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ABSTRACT 

Diffuse Solar Irradiance in Mountainous Terrain 

At 40° Latitude 

by 

Brock Allen LeBaron, Master of Science 

Utah State University, 1979 

Major Professor: Dr. Inge Dirmhirn 
Department: Soil Science and Biometeorology 

A study of the parameters effecting diffuse irradiance in moun-

X 

tainous terrain was made. Ground/location parameters of site elevation, 

ground albedo, elevated horizon and surface tilt were examined under 

the pertinent a tmospheric conditions of clear, polluted, overcast , and 

cloudy. Measured diffuse irradiance data used for comparisons were 

taken from fall 1977-spring 1979 at four sites located in northern 

Utah. 

Diffuse irradiance varied with elevation according to the existing 

atmospheric conditions. For clear sky, diffuse irradiance decreased 

with elevation due t o the shorter optical pathlength, thus less scat-

ter of the direct beam. However, with completely overcast sky, diffuse 

irradiance increased with elevation. The thinner cloud cover associated 

with higher elevations causes less adsorption of the diffuse irradiance. 

For partially c loudy conditions a correlation of diffuse irradiance 

with dura tion of sunshine showed curved relationships with maximum 

diffuse irradiance at 70 percent cloud cover. At high elevation, the 

cur ves were much steeper than at l ow eleva tion , becoming a lmost linear. 



Climatic changes in ground albedo were found to modify diffuse 

irradiance considerably. This occurred mainly through multiple 

reflection between ground and atmosphere with maximum enhancement 

for snow covered ground and overcas t sky. Even for clear days snow 

cover shifted the maximum in the annual cycle of diffuse irradiance 

day totals towards the spring months. A comparison of March (snow 

cover) and September (bare ground) diffuse irradiance values for 

various amounts of cloud cover showed that diffuse enhancement 

increased steadily with cloud amount to a maximum at overcast condi­

tions. 

The effects of elevated horizon such as might be found in a 

mountain valley were examined through validation of a physical model 

describing a V-shaped valley. Comparisons between calculated and 

measured diffuse irradiance showed excellent results for clear days 

during winter, spring, and s ummer. 

xi 

The ratio of measured diffuse irradiance on a south facing sao 

tilt to that on the horizontal was plotted against duration of sunshine 

for differen t seasons. For clear days the Sao tilt enhanced diffuse 

irradiance values as much as two times the horizontal values during 

winter while during summer sao values dropped to .8 of the horizontal 

values. For overcast days the ratio varied from 1.0-0.3 for winter 

and summer, respectively. 

A model predicting diffuse irradiance on a tilted surface for 

clear day was developed and validated using measured data. A good 

comparison is shown for spring and fall days using high and low 

e levata tion data. 

(laS pages) 



INTRODUCTION 

l<ith the advent of the s0 called "energy crunch," there has been 

a drive to diversify the United States energy supply by utilizing 

alternative sources of energy, particularly solar. Solar energy has 

generated this recent interest due to its inexhaustible, pollution 

free nature. It is also a wide spread source. Having a power input 

of 170 billion megawatts, the sun is already the basic driving force 

fo r the earth ' s natural systems and exceeds in power all of man's 

currently used sources of energy approximately 20,000 times 

(Kodratyev, 1977). 

However, while solar energy is a widespread source, it is not an 

evenly spread source . It's availability varies according to geographic, 

atmospheric and terrain conditions. Thus, when evaluating a locale as a 

potential collection site, a unique set of parameters must be cons i dered. 

In many cases this can only be done through meticulous on-site data 

collection and analysis . This is particularly true of mountainous 

terrain where topographic characteristics are manifested in reflection 

processes, orographic clouds, temperature inversions, extended snow 

cover, etc. 

Background of the Problem 

The solar energy arriving at any given place is composed of sev­

eral parts; the -direct beam, that scat tered from sky and clouds, plus 

that reflected from the earth. The contribution of each of these parts 

is increased or decreased depending on the terrain, surface albedo, and 

atmospheric conditions. 



While focus ing devices concentrate only the direct component, 

flat plate collectors can utilize all radiation incident to the sur­

face. Thus, for these t ypes of collectors an investigation of the 

parameters affecting scattered or diffuse irradiance is important . 

Furthermore, since in most cases a flat plate collector will have a 

fixed orientation, the effect of tilting the collector is needed to 

maximize energy collection. 

Previously, except for a few investigations (Bishop et al., 1966; 

Dirmhirn, 1951; Eisenstedt, 1961) radiation studies have been isolated 

to flat terrain. Based on duration of sunshine, Angstrom (1924) 

obtained the daily radiation-income Qs to a horizontal surface. 

However, no means is provided for dividing it into a direct and diffuse 

component. Later, Liu and Jordan (1960) presented relationships from 

which instantaneous clear day values of diffuse irradiance on a hori­

zontal surface could be determined. Relationships for the average 

hourly and daily diffuse radiation for cloudy days are also given. 

Many methods to transpose these horizontal values to a tilted 

surface have been developed. Isotropic methods (Liu and Jordan, 1961; 

Kondratyev, 1977) based on the assumption that diffuse irradiance 

arrives equally from all parts of the sky have generally proved to be 

more accurate. However, recently anisotropic models (Hay, 1978) have 

shown considerable improvement. 

Little literature has been found which deals with diffuse irradi-

ance in mountainous terrain through on-site data collection: nor have 

any available models for flat terrain been tested using actual measured 

data from mountainous sites to determine their applicability. 



Purpose and Objective of the Study 

Main objective. The purpose of this study is to evaluate the 

parameters e f fecting the diffuse irradiance availability in the Rocky 

Mountains using on-site measurements. Together wi th information on 

direct irradiance availability, a practical assessment of flat plate 

collector efficiency will then be possible. Secondly, t o examine 

app licable i rradiance models to determine their accuracy for mountain­

ous terrain. 

Specific objectives. 

1. To determine the effect o f elevation on diffuse irradiance 

with varying amounts of cloudiness. 

2. To determine the effect of ground albedo on diffuse irradiance 

under overcast and cloudy conditions (multiple reflection) . 

3. To determine the effect of direct r eflection in mountain 

valleys , correlating the results to a previous l y developed model. 

4. To examine the enhancement of diffuse irradiance by tilting 

the collector surface. 

Parameter Interrelationships 

The pertinent parameters affecting diffuse radiation in the moun­

tains can be broken down into two groups--ground/location and atmos­

pheric. The ground / loca t ion parameters considered are elevation, 

ground reflectance (albedo), horizon blockage, and tilt effects. These 

will be examined in conjunction with the atmospheric conditions of clear, 

polluted, overcas t , and cloudy skies. Due t o their complex inter­

relationshi ps , these parameters are best organized in the form of a 

matrix (Fig . 1). 



ATI10SPilERE 

c~LEAR CLEAXn OVERCAST CLOUDY 
· POLLUTED 

ELEVATION + + + + 
"' 0 

5 ALBEDO (GROUIIDl + +- + 
5 

0 HORIZON <VALLEY> 
z + + + 
~ 

HORIZONT~ + TILTED + + -t-

Fig. 1. Matrix used to organize parameters affecting diffuse irradi­
ance in mountainous terrain. +sin the matrix body indicate 
areas where effects were examined. 

Elevation. Due to a decrease in turbidity (shorter pathlength 

of the solar irradiance) total radiation increases with height in the 

atmosphere. For the same reasons diffuse or scattered irradiance 

diminishes with height but only for clear sky conditions. Under cloudy 

conditions the thinner cloud cover associated wi t h high elevat ions as 

well as orographic effects tend to increase the scattered radiative 

flux considerably, offsetting the reduction due to a clear sky 

(Dirmhirn, 1976). 

Albedo. The extended snow cover found in moun tainous areas can 

contribute substan t ial amounts of diffuse irradiance values. This is 



especially true with cloud cover when the reflection process between 

snow and cloud can be greatly extended. Holmgren and Weller (1973) 

noted that in the Arctic, with its high latitudes and unique cloud 

conditions the incoming radiation does not decrease very much 

(15%) when a cloud cover forms over an extensive snow field. 

Horiz~. Due to the topogr aphy .inherent to mountainous terrain, 

many locations have truncated day lengths. Steep valley walls not onl y 

block direct irradiance at low sun angles bu t cut out a portion of the 

diffuse irradiance t h roughout the day. However, with snow cover, 

these same valley walls can act as direct reflectors to focus large 

amounts of radiation. The effect is maximized with clear skies and 

proper slope orientation. Bo th Angstrom (1965) and Dirmhirm (1978) have 

observed this direct reflection enhancement in the Himalayas and Alps, 

respec t ively . 

Til t /horizontal. Haximum diffuse irradiance values can be ob­

tained by tracking the sun throughout the day. Since this is not 

feasible for a fixed flat plate collector, an op timum orientation must 

be de termined. Ground reflection, latitude, and energy requirement are 

important considerations. The snow cover and gene ral clear skies 

associated with winter in the Rocky Mountains could provide enhanced 

energy collection with a proper surface tilt, when it is needed most. 

Assump tion 

In terms of diffuse radiation, mountainous areas with their high 

elevation, ext ended snow cover, and steep terrain may offer excellent 

solar potential . 



REVIE\-1 OF LITERATURE 

The available literature is reviewed in accordance with the 

organizational matrix developed and illustrated (Figure 1) in the 

Introduction section . 

Elevation 

The variation of diffuse irradiance with elevation is a function 

of the associated atmospheric turbidity, cloudiness, and ground 

reflectance. Literature pertaining to scattering by a clear atmos-

phere will be presented first. 

Clear. The molecular scattering effect of pure "clean" atmosphere 

on solar irradiance is described by the Rayleigh relationship: 

where I 
0 

I 
I a -.£ (1 + Cos 2 8) 

s )..4 

incident intensity, A = incident wavelength, and 8 = 

scattering angle. The result is that 10 to 30% of the solar irradiance 

incident on the atmosphere is scattered from the direct beam, about one 

half of which is scattered down to the earth's surface. 

Polluted. For a polluted or "dirty" atmosphere the scattering of 

radiation by specific particulates, whose size is comparable to the 

wave lengths of the radiation, is very complex. Mie theory can be 

used to calculate the scattering of large spherical particles of a known 

size distribution. Sheppard (1958) suggests that due to the complexities 

of the problem it is natural to attempt t o infer the effects of pollu-

tion on solar irradiance by direct measurements of the solar beam and 



of the proportion scattered from · it in a tmospheres with varying degrees 

of pollution. His measurements at Kew Observatory show an inverse 

correl a tion between global irradiance and particulate concentration of 

the surface air. 

The change in the turbidrty factor with elevation is a useful 

tool when examining the effects of elevation on diffuse irradiance. 

Robinson (1966) discusses the decrease in the turbidity factor T with 

elevation derived by Steinhauser from measurements in Central Europe. 

Bishop et al. (1966), during a solar irradiance study in the high 

Himalayas, noted problems in determining elevation effects arising from 

the fact that their observing sites were essentially high val leys and 

not isolated mountain peaks. As the particle content of the atmosphere 

originated from the solid surface of the earth, the observations on 

isolated mountains showed a more transparent atmosphere than that 

above a valley at the same elevat ion. Thus, the location for solar 

irradiance data collection is of importance. 

Overcast. The effect of elevation with various amounts of cloudi­

ness on diffuse irradiance has been examined extensively by Dirmhirn 

(1951) in the Alps. For clear sky conditions, diffuse irradiance was 

found to decrease with elevation due to a reduced optical pathlength. 

An opposite effect was observed for completely overcast conditions 

where thicker cloud layers reduced diffuse irradiance a t lower eleva­

tions. 

Cloudy. Clouds by their various forms a re a har d par ameter to 

define. Angs trom (1919) noted that the cloud forms are innumerable and 

the influence of different clouds exhibits great variations. From 



measurements taken in Washington and Upsala he found that with increasing 

density of a cloud sheet the diffuse irradiance first increases in order 

to reach a maximum after which it decreases with increased thickness 

of the clouds. The amount of diffuse irradiance can also be altered 

considerably depending on the clouds' position relative to the sun. In 

general, partially cloudy conditions give the highest amounts of diffuse 

irradiance. 

Kasten (1977) observed that diffuse irradiance increases with 

increasing cloud amount by a factor of about 1.4 to 1.6 at 6/8 cloudi­

ness compared to clear sky values; then the curve sharply drops to 

between 0.5 and 0.8 at 8/8 cloudiness (overcast). 

Dirmhirn (1951) found maximum diffuse irradiance values at .7 cloud 

cover in lower alpine valleys. However, at higher mountain elevations, 

the maximum was at 1.0 cloud cover. This is apparently due to the 

thinner clouds associated with high elevation. 

A physical explanation of why maximum diffuse irradiance occurs 

under partially cloudy conditions and not overcast can be attributed 

to the screening of the brilliant cloud tops in the background by the 

dark base of clouds in the foreground (Robinson, 1966). 

Models. Due to the high cost and maintenance requirements of 

radiation instruments, total or global short wave insolation on a 

horizontal surface is all that is normally recorded. Therefore, many 

models have been developed to estimat e the direct and diffuse components 

through physical relationships with other atmospheric parameters. Once 

these components are known on the horizontal surface, they can be 

transposed to tilted surface values. 



J. L. Threlkeld (1962) presented an analytical method for deriving 

diffuse irradiance on various surfaces which included ground reflect-

ance . However, it was useful only for clear days. 

Liu and Jordan (1960) used a relation between the ratio of daily 

diffuse to daily total irradiance on a horizontal surface, D/H
0 

and 

the cloudiness index ~ = H/H
0

• 

Orgill and Hollands (1976) used hourly irradiance on a horizontal 

surface to revise Liu and Jordan's ~, KT correlation and recommended 

an equation to determine the hourly ratio of diffuse to total irradiance 

received on a horizontal surface. 

A simpler method was developed by Iqbal (1977) to determine monthly 

averages of diffuse irradiance on horizontal surfaces to satisfy more 

general inputs required by some of the newer design methods of solar 

heating of buildings. However, these long term averages are not ade-

quate for examining short term parameter effects. 

In many cases where no radiation data is available, surface 

weather observations have been used to develop statistical rela tions 

f or estimating diffuse irradiance. Angstrom (1924) suggested the 

use of percent possible sunshine hours as a parameter to predict radia-

tion in his pioneering equation 

Q = Q (0.25 + 0 . 75 X S) 
s 0 

where Q
0 

= clear day radiation income, and S 

shine. 

percent possible sun-

Lund (1968) correlated 9 years of daily insolation, snow cover, 

wind, sunshine, sky cover, pressure, and precipitation. He found that 
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sunshine observations gave the best correlation with sky cover providing 

the second best for most months of the year. 

Norris (1968) examined the correlation between solar radiation 

and cloud cover . After using several methods of cloud classification, 

he reported poor correlations and concluded that it is probably impos­

sible to predict solar irradiance from this parameter. 

Bennett (1969) established the usefulness of opaque sky cover when 

correlating with insolation. This allowed for distinctions to be made 

between different c l oud t ypes and accounted for cloud reflection to 

ob tain a more "irradiance specific" observation. 

It should be noted that these relationships have been derived 

through regression analysis of observations at a single location and may 

not be adequate for prediction of irradiance at other locations. 

Further verification at high elevations would be advantageous. 

Albedo 

The reflective properties of ground and atmosphere ensure that a 

proportion of incoming solar irradiance will be reflected back and forth 

between the two (Catchpole and Moodie, 1971). This process is referred 

t o as multiple reflection. 

~· Deirmendjian and Sekera (1954) found that in the case of 

a clear sky atmosphere and with scattering, according to Rayleigh's Law, 

the increase of diffuse irradiance ranges from 10-140%. 

Overcast. In the presence of snow covered ground under cloudy 

conditions , multiple reflection between ground surface and cloud bases 

can have a dramatic effect on diffuse irradiance values. 
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Using a series of measurements of incoming irradiance (diffuse) 

for a dense overcast sky over a snow cove red coastline with an albedo 

variation of 7-50%, MOller (1965) found an increase of 67% in diffuse 

irradiance . He further attempted to derive coeffic i ents of back 

scattering for both clear and overcast sky. 

Catchpole and Moodie (1971) f ound that illumination beneath the 

stratocumulus, cumulus stratus, and nimbostratus clouds was increased 

by at l east 50% when snow-free ground was replaced by snow-covered 

ground . They also reported several visib le effects of multiple reflec~ 

tion s uch as the "white out" where the upward and downward fluxes of 

light are almost identical and no horizon can be detected. 

Several investigators have attributed the annual variation in 

diffuse r adiation to multiple reflection . 

An analysis of the 10-year winter data from five stations i n the 

wes tern United States shows that snow cover apparently produced an 

increase in the daily insolation of 1.5% fo r clear sky and 29.0% wi th 

overcast sky (Bennett, 1965). 

Dirmhirn (1951), in a s tudy of the radiation climate of the eastern 

Alps, fo und that the annual curve of overcast days was strongly skewed 

towards winter and early spring. The curve dropped dramatically during 

the spring snow melt and rose again at the advent of snow . 

Baldazo (1970) stated that diffuse radiation du r ing cl oud-covered 

sky due to multiple reflection effect is very prominent with the highest 

values when there was snow on the ground in late winter and early spring . 

Several investigators have tried to determine the albedo or back 

scatte ring of various cloud t ypes and ground cover . 
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Using a Nimbus radiometer and pyranometers, Salomonson and Marlatt 

(1968) measured the anisotropic reflectance over stratus clouds, snow 

and white sand. The reflection from snow and white sand was not 

observed to be as anisotropic as the scattering from stratus clouds. 

It was also observed in the study that the underlying surface has an 

influence on the magnitude of the reflectance from stratus clouds 

observed by pyranometers and radiometers. 

Models. Angstrom (1931) first described the multiple reflection 

process. The radiation reflected by the earth's surface is partially 

reflected back down through back scattering from the atmosphere and 

clouds, thus increasing the diffuse irradiance. This process is 

repeated an infinite number of times . A model based on the equation 

G = G (l -rd)-l 
r o 

was developed by Angstrom (Moller, 1965; Catchpol e and Moodie , 1971) 

where G
0 

is the global radiation before any reflection, r is the 

albedo of the surface and d is the backscattering of the clouds. 

Loewe (1961, 1963) added an absorption term t o account for the 

loss due to absorp tion by the atmosphere. 

Vowinckel and Orvig (1962) examined the magnitude of ground albedo, 

albedo of cloud tops and the effect of composi te cloud t yped in the 

Arcti c to develop radiation tables using Angstrom's equa t ion . 

Diniz (1978) compared computed values f r om Angstrom's equation and 

measured values from a simulation model for overcast conditions to show 

good coinciden ce. She fo und that changes in cloud density under overcast 

condi tions affect only the transmissivity , but have little effect on the 

contribution due to multiple reflection. 
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However, no verification of the models with actual values 

especially from mountainous areas are available. The Rocky Mountains 

with their extended snow cover provide an excellent source of irradia­

tion data for verification. 

Horizon 

In mountainous terrain the diffuse irradiation from the sky can be 

increased not only by multiple reflection effects but by direct reflec­

tion processes from slopes above the horizon as well. In the presence 

of valley slopes or adjacent mountain peaks, diffuse values can be 

enhanced depending on ground albedo and atmospheric conditions. The 

process is most effective during clear sky periods and with snow 

covered ground. 

Clear . After studying the radiation regime of Cache Valley, 

Baldazo (1970) attributed the higher clear sky diffuse values of the 

spring months to the closeness of the mountains and the reflection 

from the slopes. During the spring months when the mountains are still 

snow covered, the additional reflection increases the scattered 

irradiance more than during the fall months. 

Solar irradiance measurements made in the high Himalayas (Bishop 

et al., 1966) show that in the neighborhood of snow covered mountains 

the sky irradiance is to a considerable extent made up of solar 

radiation reflected from the surrounding mountain slopes. 

Dirmhirn (1978), in a comparison of irradiance in the Alps and the 

Rocky Mountains, stated that the terrain not only influences the 

irradiance by enhancement through reflection processes, but by blocking 
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the direct beam at low sun angles. Thus, while the diffuse irradia nce 

may be enhanced through reflection, the blockage of the direct beam 

leaves the actual enhancement of the total or global irradiance in 

question . Of great importance is the time of year being examined. In 

the winter season, snow covered ground greatly increases reflected 

irradiance, however the low solar elevation also increases horizon 

blockage, truncating the normal day length . 

Models. Due to the complexities of mountainous terrain, investi­

gators (Eisenstadt, 1961; Diniz, 1978) have used simulation models to 

develop and verify the reflection process within valleys of a uniform 

"V 11 shape. 

Eisenstadt (1961) examined the scattered radiation income to a 

differently oriented pyranometer using a special model of a mountain 

valley. Direct radiation was eliminated by means of a black shadow 

disk. The measurements showed that the diffuse irradiance of a surface 

was strongly influenced by orientation to an anisotropic sky. 

In a similar way Diniz (1978) used a portable simulation model to 

test a mathematical model derived by Peterson (1978). Observed and 

computed values were compared, using different altitudes of the sensor 

within the model, slope angles and albedos. She found that clear sky 

irradiance decreased with increasing altitude and decreasing slope 

angle. For overcast days an opposite relationship was noted . 

~1ile the preceding investigators used simulation models to test 

valley models, no comparisons with actual measurements in a mountain 

valley have been made so far. 
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Tilt/Horizontal 

In most cases a solar collector of the flat plate design will be 

mounted in a fixed position, possibly even being an integral part of a 

building structure. Thus, it is desirable to maximize t he solar radia­

tion incident on the collection surface by orienting (tilt and azimuth) 

the collector in some optimum fashion. 

Intuitively a south facing surface (north facing for the southern 

hemisphere) would collect the most energy around solar noon when the 

sun is the highest. However, Felske (1976), while studying the effect 

of off south orientation on the performance of fla t plate solar collec­

tors, found that the average yearly energy collection for a given collec­

tor· tilt is insensitive to azimuthal angle variations of less than 10 

degrees . 

More important than the azimuth angle is the tilt angle of the 

collection s urface from the horizontal. Ideally, this surface should 

always be normal to the noon time solar rays (Kern and Harris, 1974) 

but this is impossible with a fixed installation due to the annual 

variation of the solar declination. Th~s fact has led to numerous 

measurements and models to determine an optimum collector tilt. 

Most authors report that optimum tilts are a function of latitude 

only with no consideration given to the local environment or energy 

demand of the collector. 

It was shown by Kern and Harris (1974) that the energy demand should 

have a strong influence on collector tilt. If maximum output is required 

year round, the angle will be different than fo r a weather dependent 

demand. 
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Ground reflection can also contribute significant amounts of 

radiation to a tilted surface . This is especially true in mountainous 

areas and northern latitudes where extended snow cover is found . In a 

paper by Willcut et al. (1975), it is shown that ground reflectivity 

can enhance the average usable energy by 8% in Canadian cities. 

Hunn and Calafell (1975) pointed out the need for accurate esti-

mates of ground reflectivity as seen by a tilted surface to improve 

calculations from tilt models. They suggest a photographic method to 

determine average ground reflectances for comparison with those given 

in the simple Liu and Jordan Model (0 .2 when the ground is covered with 

less than 1 inch of snow and 0.7 when snow is more than 1 inch thick). 

Using this method, they found that 0.6-0. 7 reflectivity, similar to that 

used by Liu and Jordan, is accurate fo r most rural landscapes in winter 

where snow cover is predominant . However, the range of ground reflec-

tivity for urban areas in winter is 0.16- 0.49, considerably lower than 

that used by Liu and Jordan . 

Models . Many investigators have put forth models to calculate the 

radiation recieved by an inclined surface. Most are expansionsofhori-

zontal sur face models to include terms for transposing the direct and 

diffuse components to different tilts. 

The technique for calculating direct solar irradiance fluxes to 

inclined surfaces has been adequatel y described by Kondratyev (1969) 

according to the equation 

S S cos I 
s m 

where S is the direct solar irradiance flux to a surface normal to the 
m 

beam and I is the incident angle of the beam to the given slope. 
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The variation in the models arises with the methods used for trans­

posing the diffuse component (from sky and ground). This is due to 

computational problems involved with the anistropic nature of the 

scattered and reflected radiation fluxes. 

Most models incorporate the assumption that the diffuse irradiance 

from sky and ground is isotropic to simplify calculations. Liu and 

Jordan (1961) proposed that the ratio (Rd) of the diffuse sky irradi­

ance incidence on a tilted surface to that incident on the horizontal 

surface is given by the equation: 

Rd = 1/2 (1 +cos 8). 

To account for the diffuse irradiance contributed by ground reflectance 

(Rp), they suggest the equation: 

Rp (1-c~s 8)p 

where 8 = tilt angle and p = surface albedo. 

Kondratyev (1977) derived isotropic equations similar to those of 

Liu and Jordan to transpose the diffuse fluxes. 

Heywood (1966) developed a "radiative characteristic line" by 

plotting the ratio of the direct irradiance multiplied by the cosine of 

the incident angle to the direct irradiance multiplied by the cosine of 

the solar zenith angle against parameters determined experimentally for 

a given locality. Then incorporating the isotropic equation for diffuse 

sky irradiance, he calculated the total radiation flux received by a 

surface of any orientation. Diffuse ground reflection was ignored in 

the calculations. 
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The isotropic assumption was also used by Garnier and Ohmura (1970) 

in their formulae to evaluate the global r adiation flux on surfaces of 

any inclination or azimuth. 

Bugler (1977) developed a method in which the diffuse irradiance 

is calculated from the global horizontal irradiance using three dif­

ferent relationships. The appropriate relationship is selected 

according to the ratio of actual global irradiance to global irradiance 

for clear days. Then the isotropic equations were used to transpose 

the values to an inclined plane. 

Using experimental data, Klein (1976) verified Liu and Jordan's 

isotropic model and expanded it to include not only surfaces facing 

directly towards the equator but towards various azimuth angles as well. 

Each of the previously mentioned models has ultimately relied on 

the isotropic assumption in describing diffuse irradiances. Further, 

they have utilized the equations originally proposed by Liu and Jordan 

to transpose calculated diffuse values from the horizontal plane to 

inclined orientations. 

Kondratyev and Manolova (1960) examined the effects of the diffuse 

isotropic assumption for sky and ground reflection and tried to deter­

mine in what cases and with what accuracy this approximation is valid. 

They conclude, that for clear skies, an isotropic assumption for 

ground reflection gives negligible error for slopes less than 30°, when 

the portion contributed to the scattered rediation flux by reflection 

is small (<10 percent). The anisotropy of sky irradiance should be 

taken into account where the solar zenith angle is greater than 75°, 

when diffuse sky radiation constitutes a considerable portion of the 



total radiation. These tilt angles necessary for significant ground 

reflection have been verified by Dirmhirn (1964). 

For overcas t sky, diffuse irradiance depends on the inclination 
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of the slope but not on the azimuth and thus the isotropic approximation 

is satisfactory. However, when the overcast is not uniform or is 

partially transparent (cloudy) the isotropic approximation again fails. 

In view of this fact many investigators have attempted to develope 

anisotropic models for transposing horizontal diffuse values to an 

inclined surface. 

Morse and Czarnecki (1958) used the assumption that the diffuse 

irradiance (E) is not uniformly distributed over the whole sky but is 

largely concentrated around the sun according to the equa tion: 

E x sin B + Y cos B 

where the ratio X/Y is a func tion of zenith angle and B is the surface 

tilt angle. 

However, when Norris (1966) compared calculated values with 

measured values , individual errors up to 30% were found (high cloudiness) 

with a mean error of 8%. 

Using the standard isotropic equations (Liu and Jordan, Kondratyev, 

Robinson) Temps and Coulson (1976) compared calculated values to 

measured values to develop empirical correction terms for the anisotropy 

of diffuse sky and reflected irradiance. 

Hay (1978) tested four approaches to calculating diffuse irradiance 

incident on an inclined surface. One isotropic and two anisotropic 

models were taken from previously pub lished literature. A fo urth 
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anisotropic model was developed by parameterizing the ratio of circum­

solar to isotropically distributed radiation. This ratio of circumsolar 

to isotropic diffuse irradiance (hence the degree of anisotropy) varies 

according to changes in amount, distribution, and other characteristics 

of cloud cover. 

It would appear from the literature that there are many adequate 

tilt models to chose from, bo th isotropic and anisotropic. However, 

most were developed for one locality with limited measured data verifi­

cation. 

In a report funded by the U.S. Department of Energy (Carter and 

Pate, 1978) 24 methods of calculating solar irradiance on inclined 

surfaces were evaluated. After converting the various methods to a 

common nomenclature, only the Liu and Jordan method and the Temps and 

Coulson method were compared. All the other methods were based on 

isotropic approximations similar to Liu and Jordan and would not offer 

significant varia tion . The results showed that the Liu and Jordan 

method provides the most satisfactor y results of hourly calculations. 

The highest degree of error for the Temps and Coulson method occurred 

when the diffuse irradiance was greater than half the global irradiance. 

However, the accuracy of any of the models depends largely on the 

accuracy of the data used for development. 
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!IETHODOLOGY 

Site Location, Set Up, and Duration 

The data used in this study were recorded at three permanent 

sites established approximately 41° north latitude in the Rocky 

Mountains and were situated so as to be within 20 miles of one another. 

A fourth radiation site was located on top of the Natural Resources 

Building at Utah State University and was used only for short- term 

studies, primary instrument calibration, etc. The exact location 

of each site can be found in Fig. 2 and general site characteristics 

are given in Table 1. 

Table l. General site characteristics 

Site Characteristic 

Salt Lake City Airport Open valley 

Snowbird, Hidden Peak l1ount ain top 

Snowbird, Cliff Inn V- shaped va l ley 

Logan, U.S.U. Short-term studies 

Elevation 
(rn) 

1,290 

3,350 

2,510 

1,356 

These recording sites are part of a larger network being used to examine 

solar energy potential in the Rocky Mountains through a grant from the 

United States Department of Energy. 

Each recording station consists of a stand supporting three star 

pyranorneters which detect horizontal, global , and diffuse irradiance 



- - 40°N 

ct3 . 2. Map of Utah indicating the locations of sites recording 
diffuse irradiance used in the study. 
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along with global irradiance on a 50-degree tilt and their recording 

apparatus. The stand is spray painted with 3-M flat gray and oriented 

true north-south. There are four adjustable legs for elevating the 

stand during extended snow cover. 

A shadow band is provided for measurement of horizontal diffuse 

irradiance. It is similar to Drummond ' s (1956) axial design except 

for a greater width and radius of the band required to shade the 

pyranometer. It is tilted at an angle equal to the latitude and has 

adjustments for solar declination. With proper adjustment the pyra­

nometer will remain shaded for 2-3 days . 

Salt Lake City Airport. Located centrally in a wide open valley , 

this site will provide a low (Utah) elevation (1,290 m) flat land 

situation. Horizon blockage is less than 7 degrees in the east and 

west direction . The site will be subject to the high turbidity 

generated by the industry and transportation of nearby Salt Lake City. 

This is increasingly important during the predominant valley inversion 

in the winter season. The stand and radiation instruments are installed 

on top of the executive terminal building with easy access. 

Snowbird, Hidden Peak. This site, at 3,350meters, is the location 

of high elevation radiation data. Situated on Hidden Peak, it has 

essentially free horizon blockage in every direction. High winds, 

extreme temperatures, and lightning are problems inherent to this site 

requiring constant maintenance. The stand and radiation instruments 

are located on the ski patrol shack with access to the top of the 

mountain by aerial tram. 
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Snowbird, Cliff Inn. The V-shaped mountain valley situation will 

be represented by this site. Still at a relatively high elevation 

(2,510 m), the site is protected from the extreme conditions of Hidden 

Peak. The valley runs approximately east-west with a high degree of 

horizontal blockage by the north and south sides (Fig. 3). The stand 

and radiation instruments are located on the roof of the nine-level 

Cliff Inn. 
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Fig. 3. North-south cross section of the Cliff Inn site indicating 
the various possible angles of horizontal blockage. 

All three permanent sites utilized local personnel for routine 

si~e maintenance. They were responsible for shadowband adjustment, 

keeping radiation instruments clean and free of snow, and mailing 

recorded data to Utah State University. 
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The period of measurement varied f r om site t o site depending on 

ins tall at ion and access availab i li t y . In general however, ho r izontal 

global and diffuse plus 50 degree global irradian ce were recorded from 

fall 1977 through summer 1979 . 

Seve ral short-term studies were made at a fourth site (Utah State 

University) where a more controlled and carefully watched environment 

could be maintained. 

Suppor ting Studies 

An in-de pth study into the effects of a shadowband on diffuse 

radiation measurements was undertaken. It was primarily concerned with 

the shadowband correction fac t or and the possibilities of direct re flec­

tion off the band's interior at low s un elevations. A physical model 

was developed from which a shadowband correction is obtained for specific 

zenith and azimu t h angles (LeBar on et a l ., 1978) . 

A second study used a photogr aphic technique to make a visual, 

qualitative investigation into the effec t s of clouds on diffuse irradi­

ance values. Using a 160° fish eye lens, a ll-sky photographs could be 

made by exposing the camer a in a vertical position. A timing device 

was incorporated to take sequence exposu r e s a t 15-minute intervals 

t h roughout the day (Fig. 4). 

Simultaneously, a star pyranome ter in conjunction with a shadowband 

was used t o detect diffuse irradian ce. The output was recorded by a 

Honeywell s trip chart re corder . 

The cloud cover in the sky pho t ographs coul d then be correlated to 

specific time intervals and diffuse irradiance values on the strip 

chart recording. The results of this study a re included in Ch ap t er 4. 



Fig. 4. Timing device incorporating a camera and fish eye lens to 
make all-sky photographs at specific intervals. 
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Radiation Sensor and Recording 
Instruments 
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The instrumentation at each radiation site was designed to with-

stand harsh environmental conditions. The pyranometers were attached 

to a rigid frame so as to withstand high winds (Fig. 5). Desicant was 

placed in each pyranometer to inhibit condensation. 

The recording system was designed to operate under a temperature 

range of ± 50°C (Fig . 6). It had the capability of utilizing either a 

12-volt D.C. or 110 A.C. power source depending on avai lability. At 

all sites the recording instruments were housed in some type of protec-

tive shelter, usually heated. 

The instrument package at each site consisted of: 

Sensors: 1 star pyranometer (Global) 

1 star pyranometer (Diffuse) 

1 star pyranometer (50°) 

Recorders: 1 integrator + cassette recorder 

1 strip chart recorder (Global) 

1 strip chart recorder (Diffuse) 

1 strip chart recorder (50°) 

Pyranometers. The pyranometers (Fig. 7) were produced by Schenk, 

Austria, and are of a black and white thermopile (copper-constantan) 

design. They have a response time of 20 seconds to reach 99 percent 

output millivolts. For details of the development, construction, and 

operation of the star pyranometer see Dirmhirn (1958). 

Tests for temperature effect, linearity, and cosine response were 

made on newly purchased pyranometers to determine individual character-

istics (Mohr, Dahlberg, and Dirmhirn, 1979). The tests helped in the 
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Fig. 5. St and used at each s i te t o support the sensors measuring 
horizontal diffuse, and 50° tilt global irradiance . Di ff use 
i rradiance was measured using a shadowband. 

Fig . 6 . Recording system compris ed of a datalogger and c assette 
r ecorder with strip chart r e corders for back-up. 



Fig. 7. Black and white star pyranometer used throughout the s t udy. 

placement of pyranorneters in the field. For example, a pyranometer 

with a poor cosine response would be used only fo r measuring diffuse 

irradiance. 

29 

Subsequent to the field placement the pyranometers were periodi-

cally calibrated against a secondary standard which could be trans­

ported to each site. The secondary standard itself was frequently 

calibrated using a Kendall absolute net pyraheliorneter . These calibra­

tions provided a constant by which the millivolt output of the pyra­

nometer could be equated to an irradiance (w crn-
2

). 

Recorders. The primary recording system was a datalogger designed 

and developed by Campbell Scientific of Logan, Utah. It was set up to 

integrate millivolt inputs of radiation over 5-minute intervals. After 

each interval the datalogger would activate a small cassette recorder 

and the integration was recorded on magnetic tape along with the 



corresponding date, hour, and minute. Each cassette tape could hold 

approximately seven days of data (both sides). 
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A secondary system utilizing strip chart recorders was incorporated 

as a back-up for each pyranometer. These small but accurate recorders 

were purchased from Datamart. The chart paper was changed at the same 

time as the tapes to avoid errors in maintenance. 

Approximately every two weeks the cassette tapes and strip charts 

from each site were mailed to Utah State University for analysis. 

Data Editing and Reduction 

All data reduction and analysis was performed at Utah State 

Universi ty in Logan, Utah. 

Strip chart data was filed chronologically for back-up reference. 

A qualitative inventory was made to determine data gaps, strip chart 

malfunctions, misadjustment of the shadowband, etc. 

Raw (millivolt) data recorded on cassette tapes was interfaced 

with the Burroughs 6700 computer using a computer remote terminal 

(CRT) . It was then stored on computer disk pack in numeric files 

holding 2-3 days. 

These files were subjected to several computer checks to determine 

the quality of the data. A program, CHECK, made certain numeric value 

substitutions and looked for improper alpha characters in the data. 

Another program, MISS, examined the file for data gaps and time channel 

malfunctions. 

Once the data gaps were accounted for and the times corrected a 

working program, CALPRINT, could be used. This program performed the 

following functions: 
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1. Identified the da t a to pyranometer, assigned cosine corrections 

(global), shadowband corrections (diffuse), and calibration constants 

(W cm-2). 
G - R 

2. Calculated the direct irradiance (------
5

) normal to the sun 
cos e 

(RI), the direct irradiance on a 50° tilt and the diffuse irradiance on 

a SO o tilt. 

3. Converted W cm-2 to langleys (Delinger, 1976) and tested the 

5-minute direct normal irradiance value against a threshold of 0.3 

langleys to determine duration of sunshine . 

4. Summed the values of horizontal, global, and diffuse, 50 degree 

global and diffuse, and direct normal irradiance plus duration of sun-

shine for hourly and daily periods. 

Duration of sunshine is used here as an estimator of cloudiness 

for correlation with parameters affecting diffuse irradiance in the 

mountains. The threshold value of 21 m W cm-
2 

(0 . 3 langleys) has been 

established by the 1</orld Meteorological Association as the cut-off for 

duration of sunshine. 

Once the data was in its final form, careful cross checking with 

the corresponding strip chart recordings was undertaken to remove 

e rroneous data. Approximately 25% of the edited data was not used due to 

poor on- site maintenance. 

Examination of Parameters 

In order to examine the effects of the various mountain parameters, 

the organizational matrix presented in Chapter I was followed. The 

procedure was to examine the ground- location parameters for the atmos-

pheric conditions noted (X) through inter- and intra-site comparisons. 
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Elevation. The effect of elevat ion on diffuse irradiance was 

developed through comparisons between Salt Lake City and Hidden Peak . 

Both have small horizon blockage (<5 degrees) and are essentially 

"flat" terrain sites. Thus the only different parameter is the 

e levation (6500 ft.) and phenomena associated with it. 

Horizontal hourly diffuse irradiance data (langleys) for both 

sites were plotted against duration of s unshine (cloudiness) for spe­

cific months. Where the change in declination was small, months were 

plo tted together. Two months from each season were used: January­

February, March-April, June-July, and September-October. The months 

were chosen on a basis of similar solar declination and ground 

reflectance. Curves were then drawn through each set of points to 

represent the effect of various amounts of cloudiness, from clear to 

overcast, on diffuse irradiance values. 

A mathematical relationship for the elevation effect was developed 

for clear and overcast sky condi tions during each of the four seasons. 

Graphs of the seasonal averages were plotted against their respective 

site elevation. From these points an equation was derived relating 

elevation to diffuse irradiance. 

An evaluation of the widely used Liu and Jordan method for 

determining horizontal daily diffuse irradiance was made through com­

parison with measured data from Salt Lake City and Hidden Peak. 

Albedo. The effect of surface albedo on horizontal diffuse 

irradiance values was shown through intra-site data comparisons. Since 

this effect is primarily due to enhancement by multiple reflection, 

onl y overcast days were examined. The Salt Lake City and Hidden Peak 
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sites were used because their low horizons would eliminate the possi-

bility of direct reflection to the sensor. 

Overcast day totals (langleys) throughout the entire period of 

measurement were plotted against t heir corresponding measurement date . 

Graphs were made for both Salt Lake City and Hidden Peak. The effects 

of snow cov~red ground (spring) and bare ground (fall), at equal solar 

declinations, on irradiance values can be shown. 

By plotting the ratio of diffuse values with snow cove r to those 

without, at equal solar declinations, against ground albedo, a simple 

relationship was deve l oped. 

Horizon. A mathematical model describing a V-shaped valley typical 

for mountainous terrain was verified to determine the effects of elevated 

horiz9n. Instantaneous measured diffuse irradiance data from Cliff Inn, 

representing a valley situation, were compared to those from a computer 

simulator program based on the model developed by Peterson, Hurst, and 

Dirmhirn (in preparation). The model i ncorporates inputs of sensor 

heigh t within the valley, slope angles, and albedo of the valley walls, 

and the azimuthal orientation of the valley. 

The absolute comput ed and measured values '"ere plotted against solar 

time for each day to determine the model ' s accuracy. Only clear days 

were used since this is when direct reflection can have its most dra-

matic effect, while multiple reflection is negligible . Days from winter, 

spring, and summer having various slope albedos and day lengths were 

examined . 

Tilt/Horizontal. The effect of tilting the sensor surface towards 

the sun was examined for a 50 degree tilt angle at Salt Lake City and 



34 

Hidden Peak. Us ing 50 degree diffuse values relative t o horizontal 

diffuse values, daily totals were plotted against duration of s unshine. 

Periods of similar declination were used; January /Feb ruary, March/April, 

June/July, and September/October at both Salt Lake City and Hidden Peak. 

From these graphs the dependence of the 50 degree tilt values on the 

annual variation in surface albedo and with different amounts of cloudi-

ness is shown. 

A compute r simulator program based on a mathematical tilt model 

using the isotropic assumption (LeBar on and Peterson, 1978) was com­

pared to instantaneous measured data for clear and overcast days. 

Graphs of computed 50 degree values and measured 50 degree values 

were plotted against solar time for days with and without snow cover 

to determine the model's accuracy. 
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RESULTS AND DISCUSSION 

The matrix used to organize the interrelationship of mountainous 

irradiance parameters in the Introduction will be followed for the 

results and discussion. The ground and location parameters are given 

as the major section headings and in each case are examined for the 

pertinent atmospheric conditions. In describing the results and 

discussion, first the effects of a clear atmosphere will be established. 

After this the effects of the overcast and more complex cloudy condi-

tions are developed. Finally , comparisons wi th available literature 

are made. 

The data base of hourly diffuse irradiance (langleys) used for 

analysis was broken down into seasons of similar solar declination and 

gr ound reflectance (Table 2). The same seasonal months were used for 

each radiation site to allow inter-site comparisons. 

Table 2. Months comprising the seasonal data base and the corresponding 
reflectance 

~e= Months Reflectance 

Winter January . 6 
February 

Spring March .6-.1 
April 

Summer June .1 
July 

Fall September .l 
October 
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Elevation 

The relationship between diffuse irradiance and elevation is 

strongly dependent on cloud amount . The case of a clear atmosphere 

will be discussed firs t. 

Clear . The effects of elevation on clear days for hourly diffuse 

irradiance is shown in Fig. 8. For all four seasons, diffuse irradi-

ance decreased with elevation f r om Salt Lake City to Hidden Peak. This 

i s due to reduced scattering associated with the shorter optica l path 

length at Hidden Peak. 
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Fig . 8. Relationships for seasonal ave r ages of hourly diffuse irradi­
ance with elevation for clear sky between Salt Lake City and 
Hidden Peak during winter, sp ring, summe r , and fall. 
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The seasonal averages of hourly diffuse irradiance were made by 

ave raging all the hours with corresponding duration of sunshine equal 

to 10 / 10 (clear ) for that season. A line has been drawn through these 

seasonal clear hour averages (langelys) to represent a linear depend-

ence of diffuse irradiance on elevation, between Salt Lake City and 

Hidden Peak. Mathematical equations for this dependence during each 

season a re given in Table 3. 

Table 3 . Seasonal averages of hour ly di f fuse irradiance at clear sky 
conditions, percentage decrease with elevation f rom Salt 
Lake City to Hidden Peak and linear mathematical expres­
sions for diffuse irradiance with elevation for clear sky 

Season Salt Lake City Hidden Peak Percentage Expression 

Hinter 8.8 5.5 37 y = 6800- 610x 

Spring 10.6 7.2 32 y = 7700 - 590x 

Summer 8.7 6.9 21 y = 1100 - llOx 

Fall 5.9 4 . 5 24 y = 9900 - 140x 

The linear relationship from the change in diffuse irradiance 

wi t h eleva tion is suggested only as a firs t approximation. The t ype 

of relationship is primarily dependent on the variation in atmospheric 

pressure , water vapor, and ozone con centration. If it is assumed that 

the variation in irradiance absorption due to the last two is negli-

gible between Salt Lake City and Hidden Peak then scattering is 

directly related to atmospheric pressure. Thus a linear relationship 

was used for the change in diffuse irradiance with elevation, since 



the change in pressure with elevation is nearly linear between 1,300 

and 3,400 meters. 

By examining Table 2 and Fig. 8, it can be seen that the fall 

season had the lowest hourly diffuse irradiance. In addition, Fig . 

shows that there was little spread in the hourly diffuse values 
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(6 langleys). Together these two facts indicate that during fall the 

clear days have consistent low turbidity with little scattering of the 

direct beam. 

The summer values of hourly diffuse irradiance are higher than 

fall, as would be expected. Winter and spring values, however, are 

consistently higher. The known annual wave of clear day diffuse 

irradiance is, thus, interrupted and for winter and spring dominated 

by another process. There is a relatively large enhancement of the 

clear sky values due to multiple reflection occurring between the 

atmosphere and the snow covered ground . Though the winter clear sky 

diffuse irradiance on the mountain station is slightly lower than in 

summer (due to the ex tremely cl ear a tmosphere and cons equently l ow 

scattering ) it still is higher than in fall . Apparently the presence 

of snow c over in the winter and spring seasons causes a positive s hift 

i n the annual variation of diffuse irradiance. 

A second effect was found to distinguish the spring and winter 

from other seasons. Strong temperature inversions can develop in the 

Salt Lake Valley and, during the colder winter and spring seasons, may 

persist for several days. The high atmospheric turbidity of these 

periods is denoted by the high diffuse irradiance values. Since Hidden 

Peak is located above this inversion layer and not subject to turbidity , 



a strong gradient is found between the two sites (Fig . 9). 

This reduction gradient is evident in Table 3 where the decrease 

in hourly diffuse radiance from Salt Lake City to Hidden Peak during 

the winter and spring seasons is 37 and 32%. In the warmer summer and 

fall seasons when temperature inversions at Salt Lake City do not 

persist long enough to build up high amounts of pollution, the reduc-

tion gradient is only 21 and 24%. 

Polluted. The effects of the summer and winter temperature 

inversion periods are shown by plotting hourly diffuse irradiance on 

~ clear days against a turbidity indicator -- where 
RI' 

~ hourly horizontal diffuse irradiance 
RI hourly normal direct irradiance 

Small values of :U indicate low atmospheric scattering and thus low 
I 

turbidity levels. Larger values of this ratio correspond to increased 

scattering due to pollution build up. 

Fi gs . 10 and 11 show th i s relationship for two winter months, 

January and February, and two summer months, June and Jul y at Salt Lake 

Ai r port. 

The relationships for J une and July, when temperature inversions 

do not persist, are strictly linear. 

In January and February the relati onships have more scatter due to 

very turbid periods resulting from extended temperature inversions. 

However, when storm fronts move through, strong winds break up the 

inversions, cleansing the atmosphere . The resulting group of very clear 

periods exhibit even less turbidity t han the clear summer periods. 
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The dashed line indicates the relative position of the summer relation-

ship. 

It is interesting to note that although Salt Lake City exhibits 

this very different turbidity pattern between the summer and winter 

months, the clear hour averages for the summer and winter seasons are 

the same, 8.7 langleys and 8.8 langleys, respectively. 

Overcast. Fig. 12 shows the effects of elevation on overcast 

hourly diffuse irradiance values. In a fashion similar to the clear 

hourly data, lines were drawn through the seasonal irradiance on 

elevation. 

An opposite effect to the clear sky condition is fo und for the 

overcast sky condition. In every season, except in summer, there is a 

strong increase in diffuse irradiance with elevation. Table 4 lists 

the seasonal averages (langleys) of hourly ov<:rcast values for Salt 

Lake City and Hidden Peak, the percentage increase with elevation, 

and the linear seasonal models describing the diffuse irradiance 

enhancement with elevation. 

Table 4. Seasonal averages of hourly diffuse irradiance at overcast 
sky conditions, percentage increase with elevation from Salt 
Lake City to Hidden Peak, and linear mathematical expressions 
for diffuse irradiance with elevation for overcast sky 

Season Salt Lake City Hidden Peak 
Percentage 

Expression 
increase 

Winter 12.9 22.4 174 y 210x - 1200 

Spring 25.7 39.9 155 y 140x - 4100 

*Summer 22.2 12.5 56 y 6100 - 210x 

Fall 13.2 8.0 136 y 420x - 4000 
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I 

Fi ~ . 12. Relationships for seasonal averages of hourly diffuse irradi­
ance with elevation for overcast sky bett<een Salt Lake City 
and Hidden Peak during winter, spring, summer, and fall. 
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The increase in diffuse irradiance for overcast periods with 

elevation is the result of the thinner cloud cover found at high eleva­

tions. The thicker cloud cover at Salt Lake City greatly suppresses 

the diffuse irradiance while at Hidden Peak the cloud cover is gener­

ally thinner resulting in less absorption. 

The exception of the summer season may, in part, be due to the 

lack of overcast periods from which to draw a reliable average. How­

ever, for the few overcast cases available (Fig. 12) a decrease in 

diffuse irradiance with elevation can be attributed to the orographic 

clouds associated with mountain tops. These clouds exhibit a thick 

cumulus nature during the summer which greatly reduces diffuse irradi­

ance at Hidden Peak. Thus the * expression derived from summer data, 

while differing from the other seasons, may be valid. 

From the seasonal averages in Table 4, it can be seen that during 

the seasons with snow cover there is a significant increase in di f fuse 

i rradiance due to enhancement by multiple reflection between the 

clouds and snow. This is especially evident in the Hidden Peak values 

where the normally low diffuse irradiance of winter is much higher than 

summer diffuse irradiance. The spring values rise above even the 

winter values. Thus , there is a shift in the expected annual cycle 

of overcast diffuse irradiance similar to the clear sky situation 

except to a greater order of magnitude. 

An in depth examination of the effects of ground albedo on diffuse 

irradiance is made in the following section. 

Cloudy. The effect of elevation with various amounts of cloudiness 

at both Salt Lake City and Hidden Peak is shown in Figs. 13 through 19. 
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Cloudiness conditions fro~ overcast to completely clear are represented 

by 0 to 10 tenths duration of sunshine (hourly) , respectively. The 

close relationship between these two quantities has been widely cor­

roborated. From Angstrom (1924) on, many researchers have suggested 

and used this relationship as a cloudiness indicator. Recently Mohr 

(1979) gave a detailed description of its application. 

From these curves of diffuse irradiance with various amounts of 

cloudiness, a number of effects are evident. 

1. The hourly values of diffuse irradiance in all cases denote a 

curved relationship with a maximum around three-tenths duration of 

sunshine (70 percent cloudiness). This would verify similar findings 

by Angstrom (1919), Dirmhirn (1951), Robinson (1966), and Kasten (1977). 

2. The curves for Hidden Peak were steeper than for the corre­

sponding Salt Lake City curves. That is, they had a larger irradiance 

gradient from clear to overcast sky conditions almost eliminating the 

three-tenths maximum. This is the result of low atmospheric turbidity 

during the clear periods and a thinner cloud cover during the cloudy 

periods. Salt Lake City, by comparison, had higher clear period 

irradiance due to the longer op ti cal pathlength (increased scattering) 

and lower cloudy period irradiance because of the increased thickness 

of the cloud layers thus resulting in a flatter curve. 

3. The curves for both Salt Lake City and Hidden Peak have their 

most pronounced shape and highest diffuse irradiance values during the 

spring. Fig. 20 illustrates the progression from winter to spring at 

both sites. While the clearest periods remain relatively the same, the 

cloudy periods in conjunction with the snow cover produce a significant 
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enhancement by multiple reflection. The importance of solar elevation 

to this process can easily be seen. 

4. There is a large scatter in diffuse radiation for the cloudy 

periods, especially at the Hidden Peak site. This would be expected 

considering the sensitivity of diffuse irradiance to sun/cloud posi­

tions, multiple reflection possibilities and the variability in the 

t ypes of clouds themselves. 

Supportive study. A photographic technique was used to obtain a 

qualitative appreciation of the cloud conditions responsible for various 

amounts of diffuse irradiance. Figs. 21, 22, and 23 show the condi­

tions that were found on three consecutive days in Hay of 1979 at Logan, 

Utah. Six all-sky (160°) cloud pictures have been correlated to their 

respective diffuse irradiance on a strip chart recording. The solar 

time scale has been inset on the recording. 

The correlation shows that the highest values of diffuse irradi­

ance were found under partially c~ . 7) cloudy conditions, where the 

solar disk is obscured. \·lhen the sun is unobscured by clouds the dif­

fuse irradiance drops radically due to the loss of irradiance from 

clouds scattering the direct beam. 

In the case of an unobscured solar disk and proper sun-cloud posi­

tions (Fig 22e), enhancement by direct reflection off the cloud surface 

can take place. However, this enhancement does not compensate the 

diffuse irradiance attenuation lost when the solar beam is not scattered 

by clouds (solar disk is obscured) as seen in the strip chart recording. 

During overcast conditions (Figs. 2lf-23f) diffuse irradiance 

again drops to low values. Depending on the thickness of the overcast 
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cloud layer the values can sometimes even drop lower than values for 

clear periods. 

Thus, it can be seen that clouds have a very dramatic but highly 

variable influence on diffuse irradiance which is dependent on: 

(l) obscured/unobscured solar disk, (2) total cloud amount, (3) cloud 

layer thickness, (4) cloud distribution, and (5) sun-cloud positions. 

Comparisons. Due to economic and maintenance problems in many 

situations, it is not feasible to measure both global and diffuse 

irradiance. Various methods have been developed in order to extract 

values of diffuse irradiance from measured global irradiance. One of 

the most widely used is the Liu and Jordan method for determining 

horizontal daily diffuse irradiance as a function of a cloudiness 

index, ~· Their relationship was developed by plotting KR against 

~ where: 

Daily diffuse radiation on a horizontal surface 
Daily global radiation on a horizontal surface 

Daily global radiation on a horizontal surface 
Extraterrestrial daily insolation on a horizontal surface 

From these points they derived a curve for estimating, to an average 

accuracy of ± 5%, the daily diffuse irradiance for localities where 

the daily global irradiance is known. 

In a manner similar to Liu and Jordan, daily irradiance data from 

Salt Lake City and Hidden Peak were plotted. Days from all seasons 

and various amounts of cloudiness were used. 

The extraterrestrial daily insolation received on a horizontal 

surface (H
0

) was computed according to Liu and Jordan from the following 

equation: 



H 
0 

(cos L cos o sin w 
s 

+w 
s 
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sin L sin o ) 

where r = ratio of solar radiation intensity at normal incidence out-

side the atmosphere of the earth to the solar constant; lsc = solar 

constant; L = latitude, degrees; o = solar declination, degrees; and 

w sunset hour angle, radians. 
s 

Fig. 24 shows the fit of the Liu and Jordan relationship to the 

measured data from Salt Lake City and Hidden Peak. 

The Salt Lake City data (Fig . 24) fi t the model curve quite well, 

thus indicating that for this location with its relatively low elevations 

and its characteristic cloud and atmospheric conditions, the Liu and 

Jordan relationship could be used. 

However, the Hidden Peak data (Fig. 24) exhibits strong deviations 

f r om Liu and Jordan's rela tionship. These deviations are especially 

apparent when the cloudiness index (~) is less than . 5 connoting a 

high amount of cloudiness . 

Upon examination of the methodology used by Liu and Jordan to 

derive the relationship, it was found that the supporting measured 

data was taken from a low elevation site (Blue Hi ll, Massachusetts). 

Furthermore, the var iability in the data increased with cloudiness. 

They stated that in analyzing the data for Blue Hill, the relationship 

was supported by all points with~< 0.75, but not for the few points 

with~> 0 . 75. 

Thus, the characteris ti c cloud regime of high elevations, as 

discussed previously and multiple and direct reflection processes 

(discussed in later sections) which a re enhanced with high elevation 
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Fig. 24. Comparison of Liu and Jordan ' s relat ionship (solid l ine) for 
predicting diffuse irradiance for various amounts of cloudiness 
with measured irradiance data from Salt Lake City (low eleva­
tion) and Hidden Peak (high elevat ion). 



64 

and mountainous terrain, limit the Liu and Jordan relationship to low 

elevation irradiance predictions. 

Albedo 

Climatological changes of the albedo of the ground can modify the 

diffuse irradiance considerably. On a horizontal surface the enhance­

ment by high surface albedo is brought about mainly through multiple 

reflection between ground and atmosphere. In addition', if the atmos­

pheric backscatter, due to clouds or even turbidity, is high this 

multiple reflection process will be greatly extended, increasing diffuse 

irradiance even more. Thus, while multiple reflection does occur 

between ground with high albedo (snow) and "clear" sky, it has its most 

pronounced effect on diffuse irradiance with overcast and cloudy sky. 

Clear. For clear days in the mountains during the regular and 

long lasting periods with snow cover (high albedo), diffuse irradiance 

is significantly increased. Fig. 25 shows the annual variation of 

diffuse irradiance for clear days at Hidden Peak (solid line). 

The highest daily totals occur during the spring, the lowest during 

the fall. This is not the expected annual cycle where the variation in 

day length should produce maximum values in the summer and minimum 

values in the winter (dashed line). As was previously discussed in 

the section on elevation, there is a positive shift in the annual cycle 

of diffuse irradiance towards the spring and winter. The snow cover 

present during these two seasons results in an enhancement of the 

expected diffuse irradiance due to multiple reflection. 

Overcast. With overcast conditions the backscattering from the sky 

is much greater than for clear sky conditions and the multiple reflec­

tion process is more effective. 
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Fig. 25. Clear daily totals of diffuse irradiance at Hidden Peak 
throughout the year. 

D 

Figure 26 shows the annual variation in daily totals of diffuse 

irradiance for overcast days at Hidden Peak (during summer months, 

no ove rcast days were available) . When compared to Fig . 25, it is 

evident that clouds have a pronounced effect on the multiple reflection 

process especially dur ing spring with snow cover. However, values of 

the actual enhancement of duffuse irradiance by snow covered ground 

over bare ground are present ly not available. The annual cycle with-

out snow cover has still to be ve.rified through longer periods of 

measurements. 

The annual irradiance var iation in Figs. 25 and 26 is also 

influenced by day length, thus when comparing irradiance values, it is 

important to use periods of similar declination. However, in general, 

diffuse irradiance was highest in late winter and spring when there was 

snow on the gr ound and l owest in summe r and fall when the surface was 

bare ground, for clear conditions . 
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Fig. 26. Overcast daily totals of diffuse irradiance for Hidden Peak 
throughout the year. 

Figur e 27 shows the difference in hourly diffuse irradiance for 

bare and snow cove red ground with various amounts of cloudiness at 

Salt Lake City and Hidden Peak. Months of similar declination (March 

and September) were used to eliminate the effects of solar elevation. 

The curves were developed from hourly data in order to generate 

an adequate number of cloudy periods. These relatively short period 

integrations exhibi t much more variability than that for longer 

periods (dai l y totals). However, the averaging inherent in the curve 

fitting eliminates serious error. A check on the deviation between 

calculat ions of diffuse irradiance enhancement for overcast skies at 

the equinoxia, using hourly and daily total s showed a 10% error. 
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At both Sal t Lake City and Hidden Peak, maximum enhancement is 

achieved during completely overcast periods. At this maximum, snow 

cover is r esponsible for a 43% increase in diffuse irradiance 

over bare ground conditions at Sal t Lake City and 69% increase in 

diffuse irradiance at Hidden Peak. These percentages are rela tive 
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to the bare ground diffuse irradiance occurring for the respective 

s ites. The increased effect a t Hidden Peak is due t o several factors: 

1 . The relative l y larger amount of snow covered area . 

2 . The colder , dryer sn ow has a higher albedo. 

3. The thinner cl oud cover associated with the high elevation 

transmits relatively greater amounts of irradiance without a signi f i­

cant drop in cloud albedo. 

4. The s horter pathlength between snow cover and cloud base 

decreases atmospheric attenuation. 

Comparisons. Other investigators have published similar results 

of enhancement by surface al bedo. 

Moller (1965) reports two methods to determine the increase of 

diffuse irradiance over snow cover. By taking irradiance measurements 

over a snow covered coastline and open ocean under a dense ove r cast sky , 

an increase of 70% was found . This large increase is due t o the 

initially low albedo (thus l ow diffuse irradiance) of water. 

A second statistical me thod using hourly irradiance values under 

overcast conditions from Moosonee and Toronto indicated an increase of 

53% and 44% , respectively, as a result of sn ow cover . This method is 

simil ar to the present study and gives compar able results, especially 

at Salt Lake City whe re the radiation regime would be the same. 



Catchpole and Moodie (1971) proposed the equation: 

where G 
0 

G G (1-rd)-l 
r o 

global radiation over an ideally black earth surface, 

d = backscatterance of the sky, and r = reflectance (albedo) of the 

surface, as a model of the multiple reflection process. 

Diniz (1978) verified the Catchpole and Moodie equation using a 
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simulation model. She then established a curve (Fig. 28) showing the 

dependence of multiple reflection on surface albedo. This curve 

assumes a constant cloud albedo (backscatter) of . 700. 
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Fig . 28. Average increase in relative irradiance due to multiple 
reflection (cloud albedo 0 . 700) depending on surface 
albedo . (From Diniz, 1978) 
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Using this curve the average ground albedo of Salt Lake City is 

approximately .45 in the presence of snow cover . An albedo greater 

than . 60 is found for Hidden Peak with snow cover. 

These values agree well with those given in available literature. 

Using an analytical method to determine average ground reflectivi t y, 

Hunn and Calafell report albedos of 0.6- 0.7 for snow covered rural 

landscapes. The albedo found for urban areas during winter was 0.16-

0.49. 

In order to calculate the effects of an elevated horizon on clear 

sky diffuse irradiance, a mathematical model describing a V-shaped val-

ley was developed by Peterson, Hurs t , and Dirmhirn (in preparation). 

The necessary input s for the model are: 

1. Julian date 

2. Latitude of the valley 

3. Orientation of the valley 

4 . Slope angles of the valley sides 

5. Albedos of the valley sides 

6. Height of the sensor in the valley 

7. f ratio, where 

horizontal diffuse irradiance 
normal direct irradiance 

The ratio, f, was identified from evidence that the relationship between 

the horizont a l di ffuse irradiance and the direct irradiance normal t o 

the sun has a relatively constant daily value. Variations, depending 

on seasonal and atmospheric conditions, from .13 to .05 have been 
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measured for clear days. The derivation used the assumption that the 

diffuse sky irradiance is isotropic. Equations were developed to cal-

culate the irradiance (relative units) contributed by the individual 

components of the global irradiance arriving at a specific elevation 

in the valley. The components the detector "sees" are the direct 

(D), reflected (r), and diffuse (S). The global (G) is therefore, 

G R + S +D. 

Diniz (1978) compared calculated and measured values using a simu-

lation model. She suggested that close agreement between measured and 

computed values demonst rates the accuracy of the model i n predicting 

the percentage of global irradiance at a given altitude in V-shapped 

valleys to that on a flat unobstructed surface. 

A comparison of calculated values from the mathematical model and 

actual measured values f rom Cliff Inn was made hourly, for clear sky to 

further verify the accuracy of the model. 

The inputs to the model necessary to describe the Cliff Inn location 

are listed in Table 5. 

Table 5 . Inputs to the V-shaped valley model necessary to describe the 
Cliff Inn site location. 

Day Latitude Orientation Slope angles Albedo ratio 

13 40 90° 37°, 25° .60 .057 

83 40 goo 37", 25° .50 .085 

178 40 90° 37°, 25° .10 .066 
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Values from the model were transformed to absolute values by multipli­

cation with measured global irradiance having no horizon blockage. 

Fig. 29a-c shows the hourly comparison of calculated values and actual 

measured values of diffuse irradiance for clear days during the summer, 

spring, and winter seasons. 

The results suggest that the model is accurate in predic ting dif ­

fuse irradiance. There is a slight over estimation in the computed 

irradiance , especially during the spring. This error can be attributed 

to the anistropy of the diffuse sky irradiance, which the model does 

not account fo r. The increased error during the spring season is due 

to the higher anistropy of the sky resulting from enhancemen t by mul­

tiple reflection between snow and clear sky , as discussed previously 

in the section on albedo. 

The results also show that for clear days at Cliff Inn, daily 

totals of diffuse irradiance are approximately the same i n spring and 

s ummer . While the day length is greater during the summer, direct 

reflectance off snow covered slopes enhances overall irradiance. 

During the winter loss of direct refle c tion due to the low sun angle 

greatly reduces diffuse irradiance values . 

Tilt/Horizontal 

In the previous sections the effects of parameters affecting diffuse 

irradiance were concerned with horizontal collection surfaces . The 

diffuse irradiance can also be enhanced by tilting the collector towards 

the south (northern hemisphere) especially in the presence of a highly 

reflective foreground. 
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Fig. 29. Hourly comparisons of calcul a ted and measured values of dif­
fuse irradiance in langleys/minute for an eas t-west V-shaped 
valley for clear days during winter, sp r ing, and summer. 



74 

Measured daily totals of diffuse irradiance on a 50 degree tilt 

were determined relative to that on the horizontal plane. These 

relative 50 degree values were plotted against their corresponding 

cloudiness (duration of sunshine) for Salt Lake City and Hidden Peak 

in Figs. 30 and 31. The seasons, represented by two months each, were 

plotted separately since the ratio is dependent on solar declination. 

The dashed line represents unity of the ratio (50°/Hor.) and indicates 

that no diffuse irradiance is lost due to tilting the collecting 

surface 50 degrees. 

Clear. The clear daily ratios represented by duration of sunshine 

grea t er than 8-tenths, vary dramatically according to season. The 

ratios are highest during the winter and lowest during the summer. 

This is due primarily to three factors: 

1. At clear sky the incidence angle of the direct solar 

irradiance is of importance due to the non-isotropy of the diffuse 

irradiance coming from the sky. Thus when the sun is low, as in winter 

(Figs. 30a and 3la), a surface tilted 50 degrees to the south will 

receive a higher portion of the bright area around the solar disk , known 

as the circumsolar region of the sky, enhancing the diffuse irradiance. 

2. At clear sky conditions direct reflection from the foreground 

to a tilted surface is dependent on solar elevation and ground albedo . 

Thus, during the winter (Figs. 30a and 3la) both effects are maximized . 

The low sun elevation provides an incident angle conducive to direct 

reflection on a 50 degree tilted surface and the high albedo of the 

associated snow cover greatly enhances the reflection process. 

3. The daily totals of horizontal clear sky diffuse irradiance, 

to which the ratios are relative, vary annually (Figure 25). As 
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discussed in the section on albedo, multiple reflection enhancement in 

conjunction with snow cover caused maximum values to occur during the 

fall. Thus, while t he winter ratios are close to 2, exhibiting the 

enhancement by effects 1. and 2., the spring ratios (Figs. 30b and 3lb) 

are overly reduced due to the high horizon tal denominator. For fall 

(Figs. 30d and 3ld), the opposite situation occurs. A small denominator 

produces ratios which are abou t the same as spring at Salt Lake 'City 

and higher than spring at Hi dden Peak. 

During the summer , according to 1., the high solar elevation would 

provide a great er relative enhancement to the horizon tal surface, 

reducing the ratio. In addition the loss of fo reground reflection, 

effect 2. , reduces the diffuse irradiance on a 50 degree to wha t is 

received from the sky. In Figs . 30c and 3lc , this is verified; during 

the summer the so• tilt ed sur face only receives about 80% of tha t 

received on a horizontal surface on clear days. 

Overcas t and cloudy. For overcast and cloudy conditions, there is 

only a small variation in diffuse ratios of daily total irradiance 

throughout the year . During snow covered periods with a relatively low 

solar angle (Figs . 30a and 3la) due to multiple reflection,irradiance 

values on a 50 degree tilt and on a horizontal surface are approximatel y 

t he same (50°/Hor. = 1.0). This si tuation constitutes what Catchpole 

and t1oodie (1971) refer to as a "white out" where diffuse irradiance 

coming from gr ound and sky a re t he same and no horizon can be de t ec t ed . 

During times of no snow when the foreground has a low a lbedo, 

(Figs. 30c and 3lc) , multiple reflecetion is diminished and diffuse 

ratios reach their minimum value with 50 degr ee diffuse irradiance being 
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only 80 percent of the horizontal diffuse irradiance. This is about 

the percentage expected considering the 50 degree tilted surface is 

only receiving diffuse irradiance from that portion of the sky which 

it "sees 11
• 

Model development. In order to calculate the tilt effect for 

clear sky and because of the present controversy in available litera-

ture (Review of Literature section) over the correct methodology for 

calculating diffuse solar irradiance on an inclined surface, a new 

method was derived and validated. The premise was to establish an 

acceptable method of determining instantaneous diffuse irradiance on 

an inclined plane from data of global irradiance on the horizontal 

plane for the same time of year . The assumption that the sky illumin-

ance and foreground reflection is isotropically distributed was used 

due to the complication in calculating anisotropic fluxes. Such an 

isotropic approximation can only give approximate results, diffuse 

radiation being essentially nonisotropic. 

The inputs to the model are: 

1. Tilt angle of the receiving surface towards the south. 

2. Zenith angle of the sun, which is dependent on latitude, date, 

and solar time. 

3. Incident angle of the direct beam of the tilted surface, which 

is dependent on zenith angle and tilt angle. 

4. Albedo of the foreground. 

5. f ratio, such that: 

horizontal diffuse irradiance 
direct normal irradiance 
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This ratio is used as previously describ~d in the V-shaped 

valley model (Pete rson, Hurst, and Dirmhirn). 

The global irradiance on a given tilt is determined through calculation 

of its individual components using the r atio (f). 

Direct Beam (DB) 

DB cos 1/J 
cos s + 

Diffuse Sky (DS) 

DS 
cos s + f 

Reflected Direct 

RD cos 1/J sin2 (.!;_) 
A cos S + f 2 

Reflected Diffuse (RS) 

RS A 
cos 

where S = zenith angle, 1/J = incident angle, ~ tilt angle, and 

A = albedo , such that 

Global Radiation (RAD) 

RAD DB + DS + RD + RS 

The individual components, and thus the tilted global irradiance , a r e 

rela tive t o the horizontal irradiance. 

The calculated diffuse sky, reflected direct and reflected diffuse 

components (50 degree tilt) were added for the total dif f use. This 



relative value was converted to absolute units through multiplication 

with measured horizontal gl obal irradiance. 

Fig. 32 shows the comparison between computed SO degree values 

and measured SO degree values plotted against solar time. Clear days 

of similar solar declinations having bare and snow covered ground were 

used at both Salt Lake City and Hidden Peak. The increased diffuse 

irradiance due to snow cover is evident. The correlation between 

computed and measured values shows close agreement. Some deviation 

was found at midday in Fig. 32b, however this is due to the erroneous 

recordings of measured SO degree values and not from the model itself. 

Additional verification of the model was made by comparing 

measured (Fig. 33) and computed diffuse values for various tilt angles 

at solar noon. Measurements we r e taken on a clear day during October 

1978. Computed relative values were changed to absolute values 

through multiplication by meas ured horizontal global irradiance . 

Fig. 34 shows the result. 

A close comparison is seen between measured and computed i rradi­

ance at all angles except 0 and 90 degrees where there is a 7 percent 

deviation. This deviation can be accounted for by the anistropy of 

the sky irradiance, which is not taken into account by the model. 
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Fig . 33. Instrumentation used to measure diffuse irradiance on various 
tilted surfaces--digital voltmeter, tilt platform, and star 
pyranometer . 
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Fig 34. Comparison between calculated and measured values of diffuse 
irradiance in langleys/minute on surfaces tilted 0- 90° to 
the south. 
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CONCLUSIONS AND RECO~ffiNDATIONS 

Conclusions 

Investigations into the mountain parameters affecting diffuse 

irradiance suggest that high elevation locations would provide higher 

amounts of diffuse irradiance than that for flat terrain at low eleva­

tion. This is particularly true of winter and spring when the annual 

variation in duration of sunshine on the western slopes of the Rocky 

Hountains indicates a high amount of cloudiness. For these periods 

when energy requirement is greatest, high elevation collection sites 

can partially compensate the direct irradiance lost through enhance­

ment of the diffuse irradiance. This is the result of less absorp­

tion of diffuse irradiance by the thinner cloud layer along with 

enhancement from direct and multiple reflections off of the extended 

snow cover . 

It is widely known that tilting the collection surface toward 

the south can enhance collection efficiency due to the increase in 

direct radiation. Tilting the collection surface will also increase 

the diffuse irradiance during the fall, winter, and spring when it is 

needed most . The increase is achieved for clear sky when a low solar 

angle and snow cover are conducive to direct reflection. Additional 

enhancement is attributed to the tilted surface "seeing" the brightest 

part of the anistropic sky. Even for overcast conditions little is 

lost in tilting the collector due to the high reflectivity of the snow 

covered foreground. 
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Recormnendations 

The following recommendations for further investigation are made 

based on the results: 

1. Continue recordings of diffuse irradiance. While a gene r al 

description of the parameters affecting diffuse irradiance can be made 

from this data base, a longer recording period could further validate 

findings. 

2. A more extensive study of the correlation between diffuse 

irradiance and snow cover records be made since this study has shown 

that the annual variation in diffuse irradiance wi th all types of 

atmospheric conditions is strongly influenced by surface albedo. 

3. Application of an anist r opic term to both the V-shaped valley 

model and the tilt model to improve their accuracy in predicting diffuse 

irradiance . This could be done by separating the circumsolar component. 

4. Additional verification of the tilt model with measured 

irradiance data for tilted surfaces representing those whic h would be 

used to collect maximum energy during the summer where cooling is 

required. 
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Appendix A 

Computer Program for Calculating Irradiance on a Tilt 
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LIST TILT 
#FILE (150022)TILT ON PACK 
100 FILE 6(KIND=REMOTE,MAXRECSIZE=22) 
200 PI=3.1416 
300 PHI=60 . 0 
400 A=. 59 
500 F=.08 
600 DAY=355 
700 HRITE ( 6, 500) 
800 500 FORMAT(10X,'TYPE IN DAY,F,ALBEDO,LAT.') 
900 READ(5,/)DAY , F,A,PHI 
1000 PHI=PI*PHI/180 . 0 
1100 SP=SIN(PHI) 
1200 CP=COS(PHI) 
1300 ARG=2.0*PI*(284 . 0+DAY)/365.0 
1400 DEC=23.45*SIN(ARG) 
1500 DEC=PI*DEC/180 . 0 
1600 SD=SIN(DEC) 
1700 CD=COS(DEC) 
1800 \VRITE(6,100) 
1900 100 FORMAT('1 ' lOX ' *NORM DIR*' 8X '*REFL DIR* ' 8X ' *REFL SCAT* ' ,7X,' 
2000 *NORM SCAT*;, 7X:' *TOT DIFF*': 7X,; **GLOBAL**'), , 
2100 T=O.O 
2200 N=7 
2300 DO 10 I=1,N 
2400 TI=180.0*T/PI 
2500 WRITE(6,400) TI 
2600 400 FORMAT(20X,'TILT 'F6.2) 
2700 0=0.0 
2800 M=lO 
2900 DO 20 J=1 , M 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 
3900 
4000 
4100 
4200 300 
4300 
4400 20 
4500 
4600 10 
4700 
II 

CB=SD*SP+CD*CP*COS(O) 
PT=PHI-T 
CS=COS(PT)*CD*COS(O)+SIN(PT)*SD 
DN=CS/ (CB+F) 
RD=A*CS*SIN(T/2)*SIN(T/ 2)/(CB+F) 
RS=A*F*SIN(T/2)*SIN(T/2)/(CB+F) 

IF(DN.LT . O)DN=O 
DS=F*COS(T/2)*COS(T/2)/(CB+F) 

IF(RD . LT.O)RD=O 
G=DN+RD=RS+DS 
TD=G- DN 

HRITE(6,300) DN,RD,RS,DS,TD,G 
FORMAT(3X,6E18.6) 

O=O+PI/12.0 
CONTINUE 
T=T+PI/12 . 0 
CONTINUE 
STOP 
END 
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recordings of global horizontal, diffuse, and global 50° 
tilt radiation plus air temperature, wind (speed and direc­
tion), and time 

*Maintained and calibrated radiation instruments including 
black and white pyranometers, Lambda silicon cells and 
normal incidence and absolute cavity pyrheliometer 

*Performed tests to determine cosine corrections for pyra­
nometer calibrations 

*Calibrated Schenk, Eppley, and Lambda Cell pyranometers on 
different t ilts to determine effects on sensitivity. 

*Compiled, edited, and reduced radiation site data using 
project's remote computer terminal 

*Wrote Fortran programs to manipulate data into a usable 
data library 

*1-lrote Fortran programs for tilt angle irradiance models 
*Familiar with CANDE operator language 
*Made extensive diffuse radiation measurements t o develop 

and verify a model for shadowband corrections resulting in 
a publication 

*Maintained photographic records for all radiation sites and 
project events 

*Designed a device for making continuous photographic records 
of cloud cover at specified intervals using a fisheye lens 

Entomological Field Technician, Plant Protection and Quarantine 
USDA, 1973-75 (summer employment) 

*Personally responsible for weekly surveys of economic insect 
infestations in eastern Utah 

*Made initial contact with local farmers and ranchers for 
insect pest control programs 

*Helped organize and carry out aerial spray programs in 
heavily infested areas 

Wate r Quali t y Technician, Utah Water Research Laboratory, 1973-75 
(school year employment) 

*Performed quantitative water quality analysis on commercial, 
pub lic, and private effluent samples 

*Experienced using gas chromatograph, nitrogen analyzer, flame 
photometer, spectrometer, carbon analyzer 

*Familiar with quantitative tests for: 
Calcium Biochemical Oxygen Demand 
Chlorophyll Chemical Oxygen Demand 
Chloride Iron 
Coliform 
Dissolved Oxygen 

Nitrate and Nitrite 
Ammonia 

Phosphorus 
Potassium 
Sodium 
Sulfate 
Solids 

Biological Research Assistant, Utah State Crop Pollination Lab 
1972-74 

*Studied the use of bees as crop pollinators 
*Personally organized and recorded daily bee incubation data 
*Constructed bee nesting houses and maintained project 

greenhouses 
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PUBLICATIONS 

Corrections for Diffuse Irradiance Measured with a Shadowband. 
(paper). First United States Department of Energy Environmental 
Resource Conference, February 1978 

Preliminary Results of the Impact of Reflection on Irradiance 
in Mountainous Terrain. (publication). Third Conference of 
the American Meteorological Society on Atmospheric Radiation. 
April 1978 

Shadowband Correction for Measurement of Diffuse Radiation. 
(under review by Solar Energy for publication) 

Parameters Affecting Diffuse Irradiance in Mountainous Terrain. 
(paper). Department of Energy Division of Distributed Solar 
Technology Contractor's Review . April 1979 

Diffuse Solar Irradiance in the Rocky Mountains at 40 Degrees 
Latitude. (Masters Thesis, 1979, Utah State University, Logan) 

Lived and traveled in Central and South America 1971-78. 
Knowledge of Spanish based on 10 hours of classroom study and 
actual usage. 

Lived in Europe for 2 years. 
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