concentrations ( g/m3), the horizontally 

averaged PM10 concentrations and their difference (C), and the PM10 particulate flux ( g/m2s)
distribution (D) calculated when the difference is multiplied by the wind speed profile.

Table 3 shows emission summary data collected by various methods during the Iowa 
measurement sequence. Martin provides the emissions calculated from the sampler data and 
modeled facility flux during this experiment [23]. Emission rates were also estimated from 
lidar-measured fluxes dividing total day fluxes by the number of pigs inside of the flux box. 
This site has a gravel road on the upwind (south) side that had traffic at a rate of 1-2 cars per 
hour. The road dust could not be separated in the impactor particulate sampler data, but was 
identifiable and could be processed separately in the OPC and lidar data (see PM-
concentrations “without dust” in Table 3). The modeled PM sampler data are similar to PM10
and PM2.5 emission rate values from the lidar. The PM and OPC data were collected over an 
8-day period, while the lidar data were calculated hourly. This was an early deployment of the 
Aglite system, and consistent flux measurement scans were collected only for a two-hour 
period for each particulate class. Considering the large difference in the sample periods and 
that fugitive dust was not excluded from the filter data, we conclude that these data show the 
Aglite system’s capability to characterize a stationary facility with fairly uniform emissions in 
a relatively short period of time. While the magnitude of the PM2.5 emission rate shows 
excellent agreement, the lidar PM10 emission rate was roughly half what was indicated by the 
long term filter data. The PM2.5 emission was relatively constant over the entire sampling 
period, while significant structure was observed in the PM10 data dominated by road dust and 
feeding operations. Since the filter data incorporated emissions from both road and facility 

A B

C D 
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operations, this difference is consistent with the lower level of road traffic that occurred 
during the lidar flux measurement period.  

Table 3. Comparison of the ambient (background) and facility mass concentration and emission rate
(g/pig-day) data measured by filters (23 hour base), OPC (24 hour base) and the lidar (2 hour base). 

PM samplers  OPC data  Lidar data  CM - g/m3

EM - g/pig/day Ambient 
(CU)

Plume 
(CD)

Ambient 
(CU)

Plume 
(CD)

Ambient 
(CU)

Plume 
(CD)

CM-PM10 (with dust) 
Without dust,  

38.7±5.4 49.4±8.3 34.4±24 
28.6±7.8

42.2±28 
38.7±7.8

37.1±18 
30.2±2.5 

52.8±21 
46.4±6.5 

CM-PM2.5 (with dust) 
Without dust,  

13.3±3.2 14.7±3.3 14.3±9.0 
13.7±4.7

17.2±9.7 
16.7±6.6 

11.2±7.2 
9.5±0.8 

12.8±6.5 
11.6±1.4 

EM- PM10

EM – PM 2.5

0.83 0.44
0.09 0.03

0.42 0.13 
0.09 0.04 

4.2 Cotton Gin Measurements 

Measurements at a working cotton gin facility were made from December 11-14, 2006. For 
this deployment, 13 MiniVol impactors (total) were distributed in clusters with PM1, PM2.5,
PM10 and TSP heads, and 5 MetOne OPCs were used for particulate characterization. Facility 
emission rates were not calculated from inverse modeling using measured PM concentrations 
as explained by Martin [22] due to the facility layout (emissions mainly coming from the 
elevated cyclone outlets). The lidar was located 800 m SW of the gin, with reference towers 
directly north and east of the lidar. A wind profile tower supporting the five levels of 
anemometers and temperature sensors, a wind direction and rain gauge, and two levels of 
OPC and MiniVol clusters was located near the gin. A second, similarly instrumented tower 
located south of the gin was used to provide ambient conditions. The season presented a 
nighttime fog challenge, which limited lidar operation to daylight hours, and occasional gin 
operation interruptions were observed as the operators performed maintenance and 
mechanical adjustments. The site provided a diurnally rotating wind condition that made 
emission aerosol measurements more challenging.  

Lidar operations showed two continuous plumes in scans above the facility, one from gin 
stack effluents not captured by the cyclones, and a smaller plume originating at the seed pile, 
which we assume resulted from the wind picking up aerosols from the falling seed stream. 
Other activities, such as vehicle movement and dumping and transferring the cyclone trash, 
were intermittent sources captured by the lidar. Fig. 6 shows sequential lidar measurements 
taken during two days of fairly uniform conditions. Of the 111 scans, 62 were taken on 
December 12th and the remainder on December 14th. These data show relatively consistent gin 
operation, with both days punctuated by downwind concentration spikes associated with non-
continuous activities on the site. There is an increase in fine particulates the second day, with 
nearly equal PM2.5 and PM10 flux. . The top chart shows the wind speed value used in the flux 
calculation, with the two middle strips showing the volume concentration of CU and CD in 

m3/cm3. While this is a somewhat unusual unit, it is the last step before converting to 
mass/m3, and is equivalent to g /m3 if the volume to mass conversion factor (MCF) is 1 (the 
particulates had the density of water). The net flux, in the bottom panel, is the product of the 
CD-CU difference multiplied by the MCF and the wind speed. The MCF values are presented 
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in Table 4. An error in the MCF calculation [17], could explain the increase in PM2.5 value 
approximately doubling on the second day. 

Fig. 6. Wind speed, upwind and downwind volume concentrations, and mass flux calculated using the 
Aglite data collected on December 12 & 14, 2006. December 14th data begin at point 62.  

At the time these data were collected, it was assumed that the upwind aerosol 
concentrations were uniform and would be sampled at a significantly lower rate that the 
downwind values. This experiment and the Almond experiment discussed in the following 
section show that uniform upwind conditions cannot be assumed and that even distant upwind 
activity can add pulses of upwind particulates. Measurement variability for the combined 
period and for each of the individual days is shown in Table 4. Table 4 also shows the MCF 
values used to convert from volume concentration (measured optically by the OPCs and lidar) 
to mass concentration (utilized in regulations and measured by the MiniVol samplers). While 
it is expected that the facility plume and background may have a significant difference in 
aerosol characteristics, identical upwind and downwind MCF values have been used in this 
analysis. Because of the long sampling time required to attain a measurable mass on the filter, 
not knowing how much time the plume is actually impinging on a downwind sampler can 
cause a significant error when the aerosols have different characteristics. We have acquired a 
cascade impactor and an aerodynamic particle sizer to resolve this problem, but for this 
analysis we chose to average the readings from all of the samplers.  
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Table 4. Cotton gin aerosol mass concentration, mass conversion factors, and flux statistics for Fig. 6, 
The concentrations and flux means are shown with 95% confidence intervals. 

While emission rates for the facility were not calculated using inverse modeling, an air 
dispersion model was run using emission rates reported in the facility’s 2005 air permit 
assuming 22 hour per day gin operations for four months of the year combined with the 
meteorological data collected during the field deployment. The model used was the Industrial 
Source Complex Short-Term Model, version 3 (ISCST3), the dispersion model previously 
recommended by the U.S. EPA for use in regulatory applications [24]. As of November 2006, 
the U.S. EPA recommends the use of AERMOD for regulatory applications [Appendix W of 
40 CFR 51, U.S. EPA (November 9, 2005)], but the more complex meteorological inputs for 
this model were not collected during this field study.  

The ISCST3 model assumes steady-state conditions, continuous emissions, and 
conservation of mass. ISCST3 assumes a Gaussian distribution of pollutants based on time-
averaged meteorological data. It also uses stability classes to address pollution dispersion due 
to atmospheric mixing. Stability classes are typically determined by a combination of vertical 
temperature lapse rates and incoming solar radiation or methods using vertical or horizontal 
wind variance. For reference, lidar-based concentrations are compared with the 
concentrations modeled by ISCST3. Fig. 7 compares the lidar-derived PM2.5 aerosol 
concentrations (Table 4) averaged for ~6 hours with the model estimates for the same period. 
Because the source and wind speed were relatively constant for the impactor sampling period, 
a relatively good comparison of the gin emissions was obtained with both the lidar and the 
U.S. EPA dispersion model. The concentration offset between the two is due to the omission 
of the background concentration from the model field.  

Fig. 7. A comparison of lidar and ISCST3 model derived PM2.5 concentrations for a cotton gin under 
variable wind conditions. The model does not include the background aerosol. The white circles are the 

wind and sampler tower locations. 

Whole Period First Day Second Day  Concentration 
( g/m3)
Flux (g/s) PM2.5 PM10 TSP PM2.5 PM10 TSP PM2.5 PM10 TSP 

CU –ave 40.2 1.28 42.4 3.1 52.2 7.1 38.4 1.9 43.0 6.2 46.1 11.9 41.7 1.2 41.8 2.7 57.1 7.9 

CU - 2.92 7.06 16.27 2.89 9.52 18.18 2.07 4.63 13.36 

CD -ave 45.1 0.7 48.3 3.5 79.5 7.1 44.7 0.7 72.6 3.5 105.9 7.1 44.1 0.7 46.1 1.5 72.7 4.6 
CD - 2.95 13.78 28.11 2.95 13.78 28.11 2.51 5.34 16.58 

MCF    3.04 2.10 1.88 2.69 1.63 1.59 

F -ave 4.5 0.5 7.1 0.6 11.7 1.0 2.7 0.3 7.2 0.8 12.6 1.5 6.8 0.7 7.0 0.8 10.7 1.3 

F - 2.82 3.06 5.52 1.24 3.34 6.04 2.57 2.70 4.65 
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4.3 Almond Harvesting Measurement 

The Aglite system was applied to a mobile source emitter in an almond harvest at the Nickels 
Soils Laboratory Research Farm near Woodland, CA. from September 26 to October 11, 
2006. This experiment compared lidar-based measurements to sampler-based model results, 
for a mobile source, tree-obstructed harvest. This orchard was a working orchard in an 
almond-producing area surrounded by orchards under a variety of management schemes. The 
orchard has two varieties in rows orientated north/south with a tree height of about 7 m. The 
soil surface condition was bare ground with a slight crust, and the trees were irrigated by drip 
system. For this deployment, 20 MiniVol samplers (total) distributed in clusters with PM1,
PM2.5, PM10, and TSP heads were used along with 10 MetOne OPCs.  

Fig. 8 shows wind speed, volume-based concentrations, and flux data for 138 scans 
collected over a four-hour period of orchard-sweeping operations. The operation was a 
“mock” or “simulated sweeping” activity that was conducted the day after the nut pickup was 
completed. While measurements were made during actual sweeping and pickup, these data 
were unusable because the light and variable winds on those days caused plume-mixing with 
surrounding field operations. The same equipment and procedures were used for the “mock” 
sweep as for the actual sweeping operation. 

The top plot in Fig. 8 is the wind speed observed for each scan, showing a fairly 
consistent northerly wind between 2-6 m/s, averaging 4 m/s. At sample 60, the sweeping 
method was changed. In the first 59 samples, the sweeper fan operated, but it did not operate 
with the higher-scan numbers. Since the source is mobile, the plume from the upwind side is 
filtered by the trees, and some areas of the orchard contributed more emission than others (see 
Fig. 9). As expected for this mechanical operation, the PM fractions show significantly higher 
concentrations of larger particulates, with little contribution from PM2.5 for the operation 
(with and without the fan). The upwind concentration during the measurement period was 
relatively smooth with some variations in TSP during the operation. The downwind 
concentrations were much more variable, and the higher concentrations were associated with 
the sweeper locations near the downwind end of the orchard, especially during turns at the 
downwind end of the rows. We attribute the area emission differences—without validation 
data—to local differences in the soil surface being swept and to reduced orchard filtering. The 
data show a significant difference in TSP emissions with and without the fan. The PM10 data 
remained relatively constant throughout the entire operation, and the TSP emission increased 
significantly when the fan operated. Fan-generated dust was heaviest during end-of-row turns, 
where vehicle traffic disturbed the surface. Some operation variability occurred because the 
operator stopped occasionally for short periods that were not coordinated with the lidar scan 
sequence. Both location in the orchard (surface effect) and distance into the orchard affected 
the concentrations, especially for larger particles.  

As with the cotton gin data shown previously, the two middle strips in Fig. 8 show the 
volume concentration of CU and CD in m3/cm3. Volume concentration is shown to avoid 
confusion caused by uncertainty in the MCF. The net flux, in the bottom panel, is the CD-CU
difference multiplied by the MCF and the wind speed. The MCF values are presented in Table 
5. As Zavyalov pointed out [17], the MCF determination was the largest measurement error in 
our system during these operations. Table 5 shows specific values for the operation. As with 
the cotton data, two things are noticeable. First, as particle size increases, the particulate 
density (MCF) decreases, and the error associated with the largest particulates increases 
significantly. This correlation was discussed by Zavyalov [17] and is expected with this 
optical system. Because the particle sizes are larger than the lidar and OPC wavelengths being 
used for the measurement, accuracy decreases as particle size increases.  
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Fig. 8. Wind speed, upwind and downwind concentrations, and flux for 138 scans during a four hour 
period of mock almond sweeping operations on October 11, 2006. 

Table 5. Mock almond sweeping aerosol upwind and downwind mass concentration and mass flux 
statistics associated with Fig. 8, showing the values for the entire operation, sweeping without the fan (< 

#60) and with the fan operating (> #59). Averages are shown with 95% confidence intervals. 

Comparison of the lidar-based concentrations with the output of the ISCST3 model is 
shown in Fig. 9. Final emission rates were determined with inverse modeling techniques using 
observed aerosol concentrations at five 2m height sampling sites and one 9m height sampling 
site along the downwind side of the orchard. The area emission estimates (Fig. 9) were 
obtained using hourly average wind speeds and directions taken at 5m and an average source 
emission rate of 5.53 g m-2 s-1 to achieve a “best fit” to the measured sampler profile. 
Sampler to model concentration ratio for the operation averaged 1.00, with a variation 
ranging from 0.46 to 1.57 (Table 6). The data confirm the significant variation in surface 

Whole Operation With Fan Without Fan CU,D = 
( g/m3)
Flux = (g/s) 

PM2.5 PM10 TSP PM2.5 PM10 TSP PM 
2.5 

PM 10 TSP

CU -Ave 9.5 0.4 28. 6 3.5 33.1 6.7 9.2 0.4 25.0 4.0 26.2 7.5 9.8 0.5 31.3 5.1 38.2 9.7 
CU- 1.063 10.376 19.509 0.786 7.660 14.399 1.172 11.446 21.524 
CD -Ave 10.0 0.3 33.1 2.8 41.6 5.2 10.4 0.5 37.7 4.9 50.4 9.3 9.7 0.3 29.6 2.9 34.9 5.5 
CD - 1.71 16.69 31.39 2.02 19.53 36.67 1.34 13.24 24.92 
MCF 8.369 2.739 1.263       
F-Ave 1.7 0.1 5.7 0.6 7.1 1.0 2.0 0.15 6.8 0.8 8.7 1.5 1.5 0.2 4.8 0.8 5.9 1.2 
F- 0.68 3.50 5.91 0.57 3.34 5.99 0.69 3.41 5.60 
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emission that the lidar observed. Period average concentrations measured by the samplers 
varied from 15.3 to 49.5 g/m3 (Table 6), while observed individual lidar scan plume 
concentrations (averaged over the active plume) ranged from 15 to 106 g/m3.
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Fig. 9. Modeled PM10 aerosol concentrations ( g/m3) for the four-hour October 11, 2006 almond 
sweeping exercise, based on the five aerosol sampling stations (D72-D11) on the downwind side of the 

orchard using the ISCST3 model with an average emission rate of 5.53 g m-2 s-1.

Table 6. Model and particulate sampler measurements for the total sweeping period shown in Fig. 8, 
showing the area variability not picked up by the model. 

Sampler 
Location 

Measured 
Concentration 

Modeled 
Concentration 

Meas./Model

g m-3 g m-3 Ave. = 1.00 
D7 (2m) 49.50 31.44 1.574 
D8 (2m) 20.49 32.65 0.628 
D8 (9m) 20.66 12.20 1.693 
D9 (2m) 24.35 32.28 0.754 
D10 (2m) 29.31 32.93 0.890 
D11 (2m) 15.31 33.18 0.461 

Some discussion is warranted about the potential for sampling error due to the relatively 
slow vertical scans used in the above analysis. Eddy covariance flux measurement 
frequencies in the 20Hz range are often specified. However, eddy covariance sampling 
volumes are very small and the eddy frequency correspondingly high. In our case, the 
sampling volume is typically one- to two-hundred meters long and is being used to derive an 
estimate of the mean concentration crossing the plane of the scan, not the variation. In 
addition, we are sampling at a maximum rate of 10 Hz. The difference is that the beam is 
being vertically scanned, not held at a single height. These differences in sampling suggest 
that the scales involved should be carefully analyzed. The scan rate must be considered for 
sources where the emission stability is not understood.  

For the applications presented here, we make the following observations: First, we are 
measuring relatively continuous processes, with emission variation time periods longer than a 
single staple scan. While turbulent transfer-driven emission puffs observed at a point may not 
be captured, emissions from the operation are effectively sampled. The comparisons we show 
against the ISCST3 model appear to validate the approach. Second, this system is ideal for 
mobile source operations, such as a plowing or harvesting operation. Since the lidar data 
allows the flux box to move with the source, each staple may be rotated and adjusted when 
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position and general wind direction change. This contrasts against static sampling systems 
where the plume moves on and off the sampler at random.  

If transport from the process is interrupted by a sudden wind shift or a pause in the 
operation, that transmission period can be easily identified and deleted from the sample 
sequence. The Aglite data processing system monitors these factors, and these periods are 
excluded by the quality control process. Unlike a fixed sampler where the plume wanders on 
and off, the lidar measures the entire plume with each scan.  

The data presented here demonstrate how the Aglite system effectively measures 
emissions under a wide range of conditions. The swine production facility was a stable, 
consistent source—except for the road traffic. The strong peaks in the lidar data from the road 
dust allowed the affected scans to be eliminated [16]. The flux data reported in this paper 
includes these spikes, because they could not be eliminated from the filter data that is shown 
for comparison. The cotton gin data provided a different challenge, with significantly 
different aerosol types between the background and facility emissions. The almond data set 
shows the Aglite’s capability to track a mobile source and determine the difference in the 
equipment’s operation method in a short period of time. Aglite not only followed the mobile 
system, it quantified the difference. Variations resulting from local surface conditions were 
also quantified.  

5 CONCLUSIONS 

We have demonstrated a process for measuring near real time whole facility and agricultural 
operation particulate fluxes. The three wavelength lidar allows aerosol emissions to be 
determined and calibrated using characteristics from fixed-point measurements. Aerosol 
concentration and distribution entering and leaving the facility are differenced and multiplied 
by the mean wind speed to develop the mass flux. The 3D concentration image, collected by 
the lidar, allows the plume profile to be identified and tracked so that a virtual box can be 
built around the facility plume. This paper has shown the details of the flux calculation 
process and has provided a detailed error analysis. The examples given have shown that under 
relatively constant wind conditions, fluxes with errors in the 10-25% range can be developed 
with sampling periods in the 30-minute to 1-hour time frame for both fixed and mobile 
sources. System performance at a CAFO, a mobile harvester, and a fixed product processing 
plant are used as examples. While the Aglite system is flexible and agile, under light and 
variable wind conditions, it does not allow flux measurement, as the internal mixing and 
random transport of materials from the source do not allow accurate measurements by any 
means during such conditions. Also, when emissions from upwind fields or facilities provide 
a significantly variable aerosol input, longer sample periods are required to achieve the same 
flux accuracy.  

While not the purpose of this paper, these examples show that to be of value for either 
regulatory, conservation practice or improved method development efforts the flux and fast 
response emission measurements must be combined with accurate and insightful data and 
understanding of the processes being evaluated. When these are combined, significant 
advances in agricultural emission mitigation should be possible.    
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