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INTRODUCTION 

Lime-induced chlorosis has been recognized for many 

years as a problem where plants are grown on calcareous 

soils . There are many factors associated with and influencing 

this form of iron chlorosis and because of this it has been 

very difficult to determine the relationship between the 

factors and chlorosis . 

There are high concentrations of bicarbonate in calcareous 

soils . Because of this high concentration, it was believed 

t hat the presence of the bicarbonate ion was causing chlorosis. 

It has been proposed that the pH of the growth medium was the 

ca usitive factor of lime-induced chlorsis . Most calcareous 

soils have a pH range around 8 . 0 . At this pH the solubility 

of iron is very low, and it was believed that chlorosis was 

a result of iron being insoluble at a high pH. Iron chlorosis 

has been induced in plants by increasing the phosphorus con-

centration in the growth medium . Iron phospha tes have a low 

solubility and it was believed that the ava ilable iron was 

pre c ipitated by the phosphates. The interference of metals 

such as calcium, nickel , cobalt , zinc , and copper appears to 

be a factor affecting the absorption of iron by plants. It 

was thought that an interfering ion (Ni, Co, Ca, Zn) may 

interfere with the translocation of iron in the malic or 

malonic acid complexes (Tiffin and Brown, 1962) . 

Because of the complexity of the problem , nutrient 
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solutions have been used in studying iron chlorosis. They 

provided a means where most of the supposed factors could 

be held constant and one or two varied . Split-root and 

split-medium experiments have been used to separate the 

factors even more than in the conventional nutrient culture . 

In a number of cases it has been observed that the iron 

content of chlorotic plants did not differ from that of non­

c hlorotic pl ants (Iljin , 1952) . It was assumed that the 

iron was inactivated in the plant and thus unavailable for 

use . Attempts have been made to find those areas of in­

activation by using radioautographs , and by sectioning the 

plants and running chemical analysis on the sections. It 

has been observed that the concentration of phosphorus tends 

to increase in the upper stems and leaves of chlorotic plants. 

De Kock (1955) proposed that the degree of chlorosis could 

be determined by calculating the r atios of phosphorus to 

iron . This ratio was higher in chlorotic pl ants than in 

non-chlorotic plants . In addition to this, the uptake of 

monovalent and divalent ions seems to be altered in chlorosis. 

The chlorotic plant seems to have an increase in monovalent 

ions and a decrease in divalent ions . 

The concentration of the bicarbonate ion and the pH 

of the medium are two factors which have received consider­

a ble attention . Goss ( 1957) and Doney et al. (1960) found 

that when the bicarbonate ion was present in the solution 

culture there was an overall decrease in the nutrient ions 

taken up by the plant . Brown et al . (1960) separaied the 
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bicarbonate ion from the other nutrients by allowing the 

plant roots to grow through some soil and into a bicarbonate 

solution below . They observed that the bicarbonate had no 

effect upon the uptake of other ions and concluded that the 

effect of bicarbonate, when present with the complete 

nutrients , was in maintaining a constant pH. 

Many workers (Doney et ~., 1960 ; Petersen, 1961; 

Porter and Thorne, 1955) have indicated that in addition to 

maintaining a constant pH , the bicarbonate ion has other 

effects which cause chlorosis . It has been very difficult 

to separate the effect of pH and bicarbonate . One reason 

has bee n t hat in the non-bicarbonate system the pH tends 

to decrease, and in some cases as much a s one pH unit in 

f our to six hours while the pH of the bicarbonate system 

remained constant (Miller and Russell, 1962). 

This study was set up to investigate the following 

objectives : (a) To find a method for maintaining a constant 

pH of 7 . 8 in a hydroponic system without using the bicarbonate 

ion , (b) To differentiate between the pH effect and the bi­

carbonate effect in causing chlorosis in plants, and (c) To 

examine the various regions of the plants to see if there 

are areas of mineral accumulation that might explain the 

chlorotic symptoms . 



REVIEW OF LI TERATURE 

The characteristics assoc i ated with lime-induced 

chlorosis are the same as those associated with iron 

deficiency chl orosis--interveinal yellowing of the le a ves 

at the meristematic region combined with reduced plant 

vigor , increased monovalent and decreased divalent ion 

absorption . 

Although no single factor has been fo und to adequately 

explain this physiological disease , many factors have been 

associated with it . Thorne, Wann , and Robinson (1950) 

observed that calcareous soils characterized by fine texture , 

high moisture content, poor aeration and cool temperatures 

intensify the development of chlorosis in plants. 

It is well known that plants di ffe r in their suscepti­

bility to lime-induced chlorosis . Weiss (1943) found a 

recessive gene to be the contributing factor to the differ­

ence in c hlorotic susceptible PI-54619-5-l ( PI ) soybeans 

and non-susceptable hawkeye soybeans , Brown (1957) found a 

number of plants to be resistant to lime-induced chlorosis 

when grown on calcareous soil but deve loped copper deficiency 

when grown on organic soils . Other plants were observed to 

be jus t the opposite . Brown (1957) observed that plants 

conta ining a dominant iron terminal oxidase were more 

susceptible to chlorosis than plants containing a dominant 

copper terminal oxidase . It was suggested that the resistance 



or susceptability to lime-induced chlorosis depends upon 

the terminal oxidase present in the plant . 

Effects of Bicarbona te 
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Results indicate that with certain plant species in­

crea sed car bon dioxide concentrations with the accompanying 

bic arbona te in the growth medium has a depressing effect on 

the growth (Stolwijk and Thimann , 1957) , respiration (Miller 

and Thorne, 1956), mineral nutrient a bsorption (Ja c kson and 

Coleman, 1959), nutrient trans location within the plant 

(Rediske and Biddulph , 1955), and the rates of several 

enzymati c reactions (Miller and Evans, 1956) . 

In studyi ng the inhibition of plan t cytochrome oxidase 

systems by the bicarbonate ion, Miller a nd Evans (1956) 

found that t he activity of cytochrome oxidase de c r ea sed as 

the bicarbonate concentration in the root medium inc reased. 

In an earlier experiment , Miller and Thorne (1956) indicate 

that the bic arbonate ion inhibited the respiration in the 

roots of plants containing a domi nant iron terminal oxidase 

more than those containing a dominant copper terminal oxidase. 

Bonner (1950) and Bend a ll et ~ · (1958) observed that the 

succinic oxidase system was sensitive to the bicarbonate­

c arbon dioxide concentration . Baxter and Belcher (1955) 

suggest that accumulation of bicarbonate ion around roots 

unfavor ably affects carbon dioxide excretion and internal 

pH and was the main factor in the metabolic disturbance 

leading to iron deficiency. 



Another effect of the bicarbonate ion appears to be 

in decreasing the absorption of mineral nutrients by the 

roots . Wadleigh and Brown (1952) felt that bicarbonate 
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ion induced chlorosis through its action on entry and 

activity of iron and that other arrangements in the chemical 

status of plants were largely concomitant with the effect 

of iron absorption and activity . Marcour (1952) indicated 

that the presence of bicarbonate in the nutrient solution 

almost completely prevented the uptake of radioactive iron . 

Goss (1957) found that bicarbonate significantly decFeased 

the uptake and translocation of a number of mineral elements . 

Doney (1959) found that increased bicarbonate levels 

tended to decrease the amount of phosphorus absorbed by bean 

plants , however , it seemed to increase the percentage of 

phosphorus in the stems and primary leaves over that of the 

control even though the total phosphorus in the plant was 

lower . 

Walliham (1961) and Morcour (1952) observed that the 

iron concentration in the roots of sodium bicarbonate treated 

plants was lower than in sodium sulfate or sodium chloride 

treated plants . Marcour (1952) states that iron uptake seems 

to be slowed down by the presence of bicarbonate ions at the 

surface of the roots and the iron already present in the 

cell is more or less immobilized by organic acids or by 

bicarbonate and carbonate ions . 

Heller et al . (1940) found that sodium bicarbonate 

treatments reduced the calcium content in tomato plants very 
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markedly . Olsen et al . (1949) states that the bicarbonate 

ion in calcareous soils appears to decrease the calcium 

content which, in turn, increases the solubility of phospho­

rus . The higher phosphorus and lower calcium could be 

responsible for the resultant chlorotic plant . 

Effect of Phosphorus 

Many workers feel that the effect of phosphorus in 

causing lime-induced chlorosis is in precipitating the iron 

in the root medium and in the conductive tissues of the 

plants . Brown et al . (1959) state that phosphorus can cause 

iron chlorosis in some plant species or varieties . They 

suggest that phosphorus can accumulate inside the plant in 

such proportions as to inactivate iron . 

Chandler and Scarseth (1941) found that as the phospho­

rus content of the soil was increased there was an increase 

in chlorosis and a reduction in the iron content of peanut 

and alfalfa plants. In nutrient experiments using PI and 

hawkeye soubeans, Brown and Tiffin (196 0) fo und that by 

increasing the phosphorus concentration in the nutrient 

solution the absorption of iron was greatly decreased and 

the phosphorus concentration in the exudate increased. 

Sideris et al . (1943) re ported that an increased s uppl y 

of phosphorus increased the amount of iron precipitated 

by the plant roots. 

Doney et al . (1960) suggests t hat the total uptake of 

iron from the growth medium is influenced by the phosphorus 



concentration. They found that plants grown in nutrient 

solutions with low phos phorus contained more iron than 

plants from the high phosphorus solution . 
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Aiyar (1946) found that increasing concentrations of 

phosphorus caused an increase in the phosphorus content of 

the roots, but a decrea se in the nitrogen and iron content. 

Biddulph and Woodbridge (1952) observed that as the phosphorus 

content of the nutrient medium was increased , roots , stems, 

a nd cordate leaves continued to build up in phosphorus content 

even after trifoliate leaves were adequate ly supplied. They 

conc luded that the excess phosphorus in the pl ant may be 

responsible for immobilizing iron and other ions. 

De Kock (1955) noted that as t he oxygen supply to the 

roots increased from l to 20 perce nt there was an increase 

in t he phosphorus content of the leaves and the stems . 

The pH of the root medium has an effect upon the ab­

sorption and form of phos phorus. Arnon et al . (1942) showed 

that the amount of phosphate absorbed by a plant varied both 

with the plant and the pH of the nutrient solution . Biddulph 

and Woodbridge (1952) state that the pH effects the permea­

bility of the absorbing cell membrane . They found a c harac ­

teristic uptake of phosphoru s for each pH level of the 

nutrient medium . Their results indicated that movement of 

the phosphorus from stems and petioles to leaf blades was 

impaired at pH 7 and higher . The resultant accumulation 

of phosphorus in stems and petioles at this pH constitutes 

a medium rich in phosphorus through which other ions being 
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transported to the leaf blades must pass . 

Ion Distribution 

The ion distribution within the pl ant has been used 

as a measure of chlorosis. De Kock (1955) maintains t hat 

it is possible to distinguish between chlorotic and non­

chlorotic plants by t he phosphorus to iron ratio, with 

chlorotic plants having a larger ratio than non-chlorotic 

plants. 

Baxter and Belcher (1955) and Warnock (1952) a re of 

the opinion that immobilization of iron within the pl ant 

is not the direct cause of the observed c hlorotic condition . 

Thorne et al . (1950) believe that the disturbance in the 

monovalent to divalent ion ratio i s a result of c hlorosis 

rather than a cause of it . 

Oserkowsky (1932) states that in some plants it has 

been observed that c hlorot i c symptoms apparentl y attribut­

able to iron deficiency were not always accompanied by a 

shortage of iron in affected tiss ues . De Kock (1955) noted 

that chlorotic plants h a d an accumulation of iron in the 

interveinal t issue and a very limited amount of iron in 

the veins . This is in agreement with the results of 

Biddulph (1951) which indicates that iron and phosphorus 

accumulate in the roots and conductive tissues of plants 

suffering from chlorosis. 

Olsen (1935) and Biddulph (1951) both suggest that 

when iron is taken up from neutral or a lkaline solutions 
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it ca n be precipitated as ferric phosphate in the vascular 

bundles along the veins of a leaf . Brown et al. (1959) 

noted that iron was inactivated internally in PI soybeans, 

princ ipally by the combined efforts of pho s phorus and 

calcium . In contrast, iron was absorbed and remained 

mobile in hawkeye soybeans under the same conditions of 

growth and element composition . They concl uded that 

susceptibility to iron chlorosis appears to be relative in 

scope and depends on the capacity of a pl ant to absorb and 

hold iron in a soluble mobile form . 

Lindner and Harley (1944) were able to show that in 

lime-induced chlorosis there existed a definite ratio between 

the calcium and potassium content of the leaves . Healthy 

green leaves have higher ratios while in chlorotic leaves 

the ratio was invariably low . They suggested that the high 

potassium level induced chlorosis by replacing the iron on 

the enzyme responsible for c hlorophyll formation, thereby 

inactivating the enzyme . Wadleigh and Brown (1952) and 

De Kock (1955) observed that potassium content was higher 

in chlorotic leaves , bo th in the sa p and in the dry tissue. 

Howe ver, they found no di ffere nce in the calcium content 

of chlorotic and green le aves . 



pH EXPERIMENT 

Introduction 

In differentiating between the pH effect and the bi­

carbonate effect in causing iro n chlorosis, it is important 

to have the same pH in the bicarbonate and non-bicarbonate 

treatment . Withou t this it would be very difficult to 

separate the two factor s . 

A number of investigators (Miller et ~ . , 1962; Brown, 

1959 ; Miller , 1960) have observed that the daily pH of a 

NaCl treatment or of a non-bicarbonate treatment constantly 

decreases . In working with nutrient solutions in which bi-

carbonate had not been added but in which the pH was main­

tained by the use of NaOH, Miller and Russell (1962) found 

that the pH decreased from the initial 7 . 8 val ue to as low 

as 6 . 8 within a period of from four to six hours. In con-

trast to this, the pH i n the nutrient solutions containing 

bicarbonate remained constant f or the durat ion of the experi­

ment . 

Hageman et al . ( 1961) used a carboxyl cation exchange 

resin as a means of controlling the pH of nutrient solutions 

in which they grew corn . They were able to maintain a pH 

in the range of 4 . 2 to 4 . 8 over a pe riod of 10 to 14 days. 

From this initial idea of Hageman's , it was proposed that 

a buffered resin medium be establ ished which would maintain 

a pH around 7.8. 
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The purpose of thi~ ex periment was to see if a non­

bicarbonate system co u ld be es tablis hed which would maintain 

a pH of 7 . 8 that could be c ompa red with a bicar bonate system . 

Materi als and Procedure 

Dowex 50-W resin , a carboxyl cation e x change resin , 

was used as a means of main t i n ing a pH of 7 . 8 in a non-b i ­

carbonate system. The resin was converted to the calcium 

form before add i ng it to the nutrient solutions. The 

calcium saturated resin was added at the rate of 25 g/ 1 

when used and in all cases the initial pH of the nutrient 

solution containing the res i n was adjusted after the addition 

of the resin to 7 . 8 by us ing 0 . 1 ~ NaOH or HCl . 

The resin could be reused after an experiment provided 

that it was once again converted to the calcium form. To 

do this the resin was first converted to the hydroge n for m 

b y wash i ng in 5 percent ( v/v) HCl . The ca l cium for m was 

o b tained by agitating the hydrogen form of the res i n i n a 

s lurry of Ca ( OH ) 2 (7 percent w/ v) . The excess l i me was 

removed b y washing the resin with deionized water . 

Thr e e different experiments were des i gned to i nvest i­

gate t he a b ility of the ca lcium saturated resin to b u ffer 

the nutrie n t solu t i on and to test i ts effect on t he pl a n ts 

growi ng i n t hese so lu tions . Hoa g l and ' s No. 2 n u tr i ent 

solut i on wi t h i r on su pplied as ferric citrate was used in 

a ll of t he e xperiments . I n all of the bicarbonate treat -

ments , s odium bic a rbonate wa s added at the rate of 10 me/1 . 
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These solutions were aerated with a l percent co 2-air 

mixture . All other solutions were aerated with compressed 

air. The pH was measu red with a Bec kman zeromatic pH ­

meter with a glass electrode . 

The first experiment consisted of comparing the pH in 

resin-buffered and C0 2 -Hco3 bu ffere d nutrient solutions in 

which no plants were grown. Gallon plastic fre ezer cartons 

were filled with the nutrient solutions and the solutions 

in half of the cartons were buffered with resin and the 

other half with bicarbonate . All of the solutions were 

adjusted to an initial pH value of 7 . 8 . The pH of the 

solutions was checked daily but was not adjus ted during 

the total ll days of the experiment. 

The second experiment was designed to see if the resin 

could buffer the pH of the nutrient solution as well as 

bicarbonate when plants were growing in the solutions and 

the solutions were at pH 7 . 8 . Three treatments were set 

up : (a) resin, bicarbonate , and nutrient solution; (b) 

resin and nutrient solution; and (c) nutrient solution . 

Red kidney beans were grown . The pH of each container was 

checked twice daily and was adj usted to 7 . 8 with 0.1 N 

NaOH or HCl . The nutrient solution was changed every five 

days and the treatment lasted for fifteen days . 

The third experiment was set up to see if the presence 

of calcium saturated resin in the nutrient solution had 

detrimental or beneficial effects on plants growing in the 

solution . Two treatments were used : (a) resin plus nutri-

ent solution; and (b) nutrient solution . Red kidney beans 



14 

were used in this study . Two week old plants that had been 

germinated were selected for uniformity in size and were 

placed in the solutions . The treatments lasted two weeks 

after which time the pla nts were h arvested . The pH of each 

container was checked twice daily and was adjusted to 7.8 

with 0 . 1 N NaOH or HCl. The nutrient so lution was changed 

every five d a ys . 

Results and Discussion 

The results of experiment 1 are listed in Table 1 . 

Both systems--resin buffered and bicarbonate buffered--

r eceived the same care . There was enough air being bubbled 

through the solutions to keep the resin slightly agitated . 

Over an eleven day period the resin was just as effective 

in maintaining a pH of 7 . 8 as the co 2 -Hco3 system . 

Table 1. Range of pH values in nutrient solutions as 
affected by method of pH control 

pH values under different methods 
Time 

Start 
1 day 
2 days 
6 days 

11 days 

HC03 -co 2 Resin 

7 . 8 
7 . 7 
7 . 8 
7 . 8 
7 . 7 

7.8 
7.7 
7.8 
7.9 
7.7 

Table 2 contains the results of the second experiment. 

These data indicate that the resin was as effective in 



15 

c ontrolling the pH as the bicarbonate when plants were 

growing in the solution . The table shows maximum deviation 

of the solution pH; although the solutions did not deviate 

t his much in each twelve hour period . In the nutrient 

solution not buffered by resin or bicarbonate, the drift 

in pH was as much as one pH unit per twelve hour period . 

Table 2 . Maximum deviation of nutrient solution pH within 
a twelve hour period 

pH values under different methods 

Ca-resin No buffer 

Day t ime 7 . 7 7 . 9 7 . 65-7.85 6.8 7.8 

Night t ime 7 . 7 7 . 9 7 . 65-7 . 85 6.8 7.8 

The first two experiments indicate that both the resin 

and bic arbonate buffering systems are effective in main-

taining the pH of the nutrient solution around 7 . 8 in the 

presenc e or absence of plants . 

The effect that resin h a d on the concentration of 

nutrients in the solution is not known . It certainly had 

some effect on it because there was a high concentration 

of calc ium added on the exchange s i tes of the resin. In 

t he present experiment the concentration of nutrients in 

solution was not measured . 

In order to determine the effect of resin on the plants 

experiment 3 was conducted . Table 3 conta ins the tabulated 
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data of this experiment . Each number represents the average 

fresh weight of four replications . Treatment 1 re presents 

complete nutrient sol u tion plu s calcium saturated resin 

and treatment 2 only nutrient sol u tion . There was a slight 

difference in t he weight of t he roots , upper stems, and 

leaves of the two treatments . The results indicated that 

the presence of resin stimula ted l arger growt h in these 

t hree plan t sections . A possible expl anation for this 

difference not appearing in t he primary leaves and lower 

stems is that these sections were partly developed before 

the treatment was applied. The other three sections h ad 

most of their growth during the treatment period. 

Table 3 . The effect of calcium saturated resin in the 
nutrient solution upon the fresh weight of red 
kidney beans 

Primary Lower Upper 
Treatment Roots l eaves stems stems Leaves 

grams / pot 

la 3.45b 2 . 45 2 . 44 4 . 03 11.06 

2 3 .18 2 . 54 2 . 58 3 . 38 9.48 

al~res in plus nutrient solution; 2~nutrient solution 
bEach figure represents t he average of four replications 

In both treatments all of the plants were healthy and 

green . The plants in treatment 1 were slightly larger than 

those in treatment 2 . 

In a similar experiment performed by Hageman et ~· 

(1961) resin was used to buffer the nutrient solution at 
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pH 4. They reported that the corn plants were bigger and 

appeared healthier than those grown in the solutions where 

pH was controlled by acid addition or was not adjusted. 

This response was possibly due to the increase in ca lcium 

made available to the pl ants from the exchange complex of 

the resin. 

Summa ry 

From this work it was concl ud ed that : (a) The ca l cium 

saturated resin was as effective in maintaining a pH of 7.8 

as the bicarbonate system . The resin allows a rather stable, 

high pH in a non-bicarbonate system . (b) Plants grown in 

solutions buffered with the resin were slightly larger than 

those grown in solutions where the pH was controlled by 

addition of NaOH and HCl. 



COMPAR ISON OF PLANTS GROWN IN A MOD I F IED 

SPLIT-ROOT SYS TEM WITH THOSE GROWN I N 

A CONVENTIONAL NUTRIENT SYSTEM 

In troduction 

The object of these exp eriments was to distinguish 

between the bicarbonate ion effect and the pH effect in 

inducing iron c hlorosis at a pH of 7 . 8. 

In the pH experiment a resin buffering system was 

devised which would maintain a constant pH of 7.8 in the 

absence of bicarbonate . This system was used to maintain 

a constant pH in the nutrient medium of the following experi­

ments . The use of the resin bu ffer as a means of controll ing 

pH in the non-b icar bonate solutions made it possibl e to 

se parate the effect of bicarbonate from that of pH on in­

du c ing c hlorosis. 

Red kidney beans and hawkeye soybeans were used in the 

study to observe the resp onse of t wo di f ferent pl ant varieties 

to bicar bonate . Distinguishing between the pH and the bi­

carbonate effect was done by comparing pl ants grown in nutri­

ent so lu tions not containing bicarbonate with plant grown 

in identica l solutions containing bicarbonate . 

A s plit-root tec hniqu e a llowe d the separation of 

phosphor us fro m iron . A fa c torial arrangement of treatments 

wa s set up using bicarbonate as the variable . This arrange ­

ment p rov ide d a means of separating the effect of bicarbonate 
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from that of pH when bicarbonate was with iron, or phospho­

rus, or with both. In addition, the conventional nutrient 

system allowed comparison of the bicarbonate effect when 

all of the nutrients were together . To measure the differ­

ence of the bicarbonate effect from that of pH, the visual 

appearance of the plants , the dry weights and chemical compo­

sition of the plant sections were compared for the various 

treatments. 

Materials and Methods 

This investigation consisted of two different experi­

ments. One was a split-root experiment in which the roots 

of a plant were divided equally into two adjacent containers. 

In this experiment phosphorus and iron were in separate 

containers but the plant had access to both by means of the 

split-root system. Sodium bicarbonate was added as a treat­

ment in a factorial arrangement . 

The other experiment was a conventional nutrient 

c ulture. Treatments consisted of plants growing in complete 

nutrient solut ion with and without bicar bonate . 

Two plant varieties were used--red kidney beans and 

hawkeye soybeans. They received similar treatment throughout 

the investigation as to the method of selecting the seeds, 

seed germination, treatment, harvesting and washing, sepa­

ration into plant sections, and chemical analyses. 

Solution culture 

Deionized distilled water was used in the preparation 
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of the solution culture in all of the treatments. The 

nutrient solution was the same as Hoagland 's No. 2 (lioagland 

and Arnon , 1950) except for the iron which was s uppl ied as 

ferric c itrate. 

Ea c h container had the fo ll owing common nu trients in 

me /1 : Ca, 1 . 3 (plu s that added by way of t he ca l ci um 

saturated resin); Mg, 1.3; N03 , 2 . 0 ; K, 0 . 5 ; and S, 0 . 13 . 

The minor elements were added to each container in t he 

followi ng co ncentrations in ppm : Mn , 0 . 7; B, 0.04; Zn, 

0 . 02 ; Cu, 0 . 005; and Mo, 0.005 . In the spli t - root experi­

ment 1 me / 1 of phosphor us was added to one container and 

5 ppm Fe was added to the other. In the conventional 

nutrient cu lture treatment 1 me / 1 of P and 5 ppm Fe were 

added with the other nutrients . 

Select ion of seeds and pl a nts 

Uniform healthy seeds were se l ected and , after treating 

with seresa n (Fungicide pro du ced b y duPont) , were germinated 

by placing betwee n l ayers of cheese c l oth which were suspended 

over a rack in a large tray and saturated with tap water . 

Several days later he a lthy seed lings were selected for 

unif o rmity a nd transplanted in to a water solution cont a in i ng 

1 me / 1 calc ium as Ca(N03 ) 2 . At this time the primary ro o t 

was c u t off leaving several of the secondary roots. These 

seedlings grew under norma l-d ay condi t ions. When the 

secondary roots were about six inc he s long , uniform seed­

l i ngs were se l ected and tra ns planted into treatment so lutions. 
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Treatments 

In the split-root experiments , the plants were suspended 

over two adjacent containers with the roots e qually divided 

between them . The containers were gallon , pl astic freezer 

cartons which had been pain ted on the outside with aluminum 

paint . Each carton contained complete nutrient solution, 

except for phosphorus and iron. I n addition, each carton 

contained 25 g/1 calcium saturated resin . (The prepara tion 

of the resin is explained in the pH ex periment .) Phosphorus 

was added to one carton of each pair and iron to t he other . 

This arrangement enabled the plants to absorb all required 

nutrients and eliminated direct contact in the solution 

between iron and phosphorus . Hereafter the solution con-

taining phosphorus but no iron will be referred to as the 

phosphorus solution and the solution containing iron bu t 

no phosphorus will be called the iron sol utio n . 

In the split-root experiment, fo u r di ffere nt treatments 

were set up using bicarbona te as the treatment variable 

(Table 4) . 

Table 4 . Treatments used in the split-root experiment 

Phosphorus 
Treatment solution Iron solution 

1 bicarbonate bicarbonate 

2 bicarbonate no b:Lcarbona te 

3 no bicarbonate bicar bonate 

4 no bicarbonate no bicarbonate 
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In the conventional nutrient culture experiment, the 

plants were placed in the painted freezer cartons. Complete 

nutrient solution and 25 g/ 1 calcium saturated resin was 

added to each carton . In this experiment treatments con-

sisted of complete nutrient solution with and without the 

addition of bicarbonate . 

In all of the bicarbonate treatments , the bicarbonate 

was added as sodium bicarbonate at 10 me / 1 . To maintain 

the bicarbonate ion concentration a l percent co2-air 

mixture was bubbled thro ugh capillary tubes into the nutri­

ent solution~ 

In the non-bicarbonate treatments the solutions were 

aerated by passing air from the compressed air line through 

ca pill a ry tubing into the solution. In both the bicarbonate 

and non-bicarbonate treatments there was enough air going 

through the solution to keep the resin agitated at all 

times . 

The pH was maintained at 7 . 8 . It was checked twice 

daily using a Beckman zeromatic pH meter with a glass 

electrode. The solutions were adjusted to the initial 

pH using 0 . 1 ~ NaOH or HCl . The nutrient solutions were 

changed every five days . 

The plants were grown in a growth chamber where day­

length , light intensity, and temperature were controlled . 

Plants were grown in a 16 hour light period at 78 F and an 

eight hour dark period at 65 F . 
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Harvesting 

The plants were harvested fifteen days after the 

beginning of the treatment . Each treatment consisted of 

two plants which were analyzed as a unit . Each treatment 

was replicated four times . 

In harvesting, the plants were separated into sections . 

In the split-root experiment the sections were the iron­

root , the phosphorus-root, primary leaves, lower stems, 

upper stems , and remaining leaves. In the conventional 

nutrient culture experiment the sections were roots, root­

stem , primary l e aves, lower stem , upper stem, and remaining 

l ea ves . The root-ste m wa s that section of the stem which 

wa s be low the water level in the car t on . The division 

between the lower stem and upper stem wa s immediately above 

the petiole-stem junction of the first trifoliate leaf . 

After separation of the plant sections, the green 

weight was taken of each section . The sections were washed 

in 0 . 1 N HCl followed by two washings in distilled water. 

Each washing consisted of submerging the plant and gently 

agitating it for 15 to 20 seconds . After washing the 

plant sections were placed in paper bags and dried in a 

forced air dryer at 80 C . 

Chemical analyses 

The dry plant tissue samples were ground into a homo­

genous powder using a porcelain mortar. The mortar was 

used to eliminate possible contamination from a steel 

grinding mill. 
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The ground plant samples were weighed on a Mettler 

electric balance and transfered into 125 ml digestion 

flasks . Ten ml of concentrated nitric acid was added to 

each flask . The flasks were placed on a hot pl ate and 

heated at a low temperature until all of the organic matter 

had been digested . The flasks were then removed from the 

hot plate and allowed to cool . Five ml of perchloric acid 

were added to each flask and the contents digested until 

two ml of solution remained . 

The digestion material was quantitatively transfered 

from the digestion flasks into 100 ml volumetric flasks 

and brought to volume. It was then filtered through a 

No. 1 Whatman filter paper and kept in storage bottles . 

The filter paper removed the silica from the digested solu­

tion . 

Phosphorus was determined by using the nitric acid­

molybdate-metavanadate method as described by Wilde and 

Voigt (1955) . Iron was determined with ortho-phenanthroline 

following the method of Seywell and Cunningham (1937). 

Calcium and magnesium were determined by the ethylenediamine 

tetraacetic acid (EDTA) method as suggested and worked out 

by Patton and Reeder (1956) and Flaschka, Barnard, and Broad 

(1957) . Potassium was determined by use of a Perkin-Elmer 

Model 52-c flame photometer with a propane burner. The 

method used was that suggested in the instruction manual 

for the flame photometer and in the Agricultural Handbook 

60. 
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Results and Discussion 

Plant-solution relations 

Bicarbonate ion . From the Henderson-Hasselback equation 

pH pK + log (l) 

the approximate bicarbonate-carbon dioxide ratio at various 

pH values can be computed . This is done in Figure 1 . It 

indicates that at pH 7.8 about 97 percent of the carbonic 

acid system exists as bicarbonate . Thus the advantage of 

maintaining a pH value of about 7 . 8 in the present investi-

gation is evident. 

In the presence of bicarbonate and carbon dioxide most 

of the sodium and potassium ions are associated with bi-

carbonate but some carbonate always exists. The question 

arises, is there enough carbonate present to make any 

differences? Using the proper dissociation constant (equation 

2) and a 1 percent C02-air mixture with a bicarbonate ion 

concentration of 0 . 01 molar at 25 C , the concentration of 

car bonate was found to be 6.57 x 10-5 molar (equation 3). 

Umbreit (1949) concluded that th is was such a small quantity 

K (2) 

(0 . 01) 2 
6 . 57 X 10-5 (3) (3 . 05 X 10 4) (5 X 1(}+3) 

of carbonate that it could be neglected . 
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Precipitate. At the end of the experiment a white 

precipitate was observed in all of the solutions. 
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Pinevich ( 1927) fo und that when Knop ' s (Hoaglands No. 

2) solution was made alkaline with NaOH or Caco3 a colloidal 

precipitate of calcium phosphate was formed which removed 

some of the iron . 

Goss (1957), in a study on the effect of bicarbonate 

on the uptake of radioisotopes , observed a similar precipi­

tate in his solutions. He determined the rate of formation 

of the precipitate in bicarbonate and non-bicarbonate solu­

tions and observed a rapid rate of formation in both solu­

tions. He examined the precipitate and found it to be 

largely amorphous tricalcium phosphate , with a small ad­

ditional amount of magnesium carbonate present in the sample 

isolated from the bicarbonate culture . He concluded that 

the precipitate formed in the nutrient solution was not a 

major factor in explaining the effect of the bicarbonate 

ion on the uptake by plants of the iso topes used. 

The precipitate formed in the present study may not 

be the same as that formed in Goss's or Pinevich's solutions; 

but , it seems probable that it could be in as much as the 

same nutrients were used in both studies . Olsen (1953) 

points out that calcium phos phates are complex, extremely 

variable , and little unde rstood . Over a long period of 

time it might be expected that the precipitate formed would 

be different from those formed over a short time. Greenwald 

( 1941 , 1945) found that the solubility of calcium phosphate 
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was increased by the presence of bicarbonate , and he 

postulated the for mation of calcium bicarbonate and ca l c ium 

bicarbonate phosphate complexes . Brown et ~· (1959) 

o bserved that the addition of phos phorus to the solution 

cultures conta ining NaHC03 increased the soluble ca l ci um 

levels a nd that soluble phos phor us levels we re constant ly 

higher in Na Hco3 treatments than i n NaC l treatments. 

Obviously , there is a possibi lity that some dif ference 

could exist in the nutrient concentrat ion of t he so lu tions 

with bica rbonate and non-bicarbonate treatments. However, 

this difference was not determined quantitatively. 

Visual and weight relations 

Visual a ppearance . The symptoms of iron chlorosis were 

associated with the treatments in which iron and bicarbonate 

were together . In the conve ntiona l n utrient c ulture experi-

ment , iron , phosphorus , and bicarbonate were together in the 

nu trient medium . Under this arrangement the symptoms of 

iron chlorosis appeared to be more p rono unced than in the 

s plit-root experiment where phos phor us was separa ted from 

iron and bicarbonate . 

Pl ants differ in their s uscepta bility to iron chlorosis, 

a nd for this reason red kidney beans and hawkeye soybeans 

were us e d . In the conventiona l nutrient c ulture experiment 

both red kidney beans and hawkeye soybe a ns developed chl orosis 

in the bicarbonate treatme nt but were green and normal looking 

in the non-bicarbonate treatment . 



29 

In the split-root experiment the differences in 

susceptability to iron chlorosis of the two plants was 

apparent . The red kidney beans did not s how signs of iron 

chlorosis under any treatment , not even when bicarbonate 

was present with both phosphorus and iron . On the other 

hand , hawkeye soybeans developed chlorosis only when bi­

carbonate was with the iron . When bicarbonate was with 

the phosphorus and not with the iron , chlorosis did not 

appear . 

One explanation why hawkeye soybeans developed chlorosis 

and red kidney beans did not develop chlorosis when bicarbon­

ate was with the iron in the split-root experiment was the 

difference in the c helating ability of the two plants. 

Brown et ~ · (1960) found that chelating agents are numerous 

in plants and the kind and concentration are dependent upon 

the plant species. They found that roots differ just as 

chelating agents differ in their capacity to compete for 

iron , and that red kidney beans were able to draw more iron 

from solution than hawkeye soybeans . 

It is interesting to note again that the effect of 

bicarbonate in causing iron chlorosis was more pronounced 

when phosphorus was separated from iron and bicarbonate. 

Brown et al. (1959) found that bicarbonate affected respi­

ration of PI soybean roots more in conventional nutrient 

solutions when bicarbonate, phosphorus , calcium, and iron 

(pH 7 . 8) all bathed the roots together, than when iron was 

separated from bicarbonate, phosphorus, and calcium. It 
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is not the object to point out the relationship between 

respiration of the root and iron chlorosis in the leaves, 

but it is very interesting to note t ha t there was a greater 

effect when bicarbonate, iron and phosphorus are together 

than when iron was separated from the other two. 

I n considering only the visual appearance of the plants 

it was evident that bicarbonate had an effect in causing 

iron chlorosis which was different from that of pH . The 

bicarbonate ion was not the only cause of chlorosis, in 

fact it had to be associated with the iron in order for 

chlorosis to appear . It did not appear when bicarbonate 

was only with the phosphorus solution . The effect of bi­

carbonate in causing iron chlorosis was even greater when 

bicarbonate, iron and phosphorus were together. 

Weight relations . Tables 5 and 6 contain the average 

weights of the different plant sections of hawkeye soybeans 

and red kidney beans grown in the split-root system. Tables 

7 and 8 contain the average weights of the different plant 

sections of h awkeye soybeans and red kidney beans grown in 

the conventional nutrient cu lture system . 

The weight of the plants was correlated with the appear­

ance of chlorosis. Plants which were the most chlorotic 

were the smallest in weight. The weight of the plant sections 

was also correlated with the presence of bicarbonate. In 

general, when bicarbonate was with the iron the weight was 

less than when bicarbonate was not with the iron. This 

relationship did not hold when bicarbonate was only with 
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Table 5 . The weight of plant sections of hawkeye soybeans 
grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

grams 

Iron with HC0 3 
-

p with 
HC03 

- 0 . l70a 0 . 148 0 . 492 0 . 521 0.221 0.747 

p without 
HC03 

- 0 . 198 0 . 093 0 . 439 0 . 413 0.220 0. 700 

Mean 0 . 184 0 . 121 0 . 465 0 . 467 0.221 0. 723 

Iron without Hco3 -

p with 
HCo3 - 0 . 200 0 . 110 0 . 388 0.461 0.225 0.902 

p without 
HCo3 - 0 . 324 0 . 079 0.470 0 . 436 0 . 226 0.949 

Mean 0 . 262 0 . 094 0 . 429 0 . 448 0.225 0.925 

For comparison between : L . S.D . . 05 

An y plant sections in 
any treatment 0 . 046 

Means 0 . 033 

aEach figure represents the average of four replications 
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Table 6 . The weight of plant sections of red kidney beans 
grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

grams 

Iron with HCo3 -

p with 
Hco3 - 0 . 378 0.389 0 . 613 0 . 889 0 . 583 2.353 

p without 
HCo3 - 0 . 268 0 . 565 0 . 582 0 . 749 0 . 616 2 . 302 

Mean 0 . 323 0 . 477 0 . 598 0 . 819 0 . 600 2 . 328 

Iron without HC0
3 
-

p with 
HC03 

- 0.676 0.235 0.522 0 . 721 0 . 591 2.278 

p without 
Hco3 - 0 . 341 0.612 0.668 0 . 799 0.614 2.379 

Mean 0 . 509 0.423 0.596 0.760 0.602 2.329 

For comparison between : L.S . D . .05 

Any plant sections in 
in any treatment 1.05 

Means 1.15 

aEach figure re presents the average of four rep lications 
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Table 7 . The weigh t of plant s e ctions of hawkeye soybeans 
grown in the conventiona l nutr ient culture 
experiment 

HCo3 - Root Primary Lower Upper 
status Root stem leaves stem stem Leaves 

grams 
with 

HCo3 - 0 . 223a 0 . 151 0 . 383 0 . 250 0 . 128 0.353 

withou t 
HC03 - 0 . 325 0 . 175 0 . 330 0 . 285 0.315 0.949 

For c omparison between : L . S . D. . 05 

Plan t sections 0 . 018 

aEa c h figure represents the ave rage of four replications 

Table 8 . The weight of pl ant sec tions of red kidney beans 
grown in t he conventional nutrient culture 
experiment 

HC0
3 Roo t Primary Lower Upper 

status Root stem l eaves stem stem Leaves 

grams 

with 
HC03 

- 0 . 262a 0 . 252 0 .395 0 . 354 0 . 230 0.859 

without 
HCo 3 - 0 . 410 0 .209 0 . 311 0 . 3 70 0 . 438 1 . 524 

For comp ar ison between : L . S . D. . 05 

Pl ant sect ions 0 . 046 

a Ea ch figure represents the average of four r e plications 
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the phosphorus . Under these treatments in the split-root 

experiments, the various plant sections did not differ in 

weight . 

The differences in weight of the plant sections 

appeared mostly in the roots, upper stems, and leaves. 

These sections were doing maximum amount of growth during 

the treatment period whereas the lower stems and primary 

leaves had done maximum amount of growth during the pre­

treatment period . 

Hawkeye soybeans in the split-root experiment had a 

decrease in the weight of the iron-root and in the leaves 

when bicarbonate was with the iron (Table 5) . The other 

sections did not differ significantly from each other. 

However , there was a trend for more weight per plant section 

when bicarbonate was not present at all . In the conventional 

nutrient c ulture experiment , there was more weight in the 

roots, lower stems, upper stems, and leaves when bicarbonate 

was not present (Table 7) . The differences in weight due 

to bicarbonate in the conventional nutrient system were 

greater than those in the split-root system. The weight 

differences have a positive correlation with the degree of 

chlorosis in hawkeye soybeans. 

Red kidney beans when grown in the split-root system 

did not show weight differences in plant sections due to 

bicarbonate treatment (Table 6) . The plants in this system 

did not show visual differences or weight differences. On 

the other hand , when the red kidney beans were grown in the 
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conventional nutrient culture system, chlorosis appeared 

and significant decreases in weight was observed in the 

roots , upper stems, and leaves (Table 8) . 

The differences in plant section weights are expressed 

graphically in Figure 2. This figure illustrates the tendency 

for a decrease in plant weight when bicarbonate was present . 

Phosphorus uptake and distribution 

The values in Tables 9 and 10 represent the average con­

centration of phosphorus found in the different plant sections 

of hawkeye soybeans and red kidney beans when the plants were 

grown in the split-root experiment. Tables ll and 12 give the 

average concentration of phosphorus in the plant sections of 

these plants when they were grown in the conventional nutrient 

culture experiment . 

Hawkeye soybean, in the split-root experiment, had an 

increase in the mean phosphorus c oncentration in the upper 

stems and leaves when bicarbonate was with the iron (Table 

9). There was also a trend for greater concentrations of 

phosphorus in these two sections when bicarbonate was with 

the phosphorus than when it was not but these values were not 

significant. The differences between the bicarbonate and non­

bicarbonate treatments with soybeans were more pronounced in 

the conventional nutrient culture experiment (Table ll) . The 

concentration of phosphorus was greater only in the upper 

stems and leaves with the bicarbonate treatment . 

The phosphorus accumulation in hawkeye soybeans corre­

lates with the appearance of chlorosis and with the differ­

ences in weight of the plant sections. Treatments in which 



Figure 2 . Weight of the plant sections of hawkeye soybeans and red kidney beans 
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Table 9 . Phosphorus uptake and distribution in hawkeye 
soybeans grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

mg / g 

Iron with HC03 
-

p with 
HC03 

- 3 . 10a 3 . 42 1.82 2 . 00 2.81 3.80 

p without 
HCo3 - 3 . 20 3.58 1.66 1. 78 2 . 37 3.36 

Mea n 3.15 3. 51 1.74 1.89 2 . 59 3.58 

I ron without HCo3 -

p wi t h 
HCo

3
- 3.11 3. 55 1. 70 1. 57 2 . 11 3.04 

p without 
HC03 

- 2.90 3 . 96 1. 53 1.98 1.84 2.56 

Mean 3.01 3.75 1.62 1 . 77 1.98 2 . 80 

For comparison between : L . S . D. . 05 

Any plant sections in 
a ny treatment 1.14 

Means 0 . 58 

aEach figure represents the average of four replications 
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Table 10 . Phosphorus uptake and distribution in red kidney 
beans grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

mg/ g 

Iron with HC03 
-

p with 
Hco3 - 3 . 87a 4 . 84 4 . 19 2 . 24 3 . 77 4.48 

p without 
Hco3 - 3 . 75 5 . 82 5.51 2 . 12 3.44 4.37 

Mean 3 . 81 5 .33 4 . 85 2.18 3.61 4.42 

Iron without Hco3 -

p with 
HCo3 - 3 . 92 5 . 27 3 . 36 l. 74 2.97 3.52 

p without 
HC03 

- 3.92 4 . 95 5 . 27 2 . 03 2.97 4.19 

Mean 3.92 5 . 11 4 . 31 1.88 2 . 97 3.85 

For comparison between : L . S . D. . 05 

Any plant sections in 
any treatment l. 71 

Means 0 . 70 

a Each figure represents the average of fo ur replications 
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Table 11 . Phosphorus uptake and distribution in hawkeye 
soybe ans grown in the conventiona l nutrient 
culture experiment 

Hco3 -
status 

with 
HCo3 -

without 
HCo3 -

Roo t 

5 . 09a 

4 . 64 

Root 
s t em 

2 . 76 

4 . 52 

For comparison between : 

Plant sections 

Primary 
leaves 

mg / g 

3 . 09 

4 . 01 

L . S . D. 

Lower 
stem 

3 . 97 

3 . 72 

. 05 

0 . 28 

Upper 
stem 

5 . 53 

4.41 

Leaves 

5.40 

5 . 08 

aEa c h figur e represents the average o f f our replications 

Table 12. Phosphorus uptake and distribution in red kidney 
beans grown in the conve n t iona l nutrient culture 
e xpe riment 

Hco3 - Root Primary Lower Upper 
status Root stem leaves stem stem Leaves 

mg/ g 

with 
HCo3 - 7 . 53 a 2 . 59 5 . 66 2 . 91 4 . 92 7. 77 

without 
HC03 - 8 . 65 2 . 53 6 . 40 3 . 3 8 4 . 3 8 6.77 

For comparison between : L . S . D. . 05 

Plant sections 0 . 19 

a Each figure represents the average of four replications 



iron and bicar bonate were together ca use d chlorosis to 

develop. The weight of the upper stems and leaves was 

decreased bu t t he concentration of phos phor us in these 

sections inc reased . 
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The sect ions of the red kidney beans grown in the 

split-root exper iment did not show differences in pho s phor us 

concentrat ion due to bicarbonate treatments (Table 10) . 

There was a tre nd among the mean values for a higher con­

centration of phosphoru s in t he uppe r stems and leaves when 

iron and bicarbonate were toget her. 

Red kidney beans exhibited signi f i ca n t differences in 

phosphorus co ncentrations in the pl ant sections when grown 

in the convent ional nutr ie n t culture experimen t (Tabl e 12). 

The phos phorus co ncentration was higher in the upper stems 

and l ea ves but lower in the other sections with t he bi­

c arbonate tre atme nt . Thi s fol lows the same trend as t he 

hawkeye soybeans and corre l ates with t he a ppearance of 

chlorosis and decrease in we ight of the pl a nt sections . 

The concentration of phosphor us in t he vario us pl ant 

sect i o ns is expressed graphica lly in Figure 3 . In t he 

s pli t-root experiments the values were selected from the 

treatme nts where bicarbona te was with both phosphorus and 

iron and where it was not prese n t with either. 

Table 13 lists the di ffe r ences in phosphorus concen­

tration in plant sections . A plus value indicates that 

there was a higher c oncentration of phosphoru s when the 

plant was in the bicarbona te treatment . This table helps 
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Figure 3 . Concentration of phos phorus in t he various plant 
sect ions of hawkeye soybeans and red kidney bea ns 
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Table 13. The difference in amount of phosphorus found in 
plant sections when plants were grown in 
solutions with bicarbonate and without 
bicarbona tea 

Hawk eye soybeans 

Conventiona l 
nutrient 
culture 

experiment 

+ 0.45 

-1 . 76 

-0 .92 

+0.25 

+ 1.12 

+0.32 

Split-root Plant 
experimentb section 

+0.20 Fe-root 
(root) 

-0.47 P-root 
(root 
stem) 

Primary 
-0.29 leaves 

Lower 
+0.02 stems 

Upper 
+0.97 stems 

+1 . 24 Leaves 

Red kidney beans 

Conventional 
nutrient 
culture 

experiment 

-1 . 12 

+ 0.06 

-0 . 74 

-0 . 47 

+ 0 . 54 

+ 1 . 00 

Split-root 
experiment 

-0.05a 

-0.11 

-1.08 

+0. 21 

+0 . 80 

+ 0.29 

a Plus value means that there was more phosphorus in the 
bicarbonate treatment 

bValues selected from those treatments where bicarbonate 
was with both phosphorus and iron and where it was not 
present at all 



to illustrate the fact that phosphorus increased in t he 

upper stems and leaves when bicarbonate was present. 
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An increase in phosphorus concentration of the upper 

stems and l eaves in chlorotic pl ants has been observed by 

a n umber of wor ke rs and a ppears to be a common c haracteristic 

of iron c hlorosis ( Brown et ~·, 1959; Biddulph and Woodbrid ge, 

1952) . Brown et al. (1960) observed an increase in phosphorus 

concen tration of the stems and leaves of red kidney beans 

when chlorosis had been induced by an excess of chelating 

agent. 

A very important obser vation in the present experiment 

is that even though the concentration of phosphorus in the 

upper stems and leaves was greater in the bicarbonate treat­

ment, the o ver all concentration of phosphorus in the plant 

was not inc r eased . I t was more pronounced in t he conventional 

nutrient c ulture experiment (Table 12 a nd Figure 3) . Doney 

et al . (1960) reporte d an increase in phosphorus conce ntra tion 

in t he upper stems and leaves bu t a dec rease in phosphorus 

concentration for t he tota l plan t when bicarbonate was present. 

Goss (1957), Brown (1959), and Mille r et ~ · (1960) a l so re ­

ported a decrease in phosphorus co ncentra tion in the total 

plan t as a resu lt of bicarbonate treatments in conventional 

nutrie nt c ultures . 

Iron upt a ke and distribution 

Ta bles 14 and 15 give the iron co ncentration in the 

plant sections of hawkeye soybeans and red kidney beans from 

the spli t - root experiment . Tables 16 a nd 17 give the 
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Table 14 . Iron uptake and distribution in hawkeye soybeans 
grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

ug/ g 

Iron with Hco
3

-

p with 
HCo3 - 926 . 4a 104 . 5 39 . 6 31.9 36.1 29.9 

p without 
HC03 

- 716 . 0 238.8 44.6 34.6 47.2 30.7 

Mean 821 . 2 171 . 7 42 . 1 33 . 2 41.7 30.3 

Iron without HC03 

p with 
HC03 1875 . l 267.1 155 .8 34.3 34.4 29.3 

p without 
HC03 

- 1717 . 7 218 . 9 142 . 4 43 . 9 48.6 34 . 9 

Mean 1796.4 243 . 0 149 . 1 39.1 41.5 32.1 

For comparison between : L.S . D. . 05 

Any plant sections 
in any treatment 64.4 

Means 75 . 0 

aEach figure represents the average of four replications 
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Table 15 . Iron uptake and distribution in red kidney beans 
grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

ug/ g 

Iron with HC03 -

p with 
HC03 9 53. 7a 71.2 53 . 5 32 . 6 31.2 35.7 

p without 
HCo3 - 1317.1 75 . 4 49 . 0 24 . 5 27.4 37.8 

Mean 1135.4 73.3 51 . 2 28 . 5 29 . 3 36.8 

Iron without HC03 

p with 
HC03 1376.1 118 . 7 59.0 33.7 28.7 32.9 

p without 
HCo3 - 1343.7 105.5 46 . 9 26.7 30.3 31.0 

Mean 1359 . 9 112 . 1 52 . 9 30.2 29.5 32.0 

For comparison between : L.S . D. . 05 

Any plant sections 
in any treatment 53.0 

Means 49 . 0 

aEach figure represents the average of four replications 
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Table 16 . Iron up ta ke and distri bu t io n in hawkeye soybeans 
grown in the co nventiona l n u tr ient c ulture 
experiment 

HCo3 - Root Primary Lower Upper 
status Root stem l eaves stem stem Leaves 

ug g 
with 

Hc o 3 - 249 . 0a 85 . 0 44 . 2 40 . 0 55 . 9 52.0 

without 
HC0 3 252 . 1 85 . 7 71.0 33 . 7 30 .8 35.7 

For c ompar i son between : L . S . D. . 05 

Pl ant sections 11 . 1 

a Each figure represents the average of fo ur replications 

Table 17 . I ron uptak e and distribution in red kidney beans 
grown in the co nven tiona l nutrient culture 
experiment 

HCo 3 - Root Primary Lower Upper 
status Roo t stem leaves stem stem Leaves 

ug/ g 

with 
HC03 - 1201 . 4a 129 . 1 48 . 9 14 . 7 13.1 34.4 

without 
HC03 

- 1249 . 1 99 . 2 62 . 7 3 0 . 5 19 . 6 46.2 

For c omparison between : L . S . D. . 05 

Pl ant sections 30 . 0 

aEa c h figure represents t he average of four replications 
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concentration of iron in the plant sections when the 

soybeans and kidney beans were grown in the conventiona l 

nutrient culture experiment. 

The uptake of iron by hawkeye soybeans in the s plit­

root experiment differed only in the iron segment of the 

root (Table 14) . This difference was in the mean values 

of the bicarbonate with and without iron treatments. The 

concentration of iron in this plant section when bica r bonate 

was not in the iron sol u tion was twice that found when bi­

car bonate was in the iron sol ution . The other pl a nt sections 

did not show significant differences in iron concentration 

with any of the bicarbonate treatments. 

For the hawkeye soybeans grown in the conventional 

nutrient culture experiment, the iron concentration was 

higher in the upper stems and leaves in the bicarbonate 

treatment than in the non-bicarbonate treatme n t (Table 16) . 

The incre ase in the iro n co ncentration of t hese two sect ions 

corresponds wi th the increase in phosphorus co ncentrat ion 

with the bicarbonate treatment . These resu l ts suggest that 

iron may be prec ipitated by the phos phor us in these sections 

of the hawkeye soybean . 

When red kidney beans were grown in the s pl it-root 

experime nt there were no differences due to bicarbonate 

treatments (Table 15) , even though t he trend was for more 

iron to be taken up when bicarbona te was not in the iron 

solution . However , c hlorosis did not develop in the red 

kidne y be ans in thi s expe riment , therefore, differences in 
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iron concentration as a result of bicarbonate treatments 

would not be expected. 

In the conventional nutrient c ulture experiment the 

red kidney beans developed chlorosis in the bicarbonate 

treatment . The concentration of iron in the root was lower 

in the bicarbonate treatment (Table 17). The concentration 

of iron in the other sections did not differ with the bi­

carbonate treatment. 

The concentration of iron in the primary leaves , lower 

stems, upper stems, and leaves of hawkeye soybeans was about 

the same for the split-root experiment and the conventional 

nutrient culture experiment (Table 14 and 16) . The red 

kidney beans exhibited the same trend (Tables 15 and 17). 

The reasons for this are not obvious but some possibilities 

will be discussed here and others later in the general 

dis c ussion. 

Iljin (1953) states that it was not an uncommon 

occurance for chlorotic plants to have the same concentration 

of iron as green plants . He found that pl ants suffering from 

iron c hlorosis could have more , equal, or less iron than 

green plants growing in the same vicinity . 

Rhoads et ~ - (1960) proposed that iron taken up by 

roots could be precipitated with phos phorus by produ cts of 

co 2 fixation . If this hypothesis could be proven it would 

provide an explana t ion for the results of this experiment 

as to why t he concentration of iron did not show a greater 

decrease in chlorotic plants. 
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Calcium uptake and distribution 

The calcium content of hawkeye soybeans and re d kid ney 

beans grown in the s pli t-root exper iment has been tabulated 

in Tabl es 18 and 19 . Tables 20 and 21 give the ca l cium 

content of these pl ants whe n they were grown i n the con ­

ventiona l nutrient culture exper iment . 

The upta ke of calcium by ha wkeye soybeans in the s pl it­

root experiment was decreased in al l p lant sect i ons exce p t 

for the iron segment of t he root when bicarbonate wa s present 

(Table 18) . There was a greater decrease in ca l cium uptake 

when bicarbonate wa s i n the iron solu tion than when it was 

in the phos p horus solut i on . The calcium content increased 

in the iron segment of the root when bicarbonate was present 

and the greates t increase was when bicarbonate was with both 

the iron and phosphorus. 

The concentration of c al c ium in the re d kidney beans 

grown in the s pli t-root ex periment (Table 19) was t he same 

as that of the soybeans . There was a decrease in ca l cium 

concentrat i on i n all sect i ons excep t the iron segment of 

t he root when bicar bonate was present. The calcium con­

centrat ion i n t he root section increased when bicarbonate 

was present . 

I n the conve n t iona l nutrient c ulture e xperiment (Tables 

20 and 21) both hawkeye soybeans and red kidney beans show 

a decrease i n ca lcium concentration when bicarbonate was 

present e xcept in the root whi c h s hows an i ncrease i n 

ca l c ium. 



51 

Table 18 . Calcium uptake and distribution in hawkeye 
soybeans grown in the split-root experiment 

p Root segment Primary Lower Upper 
statu s Fe p leaves stem stem Leaves 

meq/ g 

Iron with HC03 
-

p with 
HC03 - 0 . 44a 0 . 38 0 . 94 0 . 45 1.16 0.69 

p without 
HC03 

- 0 . 29 0. 59 1.04 0 . 59 l. 28 0.76 

Mea n 0 . 36 0 . 48 0 . 99 0 . 52 1.22 0 . 73 

Iron without HCo3 -

p with 
HCo3 - 0 . 41 0 . 51 1.14 0 . 60 1.49 0.90 

p without 
HC03 

- 0 . 28 0 . 46 l . 29 0 . 72 l. 52 0.85 

Mean 0 . 34 0 . 48 l. 21 0 . 66 1 . 50 0.87 

For comparison between : L . S . D. . 05 

Any plant sections 
in any treatment 0 . 06 

Means 0 . 05 

aEach figure represents the average of four replications 



52 

Table 19 . Calcium uptake and distribution in red kidney 
beans grown in the split-root experiment 

p Root segment Primary Lower Upper 
sta tus Fe jS leaves stem stem Leaves 

meq/ g 

Iron with HC03 -

p with 
HCo3 - 0.78a 0 . 48 2 , 20 0 . 46 0. 72 1.17 

p without 
Hco

3
- 0 . 73 0 . 63 2 . 44 0 , 51 0.71 l. 29 

Me an 0 . 75 0 . 56 2 . 32 0 . 49 0 . 73 l. 23 

Iron without HCo3 -

p with 
HCo3 - 0 . 74 0 .58 2. 56 0 . 61 0.91 l. 47 

p without 
HC03 - 0.67 0 . 53 2 . 73 0 . 69 0 . 94 1.61 

Mean 0.71 0 . 55 2 . 64 0 . 65 0.92 l. 54 

For comparison between: L . S . D. . 05 

Any plant sections in 
any treatment 0 . 05 

Means 0 . 05 

aEach figure represents the average of four replications 
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Table 20 . Calcium uptake and distribution in hawkeye 
soybeans grown in the conventiona l nutrient 
c ul ture experiment 

Hco3 
- Root Primary Lower Upper 

status Root stem leaves stem stem Leaves 

with 
meq/g 

HCo3 - 0.25a 0.39 0 . 76 0 . 62 1.15 0. 70 

without 
HC03 

- 0 . 19 0.55 1.32 0 . 78 1.19 0.82 

For comparison between : L . S . D. . 05 

Plant sections 0 . 06 

aEach figure represents the average of four replications 

Table 21. Calcium uptake and distribution in red kidney 
beans grown in the conventional nutrient culture 
exper iment 

HCO - Root Primary Lower Upper 
stattls Root stem l eaves stem stem Leaves 

meq/ g 

with 
HC03 

- 0.63a 0.32 1.98 0 . 52 0.49 1 . 02 

without 
HCo3 - 0 . 60 0.40 2 . 29 0 . 56 0.41 1.17 

For comparison between : L . S.D. . 05 

Plant sections 0 . 03 

aEach figure represents the average of four replications 
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The c oncentration of calcium in the various plant 

sections is expressed graphically in Figure 4. In the 

s plit-root experiments the values were se lected from the 

treatments where bicarbonate was with both phosphorus and 

iro~ and where it was not present with either . The figure 

points out the decrease in ca lcium concentra tion when bi­

carbonate was present . 

A number of investigators have reported a decrease in 

the total calcium content of pl ants which were grown in the 

presence of high concentrations of bicarbonate (Heller et ~ · , 

1940 ; Gauch and Wadleigh , 1951 ; Wadleigh and Brown, 1952 ; 

De Kock , 1955) . 

Rhoads and Wallace (1960) proposed that the decrease 

in calcium to the stems and leaves and the increase in 

calcium in the roots is due to co2 fixation by t he plant 

with a Ca-oxalate precipitate forming in the roots. They 

point out that in beans suffering from lime chlorosis, 

almost all water-soluble, non-volatile organic acids, and 

oxalates were increased . Bonner (1950) indicates that Ca­

oxalate precipitates are known to occur widely in plants . 

If the above cond itions are common among lime-intolerant 

plants, it might be expected that Ca precipitates would be 

increased in roots if oxalate was increase d there. 

The suggestion that Ca-oxalate precipitates in roots 

and decreases calcium in the leaves is in kee ping with the 

results obtained by Dorsdoff et al . (1955), who attributed 

a decrease in calc ium of leaves to t he p rod uc t ion of oxalate 
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Figure 4. The concentration of calcium in the various plant 
sections of hawkeye soybeans and red kidney beans 
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from the nitrate fertilization in roots of tung trees. 

The data of t he present experiments indicates t hat in 

the pre sence of bicarbonate t here was a n increase in ca lc ium 

content of the iron-root bu t no t in the phos phorus -root . 

The reason for this is not o bvious; however, i t points out 

the fact that t he effect of bicarbonate was mo re pronounced 

when it was with the iron t han when it wa s with t he phos pho-

r us. 

Uptake and distribution of 
magnesium and potass1um 

Magnesium. Tables 22 and 23 give t he magnesium content 

for the different plant sections of hawke ye soybeans and 

red kidney beans grown in the split-root experiment. Tables 

24 and 25 give the magnesium content of these plants when 

they were grown in the conventional nutrient cu l ture experi-

ment . All pl a n ts that d e ve loped chlorosis had a higher con -

centration of magnesium in t he iron segment of the root than 

when they did not deve l o p c hl o ros i s . Chlorosis developed 

in all pl ants except the red kidney beans in the s plit-

root experiment when bica rbonate and iron we re together. 

In this res pect the distri bu tion of magnesium was like that 

of calcium . The dis tribu tion and concentrat ion of magnesium 

in t he upper sect ions of the plant--lower stems, upper stems , 

and leaves--was not consistant with a ny of the treatments. 

The reason for t his is not known . 

I n the literature there are reports of both inc reases 

and decreaseE in magnesium c onte nt of chlorotic leaves . 
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Ta ble 22 . Magnesium uptake and distribution in hawkeye 
soybeans grown in the s pli t - root experiment 

p Root segment Primary Lower Upper 
s ta t us Fe p leaves stem stem Leaves 

meq/ g 

Iron with Hco
3

-

p with 
HC03 - 0 . 43a 0.35 0 . 42 0 . 24 0 . 53 0.36 

p without 
Hco3 - 0 .3 6 0 .3 8 0 . 47 0 . 24 0 . 62 0 . 36 

Mea n 0 . 39 0 . 36 0 . 45 0 . 24 0 . 57 0 . 36 

Iron without Hco3 -

p with 
HC03 - 0 . 27 0 . 45 0 . 54 0 . 24 0 . 46 0.40 

p without 
Hco3 - 0 , 30 0 . 32 0 . 37 0 . 29 0.48 0.31 

Mean 0 . 28 0 . 38 0 . 46 0 . 27 0.47 0 . 36 

For c omparison between : L . S.D . . 05 

Any pl ant sections in 
any treatment 0 . 05 

Means 0 . 08 

aEach figure represents the average of four replications 
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Table 23. Magnesium uptake and distribution in red kidney 
beans grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

meq/ g 

Iron with HC03 

p with 
HCo3 - 0 .3 7a 0 . 39 0 . 47 0 . 19 0 .24 0 .32 

p without 
HC03 - 0 . 43 0 . 35 0.62 0 . 24 0 . 31 0.34 

Mean 0.40 0.37 0 . 54 0 . 22 0 . 28 0.33 

Iron without Hco3 -

p with 
HC03 0 . 43 0 . 63 0 .50 0 . 22 0.26 0.44 

p without 
HCo3 - o. 53 0 . 44 0 . 58 0 . 28 0.37 0 . 34 

Mean 0 . 48 0 . 54 0 . 54 0 . 24 0 .3 1 0 .39 

For comparison between : L . S . D. . 05 

Any plant sections in 
any treatment 0 . 05 

Means 0 . 08 

a Each figure represents the average of four replications 
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Table 24 . Magnesium uptake and distribution in hawkeye 
soybeans grown in the conventiona l nutrient 
culture experiment 

HCo3 -
status 

with 
HCo3 -

without 
HC0

3
-

Root 

0 . 28 

Root 
stem 

0 . 21 

0.24 

For comparison between : 

Plant sections 

Primary 
leaves 

meq/ g 

0 . 30 

0 . 36 

L . S.D . 

Lower 
stem 

0 . 25 

0 . 18 

. 05 

0 . 03 

Upper 
stem 

0. 56 

0 . 43 

Leaves 

0 .35 

0 . 33 

aEach figure represents the aver age of four replications 

Table 25 . Magnesium uptake and distribution in red kidney 
beans grown in the conventional nutrient culture 
experiment 

HCO -
stattls 

with 
HC0

3
-

without 
HC03 -

Root 

0 . 5la 

0 .36 

Root 
stem 

0 . 61 

0 . 7 3 

For comparison between : 

Plant sections 

Primary 
leaves 

meq/ g 

0 . 80 

0 . 79 

L.S .D. 

Lower 
stem 

0.44 

0 .44 

. 05 

0.06 

Upper 
stem 

0. 56 

0 . 34 

Leaves 

0 . 47 

0.67 

aEach figure represents the average of four replications 
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Olsen (1950) found that green leaves of sorghum had l ower 

magnesium content than chlorotic ones . In the data published 

by De Kock (1955) on the amino acid content of several 

chlorotic and non-chlorotic plants , both increases and de­

creases in magnesium content are seen . However, t he differ-

ences were not appreciable . In al k a l ine soils, sometimes, 

magnesium concentration is so high that the element is 

absorbed in quantities sufficient to ca use toxicity. This 

might be one of the possible reasons for a higher concentration 

of magnesium in chlorotic l eaves, as reported by Olsen (1950). 

Potassium . The uptake and distribution of potassium in 

plant sections of hawkeye soybeans and red kidney beans 

grown in the split-root experiment has been tabulated in 

Tables 26 and 27. Tables 28 and 29 contain the concentration 

of potassium found in these pl ants when they were grown in 

the conventiona l nutrient c ul ture experiment . 

The trend in potassium up take of t he red kidney beans 

was different from t hat of the hawkeye soybeans . Th is was 

evident in both t he s pli t -root expe riment and in t he con­

ventional nutrient culture experiment . When bicarbonate 

was with the iron, red kidney beans had more potass ium in 

the primary leaves , lower stems, upper stems , and leaves 

and less in t he roots t han when bicarbonate and iron were 

not together . On the other h and , hawkeye soybea ns had a 

decrease in po tass ium uptake in all pl ant sections when 

bicarbonate and iron we re together . Table 30 helps to 

illustrate this trend . 
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Table 26 . Potassium uptake and distribution in hawkeye 
soybeans grown in t he s pli t - roo t experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Lea ves 

meq/ g 

Iron with HC0
3 

-

p with 
HC03 

- 0. 23a 0.23 0 . 80 0.76 l . 29 0.94 

p without 
Hco3 - 0 . 25 0 . 20 0 . 86 0 . 92 1 . 29 0.96 

Mean 0.24 0 . 21 0 . 83 0 . 84 1 . 27 0 . 95 

Iro n without HC03 
-

p with 
HC03 - 0.25 0 . 19 0 . 78 0 . 91 l. 53 1.04 

p without 
HC0

3
- 0.33 0 . 16 0 .80 0.94 l. 55 0 . 94 

Mean 0 . 29 0 . 17 0 . 79 0 . 93 1 .54 0.99 

For c o mpar i so n between : L . S.D . . 05 

Any plan t sections in 
any treatmen t 0 .05 

Means 0 . 08 

a Ea c h fig ure represents the average of fo ur replications 
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Table 27 . Potassium uptake and distribution in red kidney 
beans grown in the split-root experiment 

p Root segment Primary Lower Upper 
status Fe p leaves stem stem Leaves 

meq/ g 

Iron with HC03 
-

p with 
HC03 0.41a 0.48 1.18 1.35 2.23 1. 27 

p without 
HCo3 - 0 . 43 0.64 1. 07 1 . 30 2.15 1.14 

Mean 0 . 42 0.56 1.12 1.32 2.19 1.20 

Iron without HC03 
-

p with 
HCo3 - 0 . 63 0 . 50 0 . 97 1.32 2.13 1 . 14 

p without 
HC03 

- 0 . 79 0. 74 0 . 94 1.17 2.13 1.10 

Mean 0 . 71 0 . 62 0 . 96 1.24 2. 13 1.12 

For comparison between : L . S . D. . 05 

Any plant sections in 
any treatment 0 . 08 

Means 0 . 08 

aEach figure represents the average of four replications 
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Table 28. Potassium uptake and distribution in hawkeye 
soybeans grown in the conventiona l nutrient 
culture experiment 

HCo3 -
status 

with 
HC03-

without 
HC03 -

Root 

0 . 61 

Roo t 
stem 

0 . 65 

1. 01 

For comparison betwee n : 

Plant sections 

Primary 
leaves 

meq/ g 

0.72 

0.92 

L . S . D. 

Lower 
stem 

0.60 

1.05 

.05 

0 . 08 

Upper 
stem 

0 . 97 

1 0 65 

Leaves 

0.95 

0.99 

aEach f igure represents the average of fo ur replications 

Table 29. Potassium uptake and distribution in re d kidney 
beans grown in the convent i ona l nutrient c ulture 
exper ime nt 

HC0
3

-
status 

with 
HCo

3
-

wi thout 
HCo3 -

Root 

0 . 57 

Root 
stem 

0 . 87 

1 .39 

For comparison betwee n : 

Pl ant sect ions 

Pr imary 
leaves 

meq/ g 

0 . 91 

0 . 74 

L.S . D. 

Lower 
stem 

1 . 40 

1 . 27 

. 05 

0 . 13 

Upper 
stem 

2 . 18 

1.19 

Leaves 

1.52 

1. 29 

aEac h figure represents the average of four r e plicatio ns 
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Table 30. The difference in amount of potassium found in 
plant sections when plants were grown in 
solutions with bicar bonate and without 
bicarbonatea 

Hawkeye soybeans 
Conventional 

nutrient 
culture 

exper iment 

-0 . 27 

-0 . 36 

-0 . 20 

-0.45 

-0 . 68 

-0.04 

Split-root Pl ant 
experimentb section 

-0 . 10 

-0.07 

0.00 

-0 .18 

-0 . 26 

0.00 

Fe-root 
(root) 

P-root 
(root 
stem) 

Primary 
leaves 

Lower 
stem 

Upper 
stem 

Leaves 

Red kidney beans 
Conventional 

nutrient 
cult ure 

experiment 

-0 . 32 

-0 . 52 

+0 . 17 

+0.13 

+ 0 . 99 

+ 0 . 23 

Split-root 
experiment 

-0.38 

-0 . 28 

+0. 24 

+0.18 

+0.10 

+0.17 

aPlus value means that there was more potassium in the 
bicarbonate treatment 

bva lues selected from those treatments where bicarbonate 
was with both phosphorus and iron and where it was not 
present at all 
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It was expected to have an increase in potassium 

uptake in both plants when bicarbonate was present (Jackson 

et ~ . , 1959; Russel , 1949; Ulrich, 1942). However, the 

conditions of the present experiment were different from 

the others . The close c ontrol of pH and the presence of 

the calcium saturated resin could possibly account for the 

results in the present experiment . 

It is interesting to note that in the red kidney beans 

the distribution of po t assium was just opposite to that of 

calcium , i.e . , where calcium was low, potassium was high. 



DISCUSSION 

The pH of all the nutrient solutions was maintained 

at 7 . 8 + 0.2 by using a ca lcium saturated carboxyl cation 

exchange resin . In addition to the resin, the bicarbonate 

treatments contained 10 me / 1 sodium bicarbonate. There was 

no difference in the pH of the bicarbonate and non-bi­

carbonate treatments. This arrangement made it p ossible 

to distinguish between the pH effect and the bicarbonate 

effect . 

It seems logical that the prese nces of the resin in 

the nutrient solution would have an effect upon the con­

centration of the nutrients; however, the extent of this 

effect was not determined. Calcium from the resin was 

added to t he solution. In preliminary experiments, plants 

grown in nutrient solutions containing t he calcium saturated 

resin were slightly la rger than those grown in identical 

solutions without the resin . 

In the conventiona l nutrient c ultu re experiment iron 

chlorosis appeared in both the red kidney beans and hawkeye 

soybeans with the bicarbonate treatment . It did not develop 

in the non-bicarbonate treatments . This has significance 

because both treatments were maintained at the same pH. 

It has been very common for chlorosis to appear in con­

ventional nutrient culture experiments with the bicarbonate 

treatment and for its absence in the non-bicarbonate treatments. 
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However , it has been difficult to maintain these systems 

at the sa me pH due to a drift in the pH of the non-bi­

ca rbonate treatment (Miller and Russell , 1962). 

In the split-root experiment chlorosis deve loped in 

the hawkeye soybeans only when bicarbonate was with the 

iron . When bicarbonate was with the phosphorus chlorosis 

did not appear and the plants were normal and healthy. 

The red kidney beans did not develop chlorosis in the s plit­

root experiment . 

It has been established that plants differ in their 

susceptibility to iron chlorosis . This fact was emphasized 

again in these experiments . Brown et al. (1960) illustrated 

that red kidney beans had a greater ability to draw iron 

from solution than hawkeye soybeans . This could help expl a in 

why red kidney beans did not develop c hlorosis in the split­

root experiment when bicarbonate was with the iron. 

The results of t hese ex periments indicate t hat bi­

carbonate has an effect in ca using iron chlorosis, and that 

it was a different effect than that of pH. However , the 

bicarbonate ion must be associated with the iron in order 

for it to induce iron chlorosis . The effect was greater 

when bicarbonate was with both iron and phosphorus. Brown 

et ~· (1959) and Miller et ~· (1960) report that the effect 

of chlorosis was, in part, the interrelations hip between 

bicarbonate, iron, phosphorus , and calcium in the growth 

medium. However, in the present experiment the evidence 

shows that it was the interrelationship between bicarbonate 
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and iron, and that the effect was increased when phosphorus 

was with the bicarbonate and iron . 

The way in which bicarbonate effects the plant in 

causing chlorosis is not known . There is reason and evidence 

to believe that bicarbonate works in a number of ways and in 

combinat ion with a number of factors in ca using iron chlorosis. 

Bicarbonate is known to decrease the respiration in 

plant roots . Miller and Thorne (1956) foun d that bicarbonate 

ions markedly inhibited the respiration of excised roots 

from various plant species . Brown et al . (1959) observed 

that the bicarbonate ion inhibited the respiration of soybean 

roots to a greate r extent when bicarbonate and iron were 

together than when they were separated . 

Another way in which the bicarbonate ion could cause 

iron chlorosis is by competing with the root for the iron. 

The bicarbonate ion is a negative unidentate coordinating 

ligand (Kleinberg et ~·, 1960) . As such it can form a 

chelate with the iron thus competing with the root for the 

iron . Brown et al . (1960) observed that roots and chelating 

agents competed for iron in the growth medium . As they 

increased the concentration of the chelating agent, iron 

was withheld from the plant and iron chlorosis developed. 

Working with various iron chelates at pH 8 . 0 De Kock 

(1960) noted that chelates differ in their ability to 

supply iron to the plant . He also noted that when sodium 

bicarbonate was added to the medium , chlorosis was more 

severe than in the control which did not contain bicarbonate. 
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In a study of the bicarbonate and phosphorus effects on 

the uptake and distribution of chelated iron in soybeans, 

Hale et ~ · (1960) observed a competition for acc umulation 

sites between the bicarbonate anion and FeEDDHA, and between 

There are other unidentate ligand s such as OH-, Hco3 - , 

and H2Po
4 

which can compe te with the ligands of the pl ant 

for iron (Wallace, 1962) . If these ligands in the nutrient 

medium competed with the roots for the iron then the a ppear­

ance of chlorosis could be explained on the basis of this 

competit ion . 

Wallace (1962) suggests a c ompetitive chelation theory 

as a proposed method of how the various ions could cause 

iron chlorosis. This theory cou ld explain the appearance 

of chlorosis with high ca l cium solutions , high phosphorus 

solutions, and with high concentrations of metal ions 

(Lingle et ~., 1963). 

The competitive chelation theory aids in the interpre -

tation of the present experime n t . In the split-root experi -

ment c hlorosis did not appear in hawkeye soybeans in the 

non-bicarbonate solution; but , when the bicarbonate was 

added, the competition between roots and ligands was in­

creased and the roots were unable to obtain sufficient iron. 

The red kidney beans were able to compete with the pH and 

bicarbonate for iron but when the phosphorus was added t he 

competition for iron was so great that the red kidney beans 

deve loped chlorosis. Wallace (1962) points out t hat the 
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competition between ligand and plant for iron can be within 

t he cell as well as in the root medium, and that competitive 

c helation does not exclude other fa ctors such as ion 

toxic ity. 

The concentration of elements such as phosphorus and 

calcium was different in chlorotic plants and normal plants . 

It seems reasonable to assume that this difference in the 

concentration of the elements was du e to the appearance of 

c hlorosis rather than to the factor which caused chlorosis 

(Thorne et ~ . , 1950) . The concentration of phosphorus in 

this experiment was increased in the upper stems and leaves 

of c hlorotic pl ants when c hlorosis was ca used by bicarbonate. 

Brown et a l . (1960) reported the same d istr ibu tion of phospho­

rus when c hlorosis was ca used by an increase in c helating 

age nts . 



SUMMARY 

A calcium saturated carboxyl cation exchange resin was 

added to the nutrient medium as a buffering agent. The resin 

was found to be just as effective as bicarbonate and co 2 in 

maintaining a constan t pH of 7 . 8 + 0 . 2 . 

By using the calcium saturated resin as a buffering 

agent to maintain a constant pH , it became possible to 

differentiate between the pH effect and the bicarbonate 

effect in ca using iron chlorosis. 

Red kidney beans and hawkeye soybeans were grown in 

nutrient solutions using both a split-root arrangement and 

the conventional nutrient culture arrangement . The split­

root experiments allowed separation of iron and phosphorus 

with a fa c torial arrangement of the bicarbonate treatment. 

The nutrient solution was maintained at a pH of 7 .8 + 0.2 

throughout the experiment . 

Iron chloros is developed in both the soybeans and 

kidney beans when bicarbonate was present in the con-

ventional nutrient c ultu re experiment . In the split-root 

experiment chlorosis developed in the soybeans only when 

bicarbonate was with the iron . It did not develop when the 

bicarbonate was only with the phosphorus . The kidney beans 

did not show signs of chloros is with any treatment in the 

split-root experiment. 

It was concluded that bicarbonate had an effect in 
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causing iron chlorosis above that of pH only when it was 

associated with iron . The effect was increased when bi­

carbonate, iron, and phosphorus were together. In solutions 

which were identical with the above except that bicarbonate 

was absent , chlorosis did not appear in the plants. 

In addition to the appearance of chlorosis when bi­

carbonate was present with iron , there were differences in 

weight and in nutrient uptake and distribution . In the 

c hlorotic plants--plants grown in solutions where bicarbonate 

and iron were together--there was a decrease in total plant 

weight . This decrease was due to the reduced growth in the 

roots, upper stems , and l e aves . The bicarbonate , when 

associated with iron in the split-root experiment and with 

iron and phosphorus in the conventional nutrient culture 

experiment, had a direct or an indirect effect upon the plant 

which prevents metabolism and decreases plant growth. 

The distribution and concentration of nutrients differed 

in the chlorot ic pl a nts and the non-chlorotic plants. In 

general there was a decrease in total uptake of every nutri­

ent in the plant when grown in the bicarbonate with iron 

treatments; but, the concentration of the elements in various 

sections was sometimes higher in chlorotic plants than in 

non-chlorotic plants . 

Phos phorus was more concentrate d in the upper stems and 

leaves of c hlorotic plants than in the normal plants . Calcium 

and magnesium were more concentrated in the iron-root when 

bicar bonate was with the iron . 
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APPENDIX 



METHODS OF ANALYSIS 

Phos phorus Determination 

Reagents 

Nitric a c id - molybdate -vanadate mixture 

Solution 1 : Dissolve 25 g of ammonium 
molybdate in 400 ml of warm water and 
cool. 

Solution 2 : Add slowly 1 . 25 g of ammonium 
metavanadate to 300 ml of boiling water , cool, 
and add 250 ml of concentrated nitric acid. 
Cool. 

Pour solution 2 into a one liter volumetric 
flask and add solution 1 . Mix well and dilute 
to vol ume with dis til led water . 

Phosphorus standard 

Procedure 

Dissolve 0.3403 g of po tassium dihydrogen phos­
pha te in distilled water and dilute to one liter. 

1. Pipette 10 ml of the digest solution into a 50 ml 
volumetric flask . 

2. Add 10 ml of the nitric ac id-molybdate-vanadate 
mixture and dilute the solu tion to volume with 
distilled water . 

3. The transmission of color is determined after ten 
minutes by means of a colorimeter with a 440 mu 
filter. 

4. The amo un t of phosphorus in the sample is ca lculated 
from the size of the or i ginal tissue sample used in 
ashing and the dilution made in t he determination . 

5 . This method gives a very stable color which can be 
determined even two weeks after development . 
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Iron Determination 

Reagents 

10 percent hydroxylamine hydrochloride 

Place 10 g hydroxylamine hydrochloride in a 100 
ml volumetric flask with 50 ml of distilled 
water. When solution is complete, dilute to 
volume with distilled water . 

1 . 5 percent ortho-phenanthroline 

Place 1.5 g of ortho-phenanthroline in a 100 ml 
volumetric flask with 75 ml of 95 percent ethyl 
al c ohol. When solution is complete, dilute to 
volume with ethyl alcohol . 

Potassium acid phthalate--sodium hydroxide buffer 

Solution 1: Dissolve 20.4 g of potassium acid 
phthalate in 400 ml of water. 

Solution 2 : Dissolve 4 . 0 g of sodium hydroxide 
in 400 ml of distilled water. 

Mix the t wo solutions together and dilute to one 
liter. 

Standard solution 

Procedure 

Dissolve 0 . 7022 g (reagent grade) ferrous ammonium 
sulphate, FeSO "(NH4 ) so4 ·6H2o, in about 100 ml of 
water and 10 mf of coftcentrated sulphuric ac~d, in 
a silica basin . Add 5 ml of concentrated nitric 
acid to oxidize the ferrous sa lt to ferric sulphate. 
Heat gently to expel oxides of nitrogen, transfer to 
a liter volumetric flask , and, when cold, dilute to 
mark. This solution is stable indefinitely and 
contains 100 micrograms of iron per ml . From this 
solution prepare a standard, containing I microgram 
of iron per ml, by diluting 10 ml to I liter and 
adding 15 ml of concentrated sulphuric acid before 
adjusting to volume . 

1. Pipette 5 ml of the diges t solution into a 25 ml 
volumetric flask . 

2. Add 5 ml of 0 . 1 M potassium acid phthalate-sodium 
hydroxide buffer~ 
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3. Add 3 ml o f the 10 percent hydroxylamine hydro­
chloride . 

4. Add 1 ml of the 1.5 percent ortho-phenanthroline . 

5. Dilute the solution and after 15 minutes the trans­
miss ion of color is determined by mea ns of a color­
imeter with a 490 mu filter. 

6. The amount of iron in the sample is calculated from 
the size of the original tissue sample and the 
dilutions made in the determination. 

Determination of Calcium and Magnesium 

Reagents 

Sodium hydroxide-sodium cyan ide solu t ion (pH 12) 

Dissolve 80 grams of NaOH (reagent grade) in one 
liter distilled water , cool and add 10 grams of 
sodium cyanide . 

Ammonium chloride-ammonium hydroxide buffer (pHlO) 

Dissolve 67.5 grams of NH 4Cl in 570 ml o f con­
centrated NH 4oH ; add 10 grams sodium cya nide and 
dilute to one liter with distilled water. 

Dye of Patton and Reeder (HHSNN Fisher catalogue) 

Grind 1 gram of the dye with 200 grams of pure 
powdered K so 4 or anh ydrous Na 2so 4 . Grind in a 
porcelain ~ortar until a uniform co l or is obtained . 
S tore in a brown container. 

Er iochrome Bl ack T indicator 

Dissolve 0 . 5 grams of Eriochrome Black T , and 
4 . 5 grams of hyd roxylamine hydrochloride in 100 
ml of 95 percent ethanol or methanol. Prepare 
fresh solutions at monthly intervals. 

EDTA 0 . 01 N 

Dissolve 3 . 723 grams of di sod ium dihydrogen ethylene­
diamine tetraacetate dihydrate in distilled water 
and dilute to exactly 2 liters . Standardize 
against the stand ard ca lcium solution. 

Triethanolamine , 50 percent aqueous solution 

Mix e qual parts of trieth ano l amine (U.S.P . or N. F.) 
and distill e d wa ter . 
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Magnesium EDTA 

Make up a saturated solution of MgEDTA. (Avail­
able from Ha c h Chemical Co., Ames, Iowa). 

Standard calc ium solution O. OlN 

Equipment 

Dissolve 0.5000 grams pure dried calcium ca rbonate 
(Iceland s par ) in 30 ml of approx. l N HCl and 
dilute to one li ter. One ml of the solution 
contains 0.01 me or 0 . 2 mg. of ca l cium. 

Micro burets 

10 ml graduated at intervals of 0 . 02 ml . 

Light source 

Adjustable light source with tungsten bulb . 

Procedur e for ca l cium 

l. Pipette 5 ml of the digest solution (containing 
from 0.4 to 2.0 mg of calcium) into a 125 ml 
Erlenmeyer flask and dilute with 25 ml of 
distilled water . 

2 . Add 2 ml of 50 percent triethanolamine. 

3. Add 5 ml of the sodi um hydroxide-sodium c yani de 
s olu tio n . 

4. Add 25 mg of the Patton and Reeder dye. 

5. Titrate with standard EDTA solution. The color 
change is from red thro ugh pu r ple to blue. Because 
of the sharpness of the endpoin t in t he ca lcium 
determination it is necessary to have a tungsten 
light source so arrange d that t he light shines 
t hrou g h the solution . The a mount of caTcium is 
determined by refering to a standa rd curve pre­
pare d by analysis of stand a rd solutio ns . 

Procedure fo r magnesium ( ca l ci um plus magnesium) 

l. The amount of magnesium in t he sample is deter­
mined by taking the difference between the amount 
of c alcium and the amount of magnesium plus calcium 
in the sample . 

2. Pipe tte 5 ml of t he digest solut ion into a 125 ml 
Erl e nmeyer flask and dilute with 25 ml of distilled 
water . 
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3. Add 2 ml of 50 percent triethanolamine. 

4. Add 5 ml of the ammonium chloride-ammonium 
hydroxide buffer and 3 drops of Eriochrome Black 
T indicator. 

5. Titrate with standard EDTA solution until the 
blue color persists . 

6. The amount of magnesium is determined by sub­
tracting the volume of EDTA used for calcium 
from that used for ca lcium plus magnesium and 
refering to a standard curve. 

Potassium Determination 

Reagents 

Standard potassium chloride 0.02 N 

Dissolve 1.491 g of dry potassi um chloride in 
distilled water and dilute to exact ly l liter. 

Lithium c hloride solution 0 .05 N 

Procedure 

Dissolve 2.12 g of dry lithium chloride in water 
and dilute to 1 liter. 

l. Pipette an aliquot of digested solution containing 
less than 0 . 1 meq of potassium into a 50 ml 
volumetric flask. 

2. Add 25 ml of 0 . 05 N lithium chloride solution and 
dilute to volume wTth distilled water. 

3. The potassium concentration is determined by 
reference to a standard curve. 
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