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ABSTRACT

Phenotypic Profiles of Lymphocytes in Adult CS57BL/6N

Mice Infected with Cryptosporidium parvum
by

Diane R. Bienek, Master of Science
Utah State University, 1994

Major Professor: Dr. Mark C. Healey
Department: Biology

The purpose of this study was to quantitate the
populations of lymphocytes in the spleens and intestines of
normal and immunosuppressed adult C57BL/6N mice that were
noninfected or infected with Cryptosporidium parvum. This
was accomplished by using the following methodologies:
immunohistochemistry, ELISA-spot assay, and flow cytometry.

Mice in groups 1 and 2 were immunosuppressed, but only
group 2 was infected. Mice in group 3 were only infected,
whereas group 4 served as the normal control. Mice were
immunosuppressed with dexamethasone (DEX) at a dosage of
125ug/mouse/day. Infected mice received 106 oocysts per os.
The numbers of lymphocytes were monitored from day 0 to day
18 postinfection. Flow cytometry using antibodies directed
against CD4+ and CD8+ T cells (helper and cytotoxic,
respectively) and B cells (expressing IgG, IgM, and IgA

receptors) revealed that C. parvum did not evoke an
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alteration in the phenotypic profile of lymphocytes within
k by 24 S £

n

spleens or Peyer’s patches (PP) of mice in groups 2 and 3
that was statistically different from groups 1 and 4.

Immunosuppressed mice (groups 1 and 2) had significantly
fewer lymphocytes (bearing CD4+, IgG, IgM, and IgA recep-

tors) within the spleen when compared with mice in groups 3

and 4 (P<0.05). Splenic leucocytes expressing macrophage

rn

(cD11b) and CD8+ receptors failed to respond to DEX.
Moreover, the CD4+ to CD8+ cell ratio was decreased in the
spleens of immunosuppressed mice. After 6 days of DEX
administration, the percentage of T cells (CD8+) and
macrophages within the PP was significantly higher than
nonimmunosuppressed mice (P<0.05). Administration of DEX
had no apparent effect on B (bearing IgG, IgM, and IgA
receptors) and T lymphocytes (CD4+) present within the PP.
However, DEX treatment was associated with a lower CD4+ to
CD8+ lymphocyte ratio within the PP. Preliminary studies
using immunohistochemistry demonstrated that lymphocytes
bearing IgA receptors are significantly less in mice that
received DEX for 20 days (P<0.05), whereas the number of IgG
and IgM receptor-bearing lymphocytes was not signif-icantly
affected.

(101 pages)




INTRODUCTION

Cryptosporidium parvum is a protozoan parasite with
worldwide distribution that infects humans and other
vertebrates. Depending on the species and isolate of the
parasite and the age and immunologic status of the host,
the severity of infection can range from subclinical to
severe (41). Cryptosporidiosis in immunocompromised
patients (particularly those with acquired immunodeficiency
syndrome {AIDS}) presents with a prolonged, life threaten-
ing, debilitating diarrhea. Clinical disease frequently
includes weight loss, fever, abdominal pain, and occasion-
ally hematogenous spread to extraintestinal sites (49,
132). C. parvum is a frequent cause of illness in immuno-
competent individuals. These infections often present with
a self-limiting diarrhea and are usually accompanied by
abdominal cramps. These observations suggest that the
host's immune status does not appear to affect susceptibil-
ity of humans to C. parvum infections (34). However, the
marked differences in the outcomes between immunocompro-
mised and immunocompetent persons infected with C. parvum
may be explained by the development of a sufficient immune
response to clear the parasite from the intestinal mucosa.

No consistently effective chemotherapeutic agent
against C. parvum is available. The literature indicates

that an acquired immune response is necessary to overcome




cryptosporidial infections. Therefore, immunoprophylactic
and immunomodulation therapies should be able to prevent
and treat cryptosporidiosis. A prerequisite to successful
immunological intervention is a thorough understanding of
the immune mechanisms responsible for arresting the devel-
opment of this coccidian parasite. Previous studies have
shown that cryptosporidial infection results in the appear-
ance of fecal and serum antibodies that are specific to C.
parvum. Although marked seroconversion occurs during or
oon after recovery from intestinal cryptosporidiosis, it
is not known if these antibodies play a role in protectiv
immunity. Furthermore, the coproantibodies and serum
response may not reflect the concentration or isotype of
antibody available at the site of infection (69). Very
little is known about the cell-mediated immune response
within the intestinal lamina propria or the Peyer's patches
(PP) of individuals infected with C. parvum.
Before addressing the immunobiology of C. parvum, a

treatise of this complex protozoan parasite is presented.
Such an account affords a better understanding of the

immunobiology of the host-parasite relationship.

Purpose of this research
The purpose of this research was to quantify the
subpopulations of T and B lymphocytes and M@ (macrophages

expressing CD11lb receptors) in the spleens and intestines




of immunocompetent and immunosuppressed adult

with cryptosporidiosis.

Objectives

Three objectives were designed to characterize the
kinetics and phenotypic profiles of lymphocytes in adult
CS57BL/6N mice infected with C. parvum. These objectives
included:

1) Quantify the populations of lymphoid cells present
in the spleens and small intestines of normal and immuno-
suppressed adult C57BL/6N mice that were either infected or
uninfected with C. parvum. Subsequently, determine the
expression levels of these cells from day 0 to day 18
postinfection (PI).

2) Correlate oocyst shedding intensities with the
expression of these lymphoid populations.

3) OQuantify the populations of B lymphocytes (ex-
pressing immunoglobulin (Ig} G, M, and A receptors) present
in the terminal ilea and spleens of mice infected with C.
parvum using immunofluorescence techniques on tissue
sections.

This research effort was undertaken to provide an
understanding of the splenic and intestinal immune
mechanisms that develop in response to C. parvum infections
and dexamethasone (DEX) immunosuppression. Moreover, this

research will serve as a first step toward developing
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LITERATURE REVIEW

History

Cryptosporidium parvum is a protozoan assigned to the
phylum Apicomplexa, class Sporozoasida, order Eucoccidior-
ida, and family Cryptosporidiidae that was identified and

named in 1912 by Ernest E. Tyzzer (133). For nearly 50

years after Tyzzer's work, C. parvum was regarded as a

mensal of no economical or medical importance.

creased veterinary investigation of Cryptosporidium began

(1]

in the early 1970's, when it was discovered to be associ-
ated with severe bovine diarrhea (104). 1In 1976, Cryp-
tosporidium was first reported as a human pathogen in an
immunocompetent 3-year-old girl with acute enteritis who
recovered spontaneously (102). After that, relatively few
cases were subsequently reported until 1982, when the
Center for Disease Control received reports that
had protracted diarrhea caused by Cryptosporidium in
association with AIDS. Medical and veterinary interest in
the epidemiology, diagnosis, treatment, and prevention
increased substantially thereafter throughout the world

(41) .

Life cycle and epidemiology
The life cycle of C. parvum is illustrated in Fig. 1.
Infection of a new host occurs when thick-walled oocysts in

food, water, or the general environment are ingested or




Sporozoite
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(Inhaled?)
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N /
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(sporulated)
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(sporulated)

Y
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FIG. 1. Life Cycle of Cryptosporidium parvum. Infection
of a new host occurs when oocysts are ingested or inhaled.
Sporozoites excyst from the oocyst (a), and invaginate

microvilli (b). The sporozoite then differentiates into a
trophozoite (c), which undergoes schizogony (d). Each
schizonts nucleus incorporates into a merozoite (e). These
merozoites can develop into a Type I (d & e) or Type II
schizont (f). Merozoites from Type II schizonts initiate
gametogony. These merozoites differentiate into either
microgamonts (g), or macrogamonts (h). The microgamete

fertilizes the macrogamont, which results in a zygote (i).
About 80% of the zygotes mature into thick-walled oocysts
and leave the hosts body (k). The remaining zygotes mature
into thin-walled oocysts (1) and serve as a source of auto-
infection. Drawing by Kip Carter, University of Georgia.
Reprirnted with permission from CRC Press Inc., Boca Raton,
Florida.




inhaled. Modes of transmission include aspiration of

@

gastric contents, aspiration associated with esophageal or

opharyngeal infection, fecal-oral spread with aspiration,

and hematogenous spread (49, 132). Electron microscopy
indicates that the oocyst wall is composed of two layers;
an outer, irregular 10-nm wall separated from a thicker
inner wall. The inner layer of the oocyst contains a
suture which dissolves during excystation (41, 111).
Banana-shaped sporozoites excyst from the oocyst and
invaginate microvilli. Subsequently, the host cell mem-
brane evaginates and thin extensions of the microvillus
membranes surround the parasite and form an intracellular
but extracytoplasmic parasitiphorous vacuole which is
located at the luminal surface of the host cell (89, 107,
111). A vacuolar membrane separates the sporozoite cyto-
plasm from the host cell cytoplasm and appears to be the
precursor of the feeder organelle which may serve in the
exchange of material between the host cell and the parasite
(89, 111). Sporozoites reabsorb cytoplasmic organelles and
then differentiate into a spherical trophozoite with a
prominent nucleus. The nucleus of the matured trophozoite
undergoes two to three asexual multiplications referred to
as merogony or schizogony. Two morphologic types of
schizonts have been observed. As the type I meront
matures, each nucleus becomes incorporated into a merozoite

(41). Set free from the ruptured schizont, the merozoite




becomes a motile, feeding trophozoite that can invade
another host cell where it can develop into another type I
or type II schizont (12). Mature type I and type II
meronts contain six to eight and four merozoites, respec-
tively (41, 66). It is believed that merozoites from type
II schizonts initiate sexual multiplication (gametogony)
when they leave the schizont and parasitize new host cells.
These merozoites differentiate into either microgamonts or
macrogamonts, the male and female stages, respectively.
Early in development, microgamonts become multinucleate
and, upon maturation, each nucleus becomes a microgamete
(41). The microgamete fertilizes the macrogamont, result-
ing in a zygote. The zygote secretes a protective protein
and lipid shell, thereby transforming into an oocyst (79),
which sporulates in situ. About 80% of the zygotes mature
into thick-walled ococysts and leave the host's body.
Oocysts in the gastrointestinal tract are excreted with the
feces and those in the respiratory tract are carried out
with respiratory or nasal secretions. The thick-walled
oocysts that are released into the environment serve as the
infective stage for new hosts. Over 108 ococysts can be
excreted daily in human feces, and infective calves can
excrete up to 1010 ococysts each day for up to 14 days (17).
The remaining zygotes (~20%) mature into thin-walled

oocysts and serve as a source of autoinfection in that they
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release their sporozoites, which then repeat cycles of
schizogony, gametogony, and sporogony .

It is not known how cryptosporidia cause clinical
disease. Based on histological findings of villous atro-
phy, crypt hyperplasia, intimate association of the para-
site with absorptive cells, and inflammatory cell infiltra-
tion of the intestinal lamina propria, a number of mecha-
nisms of diarrhea could be postulated. These include
impaired digestion and absorption as a consequence of
decreased villous surface area, the presence of immature,
cryptlike cells on the villi, or injury to absorptive cells
by the organism or products of the inflammatory response.
Additionally, it is possible the toxic material produced by
the parasite could result in secretory diarrhea (6).

The broad host range, together with the high output of
oocysts, ensures a high level of contamination of the
environment, and favors waterborne transmission. Infected
humans, domestic animals, and wildlife may all contribute
to the pool of oocysts in a watershed through wastewater
discharges (127). There is a lack of host specificity for
C. parvum. Isolates from humans are infectious for a
variety of mammals, and isolates from one mammalian species
are infectious for others (41). Opportunities for zoonotirc
transmission exist when persons are closely associated with
infected livestock (24, 118) and companion animals (42).

Additional sources of contamination include urban and




agricultural slurry, septic tank leakage, recreational
bathing, agricultural runoff, and erosion of soils exposed
to infected feces (142). Waterborne outbreaks have demon-
strated that C. parvum oocysts can pass through filtration
systems currently in use and are insensitive to the stan-
dard chlorination regime used in the water industry (126).
The fact that surface and groundwater may be contaminated
by cryptosporidial oocysts and the lack of effective
treatment stress the importance of techniques to remove C.
parvum from drinking water.

C. parvum oocysts are resistant to many disinfectants.
The survival of C. parvum oocysts after 18 hours incubation
in several disinfectants was examined. Only formol saline
and ammonia were effective in destroying the viability of
the oocysts (21). Both ozone and chlorine dioxide consti-
tute a means of removing most C. parvum oocysts from
drinking water, although some oocysts may remain viable
(105). Since oocysts are resistant to many disinfectants,
prevention of waterborne spread of cryptosporidiosis relies
on wastewater treatment and improved filtration methods.
The efficiency of oocyst removal in sewage treatment
facilities using activated sludge approaches 79 to 84% when
one compares the number of organisms in raw versus treated
sewage (86, 142). Chapman and Rush (1990) show that when
purified oocysts are applied to the top of a sand filter,

oocysts do not easily pass through the filter when eluted




with distilled water at a filtration rate of 15 m3/m2/hour

long with

)

(26). Treatment plants using sand f
activated sludge have significantly lower levels of oocysts
in their finished effluents than those using activated
sludge treatment alone (86). These studies establish that
water treatment processes are capable of removing a per-
centage of oocysts. However, it is important to realize
that the proportion of oocysts that penetrate the system i3
dependent not only on the design and operation of the
treatment process, but also upon the number of oocysts
challenging the filters and water treatment system (126).
Lastly, altering the temperature of the contaminated water
may kill the oocysts. Oocysts are unable to survive
freezing (126) or temperatures above 45°C (25). However,
the fiscal and practical implications of altering water

temperature are considerable.

Treatment

Attempts to treat cryptosporidiosis have met with
limited success. At the time of this writing, no consis-
tently effective parasiticidal agent or preventive vaccine
is available (51). Treatment remains limited to oral or
intravenous hydration and hyperalimentation (administration
of greater than optimal amount of nutrients) (33).

Few chemotherapeutics have shown any efficacy. Some

success has been reported for arprinocid (117), spiramycin
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(100), octreotide (87), paromomycin (7, 36, 52, 56),
eflornithine (121), and halofuginone lactate (101). The
effectiveness of halofuginone remains questionable because
Tzipori et al. (1982) show that halofuginone neither
prevents nor modifies the course of infection in neonatal
mice (135). Two synthetic lytic peptides (Hectate 1 and
Shiva 10) exhibit significant activity against C. parvum in
an Iin vitro assay with unproven activity in vivo (8).
Greenberg et al. (1989) describe a patient with severe
secretory diarrhea and malabsorption who had clinical,
microbiologic, and histologic resolution of cryptosporid-
iosis after therapy with azidothymidine. This beneficial
effect is believed to be secondary to improved cell-
mediated immune functions mediated by suppression of human
immunodeficiency virus by azidothymidine (53).

Other treatments, such as hyperimmune bovine colostrum
(HBC) and anti-cryptosporidial monoclonal antibodies
(Mabs), show varying degrees of success. Hyperimmune
bovine colostral immunoglobulins have been successful in
treating an AIDS patient (103, 141) and neonatal BALB/c
mice with severe cryptosporidiosis (44). The efficacy of
HBC as a immunotherapeutic agent may be explained by the
fact that each immunoglobulin isotype in colostral whey
recognizes meronts, merozoites, microgametocytes, microga-
metes, and macrogamonts (43). Based on these findings, it

seems that antigens in all parasitic stages provide targets




of opportunity for the anti-parasitic activity of HBC.
Neonatal BALB/c or nude mice treated with anti-cryp-
tosporidial murine Mabs had lower parasite loads than did
control mice (9, 14). Similarly, suckling BALB/c mice are
protected when sporozoites or merozoites are incubated with
Mabs or HBC before gastric inoculation (16, 108, 120). 1In
contrast, dams that recovered from enteric
cryptosporidiosis did not protect their infants from
experimental cryptosporidiosis (9, 62, 97, 98).
Immunomodulation therapies appear to hold some promise
for treating patients with cryptosporidial infections.
Rasmussen et al. demonstrate that dehydroepiandrosterone
(an immunomodulator) treatment has significant anti-
cryptosporidial activity in experimentally infected immuno-
suppressed rats (112, 116) and Syrian golden hamsters
(113). A treatment trial with oral bovine transfer factor
results in clinical and parasitologic cure in one of eight
patients with cryptosporidiosis and clinical improvement in
four others (85). Studies with interferon gamma show
promise in treating cryptosporidial infections (61, 91,
138). Adoptive transfer of murine lymphocytes to nude
(136) and mice with severe combined immunodeficiency (SCID)
mice with chronic cryptosporidiosis causes functional
immunologic reconstitution, followed by complete eradica-
tion of cryptosporidial infection (94). Severe combined

immunodeficient mice injected with unprimed BALB/c spleen
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cells prior to inoculation with C. parvum ococysts are
resistant to infection (91). Conversely, neither spleen
nor mesenteric lymph node cells, nor cells or supernatant
fractions harvested from in vitro cultures, transfer

protection from resistant adult donors to susceptible

infant recipients (60).

Immunobiology of C. parvum

Most investigators believe that humoral and cell-
mediated immunities are essential in removing C. parvum
from the infected host. The role of antibodies in the
natural resolution of cryptosporidial infections is sup-
ported by the observation that many of the early case
reports of human cryptosporidiosis were from patients with
immunoglobulin deficiencies (79, 125, 144).

Although the nature of acquired immunity to C. parvum
is not clear, it does result in the appearance of serum
antibodies that are specific to C. parvum. An immunoflu-
orescent antibody assay using tissues from experimentally
infected animals (28, 35, 134) or oocysts as antigen (23,
70) demonstrates that recovery from intestinal cryp-
tosporidiosis is usually accompanied by a marked parasite-
specific seroconversion. The first description of antibod-
ies to Cryptosporidium sp. was reported by Tzipori in 1981
in 10 animal species, including humans. Antibody was

detected by fluorescent antibody techniques performed on




cryostat sections of gut tissue from an experimentally
infected lamb. Antibody is present in a high proportion of

o

serum samples tested (134). Campbell and Current (198

w

show that five of five immunocompetent persons who were
tested between 360 and 400 days after recovery from a
single intestinal infection with Cryptosporidium had
detectable serum antibodies that were specific for the
parasite and which recognized all life cycle stages (22).
Neither of these studies using histochemical methods
defined precisely the nature of the immune response in
terms of immunoglobulin isotypes. An immunofluorescent
study using oocysts as antigen shows that Cryptosporidium-
specific IgG, IgM, IgA, and IgE are present in the sera of
persons who recover from intestinal cryptosporidiosis (23).
Procedures using sonicated oocysts as antigen have
demonstrated that there are Cryptosporidium-specific IgG
and IgM antibodies in the sera of persons who have recov-
ered from intestinal cryptosporidiosis (80, 137, 139, 140).
Ungar et al. (1986) demonstrate the presence of both
classes of Cryptosporidium-specific antibodies in AIDS
patients with prolonged cryptosporidiosis (139, 140).
Moreover, specific anti-Cryptosporidium antibodies are
detected by this method in the sera of cattle (84, 99, 106,
146), rats (47), and mice (128) that are infected with

Cryptosporidium.
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Coproantibodies have been detected in humans and

animals after natural or experimental cryptosporidial

Hh

infections. An enzyme-linked immunosorbent assay (ELISA)
was used to measure the C. parvum-specific IgA, IgG, and
IgM levels in stool and duodenal fluid of Filipino children
(80). Antibody levels were measured on admission to the
hospital, 1 week later, and at 6-week follow-up examina-
tions. The duodenal fluid samples show higher levels of
IgA at the 6-week collection. Stool samples have signifi-
cantly higher levels of IgM at all three collections and
for IgG at the acute collection. Immunoglobulin A is found
in detectable levels, though there was no difference when
compared with the controls (80). Fecal anti-C. parvum
immunoglobulins were monitored by an ELISA after infection
of calves with C. parvum. Experimental infection is
followed by a rise in local anti-C. parvum IgM levels from
day 5 PI. Immunoglobulin M peaks at day 14 PI and then
disappears quickly. Anti-C. parvum IgA levels increase
between days 7 and 14 PI and then slowly decrease. Fecal
anti-C. parvum IgG levels increase slightly during oocyst
output, and IgG disappears 3 weeks PI (106). Hill et al.
(1990) demonstrate that C. parvum-specific IgA is the only
isotype detected by immunofluorescent assay in fecal
extracts from infected lambs. Specific IgA reach a mean

peak titre in these lambs on day 16 and then decline (70)




Immunoblot analysis of sera and intestinal secretions
of BALB/c mice orally infected with ococysts reveals that:
1) the intestinal antibody response to the parasite is
characterized by a strong recognition of antigens by IgA
and a similar but less important pattern of binding with
local IgG; 2) no specific IgM is detected in intestinal
secretions; 3) specific IgA, IgG, and IgM are found in the
sera of infected mice; and 4) the antibody response
appears in serum and intestinal secretions between day 8
and day 15 PI (119).

Although marked humoral immune responses occur, it is
unlikely that antibodies alone play a major role in ac-
quired immunity because the membrane of host cell origin
that separates C. parvum sessile stages from the intestinal
lumen may prevent antibodies from binding to the nonmotile
parasitic stages. It is likely that a protective response
against C. parvum involves T lymphocyte activation and
induction of specific antibody responses (34). Responses
mediated by B or T lymphocytes, or both, appear to play a
role in eradicating C. parvum from the intestinal mucosa,
since animals with SCID develop a severe and persistent
infection (15, 57, 78, 91, 94, 95). Severe combined
immunodeficient animals, in addition to possessing nonfunc-
tional B and T lymphocytes, have normal natural killer (NK)
cell counts. The fact that chronic infections develop in

SCID mice suggests that either NK cells play a minor role
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in host responses to C. parvum or are dependent on T
lymphocytes or T lymphocyte products (e.g., cytokines) for
part of their function (95).

The importance of T lymphocytes in the clearance of C.
parvum from the mammalian intestine is supported by several
studies. B cell deficient (anti-p treated) neonatal mice
do not differ from untreated controls in the onset, peak,
or duration of cryptosporidiosis (128). Parasite exposure
of nude mice (63, 95, 136, 138) and rats (47) with greatly
reduced T lymphocyte function results in chronic symptomat-
ic cryptosporidiosis. 1In contrast, contrcl animals (eu-
thymic) have self-resolving infections with no detectable
signs of disease. An in vitro cell-mediated immune re-
sponse against C. parvum is demonstrated in the lymphocyte
blastogenesis assay. Peripheral blood lymphocytes from
calves (146) and murine spleens (145) exhibit a significant
antigen-specific blastogenic response.

Considerable effort has been spent in determining
which subset of T lymphocytes is responsible for clearance
of C. parvum from the infected mucosa and for rendering the
host resistant to reinfection. Flanigan et al. (1992) show
that self-limited cryptosporidiosis is associated with a
higher CD4+ count (helper T cells), CD8+ count (cytotoxic T
cells), and CD4+ to CD8+ cell ratio, although only the CD4+
count is an independent predictor of self-limited disease

(45). Chronic C. parvum infection can be produced in



infected mice that are treated with anti-CD4 Mab with or
without anti-CD8 Mab treatment (136, 138). In contrast,
infected mice that receive anti-CD8 Mab alone cease shed-
ding detectable cocysts. In a similar study MHC class II
deficient mice (lacking functional CD4+ cells) dosed with
oocysts remain infected 8 weeks postexposure (1). In
contrast, MHC class I deficient mice (lacking functional
CD8+ lymphocytes) clear C. parvum infections similar to
age-matched controls. Unlike those studies performed in T
lymphocyte deficient mice, others have shown the effect of
C. parvum on lymphocyte subpopulations. Experimental
cryptosporidial infections in adult female C57BL/6 mice
show that T cells (thymic and splenic) are significantly
higher than in the uninfected controls. Moreover, CD4+
lymphocytes in the spleen are increased in those mice with
cryptosporidiosis (37).

Another study used neonatal mice to characterize the
leucocyte subgroups present in PP from the ileum and
jejunum of C. parvum-infected mice. This study shows that
ileal and jejunal PP are functionally different in response
to C. parvum. Moreover, Boher et al. (1994) suggest an
involvement of jejunal PP in T lymphocyte dependent immuni-
ty against the parasite, whereas ileal patches may be
associated with B lymphocyte expansion and maturation (18).

The systemic and localized immune responses have been

determined in similar studies of intestinal and extrain-
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testinal parasites, such as Eimeria spp. (74) Ascaris suum
(88), Giardia spp. (65, 66), Trichinella spiralis (32),
Strongyloides stercoralis (48), Taenia hydatigena (96), and
the larval form of Dermatobia hominis (54). Although there
are substantial differences in the biology of Giardia spp.
and C. parvum, the immunological responses to these para-
sites are astoundingly similar (Table 1). As in the case
of cryptosporidial infections, immunologic clearance of
giardiasis depends on lymphocytes bearing CD4+ receptors.
One difference that should be noted, however, is that the
susceptibility of immunocompetent rodents to C. parvum is
age related. Nevertheless, studies investigating the
dynamics of the immune response to these parasites will be
useful in developing parasiticidal agents and immunomod-
ulation therapies.

Very little is known about the immunological response
to cryptosporidiosis that does not involve the recognition
of antigen by lymphocytes and the mounting of specific
immune responses (e.g., nonspecific immunity, anatomical
barriers, etc.). Experimental cryptosporidial infections
in fetal lambs shows that hypercellularity of the
intestinal lamina propria occurs and consists of a mixed
infiltration of neutrophils, M@, and eosinophils.
Moreover, there appears to be an increase in phagocytic
activity with time (77). The role that granulocytes play

that C. parvum infections in mice with a deficit in ery
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TABLE 1. List of cell phenotypes involved in
Giarida spp. and Cryptosporidium infections

Cell Type Giardia spp. Cryptosporidium
CD4+ +(67) +{1, 37)
CD8+ -(67) ={1. 1383
IgG producing +(13, 75) +(80, 137)
IgM producing +(13, 75) +(80, 137)
IgA producing +(13, 75) +(70, 80)
IgE producing Unknown? +(23)
NK -(68) {95}

+ plays a role in the clearance of parasitic infection (Ref.)
- plays no role in the clearance of parasitic infection (Ref.)
NK = natural killer

throcytes, granulocytes, and mast cells are similar to in
the elimination of C. parvum is uncertain because Harp and
Moon (1991) show infections in normal mice (58). The role
of M@ is more complex than that of granulocytes. 1In
addition to having important pnagocytic functions, M@ can
participate in the initiation of a specific immune response
by processing the antigen and presenting it to lymphocytes
(30, 82). Conceptually, M@ should exert an active defense
~against C. parvum, however the parasite appears to be
resistant to lysosomal digestion. It is this resistance
that permits C. parvum to multiply in the cytoplasm of MQ;
therefore, parasites within M@ may gain access to other
organs and tissues (90). Nevertheless, parasites within M@
are particularly vulnerable to the effects of M@ products

if their defenses break down (31). Additional evidence



22

that supports the involvement of nonspecific mechanisms of
resistance in cryptosporidiosis is supported by studies

done with germ-free and flora-bearing mice (57, 60).

Intestinal immunity

The mucosal epithelium overlying the PP appears to be
modified for immune function, specifically the uptake and
transport of luminal antigens across the epithelium. 1In
the small-intestinal PP, specialized epithelial cells,
designated "M cells" (microfold cells), have been reported
to be capable of transporting particles ranging in size
from proteins to intact cryptosporidia (89) from the lumen
to underlying lymphoid tissue. This path of entry presum-
ably permits antigenic sampling by the intestinal immune
system. Mechanisms other than invasion of the mucosa that
might provoke an immune response includes apoptosis, which
can take place in enterocytes. This "programmed" cell
death may result in antigen being presented to the immune
system by phagocytes that have eliminated these membrane-
bound particles (23).

The majority of T and B lymphocytes continuously
recirculate between the secondary organs (i.e., lymph nodes
and PP) and the bloodstream. This continuous recirculation
not only ensures that the appropriate lymphocytes will come
into contact with antigen, but also ensures that appropri-

ate lymphocytes will encounter each other. Lymphocyte



recirculation depends on specific interactions between the
lymphocyte glycoproteins on the cell surface and the
surface of specialized endothelial cells lining small veins
(called postcapillary venules) in the secondary lymphoid
organs. Some lymphocytes express specific glycoproteins
that attracts them to the PP; these cells constitute a gut-
specific subsystem of lymphocytes specialized for respond-
ing to antigens that enter the body from the intestine (2).
After the lymphocytes percolate through the PP, they
accumulate in postcapillary venules that leave the PP and
connect with other lymphatic venules. Passing into in-
creasingly larger vessels, the lymphocytes eventually enter
the systemic compartment (2). Within the systemic compart-
ment (including the spleen), the lymphocytes differentiate
(93, 131) and eventually enter the bloodstream. Lympho-
cytes then leave the blood stream and migrate to the lamina
propria of the intestinal villi and other mucosal sites by
squeezing between specialized endothelial cells (2).
Hypercellularity of the intestinal lamina propria is
an essential component of intestinal immunity. Many
lymphocytes and immunoglobulins make their way through the
lining epithelium to enter the intestinal lumen (55).
These antibodies presumably eliminate the parasite by
mediating biological processes including motility, attach-
ment to the host cell, modification of the host membrane,

and entry into the host cell (111). Moreover, antibodies
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may result in opsonization of the parasite for killing by

complement or by the mechanism of antibody-dependent

(IgA) can be transported across epithelial cells of the
intestine from the basal to the apical surface of these
cells by transcytosis (2). Consequently, it is reasonable
to speculate that C. parvum-specific IgA might reach the
basal membrane of attached cryptosporidia directly via the

epithelial cell cytoplasm.

Immunosuppressive agents

Dexamethasone is a potent synthetic glucocorticoid
that has striking pharmacologic effects on lymphoid tissues
and cells. These effects form part of the basis for the
widespread use of corticosteroids in the treatment of a
variety of diseases involving immunologic, inflammatory, or
neoplastic processes. The efficacy of DEX in the treatment
of various inflammatory and immunological processes can be
accounted for by a combination of mechanisms such as
inhibitory action on the production of important lym-
phokines and monokines. Additional mechanisms include: 1)
effective change in the traffic of various leucocyte
populations; and 2) ability to lyse lymphocytes through
induction or enhancement of the action of a specific DNAase
(4), resulting in digestion of cellular DNA. Animals have

been divided into glucocorticoid-sensitive and gluco-
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Glucocorticoid-resistant

species include most domestic animals as well as man,
ferret, guinea pig, and monkey, whereas the rat, mouse,
hamster, and rabbit are considered glucocorticoid-sensi-
tive. The differentiation is usually based on the relative
ease of producing lymphoid depletion after a given regimen
of systemic glucocorticoids (29). The differences in
susceptibility to glucocorticoids are often overlooked.
However, they are of crucial importance in the interpre-
tation of data. Therefore, the emphasis of this review
concerns the effects of DEX in murine models. In sensitive
animals, glucocorticoids profoundly affect lymphoid tis-
sues. The animals exhibit lymphopenia (20) and shrinkage
of the thymus, spleen, and lymph nodes.

Inhibition of circulating antibody production by DEX
has repeatedly been shown in glucocorticoid-sensitive
animals. For example, rats treated with DEX have lower IgG
levels in serum (115, 147), saliva , and vaginal secretions
(147). Rodents treated with DEX have elevated IgA levels
in serum, while IgA levels decrease in saliva, vaginal
secretions (147), and bile (3). Moreover, C57BL/6N mice
that are immunosuppressed with DEX have fewer total B
lymphocytes in the spleen (115).

In glucocorticosteroid-sensitive species, there has
been relatively little study of classic manifestations of

cell-mediated immunity. Immunosuppression of murine CD4+
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MATERIALS AND METHODS

Animal housing and husbandry

Female C57BL/6N strain mice weighing 14 to 16 grams
(approximately 5 to 6 weeks old) were purchased from
Simonson Laboratories (Gilroy, CA) and maintained in the
Laboratory Animal Research Center at Utah State University.
Mice were housed in transparent plastic cages with stain-
less steel wire lids at approximately 22°C and a 12-hour
light-dark cycle. These animal cages were kept in high-
efficiency particulate air-filtered laminar flow units.
Five mice (within the same treatment group) were housed per
cage, on corncob bedding with food and water provided ad
libitum. The mice were randomly placed into one of the
following groups (see Fig. 2 for a graphic illustration of
the groups described below) :

Group 1. Mice were immunosuppressed with daily DEX
intraperitoneal injections for the duration of the experi-
ment .

Group 2. Mice were immunosuppressed with DEX by daily
intraperitoneal injections and oocysts of C. parvum were
intragastrically administered (106 oocysts/mouse) 3 days
after immunosuppression began. All mice within this group
continued to receive DEX intraperitoneally after oocyst

inoculation and throughout the duration of the experiment.




(n)= mice per group

1) DEX Only (41)
2) DEX/C. parvum (34)
postinfection

3) C. parvum Only (36)

4) Normal (44)

2 Experimental design for investigating the phenotypic profiles of cells in

Figure 2.
mice treated with dexamethasone (DEX) and infected with Cryptosporidium parvum.

Monoclonal antibodies directed against CD4+ and CD8+ T cells (helper and cytotoxic,
respectively), and B cells (expressing IgG, IgM, and IgA receptors), and macrophages
(MJ) were used to quantify these leucocytes within the spleens and Peyer's patches (PP).
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Since the prepatent period of C. parvum is 3 days, no mice
were killed on day 0.

Group 3. Mice received intragastrically 106 c. parvum
oocysts per mouse. No mice were killed on day 0, because
it takes 3 days for a patent cryptosporidial infection to
develop.

Group 4. This group of mice served as the nonimmuno-
suppressed/noninfected (normal) controls.

Spleen tissues were used to represent the systemic
immune response and the PP from the small intestine were
used to determine the localized immune response. In order
to determine the best methodology for this study, avidin
biotin complex staining, the ELISA-spot assay, flow cyto-
metric, and immunofluorescence technigues were employed.
0Of the four methodologies, flow cytometric analysis proved
to be the most suitable. Flow cytometry and Mabs directed
against lymphocytes bearing CD4+, CD8+, IgG, IgM, IgA, and
M@ receptors were used to characterize the kinetics of the

cell populations in mice infected with C. parvum.

Immunosuppression of mice

The immunosuppressed adult mouse model established by
Rasmussen and Healey (114) for chronic cryptosporidiosis
was used in this experiment. Limitations within this
experiment necessitated slight modifications of their

originally proposed protocol. Briefly, DEX (Sigma Chemical
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Co., St. Louis, MO) was diluted from a stock solution (6.25
mg/ml in absolute ethanol) to a working solution (0.625
mg/ml in sterile water) and administered in a daily regimen
of 125 Mg per mouse. All mice within groups 1 and 2
received DEX by intraperitoneal injection through a 26 1/2
gauge syringe needle throughout the duration of the experi-
ment. Mice in group 2 received DEX 3 days before infection
with C. parvum. Nonimmunosuppressed mice received similar

injections with 0.2 ml of sterile water.

Oocyst production and purification

C. parvum oocysts originally isolated from Holstein
calves and obtained from Dr. Harley Moon (NADC, Ames, IA)
were used to infect 1- to 2-day-old Holstein calves. At
the peak of oocyst shedding, feces were collected daily,
mixed with an equal volume of 5% potassium dichromate
(K2Crp07), and stored at 4°C. Feces were strained sequen-
tially through stainless steel screens with a final mesh
size of 230 (63 Uum porosity). Oocysts were purified from
feces using discontinuous sucrose gradient centrifugation
techniques (10). In brief, the discontinuous sucrose
gradients used in the oocyst purification process were
prepared from Sheather's solution (320 ml H;0, 500 g
sucrose) diluted with 0.025M PBS and supplemented with 1%
Tween 80. Eighty milliliters of 1:4 solution (specific

gravity 1.064) were layered over 80 ml of the 1:2 solution




strained feces in potassi-

um dichromate was layered over the 1:4 solution. Tubes
were centrifuged at 1500 X g for 25 min and the oocysts
were recovered from the interface of the sucrose layers and
washed with 0.85% saline at 1500 X g (twice for 10 min).

esuspended to 40 ml with 2.5% potassium

=

The pellets were
dichromate, dispensed in 5-ml aliquots over new gradient
tubes (10 ml 1:2 Sheather's layered over 10 ml of 1:4

solution), and centrifuged as before. Pellets from the

oocyst-containing layers of the second centrifugation were

esuspended in potassium dichromate and stored at 4°C.

Oocyst preparation and
inoculation of mice

Experimental murine cryptosporidial infections of
groups 2 and 3 were established by using oocysts (less than
4 months old). Oocyst inoculations were prepared by
washing oocysts three times with sterilized RPMI 1640 cell
culture medium (Sigma Chemical Co.) to remove the potassium
dichromate. Washed oocysts were then enumerated using a
hemocytometer observed under bright field microscopy and
diluted to 106 oocysts per 100 pl of RPMI 1640 base medium.

Mice were inoculated intragastrically with 106 purified

(1]

oocysts through a 22-gauge straight feeding needle.




Fecal collection
and examination

Fecal pellets were collected from each mouse on every
third day of the experiment to monitor oocyst shedding.
Mice were removed from their cages and held briefly in a
laminar flow hood to allow for collection of feces. Fecal
samples were stored in microfuge tubes at 4°C in 300 pl of

2.9
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potassium dichromate solution until analyzed. Fecal
samples were prepared on microscope slides and assayed for
the presence of oocysts using a fluorescent-labeled oocyst-
specific Mab-based indirect immunofluorescent assay (11).
Briefly, fecal samples were broken apart with a disposable
applicator stick and then well vortexed. Four bacterial
loops of feces were smeared on the slide to cover approxi-
mately the area equivalent to a quarter dollar. Slides
were air-dried and fixed by heat. Fifty microliters of
undiluted hybridoma supernatant containing anti-oocyst Mab
9D10 (isotype IgM) produced in this laboratory were applied
over the fecal smears. Fecal smears were then incubated
for 30 min at 41°C and 100% humidity. Unbound antibody was
removed by washing slides in three changes of PBS for 3 min
each. Care was taken to wipe off excess PBS from the
slides before applying the second antibody. Fluorescein
isothiocyanate (FITC) labeled goat anti-mouse IgM (Hyclone
Laboratories Inc., Logan, UT) diluted 1:60 in PBS was then

applied to the fecal smear (90 pl) and incubated as before




for 30 min Specimens vashed in PBS as before to
remove unbound antibody. Slides were mounted with 1:1

glycerol/PBS and covered with glass coverslips (0.17-0.25
mm thick). Prepared slides were stored at -20°C until
examined with epifluorescence microscopy . Slides were
examined using an ultraviolet light microscope (Carl Zeiss,
Oberkochen, Germany) and the number of oocysts observed in

a single pass (40x objective) through the center of the

Histological collection
and examination

Terminal ilea were harvested and fixed in 10 ml of 10%
buffered formalin (pH 7.5), embedded in paraffin, sectioned
(4 pm), and stained with hematoxylin and eosin. Stained
sections were examined for C. parvum colonization by using
bright field microscopy 1n a blinded fashion. Parasites
were quantified by counting the intestinal epithelial cells
and the parasites from the apex of a villi to the apex of

the adjacent villi. Five random villi were counted.

Avidin biotin complex
(ABC) staining

Immunoperoxidase staining was done on paraffin-
embedded tissue sections according to the method of Loose
et al. (83). Briefly, the spleen, terminal ileum, and

semitendinosus muscle were harvested and fixed in B-5




fixative (described in the following section) for either 3,
5, 7, or 7.5 hours. Tissues were then processed, embedded
in paraffin, and sectioned in a routine manner. Sections
were heated to 70°C for 5 min. The slides were then
treated with the following reagents: 1) xylene for 5 min;
2) cold 95% ethanol for 5 min; 3) cold PBS wash for 10

min; 4) 0.3% hydrogen peroxidase-methanol mixture for 30

min to quench endogenous peroxidase activity; 5) PBS wash

for 10 min; 6) normal goat blocking serum for 30 min; 7)
biotinylated anti-mouse Ig (Hyclone Laboratories Inc.), IgA
(Sigma Chemical Co.), or CD4 (PharMingen, San Diego, CA)

Mabs for 30 min. Negative controls included biotinylated
goat anti-swine IgG (Vector Laboratories., Burlingame, CA)
and the omission of i) primary antibody ii) streptavidin

horseradish peroxidase, and iii) diaminobenzidine tetrahy-

drochloride (DAB); 8) three PBS washes for 5 min each; 9)
streptavidin horseradish peroxidase complex reagent (Hy-
clone Laboratories Inc.) for 45 min; 10) three PBS washes
for 5 min each; 11) DAB (32 mg in 15 ml of Tris buffered
saline with 12 pl of 30% hydrogen peroxide) for a 5 min
incubation; and 12) a tap water rinse to stop the reaction.
To eliminate background staining, modifications of
previously described procedures were used and adapted to

this methodology (5, 19, 39, 64, 71-73, 81, 122, 143).
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Immunofluorescence techniques

Tissues were harvested and prepared immediately after
mice were killed. 1In order to determine the optimal
fixation conditions of the tissues, trials using the
following fixatives, at varying time lengths, were attempt-
ed (40, 149):

1) B-5 fixative: 90 ml aqua dest, 6 g mercuric chlo-

ride, 2.074 g sodium acetate and 10 ml of 37%

formaldehyde solution, pH 5.7;

[ 38}

10% buffered formalin: 10 ml of 37% formaldehyde

solution and 90 ml of PBS, pH 7.5;

w

Bouin's solution (Sigma Chemical Co.); and

-

Histochoice tissue preservative (Ameresco, Solon,
CH) .

Specimens were processed, embedded in paraffin, and
sectioned in a routine manner. After embedding, sections
(4 um) were cut and prepared for deparaffinization and
direct immunofluorescent staining according to the method
of Dorsett and Ioachim (40), with slight modifications.
Slides were heated for 30 min at 80°C. Deparaffinization
was accomplished by a 5-min wash in xylene and sequential
passage through two changes each of absolute ethanol, 95%
ethanol, 80% ethanol, and PBS (0.025M PBS, pH 7.3). Rehy-
drated sections were washed for 2 hours with constant
agitation in PBS to remove the remaining fixative. Sec-

tions for direct immunofluorescence were then overlayed
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and incubated in a humid chamber at 41°C
Controls consisted of sections in which a Mab of irrelevant
specificity was substituted for the FITC-labeled antibody.
Unbound antibody was removed by washing in three changes of
PBS for 10 min with constant agitation. Slides were
counterstained with 3% methyl green (diluted in methanol)
for 1 to 2 min, followed by a brief rinse in distilled
water. Coverslips were added with 1:1 glycerol/PBS.

Tissue sections were examined microscopically in a blinded
fashion.

Because the antibodies may have been affected by
buffers, incubation times, and relative conditions, this
protocol was altered. The following buffers were tried for
washing and to dilute the antibodies: 0.9% saline; 50mM
Tris buffered saline; and 0.025M PBS. All buffers were
tested with or without bovine serum albumin (BSA). This
was done because BSA may effect antigen recognition by
certain antibodies (130). Slides were overlaid with
antibodies (undiluted to 1:1000) and incubated at either
4°C or 41°C and 100% relative humidity. Tissue sections
were incubated under these conditions for 0.5, 1.0, 1.5, or
14.0 hours.

An indirect immunofluorescent assay was carried out as
described in the previous paragraph, with the following

Before the tissue sections were overlayed

modifications.




against mouse CD4+ and CD8+ lymphocytes (Gibco BRL,

urg, MD) were applied to the sections. Slides
were incubated for 1 hour at 41°C and 100% relative humid-
ity. Slides were washed in three changes of PBS for 10 min

each.

Cryostat preparation

I

he cryostat chuck was stored at -20°C. A thin layer
of OCT-embedding compound was applied to the chuck. A
spleen was placed on the chuck and additional OCT-embedding
compound was applied to cover the entire tissue. The
spleen was cut on the microtome and applied to gelatin
coated (subbed) slides. Slides were allowed to air-dry and
then fixed by immersing in acetone for 5 min. Slides were
stored at -20°C (<24 hours) until stained by immunoflu-
orescent techniques as previously described in the section

outlining tissue preparation and immunocyte detection.

ELISA-spot technique

A modification of the ELISA-spot techniques of Franci
et al. (46) and Pestka et al. (109, 110) was attempted to
quantify splenic lymphocytes in immunocompetent mice. In
brief, a 96-well microtiter ELISA plate was uniformly
coated with gelatin solution or poly-1,-lysine. Each well
was washed in PBS, emptied, and 0.3 ml of lymphocyte

suspension (105 to 106 cells/ml) in RPMI 1640 containing




0.5% BSA was added to
plate. The plates were centrifuged for 5 min at 450 g.
Biotin conjugated goat anti-mouse Igs, IgA, and CD4 Mabs
(diluted appropriately in 1% BSA-PBS) were added and plates
were incubated for 60 min at 41°C. Plates were washed four
times with PBS containing 0.5% Tween 20, and streptavidin
horseradish peroxidase was added. Plates were covered and

incubated at room temperature for 30 min. Following three

PBS washes, DAB solution was applied. Incubation was

continued for 5 min on ice and in the dark. The reaction
was stopped with a PBS wash. Plates were examined at low
power under a dissecting microscope for brownish spots

which were indicative of lymphocytes.

Cell staining for flow cytometry

Immediately after the mice were killed, spleens and
intestines were removed from the peritoneal cavities. The
intestine was cut ~0.5 cm below the stomach and just above
the cecum. Both spleen and small intestine were immedi-
ately placed in plastic petri dishes with RPMI 1640 con-
taining 1 mM EDTA (ethylenediaminetetraacetic acid), to
prevent drying. Fat and connective tissue were removed
from the tissues. The spleen was weighed and set aside
until the PP were harvested. Peyer's patches were removed
by grasping them with a forceps and excising with a

scalpel. Spleens and PP were put into separate stomach
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bags with RPMI/EDTA solution and homogenized in a stomacher
(Tekmar Co., Cincinnati, OH) for approximately 1 min. The
resulting cell suspension was poured into 15-ml tubes.
Visible intestinal pieces and spleen capsules were removed
with disposable applicator sticks. Cell suspensions were
centrifuged for 5 min at 300 g, followed by decantation of
the supernatant. Nine ml of double distilled water was
added to the spleen cell suspension to lyse erythrocytes.
One to 2 seconds after hemolysis, 1 ml of 10X PBS (80 g
NaCl, 2 g KC1l, 11.5 g NazHPO4, 2 g KH2PO4, and 1000 ml
water) was added to prevent from lysing. After centrifug-
ation at 300 X g for 5 min and decantation of the super-
natant, the cells were washed two times in RPMI solution
with 2% fetal bovine serum (FBS). Before staining, the
cells were washed with RPMI solution without FBS. The
pellet was resuspended in 0.5 ml of RPMI solution. The
remaining leucocytes were counted with a Coulter Counter
(Coulter Corp., Hialeah, FL) and aliquoted into polypropy-
lene sample tubes (106 cells/100 pl). This 100 pl aliquot
was stained with a mixture of Mabs: R-phycoerythrin (R-PE)-
labeled anti-mouse CD8 and FITC-labeled anti-mouse IgM
Mabs. A second tube with a 100 pl aliquot of cells was
stained under identical conditions with a mixture of R-PE-
labeled anti-mouse CD4 and FITC-labeled anti-mouse IgG
Mabs. Similarly, a third tube with a 100 pl aliquot of

cells was stained with R-PE-labeled anti-mouse M@ and FITC-




labeled anti-mouse IgA. All antibodies were diluted in
0.025 M PBS as recommended by the supplier. Staining was
done at room temperature in the dark for 20 min. The cells
were then fixed with 1 ml of 0.5% paraformaldehyde (Sigma
Chemical Co.). Samples were immediately centrifuged as
before. Supernatant was decanted and 0.5 ml of PBS added.
Samples were kept <24 hours in the dark at 4°C until

analyzed by flow cytometry.

Antibody specificities and
controls for flow cytometry

Goat antibodies directed against mouse IgG, IgM, and
IgA were obtained from Sigma Chemical Co. Rat antibodies
directed against mouse CD4+ and CD8+ cells were purchased
from PharMingen. Fluorescent-labeled rat anti-mouse MQ
antibody was obtained from Caltag Laboratories (San Fran-
cisco, CA). These antibodies were affinity purified by the
supplier and tested for specificity against the relevant
class of mouse antibodies by immunoelectrophoresis. The
affinity-purified antibodies were conjugated to FITC or R-
PE by the supplier. Negative antibody controls for testing
nonspecific binding were prepared as previously described
in the paragraph on flow cytometric cell staining. Howev-
er, the antiserum for the B lymphocyte populations was
FITC-labeled goat IgG and R-PE-conjugated rat IgG2a Kappa

isotype for the CD4+ and CD8+ populations. The isotype
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control used for the M@ populations was R-PE-conjugated rat

IgG2b.

Flow cytometric analyses

Dual-color fluorochrome analysis was performed with an
EPICS-C model flow cytometer (Coulter Corp.) equipped with
an argon laser set at 488 nm. Cells were carried in double
distilled water as sheath fluid through a 76-micron flow
tip. Twenty-five hundred cells were analyzed for each
sample. Fluorescence data for FITC and R-PE were obtained
using a bit-map format gated on the forward light scatter
versus ninety-degree light scatter. Fluorescence intensity
was standardized using latex beads of 10 microns (Coulter
Corp.) and by adjusting the laser power to place the log-

green histogram in channel 119 (148).

Statistical analyses

For each of the four treatment groups, eight mice were
killed on each scheduled date, with the exception of groups
2 and 3 on day 0. Of the eight mice from each treatment
group, the respective tissues (spleens and PP) from four
mice were pooled, resulting in two repetitions. Spleen
cell percentages reported by the flow cytometer were
multiplied by the mean of their spleen weight to estimate
absolute numbers. A square root transformation was re-
quired to stabilize variances prior to statistical analy-

sis. Because data were not collected from groups 2 and 3
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compare different groups within a date and different dates

within a group.




RESULTS

Immunohistochemistry

Identification of 1lymphocytes in paraffin-
embedded sections. Direct immunofluorescence techniques
applied to paraffin-embedded sections stained B lymphocytes
7

in the spleen and intestinal lamina propria. Three to 7

urs of fixation in B-5 fixative resulted in poor morpho-

logical preservation, although immunohistochemical reactiv-
ity with B lymphocyte receptors could be detected. Plasma
cells stained weakly in the tissues that were fixed in
Histochoice tissue preservative. Fixation in 10% buffered
formalin for 4 to 7 hours showed reactivity for plasma
cells, although it was relatively unsuitable for quantitat-
ing lymphocytes in the intestinal lamina propria. Fixation
in Bouin's solution for 6 hours resulted in excellent
preservation of morphology and proved to be a good fixative
for lymphocytes bearing Ig receptors, which showed complete
preservation of their capacity to react with FITC-labeled
antibodies (Figs. 3 and 4).

A pilot study using direct immunofluorescence on
paraffin-embedded tissues demonstrated that lymphocytes
bearing IgA receptors are significantly decreased in 9-
week-0ld mice that were immunosuppressed. Administration

of DEX for 20 days significantly reduced the numbers




FIG. 3. Immunofluorescent (A) and methyl green (B)
staining of the terminal ileum of a control mouse. Note
the fluorescing B lymphocytes (expressing IgA receptors)
present in the lamina propria (400x%) .




FIG. 4. Immunofluorescent (A) and methyl green (B)
staining of the spleen of a control mouse. Note the
fluorescing B lymphocytes expressing IgM receptors (400x) .
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FIG. 5. Immunohistochemical evaluations

comparing splenic lymphocytes in Cryptosporidium
parvum (Cp)-infected mice to dexamethasone (DEX) -
treated mice with chronic infections. Bar height
represents the mean number of lymphocytes counted
in 15 random fields (400x). Error bars indicate
standard deviations of the mean. * indicates
significance (P<0.05) when compared to DEX + Cp.

of B lymphocytes expressing IgA receptors in the spleen and
intestinal lamina propria (P<0.05 and P<0.02, respective-
ly). The number of IgG and IgM receptor bearing B cells in
these mice were not significantly different from those of
the nonimmunsuppressed controls (Figs. 5 and 6).

Direct and indirect immunofluorescent stainings were
unsuitable for immunohistochemical examination of M@ and T

lymphocytes. Altering the buffer conditions, incubation

times, and temperatures failed to stain M@, CD4+, or CD8+
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FIG. 6. Immunohistochemical evaluations

comparing lymphocytes within the ileal lamina
propria of Cryptosporidium parvum (Cp)-infected
mice to dexamethasone (DEX)-treated mice with
chronic infections. Bar height represent the
mean number of lymphocytes counted in the lamina
propria of 15 villi. Error bars indicate
standard deviations of the mean. * indicates
significance (P<0.02) when compared to DEX + Cp.

cells within the spleen or intestinal lamina propria.
However, the plasma cells stained with each alteration.
Immunofluorescent staining of frozen sections.
Immunofluorescent techniques applied to frozen sections had
several shortcomings that limited their application to this
study. The antiquated cryostat microtome cut the tissues

in varying thicknesses that were thicker than desirable.




morphological preservation, insufficient resolution, and

nonspecific fluorescence.

Immunoperoxidase staining. Avidin biotin complex
staining on paraffin-embedded tissues was unsuccessful.
Modifications of the protocol (i.e., antibody and enzyme
dilutions, filtration of substrate, incubation time and
temperature, blocking nonspecific binding, and blocking
endogenous peroxidase activity) failed to eliminate back-
ground staining.

ELISA-spot technique. Attempts to stain lympho-
cytes with the ELISA-spot technique were met with limited
success. Some immunochemical reactivity was noticeable.
However, the modifications made to this technique resulted
in clumps of lymphocytes aggregating at the edge of the
wells. 1In addition, there was considerable nonspecific

binding.

Infection dynamics

Oocyst production and intestinal colonization
following C. parvum infection. All mice were confirmed
to be uninfected with C. parvum when the experiment began.
Both control groups (normal and immunosuppressed mice)
remained uninfected with C. parvum throughout the experi-

ment. All mice in groups 2 and 3, respectively, were
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FIG. 7. Fecal oocyst shedding intensities
comparing Cryptosporidium parvum-infected mice
immunosuppressed with dexamethasone (group 2)
and nonimmunosuppressed mice (group 3). Data
are illustrated as mean oocyst intensity. Error
bars indicate standard deviations of the mean.

shedding oocysts by day 3 PI. However, after day 9 PI, all
mice in group 3 had ceased shedding and remained negative
for fecal oocysts throughout the experiment. All mice in
group 2 continued to shed oocysts until the experiment was
terminated (Fig. 7).

Similar results were observed when ileal sections were
examined for parasite colonization. However, there was a
notable difference on day 3. Mice in groups 2 and 3 shed
approximately an equal number of ococysts 3 days postinoc-

ulation, whereas histological examination of the terminal
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FIG. 8. 1Ileal colonization by Cryptosporidium
parvum comparing mice treated with dexamethasone
(group 2) and nonimmunosuppressed (group 3) mice.
Data are shown as the mean parasite to epithelial
cell ratio. Error bars indicate standard
deviations of the mean.

ilea showed notably more parasite per epithelial cell in
infected immunosuppressed mice (Fig. 8).

Effects of DEX and C.parvum on spleen weights.
When DEX was administered for 3 consecutive days, the mean
spleen weight of mice in groups 1 and 2 was about 30 mg
less than the average spleen weight of nonimmunosuppressed
mice in groups 3 and 4. After an initial decrease, spleen
weights of immunosuppressed mice remained fairly constant.

C. parvum did not significantly affect splenic weights.
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FIG. 9. Effects of Cryptosporidium parvum and
dexamethasone on spleen weights. Data are presented
as the mean of spleen weights. Error bars indicate
standard deviations of the mean.

Effects of DEX and C. parvum on body weights.
Mice that were not immunosuppressed gained weight steadily
as the experiment progressed. Mice from groups 1 and 2
lost weight during the first 12 days of immunosuppression.
on day 18 (21 days after immunosuppression began), the mice

in groups 1 and 2 gained weight (Fig. 10).

Flow cytometric analysis
Comparative effect of C. parvum on splenic
lymphocytes within treatment groups. With the excep-

tion of an isolated incident on day 3, no statistical
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FIG. 10. Effect of Cryptosporidium parvum and
dexamethasone on body weight. Data are expressed as
the mean weight gain. Error bars indicate standard
deviations of the mean.

difference was present when the absolute number of splenic
lymphocytes of infected and normal mice were compared. On
day 3 PI, C. parvum-infected mice had significantly lower
levels (P<0.05) of cells bearing IgA receptors than the
normal controls. Furthermore, there were no significant
differences in the absolute numbers of splenic cells
(expressing CD4+, CD8+, IgG, IgM, IgA and MO receptors)
when mice from groups 1 and 2 were compared (Table 2).
Comparative effect of C. parvum exposure on
splenic lymphocytes over time. The absolute numbers of

M@ and T lymphocytes bearing CD4+ and CD8+ receptors were




TABLE 2. Phenotypic profiles of lymphocytes* in the spleens of
Cryptosporidium parvum-infected and control mice

Cell Type Day group 1 group 2 group 3 group 4

CD8+ 0 2.11%0.10 ND$§ ND 2.76%0.91

3 2.23%0.084 2.50%0.10¢ 2.30%£0.09 2.38%0.02

6 2.19+0.22d 2-05£0,13 2.08%0.25 2.2540 .22

9 2.10%0.09d 1.6210.084d 20340, 17 2.09+0.17

18 2:77%0.05 2.48%0.08 2.35%0.01 2.32%0.26

CD4+ 0 1.49+0.242bcdB ND ND 3.43%0.084d

3 2.65%+0.21B 3.25%0.90 3.40%0.24 3.62+0.07

6 2.7010.01AB 2.8240.23B 3.72%0.51 3.96%0.29

9 2.92+0.32AB 2.2910.1148B 4.111+0.01 4.03%0.01

18 2.41+0.183B 2.56+0.332B 3.87%0.05 4.11%0.44

IgG producing 0 2.9410.3198 ND ND 5.07+0.13d

3 3.52+0.2549AB 3.80%0.51C4AB 4 6640 .26d 4,9910.11

6 2.9740.17dAB 3.074£0.33dAB 4.23%0.38 4.39%0.35

9 2.9410,52dAB 2.58%0.02dAB 4.421%0.26 4.63%+0.30

18 1.3510.22AB 1.6710.183B 3.:67£0, 13 4.231£0.08

IgM producing 0 3.16+0.22¢cd ND ND 4.65+1.12
3 3.30+0.21cdAB 2.98%0.95d9AB 5.1520.07bed 5.8940.55bcd

6 2.26+0.279AB 2.08+0.339AB 3.76x0.15 4.01%0.21

9 1.3240.932B 1.9740.134AB 3.65%0.35 3.6710.19

18 0.00+0.002B 0.00+0.00AB 2.531%0.09 3.12+0.32




TABLE 2 (continued)

IgA producing 0 1.92%0.37d ND ND 3.39%0.81b
3 2.4040.07bcdAB 2 (09+0.10bcdAB 3 15+0,18bcB 3, 98+0.23bcd
6 1.28+0.019AB 1.22+0.1738B 2.23%0.18 2.20%0.29
9 0.95%0.42dAB 0.84+0.50AB 2.2410.06 2.37+0.60
18 0.00£0.002B 0.51%£0.02AB 2:7120.01 2.8410.11
Macrophage 0 1.66+0.00P ND ND 1.69+0.24b
3 1.74£0.05P 2.01#0.61PAB  1.0940.11 1.0940.05
6 0.8340.26d 1.03%0.22d 0.9340.04 0.84+0.26d
9 1.29+0.09d 1.23+0.06 1.19+0.13 1.1740.16
18 2.154+0.04 1.84%0.04 1.5740.01 1.50%0.45

*Responses expressed as the square root of the absolute number * standard deviation.

a significant when compared with day 3 in the same group (P<0.05).
b significant when compared with day 6 in the same group (P<0.05).
c significant when compared with day 9 in the same group (P<0.05).
d significant when compared with day 18 in the same group (P<0.05).
A significant when compared on the same day to group 3 (P<0.05).

B significant when compared on the same day to group 4 (P<0.05).

§ not done.
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very similar throughout the experiment. Conversely, in
infected mice (group 3), the absolute number of B cells
(expressing IgG, IgM, and IgA receptors) varied signifi-
cantly (P<0.05) when kill dates were compared. Lymphocytes
with IgG receptors were significantly higher (P<0.05) on
day 3 than on day 18. The levels of lymphocytes bearing
IgM receptors were significantly higher (P<0.05) on day 3
than on days 6, 9, and 18. Similarly, IgA levels were
significantly higher (P<0.05) on day 3 than on days 6 and
9. These trends seen in lymphocytes (expressing IgG, IgM,
and IgA receptors) within the spleens of C. parvum-infected
mice were also seen in the normal mice (Table 2).
Comparative effect of DEX on splenic 1lympho-
cytes within treatment groups. Mice treated with DEX
(group 1) for 3 consecutive days showed a significant
decrease (P<0.05) in the absolute number of cells bearing
IgG markers when compared to nonimmunosuppressed mice in
group 4. After 6 days of daily DEX treatment, splenic IgG
lymphocytes were consistently less than the nonimmunosup-
pressed mice. Both IgM (P<0.05) and IgA (P<0.05) levels
were significantly decreased in the spleens of mice that
received DEX for 6 consecutive days. The IgM, IgG, and IgA
decreases seen in the spleens of DEX-treated animals were
consistently lower than in nonimmunosuppressed mice for the

duration of the experiment. When comparing groups within a



N

Q
[a]
(e}
=

o)
i

w

Bazn
Q
3
o]
{1
(o]
w N

S

Q
[}
Q
=

o]
>

ey eatenates
RO

()
B S TN N WS PR TSl ST TE gy
%

CD4+/CD8+ Cell Ratio
w

=

o

0 3 6 9 18
Day of Experiment

FIG. 11. Effect of dexamethasone and Crypto-
sporidium parvum on the splenic CD4+ to CD8+
lymphocyte ratio. Data are presented as the mean
CD4+ to CD8+ cell ratio. Error bars indicate
standard deviations of the mean.

given date, DEX did not significantly affect CD8+ T cells
within the spleen. However, after 3 days of treatment, the
number of CD4+ lymphocytes were significantly less (P<0.05)
than in normal mice. After the initial decrease, the
splenic CD4+ cells of immunosuppressed mice remained fairly
constant throughout the experiment (Table 2). Furthermore,
the CD4+ to CD8+ lymphocyte ratio was decreased in the
spleens of mice treated with DEX when compared to the
nonimmunosuppressed mice (Fig. 11). An isolated incidence

on day 3 was seen when the splenic M@ of mice in group 2




were compared to the nonimmunosuppressed mice in groups 3
nd 4. This significant increase in the absolute number of
M@ may be due to an artifact associated with the sample,
because no significance was seen between mice in group 1
and groups 3 and 4 (Table 2).

Comparative effect of DEX exposure on splenic
lymphocytes over time. When the effects of DEX were
observed over time, it was evident that the absolute number
of B lymphocytes decreased. After 21 days of immunosup-
pression (day 18 of the experiment), the mice treated with
DEX were nearly depleted of splenic IgG, IgM, and IgA-
bearing cells. Although no trends were evident, there were
significant differences in the absolute numbers of splenic
leucocytes expressing CD4+, CD8+, and M@ receptors (Table
2}

Comparative effect of C. parvum on intestinal
lymphocytes within treatment groups. When compared to
mice in group 4, C. parvum had no significant effect on the
percentage of lymphocytes in the PP of infected mice that
were killed 3, 6, 9, and 18 days after the experiment
began. Similarly, no significant effect of C. parvum was
evident between mice in group 1 and mice in group 2 that
were killed on days 3, 6, and 9 of the experiment (Table
£

Comparative effect of C. parvum exposure on

intestinal lymphocytes over time. Cryptosporidial




TABLE 3. Phenotypic profiles of lymphocytes* in the Peyer's patches of
Cryptosporidium parvum-infected and control mice

Cell Type Day group 1 group 2 group 3 group 4
CD8+ 0 3.3910.10 NDS$ ND 2.1240.17
3 4.8610.87 3.5240.50 3.38+£0.31bc¢ 3 .52+0.50abc
6 4.52+1.108B 3,6410.68AB 1,9840.37 1.87+0.19
9 4,41+0.243B 3,93+0.27AB 2.24%+0.00 2.,34£0.15
18 ND ND 2.5520.14 2.44%0.29
CD4+ 0 3.39%0.10 ND ND 3.9440.09
3 4.58+0.15 4.04%0.61 5.24%1 .42 5.36%1.58
6 5.43%1.04 4.63%0.38 4.80%0.96 4..851*0.55
9 5. 5130 «45 5.26+0.81 5.1940.41 4.99%0.43
18 ND ND 4.6910.15 4.85%0.07
IgG producing 0 7.28%+0.192 ND ND 7.55%0.09
3 7.40%£1.192 6.13%1.33 7.9410.27% 7.33%0.77
6 5.4310.07 5.98%0.71 6.6210.64 6.70%0.5
9 6.18+0.86 5.8210.61 6.3610.06 6.16%£0.12
18 ND ND 6.40%0.11 6.20%0.29
IgM producing 0 7.17£0.25 ND ND 7182015
3 4.41%+1.76 5.24%0.34 5.61%d 77 3.8B7%2.. 65
6 11,8022 .85 5. 7130 ,817 6.97+0.91 6.2840.21
9 3.67%1.45 3.76%] .32 5.3720,66 5.25%0.94
18 ND ND 5.25%0.94 6.0720.47

85




TABLE 3 (continued)

IgA producing .560.00ab ND .3240.
L1942, : : .50%1.85 .58%1.

.8310. . . .00£0.00 .55%0.

5281, : ! .1840.25 .11#0.

ND .3940.73 L9010

Macrophage .00£0.00 ND .00£0.00ab
.00%0.00 3 s .21£0.29 .00£0.002b

.211+0.298 : ; « 3020 . 71 .00+0.00

.21+0.298B . 5 .5010.71 .00£0.00

ND .00£0.00 .00+0.00

*Responses are expressed as the square root of the mean cell percentage t standard deviation.

a significant when compared with day 6 in the same group (P<0.05).
significant when compared with day 9 in the same group (P<0.05).
significant when compared with day 18 in the same group (P<0.05).
significant when compared on the same day to group 3 (P<0.05).
significant when compared on the same day to group 4 (P<0.05).
not done.
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infections in immunosuppressed mice (group 2) did not
affect the lymphocytes within the PP when days 3, 6, and 9
were compared. Mice within group 3 showed a significant
difference (P<0.05) in IgG and CD8+ lymphocytes. However,
these statistical differences between days 3, 6, and 9 were
also seen in the normal mice. This observation suggests
experimental variation rather than an immunological re-
sponse to the parasite. Moreover, CD4+, MO, IgM, and IgA-
receptor bearing leucocytes within the PP showed no de-
tectable response to cryptosporidial infections when days
3, 6, 9, and 18 were compared (Table 3).

Comparative effect of DEX on intestinal lympho-
cytes within treatment groups. When compared to
nonimmunosuppressed mice, mice treated with DEX for 9 or 12
days had significantly higher levels (P<0.05) of and nearly
a two-fold increase of CD8+ lymphocytes in the PP. Peyer's
patch lymphocytes expressing IgG, IgM, IgA, and CD4+
receptors showed no detectable response to DEX 3, 6, 9, and
12 days of treatment (Table 3). Moreover, DEX treatment
was associated with a lower CD4+ to CD8+ cell ratio within
the PP when compared to the nonimmunosuppressed mice (Fig.
L2 4

Comparative effect of DEX exposure on intesti-
nal lymphocytes over time. Immunoglobulin G receptor-
bearing B cells within the PP of mice in group 1 decreased

significantly (P<0.05) during the first 6 days following
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FIG. 12. Effect of dexamethasone and Crypto-
sporidium parvum on the CD4+ to CD8+ lymphocyte
ratio in murine Peyer's patches. Data are shown
as the mean CD4+ to CD8+ cell ratio. Error bars
indicate standard deviations of the mean.

immunosuppression. After this initial decrease, cells
expressing IgG receptors remained contant for the duration
of the experiment. Similarly, cells bearing IgA receptors
decreased significantly in these mice during the 12 days of
DEX treatment (P<0.05). When comparing dates within a
group, DEX failed to affect cells (bearing CD8+, CD4+, IgM,
and M@ receptors) within the PP (Table 3).

Correlation between lymphocytes and oocyst
shedding intensities. No strong linear correlation

could be drawn between the number of leucocytes (attained
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from flow cytometric analysis) and the intensity or dura-

T

ion of fecal oocyst shedding. A weak positive correlation
was seen between oocyst shedding and the percentage of IgM
bearing lymphocytes in the PP of immunosuppressed and
nonimmunosuppressed mice (0.60 and 0.58, respectively).

Similarly, a weak correlation could be drawn between the

oocyst shedding and the M@ within the spleen (Table 4).

TABLE 4. Correlation coefficient r drawn between
lymphocytes and oocyst shedding intensities
Tissue Cell Type Group 2 Group 3
Spleen CD8+ -0.12 -0.07
CD4+ -0.01 =4.32
MQ -0.51 -0.45
IgG producing -0.05 0.36
IgM producing -0.19 0.40
IgA producing -0.25 -0.04
PP CD8+ -0.12 0.06
CD4+ -0.01 0.02
MO -0.40 0.45
IgG producing 0.02 0.43
IgM producing 0.60 0.58
IgA producing -0.24 -0.08

PP = Peyer's patches;
= macrophages




DISCUSSION

Immunohistochemistry

To accomplish the goals of this study, considerable
time and effort was spent developing a workable immuno-
histochemical technique. Initially, the ABC method was
attempted on paraffin-embedded sections because of its
superior staining sensitivity, which results from amplifi-
cation of the antigen-antibody reaction (72). To enhance
staining intensity and/or eliminate nonspecific binding,
several alterations of the protocol were tried. Inasmuch
as none of the modifications gave a satisfactory result,
immunof luorescence techniques were attempted.

Direct and indirect fluorescent antibody techniques
were applied to paraffin-embedded tissue sections. Due to
great variation in sensitivities of antigens to different
physical and chemical conditions, various fixation methods
were tried prior to paraffinization. Regardless of the
fixation method or modification to the protocol, M@ and T
lymphocytes (CD4+, CD8+, and Trotal) showed no immunoreac-
tivity. Apparently the fixatives (formalin, B-5, Histo-
choice, and Bouin's) failed to preserve the antigenic
determinants of the M@ and T lymphocytes.

The capacity of B lymphocytes to react with FITC-
labeled antibody was preserved by Bouin's solution. This

allowed for the determination of the effects of DEX on the
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humoral response in the spleen and intestinal lamina
propria. The results and discussion generated from immuno-
histochemical techniques are of academic interest because
the objective of this research was accomplished by flow
cytometry that elucidated both cell-mediated and humoral
immune responses. Nonetheless, preliminary data and
observations from immunohistochemical techniques are
presented. Immunohistochemical evaluation of paraffin-
embedded sections showed that DEX reduced the number of
lymphocytes expressing IgA receptors within the spleen and
intestinal lamina propria. This suggests that these
lymphocytes may play a role in immunity to cryptosporidio-
sis. Presumably this could occur because secretory anti-
bodies present in the intestines can help eliminate C.
parvum by mediating biological processes (111l). Moreover,
IgA can be transported across epithelial cells of the
intestine from the basal to the apical surface of these
cells by transcytosis (2). Accordingly, it is plausible
that dimeric IgA might reach the basal membrane of attached
cryptosporidia and hinder parasite feeding and development.
Results produced from this preliminary study varied some-
what from those obtained by flow cytometric analyses.
Immunohistochemical evaluations comparing lymphocytes in C.
parvum-infected mice to DEX-treated mice with cryptosporid-
iosis showed that within the spleen and intestinal lamina

propria, IgA was the only isotype affected by DEX. Because
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these results were obtained from a preliminary study with a
few animals, it is difficult to infer why lymphocytes
expressing IgG and IgM markers were not significantly
reduced in DEX-treated mice. To offer clarity to these
findings, I am performing immunohistochemical techniques on
terminal ilea of normal and immunosuppressed mice with
cryptosporidiosis. Analysis by flow cytometry showed that
B lymphocytes (expressing IgG, IgM, and IgA receptors)
within the spleen, but not the PP, were affected by DEX.
Any one of the following may contribute to the difference
in the results of immunohistochemical evaluations and flow
cytometric analyses: 1) The age of the mice used in the
preliminary study (immunohistochemistry) were 4 weeks older
than those mice used for flow cytometry; 2) The animal
numbers in the study utilizing immunohistochemistry had
three mice per treatment group, whereas the results gener-
ated from flow cytometry had eight mice per group; and 3)
The duration of immunosuppression of mice evaluated by the
immunohistochemical technique were treated with DEX for 20
days, whereas those used for flow cytometry were treated

with DEX for 12 days.

Infection dynamics
Oocyst shedding patterns seen in this experiment were
not unlike those previously observed in normal and DEX-

treated adult C57BL/6N mice that were infected with C.




parvum (114). Infected mice that were not immunosuppressed
quickly cleared the infection, whereas DEX-treated mice
shed oocysts in fluctuant amounts until the experiment was
terminated. The fluctuation of shedding intensities
observed in this experiment and by others is possibly due
to the inherent variation in sample preparation or to the
course of autoinfection by thin-walled oocysts and mero-
zoites. The trends of parasite colonization in the ileum
and oocyst shedding were very similar with the exception of
day 3. On day 3, oocyst shedding was markedly lower than
ileal colonization by C. parvum. These observations are
reasonable because the majority of the parasites may have
had insufficient time to complete gametogony and formation
of oocysts. Taghi-Kilani et al. (1990) report that no
correlation could be drawn between the intensity of Cryp-
tosporidium-specific responses and the severity or duratior
of cryptosporidiosis in neonatal BALB/c mice, although
these mice exhibited a good IgM and IgG serum antibody
response (128). Similar results were produced in this study
in that no strong linear correlation was evident between
the presence of lymphocytes in the tissues (spleen and PP)
and the intensity of oocyst shedding. I believe that these
observations reflect the insignificance between the cell
numbers of infected and uninfected mice rather than sug-
gesting that in vivo immune responses play a minor role in

thwarting the development of C. parvum.
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Even though cryptosporidial infections did not signif-

icantly affect splenic weights, mice in group 3 had an

increase in splenic weights as the experiment progressed.
This suggests that immunocompetent mice are responding to
C. parvum while infected immunosuppressed mice do not.
Dexamethasone rapidly reduced the weight and size of the
spleen and PP. After 3 consecutive days of treatment with
DEX (day 0 of the experiment), the mean spleen weight was
approximately one half that of the nonimmunosuppressed
mice. This reduction is profound not only because of how
rapidly it occurred, but also because the spleen weights
remained constant after the initial decrease despite
continuous administration of DEX. The differences in
spleen weight were taken into consideration by using the
absolute number (cell percentage multiplied by the spleen
weight) in the statistical analysis. Additionally, DEX
reduced the size of the PP. One to 4 PP could be identi-
fied and harvested from the small intestine of an immuno-
suppressed mouse with the aid of a dissecting microscope.
However, the unaided eye could see 6 to 8 PP on the small
intestine of a nonimmunosuppressed mouse. Because DEX
dramatically reduced the size of the lymphoid tissues, it
was necessary to pool the tissues of four mice. Twenty-one

days after immunosuppression began, it was impossible to

collect the PP for flow cytometric analysis because they



were inconspicuous or absent (even with the aid of a

dissecting microscope) .

In addition to inducing a lymphopenia and decreasing
the splenic weight, glucocorticoids affect carbohydrate
metabolism by promoting gluconeogenesis and liver glycogen
deposit and elevating blood glucose levels (129). Addi-
tionally, DEX inhibits insulin release by the R-cells of
the pancreatic islets (76), thus inhibiting the entry of
glucose into cells, glycolysis, and production of ATP.

These physiological events may explain the weight loss

observed in mice treated with DEX (groups 1 and 2), because

when the production and hydrolysis of ATP are affected,
metabolic reactions, including synthesis of nucleic acids

and proteins, are hampered.

Flow cytometric analysis

All strains of laboratory mice (inbred, outbred,
immunodeficient, and germ-free) tested to date are diffi-
cult to infect with C. parvum once they are more than 3
weeks of age (34, 63, 123). These observations suggest
that genetically based as well as age-related factors

(immune status, gut physiology, or microflora) may be

responsible for determining susceptibility or resistance to

C. parvum in mice (34). Therefore, an immunocompromised

animal model for chronic cryptosporidiosis was necessary to

accomplish the goals of this study. The small animal model




that was used in the present study was developed by

asmussen and Healey (114). These authors show that

ol

C57BL/6N mice immunosuppressed by intraperitoneal injec-
tions of DEX at a dosage of 125 pg per day are susceptible
to C. parvum and developed chronic infections which per-
sists at least 10 weeks. This immunocompromised laboratory
animal model did not substantiate the immune response to C.
parvum, but rather discerned the immunological defects
which allow for the development of chronic infections.
Therefore, the absence of statistical significance (in the
number of cells expressing CD4+, CD8+, IgG, IgM, IgA, and
M@ receptors) between mice in group 1 and group 2 was
anticipated.

Nonspecific immunity and the role of M@ were discussed
earlier in this thesis. 1In the present study there was no
statistical difference in the numbers of M@ when groups 3
and 4 were compared. Moreover, flow cytometry yielded
inconclusive data on the effects of DEX on M@. These
ambiguities are likely due to the paucity of M@ in the
spleen and PP. Future research investigating the effects
of DEX on M@ should consider in vitro techniques with
peritoneal M@ to overcome this limitation.

The present study demonstrated that mice treated with
DEX had significantly fewer CD4+, IgG, IgM, and IgA recep-
tor-bearing lymphocytes within their spleens compared with

nonimmunosuppressed mice. This observation implicates the




lymphocyte subpopulations that are responsible for arrest-
ing the development of C. parvum. Initially, it is tempt-
ing to dismiss the importance of Ig-bearing cells because
the parasite is intracellular and others have shown that
antibodies alone cannot eliminate C. parvum from the
infected mucosa (62, 98, 128). Before the role of B
lymphocytes is dismissed, the complex interaction between B
and T lymphocytes needs to be considered. A B cell can
activate a CD4+ cell by taking up antigen, converting it to
a form that is recognizable to the T lymphocyte, and then
presenting it to the T cell. After antigenic activation,
the T lymphocyte is stimulated to release lymphokines,
which in turn promote stimulation of other lymphocytes and
M@. Moreover, T lymphocytes (CD4+) are required for most B
lymphocytes to respond to antigen. Without any further
description of the immunological response, one can see that
if a lymphocyte population is affected by DEX, it has the
potential of affecting all lymphocytes associated with the
network. In other words, the humoral immune response may
not directly affect C. parvum, but the paucity of B cells
may affect the ability of the cell-mediated immune response
to control the infection. These findings are consistent
with the hypothesis that a T lymphocyte is involved in
recovery from cryptosporidial infection and that recovery
is associated with both cellular and humoral immune re-

sponses to cryptosporidial antigens (34). The importance
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of lymphocytes (bearing CD4+ receptors) in immunity to C.
parvum is demonstrated in this study by the decrease of
splenic helper T lymphocytes and by the decreased CD4+ to
CD8+ cell ratios. Unfortunately, the fundamental physical
or chemical processes (mediated by T lymphocytes) that are
responsible for parasite killing remain unclear (92).
Nonetheless, it is reasonable to speculate that the elimi-
nation of C. parvum by lymphocytes bearing CD4+ receptors
may be due to the secretion of lymphokines and thus activa-
tion of M@, B and T lymphocytes.

The increase of CD8+ lymphocytes in the PP of DEX-
treated mice suggests that these cytotoxic cells play a
role in immunity to cryptosporidiosis. Harp et al. (1988)
(59) show that in mild cryptosporidial infections, C.
parvum colonizes on or near the dome epithelium of the PP.
This parasitic colonization may be facilitated by the CD8+
lymphocytes suppressing the intestinal immunological
response. Conceptually, this could occur if the CD8+ cells
kill other T lymphocytes (or B cells) bearing specific
idiotypic determinants related to antigen recognition.
Another way in which CD8+ lymphocytes could suppress immune
responses to C. parvum would be by killing the active
antigen presenting cells, thus removing the stimulus before
an immune response could be generated (50). Alternatively,
the presence of parasites juxapposed to the PP may be

explained by the fact that T lymphocytes expressing CD8+
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receptors secrete, substances that facilitates parasite
colonization.

Other studies have addressed the role of CD8+ cells in
immunity to cryptosporidiosis. Adult BALB/c mice depleted
of CD8+ lymphocytes through in vivo treatment with Mab did
not develop persistent infections (138). Aguirre et al.
(1994) show that major histocompatibility complex (MHC)
class I-deficient mice (lacking functional CD8+ cells)
infected at 5 to 6 weeks of age were no more susceptible to
C. parvum infection than age-matched controls (1). The
results of these studies do not support the hypothesis that
CD8+ cells play a role in protective immunity to cryp-
tosporidiosis. However, the present study and Rasmussen et
al. (115) show that CD8+ lymphocytes are increased in
immunosuppressed mice that are infected with C. parvum.
Boher et al. (1994) show that after infection of neonatal
mice with C. parvum, ileal PP show a predominant CD8+ T
cell response (18). Additionally, McDonald et al. (1994)
show that CD8+ cells appear to be involved in resistance to
primary and secondary cryptosporidial infections (92).
Future studies performing functional assays on CD8+ cells
harvested from animals infected with C. parvum may offer
clarity to these equivocal results.

One of the most striking results of the present study
was the lack of any statistical significance in the number

of lymphocytes (expressing CD4+, CD8+, IgG, IgM, and IgA
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receptors) between nonimmunosuppressed mice infected with
C. parvum and the mice in group 4. The results appear to
contradict those studies that show B and T lymphocytes to
be responsible for eliminating C. parvum from the intesti-
nal mucesa (1, 14, 15, 18, 22, 23, 34. 37 44. 45; 52, 56,
57, 62, 70, 78-80, 84, 85, 91, 94, 95, 99. 103, 106, 128,
134, 137, 139, 140, 144, 146). The apparent discrepency
between the results of this study and previously published
work may be explained by antibody specificities. Previous
studies detecting serum, duodenal, and fecal antibodies
used C. parvum antigens to probe for parasite-specific
antibodies, whereas the antibodies against mouse immuno-
cytes used in this study were not C. parvum-specific.
Therefore, the evoked C. parvum-specific immune response is
not significant above the indigenous B and T lymphocytes.
This explanation is supported by other studies that assayed
for total lymphocyte levels in humans and mice with cryp-
tosporidiosis. Splenic CD4+ (115), CD8+, Trotal, and Brotal
lymphocytes (37, 115) from infected mice were comparable to
controls. Likewise, total IgG and IgM antibody levels in
serum, stool, and duodenal fluid from infected children are
not statistically different from control subjects (80).
Alternatively, the discrepancy between the results of the
present study and previously published work may be ex-
plained by animal numbers. Perhaps significance would be

present between infected and normal mice if this experiment
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was repeated with more animals per group. Increasing
animal numbers would result in more repetitions, increased
degrees of freedom, and decreased variance. Consequently,
a greater possibility of statistical validity may become
apparent. Alternatively, severity and length of infection
may be a factor. Many of the researchers that demonstrated
coproantibodies and seroconversion used specimens from
human or large domestic animals that had severe infections
and cryptosporidial diarrhea (22, 23, 70, 80, 99, 137, 139,
140, 146). Because tissues were harvested, this study was
limited to small laboratory animals. The immunocompetent
adult female C57BL/6N mice used in this study developed a
mild infection without diarrhea for 6 days, after which the
infection was cleared. Apparently, the length and inten-
sity of the cryptosporidial infections were not sufficient
to elicit a detectable immunological response within the

spleen or PP.

Conclusions

This study was undertaken to quantify subpopulations
of lymphoid cells present in the spleen and small intestine
(lamina propria and PP) of normal and immunosuppressed
adult C57BL/6N mice that were either noninfected or infect-
ed with C. parvum. The following conclusions may be drawn
from this research: 1) The evoked C. parvum-specific immune

response is not significant above the indigenous B and T
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lymphocytes present in the leen and PP; 2) DEX, a
synthetic corticosteroid, significantly reduced splenic
lymphocytes expressing CD4+, IgG, IgM, and IgA receptors.
This differential effect explains why only immunosuppressed
mice were capable of maintaining infections with C. parvum;
3) CD8+ cells within the PP may play a role in immunity to
C. parvum by suppression or cytotoxic killing of other
lymphocytes and antigen presenting cells bearing specific
idiotypic determinants; and 4) Immunohistochemical evalua-
tion of paraffin-embedded tissues suggests that IgA (within
the spleen and intestinal lamina propria) may play a role
in the protective immune response to cryptospordial infec-
tion.

Lastly, I believe that these preliminary findings will
serve as a first step toward developing immunomcdulation
therapies for use in patients with debilitating cryp-
tosporidial infections. Moreover, valuable data should
emerge from future investigations that address specific
immune responses within lymphoid cells associated with the

intestine and systemic compartment.
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