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ABSTRACT 

Investigations into the Microbial Ecology and Limnology 

of Hyrum Reservoir, in Northern Utah 

by 

Kenneth Maxwell Green, Master of Science 

Utah State University, 1971 

Major Professor: Dr. Frederick J. Post 
Department: Bacteriology and Public Health 

A series of preliminary investigations was carried out to 

determine th e factors promoting the dense, late summer waterblooms 

of Aphanizomenon flos-aguae in Hyrum Reservoir in northern Utah. 

Attempts were made to culture the Aphanizomenon in the ASM-8a 

medium of O'Flaherty and Phinney (J. Phycol. 6:95-97. 1970), but 

no growth was obtained and the algae soon lysed. Cultures were 

maintained, without g rowth, for more than four months in a lake 

water--lake sediment medium at 17 C under 1500 lux flourescent 

light . 

Dissolved oxygen measurements using an in situ probe reveale d 

the deve lopment of a sharp oxycline during the summer months; on 

one day the dissolved oxygen concentration was observe d to drop 

from 118% saturation (8.6 mg 0 2/1) at 6 . 5 meters depth, to 33% 

vi 

sa turation (2.4 mg o2/l) at 7 meters, wi th a concurrent temperature 

decrease from 21.5 C to 21 C. 

During the same period, pH was f ound to drop from 8 . 6 at the 

surface to 8.5 at 5 meters, 8 .0 at 10 meters, and to 7 . 8 at the 
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bottom (16 meters). Secchi disc depth corresponded to 14% of the 

incident ·radiation, this deptn varying from l. 3 to l. 8 meters 

during the algal bloom. The photic zone (1% of incident radi ation) 

extended to 3 .5 meters depth. 

Water samples were collected from late April unti l early 

October , and thes e were analyzed for total organic carbon (TOC) 

using a Beckman model 915 total organic carbon analyzer. The 

organic carbon concentrations were found not to vary significantly 

with season or location. Many of the samples contained large numbers 

of Aphanizomenon but carbon analyses did not r eflect this. It was 

concluded that the phytoplankton carbon in the reservoir was so 

much smaller than the carbon in the form of other organic materials , 

such as microseston , bacteria, detritus , col loids, and dissolved 

material, that fluctuations in algal carbon were therefore masked 

by the large amount of carbon continually present in these other 

forms . The mean organi c carbon concent ration for the lake was 

4.6 mg/1 (n=ll8, s=l.47) and the range was from 1.2 to 8 . 9 mg TOC/1. 

The repeatability of measurements with the carbon analyzer is 

only within a range of 2 mg C/1, so the instrument is not sufficiently 

accurate for lake water analysis without th e use of concentration 

techniques. Some trends were observed, but only at a l ow level of 

statistical significance: TOC concentration decreased slightly with 

depth , and TOC was correlated with stream discharge in the Little 

Bear River, whi ch feeds the reservoir. An increase in TOC concentra

tion in the r eservoir during the algal bloom could not be verified 

s ta cis tically . 

(66 pages) 



INTRODUCTION 

Hyrum Reservoir, i n Cache County, northe rn Utah, although origin

ally constructed in 1935 fo r sto rage of irrigation wate r, has since 

assumed g reat impor tan ce as a re c re a tion area. It has been incorporated 

into Hyrum Lake State Park &<d is used now for f i s hing, boating, wate r 

skiin g , and swimming. Unfo rtunately , the f ish population is affected 

by a copepod ectoparasite, Lernaea cyprinacea , commonly known as 

"anchor worm" (Rich, 1960). In August and Septembe r an intense bloom 

of Aphanizomenon f los- aguae, a filamen tous blue- g reen alga, makes the 

water unattractive for swimming. 

The c urrent investiga tion is a preliminary part of a s tudy to 

determine the causes of the algal bloom . The major algae in the lake 

have been iden t ified and the Aphan izomenon culture d in th e laboratory. 

Dissolved oxygen, temperature, light penetration, pH, and Secchi disc 

measuremen t s were carried out on the s ite, and water samples were 

collected and analyzed for total organic carbon concentration. The 

data provided by these studies are being used to give direction t o 

f uture investigations, leading ultimately to solution of the bloom 

problem. 

Acknowledgment is made of the assistance provided by Dr. Raymond 

I. Lynn and Dr. Donald B. Porcella during these investigations . The 

project is being s upported by the Office of Water Resources Research 

(CWRR- 19) , and the investigator has been supported througho ut his 

Master ' s program by a Federal Wat er Quali t y Administration (now Environ

mental Protection Agency) traineeship. 



HYRUM RESERVOIR 

Hyrum Reservoir is located at latitude 41°37'30", longitude 111° 

52'30", in SE!,;NE\ sec. 7, T.lO N., R. l E., Cache County, Utah, 1 mile 

southwest of the town of Hyrum . It is fed by the Little Bear River, 

which, with its tributaries, represents a drainage area of 570 sq km 

(220 sq rni). The reservoir is formed by an earth-fi ll darn; storage 

began in 1935; its total capacity is 24.2 million cum (19,600 acre

ft), of which the lower 4.2 million cum (3,400 acre-ft) is below the 

si ll of the outlet canal and is therefore considered dead storage. 

In 1970 the maximum content observed was 24.1 million cu m (19 ,500 

acre- f t), on May 21, and the minimum occurred on September 5--14.3 

million cum (11,600 acre-ft) (USDI, 1971). This represents a drop 

in water level of about 5.5 meters (18 feet) . The maximum and minimum 

depths obse rved at the deepest part of the reservoir during the present 

investigation were 21 meters (June 14) and 16 meters (August 28), 

respectively. 

Using data provided by the U.S. Geological Survey (USDI, 1971) 

and the dep ths recorded on the various sampling days, a graph of water 

surface elevation and depth at s tation D, the deepest part of the 

reservoir, versus usable contents and total capacity has been drawn 

(Figure 1) . By use of this graph it is possible to determine the 

volume of water in the reservoir by measuring the depth at station D. 

The graph has also been used to calculate that approximately 1.5 meters 

of sediment has accumulated at station D since the reservoir was built 
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in 1935. This is between four and five centimeters of sediment ac

ct.nnulation per ye.ar. Alsn deterfllined from the graph ia that the sill 

of the outlet canal is 7.6 meters above the sediment surface. Because 

the dotted lines in the graph delineating the "dead storage" area and 

the sediment surface are extrapolations based on field measurements 

and old maps (USDI, 1926), the above conclusions must be regarded as 

tentative. 

Sampling stations (Table 1 and Figure 2) were chosen with an eye 

to obtaining the most information from as small a number of stations 

as possible. Accessibility was also an important factor in station 

selection . Two stations, designated A and C, were located along the 

Little Rear River, which feeds Hyrum Reservoir. Each was accessible 

by automobile , and samples were collected by lowering a con tainer from 

the bridge which crosses the river. Station A is upstream from White ' s 

Trout Farm, the effluen t from which flows into Little Bear River, and 

station C is located just below the trout farm . Station B samples 

trout farm effluen t directly. 

Station D is located at the outlet to Hyrum Reservoir, and can be 

sampled directly from the br idge over the spillway or by boat . This 

is the deepes t part of the reservoir, and the location was marked for 

boat sampling by a Park Servi ce buoy anchored jus t in front of the 

spillway outlet. With care, it was possible to secur e the boat to the 

buoy without falling into the lake. The position was then maintained 

while measurements or samples were taken . 

St ations A, B, C, and D were considered the most important. 

Samples were also t aken, but less frequently, from t he area draining 



Table 1. Sampling locations 

Station designation 

A 

B 

c 

D 

E 

F 

G 

H 

p 

Bloom 

Site description 

Little Bear River above White's Trout Farm. 

Effluent f r om White's Trout Farm. 

Little Bear River below White's Trout Farm. 

Hyrum Reservoir outlet. Deepest part of 
reservoir. 

Hyrum Reservoir at source of influent from 
Hyrum town dump. 

Hyrum Reservoir geomet r ic center. 

Hyrum Reservoir s wimming area. 

Hyrum Reservoir near inflow of Little Bear 
River. 

Little Bear River near entrance to Hyrum 
Reservoir. 

Porcupine Reservoir; a new, unpolluted 
reservoir upst ream from Hyrum Reservoir. 

Dense algal patch. Location not determined. 
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the Hy rum town dump (station E) , f rom the approximate cen t e r of the 

lake (station F), f r om just off- shor e of the swimmi ng ar ea (station 

G), from the bay area at the southern end of the reservoir (station 

H), and from the Little Bear River just above the reservoir (station 

I) . No attempt was made to de termine or mark the exact locations of 

stations E through I . 

In addition to the above , two locations were samp led once each. 

A sample was taken from Porcupine Reservoir , located on the east fo rk 

of the Lit tle Bear Ri ver, upst ream from s tation A. This reservoir is 

in an unpopulated area , and its waters are conside red to be "unpolluted 11
• 

A samp le was also collected f rom an undesignated spo t in the lake 

(station Bloom) between station D Gnd station F. The sample contained 

the gr ea t es t algal concen tration observed during the season. 

An inspection of the area s urrounding Hyrum Res e rvoir reveal ed 

many possible sources of algal nutrient s . On the cliffs along the 

eastern shore are numerous dairy farms, whose feed- lot s overlook the 

lake, and f r om which manure cou ld easi l y be washed into the lake. 

Cattle were also seen grazing along the weste rn s hore . The reservoi r 

is in an agricultural area, and , although not demons tra t ed, the re is 

a grea t probability that irriga tion run-off finds its way to the Jake . 

Also , as men t ioned befo re, a fish hatchery discharges its effluen t 

into the Litt le Bear River. 



MICROEI0LOGY 

From lat e July until early October , a blue-green alga of the 

genus Aphanizomenon was the dominant or ganism of the reservo i r. The 

organism has been tentatively identified as Aphanizomenon flos-aguae 

(L.) Ralfs. It is the most common of the three species of ~ni

zomenon reported in the United States (Prescott, 1970; Reinhard, 

1941) . Seven species have been described al t oge the r, on the basis 

of shape and size of vegetative cells, heterocysts , and akinetes. 

Morphology of the colony has not been used as a species characteristic, 

as this feature is no t constant , varying with conditions. Several 

s trains of Aphanizome non flos-aguae have also been r eported (McLachlan , 

Hammer , and Gorham, 1963). Pr escott (1970) describes colonies of 

Aphanizomenon flos-aguae as consi s ting of parallel trichomes, forming 

a free-floating flakelike bundle, each tr ichome containing a single 

heterocys t near the middle and a non-adj acent, intercalary akinete} 

which appears at maturity. 

1~e bloom has been r eported by Lynn (personal communica tion) to 

be of s uch dens i ty that when a 16 mm test tube was filled with a wate r 

sample , the tube was opaque to transmi t ted light. During the pe~i o d 

of the present study, April t o October, 1970, such large concentrations 

of a lgae were not observed, but the bloom was quite exte nsive nonethe

less . Associated with the Aphanizomenon were smaller numbers of 

Anacys ti s (Microcystis), but these were a minor part of the to ta l 

algal biomass. 



Periodic microscopic examination of water samples showed that in 

late April large numbers of the diatom Asterinn~ll~ pr~domir.ated, 

followed by numerous other diatoms (Fragilaria, Hormidium, Tabellaria, 

Cymbella) and the dinoflagellate Ceratium. By the end of May large 

floating clumps of~ filamen ts were common. Some Chlamydomonas 

were also observed. The algal identifications were made according to 

Prescott (1970). 

The algal population seemed to decline during June, until late 

July, when the Aphanizomenon became evident in larger and larger 

numbers. Aphanizornenon concentration fluctuated greatly from time to 

time and place to place on the lake. The organism appeared to hegin 

to die out in early Sep t ember but the decline was only temporary. A 

sudden upsurge in growth resulted in the denses t ob s e rved Aphanizomenon 

concentration of the season on September 15th . Carbon analysis of a 

wa t e r sample collected on this date showed 28 mg/1 of total organic 

carbon , much higher than any o ther sample and about six times the 

average TOC value. Many other samples contained significant numbers 

of Aphanizomenon flakes but these were not r eflected in the carbon 

analysis , the amount of carbon in the algae generally being extremely 

small in r elation to the total organic carbon of the water sample. 

As the Aphanizomenon grew in the lake they rose to th e surface 

in clumps , and collected along the shor eline and decayed. The decay 

was evidenced by a light green color and amorphous appearance taken 

on by the algal clumps. Microscopic examinat ion of the algal mass 

revealed nume rous broken filaments, large amounts of cellular debris, 

and large numbers of many types of bacter ia. 



During the bloom period Aphanizomenon flakes were collected 

for laboratory culture. Collection was made wirh a ple.nkton net, 

concentrating the algae in the sample. The samples were carried 

to the laboratory in an ice chest in "Wh irlpak" plastic bags. In 

the labora tory the flakes were washed by removing them individually 

with a Pasteur pipet and transferring them to culture media or 

sterile lake water. They were again transferred in the same way to 

new medium. The process was repeated as many as ten times, in order 

to free the Aphanizomenon from other algae and obtain a unialgal 

culture. No attempt was made to make the algae bacteria-free . As 

far as is known , this has not yet been accomplished by any investi

gators. 

10 

The algae were cultured in ASM-8a medium (O'Flaherty and Phinney , 

1970; composi tion shown in Appendix); in lake water; in lake water 

s upplemented with nitrate, phosphate, i ron, vitamins, or combinations 

of these; and in lake water autoclaved with lake sediments . The 

cultures we r e kept in growth chambers at constant temperatures and 

under diurnal light cycles. In none of the cultures was significant 

growth observed, but the algae were maintained for longer periods and 

in a 11 healthier" state under certain conditions than under others. 

The algae survived best in lake water--lake sed iment bottles kept 

at 17 C under low intensity (1500 lux) fluorescen t light. Light was 

supplied for 16 hours per day, but there is no indication that the 

cycling was of any benefit. Lower temperatures were of definite 

advantage; cultures at temperatures over 20 C lysed rapidly, but this 

may have resulted from contaminating bacteria growing more rapidly at 



the higher temperatures rather than being due to any harmful effect 

of the higher temperatures on the algae. (The lake terr.perature 

during the bloom period was observed to vary between 18 C and 24 C. ) 

ll 

Maintenance in filtered lake water was better than in ASM-8a 

med ium . Adding nutrients or ASM-Ba medium to the lake water decreased 

survival time in direct proportion to the amount of nutrient o r medium 

added. Bubbling air through the cultures appeared to be neither harm

ful nor beneficial. Nor did making transfers appear to be of any value, 

the transferred material often lysing before the parent culture . 

O'Flaherty and Phinney (1970) reported success in growing Aphani

zomenon f los-aquae and maintaining it in the natural flake form for 

more than three years, using ASM-8a medium, a modification of the ASM 

medium of McLachlan and Gorham (1961). McLachlan, Hammer, and Gorham 

(1963) were able to maintain the flake form for several months in ASM 

with soil extract, but after a prolonged period the a l ga became 

partially or completely non-colonial. Ten strains of Aphanizomenon 

f los-aguae were tested, and growth patterns varied with strain. 

Gentile and Maloney (1969) reported different pH optima for different 

strains of Aphanizomenon. In the present study pH was not tested as 

a variable . 

There have been frequent reports of waterblooms of Aphanizomenon 

in the Uni ted States, often in lakes receiving runoff f r om agricultural 

areas (McLachlan, Hammer, and Gorham, 1963), as does Hyrum Res<orvoir. 

The above authors suggested t hat iron leached from soils may be 

responsible for large Aphanizomenon colonies . Gentile and Maloney 

(1969) reported that Aphanizomenon as well as other blue-gree n algae 
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are capable of producing blooms at very low phosphorus concentrations, 

10 pg P/1 being the cri ti cal level of t.hat element fer the develo;>mant 

of nuisance gr owths. They also cited evidence that Aphanizomenon is 

capable of nitrogen fixation. 

Recen tly, a potent toxin has been reported to be released from 

natural populations of Aphanizomenon when the cells lysed (Sawye r, 

Gentile, and Sasner, 1968; Gentile and Maloney, 1969). The toxin i s 

a nerve and muscle-blocking agent which destroys conduction in t he s e 

tissues, and has definitely been shown to be toxic to fish under 

experimental conditions. It is possible that such toxins may prove 

a hazard to swimmers during bloom periods (Schwimmer and Schwimmer, 

1955) . 



DISSOLVED OXYGEN AND TEMPERATURE 

Dissolved oxygen (DO) and temperature profiles were taken at 

station D on six days during the cou r se of the study. The measure

ments were obtained using an Electronic Instruments Limited (E.I.L . ) 

model lSA dissolved oxygen meter with a model lSA biological oxygen 

electrode and a thermistor on a 24 meter cable. Readings were taken 

in percent saturation (temperat ure compensated), and these values 

were used to calculate the dissolved oxygen concent ration in mg/1. 

Saturation values for Cache Valley, Utah (elevation 4,700 feet, mean 

barometric pressure 0.85 atmospheres) were calculated from the sea

level values in Hutchinson (1957) by correcting by a factor of 0.85, 

and are presented in the Appendix . 

13 

The instrument was calibrated by placing the electrode in water 

being sparged with air , and adjus ting the meter reading t o 100% 

saturation . The accuracy of the instrument was checked by compa rj_ ng 

its readings with Winkler tests (APHA, 1971) performed on the same 

samples. No discrepancies were noted. Thermister calibration was also 

verified in the laboratory. 

The profiles were taken by lowering the electrodes j_nto the lake 

and noting the meter readings a t one-half to three meter intervals, 

depending on the rates of change . Readings were again made as the 

electrodes were drawn up from the bot tom. If a discrepancy was observed 

between the two sets of readings, the process was repeated. 

The J une 14 profile (Figur e 3) shows a gradual decreas e in oxygen 

concentration with depth, with a value of 5. 9 mg/1 at the bottom 



0 

4 

6 

8 

-;;;-
10 ... 

~ 
<l) 

.5 
-5 12 
p.. 
<l) 

0 

14 

16 

18 

20 

r-----------------0-----------------------

0 20 40 60 80 100 

Dissolved oxygen (% satur ation) 

8 10 12 14 

Temperature ( °C) 

16 18 

Figure 3. Dissolved oxygen and temperature profiles, sta tion D, 

June 14, 1970 . 

14 



(21 meters). The second profile, taken August 13, (Figure 4), shows 

supersaturation, (9.0 mg/1) down to 5 meters, with a sudden decrease 

to 3 .5 mg/1 at 5.5 meters. The decrease continued more gradually 

below this depth, reaching anoxic conditions at 14 meters. The 

15 

August 18 and 28 profiles (Figures 5 and 6) are similar to August 13, 

except that the sudden decrease began at 6 meters. By September ll 

(Figure 7) the decrease was much less pronounced and began at 13 me ters . 

The bottom of the lake had also become oxygenated again. The Oc t ober 

10 profile (Figure 8) straightened even more, and appeared to be 

approaching conditions encountered in the first profile on June 14. 

These same profiles are shown in three-dimensions with oxygen 

concentrat ion, depth, and time as coordinates, in Figure 9. The 

change in conditions with time, and the apparent seasonal nature of 

the phenomenon are evident. Oxygen depletion occurred in the 

hypolimnion during the summer months, ret urning to more oxygenated 

conditions in September. Some measurements by Porcella (personal 

communication) indicated that some mixing and oxygenation of the 

hypolimnion did occur during a storm. I t is not known how quickly 

anoxic condi tions were reestablished. 

The most unusual feat ure of these measurements is the extremely 

sharp drop in oxygen concen tration exhibited in mid- summer. On 

August 13 (Figure 4) at 5 meters depth the water was 115% saturated 

with oxygen ; at 5.5 meters the value was 48%. This was not accompanied 

by any measured change in temperature. At no time was any large 

thermocline observed, the most pronounced being recorded on August 18, 

(Figure 5) when the temperatu r e dropped from 21.5 C to 20 C over a 

three meter s pan , or one-half degr ee C per meter. 
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The stability of the oxycline in the absence of a strong 

thermocline is explained by the rela tive thermal resista~ce of 

water to mixing. At 20 C twenty times as much energy is required 

to mix two masses of water with a temperature differential of one 

degree C than would be required at 5 C. A barely perceptible 

temperature difference (0.1° C) in warm water results in a great 

resistance to mixing (Vallentyne, 1957). The low dissolved oxygen 

levels be low the oxycline are undoubtedly the result of biological 

activity, causing a depletion of the available oxygen, and the 

supersaturation above the oxycline could be attributed to algal 

photosynthesis . But the extreme sharpness of the boundary between 

the two regions appears to be unusual. Perhap~ the use of an 

in situ probe has revealed a phenomenon that is not ordinarily 

made evident by conventional discrete sampling procedures. 

22 



CARBON 

One hundred fifty- one water samples were collected from eleven 

locations on twent y days (Table 2) during the period of the st udy. 

Thirteen of the samples were collected in duplicate. The sampling 

times were between 1100 and 1500 hours . All stations were sampled at 

the surface and additional samples (Table 2) were taken at varying 

depths at station D, the deepest part of the reservoir, a t the same 

time that the dissolved oxygen, temperature, and othe r readings 

were made. 

Surface samples were collected directly in 6 or 18 ounce 

"Whirlpak" plastic bags. Depth samples were t aken in a one-liter 

brass Kemme rer type sampler and transferred to "Whirlpaks". The 

samples were kep t cool i n an ice chest for one to fo ur hours until 

they could be re turned to the laboratory where they were frozen . 

The fro zen state was maintained until the samples were thawed for 

analysis , four to eleven months later, depending upon the dates of 

collection and analysis. Storage temperature varied from - 18 C to 

2 C. Due to malfunction of the freezing unit, the stored samples 

partially thawed for a brief period, and some material was lost, but 

the organic carbon values did not appear to be affected. A control 
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to determine the effects of freezing and storage in plastic containers 

on the organic carbon in the water samples produced equivocal results. 

There was some indication of a sligh t loss in o rganic carbon , 

probably t hrough adsorption to the container walls. 



Table 2. Samples collected 

Date Location 

4/24/70 A,B , C,D. 

5/l A, B,C ,D . 

5/8 A' ,B' ,C' ,D'. 

5/1 4 A,B,C , D. 

5/17 D, E,F , G,H,I. 

5/24 A, B, C,D, E,F , G,H. 

6/7 A, B,C , D,E,F,G,H. 

6/14 A,B,C,D,E,F,G,H. 

7/30 A, B, C ,D, E, F ,G, H. 

8/13 A, B,C,D-s , 3 , 6 , 9 ,12,15 ,1 8 , E ,F , G, H. 

8/18 D- s ,5,10,17. 

8 /28 D-s , 5 ,7, 8 , 10 , 16. 

8/30 A',B',C,P'. 

9/9 D,E,F' , G, H' . 

9/11 D- s,l,3,6,9,12,14,16 . 

9/15 Bloom 

9/21 A, B, C,D. 

10/3 A' ,B' ,C' ,D'. 

10/10 D,E,F. 

10/18 A,B,C ,D'. 

All samples are sub-surface 11
5

11 unless otherwise indicated by 
numerals s howing depth , in me t ers. ' means sample was collected 
in duplicate . 
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To prepare for analysis, the frozen sample was placed in an 

acid washed glass beaker in an oven at 80 C until a small amount of 

ice remained. The still cool sample was then sti r red with a teflon 

coated stirring bar on a magnetic stirrer, and a small quantity of 
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the mixed sample was poured into an acid washed glass collecting vial. 

The materia l was then homogenized in the collecting vial by subjecting 

it to four 10- second bursts f rom a Bronwill biosonicator, at maximum 

power for the tip used. A glass encased magnetic stirring bar was 

placed in the vial and the material was sti rred on a magnetic stirrer 

as samples were withdrawn for a nalysis . The samples were not filtered 

for separate determinations of dissolved and particulate organic 

content, because the freezing and tha,.ing process had disrupted the 

particulate ma terial causing a release of cellular material into 

solution. 

The analysis was performed on a Beckman model 915 total organic 

carbon analyzer, according to the method of Van Hall and Stenger (1967). 

Twenty pl aliquots were taken from the collecting vial with a 50 pl 

Hamilton syringe and injected into either the total carbon or inorganic 

carbon channel of the carbon analyzer . Results were read directly in 

milligrams of carbon per liter (mg C/1) on the recorder; the readings 

of three t ·o five replicate injections of each sample \\.·ere averaged, 

and the va l ues obtained were used to calculate the total organic carbon 

(TOC) concen t r ation by subtracting the inorganic carbon value from the 

total carbon r eading . The repeatability of analyses by the instrument 

was within a range of 2% of full scale, or 2 mg C/1 . This conclusion 



was s upported both by the instruction manual (Beckman, 1968) and by 

daily injection of a st andard, which showed a range o f 1.9 mg TOC/1 . 

A total of 118 total organic carbon values were obtained. The 

mean value was 4.62 mg/ 1 , with a range of from 1.2 to 8 .9 mg/1, 

(Figure 10). The standard devia tion (s) was 1.47 and the popula tion 

mean was calculated, at 95% probabi lity , to lie between 4.36 and 
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4 .88 mg/1 . Statistical analyses were done after Sakal and Rohlf (1969). 

The data JOYere examined for trends and correlations. First they 

were g rouped into samples from three periods : 4/24 to 5/24, 8/13 t o 

8/30, and 9/9 to 10/18 (Figure 11). Means a nd standard deviations for 

each of the g ro ups were calculated, and the means were compared for 

differences . The t-tests between t he means (95 % confidence limits) 

showed tha t the dif f e r ences wer e not signi ficant, i . e., roc did not 

vary with season. Comparison was also made between means of sample s 

from stations A, B, C, and D (Figure 12). There were shown to be no 

significan t diffe rences in organic car bon values between these s t ations . 

Regression analyses were made of the co rrelations between tot al 

organic carb on concentration and depth (Figure 13), and between TOG 

and dissolved oxygen (Figure 14). TOC showed a slight decrease wi th 

depth (correlation coefficient -0.50), but no correlation between TOG 

an d DO was observe d. The total organic c arbon values are showP j_n 

conjunc tion wi th the concurrent dissolved oxygen and temperature 

profiles i n Figures 4-7. 

Plots of TOC fluc tuation with time at stations A, B, G, and D 

a re shown in Figure 15. At stations A and C, along the Little Bear 

River, there was an apparent decrease i n TOC as the season progress e d; 
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at sta tion B, the outlet from White 's Trout Fa rm, the value remaine d 

constant; and at station D, the deepest part of the res ervoir, TOC 

appeared to increase slightly during the bloom period from late July 

to early October. However, each point on these graphs r epresents only 

a single sample and, because the repea t abil ity of the instrument is 

only within a 2 mg C/1 range, it would seem prudent not to draw any 

conclus ions from these graphs before repeating the study with con

cen t ra ted samples. A similar situation holds for Figure 16 , which 

shows TOC at the various stations for different dates. Some t r ends 

appear; early in the season TOC increased from station A to station C, 

and then decreas ed again at station D, whereas during the bloom period 

station D had more organic carbon than the first two stations. The 

inte rmediate stations did not exhibit any regularity of change. The 

peak in TOC along the Little Bear River in the spring correlated 

direc tly with stream discharge (USDI, 1971); but the correlation was 

considerably better at station A (Figure 17) than at station C. As 

the s tream flow decreased during the summer, so did the TOC concentra

tion. High stream velocities churn up sediments which are rich in 

organics and contribute to the TOC (Leopold and Maddock, 1953). 

In summation, the total organic carbon concentration in Hy rum 

Reservoir and its tributary, the Little Bear River, remained virtually 

constant during the study period . There was a decrease in TOC concen

tration in the Little Bear River as the season progressed, due to 

decrease in stream flow. Slight changes in TOC concentration in t he 

reservoir itself were not confirmed, namely (l) an increase in late 

summer , probably attributable to the increase in algal bjomass ; and 
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(2) a decrease with depth, which may have been the result of biological 

oxidation of organic matter. There was no correlation between TOG and 

dissolved oxygen, which decreased with depth. 

The increase in organic carbon a t station D during the late summer 

would appear to be linked to the algal bloom, but no independent 

measurements of algal biomass are availab le to corroborate this. Three 

samples, 5/24 D, 5/24 E, and 9/15 Bloom contained large masses of algae , 

and these gave extremely high TOG values (Table 3); however, other 

samples also contained significant numbers of Aphanizomenon flakes 

without showing significantly increased organic carbon values. 

Apparently, the algae contributed very little to the total organic 

carbon concentration in these waters unless the algal biomass was 

exceptionally high, approaching that of a dense laboratory culture. 

Even during the bloom, unless the sample was taken from an area with a 

dense patch of algae, the algal o r ganic carbon was a relatively small 

percentage of the total organic carbon in the water. 

There have not been a great many studies of organic carbon in 

natural waters, but the results that are available all tend to cor

roborate the conclusions of the present investigation. Birge and J uday 

(1927) analyzed the water of 84 Wisconsin lakes for organic matter and 

found a mean value of 7 . 3 mg TOG/1 wi th a range of 2.0 to 20.9 mg TOG/1. 

Of th is , the dissolve d organic carbon averaged 6.4 mg/1 with a range of 

1.4 to 19.8 mg/1, the balance being particulate . Dissolved organic 

car bon was defined by Birge and Juday as that which remained after 

centrifugation, and the authors claimed that centrifugation removed 

95% of the parti culate matter larger than bacteria, plus 25 to 50% of 



Table 3. Carbon analysis of samples containing large algal masses. 

Date 

5/24 

5/24 

9/15 

Station 

D 

E 

Bloom 

Depth 

surface 

To tal organic 
carbon (mg/1) 

21.8 

13.3 

28.4 

Alga present 

Aphanizornenon 
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the bacteria. The water was then evaporated and the r esidue weighed. 

The percentage of organic matter in the residue ranged from 20 to 80%, 

and 50% of this organic matter was assumed to be carbon. 

A second study by Birge and Juday (1934) included 529 lakes, and 

reported a mean value of 7.65 mg TOC/1, with a range of 1 .15 to 28.5 

mg TOC/1. The planktonic (particulate or centrifugable) carbon 

represented from 3 to 24% of the total organic carbon. Birge and J uday 

concluded that dissolved organic matter is a fai rly definite quantity 

for a particular lake, not showing great variation either with depth 

or time. Particulate matter was found to comprise a relatively small 

percentage of the total organic content, and the percentage decreased 

as roc increased. Where dissolved organic carbon was 4-6 mg/1, it 

was about six times the weight of the plankton. A large , temporary 

crop of algae raised the percentage of plankton in the total. 

Birge and Juday (1927) likened the organic matter situation in a 

lake to that in the soil, where the humic material is fairly constant 

in quantity and composition, is not readily decomposed beyond a 

certain point, and persists with little change for a long time. 

Superimposed upon this is the field crop, analogous to the plankton, 

with its small quantitative relationship to the total organic matter. 

Therefore, they suggested that because the dissolved organic carbon 

remains fairly constant, a single carbon analysis is sufficient to 

put a lake in its true place in its o r ganic relations, and to classify 

it . 

Riley (1940), in studies on particulate organic carbon in 

Linsley Pond, Connecticut, found a range of 0.6 to 2 .1 mg C/1, with 



a mean of 1 . 2 mg C/1. The variations in particulate organic ma tter 

were found to be smaller than the variations in chlorophyll or phyto

plankt on volume, but t he seasonal cycles were similar. He concluded 

that phytoplankton accounted fo r the major var iations in the weight 

of particulate organic matte r, and that the total quantity of o ther 

constituents -- zooplankton , bacteria, and detritus -- was relatively 

const ant. Diss olved organic matte r was not reported. 

Forsberg (1967) measured the dissolved or ganic carbon in some 

lakes in Uppland, Sweden, us ing the technique of Menzel and Vaccaro 

(1964). In this method t he o r ganic carbon in a sample is oxidized 

with po tassium persulfate in sealed glass ampoules , and the co2 re

leased is measured with an infrared analyzer. The organic carbon 

concentrations found in glass-fiber f iltered lake samples r anged 

from 5 t o 17 mg/1, with variations of around 2 mg/1 in any particular 

lake . No correlation was found be t ween dissolved organic carbon and 

dissolved oxygen, total phosphorus, or total nitrogen . A nega tive 

correlation was observed between chlorophyll (a + b) and dissolved 

organic carbon, which dropped slightly during an algal bloom. No 

e xamination or mention was made of the particulate carbon . 

Weber and Moore (1967) studied particulate organic matter and 

dissolved organic carbon in a small, hardwater, midwestern stream . 

Particulate matter was removed from samples by centrifugation, then 

dried, igni t ed, and weighed, the weight loss being a measure of the 

organic cont ent. A correlation was found between particulate o rganic 

matter and stream discharge during the period from December to April, 

and a negative correlation was observed from May to November. This 



was interpreted to mean that the particulate organic matter was not 

derived from the same sources during the two seasons, the positive 

correlation showing that the organic material was scoured from the 

river bed, and the negative correlation indicating that the organic 

matter during the summer months was autochthonous and probably of 

phytoplanktonic origin. Dissolved organic carbon was determined by 

passing samples through a 0.45 p pore diameter Millipore filter, 

acidifying the filtrate to pH 2, and analyzing with a "Beckman 

carbonaceous analyzer" . The concentrations of dissolved organic 

carbon ranged from 2.5 to 12.5 mg/1 and averaged 6.4 mg/1. No 

seasonal patterns were apparent, and a low correlation, (-0.061), 
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was found between dissolved organic carbon and phytoplankton volume 

during the season when the standing c rop of algae was high, indicating 

that the phytoplankton was not a major source of dissolved organic 

matter. Nor was any relationship found between dissolved organic 

mat ter and river discharge. 

A comparison of the distribution of organic matter in the five 

Great Lakes by Robertson and Powers (1967) showed the amounts of 

dissolved organic matter to be three to ten times larger than the 

particulate organic matter, which in turn is much greater than the 

amounts of zooplankton and macrobenthos. Jn Lake Superior the 

dissolved organic carbon was 1.1 to 1.5 mg/1 and the particulate 

organic carbon was 0.1 t o 0.3 mg/1. The values for Lake Ontario 

were 2.9 to 3.3 mg/1 fo r dissolved organic carbon and 0.5 to 0.8 mg/1 

for particula t e organic carbon. The other lakes r anged between these 



values. (The results were reported in terms of organic matter, and 

have here been converted to organic carbon by multiplying by a factor 

of 0.5.) 
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Brooks (1970), using the method of Menzel and Vaccaro (1964), 

measured the distribution of organic carbon in the Brazos River basin 

in Texas. He found that the dissolved organic carbon (DOC) concentra

tion ranged from 2.8 mg/1 to 7.0 mg/1, and the particulate organic 

carbon (POC) concentration ranged from 1.0 mg/1 to 16 mg/1. The DOC 

concentrations were found to be more independent of flow rate than 

the POC concentrations, which were directly related to river discharge. 

He concluded that DOC values were the best indication of organic water 

pollution, as the POC from domestic pollution was generally broken 

down before it reached the river, while the DOC was more resistant 

to degradation. 

Most of the recent work on dissolved and particulate organic carbon 

has been done in the marine habitat. Menzel (1967) , concluded from his 

studies that (1) surface standing crop has no measurable influence on 

the concentration of organic particles occurring at depth; (2) below 

a given dep th the distribution of these particles is homogeneous in 

time, space, and depth; and, (3) there is no consistent decrease in 

dissolved organic carbon with depth. But Duursma (1965) reports that 

there is generally more organic matter in the surface layers than in 

the deeper water, and that distribution in the upper layers depends 

somewhat on season, and probably also on water movements. 

Parsons (1963) expressed on a relative scale based on 100 the 

approximate distribution of the total organic matter in the sea as 
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follows: soluble organic 100, particulate detritus 10, phytoplankt on 

2, zooplankton 0.2, and fish 0.002. Mullin (1965) found less than 10 

to 20% of the total carbon at any station to be in the form of living 

phytoplank ton, and Strickland (1965) reported that the quantity of 

dissolved organic matter passing through a 0 .5 ~ pore diameter membrane 

filter nearly always exceeded the amount of particulate organic material 

by a factor of 10 or more, and 50 or more if only living cells were 

considered. 

Riley (1963) described the nonliving, particulate organic matter 

in seawater as consisting of delicate, platelike aggregates ranging in 

size from about 5 ~ to several millimeters in diameter, the aggregates 

being amorphous matrices containing both organic and inorganic 

mate rials, with inclusions of bacteria and phytoplankton. According 

to Riley (1963) and others (Baylor and Sutcliffe 1963; Riley, 

Wangersky , and Van Hemert, 1964; Sutcliffe , Baylor, and Menzel, 1963) 

the aggregates are formed mainly by adsorption of dissolved organic 

matter on bubbles and on other naturally occurring s urfaces. The 

aggregates are presumed to act as a substrate for bacterial growth 

and to provide food for larger organisms. 

The dissolved or ganic matter in lakes is usually derived from the 

phytoplankton which have developed in the lake and which can be the 

sour ce of up to six times their own weight of dissolved organic 

materials , through excretion and decay (Birge and Juday, 1934; Fogg, 

1962; Hellebust, 1965; Strickland, 1965; Kuznetsov, 1968). Additional 

organic material, gene rally highly colored , is of t en extracted from 

peat and s oi ls in the catchment area of the lake and carried to the 



lake by streams and runoff (Hutchinson, 1957). One could expect to 

find almost any organic compounds in the dissolved organic matter, 

including carbohydrates, fatty acids, amino acids and other nitrogen 

containing organics, enzymes, vitamins, auxins, antibiotics, and 

toxins (Provasoli, 1963). 

These compounds undoubtedly play a large role in the ecology of 

the lake. Although the ability of algae to grow heterotrophically 

below the photic zone has been disputed (Provasoli, 1963; Wright and 

Hobbie , 1966), the need for organic growth factors by many algae has 

been more conclusively demonstrated (reviewed by Provasoli, 1963). 

However, the low concentrations of dissolved organic compounds found 

in natural waters are more than sufficient to promote the growth of 

heterotrophic bacteria (ZoBell and Grant, 1943; Wright and Hobbie, 

1966), which also fix carbon from free carbonic acid during hetero

trophic growth (Kuznetsov, 1968). Fogg (1962) has suggested that 

organic nitrogen compounds manufactured and excreted by blue-green 

algae are utilized by other organisms associated with the alga. In 

addition, he maintained that organic acids and polypeptides excreted 

by algae chelate inorganic ions, thus maintaining nutrient substances 

such as iron and phosphate in solution, making them more readily 

available for algal growth. The chelation of copper by these organic 

substances would reduce its t oxic effect by reducing its effective 

concen tration , thus explaining the lack of effectiveness of some 

copper sulfate treatments in eliminat ing algal nuisance situations. 
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OTHER MEASUREMENTS 

Several measurements on the reservoir were taken in addition 

to organic carbon and dissolved oxygen. Secchi disc readings were 

taken in conjunction with four of the oxygen proUles (Figures 4-7) . 

The Secchi disc depths ranged from 1.3 to 1.8 meters. On Augus t 18 

a s ubmarine photometer (Fred Schueler Co.) was used to determine the 

de pth of the photic zone, and the data obtained is reproduced in 

Figure 5. The incident light at the surface was 65,000 lux; it 

decreased logarithmically to 1% of this value at 3.5 meters; and at 
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7 meters 10 lux were recorded. At the Secchi disc depth of 1 . 7 meters 

the light in tensity was approximately 9 ,000 lux, or 14% of the 

incident light . This is in agreement with the work of Beeton (1958), 

who found the average percentage transmission of surface light inten

sity, at the Secchi disc depth, to be 14.7%. 

On August 28, pH readings were made on lake- water samples take n 

from the s urface and depths of 5, 10, and 16 meters. The pH decreased 

slightly from 8.6 a t the surface to 8.5 at meters, then dropped to 

8 . 0 at 10 meters, and to 7 . 8 at the bottom (Figure 6). The higher pH 

in the trophogenic zone is due t o the uptake of C02 by phytopl ankton, 

and the reverse process occurs in the tropholytic zone of the 

hypolimnion where co
2 

liberated by microorganisms causes a lowering 

of pH. The degree of pH lowering is controlled by the bicarbonate 

alkalinity of the water. "When the bicarbonate alkalinity is high 

and the t r ophogenic zone productive, the consequent high production 



of co 2 in the hypolimnion causes a relatively small lowering of the 

pH of the well-buffered water.", (Hutchinson, 1957, p. 685). 
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PROPOSED ADDITIONAL STUDIES 

The present investigation has revealed some interesting facets 

of the microbiology and limnology of Hyrum Reservoir which could 

profitably be studied further. The sharp oxycline should be inves

tigated in detail; its shape should be recorded weekly throughout 

the year, and several sets of diurnal readings should also be taken, 

in order to better define the fluctuations which occur, and to 

determine if any mixing occurs during the s~er stratification. 
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pH values should be recorded immediately above and below the oxycline , 

and an attempt should be made to describe and enumerate the bacterial 

populations associated with, and occurring just above and below, the 

oxycline . 

The determination of the culture conditions necessary for 

maintenance of the Aphanizomenon in the laboratory has been the first 

step in the process which should include isolation of the alga in a 

unialgal cul ture, and growth in a defined artificial medium, perhaps 

a modification of ASM-8a (Appendix). The ultimate goal, of course, 

is to determine the limiting nutrient(s) in the lake water. This would 

probably best be done by using bioassay techniques (EPA, 1971). 

It has been shown in the present investigation that the Beckman 

model 915 total organic carbon analyzer is not sufficiently sensitive 

for direct measurement of organic carbon concentrat i ons in lake waters . 

However, by use of suitable sample concentration methods it should be 

poss ible to obtain meaningful organic carbon values with this 



instrument. A study of the organic carbon relationships in Hyrum 

Reservoir would certainly be of great interest and value, and it 

is suggested that a suitable technique be developed and applied. 

This is an important research area which is only beginning to receive 

attention. For a review of recent work, see Hood (1970). 

47 



SUMMARY AND CONCLUSIONS 

A study was undertaken to determine the causes of a dense late

summer waterbloorn of Aphanizomenon flos-aq uae in Hyrum Reservoir, 

Cache Valley, northern Utah, and to suggest some possible corrective 

measures. A sampling program was established and samples were taken 

from late April 1970 until early October of that year at several 

stations in the reservoir and along its tributary, Little Bear River. 

Samples were also taken of the effluent from White's Trout Farm, on 

the Little Bear River, a suspected source of algal nutrients. 

Surface samples were collected at all stations; in addition, depth 

samples were taken at station D, the deepest part of the reservoir, 

near the outf low. 
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The samples were stored frozen , then thawed and analyzed for 

total organic carbon (TOC) concentration on a Beckman model 915 total 

organic carbon analyzer . It was found that TOC concentration did not 

vary significantly with time or place of sampling. There was a cor

relation between TOC and stream discharge along the Little Bear River, 

due to the increased sediment load at high discharge rates; and a 

slight decrease in TOC with depth at station D was also observed. TOC 

also appeared to increase slightly at station D during the summer 

months, but the increase was not based on sufficient samples to 

establish its statistical significance . The mean value for all 

samples (n=ll8) analyzed was 4.62 mg TOC/1, with a range of from 

1.2 to 8 . 9 mg TOC /1 and a standard deviation of 1 . 47. 



The algal bloom was not reflected by the TOC measurements. 

One sample, collected from a thick patch of algae during the height 

of the bloom (September 15) gave a TOC value of 28.4 mg/1, but other 

samp l es containing smaller numbers of algae did not differ s ignif i

cantly from the overall mean value. A literature review reveale d 

tha t o ther investigators have encountered similar situations , and 

the c oncensus of these investigators is that in natural wate rs the 

particulate organic matter constitutes only a small fracti on (10- 30%) 

of the total or ganic matter in the water. There exists a residuum o f 

dissolved and colloidal organic material which remains r e latively 

constant in concentration from place to place and time to t i me , and 

which is much greater in magnitude than the standing algal crop. The 

dissolved material is presumed to play a significant ecological role 

in maintaining the balance of the system in the face of the l a rge 

fluctuations in individual species that occur periodically. 

Although it was found that total organic carbon is not a good 

parameter for monitoring changes in the system, the roc value does 

give an indication of the quality of the lake in relation to other 

lakes. A fixed value such as t his would be useful in comparing lake s 

i f analyt i cal methods were s tandardized and organic carbon data from 

numerous lak es made available, along with other information about 

the lakes . 

All of the information ga thered i n the present study supports 

the conclusion that Hyrum Rese rvoir is highly eutrophic. Hyrum has 

a hi gher to tal o r ganic carbnn concentration (4 .6 mg/1) than Lake Erie 

(4.0 mg/1) and Lake Ontario (3 . 8 mg/1), the most eut rophic of the 
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Great Lakes. The oxygen supersaturation in the trophogenic zone 

coupled with its depletion in the hypolimnion is another indication 

of high productivity and high biological activity . This is also 

confirmed by the low light penetration and the pH changes observed. 

The greater problem of determining the specific cause of the 

Aphanizomenon bloom remains; and some techniques for accomplishing 

this have been outlined in the preceeding section. Finding and 

eliminating a limiting nutrient may solve the problem, or it may 

allow another alga to replace the present nuisance organism. A 

simpler solution might be the use of copper sulfate or some other 

chemical agent, but this also might prove to be ineffective. In 

addition , it could result in some unwanted side-effect, such as a 

sudden release of algal toxin, causing fish mortalities or bathers' 

rash. 

Another approach is to stop the flow of algal nutrients into 

the lake . This would entail channeling all agricultural runoff 

directly to the outflow of the reservoir, removing the cattle from 

the shore line, and possibly treating the effluent from the trout 

farm to remove nutrients . This approach, although expensive, might 

be the most satisfactory in the long run if the reservoir is to be 

maintained as a recreational area . 

50 



LITERATURE CITED 

APHA. 1971. Standard methods for the examination of water and 
was t ewater. 13th ed. American Public Heal th Assn., Inc., 
New York. 874 p. 

51 

Baylor, E.R ., and W.H. Sutcliffe. 1963. Dissolved organic matter 
in seawater as a source of particulate food. Limnol. Oceanogr. 
8:369-371. 

Beckman. 1968. Model 919 total organic carbon analyzer instruc
tions 81706-A. Beckman Instruments, Inc., Fullerton , 
California. 32 p. 

~ Beeton, A.M. 1958. Relationship between Secchi disc readings 
and light penetration in Lake Huron. Trans. American 
Fisheries Soc . 87:73- 79. 

Birge, E.A., and C. Juday. 
water of small lakes. 

1927. The organic content of the 
Proc. Amer. Phil . Soc. 66 :357-372 . 

Birge , E.A., and C. Juday. 1934. Particulate and dissolved 
organic matter in inland lakes. Ecol. Monogr. 4:440-47 4 . 

Brooks, J.M. 1970. The distribution of organic carbon in the 
Brazos River basin. Oceanography International Corp., 
College Station, Texas . 90 p. 

Duursma, E.K. 1965. The dissolved organic constituents of sea
water . p. 433-475. In J.P. Riley and G. Skirrow (ed.). 
Chemical Oceanography. Academic Press, New York. 

EPA . 1971. Algal assay procedure: Bottle test. National 
Eutrophication program, Environmental Protection Agency, 
Corvallis, Oregon. 191 p. 

Fogg, G.E . 1962. Extracellular products. p. 475-489 . In 
R.A. Lewin (ed.). Physiology and biochemistry of algae. 
Academic Press, New York. 

Forsberg, C. 1967. Dissolved organic carbon in some lakes in 
Uppland, Sweden . Oikos 18:210-216. 

Gentile , J.H., and T.E. Maloney. 1969 . Toxicity and environmental 
requirements of a st rain of Aphanizomenon f los-aquae (L.) 
Ralfs . Can. J . Microbial. 15:165-173. 



Hellebust , J.A. 1965. Excretion of some organic compounds by 
marine phytoplankton. Limnol. Oceanogr. 10:192-206. 

Hood , D.W. (ed.). 1970. Symposium on organic matter in natural 
waters. Inst. Mar. Sci . Occas. Publ. 1., Univ. Alaska, 
College, Alaska. 625 p . 

Hutchinson, G. E. 1957. A treatise on limnology , v.l., Geography, 
physics, and chemistry. John Wiley and Sons, Inc., New York. 
1087 p. 

Kuznetsov, S.I . 1968. Recent studies on the r ole of micro
organisms in the cycling of substances in lakes. Limnol. 
Oceanogr. 13:211- 224 . 

Leopold, L.B., and T. Maddock, Jr. 1953. The hydraulic geometry 
of stream channels and some physiographic implications. 
U.S . Geol. Surv. , Profess. Papers 252. 57 p. 

McLachlan, J., and P.R. Gorham. 1961. Growth of Microcystis 
aeruginosa in a precipitate-free medium buffered with Tris. 
Can. J. Microbial. 7:869-882. 

McLachlan, J., U.T . Hammer, and P.R. Gorham . 1963. Observations 
on t he g r owth and colony habits of ten strains of Aphani
~ flos - aguae . Phycologia 2:157-168 . 

Menzel, D.W. 1967. The distribution of dissolved organic carbon 
in the western Indian Ocean . Deep- Sea Res. 14:229-238. 

52 

Menzel, D.W., and R.F . Vaccaro. 1964. The measurement of disso l ved 
and particulate organic carbon in seawater . Limnol. Oceanogr. 
9: 138-142. 

Mullin, M.M. 1965 . Size fractionation of particulate organic 
carbon in the surface waters of the western Indian Ocean: 
addendum. Limnol. Oceanogr . 10 : 610- 611 . 

O'Flaher t y , L. M., and H. K. Phinney . 1970. Req uirements for the 
maintenance and growth of Aphanizomenon flos-aguae in culture . 
J . Phycol . 6:95-97 . 

Parsons , T.R. 1963 . Sus pended or gani c matter in seawa ter, p. 205-
239 . In M. Sears (ed . ). Progress in oceanogr aphy, v.l. 
Pe r gamon , New York. 

Prescott , G.W. 1970. How to know the freshwate r algae. 2nd ed. 
Wm. C. Br own Co . , Dubuque, Iowa. 348 p. 

Provasoli, L. 1963. Organic r egulat ion of phy t oplankton fertility , 
p . 165- 219. ~ M. N. Hill (ed.). The sea, v.2 . Interscience, 
New Yor k . 



Reinhard, E.G. 1941. 
of a new species. 

Notes on Aphanizomenon with a description 
Bull. Torrey Bot. Club 68:326-329. 

--Rich, R.A. 1960. Limnological studies on Hyrum Reservoir in 
northern Utah. Unpublished MS thesis. Utah State University 
Library, Logan, Utah. 49 p. 

Riley , G.A. 1940. Limnological studies in Connecticut. III. 
The plankton of Linsley Pond. Ecol. Monogr. 10:280-306. 

Riley, G.A. 1963. Organic aggregates in seawater and the 
dynamics of their formation and utilization. Limnol. 
Oceanogr. 8:372-381. 

Riley, G.A., P . J. Wangersky, and D. Van Hemert. 1964. Organic 
aggregates in tropical and subtropical surface waters of 
the North Atlantic Ocean. Limnol. Oceanogr . 9:546-550. 

Robertson, A., and C.F. Powers. 1967. Comparison of the distri
bution of organic matter in the five Great Lakes, p. 1-18. 
In J.C. Ayers and D.C. Chandler (ed.). Special report no. 30 
of the Great Lakes Research Division Institute of Science and 
Technology. (Abstract). 

Sawyer, P.J., J.H. Gentile, and J.J. Sasner, Jr. 1968. Demonstra
tion of a toxin from Aphanizomenon flos - aguae (L.) Ralfs. 
Can . J. Microbial. 14:1199- 1204 . 

Schwimmer, M., and D. Schwimmer. 1955. The role of algae and 
plankton in medicine. Grune and Stratton, Inc., New York. 

Sakal , R.R., and F.J. Rohlf. 1969 . Biometry:The principles and 
practice of statistics in biological resear ch. W.H. Freeman 
and Co ., San Francisco, California. 776 p . 

Strickland, J.D.H. 
primary stages 
J. P . Riley and 
v. 1. Academic 

1965. Production of organic matter in the 
of the marine food chain, p. 477-610. In 
G. Skirrow (ed.). Chemical Oceanography, 
Press, New York. 

Sutcliffe , W.H., E. R. Baylor, and D. W. Menzel . 1963 . Sea surface 
chemis try and Langmuir circulation. Deep-Sea Res. 10 : 233-
243. 

USDI. 1926. Cache Valley project topography: Hyrum Reservoir. 
Depar tment of t he Interior, Bur eau of Reclamation, map 1 . 2-
V-1, 188-400- 2, plate IV . Salt Lake City, Utah. 

USDI. 19 71. 1970 water resources data for Utah. I. Surface water 
records . Department of the Interior, Geological Survey , 
Salt Lake City, Utah. In press. 

53 



Vallentyne , J.R. 1957. Principles of modern limnology. American 
Scientist 45:218-244. 

Van Hall, C.E . , and V.A. Stenger. 1967 . An instrumental method 
for rapid determination of carbonate and total carbon in 
solutions. Anal. Chern. 39:503-507 . 

Weber, C. I. , and D.R. Moore. 1967. Phytoplankton , seston, and 
disso l ved organic carbon in the Little Miami River at 
Cincinna t i , Ohio . Limnol . Oceanogr. 12:311-318. 

Wright, R.T., and J.E. Hobbie . 1966. Use of glucose and acetate 
by bacteria and algae in aquatic ecosystems. Ecology 47: 
447-464. 

ZoBell, C.E., and C.W . Grant . 1943. Bacterial utilization of 
low concentrations of organic matter . J. Bacterial. 45: 
555-564 . 

54 



55 

APPENDIX 



56 

Table 4. Composition of ASM- 8a Aphanizomenon medium 

Compound Molecular Milligrams Micromoles 
weight per liter per liter 

Mo jor elements 

MgS04 •7H2o 246 . 5 50 . 0 200 

CaC12 · 2H20 129.0 15.0 100 

NaN03 
85 .0 85 . 0 1000 

NaHC03 
84 . 0 10.0 120 

MgC1 2 ·6H2o 203.3 80.0 400 

K2HP04 
174.2 4.0 23 

Minor e l ements 

FeC13 · 6H2o 270. 3 0 . 54 

H3so3 
61.8 0.62 10 

MnC12 ·4H20 197 . 9 1.40 

ZnC12 
136.3 0.10 0 . 7 

Na2EDTA 3 . 00 

EDDHA 1.17 
(hydrogen ferric ethylene-
diamine di-o- hydroxypheny1-
acetate) 
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Table 4. Continued 

Compound Molecular Micrograms Nanomoles 
weight per liter per liter 

Trace elements 

CoCl2 ·6H20 237 . 9 5 . 0 21.0 

CuCl2 ·2H2o 170.5 0.034 0.2 

Na
2

Mo0
4

·2H20 242.0 2.0 8.3 

NH4vo3 117.0 2 . 3 19.7 

K(Cr(S04) 2]·12H20 499.4 9.6 19.2 

NiS04 ·6H2o 262.9 4.5 17.1 

Na
2

wo
4

·2H2o 329.9 1.8 5 . 5 

Ti2(c2o4) 3·lOH2o 540 . 0 5.6 10.4 

Al2(so4) 3 
342.2 3 .2 9.4 

As 2o3 197.8 0.7 3.5 

CdCl2 183 . 3 0.8 4.4 

Srso4 183.7 1.0 5.5 

HgC12 271.5 0.7 2.6 

PbC12 278.1 0.7 2 . 5 

LiC1 1;2 .4 3.1 73.1 

Rb 2so4 
267 . 0 0.8 3.0 

NaBr 102.9 0.6 5.8 

Kl 166 . 0 0 . 7 4 . 2 

NaF 42.0 1.1 21.2 

Na2seo4 188.9 1.2 6.4 

Be(N0
3

) 2•3H
2

0 187.1 10 . 4 55 . 6 
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Table 5. Saturation values for dissolved oxygen in Cache Valley, Utah: 
elevation 4700 feet, mean barometric pressure 0 . 85 atmosphere 

Temperature Saturation Tempera ture Saturation 
(OC) (mg/1) (OC) (mg/1) 

0.0 12.03 14.0 8 . 48 

0 . 5 11.87 14.5 8. 39 

1.0 ll. 70 15.0 8.30 

1.5 11.55 15.5 8.21 

2.0 11.39 16.0 8.13 

2 . 5 11.24 16 . 5 8 . 04 

3.0 11.09 17.0 7.96 

3.5 10.94 17 .5 7. 89 

4.0 10.80 18.0 7. 80 

4. 5 10.66 18.5 7.74 

5.0 10 . 51 19.0 7.66 

5 . 5 10.39 19.5 7.59 

6 .0 10.25 20 . 0 7.51 

6.5 10 . 12 20 . 5 7.45 

7. 0 10 . 00 21.0 7. 38 

7.5 9.87 21.5 7.32 

8 . 0 9 . 75 22 . 0 7 . 25 

8.5 9.63 22.5 7.19 

9 . 0 9 . 51 23 . 0 7.12 

9.5 9 . 40 23.5 7 .07 

10 . 0 9.28 24.0 7.01 

10 . 5 9.18 24.5 6 . 95 

11.0 9 . 07 25 . 0 6.89 

11.5 8.97 25.5 6.84 

12.0 8.87 26.0 6. 79 

12 . 5 8.76 26 .5 6.73 

13.0 8.67 27. 0 6.68 

13.5 8 . 58 27 . 5 6.64 
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