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ABSTRACT 

An Analysis of a Measure of Productivity 

in Mule Deer Populations 

by 

Ronald J . Ryel, Master of Science 

Utah State University, 1980 

Major Professor: Dr . John A. Kadlec 
Department: Wi ldlife Science 

viii 

The purpose of this study was to investigate the relationship be-

tween the fall proportion of fawns among fawns and does in a mule deer 

population and two measures of productivity, the spring recruitment 

rate and the reproductive performance as measured in the fall. The 

spri ng recruitment rate was defined to be the number of fawns per doe 

which were recruited into the population at 1 year of age . The repro-

ductive performance was defined to be the number of fawns produced per 

doe 2 years or older which survive to a specified time. The relation-

ships between these quantities were measured by calculating linear 

coefficients of correlation from data generated by a projection matrix 

model of a mule deer popu l ation. A coefficient of correlation of 0.86 

was found between the fall proportion of fawns and the rate at which 

fawns are recruited into the spring population. A coefficient of cor-

relation of 0.89 was found between the fall proportion of fawns and the 

reproductive performance as measured in the fa l l. 

The effect of misclassifying fawns as does and does as fawns on 

estimates of the proportion of fawns among fawns and does was also 



ix 

investigated. A comparison was made between the expected values of two 

estimates of the fall proportion , one with misclassification and one 

without mi sclassification . The misclass ification of fawns and does was 

found to bias estimates of the proportion of fawns . The bias was found 

to be a function of the amount of misclassification and the actual pro
' 

portion of fawns . 

(102 pages) 
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INTRODUCTION 

An important component of big game management in the western 

United States is the management of populations of mule deer 

(Odocoileus hemionus). To better understand the dynamics of these 

populations, game managers often collect data concerning the composi

tion of herds by age and sex. These data are generally collected 

through the classification of a sample of the individuals in a herd 

according to age and sex, usually during the late summer and fall. 

A widely used relationship stemming from the classification of 

individuals in a herd of deer is the relationship between the number 

of fawns and the number of does. This relationship is commonly ex

pressed as the ratio of the number of fawns to the number of does. 

Alternatively, it may be expressed as the number of fawns per 100 

does, or the proportion of fawns in the population of fawns and does 

(fawns/[fawns + does]) (Leopold, 1933; Kelker, 1947; Paulik and Robson, 

1969). The young-of-the-year of both sexes are classified as fawns, 

while females of age one or greater are typically classified as does 

in the classification of herds of mule deer (Wyoming Game and Fish 

Dept., 1977). 

Although it can be expressed in various ways, the relationship 

between the number of fawns and does in a population is best expressed 

as the proportion of fawns from a statistical standpoint . Sampling 

errors of estimation are more readily calculated when the relationship 

is expressed as a proportion (Paulik and Robson, 1969; Seber, 1973). 

The monotonic relationship between the ratio of fawns to does and the 
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proportion of fawns is shown in Figure 1. Unless otherwise indicated, 

the proportion of fawns in the population of fawns and does will be 

referred to as the proportion of fawns in this work . 

Misclassification 

The proportion of fawns in a population have been used in the 

estimation of several population attributes (Seber, 1973). As with any 

measured quantity utilized as an estimator, accurate statistics are 

desired for estimating parameters that characterize populations of mule 

deer. Ideally, these statistics should be unbiased and should produce 

estimates with small variance from sample sizes that are feasible. 

Similarly, sampling schemes should not greatly affect the estimates of 

these parameters through bias. 

If all the fawns and does in a given population could be counted, 

unbiased and errorless values for the proportion of fawns could be cal-

culated. However, this is rarely the case as only a portion of the 

total number of fawns and does are usually observed. Samples to deter

mine the relationship between the number of fawns ' and number of does 

are typically taken using binomial sampling. This is sampling wherein 

n animals are counted with replacement (each animal may be counted more 

than once). Each individual has an equal probability of being ob-
A 

served. Using this type of sampling, estimates (P) of the proportion 

of fawns (P) can be expressed simply as: 
A 

P = f/n 

where f is the number of fawns observed in a sample of fawns and does 

of size n (Seber, 1973). 
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A 

If all the assumptions of binomial sampling are met, then Pis an 

unbiased estimate of P. However, at least two sources of bias affecting 
A 

P have been suggested. The first source involves the randomness of the 
A 

sample. For P to be unbiased, all fawns and does must have an equal 

probability of being counted (Hanson, 1963). A second source of bias 

may come from the misclassification of individuals, some fawns may be 

classified as does while some does may be classified as fawns (Leopold, 

1933; G. H. Kelker as quoted in Hazzard, 1958; Downing, 1970; Wyoming 

Game and Fish Dept., 1977). 

Productivity 

The proportion of fawns or the ratio of fawns to does in a popu-

lation have also been used as indices for a few population attributes. 

As with estimators, quantities which can be utilized as reliable in-

dices are desired. Useful indices are those which can consistently 

distinguish between various values of a parameter characteristic of a 

population. Among Cervids in general, the abundance of young in a 

population is often considered to be the best indicator of herd produc

tivity (Pimlott, 1959). The ratio of fawns to does or the proportion 

of fawns estimated in the fall is used extensively to monitor the pro-

ductivity of herds of deer over time (Zwank, 1976) . 

The productivity of a herd, as this term is generally used, re-

lates to how fast a population is growing or how rapidly it is pro-

ducing a surplus of individuals for harvest . It is a relative term, 

is not well defined in most applications, and does not lend itself to 

direct measurement. The productivity of a herd may, however, be 

clearly expressed in terms of several useful quantities including the 



rate of recruitment of individuals into the breeding population, the 

reproductive rate of specific components of a population and the rate 

of increase of a population. 

Recruitment is the addition by reproduction of individuals to a 

portion of the population (Ricklefs, 1973). The recruitment of in

dividuals into the breeding population is an important characteristic 

concerning the dynamics of a population and a useful measure of pro

ductivity. In mule deer, this occurs at about year of age when 

most of the individuals become sexually mature and when the rate of 

survival begins to approach that of older ages (Robinette and 

Gashwiler, 1950; Robinette et al . , 1977; Zwank, 1978; Medin and 

Anderson, 1979). 

One measure of the rate at which individuals are recruited into 

the breeding population would be the number of fawns per doe which 

reach year of age. Because of the relationship illustrated in 

Figure l, estimates of the proportion of fawns in the spring when the 

fawns are l year old will be a consistent indicator of productivity 

of a population as measured by the rate at which fawns are recruited 

into the breeding population. Composition counts to measure produc

tivity, however, are usually done in the fall (Wyoming Game and Fish 

Dept., 1977; Zwank, 1978). If this is to be a useful measure of pro

ductivity, the fall proportion of fawns should reflect the rate at 

which individual s enter the breeding population in the following 

spring. 

The proportion of fawns in the spring population (Ps) is related 

to the fall proportion of fawns {Pf) by the following relationship: 

5 



where 

where 

Ps = fs/(fs + ds) 

Ps = (ff · Sf)/( [ff + df] · St ) 

Ps = Pf · Sf/S t, ( 1 ) 

f s = the number of fawns in the spring population, 

ff = the number of fawns in the fall population, 

ds = the number of does in the spring population, 

df = the number of does in the fall population, 

Sf = the overwinter survival rate of fawns, and 

St = the weighted mean overwinter survival rate of all 

and does. 

The survival rate, St, may be expressed as 

St = Sf · Pf + Sd · (1 - Pf) 

Sd = the survival rate of does over the winter . 

fawns 

If the ratio of survival rates Sf and St is cons tant, then the pro

portion of fawns in the fall population of fawns and does (Pf) would 

be a consistent indicator of the spring proportidn (Ps ) and thus a 

consistent indicator of productivity as measured by recruitment into 

the breeding population . 

6 

Information collected on survival rates of mule deer suggests that 

survival rates of fawns and does may differ substantially and are 

highly variable (Robinette, 1956 ; Robinette et al., 1957 ; Robinette, 

1977; Zwank, 1978; Medin and Anderson, 1979). This indicates that the 

ratio of the overwinter survival rate of fawns (Sf) and the total over

winter survival rate of fawns and does would not be constant . As a 

result, the fall proportion of fawns may not be a good indicator of 
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the productivity of a herd of mule deer as measured by recruitment into 

the breeding population . 

A second measure of productivity that is useful is the rate at 

which the adult does produce offspring . In this work, it will be re

ferred to as the reproductive performance of a population. The repro

ductive performances of a single herd from year to year or two or more 

herds may be compared if information concerning the number of fawns per 

doe is collected at approximately the same time each year . If does of 

all age classes produced fawns at similar rates, then the proportion of 

fawns would provide a comparable measure of productivity between herds. 

Reproduction, however, is not evenly spread across age classes. 

Yearling does of mule deer often produce significantly fewer fawns than 

do does 2 years of age or older (Robinette and Gashwiler, 1950; 

Robinette, 1956; Zwank, 1976, 1978; Medin and Anderson, 1979). Thus, 

as Zwank (1976) points out, "If the previous year's net productivity 

was high, a large proportion of less productive yearlings are included 

in the population and fawn:doe ratio. This would tend to depress the 

apparent size of the present year's fawn crop." Since it is difficult, 

if not impossible, to distinguish between yearling does and older does 

(Downing, 1970; Wyoming Game and Fish Dept . , 1977; Zwank, 1978), the 

proportion of fawns among all fawns and does may not be a measure of 

productivity which allows for meaningful comparisons between herds. 

This specific problem as well as others discussed here give rise to 

the main questions being addressed in the research and resulting con

clusions reported in the following. 
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Definitions 

To facilitate clear and unambiguous usage, the following defini

tions are presented. They are not meant for general acceptance but are 

intended to provide consistency herein . They are necessary because of 

the unclear and variable usage in the literature. As far as possible 

these definitions are those which have been used in other work. 

Fawns are deer of both sexes under the age of year. 

Does are female deer year of age or older. 

Yearlings are deer between one and 2 years of age. 

Population is a cluster of individuals with a high probability 

of mating with each other compared to their probability 

of mating with a member of some other population (Pianka, 

1974) . The population of fawns and does refers to the 

collection of all fawns and does in such a population. 

A population of deer is also often referred to as a herd . 

Ratio of fawns to does is the number of fawns divided by the 

number of does (fawns/does). 

Proportion of fawns is the number of fawns divided by the total 

number of fawns and does (fawns/[fawns +does]). 

Rate of increase is the rate at which a population increases 

(or decreases) in numbers over a specified period of 

time. This rate may be specified as an instantaneous 

rate or a finite rate over an interval of time. Positive 

rates of increase mean that a population is growing, 

while negative rates signify a decline in the size of 



a population. A rate of increase of zero means the 

population is not growing. 

Gross productivity is the proportion of the population that 

could be removed annually on a sustained yield basis 

if al l the young which were conceived were successfully 

born and survived to the hunting season (Simkin, 1974). 

Net productivity is the proportion of a stable population 

that can be removed on a sustained yield basis after 

mortality from causes other than hunting have been de

ducted (Leopold, 1933; Pimlott, 1959; Simkin, 1974). 

Recruitment is the addition by reproduction of new indi

viduals to a population (Ricklefs, 1973). In this 

work it will be expressed quantitatively as the number 

of fawns per doe which reach 1 year of age. 

Reproductive performance of a population is the number of 

fawns produced per doe 2 years of age or older that 

are alive at a specified time (this may be at the time 

of birth, mid- summer, fall, or other time convenient 

for measurement) . 

Objectives 

The objectives of this study were to investigate: 

1) the effect of misclassifying fawns and does on estimates 

of the proportion of fawns from a sample of fawns and 

does from a population of mule deer, 

9 



2) the reliability of using the proportion of fawns in the 

fall as an index to t he rate at which fawns are recruited 

into population the following spring, and 

3) the reliability of us i ng the proport i on of fawns as an 

index of the reproductive performance of the population . 

These objectives are partially fulfilled through the testing of 

the following hypotheses. 

Hl: Estimates of the proportion of fawns in the fall are not 

biased by the misclassification of fawns as does and does 

as fawns . 

H2: There is a high correlation between the proportion of 

fawns in the fall population and the rate at which in

dividuals are recruited into the spring population. 

H3 : The proportion of f awns is highly correlated with the 

reproductive performance of the population as measured 

in the fall . 

10 
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LITERATURE REVIEW 

Use of Age Ratios 

Several relationships between the number of fawns and the number 

of does have been important in the management of mule deer for many 

years . In particular, such relationships have been used in determining 

estimates or indices of productivity as well as other parameters which 

are used to characterize populations. 

The proportion of fawns and the ratio of fawns to does have been 

widely used in the calculation of measures of the productivity of herds 

of mule deer (Zwank, 1976). The occurrence of fawns is usually con

sidered to be the best measure of the productivity of a population 

(Pimlott, 1959). What is specifically meant by productivity, however, 

is often left uncertain by researchers when using the relationship be

tween the numbers of fawns and does (Caughley, 1974). High ratios of 

fawns to does frequently is interpreted to mean ~he population is doing 

well or at least better than another where ratios are lower (see e.g. 

Julander et al., 1961; Nellis, 1968; Woodward et al., 1974; Murphy and 

Whitten, 1976; Wyoming Game and Fish Dept., 1977). Without specifi

cally stating what is meant by productivity, however, these researchers 

can claim little interpretative power with their analysis. 

Despite the nebulous uses of the concept of productivity, at 

least three parameters which may be said to characterize the produc

tivity of a population have been estimated or indexed using the 

relationship between the numbers of fawns and does. The first of 
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these is the rate of recruitment of individuals into the population at 

a specified time. The rate of recruitment may be estimated at a given 

time by counting numbers of fawns and does in a binomial sample of a 

population of deer. The estimate is simply the ratio of individuals 

counted as fawns to those counted as does. Zwank (1978) used the ratio 

of fawns to adult does as a measure of recruitment in herds of mule 

deer in Utah. Kimball and Wolfe (1974) used the ratio of calves to 

cows to estimate recruitment into herds of elk (Cervus canadensis) in 

northern Utah. 

Estimates of the rate of recruitment using the ratio of fawns to 

does collected from a binomial sample of the population are subject to 

major statistical problems . Ratio estimates of thi s type have an in

finite expectation and an undefined variance (Paulik and Robson, 1969; 

Seber, 1973; Brownie et al ., 1978). This makes them difficult to 

analyze directly from a statistical standpoint, particularly when 

ratios from different populations or different years are compared. If, 

however , the relationship between fawns and does is expressed in terms 

of the proportion of fawns (fawns/[fawns + does]) 'instead of the ratio 

of fawns to does (fawns/does) , statistical comparisons can be made . 

The proportion of fawns is statistically a proportion (Freund, 1971) . 

Confidence intervals around estimates of this proportion can be easily 

calculated according to techniques discussed by Cochran (1963) . 

Because of the monotonic relationship between the ratio of fawns 

to does and the proportion of fawns (Figure 1), a confidence interval 

around estimates of the ratio of fawns to does can be made using tech

niques outlined by Seber (1973, p. 363-6). Confidence intervals of 

two ratios calculated by this method can then be compared in testing 
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for statistical differences. The Wyoming Game and Fish Department 

{1977) suggests one such confidence interval based on the variance in 

proportion of fawns . 

13 

A second parameter which has been used to characterize the pro

ductivity of a herd of mule deer is net productivity. Pimlott (1959) 

and Simkin (1974) provide two methods that have been used to estimate 

the net productivity of populations of mule deer utilizing relation

ships between the numbers of fawns and does just prior to the hunting 

season. The first method uses the ratio of fawns to does (fawns/does) 

as an estimate of net productivity. The second method uses the pro

portion of fawns (fawns/[fawns + does]) as an estimate of net produc

tivity . Estimates for both methods are based on counts of fawns and 

does in the field. 

The proportion of young in the population of young and mature fe

males and the ratio of young to mature females have been used to esti

mate or as an index of net productivity in several Cervids. Anderson 

et al. (1970) used the ratio of yearling does to adult does as an index 

of net productivity in a herd of mule deer in the Guadalupe Mountains, 

New Mexico. Mansell (1974) used the ratio of fawns to does to estimate 

net productivity in a herd of white-tailed deer (Odocoileus 

virginianus) on the Bruce Peninsula, Ontario. Pimlott (1959) and 

Simkin (1965, 1974) used both the ratio of calves to cows and the pro

portion of calves as estimates of the net productivity of populations 

of moose (Alces alces) in Newfoundland and Ontario . Simkin (1974) also 

l ists several other studies where the net productivity of moose were 

estimated using the ratio of calves to cows or the proportion of 

calves. 
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While both methods presented by Simkin and Pimlott appear to be 

rather simple schemes to estimate net productivity if accurate ratios 

or proportions can be obtained, neither estimator can be used alone to 

estimate net productivity. This can be seen quite easily in a simple 

example . Consider the four populations with fawn production and death 

rates as shown in Table 1. The ratio of fawns to does in the fall is 

the same for all populations and similarly the proportion of fawns in 

each population is the same . Thus, according to these estimators, the 

net productivity (or proportion of the population which can be har

vested to keep the population stable) is the same for each population . 

However, when the proportion of the population which needs to be har

vested to keep the population at the same level (net productivity) is 

calculated directly from the fall population (see Appendix A), it 

ranges from 0.00 for population 1 to 0.13 for population 4 if all age 

classes are harvested at the same rate. 

If, for the same populations, only animals of age 2 and older are 

harvested, the ratio of fawns to does and the proportion of fawns in 

the population actually decrease as the proportion of the population 

that can be harvested (net productivity) increases! Numerical examples 

of this phenomena are shown in Table 2. These examples show quite 

clearly that the ratio of fawns to does or the proportion of fawns do 

not represent estimates or even consistent indices of net productivity 

by themselves. One needs to know both death rates and recruitment 

rates before net productivity can be calculated (Robinette, 1956). 

A third parameter which has been used to characterize the produc

tivity of populations is the rate of increase of the population. The 

ratio of fawns to does or yearlings to adult does is sometimes 
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Table 1. Net productivity, ratio of fawns to does, and proportion 
of fawns in the population for four different populations 
where all age classes are harvested with equal intensity. 
(See Appendix A for discussion of model and calculations.) 

f .... ns Produc~d Per Doe Surviving to Non- h..-.t1ng Pre -h ..-.t Prc - hl¥lt 
the fall by Age of Doe Mort~l1ty R~tes Ratio of fawn 

Popul at 1~:.~ Age 1 Ages 2 to 8 for •11 Ages f ""'"s to Does Proportion 

1 .000 . 385 .250 . 770 .435 

2 .000 . 404 . 213 .770 . 435 

3 .000 .423 . 175 . 770 . 435 

4 .000 ,442 .138 .770 .435 

Table 2. Net productivity, ratio of fawns to does, and 
of fawns in the population for four different 
where only age classes 2 to 8 are harvested. 
A for discussion of model and calculations.) 

fawns p,·oduced Per Doe Surviving to Non·hl¥lt1ng Pre-hlll t Prt'·hlllt 
the fall by Age of Doe Mort ality Rates Ratio of r ... n 

Popul at i 1:.1 Age 1 Ages 2 to 8 for ell Ages fawns to Oo~s Pruportion 

. 000 . 385 .250 .770 .435 
2 .000 .404 . 213 .758 .4 31 
3 .000 .423 . 175 .744 .426 
4 . 000 .442 . 138 . 731 .422 

llet Productivity 
(Proportion of 
Populet ion to 
be P.emowd) 

.000 

.047 

.091 

. 130 

proportion 
populations 
(See Appendix 

Net Produc t i vity 
(P roportion of 
Population to 
be P.emowd) 

.000 

.046 

.088 

.125·· 



interpreted as refl ecting the rate of increase of a population 

(Caughl ey , 1974). 
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Caughley shows, however , that age ratios cannot be consistently 

interpreted as an index of the rate of increase of a population with

out additional demographic information . He presents situations within 

populations where the age ratios do not consistently reflect changes 

in the rate of increase of the population. He concludes that "age 

ratios are not adequate substitutes for accurate estimates of relative 

or absolute density from which rate of increase can be measured. Nor 

do they ass i st in calculation of this rate . " 

The relationship between the numbers of fawns and does has been 

used in the estimation or as indicators of other parameters which are 

used to characterize populations. Paulik and Robson (1969) and Seber 

(1973) present estimators for the size of the population of fawns and 

does. These estimators require estimates of the proportion of fawns 

in the population at two points in time (e.g., pre- and post-hunting 

season) and an actual count or estimate of the individuals dying during 

the period between the composition counts . Variance estimates cal

culated using the delta method (Seber, 1973, p. 7-9) for these esti

mators are also presented . The numbers of fawns and does in a herd of 

mule deer near Logan, Utah, are calculated by Seber (1973) using one 

of these estimators and data collected by D. I . Rasmussen and E. R. 

Doman. 

Hanson (1963) reviews three estimators of absolute rates of mor

tality which utilize the ratio of fawns to does . Both rates of fawn 

and doe mortality may be calculated using these estimators. These 

estimators were developed by D. M. Selleck and C. M. Hart, G. A. 
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Petrides and W. L. Robinette . While differing slightly in their form, 

all of these estimators require estimates of the ratio of fawns to 

does before and after the period of mortal i ty and the ratio of fawns 

to does among the individuals dying . No estimates of the variance of 

these estimators are presented, primarily because of the use of ratios 

instead of proportions (Paulik and Robson, 1969) . 

Another estimator utilizing the proportion of fawns is an esti

mate of the ratio of the survival rate of fawns to the survival rate 

of does (Paulik and Robson , 1969; Seber, 1973). This estimator re

quires estimates of the proportion of fawns both at the start and at 

the end of the period of consideration. An estimate of the variance 

using the delta method is presented in both cases . 

The ratio of fawns to does has been used along with birth rates 

by several researchers as an indicator of the survival rate of fawns 

during the summer . The number of fawns per doe at a point in time 

after parturition is compared with the number of fawns produced per 

doe at parturition . If the mortality rate of the does is near zero 

during the period of time under consideration, then the difference in 

the ratio of fawns to does at birth and at the later period indicates 

the relative rate of survival of fawns; a small difference would 

suggest high survivorship, a large difference, low survivorship. 

Nellis (1968) and Smith and LeCount (1979) used this technique to 

determine the relative survivorship of fawns of mule deer . The rela

tive survivorship of fawns of pronghorn antelope (Antilocapra 

americana) was determined by Beale and Smith (1978) with this tech

nique . Using a similar approach Wegge (1975) obtained the relative 

rates of survivorship of calves of Norwegian red deer (Cervus elaphus) . 
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Errors in Estimates of Fawn Proportions 

At least three sources of error or bias in estimating the propor

tion of fawns have been identified. The first source of error is due 

to chance from binomial sampling schemes. Leopold (1933) suggested, 

"as a rule of thumb," that samples of over 100 animals were needed to 

assure representative estimates. Cochran (1963) and the Wyoming Game 

and Fish Department (1977) provide methods for the calculation of sam

ple sizes needed to assure estimates within desired levels of accuracy. 

The accuracy of a given estimate of the proportion of fawns is a non

linear function of the size of the sample and the proportion of fawns 

(Cochran, 1963). 

A second source of error involved in estimating the proportion of 

fawns may be the result of non-random samples. If each fawn and doe 

of a population does not have an equal probability of being observed, 

then the estimated proportion of fawns is generally biased. The non

randomness of the sample may be the result of unequal coverage of areas 

occupied, in a non-random fashion, by the sampled_population. Differ

ential behavior between different age and sex classes can create this 

type of heterogenous distribution (Hanson, 1963). 

The probability of being observed is also affected by visibility 

which may vary by sex and age. Poux (1972) found that fawns of white

tailed deer were less visible than does until nearly 6 months of age, 

after which time they were nearly as visible as the does. He also 

found differences in the visibility of bucks and does during various 

months of the year. Dasmann and Taber (1956) reported that there were 
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sexual differences in the visibility of individuals of Columbian black

tailed deer (Q. h· columbianus). 

A final source of error in estimates of the proportion of fawns 

may come from the misclassification of individuals (Hanson, 1963). 

Yearling bucks and fawns may be mistaken for does and does may be mis

taken for fawns (Leopold, 1933; Leopold as quoted by Hazzard, 1958; 

Downing, 1970; Wyoming Game and Fish Dept., 1977). As fawns approach 

does in body size, the problem of differentiating between them in

creases greatly (Wyoming Game and Fish Dept., 1977) . In a study of 

white-tailed deer, Downing (1970) found that under nearly ideal con

ditions of antler development, about five percent of the small antlered 

bucks were misclassified as does. 
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METHODS 

Hypothesis Hl 

The first hypothesis is that the misclassification of does and 

fawns does not bias estimates of the proportion of fawns. It was 

tested by comparing the expected value of two random variables (defined 

below). This method was chosen as it allows for the direct detection 

of any biases affecting the estimation of the proportion of fawns that 

would be introduced by the misclassifica tion of fawns and does . Also, 

the magnitude of any biases could easily be calculated. 

The random variables to be compared are estimators of the propor

tion of fawns (P) obtained from a simple random sample of the popula-

tion with replacement (binomi al sampling). 
A 

The first of these, P, is 

the estimated proportion of fawns obtained without the misclassifica-
A 

tion of fawns and does . The other, P*, is the estimated proportion of 

fawns obtained with various levels of misclassification of fawns as 

does and does as fawns . If misclassification does not bias the esti-

mated proportion of fawns in a sample from a population, then the ex-
A A 

pected value of P* will equal the expected value of P (Blum and 
A 

Rosenblatt, 1972). If the expected value of P* does not equal the ex-
A 

pected value of P, then the difference between the two will represent 
A 

the bias due to misclassification. Hl i s to be rejected if E(P*) is 
A 

found to be different than E(P). 

Throughout the discussion of Hl, the following notation will be 

used . 

I 
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E(r } ;;; The expected value of the random variable r; 

f = the number of animals counted as fawns in a sample 

containing n fawns and does; 

n = the number of fawns and does in a sample; 

p = the proportion of fawns in a population of fawns 

and does; 
A 

p = an unbia sed estimate of P; 
A 

P* = the expected value of P*; 
A 

P* = an estimate of P subject to the misclassification of 

fawns and does; 

Pdd = the conditional probability an individual observed is 

counted as a doe when it is a doe; 

Pdf = the conditional probability an individual observed is 

counted as a doe when it is a fawn; 

Pfd the conditional probability of an individual observed 

is counted as a fawn when it is a doe; 

Pff = the conditional probability an individual observed is 

counted as a fawn when it is a fawn. , 

The statistical model which was used as an unbiased estimator of 

P when there is no misclassification is 
A 

P = f/n 

(Paulik and Robson, 1969; Seber, 1973) . This estimate would come from 

the sampling of a population where binomial sampling was used (Seber, 

1973), binomial sampling being where each individual has an equal 

probability of being observed and sampling is done with replacement. 

This represents the sampling procedure typica lly used when classifying 

individuals of deer herds (Wyoming Game and Fish Dept., 1977). 
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The estimator P* of P subject to the misclassification of fawns 
A 

and does would, like P, be of the form 
A 

P* = f/n; 

simply the function of individuals counted as fawns in a sample size n. 

The misclassification of fawns as does was modeled by assuming 

each fawn had an equal probability of being misclassified as a doe. 

Thus, if an observer misclassifies 10 percent of the fawns as does, 

a fawn observed at random would have a probability (Pff) equal to 0.9 

of being recorded as a fawn and a probability (Pdf) equal to 0.1 of 

being recorded as a doe . Note that Pff and Pdf will always sum to 1 .0. 

The misclassification of does was also modeled in this manner; each doe 

was assumed to have an equal probability (Pfd) of being misclassified 

as a fawn. 

This approach to modeling misclassification was used as it allowed 

for the case where all fawns or does had essentailly equal probabil

ities of being misclassified . Modifications on this scheme allow for 

cases where a certain portion of the fawns or does had higher or lower 

probabilities of being misclassified. This latter situation might 

arise when fawns with does are less likely to be misclassified than 

fawns which are observed alone or when yearling does are smaller than 

adult does and are more likely to be counted as fawns. As long as all 

individuals have an equal probability of being observed, then the 

probability of misclassifying a fawn (or doe) may be modeled by using 

the mean probability of misclassifying a fawn (or doe). This can be 

seen by calculating the expected value of a random variable repre

senting the probability that an individual observed at random is 
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misclassified. This expected value is equal to the mean probability 

of misclass i fying an individual . 

The estimators P and P* as developed here assume that n, the num-

ber of fawns and does i n a sample, is a fixed value. When the numbers 

of fawns and does are actually collected, however, the value of n is 

generally a random variable with its value dependent upon the sampling 

effort and chance . Often a minimum value for n is established for ob-

servers, but the total number actually observed is generally still a 

function of chance. 

Assuming n is fixed instead of a random variable, though, is not 

a serious problem. Seber (1973) s hows that considering n as fixed or 

as a random variable produces essentially the same estimates for the 

expected values and variances for these estimators of P. Since this is 
A A 

the case, the estimators P and P* were analyzed with the assumption 

that n was fixed before sampling; the expected values and variances of 
A A 

P and P* are more easily calculated when n is assumed to be fixed than 

when it is assumed to be a random variable. The expected values and 
A A 

variances for P and P* are calculated in Appendix' S. 

Hypothesis H2 

The second hypothesis is that the proportion of fawns in the fall 

population is an indicator of the rate of recruitment of fawns into 

the spring population. It was tested using a model that simulated a 

population of mule deer in which antlerless individuals are subject to 

little or no hunting pressure . The model was designed to test H2 on a 

population of mule deer which is typical of many of the herds in the 

Intermountain West. 
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The data needed to test H2 were an exact knowledge of the rate of 

recruitment of fawns into the spring population and the proportion of 

fawns in the population in the previous fall for many different years. 

The best data to provide the most realistic analysis would come from 

field studies. Such data, however, do not exist from field studies 

even from extensively studied herds such as the herd of white-tailed 

deer on the George Reserve in Michigan (O'Roke and Hamerstrom, 1948; 

McCullough, 1979). Because of this lack of necessary data from field 

studies, a model that simulates the dynamics observed in a real popu

lation was developed and used to simulate a deer population (typical of 

the Intermountain West) over a period of years. Exact rates of re

cruitment into the spring population by fawns and the proportion of 

fawns in the fall population were then calculated from the simulated 

population. 

A variable projection matrix model (Fowler and Smith, 1973; Smith, 

1973) was used to generate the data required for testing H2. This 

model, a modification of the classical Leslie matrix model (Leslie, 

1945, 1948) was selected as it allows for the examination of the 

dynamics of separate age classes and because it produces more realistic 

dynamics than possible in simpler models. 

Two projection matrices were used for simulation over time. One 

matrix was used to predict the spring population of deer (late May) 

from the preceeding fall (late October) while the other matrix was used 

to predict the fall population from the previous spring. Only the fe

male portion of the non-fawn population and all of the fawns to an age 

of 1 year were considered in the testing of H2. 
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Shown in Figure 2 is the projection matrix {A) used to predict the 

spring population from the preceeding fall. This matrix is multiplied 

by a vector (Nf) representing the age structure in the fall population 

to produce a vector (Ns) representing the age structure in the spring 

population. The multiplication of Nf by matrix A advances each age 

class one year (age class i becomes age class i + 1) and calculates the 

number of fawns at the time of parturition. The subdiagonal elements 

(si) of matrix A are the survival rates of does in age class i from 

fall to spring. The top row of elements (bi) contains the average num

ber of fawns produced by a does of age class i that are alive to bear 

young in the spring. As shown by Fowler and Ryel (1979), 

where 

bi = fi · Si 

fi = the average number of fawns produced by a doe from age 

class i (i being the age class in the fall) which are 

alive in the spring. 

The matrix B used to calculate the fall population from the spring 

population is shown in Figure 3. A vector (Ns) representing the popu

lation in the spring is multiplied by matrix B to produce a vector 

(Nf) representing the fall population . The non-zero elements of matrix 

B consist of a set of survival rates on the diagonal. These survival 

rates (si) represent the proportion of individuals in age class i sur

viving from spring to fall. 

An important aspect of survival and fucundity rates of animal 

populations is that they usually vary from year to year in response to 

food availability and winter severity among other factors (Anderson 

et al., 1974). In this model, the variability in these rates was 
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modeled by randomly selecting the rates from sets of realistic values 

each time the matrices A or B were used . 

The set of values used for each rate was determined from studies 

reported in the literature concerning mule deer (see later) . Minimum 

and maximum values for each parameter were obtained from these studies 

and a median value determi ned. Each time matrices A and B were used, 

uniformly distributed random numbers between -1 and 1 were generated. 

These random numbers were then multiplied by specific modifying factors 

and then added to the median values of each rate. The modifier values 

were such that when multiplied by 1 (or -1) and added to the median 

value, the maximum (or minimum) value of each rate was produced. This 

procedure produced a set of values uniformly distributed between the 

minimum and maximum values for each rate . 

Since conditions which are favorable or unfavorable to reproduc-

tion and survivorship might be expected to affect all age classes, the 

rates within each set of fecundity and survival rates were assumed to 

be highly correlated . When matrix A was used to predict spring popu

lation values, two random numbers were generated. ' One was used to 

generate the fi values while the other was used to select the Si rates 

for a given year . When B was used, one random number was generated; it 
I 

was used to generate the Si values for a given year . A complete list 

of assumptions for this model of a population of mule deer appears in 

Table 3. 

The minimum and maximum values for the age specific rates of fe-

cundity and survival used in this model are listed in Table 4. Listed 

in Table 5 are the ranges of rates of fecundity found for mule deer in 
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Table 3. List of important assumptions included in the model of a 

population of mule deer. 

l . a. There is a high correlation (r ~ 1.0) between the age specific 

rates of fecundity in a given year . 
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b. There is no correlation {r ~ 0.0) between the rates of fecundity 

between years . 

2. a. There is a high correlation (r ~ 1.0) between the age specific 

rates of summer survival in a given year. 

b. There is no correlation (r ~ 0.0) between the rates of summer 

survival between years. 

3. a. There is a high correlation (r ~ 1 .0) between the age specific 

rates of winter survival in a given year. 

b. There is no correlation (r ~ 0.0) between the rates of winter 

survival between years. 

4. There is no correlation (r ~ 0.0) between the rates of fecun-

dity, winter survival and summer survival. 

5. Rates of fecundity and survival are approximately uniformly 

distributed between high and low values. 
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Table 4. The minimum and maximum age-specific rates of fecundity ( f; ) ' 
winter survival (s;), and summer survival (s';) .a 

Age f; s"i Si 

class (i) Min. Max. Min. Max. Min. Max . 

.000 .026 . 550 .890 .400 .870 

2 .720 1. 230 .860 .960 .680 .900 

3+ 1. 290 1. 930 .860 .960 .807 .907 

asources of data found in text. 

I 
Table 5. Numbers of fawns produced per doe of age i in the spring. 

Age 

2 3+ Source 

.000 .78 1.63 Robinette and Gashwiler ( 1950) 

1.29 Robinette et al. (1955) 

.75 Trainer and Van Dyke (1975) 

.72 Papez (1976) 

I .026 1.23 1.93 Zwank (1978) 

.000 1.01 1. 58 Medin and Anderson ( 19 79) 
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six studies. The minimum and maximum values reported in these studies 

were used as the minimum and maximum values in the model . 

Summer rates of survival (si) were obtained from several sources. 

Rates of survival of 0. 550 and 0.890 for fawns for the first 5 months 

of life (May to October) have been reported by Robinette et al. (1977) 

and Zwank (1978). This was the range used in the model for si . 

Medin and Anderson (1979) calculated annual rates of survival of 

adult does of 0.80 in their work. Distributed evenly throughout the 

year, this implies a survival rate of 0.910 over the period from late 

May to late October. This was used as a mean summer survival rate of 

ages 2 and older. A range of 0.860 and 0.960 was used for these sur

vival rates. The upper level of 0.960 agrees with values found by 

Robinette et al. (1977) . 

Overwinter (late October to late May) rates of survival also came 

from several sources. Robinette et al. (1977) reported an overwinter 

rate of survival for fawns of 0.870 . This was used as a maximum value. 

Robinette et al. (1957) found that rates of fawn mortality were 2.5 to 

3 times that of adults. This was used in conjunction with adult rates 

to obtain a low value. 

Yearling mortality rates over the winter were reported to range 

from being the same as adults (Robinette et al ., 1977; Zwank, 1978) to 

1.6 times that of adults (Robinette et al ., 1957). The upper rate of 

survival for yearlings (s 2) was assumed to be the same as adults, while 

the lower values were determined such that the mortality rate for 

yearlings was 1.6 times that of adults. 

The overwinter rates of survival for adults, using the work of 

Medin and Anderson (1979), would be 0.880. This value, however, when 
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used with the median values for the other rates of survival and fecun

dity produces a population which increases slowly. A value of 0.857 

creates a stable population in combination with the median values for 

each parameter and was chosen as the median. A range of 0.807 to 0.907 

was then used for the range of rates of overwinter survival of adults . 

This made the range of rates of overwinter survival of fawns and 

yearlings become 0.400 to 0.870 and 0 .680 to 0.900, respectively . 

Twelve age classes of does were considered in this matrix model. 

Individuals that reached older ages were not considered (they were 

assumed to die at 12 years) as their total numerical contribution to 

the population of does was less than 3 percent. The truncation of the 

population at 12 age classes made this model similar to that of other 

models of mule deer (Anderson et al., 1974; Medin and Anderson, 1979). 

This model was coded into FORTRAN IV (as described in Burroughs 

Corp., 1978) for high speed simulation on the Burrough•s 6700 computer 

at Utah State University. A li sting of the FORTRAN code of the model, 

a description of parameters and important variables contained in the 

model, and model validation and verification appear in Appendix C. 

Hypothesis H2 was tested using this model to simulate a population 

of mule deer over a period of 1050 years. Each simulation was begun 

with the population in a stable age structure as determined by the rate 

of increase of the population when the median value for each rate of 

fecundity and survival were used. The first 50 years were discarded 

from the analysis of the population to remove any effects of the initial 

stable age distribution. The proportion of fawns in the fall popula

tion, the rate of recruitment of fawns into the spring population 



(fawns per doe) and the rate of increase of the population were cal

culated for each of the remaining 1000 years. 
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The coefficient of linear correlation (r) was used to express the 

strength of the relationship between the proportion of fawns in the 

fall population and the number of fawn s per doe which were recruited 

into the spring population. An important assumption concerning the 

calcul ated coefficient of linear correlation is that the independent 

variable, in this case the fall proportion of fawns, must be indepen

dent (Ott, 1977) . Since the age structure of the population in one 

fall is derived from the previous fall, one might expect that the fall 

proportion of fawns determined by the age structure of the population 

each year might be serially correlated and, as a result, not be in

dependent . 

To test for serial correlation between the proportion of fawns in 

the population calculated for the fall each year, the serial correl a

tions between the proportion of fawns in the fall of year i and the 

proportions in the fall of years i + 1, i + 2, i + 3, i + 4, and i + 5 

were calculated for several 1000-year simulations of the model as de

scribed by Burington and May (1970). The correlation between the pro

portions in years i and i + l were found to be significantly different 

than zero (P < 0.05) while the correlations between year i and year 

i + j where j is greater than l were found to be insignificant (P > 

0.05) . The correlations between the proportions in years i and i + l 

were relatively small, being in the range of -0 .26 to -0.20; the other 

correlations were less than 0.05. 

To insure the independence between the fall proportions of fawns 

used in calculating the coefficients of correlation for testing H2, 
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only 200 out of the 1000 pairs of fall proportions of fawns and spring 

rates of recruitment calculated in a 1000-year simulation were used. 

One year out of each 5-year interval of the simulation was randomly 

selected to produce the 200 years of proportions and rates of recruit

ments to be considered. The selection process was designed such that 

two consecutive years could not be chosen . 

Five simulations of populations of mule deer over a period of 1050 

years (in which the las t 1000 years were considered) using different 

sequences of random numbers were made to test H2. Coefficients of 

linear correlation between the proportion of fawns in the fall popula

tion and the number of fawns per doe that were recruited into the popu

lation the following spring were calculated for each of the five 

simulations for 200 randomly selected years. A coefficient of linear 

correlation (r) for this relationship significantly less than 0.90 was 

set as the criterion for rejection of H2. The sign test (Ott, 1977) 

was used to determine if these correlation coefficients were signifi

cantly less (P < 0.05) than 0.90. Rejection would mean that less than 

81 percent (r2 ) of the variability (Ott, 1977) i~ the recruitment rate 

may be accounted for by the proportion of fawns in the population in 

the previous fall . 

Hypothesis H3 

The third hypothesis is that the proportion of fawns in the popu

lation is an indicator of the reproductive performance of a population. 

This hypothesis was tested using the same model developed to test H2. 

The reproductive performance of a population was defined earlier 

to be the number of fawns produced per doe 2 or more years of age that 
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are alive at a specified time. Since composition counts are frequently 

taken in the fall, the reproductive performance was measured for the 

population in late October. The proportion of fawns in the population 

in October was correlated with the number of fawns surviving to October 

produced per doe 2 or more years of age to test H3. 

To test H3, ten 1050-year simulations were made using the model. 

The first 50 years of each simulation were discarded and 200 years out 

of the remaining 1000 were randomly selected to be used in testing H3. 

The ranges of rates of fecundity and survivorship were the same as used 

in testing H2. The coefficient of linear correlation between the pro

portion of fawns among all fawns and does in October and the number of 

fawns surviving to October produced per doe aged 2 years or older was 

calculated for the 200 randomly selected years for each of the ten 

simulations . A coefficient of correlation between these quantities 

significantly less than 0.90 (P < 0.05) would result in rejection of 

H3 . The sign test was used to test whether or not these correlation 

coefficients were significantly less than 0.90. 
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RESULTS AND DISCUSSION 

Misclassification 

The effect of misclassifying fawns as does and does as fawns on 

estimates of the proportion of fawns was investigated by the comparison 
A A 

of the expected value of two random variables, P and P*. As defined 

earlier, these random variables are estimates of the proportion (P) of 
A 

fawns among does and fawns in a herd of deer. P is an estimate without 
A 

the misclassification of individuals while P* is an estimate with the 

misclassification of fawns and does at specified level s. 

If the misclassification of fawns as does and does as fawns does 
A A 

not bias estimates of P, then the expected value of P* (E[P*]) will 
A A 

equal the expected value of P {E[P]) . As discussed in Appendix B, 
A 

E(P) = P (2) 

and 
A 

E(P*) = P Pff + (1-P) . Pfd· (3) 
A 

Thus, if P* is an unbiased estimate of P, then 
A A 

E(P) = E(P*) or 

P = P · Pff + (1-P) · Pfd · 
A A 

This implies that E(P) = E(P*) when either 

Pdf = 0 and Pfd = 0 (case I) 

or Pfd/Pdf = P/{1-P) (case II) 

where 

Case I is simply the situation where no misclassification occurs and as 

is expected, the es timate of the proportion of fawns (P) is unbiased . 
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Case II is a special situation where the ratio of the probabilities of 

misclassifying does as fawns (Pfd) and mi scl assifying fawns as does 

(Pdf) happens to equal the actual ratio of fawns to does in the popu-

lation. Thus, except in the special situation described in case II , 

misclassification of fawns and does will produce biased estimates of 

the proportion of fawns (P) among fawns and does in a given populat ion. 

These findings do not support the hypothesis (Hl) that the mis-

classification of fawns and does will not bias estimates of the pro-

portion of fawns. Misclassification, in general, will bias estimates 

of this proportion. Thus , Hl must be rejected. 

Because the misc lassification of fawns and does produces biased 

estimates of the proportion of fawns, some of the properties of this 

bias were evaluated. The amount of bias in estimates of P produced by 

given levels of misclassification of fawns and does can be expressed by 
A A 

·taking the difference between the expected value of P* (E[P*]) and the 
A A 

expected value of P (E[P]) . In other words , 
A A 

Bias = E(P*) E(P) 

= P · Pff + (1-P) · Pfd - P 

= Pfd - P(Pfd + Pdf) 

where Pdf = 1 - Pff . 

(4) 

This implies that the amount of bias and whether the bias is positive 

or negative are functions of the probabilities of mi sclassifying fawns 

and does (Pfd and Pdf) and the proportion of fawns . The biases pro-

duced for a few probabilities of misclassification as a function of the 

actual proportion of fawns are illustrated in Figure 4. 

Two important points can be made about the biases in estimates of 

the proport ion of fawns due to the misclassification of fawns . First, 
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for constant probabilities of misclassifying fawns and does, the amount 

of bias is different for different proportions of fawns. As can be 

seen in Figure 4, the bias for given probabilities of misclassifying 

fawns as does (Pfd) and does as fawns (Pdf) may be positive, negative 

or even zero depending on the proportion of fawns. 

Second, different probabilities of misclassification produce dif

ferent amounts of bias in the estimate of the proportion of fawns in a 

given population . The bias in the estimate of this proportion for a 

given population produced by misclassification, may be positive, nega

tive or zero depending on the probabilities of misclassifying fawns as 

does (Pfd) and does as fawns (Pdf). This also can be seen in Figure 4. 

Thus, one would have to have a relatively accurate estimate of the 

probabilities of misclassification (Pdf and Pfd) before much could be 

said about the amount of bias in the estimate of the proportion of 

fawns produced by misclassifying fawns and does. If only fawns are 

misclassified (Pdf~ 0, Pfd = 0), however, the bias would always be 

negative while if only does are misclassified (Pfd # 0, Pdf= 0), the 

bias would be positive (see equation 4). 

While the misclassification of fawns and does biases estimates of 

the proportion of fawns, it is important to look at the magnitude of 

the bias in terms of the ac tual value of this proportion and the effect 

of the bias on the sampling distribution. If the bias is small rela

tive to the value of this proportion, then it may be considered in

significant. If, on the other hand, the bias is large, then 

misclassification may cause relatively poor estimates of the proportion 

of fawns and may lead to false interpretations about the proportion of 

fawns in a given population. 
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The relative size and importance of the bias was investigated two 

ways . First, the percentage increase or decrease in the estimate of 

the proportion of fawns as a result of the bias was calculated. This 

percentage was calculated by dividing the bias by the proportion of 

fawns, P, and multiplying this quotient by 100 . In other words, if PID 

is the percent increase or decrease in the expected value of estimates 

of the proportion of fawns due to misclassification, then 

PID = Bias/P X 100 

= (Pfd - P · [Pfd + Pdf]}/P X 100 

= (Pfd/P [Pfd + Pdf]) X 100. (5} 

Values of PID as a function of the proportion of fawns (P) are illus

trated in Figure 5 for various probabilities of misclassifying does and 

fawns (Pfd and Pdf). 

From this analysis of the magnitude of the bias due to misclassi

fication, two points may be made . First, the bias may be quite large. 

In one case illustrated in Figure 5, the bias was equal to 80 percent 

of the value of the proportion of fawns (P), an amount which would in

crease the expected value of estimates of the proportion of fawns to 

1.8 times that of the proportion, P. Second, the type of misclassifi

cation is important in determining the magnitude of the bias. If only 

fawns are misclassified, then the bias simply decreases estimates of 

the proportion of fawns by an amount equal to the probability of mis

classifying fawns as does, Pdf· If only does, or both does and fawns 

are misclassified, the magnitude of the bias may vary greatly with the 

proportion of fawns, P. 

In the examples presented in Figure 5, the magnitude of the 

percent increase or decrease (PID) was greatest when the proportion of 
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fawns was small. particularly below 0. 25 . This would be expected in 

general as the misclassification of some of the proportionally large 

number of does would add a relatively large number of "fawns" to the 

total number of fawns in a sample. As was the case with the actual 

value of the bias, however, the magnitude of the bias relative to the 

proportion of fawns, P, varies greatly with the value of this proportion 

and the probabilities of misclassification, Pfd and Pdf· 

The second scheme used to investigate the relati ve size and im

portance of the bias due to misclassification involved the investigation 

of the sampling distributions of the estimators of the proportion of 

fawns (P). The sampling distribution of an estimator of the proportion 

of fawns describes the probability that when a sample of fawns and does 

is taken, the resulting estimate of this proportion will be a specific 

value. The majority of these estimates will be within a specific range 

of values as determined by their probabilities of occurrence. 

If the estimates of the proportion of fawns are biased by misclassi

fication, then the sampling distribution which describes their proba

bilities of occurrence will be different than the ' sampling distribution 

for an unbiased estimator. As a result, the majority of biased esti

mates will be within a range of values that is different than that of 

unbiased estimates. Because of this difference in sampling distri

butions, the bias due to misclassification may cause the range of the 

majority of the biased estimates to not include the proportion of fawns, 

P. If this were the case, the probability that an estimate of the pro

portion of fawns would be close to that of the proportion, P, would be 

very unli kely. 



42 

This investigation was undertaken by determining the range of 

values which includes approximately 95 percent of the biased estimates, 
A 

P*, of the proportion of fawns, P (the bias being the result of mis-

classification). This range of values was then examined to see whether 

it included the proportion of fawns, P. As calculated in Appendix 8, 
A 

the variance of the estimator, P*, is 
A 

V{P*) = P* · (1-P)/n (6) 

where 
A 

P* = E(P*) = P · Pff + (1-P) · Pfd· 

Since proportions are approximately normally distributed in most in-

stances (Blum and Rosenblatt, 1971 and Ott, 1977), the range of values 

{centered around P*) which includes approximately 95 percent of the 

estimates obtained from samples containing n fawns and does would be 

P* ± 1.96 / P* · (1-P*)/n. (7) 

Thus, the range of 95 percent of the estimates includes the actual fawn 

proportion, P, when 

I P*- PI < 1.96 / P* · {1-P*)/n (8) 

where I P* - PI is the abs o 1 ute va 1 ue of the difference between P* and P. 

Any time the conditions in the inequality (8) are not met, the 

range of values within which 95 percent of the estimates would fall does 

not include the proportion of fawns, P. Figure 6 illustrates an example 

where 95 percent of the sampling distribution contains the value of P 

for most sample sizes while Figure 7 illustrates an example where this 

is the case only when sample sizes are less than 92 fawns and does. 

The significance of the relationship expressed in equation 7 is 
A 

twofold. First, if the expected value of the biased estimate, P*, and 

the proportion of fawns, P, differ by 0.1 or more (i.e., the bias due to 
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misclassification is 0.1 or more), then the range of values within which 

95 percent of the biased estimates {P*) fall will not contain P for 

samples of over 100 fawns and does. Thus, if misclassification causes 

biases of 0. 1 or more, an estimate near the value of the proportion of 

fawns, P, would be quite unlikely for sample sizes often collected . 

The second significant result of (8) is that increasing the size of 

the sample of fawns and does, n, will not improve the quality by re

moving the bias) of the estimate of the proportion of fawns when there 

is misclassification of fawns and does. As can be seen in equation 6, 

the range of values within which 95 percent of the biased estimates, 
A 

P*, would fall decreases as the sample size, n, increases. However, as 

the sample size increases, the estimates of the proportion of fawns, P, 

would tend to fall closer and closer to the expected value of the 

biased estimates, P*, not the desired proportion, P. Thus, while larger 

sample sizes will decrease sampling errors (by decreasing the variance), 

they will not produce better estimates of the proportion of fawns, P, 

{by removing the bias) as long as misclassification occurs . The bias 

due to misclassification is unaffected by the s ize of the sample of 

fawns and does, n. 

Since the misclassification of fawns and does produces biased esti

mates of the proportion of fawns (P), one might expect that misclassi

fication would also bias other estimators which utilize estimates of P. 

As a tangent to the main issues being addressed in this thesis, the 

effect of misclassification of fawns and does was superficially investi-

gated for a change-in-ratio estimator for population size outlined by 

Paulik and Robson (1969). Thi s estimator for the population size of 

fawns and does at time tl may be expressed as: 
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A A A A 

Ntl = (Rf - R · Pt2)/(Ptl - Pt2) (9) 

where 
A 

Ntl = the estimated number of fawns and does in a population 

at time tl; 
A 

Pti = an estimate of the proportion of fawns in the popula-

tion at time i; 

Rf = the number of fawns removed from the population between 

times tl and t2 (must be known exactly}; and 

R = the number of fawns and does removed from the population 

between times tl and t2 (must be known exactly). 
A 

Table 6 shows values of Ntl calculated using P and P* for a few 

values of misclassification, Pfd and Pdf• where the probabilities of 

misclassification were assumed to be the same at times tl and t2. The 
A 

differences in the values of Ntl calculated using P and P* suggest that 

misclass i f ication of fawns and does will cause biases in the estimator 
A 

Ntl· The statistical properties of this problem need further study . 

Fall Proportion of Fawns as Index of Spring Recruitment 

The use of the proportion of fawns in the fall population as an 

index of spring recruitment rates was investigated using the model for 

simulating mule deer populations as described in the methods section. 

The coefficients of linear correlation (r) between the fall proportion 

of fawns and the number of fawns per doe recruited into the population 

the following spring for five simulations of 1000 years each are shown 

in Tab le 7. These represent correlations between these parameters cal-

culated for 200 randomly selected years from each of the 1000-year 

simulations . 
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Table 6. Estimates of Ntl for a hypothetical population using P and P* 
for four sets of probabilities of mi sclassification (Pdf and 
Pfd) . 

Pdf = .10 Pdf = .00 Pdf = .10 Pdf = .20 
Parameter values Pfd = . l 0 Pfd = .05 Pfd = .00 Pfd = .05 

Actua 1 Ntl 10000 10000 10000 10000 

No. of fawns at t 1 4000 4000 4000 4000 

No. of does at t1 6000 6000 6000 6000 

Rf 30 30 30 30 

R 230 230 230 230 

Pt1 .4000 .4000 .4000 .4000 

Pt2 .4063 .4063 .4063 .4063 

Pt1* .4200 .4300 .3600 .3500 

Pt2* . 4251 .4360 .3657 .3548 
A 

Ntl using P 10000 10000 10000 10000 
A 

Ntl using P* 13349 11659 9475 10840 



Table 7. Correlation coeffi cient between the proportion 
of fawns in the fall and the rate of recruit
ment in the followin g spring. 

Simulation 
run 

l 

2 

3 

4 

5 

sx 

95% C.I. 

Coefficient of 
correlation 

.878 

.829 

.872 

.835 

.867 

.856 

.010 

( . 8 28 ' . 884) 

The coefficients of correlation calculated from the five simula-

48 

tions ranged from 0.829 to 0.878 with a mean of 0\856. If these esti-

mates of the correlation are approximately normally distributed, the 95 

percent confidence interval for the coefficient of correlation (r) 

would be (0 .828, 0.884) . Thus, as an index, the fall proportion of 

fawns can explain only about 73 percent (r2 ) of the variability in the 

rate of recruitment in the following spring for populations similar to 

the model constructed . A scattergram showing a sampling of the fall 

proportion of fawns and the spring recruitment rates appears in Figure 

8 for the first of the series of five simulations. 
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The correlation between the fall proportion of fawns and the rate 

of recruitment of fawns into the population the following spring dis

cussed here was determined under conditions wherein the exact fall pro

portion of fawns was known from the simulated population. However, 

only estimates of this quantity are generally known for free ranging 

wild populations, having been gathered from samples of various sizes 

through binomial sampling. Since sampling adds variability to the cal

culated fall proportions, one might expect the correlations between the 

fall proportions and rates of spring recruitment to vary with the ac

curacy of these estimates, the smaller the sample size, the smaller the 

correlation. 

The coefficients of correlation (r) between estimates of the fall 

proportion of fawns and the rate of recruitment of fawns (fawns per 

doe) into the population the following spring were calculated for sam

ple sizes of 50, 100, 200, and 500 fawns and does. The number of fawns 

and does contained in a sample of a given size were randomly selected 

from binomial distributions each fall in the simulations . The correla

tions calculated for each sized sample are shown 'in Figure 9. Five 

simulations were made for each sample size; the 95 percent confidence 

intervals for each coefficient of correlation calculated from the five 

simulations are shown. The mean correlation coefficients calculated 

for the cases where the fall proportion of fawns were estimated from 

samples of 50, 100, 200, and 500 fawns and does were 0.604, 0.719, 

0.767, and 0.824, respectively . The coefficient of correlation when 

fall proportions of fawns are known (approximately 0.856) is an 

asymtote as the sample size becomes large. 



z 
0 
H 
t-
cr. 
_) 

UJ 
0:: 
0:: 
0 
u 

lJ... 
0 
.._ 
z 
UJ 
H 
u 
H 
lJ.. 
lJ.. 
UJ 
0 
'-' 

j. 0 

e.~ 

0.B 

~.? 

21.6 

£.5 
1~21 2211' '3021 10fl 5021 

NUMBER IN FALL SAMPLE 

Figure 9. Coefficient of correlation between estimated fall 
proportion of fawns and spring rates of recruitment 
for various sizes of samples. The error bars 
represent 95 percent confidence intervals for 5 
simulations . 

51 



52 

The relationship shown in Figure 9 illustrates the importance of 

the size of the sample in the amount of correlation (r) between the 

fall proportion of fawns and the spring rate of recruitment. With sam

ples of 100 or fewer animals, estimates of fall proportions explained 

less than 50 percent (r2 ) of the variability in the spring recruitment 

rate of the simulated population; much less than the 73 percent ex

plained when the fall proportions were known. For samples of 500 

animals, the coefficient of correlation begins to approach that calcu

lated when the fall proportion was known, but is still significantly 

less (P = 0.032, randomization test (Green, 1977)) . 

These coefficients of correlation between the fall proportion of 

fawns and the rate of recruitments of fawns into the population the 

following spring were tested to see if they were significantly less 

than 0.90 using the sign test (Ott, 1977) . In all of the cases con

sidered, including the case where the fall proportions of fawns were 

known, the correlation coefficients were found to be significantly less 

(P ~ 0.0312) than 0.90. Thus, the hypothesis (H2) that there is a high 

correlation between the fall proportion of fawns dnd the rate of re

cruitment of fawns into the spring population must be rejected based 

on the criterion described in the methods section. 

Although the testing of the hypothesis, H2, provided insights into 

the strength of the relationship between the fall proportion of fawns 

and the spring rate of recruitment, it did not indicate the reliability 

of using the fall proportion of fawns to predict spring recruitment 

rates. In an attempt to gain insights on this question, an investiga

tion was made to evaluate the reliability of using the fall proportion 

of fawns to predict the spring recruitment rate. This was done by 
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calculating the 95 percent prediction interval around the spring re

cruitment rate for a given fall proportion of fawns. 
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The 95 percent prediction interval, calculated using linear re

gression techniques as described by Ott (1977), is a measure of how 

precisely the fall proportion of fawns can predict the rate at which 

fawns are recruited into the spring population. The narrower the pre

diciion interval, the more reliable the fall proportion is as an in

dicator of recruitment . If the prediction intervals for two different 

fall proportions overlap, then they may not represent different spring 

recruitment rates. 

The 95, 90, and 80 percent prediction intervals around the spring 

recruitment rate (expressed as fawns per doe) for different fall pro

portions of fawns are illustrated in Figure 10. These represent pre

diction intervals when the fall proportion of fawns is known . The 

prediction intervals were calculated from data from the first simula

tion that was used to test H2. 

Two important points can be made concerning the prediction inter

vals around spring recruitment rates for given faTl proportions of 

fawns illustrated in Figure 10. First, the fall proportion of fawns 

is not a precise indicator of the spring rate of recruitment. The 

wide 95 percent prediction intervals imply that only a gross indication 

of the spring recruitment rate may be obtained by using the fall pro

portion of fawns. Second, the fall proportion of fawns between two 

populations must differ by a relatively large amount (nearly 0.2) be

fore one can conclude that they probably represent different spring 

recruitment rates. If the fall proportion of fawns is estimated from a 

sample, then this difference would probably have to be greater than 0.2. 
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As a tangent to this analysis, an attempt was made to provide a 

better index of the rate at which fawns are recruited into the spring 

population. As was shown earlier (equation (1), page 6), the fall pro

portion of fawns (Pf) is related to the proportion of fawns in the 

population the following spring (Ps) by the relationship 

Ps = Pf · Sf/St 

where Sf is the survival rate of fawns over the winter and St is the 

weighted mean survival rate of all fawns and does over the winter. 

Since there is a one to one relationship between the proportion of fawns 

and the number of fawns per doe (Figure 1), knowledge of the survival 

rates Sf and St, in addition to the fall proportion of fawns (Pf), 

should produce an index which is more highly correlated with the rate 

at which fawns are recruited into the spring population (expressed as 

the number of fawns per doe). 

In an attempt to utilize the relationship expressed in (1), 
A A A A 

Ps = Pf · Sf/St ( 15) 

was used as an index for the rate of recruitment of fawns into the 

spring breeding population. 
A A A .. 

Pf, Sf, and St represent estimates of the 

fall proportion of fawns (Pf), the overwinter fawn survival rate (Sf), 

and the weighted mean overwinter survival rate for all fawns and does 

(St), respectively. The coefficients of correlation (r) between the 

rate at which fawns are recruited into the spring population (expressed 

as the number of fawns per doe) and this index were calculated for mule 

deer populations simulated over a period of 1000 years. 

Simulations were made using estimates of the proportion of fawns 
A A 

(Pf), the overwinter survival rate of fawns (Sf), and the weighted mean 
A 

overwinter survival rate of all fawns and does (St) calculated from 
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samples of various sizes. Each of these estimates was assumed to have 

been obtained from binomial sampling and estimates used in the simula

tions were randomly selected from normal approximations to binomial 

distributions . This procedure simulated the estimation of overwinter 

survival rates (Sf and St) that would be obtained from animals marked 

in the fall (such as with radio collars) whose status (alive or dead) 

was known in the spring . It was assumed that the estimates of Pf, Sf, 

and St were independent of each other. 

The coefficients of correlation between the rate at which fawns 

are recruited into the spring population and the index, Ps, are shown 

in Figure 11 for several simulations. Each datum point on the graph 

represents the mean correlation coefficient calculated from five simu

lations of a mule deer population over a period of 1000 years. Only 

information from 200 randomly selected years of the 1000-year simula

tions were considered in the calculation of each correlation coeffi

cient. The 95 percent confidence intervals are shown for each 

estimated correlation coefficient . Simulations of 1000 years were made 

for cases where the overwinter s urvival rate Sf ana St were each esti

mated from sample sizes of 25, 50, 100, and 250 animals and where the 

proportion of fawns in the fall population (Pf) was known and where it 

was estimated from samples containing 200 fawns and does. 

Two conclusions can be drawn from the results illustrated in 

Figure 11. First, as expected, estimates of the overwinter survival 

rate of fawns (Sf) and the weighted mean overwinter survival rate of 

all fawns and does (St) can be used with an esti mate of the fall pro

portion of fawns (Pf) to produce a better index of the rate at which 

fawns are recruited into the spring population than the proportion of 
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fawns {Pf) used alone . In the cases where the proportion of fawns i n 

the fall, Pf, was estimated from sampl es of 200 fawn s and does , the i n-
A 

dex, Ps, was a significant ly (P < 0.0005, randomization tes t) better 

index of the rate at which fawns were recruited into the spring breeding 

population than was the estimate of the proportion of fawns in the fall 

population, Pf, when the survival rates, Sf and St, were each estimated 

from a sample of 100 or more individual s . When the proportion of fawns 
A 

in the fall population {Pf) was known, the index Ps using esti mates of 

the survival rates, Sf and St, each calculated from samples of 50 or more 

individuals was a significantly (P < 0.01, randomization test) better 

indicator of the recruitment of fawns into the spring population than 

was the fall proportion of fawns, Pf . These results indicate that the 

larger the sample size used to es timate the fall proportion of fawns 

(Pf), the smaller the number of individuals needed to estimate the sur-
A 

vival rates Sf and St to produce an index (Ps) which is significantly 

better than an index using just an estimate of the fall proporti on of 

fawns Pf . 

The second conclusion that can be drawn from this analysis i s that 

if estimates of the survival rates, Sf and St, are made from sample 
A 

sizes that are too smal l , the index Ps may actually be a worse indi-

cator of the rate at which fawns are recruited into the spring popul a

tion than is an estimate of the fall proportion of fawns, Pf. For the 

case where the fall proportion of fawns, Pf, was esti mated from a sam

ple of 200 fawns and does and the sur vival rates, Sf and St , were each 

estimated from samples of only 25 individuals, the proportion of fawns, 

Pf, was a significantly {P < 0 .0005, randomization test) better index 
A ' 

of the recruitment of fawns than was the index, Ps. This would be 
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expected as small sample sizes would produce large variances in esti

mates of the survival rates Sf and St and reduce the reliability of the 

index, Ps· 

Fall Proportion of Fawns as Index of Reproductive Performance 

The model used to simulate a population of mule deer described in 

the methods section was also used to investigate the reliability of 

using the fall proportion of fawns as an indicator of the reproductive 

performance of a population. As defined earlier, the reproductive per

formance of a population refers to the number of fawns produced per doe 

2 or more years of age that are alive at a specified time. The number 

of fawns surviving until October was used in this analysis. 

The coefficients of linear correlation {r) between the fall pro

portion of fawns and the number of fawns produced per doe 2 or more 

years of age surviving to October are shown in Table 8 for ten different 

1000-year simulations of the population. The mean and 95 percent con

fidence intervals around the mean are shown for the correlation coef

ficients. A scattergram depicting the relationship between the fall 

proportion of fawns and the number of fawns produced per doe two or 

more years of age surviving to October is shown in Figure 12. The 

values shown in the figure were obtained from a sampling of values from 

the first of the ten simulations. 

From the ten simulations, the coefficient of correlation (r) 

ranged from 0.879 to 0.903 with a mean of 0.888. This means that 

approximately 79 percent (r2 ) of the variability in the reproductive 

performance measured in October could be accounted for by the fall 

proportion of fawns. 
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As was discussed in the previous section, the fall proportion of 

fawns is usually estimated from binomial sampling of the fawns and does 

in the population. The effect of the sample size used to estimate this 

proportion on the correlation between the reproductive performance and 

the proportion of fawns in the fall population was investigated for 

sample sizes of 50, 100, 200, 350, and 500. Five simulations of the 

mule deer populations of 1000 years each were made for each sample size. 

Values from 200 randomly selected years from each 1000-year simulation 

were used to calculate coefficients of correlation between the propor

tion of fawns and the reproductive performance of the population. 

The coefficients of linear correlation for these simulations are 

depicted in Figure 13. The mean correlation coefficients calculated 

for the cases where the proportion of fawns were estimated from 50 , 100, 

200, 350, and 500 fawns and does were 0.629 , 0. 724, 0.789, 0.828, and 

0.850, respectively . When samples of 500 fawns and does are used to 

estimate the proportion of fawns, the correlation coefficient approaches 

that calculated when the fall proportion of fawns is known but is sti ll 

significantly less {P = 0.001, randomization testY. 

These correlation coefficients were used to test the hypothesis 

{H3) that the proportion of fawns in the populations of fawns and does 

were highly correlated with the reproductive performance of the popula 

tion . The correlations calculated when the fall proportion of fawns 

was known, while close to 0.90, are significantly less (P = 0.0098, 

sign test) than this value. Similarly, the correlation coefficients 

calculated when estimates were made of the proportion of fawns are also 

significantly less (P = 0.03, sign test) than 0.90 . Thus, the hypoth

esis (H3) that there is a high correlation between reproductive 
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performance and the proportion of fawns in the fall population must be 

rejected based on the criterion established in the methods section. 

These results indicate that the proportion of fawns among fawns and 

does in the fall population is not a highly reliable indicator of the 

reproductive performance of a population in the fall. However, if it 

is used as an indicator of the reproductive performance, estimates of 

the proportion of fawns should be made from relatively large sample 

sizes. 

As was the case in the testing of hypothesis H2, the testing of 

the hypothesis H3 was designed to provide insights into the strength of 

the relationship between the fall proportion of fawns and a measure of 

productivity. It was not designed, however, to investigate the relia

bility of using the fall proportion of fawns to predict the reproductive 

performance of a population as measured in the fall . In an attempt to 

evaluate the reliability of using the fall proportion of fawns to pre

dict the reproductive performance, the 95, 90, and 80 percent pred iction 

intervals around the reproductive performance for a given fall propor

tion of fawns were calculated. These intervals are shown in Figure 14 

for the situation when the fall proportion of fawns is known. 

Two important points are evident from the relationship shown in 

Figure 14 . First, the wide 95 percent prediction intervals imply that 

only gross indications of the reproductive performance may be obtained 

by using the fall proportion of fawns . Precise indications of the 

reproductive performance cannot be made because of the large amount of 

uncertainty in the predicted reproductive performance for a given fall 

proportion of fawns . Second, the fall proportion of fawns between two 

populations may differ by a relatively large amount (nearly 0 . 15) 
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before one can conclude that they probably represent different repro

ductive performances. 
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CONCLUSIONS AND RECOMMENDATIONS 

Indices of Productivity 

Measures of the productivity of mule deer populations are im

portant quantities for effective management. The proportion of fawns 

has frequently been used as a measure or index of productivity of mule 

deer popu lations. This study has evaluated. in part. the reliability 

of using the proportion of fawns as indicators of two measures of pro

ductivity. recruitment of fawns into the spring population and repro

ductive performance. 

The correlation coefficients (r) calculated from a simulated mule 

deer population for the relationship between the fall proportion of 

fawns and the rate at which fawns are recruited into the spring popu

lation indicate that a significant (r = 0.856. P << 0.001) relationship 

exists between these two quantities. Similarly. these simulations of a 

population of mule deer indicate that a significant (r = 0.888. P << 

0.001) relationship exists between the fall propol 'tion of fawns and the 

reproductive performance of the population measured in the fall. 

Despite these significant relationships. the fall proportion of fawns 

explains less than 80 percent of the variability in each of these mea

sures of productivity. 

It was shown through regression analyses that the fall proportion 

of fawns is not always a reliable indicator of the rate at which fawns 

are recruited into the spring population or the reproductive perfor

mance of a population. Because of the variability in the dynamics of 
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a population, there is not a one-to-one relationship between the pro

portion of fawns and these measures of productivity . Only gross indi

cations of these measures of productivity can be obtained by using the 

fall proportion of fawns. Differences in the spring rates of recruit

ment or reproductive performance between two populations can be 

inferred only when the differences in their fall proportion of fawns 

are rel atively large (0 .15 or greater). 

Because the fall proportion of fawns is not always a reliable in

dicator of these measures of productivity, managers should not rely on 

the proportion of fawns in the fall as the only indicator of the pro

ductivity of a mule deer herd. Other indicators of the population's 

productivity and condition (such as harvest rates, pregnancy rates, 

physical condition of the deer, and range condition) should be con

sidered as well . The results obtained by several indices should then 

be evaluated to assess the productivity of a herd. 

If the fall proportion of fawns is to be used as an indicator of 

recruitment into the spring population or reproductive performance, 

then estimates of this quantity should be made from relatively large 

samples of fawns and does. Results from the mule deer simu lations in 

this study suggest that samples of nearly 500 fawns and does produce 

estimates of the proportion of fawns whose correlations approach those 

calculated when the proportion of fawns is known, the optimum situation. 

Variability due to random sampling errors significantly reduce these 

correlations and the reliability of this index when sample sizes are 

small, particularly below 100 fawns and does. 

Even when the fall proportion of fawns is known, the amount of 

correlation between this proportion and the recruitment of fawns into 



I 

I 

69 

the breeding population the following spring i s limited by the varia

bility in the overwinter survival rates of fawns and does . As expected, 

estimates of these survival rates can be used with an estimate of the 

proportion of fawns in the fall to produce an index of the recruitment 

of fawns which is significantly better than just an estimate of the 

proportion of fawns. A major problem with this index, however, is the 

sample size of fawns and does needed to produce significantly bette r 

indices of recruitment. If estimates of these survival rates are made 

from deer marked in the fall whose status (alive or dead} was determined 

in the spring, then 100 or more individuals must be marked and relocated 

to produce a significantly better index. The cost of capturing and 

marking in the fall and then relocating in the spring 100 fawns and does 

would most likely be prohibitive, particularly on an annual basis . 

Thus, unless estimates with small variances of the overwinter survival 

rates of fawns and does can be made less expensively using a different 

estimation scheme, this index cannot be realistically utilized . 

Another indicator of the rate of recruitment of fawns into the 

breeding population which may be significantly better than the fall 

proportion of fawns is an estimate of the proportion of fawns (nearly 

one year old) in the spring population. This estimate would provide a 

direct measure of the rate at which fawns enter the breeding populati on 

without being confounded by the differential overwinter survival of 

fawns and does. Ideally, these estimates should be obtained when fawns 

can be differentiated from does with considerable accuracy and when the 

period of differential rates of survi val has passed. Such conditions 

may exist in late March, just before the animals leave the wintering 

ground . While the animals occur in herds, rather than as scattered 
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individuals, it may be possible to distinguish fawns from does with 

careful observations. Further field work is necessary to address these 

po s s i b i1 i t i e s . 

The variability which reduces the correlation between the fall 

proportion of fawns and the reproductive performance of the population 

in the fall is predominately due to the number of yearling does present 

in the population. The yearling does, which produce very few fawns ~ 

reduce the average number of fawns per doe when they are numerous in 

the population. An estimate of the relative number of yearlings in a 

population can be useful when interpreting this index of reproductive 

performance. If there are few yearlings, then the proportion of fawns 

should reflect, quite accurately, the reproductive performance of a 

population. If, however, there are relatively large numbers of yearling 

does in the population, then the proportion of fawns would be expected 

to underrate the reproductive performance of the population. 

Misclassification 

Hanson (1963) suggests that the misclassification of fawns and 

does will bias estimates of the proportion of the population which are 

fawns . The work completed in this study indicates that the misclassi

fication of fawns will bias estimates of the proportion of fawns. The 

amount of bias is a function of the probabilities of misclassifying a 

fawn as a doe, misclassifying a doe as a fawn and the actual proportion 

of fawns in the population of fawns and does. The average amount of 

bias due to misclassification is independent of the size of the sample 

of fawns and does. Larger samples will only produce biased estimates 

with small variances. 
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The problem of misclassifying fawns and does is probably most 

serious when the actual proportion of fawns is low . In this situation, 

the misclassification of some of the relatively large number of does 

will add a sizable number of "fawns" to the actual number counted. This 

will cause the estimate of the proportion of fawns to be somewhat 

greater than it actually is. The overestimation of the proportion of 

fawns, when the fawn production is low, may lead to some management 

decisions which will be harmful to the population . 

Much of the problem in interpreting estimated fawn proportions, 

due to misclassification, is a result of the bias being quite unpre

dictable. The bias may be positive, negative, or even zero depending 

on the proabilities of misclassification of fawns and does and the pro

portion of fawns (see Figure 4) . Unless the probabilities of misclassi

fication are known, the amount of bias is impossible to determine. 

Thus, its effect on specific estimators or indices which utilize the 

proportion of fawns is not known and the reliability of these quanti

ties becomes questionable. 

The next step in evaluating the problem of misclassification 

should be to design field studies to determine whether or not the mis

classification of fawns and does is a frequent phenomenon and a problem 

worth serious consideration . These studies could be patterned after 

the work of Downing (1970) on white-tailed deer where he attempted to 

determine the percent of small antlered bucks which were misclassified 

as does. Also, the development of a theoretical model, similar to the 

one presented here, which would include the misclassification of bucks 

would be useful in evaluating the effect of all types of misclassifi

cation. Whether or not these studies are undertaken, the results from 
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this study indicate that biologists classi fying herds of mule deer 

should use great care in classifying each individual observed . 

Concluding Remarks 

The work discussed in this thesi s is not designed to be the final 

word concerning the use of fall proportions of fawns as an indicator 

of productivity and the effects of misclassifying fawns and does on 

estimates of the proportion of fawns . Instead, it was designed to be 

72 

an objective evaluation of some aspects of these problems as they apply 

to mule deer populations in the Intermountain West. Extrapolations of 

these results to other species of large mammals should be done with 

care as different life strategies may result in somewhat different con

clusions . Ideally, this type of analysis should be done for all species 

where the proportion of young in the population is used as an indicator 

of the productivity of the population . 
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SUMMARY 

l . Historically, the relationship between the number of fawns 

and does, expressed as a ratio or fraction, has been im

portant in attempts to characterize populations of mule 

deer. 

2. The misclassification of fawns and does produces biased 

estimates of the proportion of fawns when calculated from 

counts of does and fawns obtained from sampling which is 

binomial in nature . The amount of bias is a function of 

both levels of misclassification of fawns and does and 

the actual proportion of fawns. This bias is unpredictable 

unless the levels of misclassification are known. It may 

result in circumstances wherein the actual proportion of 

fawns does not fall within the range of estimates produced 

by the majority of samples. The misclassification of does 

as fawns can result in large overestimations of the pro

portion of fawns when fawns are relatively few in number. 

3. The fall proportion of fawns was found to be a gross in

dicator of the rate at which fawns are recruited into the 

spring population. Correlations between the proportion 

of fawns in the fall and the rate of recruitment into the 

spring population were found to be approximately 0.86 for 

a simulated population of mule deer when the fall propor

tion was known. Correlations between estimates of the 

fall proportion and the spring recruitment are 
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significantly less than when the fall proportion is 

known. This correlation increases with the sample 

size used to estimate the fall proportion. Differ

ences in the spring rate of recruitment between two 

populations can be inferred only when their fall pro

portion of fawns differ by approximately 0.20 . 

Estimates of the survival rates of fawns and does can 

be used in conjunction with estimates of the fall pro

portion of fawns to provide a better index of the 

spring rate of recruitment than the estimated fall 

proportion of fawns used alone . However, the sizes of 

samples needed in the estimation of these survival 

rates are probably too large to be obtained on an 

annual basis (see Figure 11). 

5. The fall proportion of fawns was found to be a gross 

indicator of the reproductive performance of a popula

tion. Reproductive performance was defined as the 

number of fawns produced per doe aged 2 years or older 

which survived to the fall. The correlation between 

the fall proportion of fawns and the reproductive per

formance were found to be approximately 0.89 for a 

simulated population when the fall proportion of fawns 

was known. 
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The ratio of fawns to does and the proportion of fawns shown in 

Tables 1 and 2 of the main text were calculated from data generated by 

the projection matrix model shown in Figure Al. The model was used to 

predict the population in the fall after the hunting season from the 

population in the previous fall after the hunting season. It repre

sents only the female segment of a population where both sexes are har

vested . 

a, a2 a3 a4 a5 a6 a7 a8 nl nl 

sl 0 0 0 0 0 0 0 n2 n2 
0 52 0 0 0 0 0 0 n3 n3 
0 0 53 0 0 0 0 0 n4 n4 = 0 0 0 54 0 0 0 0 n5 n5 
0 0 0 0 55 0 0 0 n6 n6 
0 0 0 0 0 56 0 0 n7 n7 
0 0 0 0 0 0 57 0 ns ns 

Projection Matrix Popn. in ,Popn. in 
Year i Year i +l 

Figure 15. Projection matrix model of mule 
deer populations with 8 age classes. 

The a; represent the number of female fawns that reach the fall , 

post-hunting population produced per female in age class i that were 

alive in the previ ous fall, post hunting season. The Si are the values 

for survival of females from age class ito age class i + 1. They 

were calculated for each population from the combination of non

hunting and hunting rates of mortality; during the hunting season, 
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only mortality from hunting was assumed to occur. These rates of mor-

tality and the rates of fawn production are shown in Tables 1 and 2 of 

the main text. 

The populations were assumed to have a stationary age structure 

each fall following the hunting season; that is, they had the same num-

ber of individuals and proportions of the total population in each age 

class each fall following the hunting season. These stationary age 

structures are shown in Tables Al and A2 for the populations referred 

to in Tables 1 and 2, respectively, of the main text. Also shown are 

the same populations just prior to the hunting season from which the 

ratio of fawns to does and proportion of fawns were calculated. The 

post-huntin~ populations are such that the total number of females sums 

to 1000. 

Shown below is an example of how the ratio of fawns to does, pro

portion of fawns in the population, and net productivity were calcu-

lated. The population used in this example is population 4 of Table 2 

of the main text and Table A2 of this appendix. 

Let: 
8 

TD = Total number of does = E number of does in age 
i = 2 

class i = 837 

TFF = Total number of female fawns = 306, 

then: 

TF = Total number of fawns = TFF X 2 - 612 

and 

Ratio of fawns to does = TF/TD = 612/837 = .731 

and 

Proportion of fawns = TF/(TF + TD) = 612/(612 + 837) = .422. 
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Table 9. The populations referred to in Table 1 just before and just 
after the fall hunting season. All aqe classes are harvested 
with equal intensity . 

Aoe class 

Popn. 2 3 4 5 6 7 8 Total 

After Hunti nq Season 

1 278 208 156 117 88 66 50 37 1000 

2 278 208 156 117 88 66 50 37 1000 

3 278 208 156 117 88 66 50 37 lQOO 

4 278 208 156 117 88 66 50 37 1000 

Before Huntino Season 

1 278 208 156 117 88 66 50 37 1000 

2 291 219 164 123 92 69 52 39 10119 

3 306 229 172 129 97 72 54 41 1100 

4 319 239 179 135 101 76 57 43 1149 



Table 10. The populations referred to in Table 2 just before and just 
after the fall hunting season. Aqe classes 2 to 8 are 
harvested with equal intensity while a9,e class 1 is not 
harvested. 

Aqe class 

Popn. 2 3 4 5 6 7 8 Total 

After Huntinq Season 

1 278 208 156 117 88 66 50 37 1000 

2 288 212 157 115 85 63 46 34 1000 

3 297 216 156 114 83 60 43 31 1000 

4 306 219 156 112 80 57 41 29 1000 

Before Hunting Season 

l 278 208 156 117 88 66 50 37 1000 

2 288 227 167 123 91 67 .19 36 1048 

3 297 245 178 129 94 68 49 36 1096 

4 306 264 189 135 96 69 49 35 1143 
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Let: 

TP = Total number of does just prior to hunting season 

8 
= E number of does in age class i = 1143, 

i = 

then 

TH = Total number of does to be harvested 

= Number of does in post-hunt stationary population 

= 1143 - 1000 = 143 

and 

Net productivity= TH/TP = 143/1143 = . 125 . 



APPENDIX B 

Calculation of the Expected Values and Variances 

for the Estimators P and ~* 

86 



I 
87 

The expected values and variances of~ and P* were used in t he 

testing of Hl and subsequent analysis. They were determined as fol lows . 

When sampling a population of fawns and does with replacement 

where each individual has an equal probability of being observed (bi

nomial sampling) and when no misclassification occurs, the probability 

that an observed individual is counted as a fawn is simply P, where P 

is the actual proportion of fawns in the population of fawns and does. 

The probability an observed individual is counted as a doe is 1-P . If 

f fawns are counted in a binomial sample containing n fawns and does , 

then ~ = f/n is an unbiased estimate of the proportion of fawns with an 

expected value of Panda variance of P(l - P)/n (Cochran, 1963) . 

To determine the probability an observed individual in binomial 

sampling is a fawn when misclassification occurs, the levels of mi s

classification of does as fawns and fawns as does must be specifi ed . 

Let Pfd be the proportion of does misclassified a~ fawns and Pdf be the 

proportion of fawns misclassified as does. Pfd would thus represent the 

conditional probability that an observed individual is counted as a 

fawn given that it actually is a doe while 1 - Pfd is the conditional 

probability that an observed individual is counted as a doe given that 

it actually is a doe. Similarly, Pdf would be the conditional proba

bility that an observed individual is counted as a doe when it actuall y 

is a fawn and 1 - Pdf would be the conditional probability a fawn is 

counted as a fawn. Then letting Pff = 1 - Pdf· the probability an in

dividual observed at random is counted as a fawn is P · Pff + (1 - P) · 
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Pdf (Freund, 1971, p. 54) where Pis the actual proportion of fawn s i n 

the population of fawns and does. Similarly, the probability an i n

dividual is counted as a doe is (1 - P) · Pdd + P · Pdf · Thus, in a 

binomial sampl e containing n fawns and does where f are counted as 
A 

fawns and dare counted as does, P*= f/n would be an estimate of the 

proportion of fawns with an expected value of P* and a variance of 

P* · (1 - P*)/n where P* = P · Pff + (1 - P) · Pfd (Cochran, 1963). 
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Model Verification and Validation 

Verification of the model of a population of mule deer (MULEDEER) 

used to test the hypotheses H2 and H3 was done in three major steps . 

First, the FORTRAN code of each component of MULEDEER was debugged 

using the FORTRAN compiler on the Burroughs 6700 computer . This was a 

necessary procedure each time a change in the FORTRAN code was made. 

Second, short programs were written to obtain output values from i n

dividuals or groups of subroutines which were compared with values 

calculated on a hand calculator. 

In the third step, verification on the complete model was done . 

This involved two major tests . In the first test, simulations of 100 

years were made where the mean birth and survival rates for each class 

were used each year. The stable age structure, fall proportion of 

fawns, reproductive performance and spring rate of recruitment in the 

last year of the simualtion were compared with values calculated with 

a hand calculator. 

In the second test, several simulations over a 1050-year period 

were made with the birth and survival rates varying randomly as de

scribed in the methods section. The average exponential rate of in

crease for the population was calculated over the last 1000 years of 

the simulation. Since the mean rates were designed to produce a popu

lation which is stable in size, the population with rates randomly 

selected from uniform distributions should have an average exponential 

rate of increase near zero. In the simulations made, the average rates 

of increase ranged from -0.012 to 0.003 which represent an average 
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annual rate of change of the population of less than 1 .2 percent per 

year. The majority of the average annual rates of increase for the 

1050-year simulations were slightly less than zero, a phenomenon which 

agrees with analyses by Boyce (1977) on similar matrix models . 

Validation of the model used to test the hypotheses H2 and H3 

(MULEDEER) was done by comparing output from the model with data col

lected in the field. Specifically, the fall proportions of fawns cal

culated by the model were compared with estimates obtained from the 

classification of mule deer in Utah. The range of fall proportions of 

fawns generated during the 1050-year simulations (0 . 274 to 0. 591) com

pared favorably with those listed (0 .194 to 0.603) by Day (1979) for 

herds of mule deer in Utah from 1970 to 1978 for both pre- and post

hunting season composition counts. The upper value (0.603) is not s ig

nificantly different (P > 0.05, t test) from 0.591 for the sample 

classified, while the lower value (0.194) obtained from a pre-hunting 

season sample of 115 fawns and does is significantly (P < 0.05, t test ) 

less than the low value from the model (0.274). A sample of 259 fawns 

and does taken after a buck-only hunt, however, prbduced an estimate of 

the proportion of fawns of 0.363, a value which is higher than the mini 

mum produced by the model. The next lowest value reported by this re

port was 0.239, estimated from a sample of 159 fawns and does. This was 

not significantly (P > 0.05, t test) different from the lowest value 

produced by the model. 

Ideally, other comparisons with model output and data collected 

in the field should have been made to provide a more complete model 

validation. Highly reliable data on other population parameters (e .g., 

age structure, rate of increase, recruitment rates) from field 
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populations, however, does not exist for mule deer. As a result, com-

parisons between the model output and other types of data characterizing 

populations of mule deer could not be made. The maximum rate of in

crease in one year that was observed to be generated by the model (42 

percent), however, was found to be well within the levels found for white

tailed deer by McCullough (1979) on the George Reserve in Michigan . 

A complete sensitivity analysis of the population model used to 

test hypotheses H2 and H3 was not undertaken. Such an analysis would 

include a calculation of the changes in the coefficients of correlation 

(calculated for the relationships between the fall proportion of fawns 

and spring rate of recruitment and the fall proportion of fawns and 

reproductive performance) when the input parameters of the model were 

changed by specified amounts. This would provide insights into the 

accuracy that would be desirable for the input parameters . Also, such 

an analysis would provide additional insight into the validity of the 

conclusions obtained from the simulations and would to an extent 

examine the applicability of the model to other ungulate spec ies wi th 

similar life history strategies. 

Changes in the coefficients of correlation as a result of changes 

in parameter values were superficially investigated for a few of the 

input parameters (specifically the mean birth rates for each age 

class) . However, because the analysis was incomplete and cursory in 

nature, it did not warrant inclusion in this work. 

Parameter and Variable List 

The following is a list of the input parameters with FORTRAN 

name, definition, units, and value used in the model, MULEDEER, used 
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to test hypotheses H2 and H3 . The source of these values is discussed 

in the methods section of the main text. 

FORTRAN 

FEC(i) 

SS(i) 

SW(i) 

FECPC( i) 

SSPC( i) 

SWPC(i) 

NFALL 

NWINT 

Definition 

Mean number of fawns produced 
per doe of age i (fecundity) 

Mean proportion of deer sur
viving from May to October in 
age class i 

Mean proportion of deer sur
viving from October to May in 
age class i 

Units 

fawns/does 

Value used to specify range of fawns/does 
fecundity rates for a doe in 
age class i 

Value used to specify range of 
survival proportions from May 
to October in age class i 

Value used to specify range of 
survival proportions from 
October to May in age class i 

Number of deer in fall sample 

Number of deer in winter 
sample 

deer 

deer 

Value 

i=l: 0.013 
i=2: 0.975 
i =3+: 1 . 610 

i = 1 : 0. 720 
i =2: 0.910 
i =3+: 0. 910 

i= l: 0.635 
i=2: 0.790 
i=3+: 0.857 

i=l: 0.013 
i=2: 0.255 
i =3+: 0. 320 

i = 1: 0. 170 
i=2: 0.050 
i=3+ : 0.050 

i=l: 0.235 
i=2: 0.110 
i=3+: 0.050 

2: 1 

> 

The following is a list of the important variables calculated in 

the model of a population of mule deer (MULEDEER). 

FORTRAN Definition Un its 

AN( i) Relative number in age class i deer 

TFALL Relative size of population of fawns and deer 
does in October 

TSPR Relative size of population of fawns and deer 
does in May 

FFDR Proportion of fawns in the October popu-
lation 



FORTRAN 

RPRE 

SFDR 

FAWN 

Definition 

Reproductive performance of the population 
in October 

Number of 1-year old fawns per doe in May 
population 

Number of fawns produced per doe aged 2 or 
more years 

R Exponential rate of increase of the popu
lation from one year to the next 

SUMR Average exponential rate of increase of 
the population for entire simulation. 
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Units 

fawns/doe 

fawns/doe 

fawns/doe 



Listing of Program MULEDEER, 

Sample •Run• and 

Sample Output 
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C**** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C**** 

c . .. . 
c ... . 

10 

11 
c .. .. 

c ... . 
c ... . 

7 
c ... . 
c ... . 

6 
c .... 

c .... 
c .... 

c .... 

2 

PROGRAM MULEOEER IS A PROJECTION MATRIX MODEL OF A MULE DEER 
POPULAT ION. THI S PROGRAM CALCULATES THE FALL PROPORTION OF 
FAWNS <FFDR), SPRING RECRUITMENT RATES <SFDR), REPRODUCTIVE 
PERFORMANCE <RPRE), AND RATE OF INCREASE <R l FOR THE 
POPULATION FOR A SPECI FI ED NUMBER OF YEARS <NYRS >. THESE 
VALUES ARE CALCULATED FOR THE POPULATION AFTER AN INITIAL 
50 YEAR SIMULATION TO REMOVE THE EFFECTS OF THE INITIAL 
STABLE AGE STRUCTURE. ALL OF THE FAWNS UP TO 1 YEAR OF AGE 
AND THE FEMALE PORTION OF THE POPULATION OVER 1 YEAR OF 
AGE ARE CONSIDERED. THE POPULATION IS PREDI CTED TWICE EACH 
YE AR: IN OCTOBER <FALL ) AND IN MAY <SPRING>. 
COMMON/AA1/II,SS<12l. SW<12l,FEC(12l.AN<12),NYRS 
COMMON/AA2/SSM<12l,SWM<12>,FECM(12) 
COMMON/AA3/SSPC<12l,SWPC< 12),FECPC<12) 
COMMON/BB l/TFALL,FFDR,TSPR,SFDR.NFALL,NWINT,RPRE,FAWN,IXX,JYY 
COMMON/CC1/S(12),f(12l 
DOUBLE PRECIS ION DSEED 
THI S READS IN USER SPECIFIED OPTIONS AND INITIAL RANDOM NUMBER 
<DSEEDl . 
WRITE<6, 200) 
READ<5,/l DSEED 
KKX=1 
WRJTE(6,204l 
READ<S, 100> IVY 
IF <IYY.EQ.lHN> GO TO 10 
WRITE< 6, 205) 
READ<S,/) NFALL 
WRITE(6,206i 
READ< 5, 100) I XX 
IF<IXX.EQ.lHNl GO TO 11 
WRITE(6,207) 
READ<S, I> NWINT 
CONTINUE 
INPUT PARAMETERS FOR THE POPULATION ARE READ IN. 
CALL INPUT 
DO 7 I=1.Il 
FECUNDITY RATES ARE CHANGED TO NUMBER OF FEMALES PRODUCED 
PER DOE. 
FEC<Il=FEC<Il/2. 
A MATRIX PREDICTING POPULATION CHANGES FROM SPRI~G TO 
SPRING IS CONSTRUCTED. 
DO 6 I=l.I I-1 
F<Il=FEC<I>•SW(Il•SS<I> 
IF<I . EQ.IIl GO TO 6 
S ( I ) =SW < I ) •SS ( I ) 
THE PRINCIPLE EIGANVALUE OF THE ABOVE MATRIX IS CALCULATED. 
CALL PREIG<II,PEVl 
WRITE<6,201l PEV 
THE INITIAL STABLE AGE DISTRIBUTION IS CALCULTED FOR THE 
POPULATION IN THE SPRING. 
CALL STABLE<PEV> 
THE POPULATION IS ·~ IMULATED OVER AN INITIAL 50 YEARS. 
DO 1 1=1, 50 
CALL LIMITS<KKX.DSEED) 
CALL FALL<DSEED) 
CALL SPR ING<DSEED> 
DO 2 J=1,JI . 
AN<Jl =AN(J)/TSPR 
IF<I.EQ. 50> TSPRAx1. - AN(1) 
CONTINUE - . 
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c .... 
c .... 

c .... 
c 
c 
c .... 

4 

c .... 

c .... 

3 
c .... 
c .... 

100 
203 
200 
201 
202 
204 
205 
206 
207 
300 

100 
101 

1 

2 

SUMR=O.O · 
THE POPULATION IS SIMULATED OVER THE SPECIFIED NUMBER OF 
YEARS <NYRS>. 
DO 3 I=l,NYRS 
CALL LIHITS<KKX.DSEED> 
CALL FALL(DSEED> 
CALL SPRING(DSEED> 
THE RATE OF INCREA~E OF THE POPULATION IS CALCULATED FROM THE 
TOTAL SPRING POPULATION AGED 1 YEAR OR MORE <TSPR-AN( 1)) AND 
THE TOTAL SPRING POPULATION AGED 1 YEAR OR MORE FROM THE 
PREVIOUS YEAR <TSPRA). 
R=ALOG<<TSPR-AN(l))/TSPRA) 
SUMR=SUMR+R 
DO 4 ~1=1, II 
AN<J>=AN<J>ITSPR 
TSPRA=1.-AN<ll 
THE FALL PROPORTION OF FAWNS <FFDR), REPRODUCTIVE PERFORMANCE 
<RPRE>. SPRING RATE OF RECRUITMENT <SFDR>, AND RATE OF INCREASE 
<R> ARE WRITTEN ON OUTPUT FILE 3. 
WRITE<3 ,300 > FFDR.RPRE,SFDR,R 
CONTINUE 
THE MEAN . E~PONENTIAL RATE OF INCREASE <SUMR> AND THE MEAN 
ANNUAL RATE OF INCREASE <ALAHDA) ARE CALCUALTED. 
SUMR=SUMR/NYRS 
ALAMDA=EXP<SUHR> 
WRITE(b,202)SUMR,ALAMDA 
WRITE(b,203> DSEED 
FORMAT< At> 
FORMAT<1H ,"DSEED =",D21.10) 
FORMAT<1H ;" ENTER RANDOM NUMBER " ) 
FORMAT( 1HO, "PRINCIPLE EI GANVAL UE ='',F5.3) 
FORMAT<1H ,"MEAN R VALUE =", Fb.3,3X ,"MEAN LAMDA VALUE =",F6.3) 
FORMAT<1H ,"FALL PROPORTION TO BE ESTIMATED?--YES OR NO"/) 
FORMAT<1H ,"ENTER FALL SAMPLE SIZE"/) 
FORHAT<1H ,"WINTER SURV IVAL TO BE ESTIHATED?--YES OR NO"/) 
FORMAT<lH ,"ENTER WINTER SAMPLE SIZE"/) 
FORMAT<4F10.b) 
STOP 
END 
SUBROUTINE INPUT 
THIS SUBROUTINE READS IN THE INPUT PARAMETERS FOR THE POPULATION. 
COMMON/AA1/II,SS<12),SW(12>.FEC<12>.AN(12>.NYRS 
COMMON/AA3/SSPC(12),SWPC<12l,FECPC(12> 
READ(2,100>II.NYRS 
READ<2,101><SS<I>.I=l·ll) 
READ ( 2, 1 01 ) < SW ( I > , I= 1 , I I -1-> 
READ<2.tOt><FEC<I>.I=t,II) 
READ ( 2, 101 > ( SSPC < I ) • I= 1 , I I ) 
READ<2.101>(SWPC<I>,I=1,1I=1i 
READ<2.10t><FECPC<I>,I=1,II> 
FORMAT<I2,1X.I4> 
FORMAT<12Fb.0) 
RETURN 
END 
SUBROUTINE STABLE<PEV> 
THIS SUBROUTINE CALCULATES THE ItHTIAL STABLE AGE DISTRIBUTION. 
COMMON/AA1/II.SS!12>,SW<12l,FEC<l2),AN<12) 
COMMON/CC1/SC12),F(12) 
AN< 1 > =1. 
T=l. 
DO 1 I=2,II 
AN<I~=AN(I-l>*S<I-1)/PEV 
T=T+AN<I> 
DO 2 1=1.11 
AN<I>=AN!ll/T 
RETURN 
END 
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c .... 
c .... 

1 

c ... : 
c ... . 

10 
c ...• 
c 
c 
c .... 

3 

SUBROUTINE FALL(DSEED> 
THIS SUBROUTINE CALCULATES THE FALL POPULATION, ESTIMATED FALL 
PROPORTION OF FAWNS ( FFDR l , AND REPRODUCTIVE PERFORMANCE ( RPRE >-. 
COMMON/AA1/II,SS(12),SW(12l,FEC<12l.AN(12> 
COMMON/AA2/SSM!12l,SWM!12l,FECM<12) 
COMMON/BBl/TFALL,FFDR,TSPR,SFDR,NFALL.NWINT.RPRE,FAWN,IXX,IYY 
DOUBLE PRECISION DSEED 
THIS SECTION CALCULATES THE FALL POPULATION IN EACH AGE CLASS 
<AN<Ill, FALL PROPORTION OF FAWNS, AND REPRODUCTIVE PERFORMANCE. 
TFALL-=0.0 
FAWN=FAWN*<SS<ll+SSM!l)) 
DO 1 Jcl,JI . 
AN<Il=AN<I>•<SS<I>+SSM<I>> 
TFALL=TFALL.+AN( I l 
FFDR=AN(ll*2./(AN(ll*2.+TFALL-AN<1)) 
RPRE=2.•FAWN/CTFALL-ANC1l-ANC2>> 
IF<IYY.EQ.lHN> GO TO 10 
THIS SECTION CALCULATES AN ESTIMATE OF THE FALL PROPORTION OF 
FAWNS <FFDRl. 
CALL RANN0(2,DSEED,RANl 
FF=FFDR*Cl.-FFDRl/NFALL 
FFDR=FFDR+SQRT<FF>*RAN 
IF<FFDR.LT.O.O> FFDR=O.O 
IF<FFDR.GT.l.Ol FFDR=l.O 
IF<IXX.EO.lHNl RETURN 
THIS SECTION CALCULATES AN ESTIMATE OF THE OVERWINTER SURVIVAL 
RATE OF FAWNS <SF>, THE OVERWINTER SURVIVAL RATE OF ALL FAWNS 
AND DOES <SA>, AND THE ESTIMATED PROPORTION OF FAWNS IN THE 
SPRING POPULATION <FFDRl. 
TOTA=O.O 
DO 3 I=3, II 
TOTA=TOTA+AN<Il 
TA=CTOTA-AN<IIl)*<SW<3l+SWM(3)) 
TJ=AN<2>*<SW(2l+SWM!2ll 
TF=AN<1l*2.•<SW(1)+SWM!1ll 
SAI=<TF+TJ+TAl/!AN(ll*2.+AN<2l+TOTAl 
SA=SAI*(l.-SAil/NWINT 
CALL RANN0<2,DSEED,RANJ 
SA=SQRT<SA>*RAN+SAI 
IF<SA.LE.O.O) SA=.OOOOt 
IF<SA.GT.l.Ol SA=t.O 
CALL RANN0<2,DSEED,RAN) 
SF=SW<tl+SWM<l> 
SF=SF•<l.-SFl/NWINT 
SF=SQRT (SF> *RAN+SW < 1·) +SWM < 1 > 
IFCSF.LT.O.Ol SF=O.~ . 
IF<SF.GT.l.O) SF=l.O 
FFDR=FFDR*SF/SA 
RETURN 
Et:D 
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SUB~OUTINE SPRING<DSEED) 
C**** THIS SUBROUTINE CALCULATES THE TOTAL SPRING POPULATION 
C CTSPR), THE NUMBER IN EACH AGE CLASS (ANCI)), AND THE SPRING 
C•*** RECRUITMENT RATE <SFOR). 

COMMON/AA1/II,SS<12),SW<12),FEC<12),AN(12) 
COMHON/AA2/SSH(12l,SWM(12),FECM(12) 
COMMON/BB1/TFALL,fFOR.TSPR.SFDR.NFALL.NWINT,RPRE,FAWN,IXX,IYY 
DOUBLE PRECISION DSEED 
TSPR=O.O 
DO 1 I=1.1 I-1 
.J .. II+-1-I 
AN(.J) c AN(.J-l)*(SW(.J-l)+SWH(.J-1)) 

1 TSPR~TSPR+AN(.J) 

SFDR~ANI2)/(TSPR-AN<2ll•2. 
AN(l)c0.0 
DO 2 1=2, I I · 

2 AN(ll=AN(1)+AN(Il•<FEC(I-l>+FECM(l-1)) 
FAWN=AN(1)-AN<2l•<FEC11)+FECM(1l) 
TSPRo:TSPR+AN(l) 
RETURN 
END 
SUBROUTINE LJMITS<KKX.DSEED> 

C•*** THIS SUBROUTINE CALCULATES THE FECUNDITY ANO SURVIVAL RATE 
C•*** MODIFIERS FOR EACH YEAR. . 

COHMON/AA1/JI,SS<12),SWI12l.FEC(12) 
COMHON/AA2/SSH(12),SWM<12l.FECM<12l 
COHHON/AA3/SSPC(12loSWPC<12),fECPC(l2) 
DOUBLE PRECISION DSEED -
CALL RANNO<KKX.OSEEO,RAN) 
DO 1 I=t,II -

1 SSH<Il=SSPC(Jl•RAN 
CALL RANNO<KKX.DSEED,RAN) 
DO 2 I-=l.II-1 

2 SWM(J)cSWPC<I>•RAN 
CALL RANNOCKKX.DSEED.RAN) 
DO 3 1=1,11 .. 

3 FECM<I>=FECPC!Il•RAN 
RETURN 
END 
SUBROUTINE RANNO<KK.DSEED.RAN) 

C**** THIS SUBROUTINE RANDOMLY SELECTS NUMBERS FORM A UNIFORM 
C <KK•1) OR NORMAL <KK•2l DISTRIBUTION USINO THE IMSL 
C**** FUNCTIONS GGUDFS AND GGNQF. 

DOUBLE PRECISION DSEED 
IFIKK.NE.ll 00 TO 10 
RAN=GGUBFS<DSEED> 
RAN=RAN•2. -1. 
RETURN 

10 RAN=GGNQf(OSEEDl 
RETURN .. 
END 
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C**** 
C**** 

10 

1 

2 

3 

e 
4 

5 

SUBROUTINE PREIG<II ,PEVl 
THIS SUBROUTINE CALCULATES THE PRINCIPLE EIGANVALUE 
FOR A MATRIX. 
COMMON/ CC1/ SC12),f(12l 
DI MENSION AI<i2),AC12l.ALL(12),C(12),AL(12),A1(12) 
ROcO. 
T:oO. 
B=O. 
AJ(1.)•1. 
DO 1' K=2, -I I 
AI<Kl•AI<K-1>•S<K-1> 
DO 2 1<=2, II 
RO=RO+AI<Kl*F<K> 
T=T+K•AI<K>•F<Kl 
AUK)o:O. 
T=T/RO 
R=ALOO<ROJ/T 
DO 3 Ko:1,II 
B=B+AI<K>*EXP<~R•K> 
B=l./B 
DO 8 K=J,II 
A<K>=AI<K>*B*EXP<-R*K> 
CONTINUE 
AA=O. 
AB=O. 
SAL=O. 
DO 5 K=1.JI 
AA~AA+A<K) 

ALL< K l =AL< K l 
DO 6 Ko:l,II 
C<Kl=A<Kl/AA 
Al<K)aF(K)*C~K) 

AB=AB+Al<K> 
IF<K.EQ.ll GO TO 6 
A<Kl=S<K-ll*C<K-1> 
AL<Kl .. A<KliC<K> 

6 CONTINUE 
A<tJaAB 
AL< 1 l•A<l )/C< 1 > 
DO 7 K-=1.11 

7 IF<ABS(ALL<K>-AL<Kl).GE •• OOOOll GO TO 4 
DO 9 K=t,Il 

9 SAL=SAL+AL<Kl 
PEV=SALIII 
RETURN 
END 
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A sample 'run' of the program MULEDEER is shown below. User 

supplied input values are underlined. 

R MULEDEER 
#RUNNING 2769 

ENTER RANDOM NUMBER 
tt? 
2564884.00 

FALL PROPORTION TO BE ESTIMATED?--YES OR NO 
YES 

ENTER FALL SAMPLE SIZE 
200 

WINTER SURVIVAL TO BE ESTIMATED?--YES OR. NO 
NO 

PRINCIPLE EIGANVALUE c1.000 · 
MEAN R VALUE =-0.007 MEAN LAMDA VALUE ~ 0.993 
DSEED = .12133203290+10 

l 01 



A sample of the output file 3 is shown below for a 30-year 

simulation of the model used to test hypotheses H2 and H3. Each 

102 

line represents one year. The four columns are the estimated 

proportion of fawns in the fall population (FFDR). the reproductive 

performance of the population (RPRE), the spring rate of recruitment 

(SFDR) and the rate of increase of the population (R), respectively. 

FFDR RPRE SFDR R 

0.381092 0.679862 0.502335 -0.098190 
0.526265 1.592467 0.938469 0.151735 
0.422419 1. 231140 0.421775 -0.244335 
0.400126 0.573758 0.388506 -0.200872 
0.581298 1. 387663 0.967034 0.138526 
0.362066 0.724949 0.479395 -0.105183 
0.398526 0.608338 0.426111 -0.090019 
0.499916 1.182167 0.763314 0.092093 
0.406159 1.359455 0.477199 -0.185499 
0.592617 1.487186 0.894092 0.068969 
0.347671 o. 611095 0.307204 -0.202405 
0.520254 1.295909 0.821588 0.025542 
0.404461 0.801498 0.428250 -0.189678 
0.427944 0.631728 0.590125 -o:oo2339 
0.544471 1.289785 0.725035 0.035825 
0.497355 1.532164 0.899305 0.061899 
0.535375 1.461479 0.905715 0.153426 
0.286584 0.646067 0.360160 -0.117582 
0.408305 0.640282 0.454457 -0.099641 
0.384024 0.847455 0.503754 -0.059929 
0.452720 0.957359 0.681155 -0.006834 
0.554760 1.910325 0.900842 0.101857 
0.286338 0.571469 0.386421 -0.133048 
0.511775 1.723276 1.122691 0.238521 
0.513423 2.034278 0.905637 0.135669 
0.448255 1. 548213 0.818998 0.051099 
0.498579 1.529238 0.724900 0.006216 
0.383499 0.909284 0.420956 -0.203193 
0.442431 0.876769 0.593980 -0.051484 
0.325141 0.614321 0.362443 -0.156731 


	An Analysis of a Measure of Productivity in Mule Deer Populations
	Recommended Citation

	1980-Ryel-Ronald-001
	1980-Ryel-Ronald-002
	1980-Ryel-Ronald-003
	1980-Ryel-Ronald-004
	1980-Ryel-Ronald-005
	1980-Ryel-Ronald-006
	1980-Ryel-Ronald-007
	1980-Ryel-Ronald-008
	1980-Ryel-Ronald-009
	1980-Ryel-Ronald-010
	1980-Ryel-Ronald-011
	1980-Ryel-Ronald-012
	1980-Ryel-Ronald-013
	1980-Ryel-Ronald-014
	1980-Ryel-Ronald-015
	1980-Ryel-Ronald-016
	1980-Ryel-Ronald-017
	1980-Ryel-Ronald-018
	1980-Ryel-Ronald-019
	1980-Ryel-Ronald-020
	1980-Ryel-Ronald-021
	1980-Ryel-Ronald-022
	1980-Ryel-Ronald-023
	1980-Ryel-Ronald-024
	1980-Ryel-Ronald-025
	1980-Ryel-Ronald-026
	1980-Ryel-Ronald-027
	1980-Ryel-Ronald-028
	1980-Ryel-Ronald-029
	1980-Ryel-Ronald-030
	1980-Ryel-Ronald-031
	1980-Ryel-Ronald-032
	1980-Ryel-Ronald-033
	1980-Ryel-Ronald-034
	1980-Ryel-Ronald-035
	1980-Ryel-Ronald-036
	1980-Ryel-Ronald-037
	1980-Ryel-Ronald-038
	1980-Ryel-Ronald-039
	1980-Ryel-Ronald-040
	1980-Ryel-Ronald-041
	1980-Ryel-Ronald-042
	1980-Ryel-Ronald-043
	1980-Ryel-Ronald-044
	1980-Ryel-Ronald-045
	1980-Ryel-Ronald-046
	1980-Ryel-Ronald-047
	1980-Ryel-Ronald-048
	1980-Ryel-Ronald-049
	1980-Ryel-Ronald-050
	1980-Ryel-Ronald-051
	1980-Ryel-Ronald-052
	1980-Ryel-Ronald-053
	1980-Ryel-Ronald-054
	1980-Ryel-Ronald-055
	1980-Ryel-Ronald-056
	1980-Ryel-Ronald-057
	1980-Ryel-Ronald-058
	1980-Ryel-Ronald-059
	1980-Ryel-Ronald-060
	1980-Ryel-Ronald-061
	1980-Ryel-Ronald-062
	1980-Ryel-Ronald-063
	1980-Ryel-Ronald-064
	1980-Ryel-Ronald-065
	1980-Ryel-Ronald-066
	1980-Ryel-Ronald-067
	1980-Ryel-Ronald-068
	1980-Ryel-Ronald-069
	1980-Ryel-Ronald-070
	1980-Ryel-Ronald-071
	1980-Ryel-Ronald-072
	1980-Ryel-Ronald-073
	1980-Ryel-Ronald-074
	1980-Ryel-Ronald-075
	1980-Ryel-Ronald-076
	1980-Ryel-Ronald-077
	1980-Ryel-Ronald-078
	1980-Ryel-Ronald-079
	1980-Ryel-Ronald-080
	1980-Ryel-Ronald-081
	1980-Ryel-Ronald-082
	1980-Ryel-Ronald-083
	1980-Ryel-Ronald-084
	1980-Ryel-Ronald-085
	1980-Ryel-Ronald-086
	1980-Ryel-Ronald-087
	1980-Ryel-Ronald-088
	1980-Ryel-Ronald-089
	1980-Ryel-Ronald-090
	1980-Ryel-Ronald-091
	1980-Ryel-Ronald-092
	1980-Ryel-Ronald-093
	1980-Ryel-Ronald-094
	1980-Ryel-Ronald-095
	1980-Ryel-Ronald-096
	1980-Ryel-Ronald-097
	1980-Ryel-Ronald-098
	1980-Ryel-Ronald-099
	1980-Ryel-Ronald-100
	1980-Ryel-Ronald-101
	1980-Ryel-Ronald-102
	1980-Ryel-Ronald-103
	1980-Ryel-Ronald-104
	1980-Ryel-Ronald-105
	1980-Ryel-Ronald-106
	1980-Ryel-Ronald-107
	1980-Ryel-Ronald-108
	1980-Ryel-Ronald-109

