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DEFINITION OF SYMBOLS

of
C5 specific heat of soil

energy rer mole or per gram

partial molar or partial specific energy

total enthalpy
enthalpy rer mole or rer gram
partial molar or partial specific enthalpy

n of clean adsorbent

mersion with preadsorbed adsorbate on adsorbent
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arithm

~
= §

container for soil sample
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o
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(&7
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/V\,, mass of water adsorbed
n number of moles

} total pressure

P-
P pressure of adsorbate
(;)7 integral heat of adsorption

of adsorption per mole or per gram
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have passed since t st papers were pub-

of chemical thermodynamics to the soil-

used thermo-

dynamics in en bt et ze a learn
tricat 3 .
Becat romp 14 ted nath ) ] system such as
so0il s T iably m 1 to study small
arts of tr ten parately until t 1 1 . e s a
sum of parts or as an integrated unit. It with in mind that
attention was foc on the enthalpy and entrory of soil water and
their t heat effects.
ided upon was a calorimetric with the
sibilit f comparison It was not until
near the cor n of this re arch ject t it was realize
that existing interpretations of isosteric

in error. There-

an attempt to collect integral thermodynamic data was made.




REVIEW CF LITERATURE

Thermodynamic Development of Adsorrtion Equations

Confusion exists in the soils literature concerning the thermo=-

3

1. Therefore, the derivation of the basic

ther Emphasis
ill in the

Integral heat of
In order to treat adsorption with reasonable simplicity, the
following initial assumptions are made:
1. only one gas is present,

2. the adsorbent is completely inert; i.e., all its thermo-

the rresence in the

rbate molecules

perturb surface ac

but this pertur-
bation is probably a strictly second-order effect in the case
of physical adsorrtion on solids, especially solids with

relatively strong intermolecular or interionic forces LEQLJ,

3+ adsorbents which swell are excluded; Eﬁllville loam does

swell and, therefore, does not lend itself to as rigorous a

application s. However,

the thermodynamic

present them in that
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orimetric
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the energies of
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9 S
ctively. The quantity QL or %

measured in such a way that no

ey, if the adsorption is allowed




,uy(/p/) /uj (@p 7—) b
whore | (gand | | & pas and sorbed

phases resprectively. The chemical rotential is the partial molar
r 1 m nt tem
wever, when single iponent ¢ tem 1i: nsidered, the chemical

<a/3)//3*/ /)DC/T ( )Jm(w)m

For the case of k,D held constant q. (5) may be rearranged to yield




An appropriate equation must be developed for the adsorbed
phase. Equation (26.18) of Glasstone (16) written for a one compo-

nent gas phase becomes

E,= Ta/fj “Pc/Vj +/,zjc/nj (©)

% §

The analogous equation for the adsorbed phase takes the form

IE T xf «5//1 +pja/n5 (10)

where a two dimensional pressure term replaces pressure and area

replaces volume. The integrated form of eq. (10) is

Es=TS=pAtpns &

or, on a per mole basis,

E,. = 7_55 %L: + Hs (12)

On differentiating eq. (12) and comparing it with eq. (10), one

(13)

o= s, dT- #+d/.45

or

i}ﬁ):_5~ps- 3
T S i

On inserting egs. (7), (8), and (14), into eq. (6); one obtains




o

97%) s and that

simplify eq. (15)

Assuming the gas obeys the ideal gas law,

the system is at equilibriu /\"(5 /ij
Q_%_P = Hg —£&5 = >O///--7
oT fp  RT?

The same ideal gas assumption applied to eq. (3) leads to

giedy~L= f—/j-/?T-[s (a7)

& \5

(16)

HJG~ES = CZ, +/—?7 (18)

Inserting eq. (18) into eq. (16) yields

P g+ R - a

2y A i

Thus far in the development, total or integral thermodynamic

(19)

quantities have been used. As a result, these equations can be used

to calculate the difference between two integral quantities, as, for

example nergy of free water vapor and

ed water.
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ition of the integral heat of adsorp-

requires the appropriate form of the "Gibbs

(13) can be rearranged to give

d? - 550/ I+ O//Js (20)

equation® (19) -

f.‘/ p = /‘ﬂc/#s (21)
Since d/Js:C//Jj at equilibrium and d/vl?:PTO//n/O,

oq. (21) ylelds
C/%ZRT/_'C//I)/O (22)

ded to evaluate eg. (19). Upon

At constant tem

which is the "Gibbs

integration of eq. (22), one

;e /[‘?71}0///7/0 (23)

equation has been verified by the use of statistical mechanics

(7). The evaluation of eq. (23) requires accurate low pressure

measurements, as an error in this region is carried through all values

; techniques may remove more water vapor

ni

above that of the




may lead to

!f , caution must be

crystal perturbations or modifications which could result in a mix-

ved (15). However, there is no

8qe (2 be as the evalu is made on the chemical
potentia the rhase which is in equilibrit the adsorbed
phase. Though its al interrretation may be questioned, the

usefulness in the calculation of integral

value of }D lies in
Ea ) B

ntities
1antliles

integral entropy values (21).

thermodyr

(12) is

for the

E? :7—3? '/;Vj +/uj (24)

gas rhase equivalent to eq.

At equilibri

/"{7: /VLS" mnd the combination of eqs. (12) and (24)

yields

1?; (25)

&= Ts,+ o =b-T5F

or




(27)

o +tRT-7=105-5)=%

The use of egs. (19), (23), and (28) on two accurate isotherms

n two integral

sgral heat of

B =(Hy=Hs)= [(s5=S5) =
calorimetric heat of adsorption but is related to

it through eq. The term %0 has also been called the equili-

brium heat of sorption. The choice of (ZI or CZP is left up to the

individual as it
be careful so as not to confuse the two quantities.

Tt must be strongly emphasized that the usual entropy discussed
qualitatively or quantitatively (statistical mechanics) in terms of

order-disorder etc., of the adsorbed molecules

Q (30)

> sorbed component




of adsorption are

7 may be cz

/{C/:Hy_/[\)ﬁ A_:g (33)

Next of interest is the development of the isosteric heat of

s-Clapeyron tyre equation., Th

} phase at (/D, 7—/

adsorption, ;, from a Claus
St

brium between X in the

e e sl T i
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1. (35) may be

axuy)
5T I

rea

contrast to

(C)/u '#F'/"/C)/u) (35)
/_,

rranged to read

lefined by

= [ 3,

%)

eq. (31),

the partial mo

+ Hs

lar form of

(37)

(38)




of adsorrtion within an
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hen it i aluated at
ion is obtained. Also

difference

HT o 75(_/'\“ / (41)

> heat of adsorption should be
ertainty of
ally there is sxchange of

11 of the gas lies within




in the soils

literature and is one of the main reasons for including the thermo-

quantities thus

and those obtained from heat of immersion data will now
be scussed. The ideal s law is re nably valid at the low

pressures encountered in adsorrtion and immersion work. The ideal




s rresent in a 1 isorbed on the

Are
re; red to remove them. In this case the
t modynamic equations developed here would ppl For further

discussion on this

) 775 moles of X idsorbac

and (3), we may write

Upon inserting eq. (46) intc

volume term, one obtaing

> proposition 1 in the

appendixe
X )

arsion of

ion (in the liquid adsorbate,




to an uncertain

rise,

lsorption isotl

to p:O o« An alternative

extrapolation of the

method of ning 55 and ES is to

and, in general, more

combine a adsorption isotherm with

2ats of rsion or lary integral of adsorp-
i ir t th A temy 23)

Ch ationship between the
t of of adsorption as

- ﬁ //L (48)

faction. This equation

an amalgamation and modification of those

elopment

")

y 23).

jevelopments fo in the chemical literature (1, 15, 19,

t anyone contemplating research in the field of

o

It is suggested th

rials thoroughly read and understand

adsorption of

in these papers.

n quantities

clarity and cor

develorment. For




tt capillary rotential 1 ic notation
/ 11). The uations had ti idvantage exnressing soil

in terms of
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the enthalpy and entropy

of a heat of immersion 1ined the

udy by Robins
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dities. The

in the heat

er. He then

cg d it the
the /DV work

jantities (per gram basis). He

neglec

ific free energy by the relation AF < RT wmFpo

the partial specific entrory from the interfunc=

A3=AH-AF . His valu AF, AH
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he hydration

that a partial molar quantity

ity due to

interpre-

cal literature until papers

eareds This error appears with

24, 25, 33, 36), interested in

sulated partial specific enthal-




mum in

n the soils

literature

Martin (29)

calculated integral entropy va s at constant surface pressure with

ed differential

of Goates

integral

"

of free

ns that the water adsorbed on

ont than free water and

rpretations of differential

entr Se s the integral are orposite to
e ’ r va reported by Che
A in tt
3 i 3 C 1 sing
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r ter or was b into contact
o temperature of the sample rose
ppede W tl compared with
r by King and
(27), the fol ‘ I vapor
Y the tempera-
t 1ls e heat uced was
eat ri I 11d be used to determine
le for tl letermination of the differential
tric f adsorption was logically developed by considering

nd divided by the

Thus,

(49)
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N

ner for soil ple, g
\ o
of soil, cal/g C
(o]

of container, cal/g C

measurement,
ndbook data for
of a calorimeter

inations. A value for

ermined by calibrating the adsorption apparatus.

Other thermodyr

ic quantities were also of interest and were

leulated by use of established equations. The isosteric heat of

calculated by using eq. (40) developed in the preceding

that the total surface area of the
ature between 15 and 35 C.

1thalpy of soil water and free,

s calculated from the relationship

(h=hs) 4 2
(HS'HA): Ns +/’"’ (50)

which is easily obtained by comparing eqs. (44) and (47).

The diff

nce between the entropy of soil water and free

15 obtained by the use of egs. (47) and (23).




rom which the

ric heat of adsorptic sould be obtained.

This apparal i figure 1. The appar constructed
D. glass t T
I juced the pr re in the sys to

y x 1( (s}
rrounde by

ice and acetone at =78 C, The McLoed gage to measure the
DI n # , v vtely t 1 x and approxi-

ately t 107 mm of Hg duri 7 ition procedures. The oil

X 0

the 1t P 1re

1d this m me Th

ter been boiled under vacuum to remove dissolved gases.
The large fi spherical flask in the constant temperature bath

with water vapor of bath temperature.

g

1 sensitive

r +
ol wall
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Figure 1. Heat of Adsorption Apparatus.
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was recorded on

h the cap of this

tut Jere r t C samp f the heat ibration.
Calibrat CU rate of heat loss
T t o 1 temperature of the sample
T t or 0.007 1 tor was

connected in or to a 1l.34 volt mercury

cell. A Bristol er the potential drop across

stor to 0.01 C,

of the th

the thermistor indicated the tempera

carbon motor-brush filings
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ture, vapo d samrle tempera-
of the bath, rate of heat loss from
iter circuit was then increased and the

vapor pressure e

for

ous vapor pres-—

was

saturation vapor pressure v

to

from zero
soil

d one set of

for the

rature. The proces fo
A set in figure 3.
al jetermined and u calculations
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rv Y L 2 was similar but

yr ~f a r - v v - ecres

om the tempera-

ture measuring container., The actual dat collected as follows.

1 rle wa scuated f hours at 1 of Hge
+1 vino +he 4 A amn
i ring  § LU e wva 1§ e A :mull
ater vapor w 1ed n
apparatuse ! rder t
tor = S 1 n

of major interest were those which occurred just

after the sampls d its maximum temperature. A representative

temperature curve is s in figure 4. At the inflection of the
curve, the s e tor should be as near equilibrium as
possibl n the t of this rvee Therx

ze the data., The integral

loss was graphi

rally integrated from time zero to

the

The spring extension gave the mass of water

adsorbed at this t and the reading gave the vapor

asurement oc

maining unknown in eqge ( the sp f heat of the soil
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yielded two rlace accuracys. The mean

than

on h 7 wined by allowing
the to complet each tempera-
bt 1 ve rapidly. t ap hours were

surements was

at of immersion

by Pierce et al. (31). Two

ure in the air bath

separat stant temperatur ater bath. Second; the perature
in measured by employing two high resistance
th arms of a wheatstone bridge circuit, the
unit as a whole.

of the soil was determined by the modified
Dyal glycol retention method described
by Bc le loam yielded a area of
79 'x;'/’,” ax r 1l area of 38 '“2’*. K ylelded an area




The differential calorimetric heats of adsorption for Millville

loam, as calculated from eqo (49), are shown in figure 5. At low

relative pressures values of gy are from one to two hundred calories

per gram higher than the heat of vaporization. This indicates that

water adsorbed on ate than free

soil is in a lower energy st

from one to two hundr

calories more to

water and wc

evaporate one gram of soil water than free watero

Beyond tk

el
e |

ty percent relative humidity an interesting condition
exists. The wvalues of the differential calorimetric heat of adsorp-

s that less energy is required to evaporate one gram of

tion sugge
soil water than one gram of free water., Practically, this is not

the case. In analyzing the temperature curves represented by figure

fifteen percent, it was noted that
the temperature of the soil sample dropped faster than would have
been inferred by the heat loss curves. This suggests that part of
the heat energy of the sample was being used for an endothermic

reaction within the sample.

n

e reaction suggested by this phenomenon is expanding of the
lattice of the montmorillonite type clays present in Millville loam.

from his data that water molecules adsorb on

the external surface of expanding lattice clays and then drive the

platelets apart and move in between them. This sequent of events
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for Millville loam.
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perature rise at this
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ithout lattice expansione
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am of soil

water.

ilizes the heat energy
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ter molecules. It
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d water.
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iven in the appendix. The isoth show th cteristic sigmoid
hich 1 1 fr | lin he sorption
ite y i by a period of ly increase in
5 tior 1 concl y region of greatly i ed adsorption
jue t pil

is shown in

eric heat of adsorption for Millville

curves resulted when different isotherms were

osteric heat of

would fall




5,
]
S 3
=11}
Q 18
g 16 s
T 14}
L+
g 12
o
<
I
b
3
B
3
£
<
100 150 200 250 300

Vapor pressure, mm oil

Figure 6. Adsorption isotherms for Millville loam.
oil = 1. 0600.

Specific gravity of




Amount of water adsorbed, mg H;O/g clay

20 +

18 }

0 L . N . " N
0 50 100 150 200 250 300

Vapor pressure, mm oil

Figure 7. Sample adsorption isotherms for lithium kaolinite. Specific

gravity of oil = 1.0600.




800 | p—o\
o
k-9
700 |
600 |
jan
S \\//“'\—'—0
S f
. 500 |
g
)
-~
[}
o
9 400 }
? o
s -+ 14,8 - 24.8° C
]
2 o
300 | ©0024.8 - 34.8 C
B
o
8
o
w
~ 200t
100 |
0 1 " 1 L
0 5 10 15 20

Water adsorbed, mg HZO/g clay

Figure 8. The isosteric heat of adsorption of Millville

loam.




38

adsorption to remain constant with temperature changes could have

caused the phenomenon shown in figure 8. It is also likely that
swelling is temperature dependent, which would also cause the iso-
steric heat of adsorption curves to diverge. An encouraging fact of

figure 8 is that the isosteric heat of adsorption tends to approach

the latent heat of wvaporization o er as more water covers

the clay plate

The isosteric heat of adsorption and the differential calori-

metric heat of adsorrt should agree within the error of RT.
However, this is not the case with the data represented in figures

5 and 8. Swelling is at work in both experiments. The effect of
swelling on qq has been discussed, and its effect of qgt can be seen

from eq. (40)s The value of the isosteric heat of adsorption depends

The shape of the isotherms

amount of water moving in between the clay platelets.

render the values of the isosteric heat of adsorption use-

less unless interpreted in the light of swelling effects. Therefore,
little importance is placed on these values at this time. As
saturation is approached, swelling becomes complete; and more
importance can be placed on the isosteric heats of adsorption.

The isosteric heat of adsorption of water vapor on lithium

9. These curves should also coincides

kaolinite is shown in

Al

ind would be

would coincid
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A

are shown

Both the enthalpy and entropy of soil water show a minimum near
of 0.17¢ A minir this curve is expected in

11 et al. (22).

a relative t

the N 0 covers 1s shoy
A ~ 2
This an area of out 20 & per
si molecule is con=-

polar and, when

rst yer, would repel each other. It is

orientated in

similar to two small bar magnets together with like roles

orientated in the same direction. Thus, the molecules would be
expected to occupy a larger area than their physical size would

indicate.

positivs velues as zero

is expected since the last
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The rositive values for the difference

pressure approa
between the entropy of soil water and free water support Martin's
theory (29) that the clay particles have a structure breaking effect

on the water network. When the first layer is filled, the entropy of

of free water is the same. This does not
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necessarily at the adsorbed water molecules are held in the
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47

The enthalpy of the i1 water is less than that of free water
at low relative pressu ally expected from a physi-
cal considera soil water. However, ( Hg - HL) becomes more

positive as more water adsorbs on the kaclinite sample. This does
not follow the theoretical argument that ( |- - [.) should approach
zero as saturation vapor pressure is approached. The same mechanism
is operative in causing the enthalpy and entropy curves to deviate
from zero at relative pressures beyond 0.2 as was operative in the
isosteric heat of adsorption curves and heat of immersion curve.

The movement of lithium ions into the sorbed water would strongly
affect the thermodynamic properties of the system. Thus, eqe (47)
is not applicable beyond a relative pressure of 0.2, since the
adsorbent does not conform to the assumption that its thermodynamic
properties are the same in the presence as in the absence of

adsorbed moleculess
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I the o
The heat of immersion of kaolinite appro s a value at satura-
tion which is comparable to the destruction of twenty square meters
of air-water interface. The lower heat of immersion value for the
supports the arguments put forth in proposition
integral entropy of soil water 1s greater than that of free

a minimum at what

ures and
could be considered a layer coverage. The entropy of soil water
then increases as expected. However, it continues to increase as
saturation vapor pressure is approached. Lithium ions which have
moved out of surface cavities in the keolinite and into the adsorbed
£ilm could cause this behavior. The conclusion is reached that

eq. (47) is not applicable beyond a relative pressure of 0.2, since
the adsorbent does not conform to the assumption that its thermo-
dynamic properties are the same in the presence as in the absence of
adsorbed molecules.

of the imrortant data which the integral thermodynamic

approach offers in the understanding of soil water properties, this

approach should be refined and applied to other soil materials.
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190 = 240 W = - 0.00805 + .000086 p

240 - 255 W = - 0.03475 + .000197 p

f immersion data
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0,282 0.637
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