Utah State University

DigitalCommons@USU

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Graduate Studies

5-2014

The Kimama Core: A 6.4 Ma Record of Volcanism, Sedimentation, and Magma Petrogenesis on the Axial Volcanic High, Snake River Plain, ID

Katherine Elizabeth Potter Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Geology Commons

Recommended Citation

Potter, Katherine Elizabeth, "The Kimama Core: A 6.4 Ma Record of Volcanism, Sedimentation, and Magma Petrogenesis on the Axial Volcanic High, Snake River Plain, ID" (2014). *All Graduate Theses and Dissertations, Spring 1920 to Summer 2023.* 3872. https://digitalcommons.usu.edu/etd/3872

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations, Spring 1920 to Summer 2023 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

THE KIMAMA CORE: A 6.4 Ma RECORD OF VOLCANISM, SEDIMENTATION, AND MAGMA PETROGENESIS ON THE AXIAL VOLCANIC HIGH, SNAKE RIVER PLAIN, ID

by

Katherine Elizabeth Potter

A dissertation submitted in partial fulfillment of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Geology

Approved:

Dr. John Shervais Major Professor

Dr. James Evans

Dr. Paul Link

Committee Member

Committee Member

Dr. Anthony Lowry Committee Member

Dr. Carol Dehler Committee Member

Dr. Mark McLellan Vice President for Research and Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY Logan, Utah

2014

i

Copyright © Katherine Elizabeth Potter 2014

All Rights Reserved

ABSTRACT

The Kimama core: a 6.4 Ma record of volcanism, sedimentation, and magma petrogenesis

on the Axial Volcanic High, Snake River Plain, Idaho

by

Katherine Elizabeth Potter, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. John Shervais Department: Geology

The Snake River Plain (SRP) is one of the youngest and best-preserved examples of continental hotspot volcanism, with a continuous record of volcanism that extends over 16 Ma to the present. As part of the Yellowstone-Snake River Plain volcanic province, the Snake River records the migration of plume-tail volcanism from inception at the Bruneau-Jarbridge caldera complex at 12.6 Ma to its present locus, under the Yellowstone Plateau. Hotspot volcanic products on the Snake River Plain include rhyolite lavas and ignimbrites, minor coeval basalts, and an overlying veneer of younger basalts erupted from fissures and low shield volcanoes.

Although the eastern SRP has been the focus of scientific drilling in the past, the central SRP has received comparatively little attention. The Kimama core hole was drilled as part of Project Hotspot, the Snake River Scientific Drilling Project, which seeks to understand the long-term volcanic and sediment logical history of the SRP volcanic province. The central SRP is the

hinge point between the older western SRP province and the younger eastern province, and represents a transition between Pleistocene bimodal volcanism and the Pleistocene through Holocene olivine tholeiite basalt volcanism. It is the only part of the SRP that has not been scientifically drilled and cored to a significant depth. Investigations of subsurface stratigraphy in continental volcanic provinces such as the SRP-YP are limited by the limited depth and spatial distribution of cored wells. The Kimama core is a continuous record of basalt and minor sediment deposition.

Our investigation of the Kimama core reveals a dynamic relationship between magmatic systems, volcanic processes, and the topography of the SRP over the past ~6.4 Ma. The longterm volcanic history of the SRP, documented by magmatic flux and magma composition, demonstrates that magmatism is mantle plume-derived and does not represent melting of a shallow mid-ocean ridge basalt-source within the asthenosphere. Our investigation of the Kimama core, combined with new mantle tomography, refutes non-plume models for the origin of the Snake River Plain volcanic province.

(173 pages)

PUBLIC ABSTRACT

The Kimama core: a 6.4 Ma record of volcanism, sedimentation, and magma petrogenesis on the Axial Volcanic High, Snake River Plain, Idaho

Katherine Elizabeth Potter

The Snake River Plain (SRP) is one of the best-preserved examples of continental hotspot volcanism, with a continuous record of volcanism that extends over 16 Ma to the present. Yellowstone-Snake River Plain records the migration of plume-tail volcanism from inception at the Bruneau-Jarbridge caldera complex at 12.6 Ma to its present locus, under the Yellowstone Plateau.

Records kept by the Snake River Plain volcanic actions include rhyolite lavas and ignimbrites, minor coeval basalts, and an overlying veneer of younger basalts. The central SRP has received comparatively little attention in the past. The Kimama core hole was drilled as part of Project Hotspot, the Snake River Scientific Drilling Project, which seeks to understand the long-term volcanic and sediment logical history of the SRP volcanic province.

The Kimama core hole is the only part of the SRP that has not been scientifically drilled and cored to a significant depth in the past. Investigations of subsurface stratigraphy in continental volcanic provinces such as the SRP-YP are limited by the by the relatively low depth and spatial distribution of cored wells. The study of the Kimama core provides us with a continuous record of basalt and minor sediment deposition.

The long-term volcanic history of the SRP, documented by moving magma and its composition, demonstrates that magmatism is mantle plume-derived. Our investigation of the Kimama core, combined with new mantle tomography, provides evidence that refutes non-plume models for the origin of the Snake River Plain volcanic province.

ACKNOWLEDGMENTS

As I reflect upon my years at Utah State, I am filled with gratitude towards the many people that made my experience so fantastic. I feel privileged to have known and worked with many amazing researchers, including my marvelous committee. Jim Evans, Paul Link, Tony Lowry, and Carol Dehler provided support and stimulating discussion to help guide my progress through the Ph.D. gauntlet. I am especially lucky to have had the pleasure of having John Shervais as my advisor and mentor. John's approachability, sense of humor, and scientific brilliance made him an invaluable resource for all of my questions regarding petrology and geochemistry on the Snake River Plain.

This work was supported by DOE award DE-EE0002848, by the International Continental Drilling Program (ICDP), and by a consortium of universities. George Gehrels and Mark Pecha at Arizona State University LaserChron Center provided lab time and helped with detrital zircon data interpretation. Scott Vetter (Centenary College) provided some of the trace element data. Robert Duncan of Oregon State University provided Ar/Ar data and interpretation, and Duane Champion of the USGS Menlo Park performed the paleomagnetic age dating and interpretation

Discussions with Eric Christiansen and the Hotspot Science Team (http://www.usu.edu/geo/ shervais/Shervais-USU-Geology/Hotspot_Science_Team.html) were especially helpful, but any errors are our own.

My dissertation greatly benefitted from useful feedback from my fellow graduate students, including Mitch Prante, Dawn Hayes, Robin Nagy, Santiago Flores, Elizabeth Petrie, Kelly Bradbury, Marlon Jean, and Natalie Bursztyn, and from the assistance of the Project Hotspot student researchers. Jeff Hazboun, my brother in Ph.D suffering, was a great motivating force in completing the writing phase. Lastly, but most importantly, my parents, family, and friends soothed my crazy episodes and increased my quotient of fun. To them I will be eternally grateful for listening to my grievances, distracting me through skiing and playing music, and encouraging me to stay the course.

Lastly, and most importantly, I'd like to dedicate this dissertation to my magnificent Great Uncle, Roderick Burnham Potter. Through these 6 years of graduate school, his encouragement and support have made the difference between my success and failure, and I'm so proud to be his "little critter".

Katherine Potter

CONTENTS

ABSTRACT	iii
PUBLIC ABSTRACT	v
ACKNOWLEDGMENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xi

CHAPTER

1.	INTRODUCTION	1
	References	8
2.	VOLCANIC STRATIGRAPHY AND AGE MODEL OF THE KIMAMA DEEP CORE	
	HOLE (PROJECT HOTSPOT), CENTRAL SNAKE RIVER PLAIN, IDAHO 1	.6
	Abstract 1	.6
	Approach 1	.9
	Geologic Background 2	!1
	Methods 2	26
	Results	31
	Discussion 4	15
	Conclusion	50
	References	52
3.	PETROLOGIC AND GEOCHEMICAL EVOLUTION OF BASALTS FROM THE KIMAMA	
	1912 M CORE HOLE, CENTRAL IDAHO 5	8
	Abstract	58
	Introduction5	;9
	Geological Background6	51

viii

	іх
Methods	
Results	66
Discussion	
Conclusion	
References	

4.	EVIDENCE FOR AN AXIAL VOLCANIC LOW IN THE KIMAMA CORE: HE VOLCANOGENIC ZIRCONS AND THE LATE MIOCENE PALEO-WOOD R	ISE FIELD IVER IN THE
	CENTRAL SNAKE RIVER PLAIN	104
	Abstract	104
	Introduction	106
	Methods	111
	Results	115
	Discussion	124
	Conclusion	134
	References	135
5.	CONCLUSION	143

APPENDIX	146
Curriculum Vitae	

LIST OF TABLES

Table	Page
1	Summary of flows and flow units of the Kimama core34
2	Paleomagnetic Chrons and Subchrons by depth 41
3	40 Ar -39 Ar age determinations for Kimama well core
4	Kimama core bulk rock elemental analyses68-78
5	Actual and reverse fractionation compositional results for Kimama basalts95
6	Regional SRP detrital zircon populations
7	Detrital zircon U-Pb age data for the Kimama core hole
8	U-Pb and Hf isotope data for sample KZ5737, 1749 m depth, and for KZ6050, 1844 m depth
9	U-Pb ages of Heise volcanic field eruptive units and volcanic detrital zircons of the Kimama core
Арр.	Stratigraphic and geochemical data used to determine flow unit, flow, flow groups And super group boundaries

х

LIST OF FIGURES

Figure	Page
1	A shaded relief map of Idaho and the SRP5
2	Schemetic illustration of plains-style volcanism on the eastern SRP 23
3	Spatial relationship between inflated pahoehoe flow units, flows, and flow groups in map and cross section views
4	Facies model of typical inflated basalt core as observed in the Kimama core
5	Lithologic and paleomagnetic stratigraphy of the Kimama core
6	Composite lithologic, natural gamma, and neutron logs from 0 to 610 m in the Kimama corehole
7	Plots of paleomagnetic polarity and inclination, major ratios plotted against depth for Kimama basalts
8	Kimama corehole age vs. depth 41
9	Step age spectra and Ar/Ar isotope correlation diagrams
10	Schematic cartoon showingcalculations for SRP magmatic flux over an area of 100 km2 and a depth of 2 km
11	Map of the SRP showing the location of the Kimama core hole in relation to inferred locations of silic volcanic centers
12	Selected major and trace element variation diagrams with compositions of Kimama basalts and olivine tholieiites
13	Selected trace element depths
14	Selected major and trace element variation diagrams showing chemical trends evident in the four Kimama compositional types
15	A) Multielement spider diagram and B) rare earth element plot of Kimama basalt samples
16	Generalized stratigraphic column, mean paleomagnetic inclination (A), and selected chemical composition of the Kimama core as a function of depth below the surface (B)

17	COMAGMAT variation diagrams	89
18	Crystallization model of expected differentiation processes for Kimama basalts	90
19	Multielement spider diagrams normalized to primitive mantle	93
20	Digital elevation map (DEM) of thr SRP and Yellowstone regions showing the location of Kimama as well as topographic and geologic features	of .07
21	Lithologic and paleomagnetic stratigraphy of the Kimama core	.08
22	Thin sections photomicrographs 1	.18
23	Paleomagnetic and lithologic stratigraphy of the Kimama core showing locations of sampled intervals and detrital zircon age populations1	.19
24	Cathodoluminescence (CL) image of detrital zircons mounted in grain mounts1	.22
25	Bar graphs of U-Pb ages1	.25
26	Location map of Snake River Plain-Yellowstone eruptive centers	.31
27	Plot of average values plotted against average values U-Pb age (Ma) 1	.32

xii

CHAPTER I

INTRODUCTION

The Snake River Plain (SRP) is a 500 km long arcuate region of low relief in southern Idaho, bordered to the north and south by Basin and Range topography with its northeast apex at Yellowstone National Park. As one of the youngest and best-preserved examples of a continental hotspot volcanic province, the Yellowstone-Snake River Plain (Y-SRP) region contains a continuous record of rhyolite and post-rhyolite basaltic volcanism that extends from 12.6 Ma to the present (Pierce and Morgan, 1992; Pierce et al., 2000; Camp and Ross, 2004; Waite et al., 2006; Smith et al., 2009). The SRP records the migration of silicic volcanism from inception at the Bruneau-Jarbridge caldera complex in SW Idaho to the current locus under the Yellowstone Plateau (Pierce and Morgan, 1992; Bonnichsen et al., 2008 Shervais et al., 2006; Hanan et al., 2008). Interaction between the Y-SRP plume and overlying lithosphere has resulted in largescale caldera-forming eruptions, and smaller-output, quiescent basaltic volcanism (Pierce et al., 2002; Mason et al., 2004; Pierce and Morgan, 2009). Rhyolite-coeval basalts exhibit compositions akin to mantle-derived melts, and post-rhyolite basalts are compositionally similar to tholeiitic ocean island basalts, such as those present in Hawaii (Kuntz et al., 1992; Hughes et al., 2002a).

Time-transgressive linear chains of volcanics, broad regions of topographic tumescence, and associated geoid anomalies are all distinct features of hotspot volcanism (Morgan, 1972; Crough, 1978, 1983; Davies, 1988; Sleep, 1990, 1992; Burov and Guillou-Frottier, 2005; Ito and van Keken, 2007; Burov et al., 2007). Along the 700-km long, eastward-younging Y-SRP chain of silicic calderas, volcanism has modified the composition of the continental lithosphere (Morgan, 1971, 1972; Matthews and Anderson, 1973; Smith and Sbar, 1974; Armstrong et al., 1975; Smith, 1977; Bonnichsen, 1982; Morgan et al., 1984; Pierce and Morgan, 1990, 1992; Kuntz et al., 1992; Smith and Braile, 1994; Morgan et al., 1995; DeNosaquo et al., 2009). The Yellowstone geoid anomaly is a 15 m + dynamically-uncompensated topographic high that represents a zone of low-density lithospheric-asthenospheric material and mass deficit beneath the North American plate (Richards et al., 1994; Waschbusch and McNutt et al., 2009). An accounting of geophysical, structural, geochemical, and volcanological observations has led to wide acceptance that the explanation for the volcanic and physiographic features present in the SRP is the interaction between a deep mantle hotspot and the continental lithosphere (Pierce and Morgan, 1992; Anders, 1994; Smith and Braile, 1994; Saltzer and Humphreys, 1997; Camp and Ross, 2004; Shervais and Hanan, 2008; Smith et al., 2009).

Various other models of lithospheric and mantle-driven processes have been suggested for the formation of the Y-SRP volcanic province, including a propagating rift (Christiansen and McKee, 1978), edge-driven mantle convection (King and Anderson, 1998; King, 2007), a selfsustaining convective roll (Humphreys et al., 2000), and mantle upwelling through a Farallon slab gap (James et al., 2011). While these models explain some of the features unique to the Y-SRP volcanic province, most rely on a shallow asthenosphere source for post-rhyolite basaltic magmatism, similar to mid-ocean ridge basalts, which are typically depleted in incompatible trace elements.

As imaged by seismic data, the subsurface of the SRP is thought to be comprised of Paleozoic clastic and carbonate rocks and Miocene granites associated with magmatism from 6-10 km (Sparlin et al., 1982). Gravity and seismic data indicate a 2-5 km thick package of Miocene-Pliocene rhyolite lavas, tuffs, and epizonal granitic plutons above 6 km depth (Braile et al., 1982; Sparlin et al., 1982). Regionally, drilling has indicated a ~1-2 km veneer of Pliocene-Pleistocene tholeiitic basalt, interbedded with sparse ferro-basalt lava flows and minor eolian, fluvial, and lacustrine sediments that overlie silicic volcanic products on the SRP (Doherty et al., 1979; Kuntz et al., 1992; Anderson and Liszewski, 1997). The emplacement of a dense mafic mid-crustal sill is thought to have caused subsidence of the SRP volcanic province; subsidence caused by the mafic mid-crustal sill is ongoing (Braile et al., 1982; Sparlin et al., 1982; Mabey et al., 1978; McQuarrie and Rodgers, 1998; Rodgers et al., 2002).

The SRP exhibits both vestiges of Y-SRP hotspot track-related silicic volcanism and its own unique petrogenetic and geochemical basaltic volcanic processes and products (Leeman, 1982a; Kuntz et al., 1992; Pierce and Morgan, 1992, 2009; Reid, 1995; Hanan et al., 1997; Hughes et al., 2002a,b; Geist et al., 2002; Shervais et al., 2006, Shervais and Hanan, 2008). Associated processes of assimilation, fractionation, solidification and remelting resulted in the bimodal volcanic products that characterize the SRP volcanic province (Leeman, 1982a; Hildreth et al., 1991; Hughes et al., 1999; McCurry and Rodgers, 2009; Leeman et al., 2009). Post-rhyolite mafic volcanism on the SRP began within 1 m.y. of the cessation of hotspot-track-related silicic volcanism, and has been primarily expressed by the eruption and coalescence of monogenetic, olivine tholeiite basalt shields with relatively primitive, high MgO compositions (Hughes et al., 2002b). The ubiquitous olivine tholeiite lavas of the SRP are distinguished by major MORB-like depleted mantle chemical signatures (Hart and Carlson, 1987; Carlson and Hart, 1988) as well as chemical signatures indicative of sub-continental lithospheric mantle (Leeman, 1982b; Hart and Carlson, 1987).

The topographic effects of Y-SRP hotspot magmatism during the Pliocene and Pleistocene were the development of east-northeast-migrating continental divides and related

3

northeastward-successive drainage captures by tributaries to the west-flowing Snake River (Pierce and Morgan, 1992; Fritz and Sears, 1993; Ore, 1999; Pierce et al., 2002; Beranek et al., 2006; Sears and Thomas, 2007). Fluvial sand deposits within the SRP preserve evidence of drainages modified by thermal uplift and subsidence associated with the migration of silicic volcanism (Beranek et al., 2006; Hodges et al., 2009). From the Miocene to the Holocene, regional drainage patterns and the history of sedimentation in the SRP can be constrained using the presence or absence of specific age-populations of detrital zircon grains. Several unique zircon point sources are located at the headwaters of stream systems in the Snake River watershed, providing an age-correlated framework upon which to identify the fluvial sources of detrital zircon grains (i.e. Geslin et al., 1999; Mahoney et al., 1999; Link et al., 2002, 2005; Beranek et al., 2006; Hodges et al., 2009). Of particular relevance to the Kimama core, fluvial sands intercalated between basalt flows demonstrate topographic and drainage system development and can provide depositional age constraints using the U-Pb ages of detrital zircons.

Although the eastern SRP has been the focus of scientific drilling in the past, the central SRP has received comparatively little attention. The central SRP is the transitional region between the older western SRP province and the younger eastern province, and represents a transition between late Miocene bimodal volcanism and the Pleistocene through Holocene olivine tholeiite basalt volcanism (Armstrong et al., 1975; Pierce and Morgan, 1992). It is the only part of the SRP that has not been scientifically drilled and cored.

The Kimama core hole (Fig. 1) was drilled as part of Project Hotspot, the Snake River Scientific Drilling Project (Shervais et al., 2013), which seeks to understand the long-term volcanic and sedimentological history of the SRP volcanic province and its potential as a 4

geothermal resource. Understanding the volcanic and sedimentary stratigraphy is made possible by the recovery of core, but is augmented by geophysical wire line data including natural gamma and neutron logs. These data sets, used in conjunction, provide a clear record of deposition and hiatus in the 1912 m of continuous core. Investigations of subsurface stratigraphy in continental volcanic provinces such as the Y-SRP are limited by the depth and spatial distribution of cored wells. The Kimama core hole is one of three core holes drilled through Project Hotspot, and is a continuous record of basalt and minor sediment deposition.

Figure 1: A shaded relief map of Idaho and the Snake River Plain (SRP) region showing locations of Project Hotspot drill sites (red stars) and older drill sites (open circles). The Kimama drill site (yellow star) is located at the hinge point between the western SRP and the eastern SRP, along the trace of the Axial Volcanic Zone. Twin Falls (TF) and Mountain Home Air Force Base (MH AFB) are shown for reference. The image is derived from NASA 10-m DEM data and contoured to 30 m intervals (modified from Shervais et al., 2013). Based upon observations of existing core, workers have shown that cycles of upward increases in incompatible oxides such as K₂O and TiO₂ demonstrates magma fractionation. Magma replenishment is revealed by upsection increases in MgO and Cr, suggesting that the lavas reflect a system in which periodic recharge of more mafic magmas interrupts fractionation in a layered mafic sill complex (Geist et al., 2002; Hughes et al., 2002a; Shervais et al., 2006). Older basalts show chemical and isotopic variations indicative of assimilation of continental crust, whereas younger basalts pass through and assimilate genetically related crystallized melts of the layered magma system (Shervais et al., 2006; Jean et al., 2013). The proof of these interactions is the decoupling of major and trace element fractionation without substantial variation in isotopic composition (Shervais et al., 2006). SRP basalts are compositionally similar to Hawaiian basalts in their major and trace element chemistry (Hughes et al., 2002b).

Due to the subsidence and lack of uplift of the SRP, a complete analysis of the evolution of volcanism can only be obtained through drilling (Shervais et al., 2014). A core provides a powerful tool in understanding the dynamics of plume-related volcanism. Recent and ongoing studies have focused attention on hotspot activity in oceanic lithosphere (HSDP, IODP) (DePaolo and Weis, 2007), but hotspot volcanism within continental lithosphere is both more complex and less well studied.

My primary focus in the study of the Kimama core is: 1) how have the physical characteristics, frequency, and volume of post-rhyolitic SRP volcanism changed through time, and are these changes related to compositional variation? 2) Of broader importance, how do mantle hotspots interact with continental lithosphere through time, and how does this interaction affect the geochemistry of generated magmas? 3) We also hope to address: how has Y-SRP hotspot volcanism affected the topography and drainage development of the SRP, and what do populations of detrital zircon grains in cored fluvial sands tell us about the tectonic and

physiographic evolution of the SRP region? Finally, can observations of the Kimama core corroborate recent mantle tomography data in support of the mantle plume magmatic source hypothesis?

These major questions regarding the formation and evolution of the SRP volcanic province are addressed in this dissertation; and the results are presented four chapters and a concluding chapter. These chapters are as follows.

Chapter 2 describes volcanic stratigraphy and the record of basaltic volcanism and sedimentological processes through time. Here, I document the lithostratigraphy of basaltic lavas in the Kimama core, including flow and flow unit thickness, volcanic facies, the presence of sediment interbeds, and contact relationships. Using lithologic observations, wire line geophysical logs, and radiometric and paleomagnetic dating, I interpret the volcanic record and magmatic flux in the central SRP. Magma flux is a measure of the frequency and duration of volcanism through time. Distinct magmatic episodes, or flow groups, are identified through major and trace element geochemistry. I seek to identify the stratigraphic distribution of basaltic lavas in the Kimama core and to determine their temporal geochemical variability. Chapter 3 addresses the geochemical and petrological evolution of basaltic lavas in the Kimama core. Using my established stratigraphy, the major and trace element geochemistry of cored basalts are used to locate, identify, and group geochemically-distinct flows into four compositional suites. Geochemical-stratigraphic trends within the Kimama core reveals the variable effect of fractionation, magma recharge, mixing, and assimilation of continental crust within the layered mafic sill complex. Forward and reverse fractionation modeling of compositionally primitive Kimama basalts illustrates potential genetic relationships between the four geochemical suites identified in the Kimama core, and demonstrates whether the suites underwent similar petrogenetic processes.

Chapter 4 examines the U-Pb dating of detrital and volcanic zircon populations and volcanic zircon Lu-Hf isotope chemistry in the Kimama core. Detrital zircons recovered from sediment interbeds at 1707 and 1844 m depth and analyzed for U-Pb ages constrain periods of stream incursion and diversion. Detrital zircon geochronology is used to illustrate the timing of regional uplift and exhumation, silicic volcanism, and regional subsidence. Populations of Neogene volcanic zircons in lower interbeds were analyzed for Hf isotopes to interpret the origin of Y-SRP silicic volcanism. Epsilon Hf provides a measure of the amount of juvenile, or mantle-like magma, incorporated into a system, and therefore, the amount of crustal vs. plume material contributing to silicic volcanism on the SRP.

Chapter 4 summarizes the observations of magmatic flux, magma composition, and sediment deposition from previous chapters and integrates them into the greater history of topographic and magmatic evolution on the SRP. Finally, we state that SRP magmatism is derived from a mantle plume source rather than a non-plume, shallow mantle magma source.

References

- Anders, M.H., 1994, Constraints on North American plate velocity using the Yellowstone hotspot deformation field: Nature, v. 369, p. 53–55.
- Anderson, S.R., and Liszewski, M.J., 1997, Stratigraphy of the unsaturated zone and the Snake River Plain Aquifer at and near the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations Report 97-4183, 70 p.
- Armstrong, R.L., Leeman, W.P., and Malde, H.E., 1975, K-Ar dating, Quaternary and Neogene rocks of the Snake River Plain, Idaho: America Journal of Science, v. 275, p. 225-251.

- Beranek, L.P., Link, P. K., and Fanning, C.M., 2006, Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: Using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot: GSA Bulletin, v. 118, p. 1027-1050.
- Bonnichsen, B., 1982, The Bruneau---Jarbidge eruptive center, southwestern Idaho, in
 Bonnichsen, B. and Breckenridge, R. M., eds., Cenozoic Geology of Idaho. Idaho Bureau of
 Mines and Geology Bulletin, v. 26, p. 237-254.
- Bonnichsen, B., Leeman, W. P., Honjo, N., McIntosh, W. C., and Godchaux, M. M., 2008, Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain: Bulletin of Volcanology, v. 70(3), p. 315-342.
- Braile, L.W., Smith, R.B., Ansorge, J., Baker, M.R., Sparlin, M.A., Prodehl, C., Schilly, M.M., Healy, J.H., Mueller, S., Olsen, K.H., 1982, The Yellowstone–Snake River Plain seismic profiling experiment: crustal structure of the eastern Snake River Plain: Journal of Geophysical Research v. 87, p. 2597–2609.
- Burov, E., and Guillou-Frottier, L., 2005, The plume head–continental lithosphere interaction using a tectonically realistic formulation for the lithosphere: Geophysical Journal International, v. 161(2), p. 469-490.
- Burov, E., Guillou-Frottier, L., d'Acremont, E., Le Pourhiet, L., and Cloetingh, S. A. P. L., 2007, Plume head–lithosphere interactions near intra-continental plate boundaries: Tectonophysics, v. 434(1), p. 15-38.
- Camp, V.E., and Ross, M.E., 2004, Mantle Dynamics and Genesis of Mafic Magmatism in the Intermontane Pacific Northwest: Journal of Geophysical Research, v. 109, p. 1-14.
- Carlson, R.W., and Hart, W.K., 1988, Flood basalt volcanism in the northwestern United States, in Macdougall, J.D., ed., Continental Flood Basalts, p. 35–61.
- Christiansen, R.L., and McKee, E.H., 1978, Late Cenozoic volcanic and tectonic evolution of the Great Basin and Columbia Intermontane region, in Smith, R.B., and Eaton, G.P., eds., Cenozoic tectonics and regional geophysics of the western Cordillera, Geological Society of America Memoir 152, p. 283–312.
- Crough, S. T., 1978, Thermal origin of mid-plate hot-spot swells: Geophysical Journal International, v. 55(2), p. 451-469.
- Crough, S.T., 1983, Hotspot swells: Annual Review of Earth and Planetary Sciences, v. 11, p. 165– 193.
- Davies, G. F., 1988, Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots: Journal of Geophysical Research: Solid Earth (1978–2012), v. 93(B9), p. 10467-10480.

- DeNosaquo, K., Smith, R.B., and Lowry, A.R., 2009, Density and lithospheric strength models of the Yellowstone-Snake River Plain volcanic system from gravity and heat flowdata: Journal of Volcanology and Geothermal Research, v. 188, p. 108–127.
- DePaolo, D., and Weis, D., 2007, Hotspot volcanoes and large igneous provinces, *in* Harms, U., Koeberl, C., and Zoback, M., eds., Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future, p. 259–288.
- Doherty, D.J., McBroome, L.A., and Kuntz, M.A., 1979, Preliminary geologic interpretation and lithologic log of the exploratory test well (INEL-1), Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho: U.S. Geological Survey Open-file report, 79-1248, 10 p.
- Fritz, W.J., and Sears, J.W., 1993, Tectonics of the Yellowstone hotspot wake in southwestern Montana: Geology, v. 21, p. 427–430.
- Geist, D. J., Sims, E. N., Hughes, S. S., and McCurry, M., 2002, Open-system evolution of a single episode of Snake River Plain magmatism, *in* Link, P. K., and Mink, L. L., eds., Geology, hydrogeology, and environmental remediation, Idaho National Engineering and Environmental Laboratory, eastern Snake River Plain, Idaho: Geologic Society of America Special Paper 353, p. 193-204.
- Geslin, J.K., Link, P.K., and Fanning, C.M., 1999, High Precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho: Geology, v. 27, p. 295-298.
- Hanan, B.B., Shervais, J., and Vetter, S., 2008, Yellowstone plume-continental lithosphere interaction beneath the Snake River Plain: Geology, v. 36, p. 51-54.
- Hanan, B., Vetter, S., and Shervais, J., 1997, Basaltic volcanism in the eastern Snake River Plain:
 Lead, neodymium, strontium isotope constraints from the Idaho INEL WO-2 core site
 basalts: Geological Society of America Abstracts with Programs, v. 29, p. A298.
- Hart, W.K., and Carlson, R.W., 1987, Tectonic controls on magma genesis and evolution in the northwestern United States: Journal of Volcanology and Geothermal Research, v. 32, p. 119–135.
- Hildreth, W., Halliday, A. N., and Christiansen, R. L., 1991, Genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field: Journal of Petrology, v. 32, p. 63-138.
- Hodges, M.K.V., Link, P.K., and Fanning, C.M., 2009, The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track: Journal of Volcanology and Geothermal Research, v. 188, p. 237-249.

- Hughes, S.S., McCurry, M., and Geist, D.J., 2002a, Geochemical correlations and implications for the magmatic evolution of basalt flow groups at the Idaho National Engineering and Environmental Laboratory, *in* Link, P.K., and Mink, L.L., eds., Geology, hydrogeology, and environmental remediation: Idaho National Engineering and Environmental Laboratory, Eastern Snake River Plain, Idaho: Geological Society of America Special Paper 353, p. 151-173.
- Hughes, S.S., Wetmore, P.H., and Casper, J.L., 2002b, Evolution of Quaternary Tholeiitic Basalt Eruptive Centers on the Eastern Snake River Plain, Idaho, *in* Bonnichsen, B., White, C.M., and McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin 30, p. 363-385.
- Hughes, S., Smith, R., Hackett, W., and Anderson, S., 1999, Mafic volcanism and environmental geology of the eastern Snake River Plain, *in* S.S. Hughes and G.D. Thackray, eds.,
 Guidebook to the Geology of Eastern Idaho: Idaho Museum of Natural History, p. 143-168.
- Humphreys, E.D., Dueker, K.G., Schutt, D.L., and Smith, R.B., 2000, Beneath Yellowstone:
 Evaluating Plume and Nonplume Models Using Teleseismic Images of the Upper Mantle:
 GSA Today, v. 10, p. 7.
- Ito, G., and van Keken, P. E., 2007, Hotspots and melting anomalies: Treatise on Geophysics, v. 7, p. 371-436.
- James, D. E., Fouch, M. J., Carlson, R. W., and Roth, J. B., 2011, Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track: Earth and Planetary Science Letters, v. 311(1), p. 124-135.
- Jean, M.M., Shervais, J.W., Champion, D.E., and Vetter, S.K., 2013, Geochemical and paleomagnetic variations in basalts from the Wendell Regional Aquifer Systems Analysis (RASA) drill core: Evidence for magma recharge and assimilation–fractional crystallization from the central Snake River Plain, Idaho: Geosphere, v. 9, no. 5 p. 1319– 1335.
- King, S.D., 2007, Hotspots and edge-driven convection: Geology, v. 5, p. 223–226.
- King, S.D., and Anderson, D.L., 1995, Edge-driven convection: Earth and Planetary Science Letters, v. 160, p. 289–296.
- Kuntz, M., Covington, H., Schorr, L., 1992, An overview of basaltic volcanism of the eastern Snake River Plain, Idaho, *in* P.K. Link, M.A. Kuntz, and L.P. Platt, eds., Regional geology of Eastern Idaho and Western Wyoming: Geological Society of America Memoir 179, p. 227-267.
- Leeman, W.P., 1982a, Development of the Snake River Plain-Yellowstone Plateau Province, Idaho and Wyoming: An overview and petrologic model, in Bonnichsen. B., and

Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 155-177.

- Leeman, W.P, 1982b, Evolved and hybrid lavas from the Snake River Plain, Idaho, *in* Bonnichsen,
 B., and Breckenridge, R.M., eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and
 Geology Bulletin 26, p. 181-191.
- Leeman, W.P., Schutt, D.L., and Hughes, S.S., 2009, Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot: Journal of Volcanology and Geothermal Research, vol. 188, p. 57-67.
- Link, P.K., McDonald, H.G., Fanning, C.M., and Godfrey, A.E., 2002, Detrital zircon evidence for Pleistocene drainage reversal at Hagerman Fossil Beds National Monument, central Snake River Plain, Idaho, *in* Bonnichsen, B., White, C.M., and McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin, v. 30, p. 105–119.
- Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detritalzircon age spectra in the Snake River system, Idaho and Wyoming: an example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101–142.
- Mabey, D.R., Zietz, I., Eaton, G.P., and Kleinkopf, M.D., 1978, Regional magnetic patternsin part of the Cordillera in the Western United States, in Smith, R.B., and Eaton, G.P., eds., Cenozoic tectonics and regional geophysics of the western Cordillera: Geological Society of America Memoir 152, p. 93–106.
- Mahoney, J.B., Mustard, P.S., Haggart, J.W., Friedman, R.M., Fanning, C.M., and McNicoll, V.J., 1999, Archean zircons in Cretaceous strata of the western Canadian Cordillera: The "Baja B.C." hypothesis fails a "crucial test": Geology, v. 27, p. 195–198.
- Mason, B.G., Pyle, D.M., and Oppenheimer, C., 2004. The size and frequency of the largest explosive eruptions of Earth: Bulletin of Volcanology, v. 66, p. 735-748.
- Matthews, V., III, and Anderson, C.E., 1973, Yellowstone convection plume and break-up of the Western United States: Nature, v. 243, p. 158–159.
- McCurry, M., and Rodgers, D.W., 2009, Mass transfer along the Yellowstone hotspot track I: Petrologic constraints on the volume of mantle-derived magma: Journal of Volcanology and Geothermal Research, v. 188, p. 86-98.
- McQuarrie, N., and Rodgers, D., 1998, Subsidence of a volcanic basin by flexure and lower crustal flow: the eastern Snake River Plain, Idaho: Tectonics, v. 17, no. 2, p. 203-220.
- Morgan, L.A., and McIntosh, W.C., 2005, Timing and development of the Heise volcanic field,Snake River Plain, Idaho, western USA: Geological Society of America Bulletin v. 117 (3/4), p. 288–306.

- Morgan, L.A., Doherty, D.J., and Leeman, W.P., 1984, Ignimbrites of the eastern Snake River Plain: Evidence for major caldera-forming eruptions: Journal of Geophysical Research v. 89 (B10), p. 8665–8678.
- Morgan, J.P., Morgan, W.J., Price, E., 1995, Hotspot melting generates both hotspot volcanism and a hotspot swell?: Journal of Geophysical Research, v. 100, p. 8045–8062.
- Morgan, W.J., 1971, Convection plumes in the lower mantle: Nature, v. 230, p. 42–43.
- Morgan, W.J., 1972, Plate motions and deep mantle convection: Geological Society of America Memoir 132, p. 7-22.
- Ore, H.T., 1999, Topographic and geomorphic development of southeastern Idaho, segments from an essay, *in* Hughes, S.S., and Thackray, G.D., eds., Guidebook to the geology of eastern Idaho: Pocatello, Idaho, Idaho Museum of Natural History, p. 254–255.
- Pierce, K.L., and Morgan, L.A., 1990, The track of the Yellowstone hotspot: Volcanism, faulting, and uplift: U.S. Geological Survey Open-File Report 90-415. Geol. Surv, Denver, CO. 49 pp.
- Pierce, K.L., and Morgan, L.A., 1992, The Track of the Yellowstone Hotspot,: Volcanism, Faulting, and Uplift, *in* Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional Geology of Eastern Idaho and Western Wyoming: GSA Memoir 179, p. 1-53.
- Pierce, K.L., and Morgan, L.A., and Saltus, R.W., 2000, Yellowstone plume head: Postulated tectonic relations to the Vancouver slab, continental boundaries, and climate, U.S. Geological Survey Report 00-498, 39 p.
- Pierce, K.L., Morgan, L.A., and Saltus, R.W., 2002, Yellowstone Plume Head: postulated tectonic relations to the Vancouver Slab, continental boundaries, and climate, *in* Bonnichsen, B., White, C.M., McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin, v. 30. Idaho Geological Survey, Moscow, ID, United States, p. 5–33.
- Pierce, K.L. and Morgan, L.A., 2009, Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data: Journal of Volcanology and Geothermal Research, v. 188, p. 1-25.
- Reid, M. R., 1995, Processes of mantle enrichment and magmatic differentiation in the eastern Snake River Plain: Th isotope evidence: Earth and Planetary Science Letters, v. 131(3), p. 239-254.
- Richards, M.A., Hagar, B.H., and Sleep, N.H., 1988, Dynamically supported geoid highs over hotspots: Observations and theory: Journal of Geophysical Research, v. 92, p. 7690– 7708.
- Rodgers, D. W., McCurry, M. O., Ford, M., Price, K., and Scarberry, K., 2002, Making space for

mantle-derived magma in the crust along the Yellowstone hotspot track, (abs.): Geological Society of America abstracts with programs, v. 34, no. 5, p. A-84.

- Saltzer, R.L., and Humphreys, E.D., 1997, Upper Mantle *P* Wave Velocity Structure of the Eastern Snake River Plain and its relationship to geodynamic models of the region: Journal of Geophysical Research, v. 102, no. B6, p. 11829-11841.
- Sears, J.W., and Thomas, R.C., 2007, Extraordinary Middle Miocene crustal disturbance in southwestMontana: bird record of the Yellowstone hot spot?: Northwest Geology v. 36, p. 133–142.
- Shervais, J.W., Vetter, S.K., and Hanan, B.B., 2006, Layered Mafic Sill Complex Beneath the Eastern Snake River Plain: Evidence From Cyclic Geochemical Variations in Basalt: Geology, v. 34, p. 365- 368.
- Shervais, J. W., and Hanan, B. B., 2008, Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot: Tectonics, v. 27, p. 5.
- Shervais, J.W., Schmitt, D.R., Nielson, D. Evans, J.P., Christiansen, E.H., and Morgan, L., et al., 2013, First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.: Scientific Drilling, v. 15, p. 36-45.
- Shervais, JW, Evans, JP, Schmitt, D., Christiansen, EH, and Alexander Prokopenko, A., 2014, HOTSPOT: The Snake River Scientific Drilling Project: EOS, Transactions American Geophysical Union, v. 95(10), p. 85-86.
- Sleep, N. H., 1990, Hotspots and mantle plumes: Some phenomenology: Journal of Geophysical Research: Solid Earth (1978–2012), v. 95(B5), p. 6715-6736.
- Sleep, N. H., 1992, Hotspot volcanism and mantle plumes. Annual Review of Earth and Planetary Sciences, v. 20, p. 19.
- Smith, R.B., 1977, Intraplate tectonics of the Western North American Plate: Tectonophysics v. 37, p. 323–336.
- Smith, R.B., and Sbar, M., 1974, Contemporary tectonics and seismicity of the Western United States with emphasis on the Intermountain Seismic Belt: Geological Society of America Bulletin v. 85, p. 1205–1218.
- Smith, R. B., and Braille, L.W., 1994, The Yellowstone hotspot: Journal of Volcanology and Geothermal Research, v. 61, p. 121-188.
- Smith, R. B., Jordan, M., Steinberger, B., Puskas, C., Farrell, J., Waite, G.P., Husen, S., Chang, W.
 L., and O'Connell, R., 2009, Geodynamics of the Yellowstone hotspot and mantle plume:
 Seismic and GPS imaging, kinematics, and mantle flow: Journal of Volcanology and
 Geothermal Research, v. 188, p. 26–56

- Sparlin, M.A., Braile, L.W., and Smith, R.B., 1982, Crustal structure of the eastern Snake River Plain determined from ray trace modeling of seismic refraction data: Journal of Geophysical Research, v. 87, no. B4, p. 2619-2633.
- Waite, G.P., Smith, R.B., and Allen, R.M., 2006, VP and VS structure of the Yellowstone hot spot from teleseismic tomography: Evidence for an upper mantle plume: Journal of Geophysical Research, v. 111, B04303.
- Waschbusch, P. J., and McNutt, M. K., 1994, Yellowstone: A continental midplate (hot spot) swell: Geophysical Research Letters, v. 21(16), p. 1703-1706.

CHAPTER 2

VOLCANIC STRATIGRAPHY AND AGE MODEL OF THE KIMAMA DEEP CORE HOLE (PROJECT HOTSPOT), CENTRAL SNAKE RIVER PLAIN, IDAHO

Abstract

The Snake River Plain, central Idaho, represents the world's best example of a mantle hotspot track in continental crust, with a record of bimodal volcanism extending from over 12 Ma to the present. Project Hotspot: the Snake River Scientific Drilling Project recovered over 2 km of continuous core from the Kimama drill site, located in central Idaho on the Axial Volcanic Zone of the Snake River Plain.

We identify a total of 462 basalt flow units, representing 155 basalt flows, seventy-one basalt flow groups, twenty-seven super groups, and four compositional basalt types that are recognized using volcanic facies observations, geochemical data, stratigraphic relationships, sedimentary interbeds, borehole geophysical logs, and measurements of paleosecular variation in the magneto-stratigraphy. Intercalated sedimentary deposits represent lulls in regional volcanic activity and show a relationship to polarity reversals representing thousands of years of time. Neutron logs document individual flow units through the contrast between massive flow interiors and more porous flow tops. Gamma ray logs document the depth and thickness of sedimentary interbeds, and also highlight the occurrence of high-K₂O basalt lavas.

Six basalt lava flows were dated using 40 Ar/ 39 Ar incremental heating by broad-beam infrared laser. Flows sampled at 320 m, 454 m, 1155 m, 1184 m, 1284 m, and 1489 m provide reliable ages of 1.54 ± 0.15 Ma, 1.62 ± 0.15 Ma, 3.74 ± 0.13 Ma, 4.18 ± 0.58 Ma, 4.39 ± 0.30 Ma, and 5.05 ± 0.81 Ma respectively. Paleomagnetic inclination was measured in over 1200 samples collected at 2 m depth intervals. Twenty-one magnetic reversals were identified and correlated

to dated paleomagnetic Chrons and Subchrons using radiometric ages. Paleosecular variations in the magnetic data distinguish flow groups on time scales too short for radiometric dating. A linear fit to ages determined from 40 Ar/ 39 Ar dates and paleomagnetic time scale extrapolates to a bottom hole age of 6.4 Ma and define a mean igneous accumulation rate of 335 m/Ma.

Background

Project Hotspot: the Snake River Scientific/Geothermal Drilling Project, funded by the U.S. Department of Energy, the International Continental Drilling Program, and a consortium of universities, drilled three 1.8-1.94 km holes in the central and western Snake River Plain of Idaho (U.S.) (Shervais et al., 2013). The goals of this project were to document the history of hotspot volcanism in the wake of the Yellowstone plume, to understand how plume-related magmas interact with continental lithosphere, and to understand how this interaction affects the geochemical evolution of mantle-derived magmas and of the continental lithosphere. A further goal was to investigate innovative approaches to geothermal resource exploration in complex volcanic terranes (Shervais et al., 2011, 2012, 2013).

Although recent seismic tomography has imaged upper mantle thermal and velocity anomalies beneath the Snake River Plain-Yellowstone volcanic province (Peng and Humphreys, 1998; Schutt et al., 2008), obtaining a clear understanding of the source and evolution of magmatism and the extent of crustal interaction is only possible through the chemical analysis of erupted basalts (Hofmann, 1997; Reiners, 2002). Of further importance to continental hotspot studies is a record of how these interactions varied through time as demonstrated by stratigraphic chemical variations and age constraints. Without basalt stratigraphy and the ability to assign chemical characteristics and ages to individual basalt flows, it is impossible to accurately measure either magmatic flux or the temporal source of chemical and isotopic heterogeneity related to the varying interaction between the continental lithosphere and a mantle hotspot source through time.

The Y-SRP hotspot represents the youngest, and most complete record of continental hotspot volcanism in the world. Investigations of stratigraphy in young continental volcanic provinces such as the SRP are restricted by the lack of uplift and tilting, and by limited stratigraphic exposure of incised river canyons. As a result, detailed stratigraphic investigations in these terranes is limited by the depth and spatial distribution of cored wells (Shervais et al., 1994; Anderson et al., 1997; Helm-Clark et al., 2005). Many of the deeper wells in the Snake River Plain have been drilled to study groundwater and contaminant flow, and most are clustered on the Idaho National Laboratory site, located along the northern margin of the Snake River Plain north of the Axial Volcanic Zone (AVZ). The AVZ is a topographic high composed of tholeiitic shield volcanoes that represents the locus of basaltic volcanism during the late Pliocene and Pleistocene, and is mirrored by a subsided keel of buried basalts that has been documented geophysically (Lindholm, 1996).

The Kimama drill site is located on the central Snake River Plain (SRP), about 21 km north of Burley, Idaho, and 65 km southwest of Craters of the Moon National Monument (see Fig. 1). Kimama drill site was chosen specifically to study the volcanic stratigraphy of the AVZ, and to investigate elevated thermal gradients beneath theSnake River Regional Aquifer (Shervais et al., 2013). Previous drilling in other areas of the SRP has indicated a veneer up to 1.2 km thick of Pliocene-Pleistocene basalt, with minor fluvial, and lacustrine sediments that overlie silicic volcanic products on the SRP (Doherty et al., 1979; Kuntz et al., 1992; Anderson and Liszewski, 1997).

The Kimama drill hole was cored continuously from below the ground surface (~12 m) to a total depth of 1912 m, with >99.5% recovery rate (as measured by length cored: (core

recovered); an additional 134 m of sidetrack core was obtained in the upper part of the drill hole. This core represents a nearly continuous record of volcanic activity and sedimentation at the Kimama site. Basalt flows make up 94% of the core, with eolian and fluvial sediments making up the remaining 6%. The drill hole spudded into hyaloclastic basalt.

When discussing volcanic stratigraphy, it is important to note that the processes of basaltic volcanism make drill cores an imperfect record of eruptive activity and hiatus. Continuous lava flow inundation on one flank of a volcano may occur while another remains unaffected; similarly, a dormant volcano may be inundated by lavas from an adjacent volcano. In addition, inter-fingering of lava flows from adjacent volcanoes may occur if both are active simultaneously (Jean et al., 2013). Despite these limitations, core provides the most complete record of deposition in the subsurface, and error may be diminished through the use of seismic data or additional, closely-spaced core holes.

Approach

We combine direct observation of drill core with wireline geophysical logs, magnetostratigraphy, radiometric ages, and geochemistry to examine the volcanic stratigraphy in the central SRP. Core provides our most direct record of the volcanic stratigraphy, flow contacts, flow characteristics, and sedimentary interbeds, as well as samples for geochemical and magnetic secular variation analyses. Wireline geophysical logs are used to supplement or replace core, especially in situations where core recovery is limited or too costly to obtain. In particular, gamma-ray and neutron logs are useful for interpreting basalt flows and interbedded sediments (Helm-Clark et al, 2005). Gamma-ray logs are sensitive to sedimentary interbeds, whereas neutron logs may document variations in porosity associated with flow unit boundaries. Thick packages of sediments may demonstrate long periods of volcanic quiescence and bracket flow groups derived from a distinct magmatic source (typically a single volcano).

Temporal information about basalt deposition comes from paleosecular variations in the magnetic stratigraphy, magnetic reversals, and radiometrically-determined ages. Paleosecular variations in magnetic inclination occur over decade to multi-decade time scales, while polarity reversals represent significant decade to century-scale events (Kuntz et al., 1986; Champion et al., 1988). These variations can be used to distinguish individual basalt flows (which typically comprise multiple flow units) and to identify flow groups. Radiometric dating of individual lava flows at critical depths provides direct information on ages and accumulation rates, and provides calibration of the paleomagnetic time scale, which can then be used to refine the stratigraphic age model. Geochemical data (Ti/K, La/Lu, Zr/Nb, K₂O, TiO₂ and total iron as FeO*) may be used as a tool to identify flow groups and super-groups.

We merge lithologic observations of the Kimama core with ages and with major- and trace-element concentrations, and radiogenic isotope ratios, to generate a complete history of basaltic volcanism in the central Snake River Plain. The integration of lithology, flow structures, wireline logs, magneto-stratigraphy, and geochemistry provides a powerful set of tools to interpret the timing, extent, and source of regional volcanism related to passage of the Yellowstone hotspot. The volcanic flux, and the volume of magma erupted through time, are first-order constraints on the ultimate origin of the hotspot and on its interaction with continental lithosphere. These calculations will rely critically on the stratigraphic and age models developed here.

Regional Setting

The 500-km long SRP formed as the North American continent passed over the fixed SRP-YP hotspot during the late Tertiary. As the archetype of a continental hotspot track, the SRP contains a continuous record of violent, caldera-forming rhyolitic eruptions and quiescent, Hawaiian-type basaltic volcanism (Morgan, 1972; Armstrong et al., 1975; Smith and Braile, 1994; Pierce and Morgan, 1992, 2009). The sequence of rhyolite, basalt, and sediment strata that comprise the SRP, spans 12 m.y. of volcanic and inter-volcanic activity (Pierce and Morgan, 1992; Bonnichsen, 2008; Anders et al., 2009).

During the late Pliocene through Pleistocene, the SRP was the locus of densely-spaced mafic volcanic centers along the hotspot track that locally erupted thick packages of basalt flows; this volcanic activity was concentrated along the central axis of the plain to form the AVZ (Hackett and Smith, 1992; Hackett et al., 2004; Kuntz et al., 2002). Holocene lavas, e.g., the Shoshone lava flow and Craters of the Moon, erupted on the margins of the plain, or, like the Great Rift, form volcanic rift zones that cross the plain at high angles (Kuntz et al., 2002). Late Pleistocene to Holocene lavas of Craters of the Moon form multi-phase eruptions with ages of 2 ka to 480 ka (Bonnichsen and Godchaux, 2002).

Basalt Flow Stratigraphy

The unique style of volcanism along the SRP (Figure 2C) has been recognized as a product of small, mid-crustal magma chambers feeding eruptions from low shield volcanoes over relatively short durations, described as "plains-style volcanism" by Greeley (1982) (Figure 2B). The single-episode eruptives common on the SRP are similar to modern volcanic processes

on the island of Hawaii and transitional between Hawaiian-style and continental-style volcanism (Figure 2A) (Greeley, 1982; Kuntz, 1978).

Volcanic rift zones and low-relief shield volcanoes erupted olivine tholeiite basalt lavas, filling basins and controlling the direction and deposition of subsequent lava and water flow. During periods of decreased volcanism, lava flows in low areas were mantled by loess and by lacustrine and fluvial sediments. Loess deposition can occur relatively quickly, although preservation of sediments is thought to be relatively short-lived from modern observations (Kuntz et al., 1986, 1992). Vents of SRP shield volcanoes are typically low-relief, due primarily to the efficient transport of low-viscosity lava away from the vent in lava tubes and the short duration of eruptions; because relatively little lava accumulates near the vent, eruptive centers often blend in with the surrounding topography (Self et al., 1998).

As a result of these eruptive processes and flow mechanisms, the classification of multiple assemblages of lava flows is scale dependent. Basalt flows are classified as either simple or compound lava flows, depending on whether the flow consists of a single coherent flow unit, or an amalgamation of many thinner flow units (Walker, 1971, 1991, 1993). Compound flows typically comprise stacks of relatively thin shelly pahoehoe, with or without an underlying core of massive basalt (which represents another flow unit). In contrast, simple lava flows typically comprise a massive flow unit with a shelly or rubbly upper surface. In either case, the lava flow is considered to represent a single eruptive event formed over a time scale of weeks to years, but commonly less than a few decades (Figure 3A and Figure 3B).

Figure 2: Schematic illustration of plains-style volcanism on the eastern Snake River Plain showing laterally extensive, stacked lava flows, coalesced shield volcanoes, and sedimentary interbeds. (A) Modified from Greeley (1977) and Hughes et al. (1999). B) Schematic illustration of the interpreted structure of the mafic sill complex (Shervais et al., 2006). Magma batches are chemically distinct and may pond at different depths within the sill complex. Partial or residual melts in partly congealed Fe-Ti basalt cumulates may interact with stored magmas prior to eruption or replenishment. Modified from Shervais et al. (2006). C) Cross section of the Snake River Plain region, showing the crust and mafic sill complex from the seismic velocity model of Peng and Humphreys (1998). The location and thickness of the inferred mafic sill complex are shown.

Figure 3: Spatial relationship between inflated pahoehoe flow units, flows, and flow groups in map and cross section views. Modified from Self et al. (1998). A) Map view of a flow field. Flows emanate from a central volcanic vent during a magmatic event. Older flows may be blanketed by newer flows over time. B) Cross sections of transects shown in map view: A-A' illustrates the flow front, where flow lobes (flow units), advance as incandescent lava oozes through the cooled rind at the very tip of the flow. Flow units in the Kimama core range in thickness from 0.3 to 29.6 m. Bubbles trapped in the moving lava form vesicles. Depressurization during flow lobe breakout causes a pulse of vesiculation in the liquid lava, which eventually cools into a horizontal vesicle layer (Hon et al., 1994). B-B' illustratesthe lava flow, where flow units thicken by inflation as they extend outward during a volcanic eruption. Flow units in the Kimama core range in thickness from 0.3 to 48.1. Pipe vesicles form in the lower crystallization front. As the lava flow cools, vesicular residuum rises slowly through the stagnant lava and to the base of the upper crust, where it forms horizontal vesicle sheets. Cracks in the surface of the flow develop during cooling; cracks that extend into the visco-elastic layer of the flow speed cooling of the flow interior (Self et al., 1998). C-C' illustrates the lava flow group, a complex aggregate of genetically related flows and flow units erupted during the life of a volcano. In the Kimama core, flow groups range in thickness from 1.2 to 202.7 m. Sediment washed down from the surface may collect between constituent flows, but most thick sediment interbeds in the Kimama core are divide separate flow groups and/or paleomagnetic chronological boundaries.

Inflationary pahoehoe flows produce complex stratigraphy, with younger eruptions of lava conducted away from the vent through the molten interiors of older flow units, a process known as inflation (Walker, 1991; Chitwood, 1994; Self et al., 1998). Therefore, the massive core of a flow represents the last or a later pulse of an eruption, whereas the shelly and rubbly surface and basal facies represent earlier eruptions. In core, younger flow units may be bounded at top and bottom by relatively older basalt flow units from the same eruption, an observation that has important implications for stratigraphic interpretation. Self et al. (1998) recognized that the inflation mechanism of pahoehoe produces lava flows that display similar geometries at variable spatial scales. Small-scale lava flow units and larger-scale lava flows may emanate from a single monogenetic source or from coeval sources sharing a magma reservoir. Packages of lava flows erupted from a single magma reservoir form a complex aggregate of flows termed flow groups (Figure 3A) (Welhan et al., 2002; Hughes et al., 2002). Lava flow groups have areal dimensions of kilometers to tens of kilometers and are synonymous with lava fields, such as the Wapi and Hell's Half Acre lava fields (Figure 3B) (Greeley, 1982; Welhan et al., 2002). Super groups are defined by polarity and significant geochemical variation from the typical Snake River Plain olivine tholeiites. Modern basaltic shields, lava flows, and lava tubes such as those at Mauna Loa and Kilauea provide a tangible corollary to aid in the identification of subsurface features in drill core (Hon et al., 1994). Chemical distinctions between basalts of the SRP are made difficult by the general similarity between flow group compositions. Previous workers have suggested that similarity of basalts of the SRP results from a similar source and petrogenetic history within the mafic mid-crustal sill (Figure 3C) (Shervais et al., 2006).

Methods

Lithologic Logging

Detailed lithologic logging of core and high-resolution core photographs were used to interpret stratigraphy. Basalt core was visually inspected for the presence of large-scale features such as fractures, oxidation or scoriaceous regions, sediment interbeds, mega-vesicles, vesicle-rich zones (vesicle sheets, vesicle bands or vesicle cylinders), pillows, and rubble zones. Features such as ropey flow tops, flow and mold structures, and spatter are also documented. Core samples displaying alteration, oxidation, secondary mineralization, xenoliths, autoliths, anomalous vesiculation, and other distinguishing characteristics were described when observed.

Flow unit boundaries were identified throughout the entire 1912 m of Kimama core using the model of Self et al. (1998), who suggest that individual pahoehoe lava flows and their constituent flow units display three distinctive zones: surface, interior, and basal facies. The flow surface is characterized by oxidized, platy or rubbly, and highly vesicular textures, often with ropey morphology (Figure 4I). Stacks of multiple surface facies are occasionally observed, with washed-down sediment forming simple boundaries (Figure 4a and Figure 4b). Surface facies thicknesses range from 30 cm to 1 m.

Figure 4: Facies model of typical (~6.2 m) inflated basalt flow as observed in the Kimama core. Photographs of the Kimama core illustrate lava flow facies characteristics. Surface Facies: glassy spatter (3a), ropey pahoehoe (3b), and sediment-coated rubble (3m), and flow and mold structures (3n). Interior Facies: diktytaxitic texture (3f), a result of secondary exsolution; massive flow interior, no vesicles (3g); segregation vein, about 8 cm thick (3h); segregation vein, about 4 cm thick (3i); elongate vesicles are the result of continued lava flow during the cooling stage (3j); pipe vesicles are formed near the base of the lava flow as lava interacts with a moist ground surface (31); remobilized spatter (also referred to as autolithic basalt)(3c); macrovesicle, measuring about 5 cm across (3e); vesicle with secondary crystallization of calcite, 4.5 cm across (3k); vesicles filled with secondary mineralization of smectite-group clays (3p) (Sant and Shervais, 2011). Sediment Interbeds: baked loess, fine grained, homogenous clay baked to terra cotta by the overlying flow (3d); fluvial sediment interbed showing normal gradation of coarse to medium grained sand (3o). Detrital zircon samples were recovered from fluvial interbeds at the base of the core for U-Pb geochronology and Lu-Hf analyses. Modified from Self et al. (1998).

Wireline Geophysical Measurements

Wireline geophysical logs for both holes (Kimama 1A and 1B) occurred in stages as drilling progressed, with the final logging shortly before completion of hole 1B. The upper ~760 m were logged by the U.S.G.S. using tools and techniques described in Twining and Bartholomay (2011). Hole 1A was logged in October 2010 (0-298 m depth), Hole 1B was logged in November 2010 (0-759 m). Logs for both holes included natural gamma-ray, neutron, gamma-gamma density, temperature, and gyro deviation. Further logging was carried out by Century Wireline Services in January 2011; neutron and natural gamma log measurements were made inside the drill string in order to avoid tool loss (206-1850 m), and caliper, natural gamma, sonic porosity, resistivity, self potential, and temperature logs were measured in an open hole below the HQ drill string. Temperatures in the lower 100 m of the drill hole exceeded the limits of the instruments, resulting in electronic noise below ~1800 m depth.

Natural gamma-rays in the SRP are emitted primarily by ⁴⁰K, which is concentrated in the sedimentary interbeds, enabling us to identify stratigraphic breaks between basalt flow groups. Furthermore, natural gamma logs may be used to identify individual basalt flows should they contain measurable differences in the relative abundance in K₂O (Twining et al., 2008). In general, sedimentary interbeds are characterized by high natural gamma-ray (> 75 API) signals relative to the surrounding tholeiitic basalts (0-75), whereas high K₂O lavas are characterized by moderately high gamma-ray signals (higher than the tholeiitic basalts, lower than the sediments).

Neutron logs measure the absorption of neutrons by hydrogen (typically as H₂O in the SRP), such that porous, water-rich rocks have high neutron absorption (low backscattered signal), whereas dense rocks with low porosity and low water contents have low neutron absorption (high backscattered signal to the detector). The absorption of neutrons in water-

filled vesicles and fractures results contrasts sharply with dense, water-free basalt. Void spaces created by vesicles and fractures are dominantly found in rubbly lava flow tops and flow bases, whereas the massive flow interiors have low porosity. This allows us to distinguish individual lava flows and correlate them with flows and flow contacts found in core.

Paleomagnetic methods

More than 1200 paleomagnetic samples were cored out over the entire 1912 m length of the core, and subjected to AF and thermal demagnetization protocols. The Kimama drill core was carefully logged and sampled using INL Lithologic Core Storage Library protocols described in Davis et al. (1997). Prior to sampling, the core material was described and the tops and bottoms of lava flows were identified. Depths were measured from depth markers recorded by the drillers at the time of coring. Mean inclination values for each lava flow group, and 95 percent confidence limits about the mean value were calculated using the method of McFadden and Reid (1982).

To facilitate paleomagnetic interpretation, the corehole is assumed to be vertical in its original drilling orientation. A gyroscopic deviation log of the Kimama was made at 0.3 m (1 ft) intervals, and it records moderate deviations from vertical. Deviation from vertical for any particular depth interval in the Kimama corehole typically is less than one degree, and does not significantly affect paleomagnetic remanent inclination interpretations, and has no effect on the remanent polarity determinations used here. Further details of the paleomagnetic study of the Kimama corehole will be released later (Champion and others, in prep.).

Radiometric Dating

Age determinations for six samples from the recovered Kimama core were derived from groundmass separates. The groundmass samples were prepared from whole-rock core pieces

by crushing and sieving to obtain a 200-300 μ m size fraction, then acid leached following the procedure described by Koppers et al. (2000). This consisted of 15 minute sequential leaching in 1 N HCl, 5 N HCl, 1 N HNO₃, and 5 N HNO₃. Before irradiation, 50-100 mg of material was hand picked from the final leached separate to remove fragments of phenocrysts and any remaining alteration minerals. All samples were irradiated at the Oregon State University 1 MW TRIGA Reactor. Neutron flux was monitored using a Fish Canyon Tuff biotite (FCT-3) with a monitor age of 28.02±0.16 Ma (Renne et al., 1998). Argon extraction and analysis was achieved with a Merchantek 10 W CO₂ laser and an MAP-215-50 mass spectrometer following the methods outlined in Duncan and Hogan (1994) and Duncan et al. (1997). Data reduction utilized ArArCALC v.2.2 (Koppers, 2002) using decay constants proposed by Steiger and Jüger (1977).

Samples were heated from 400° to 1400°C (fusion) in 7-8 steps with gas cleanup and Arisotopic measurement after each temperature step. We calculated ages from the isotopic data in a number of standard ways. Total fusion ages incorporate all heating steps in a given incremental heating experiment, essentially equivalent to a conventional K-Ar age determination. Plateau ages, calculated as the weighted mean (by inverse variance) of multiple step ages, are considered reliable if they include three or more contiguous step ages constituting > 50% of the total gas released. A statistical parameter, mean square of weighted deviations (MSWD), compares error within step ages with scatter about the mean step age, and has a 2-sigma (95%) confidence limit below about 2.5 (depending on the number of heating steps). Isochron ages are calculated from the slopes of linear regressions through the step isotopic compositions (40 Ar/ 36 Ar vs 39 Ar/ 36 Ar) that comprise the plateaus, and make no assumption about the initial Ar composition (40 Ar/ 36 Ar).

Our analyzed samples show petrographic evidence for low temperature alteration, to clays and zeolites. In such cases the possibility for ⁴⁰Ar-loss and K-addition during fluid-rock

30

chemical exchange is significant. Baksi (2007) compared fresh and altered basalts dated by ⁴⁰Ar-³⁹Ar incremental heating experiments and developed several quantitative measures of levels of alteration at which age data may be compromised. The first is the concentration of ³⁶Ar (atmospheric, corrected for reactor produced ³⁶Ar from Ca), which lies below about 3x10⁻¹⁴ mol/g for whole rock basalts in samples that produced acceptable (crystallization) plateau ages.

Results

Flow Units and Flows

Almost all of the lava flows identified in the Kimama core are compound flows comprising two or more flow units. The few simple flows that contain a single flow unit are generally thin sheets that are distinct from flows above and below. We identify 446 basalt flow units, which range in thickness from 0.3 m to 29.6 m and average 13.4 m thick (Figure 5). Using lithologic observations, petrography, and geochemical and paleomagnetic stratigraphy, we grouped flow units into 141 lava flows, 0.3 m to 48.1 m thick, (most 10-20 m thick; 12 m average). Flows and flow units are summarized in Table 1, and reviewed in detail in Appendix A. Massive basalt flows are commonly overlain by multiple shelly pahoehoe flow units, and typically show evidence of sediment infiltration along cooling boundaries. Intercalated sediment ranges in thickness from 0.2 m to 80 m, and the thicker layers are clearly visible in natural gamma logs as high gamma spikes (Figure 6). A total of 113 m of sediment was recovered from the Kimama core, with the majority of eolian sediment located between 115 and 560 m depth (Figure 5). Two thick packages of fluvial sediment are identified at 1707 m-1760 m depth and 1840 m-1905 m depth.

Super	Flow	Polarity &	Pmag Age (Ma)	CHRON	Chem.	No.	No.	Start	End	Flow Group	Mean Flow	No. Sed
Group	Group	Inclination Range		subchron	Туре	Flows	Flow Units	Depth (m)	Depth (m)	Thickness	Thickness	Interval
	1	60	~0.72		SROT	4	11	13.4	25.2	11.7	8.63	0
	2	51		Ë	SROT	9	16	25.2	95.8	70.6	14.2	1
А	3	43		<u>ک</u>	SROT	1	2	96.0	100.6	4.60		0
	4	38		8	SROT	1	2	100.6	118.3	17.7		1
	5	-56	0.78		SROT	1	10	123.8	142.9	19.1		0
В	6	-63		MATUYAMA	Fe-Ti	1	3	142.9	164.8	21.9		0
_	7	-64			Fe-Ti	2	3	164.8	183.8	19.0	9.49	1
<u> </u>	8	22	0.99	jaramillo	SROT	6	9 10	202.3	232.8	30.5	9.07	1
D	10	-61	1.07		Fe-Ti	5	18	250.8	239.0	15.3	7.05	0
-	11	-61			SROT	4	9	274.9	317.2	42.3	19.9	1
E	12	-63		A M	High-K	1	1	317.7	319.7	2.00		1
	13	-64		YAN	SROT	2	4	319.8	336.0	16.2	12.9	0
	14	-64		MATU	Low-K	1	2	336.0	342.5	6.50		0
F	15	-62			Fe-Ti	2	8	342.5	358.7	16.2	8.08	1
	16	-62			SROT	2	8	358.8	377.2	18.4	9.19	0
	17	-52			SROT	3	18	377.2	425.1	47.9	16.0	0
G	18	60 E7	1.77		SROT	3	5	425.1	432.9	/.80	2.59	1
	19	5/		olduvai	SKUT	2	4	452.9	451.7	19'9 19'9	9.39	1
н	20	22			SROT	5 1	12	453.2	469.2 504 5	30.U 15 2	12.0	0
	27	56			SROT	2	+ 10	504 5	527 4	13.5 22 Q	11 4	1
	22	-52	1 95		Fe-Ti	1	2	528.3	547.9	19.6		1
	24	-54			Low-K	2	7	548.4	560.7	12.3	5.58	0
	25	-54		МА	Fe-Ti	1	2	560.7	566.0	5.30		0
	26	-54			SROT	1	1	566.0	570.1	4.10		0
1	27	-54		KAN	Low-K	3	9	570.1	575.8	5.70	7.06	0
	28	-54		E E	Fe-Ti	1	5	575.8	584.8	9.00		0
	29	-54		MM	SROT	3	7	584.8	591.3	6.50	11.0	0
	30	-54			Low-K	2	7	591.3	610.5	19.2	28.6	1
	31	-55			SROT	1	1	610.5	617.1	6.60		0
J	32	32	2.43	X-Event	Fe-Ti	1	1	617.1	731.8	114.7		1
	33	-58			SROT	1	6	732.4	755.4	23.0		1
	34	-62		AA A	SROT	2	5	755.6	770.1	14.5	7.27	0
	35	-45		λ An	SROT	3	19	776.0	831.4	55.4	19.2	1
к	36	-65		MATU	SROT	1	2	831.7	841.3	9.60		0
	3/	-05			Fe-II	1	2	841.3	849.1 965 1	7.80	12.6	0
	30	-40			SPOT	5	0 13	874 3	910.9	36.6	0 15	0
-	40	-55	2 5 8	GALISS	SPOT	1	6	010.0	03/ /	23.5	5.15	0
-	40	-77	3.04	GAUSS	SROT	1	1	934.4	947.2	12.8		0
м	42	-73		в	SROT	1	1	947.2	948.5	1.30		0
	43	-76		kaei	SROT	1	1	948.5	950.0	1.50		0
N	44	56	3.11	_	SROT	2	6	950.00	961.5	11.5	5.74	1
0	45	-60	3.22		SROT	7	15	962.0	1022.1	60.1	9.96	2
	46	63	3.33	mammoth	SROT	1	1	1022.1	1022.8	0.700		2
Р	47	63		S	Low-K	1	2	1044.1	1045.0	0.900		0
	48	51		AUS	Low-K	3	4	1045.0	1076.6	31.6	10.5	1
Q	49	-71	3.58	9	High-K	1	1	1077.1	1078.5	1.40		1
R	50	-72		<u>н</u>	Low-K	3	10	1079.3	1112.9	33.6	11.2	1
S	51	5		BER	Low-K	1	1	1113.3	1115.8	2.50		1
т	52	-69		GLL	Fe-Ti	1	2	1116.5	1131.0	14.5		1
-	53	-49			Fe-Ti	1	1	1131.0	1150.9	19.9		2
	54	58	4.18		SROT	1	9	1151.9	1175.1	23.2		0
U	55	58		hiti	SROT	3	/	11/5.4	1212.8	37.4	12.5	1
	50	20		COC	CPOT	1	1	1212.0	1217.1	4.50		1
v	57	60	1 20	_	SRUT	1	1	1217.5	1234.7	0 000		1
w	59	59	4,48		Low-K	1	8	1239.5	1272.1	32.6		0
	60	59	4,62	nunivak	SROT	3	13	1272.1	1310.6	38.5	12.8	0
х	61	59		L	Low-K	3	12	1310.6	1377.2	66.6	22.2	1
	62	-43		ERT	Low-K	1	2	1379.0	1389.0	10.0		1
Y	63	-58		ILBE	Low-K	1	2	1389.1	1394.6	5.50		0
	64	-58		<u> </u>	SROT	1	1	1394.6	1407.0	12.4		1
	65	68	4.98	_	SROT	3	20	1411.5	1460.4	48.9	16.3	1
z	66	62	era	'era	Low-K	2	9	1461.3	1510.1	48.8	24.4	1
	67	43		th	Low-K	1	2	1510.9	1526.3	15.4		1
AA	68	-45	5.23		Low-K	1	2	1527.0	1545.9	18.9		1
	69	-67		GILBERT	Low-K	9	34	1546.3	1729.7	183.4	21.6	2
AB	70	64	5.89		Low-K	2	4	1754.1	1766.4	12.3		1
AC	I 71	-45	6.14	C3An/c3an.1	Low-K	7	19	1768.5	1912.0	143.5	16.9	4

Figure 5: Lithologic and paleomagnetic stratigraphy of the Kimama core. 71 flow groups were identified based upon lithologic observations, chemical variation, and magnetic polarity. Paleomagnetic polarity and associated ages are displayed to the left of the lithologic log. Five Chrons and nine subchrons are identified in the Kimama core (Champion and Duncan, 2012).

The transition from surface facies to interior facies is observed as near-surface vesicle bands, or segregation veins, visible as sub millimeter-sized vesicles within fine-grained crystalline basalt (Figure 4I). Segregation veins result from episodic gas exsolution during repeated episodes of lava inflation. Multiple, stacked segregation veins, without chilled margins, may be present within a single lava flow and are a principle facies indicator of inflated pahoehoe flows (Smith, 1967; Walker, 1993; Chitwood, 1994; Self et al., 1998).

Flow interiors are characterized by massive fine-grained intergranular textures, to coaser-grained diktytaxitic textures with isolated vesicles. Flow interiors commonly exceed three meters in thickness (Figure 4g). Because thicker flow units take longer to solidify, their interiors typically exhibit few vesicles from the lower and middle portions (Walker, 1993). Diktytaxitic texture (Figure 4f), vesicle pipes (Figure 4k), macro vesicles (Figure 4e), and vesicle segregation veins, also present in interior flow facies, are thought to be a product of cyclic vesiculation, or repeated cycles of lava flow inflation and gas exsolution (Figure 4g) (Hughes et al., 2002).

The flow unit base contains minor vesiculation and may contain rubble (Figure 4). In Kinama drill core, the basal valve flow unit facies occurs in thicknesses generally less than 5 cm.. Degassing is most efficient in the lower portion of the flow unit, resulting in relatively minor vesiculation in the basal facies relative to the interior and surface facies. A thin, > 2 cm rind of glass often designates the chilled contact of the lava flow unit with the ground surface

Individual flow units almost invariably transition from dark gray basalt in the upper and lowermost portions of the flow unit to light gray within the interior, indicating a greater content of groundmass glass in the more rapidly cooled upper and lower portions (Figure 4). Vesicles, always sub-rounded to rounded, also display an inverse trend of increased size and decreased frequency through the flow interior, after which their concentration increases and size decreases to the end of the flow unit. When flows exceed one another without sufficient time separation, new lava flows may make molds of the underlying flow surfaces as they cool, creating flow and mold structures (Twining et al., 2008) (Figure 4m). Missing intervals (unrecovered core) within flow groups identified within the Kimama core are usually associated with rubble sections (Figure 4I) or sediment interbeds (Figure 4d), both of which are easily disturbed by drilling.

Significant time separation between eruptive events are sometimes indicated by eolian, fluvial, and lacustrine sediment horizons, which collect in topographic lows or leeward settings. Eolian sediments lack internal structure or depositional facies, whereas lacustrine and fluvial sediments in Kimama core typically contain bedforms. Fining upward sequences associated with fluvial deposition are especially apparent in cored Kimama sediments below 1730 m (Figure 4o). In some cases, sediment layers may have been baked by overlying lava flows (Figure 4d). As a result of weathering and water movement, sediment-filled vesicles are most common within flow units that are immediately beneath sediment interbeds (Figure 4I).

At two depth intervals, increased natural gamma signal response is observed without a corresponding sediment package. Geochemical analyses of samples from 319 m and 1078 m depth demonstrate high K₂O and high Fe₂O₃ (~2.0 wt.% and 19.0 to 21.0 wt.%, respectively) relative to the olivine tholeiite composition (0.25-1.00 K₂O wt.%; 13.0 to 17.0 wt.% Fe₂O₃) observed in the majority of the core. Elevated K₂O and Fe₂O₃ compositions are observed basalt compositions.

Below the ~250 m-depth of the top of the vadose zone in the Kimama drill hole, secondary mineralization by dogtooth spar commonly occurs as vesicle and fracture fillings (Figure 4k). Carbonate clay commonly coats basalt rubble zones within the vadose zone, and at depths greater than ~900 m, clay alteration is common as montmorillonite vesicle fillings (Figure 4p).

Basalt shows evidence of interaction with water (hyaloclastite) are found at depths of 1697.8 to 1704.3 m, from 1842.9 m to 1846.7, and from 1855.7 m to 1912 m. Kimama

hyaloclastites are angular basalt breccias bounded by a matrix of sand and basaltic glass fragments, which have been subsequently altered and silicified by hydrothermal fluids. Hyaloclastite overlies or is interlayered with packages of fluvial sediments.

Flow Groups

The lava flows recognized above are collated into Flow Groups based on their chemistry and petrology, magnetic polarity, and contact relations (Figure 5). In particular, sediment horizons > 1 m meter thick (and up to 80 m thick) represent interruptions in lava accumulation, or local eruptive hiatuses (Anderson et al., 1997). Previous workers suggest that typical SRP flow groups were deposited during eruptive events that lasted no more than a few hundred years, with an average lapse of 10 to 20 ka between each flow group eruption (Kuntz et al., 1980). Hiati identified in a stratigraphic interval generally represent less than a few tens of thousands of years (Anderson and Liszewski, 1997; Champion and Duncan, 2012).

We distinguished 71 flow groups, ranging in thickness from 0.7 to 183.4 m, based on these criteria (Figure 5, Table 1, see also Electronic Supplement). Four general compositional types were identified; thirty-seven flows are standard SRP olivine tholeiites, recognized in wireline logs as areas of greater neutron signal response than sediment or sediment-coated rubble stratigraphic intervals.

Two flow groups, 14 and 49 (Figure 6), consist of evolved high-K lavas that are essentially identical to those erupted within the Craters of the Moon lava field during the latest Pleistocene and Holocene (Kuntz et al., 1986; Putirka et al., 2009). These high-K flow groups, which were initially recognized based on their relatively high gamma-ray signal response, erupted from polygenetic, or multi-pulse vent systems. We identified 20 low-K lavas, which represent the least evolved flow groups in the Kimama core (Figure 6). Twelve high-Fe and Ti (Fe-Ti) flow groups are also identified in the Kimama basalt stratigraphy.

Sharp variations in major and minor element concentrations or ratios are also used to distinguish flow groups, and these group boundaries correlate to lava flow divisions made using lithology and paleomagnetic inclination (Figure 7). Polarity reversals are also thought to represent distinct time breaks that define flow group boundaries, especially if they occur within a major sediment horizon.

Paleomagnetic Results

Magnetic susceptibility records paleomagnetic polarity and inclination, by which geologic ages of basalt flows are constrained. Polarity, K-Ar age, and stratigraphic data from the Kimama core are consistent with five paleomagnetic chrons and eight paleomagnetic Plio-Paleo subchrons (Table 2 and Figure 8). Twenty-one magnetic reversals, where the polarity of basalt changes from normal to reversed, are recorded in the Kimama core. The distribution of basalt flows within identified subchrons and chrons demonstrates that the majority of flow groups in the Kimama core erupted over <100 years. Flow groups 32, 50, and 70 erupted over ~10,000 years, and flow group 40 erupted over ~300,000 years.

Table 2: Paleomagnetic Chrons and Subchrons by depth									
Palaamagnatic Unit	Age Range	Depth Start	Depth End						
Paleonnaghetic onit	(Ma)	(m)	(m)						
Brunhes Chron	0.72-0.78	120 ± 2							
Matuyama Chron	0.78	911	120 ± 2						
Jaramillo Subchron	0.99-1.07	235 ± 2	193 ± 9						
Oluvai Subchron	1.77-1.95	528 ± 0.6	425						
X' Event	2.43	708							
Gauss Chron	2.58-3.58	950 ± 0.3	935						
Kaena Subchron	3.04-3.11	1077	911						
Mammoth Subchron	3.22-3.33	1022	962						
Gilbert Chron	3.58-5.89	1728 ± 23	1077						
Cochiti Subchron	4.18-4.29	1236 ± 0.61	1151 ± 1.5						
Nunivak Subchron	4.48-4.62	1378 ± 0.9	1238 ± 1.2						
Thvera Subchron	4.98-4.98	1526	1409 ± 2.1						
C3An Chron	5.89-6.43*	T.D.	1728 ± 23						
C3An.1 Subchron	6.14-6.43*	T.D	1768						

Measured depth locations of five paleomagnetic Chrons and eight Subchrons identified in the Kimama core. T.D. is 1912 m *6.43 Ma age estimated from modeled accumulation rate Ages from Champion and Duncan, 2012

basalts. These criteria were used to distinguish the 30 flow groups within the Kimama core. Major paleomagnetic and chemical variation between flow groups are Figure 7: Plots of paleomagnetic polarity and inclination, major element composition, and elemental ratios plotted against depth for Kimama often (but not always) associated with sediment interbeds.

Figure 8: Kimama basalt accumulation rate estimated from linear fit model of Ar/Ar and paleomagnetic ages. The onset and termination of paleomagnetic Chrons and Subchrons are shown by the small red dots, with normal polarity intervals demonstrated by grey shading. Ar/Ar ages are indicated by filled blue circles. The youngest U-Pb ages of detrital zircon grains in the lower fluvial successions are 5.8 ± 0.1 Ma at 1749 m, and 6.2 ± 0.1 Ma at 1844 m depth; these ages (pink filled circles) are overlain on the linear fit projection to demonstrate concurrence with the 335 m/m.y. accumulation rate and indicate a depositional period of <100,000 years (modified from Champion and Duncan, 2012).

The Matuyama Chron spans 790.4 \pm 2 Ma of basalt eruptions and comprises super groups B through K and flow groups five through 39. Within the Matuyama Chron, the Jaramillo subchon spans 42 \pm 11 Ma. Super groups C and D and flow groups eight and nine were erupted during the Jaramillo subchron. The Olduvai subchron spans 103 \pm 0.6 Ma and includes super groups G and H and flow groups 18 through 22. At 2.43 Ma, the 'X-event', a period of normal polarity within the Matuyama Chron, includes super group J and flow group 32. The 166.2 Ma Gauss Chron encompasses super groups L through Q and flow groups 40 through 49. The Gilbert Chron spans 2.31 Ma and includes super groups R through AB and flow groups 50 through 70. Within the Gilbert Chron, the 0.11 Ma Cochiti subchron includes super group U and V and flow groups 54 through 58. The Nunivak subchron covers 0.14 Ma and includes super groups W and X and flow groups 59 and 60. The 0.25 Ma Thvera subchron includes super groups Z and AA and flow groups 65 through 68. The last identified Chron in the Kimama core is the C3An Chron, which terminates at 6.14 Ma and at a depth of 1768.5 m and continues to 1912.0 m. The paleomagnetic inclination of Kimama flow groups ranges from 22 degrees to -27 degrees, with minor variation within flows of each flow group.

Radiometric Dating Results

Total fusion, plateau, and isochron ages are summarized for all analyzed samples in Table 3, and Figure 8. In general, the incremental heating experiments produced clear age plateaus comprised of most of the gas released, although some step ages appear to be influenced by irradiation-induced ³⁹Ar, ³⁷Ar recoil, resulting in high low-temperature step ages in samples KMAB1488 (454 m depth) and KMA4788 (1459 m depth), and low high-temperature step ages in sample KMA3791 (1155 m depth). None of the samples appears to be affected by ⁴⁰Ar-loss. The six samples from the Kimama core hole provided reliable plateau ages, composed of 86-100% of the total gas released, ranging from 1.54 to 5.05 Ma (Table 3).

 Table 3:
 40Ar-39Ar Age Determinations for Kimama Well Core

	Sample	Depth (m)	Total	2σ	Plateau	2σ				2σ		40Ar/	29	36Ar E-
			Fusion	error	Age	error	Ν	MSWD	Isochron	error	MSWD	36Ar	20	14
			(Ma)	(Ma)	(Ma)	(Ma)			Age (Ma)	(Ma)		Initial	enor	mol/g
	KMA1050	320	1.47	0.23	1.54	0.15	8/8	0.29	1.63	0.30	0.25	294.6	2.3	0.185
	KMA1488	454	1.78	0.18	1.62	0.15	7/8	0.44	2.25	1.34	0.35	288.7	14.7	0.151
	KMA3791	1155	3.58	0.20	3.74	0.13	6/8	0.39	3.79	0.15	0.18	294.5	1.7	0.127
	KMA3885	1184	4.17	0.64	4.18	0.58	7/7	0.43	3.97	0.71	0.48	296.5	2.6	0.079
	KMA4214	1284	4.40	0.40	4.39	0.30	7/7	0.04	4.40	0.31	0.04	295.1	5.6	0.058
	KMA4788	1489	5.70	0.93	5.05	0.81	6/7	0.23	4.87	1.20	0.27	297.1	8.5	0.063

Ages calculated using biotite monitor FCT-3 (28.02 Ma) and the total decay constrant λ = 5.530E-10/yr. N is the number of heating steps (defining plateau/total); MSWD is an F-statistic that compares the variance within step ages with the variance about the plateau age. J combines the neutron fluence with the monitor age. Preferred (plateau) ages are shown in bold, concordant with isochron ages.

The ages increase with depth, in stratigraphic order. In all cases plateau ages are consistent with isochron ages and show no evidence for significant recoil, or ⁴⁰Ar-loss (Figure 9). Because the step compositions do not typically show large dispersion, the slopes determined by linear regressions of ⁴⁰Ar/³⁶Ar vs. ³⁹Ar/³⁶Ar are not well constrained and the corresponding the analytical uncertainties for isochron ages are larger than for corresponding plateau ages. In all cases, however, the plateau and isochron ages are concordant and initial ⁴⁰Ar/³⁶Ar compositions are indistinguishable from the atmospheric value (295.5). Thus, we find no evidence for undegassed ("excess") ⁴⁰Ar during cooling, and we report the plateau ages as our best estimate of the times of crystallization of these lava flows. The ³⁶Ar concentrations, calculated as a quantitative measure of alteration (Baksi, 2007) from the isotopic data (Table 3) are below the suggested cutoff value for whole rocks. Hence, alteration and Ar-loss have not significantly compromised the measured plateau ages as reliable estimates of the times of crystallization of these lava flows.

Figure 9: Kimama basalt accumulation rate estimated from linear fit model of Ar/Ar and paleomagnetic ages. The onset and termination of paleomagnetic Chrons and Subchrons are shown by the small red dots, with normal polarity intervals demonstrated by grey shading. Ar/Ar ages are indicated by filled blue circles. The youngest U-Pb ages of detrital zircon grains in the lower fluvial successions are 5.8 ± 0.1 Ma at 1749 m, and 6.2 ± 0.1 Ma at 1844 m depth; these ages (pink filled circles) are overlain on the linear fit projection to demonstrate concurrence with the 335 m/m.y accumulation rate and indicate a depositional period of <100,000 years (modified from Champion and Duncan, 2012).

Discussion

Measured paleomagnetic and K-Ar ages and interpreted stratigraphic relations of basalt super groups, flow groups, flows, and flow units, were used to estimate accumulation rate and volcanic flux in the Axial Volcanic High of the central Snake River Plain. Geologic ages of basalt core were constrained using paleomagnetic polarity and inclination measurements of over 1200 cores and K-Ar analyses of six basalt samples (Figure 9). Accumulation rate and volcanic flux were estimated from standard linear regressions of mean K-Ar ages, mean paleomagnetic ages, stratigraphic depths of basalt flows and flow groups, and the estimated areal dimension of Kimama basalt accumulation.

Volcanic Stratigraphy

The Kimama core contains 71 flow groups, each made up of one to seven flows of similar paleomagnetic inclination and major and trace element composition. Flow groups comprise 155 lava flows and 462 flow units, and commonly contain two to six flows and 10 to 20 flow units. Most flow groups are 10 to 60 m thick, and are compositionally similar to typical SRP olivine tholeiites (SROT). Flow groups are estimated to have erupted over durations of 100 to 10,000 years. Flow groups at the base of the Kimama core contain more flows, an observation attributed to greater accumulation from less-frequent volcanism.

High K, low K, and Fe-Ti flow groups are interpreted to represent flow groups that are petrologically distinct from the tholeiitic lavas above and below them (see Chapter 3). Although not recognized by natural gamma-ray wireline logs, Fe-Ti and low-K flow groups are also thought to represent distinct magma batches separate from typical tholeiitic basalt eruptions.

Within flow groups of the same magnetic polarity and general inclination range, abrupt chemical variance between lithologically distinct flows signal unrelated batches of magma, new

eruptive episodes, and different basalt flows. Within a basalt flow, flow units share the same general chemistry but are distinguished by lithologic facies. Variance of the inclination suggests and may require elapsed time of hundreds to tens of thousands of years, while polarity reversals may signify millennial-scale duration (Figure 8; Champion et al., 1988; Champion and Duncan, 2012).

Depth intervals of alternating magnetic polarity and subordinate intervals of similar mean remanent inclination values can be organized into 54 independent eruptive episodes ending in the Brunhes Normal Polarity Epoch and beginning within the C1An Normal Polarity Epoch. The median and range of remanent intensity and magnetic susceptibility values remain remarkably constant over the length of the drillcore. Density determinations made from the samples are also uniform in their range of values, despite significant alteration evident in the deeper parts of the core where temperatures are elevated. Density results suggest similar melting conditions in the mid crust for erupted basalts.

The use of neutron and natural gamma-ray logs for identifying porous and rubbly zones between more impermeable, massive basalt flows is validated through the results of this preliminary investigation. Using wireline data as a tool in preliminary geothermal exploration is a cost-effective method for mapping subsurface stratigraphy and probable fluid transport routes. The pronounced fluctuation of neutron and natural gamma measurements closely mirrors the location of massive flow interiors and associated flow boundaries. Increased signal response in both natural gamma and neutron logs correlate to actual sediment interbed locations identified during lithologic logging. Especially at depths of 734.8 m and 1226.4 m, spikes and dips in natural gamma and neutron log signals (respectively) accurately identify the presence of sediment interbeds. Age and Accumulation Rate

The 40 Ar/ 39 Ar age determinations on six samples produce plateau ages that increase monotonically with depth, with an age of 5.05 ± 0.81 Ma in the deepest sample at 1459 m. The age progression determined from the paleomagnetic time scale fills in the gaps in the radiometric dates (Figure 9) and further refines the age vs. depth relationship among the lava flows (Figure 8).

In the bottom 200 m of core, basalt flows are interbedded with fluvial sand and hyaloclastite, an indication that lava flows interacted with surface water. Angular and bladed detrital zircons, interpreted to be derived from a fallout tuff source, were recovered from two fluvial interbeds and dated using laser ablation ICPMS U-Pb geochronology (see Chapter 4). The youngest magmatic zircons in each interbed are interpreted to represent (within analytical uncertainty) the depositional age of the sediment, because unwelded ash fall and ash flow tuffs will begin to erode shortly after deposition. The magmatic zircons in the lower fluvial section have ages of 6.2 ± 0.1 Ma (see Chapter 4), whereas the youngest magmatic zircons in the upper fluvial succession have ages of 5.8 ± 0.1 Ma. These ages are consistent with the age progression defined by the Ar dates and the paleomagnetic time scale, and together these data project to a bottom hole age of 6.4 Ma.

We document a linear accumulation rate through time of 335 m/Ma (Figure 8), based on an age of 720 Ka for the surface flows and 6.25 Ma for the oldest basalts (or 5.5 My elapsed time). Accumulation rates must be averaged over hundreds of thousands of years to account for hiatuses due to vent construction, periods of decreased volcanism, differential subsidence, and uplift (Anderson et al., 1997; Anderson and Liszewski, 1997). Each stratigraphic lava flow generally represents a time period of volcanic activity no longer than a few hundred years; therefore, a sedimentary interbed or variation in paleomagnetic inclination can represent 10 to 20 thousand years of volcanic inactivity. This is sufficient time to allow deposition of thick layers of sediment and for the Earth's magnetic fields to undergo several degrees of secular variation (Anderson et al., 1997; Champion et al., 1988).

The eruption rate of Kimama basalts is estimated using a linear regression model fitted to ages obtained from K-Ar and paleomagnetic age analyses. The data conform to a rate of growth of about 335 m/Ma between 6.25 Ma and 0.72 Ma. A 1912-m-thick sequence of cored basaltic lava flows yields K-Ar ages that range from about 1.54 Ma to about 5.05 Ma and paleomagnetic ages that range from 0.72 Ma to 6.14 Ma. A linear regression model fit to age data demonstrates a uniform rate of accumulation of basalt with time. In the Kimama region, one flow group erupted on average every 112 k.y.

At INL on the eastern SRP, paleomagnetic and K-Ar ages of surface and subsurface basalts were analyzed for eruptive periods ranging from 200 to 700 k.y. during the past 1.8 m.y. Rates ranging from 521.2 m/m.y. to 823.0 m/m.y., averaging 664.5 m/m.y, are estimated for areas of past subsidence (Anderson et al., 1997).

Magmatic Flux

In order to calculate the magmatic flux we make a few simplifying assumptions regarding crustal thickness and density. Since the thickness of the eruptive basalt accumulation is about 2 km in the Axial Volcanic Zone, and approaches zero on the plain margins (where rhyolites have little or no basalt cover), we calculate the cross-sectional area of the basalt as a triangular wedge 100 km across and 2 km high (Figure 10), or 100 km². The velocity of North America during this time period was 29 mm/year, which for a duration of basalt volcanism of 5.5 Ma corresponds to a linear track 160 km long (parallel to plate motion). Multiplied by the crosssectional area of 100 km², we calculate a long-term post-plume eruptive flux of 16 x 10³ km³ over 5.5 Ma, equivalent to 2.9 x 10³ km³/Ma or 2.9 km³/Ka. This compares well with an eruptive flux for recent volcanism in the SRP of 3.3 km³/Ka calculated by Kuntz et al. (1992) or 2.5 km³/Ka calculated by McCurry and Rodgers (2009). These calculations show that eruptive flux has been remarkably consistent over the last 5.5 Ma in the central and eastern SRP, and imply a relatively stable rate of mantle upflow under the region.

Figure 10: Schematic cartoon showing calculations for SRP magmatic flux over an area of 100 km2 and a depth of 2 km. The post-plume eruptive basalt flux for the SRP is ~16 x 103 km3 over 5.5 Ma. The post-plume intrusive basalt flux is calculated by using the commonly accepted 1:4 ratio of magma eruption to magma intrusion (Hughes et al., 2002). The calculation does not consider rhyolite flux. If the ratio is correct, the total amount of basalt intruded as ~64 x 103 km3, and the total basaltic flux (intruded+extruded) as ~8 x 104 km3, both over 5.5 Ma. This corresponds to a flux of 1.5 x 104 km3 per Ma, consistent with measured rates in small LIPs (Saunders, 2005).

We need to make a further assumption to calculate the total magmatic flux (= eruptive flux + intrusive flux): the ratio of magma eruption to magma intrusion. This is commonly assumed to be around 1:4, that is, 4 volumes of magma intruded for every volume erupted (Kuntz et al., 1992; Hughes et al., 2002). This ratio is consistent with the relative thickness of

49

erupted basalt (2 km) versus the mid-crustal sill complex (~8-10 km; Peng and Humphries, 1998). If this ratio is correct, we calculate the volume of basalt intruded as ~64 x 10^3 km³, and the total basaltic flux (intruded+extruded) as ~8 x 10^4 km³, both over 5.5 Ma. This corresponds to a flux of 1.5 x 10^4 km³ per Ma.

Thus, total basaltic flux in the central SRP (~ 10^{5} km³ over 6.4 Ma) is consistent with measured rates in small Large Igneous Provinces (LIPs) (Saunders, 2005). For comparison, large LIPs are thought to erupt more than 1×10^{5} km³ of basalt in less than 10 Ma. The total flux of Hawaii (Kilauea) is 1.1×10^{5} km³/Ma (Denlinger, 1997), or about 10x higher that that observed in the SRP. Note however, that these calculations include *only* basaltic flux; the volume of rhyolite present (including that erupted as lavas or ash flows, and intruded into the crust as A-type granites) requires magmatic flux volumes that are 5-10x those calculated here (Leeman, 1982; McCurry et al., 2008; McCurry and Rodgers, 2009).

Conclusion

The Kimama core provides an unprecedented opportunity to interpret a continuous sequence of basalt and intercalated sediment, through which the volcanic history of the central SRP may be characterized and temporally constrained. Subsurface geophysical data provide an accurate proxy to lithologic observations made from cored basalt and sediment of the Kimama drill hole. The identification of individual basalt flow units and flows is possible through the use of natural gamma-ray and neutron well log data. Combined with magnetostratigraphic and geochemical logging tools, geophysical logs enable the interpretation of subsurface basalt flow group stratigraphy and the characterization of volcanic processes. Over the past 6.4 Ma, basalt

volcanism on the central SRP in the region of the Kimama core hole has been relatively continuous. Flow groups average most 10 m to 60 m thick and show an average accumulation rate of 335 m/Ma.

The majority of basalt flow breaks within the Kimama core are delineated by the presence sediment in fractures and vesicles. Although not a robust tool for determining avenues of porosity between basalt flows, natural gamma logs accurately delineate large sediment interbeds within the Kimama core and highlight geochemical anomalies within the basalt stratigraphy. Natural gamma anomalies highlight geochemical variations that could indicate changes in magma generation processes and associated volcanism. Furthermore, natural gamma logs provide a valuable resource in determining sample locations for geochemical studies of SRP magmatism.

Slimhole drilling used with neutron and natural gamma logs is a relatively low-cost, time-effective, and accurate means of determining viable geothermal targets. Although core provides the most reliable and tangible means of characterizing the subsurface in areas of high geothermal potential, the use of geophysical wireline logs is a reliable proxy for identifying flow boundaries, geochemical transitions, and probable routes for fluid transport in the subsurface and represents the future of efficient, geothermal exploration. The comparison of logging methods employed to characterize the Kimama core provide clear evidence that that neutron wireline logs correlate closely to actual basalt flow breaks.

References

- Anders, M.H., Saltzman, J., and Hemming, S.R., 2009, Neogene tephra correlations in eastern Idaho and Wyoming for Yellowstone hotspot-related volcanism and tectonic activity: Geological Society of America Bulletin v. 121, p. 837–856.
- Armstrong, R.L., Leeman, W.P., and Malde, H.E., 1975, K-Ar dating, Quaternary and Neogene rocks of the Snake River Plain, Idaho: America Journal of Science, v. 275, p. 225-251.
- Anderson, S.R., Liszewski, M.J., and Cecil, L.D., 1997, Geologic ages and accumulation rates of basalt-flow groups and sedimentary interbeds in selected wells at the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations Report 97-4010, 43 p.
- Anderson, S.R., and Liszewski, M.J., 1997, Stratigraphy of the unsaturated zone and the Snake River Plain Aquifer at and near the Idaho National Engineering Laboratory, Idaho: U.S. Geological Survey Water-Resources Investigations Report 97-4183, 70 p.
- Baksi, A.K. 2007. A quantitative tool for detecting alteration in undisturbed rocksand minerals—
 I: Water, chemical weathering, and atmospheric argon, *in*: Foulger, G.R. & Jurdy, D.M.
 (eds) Plates, Plumes and Planetary Processes. Geological Society of America, Special
 Papers, v. 430, p. 285–303.
- Bonnichsen, B., and Godchaux, M. M., 2002, Late Miocene, Pliocene, and Pleistocene geology of southwestern Idaho with emphasis on basalts in the Bruneau-Jarbidge, Twin Falls, and western Snake River Plain regions: Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin, v. 30, p. 233-312.
- Bonnichsen, B., Leeman, W. P., Honjo, N., McIntosh, W. C., and Godchaux, M. M., 2008, Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain: Bulletin of Volcanology, v. 70(3), p. 315-342.
- Champion, D.E., Lanphere, M.A., and Kuntz, M.A., 1988, Evidence for a new geomagnetic reversal from lava flows in Idaho-discussion of short polarity reversals in the Brunhes and Late Matuyama Polarity Chrons: Journal of Geophysical Research, v. 93, no. B10, p. 11,677-11,680.
- Champion, D., and Duncan, R. A., 2012. Paleomagnetic and 40Ar/39Ar studies on tholeiite basalt samples from "HOTSPOT" coreholetaken at Kimama, Idaho, central Snake River Plain. Eos Transactions, AGU, V13B-2842.
- Chitwood, L.A., 1994, Inflated basaltic lava—examples of processes and landforms from central and southeast Oregon: Oregon Geology, v. 56, no. 1, p. 11-21.
- Davis, L.C., Hannula, S.R., and Bowers, B., 1997, Procedures for use of, and drill cores and cuttings available for study at, the lithologic core storage library, Idaho National

Engineering Laboratory, Idaho: U.S. Geological Survey Open-File Report 97-124 (DOE/ID-22135), 31p.

- Denlinger, R. P., 1997, A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii: Journal of Geophysical Research: Solid Earth (1978–2012), v. 102(B8), p.18091-18100.
- Doherty, D.J., McBroome, L.A., and Kuntz, M.A., 1979, Preliminary geologic interpretation and lithologic log of the exploratory test well (INEL-1), Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho: U.S. Geological Survey Open-file report, 79-1248, 10 p.
- Duncan, R.A., and Hogan, L.G., 1994, Radiometric dating of young MORB using the 40Ar-39Ar incremental heating method: Geophysical Research Letters, v. 21, no. 18, p. 1927–1930.
- Duncan, R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., and Duncan, A.R., 1997, The timing and duration of the Karoo igneous event, southern Gondwana: Journal of Geophysical Research, v. 102, p. 18,127–18,138.
- Greeley, R., 1982, The Snake River Plain, Idaho: Representative of a new category of volcanism: Journal of Geophysical Research v. 87(B4), p. 2705–2712.
- Greeley, R., 1977, Basaltic "plains" volcanism, *in* Greeley, R., and King, J.S., eds., Volcanism of the Eastern Snake River Plain, Idaho: A Comparative Planetary Guidebook: National Aeronautics and Space Administration, p. 23-44.
- Hackett, W.R., and Smith, R.P., 1992, Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area. In Utah geology and mineral field excursion meeting, Ogden, UT (United States), May 1992, p. 1-18.
- Hackett, W.R., Smith, R.P., and Khericha, 2004, Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho, *in* B. Bonnichsen, C.M.
 White, and M. McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin 30, p. 461-482.
- Helm-Clark, C.M., Ansley, S., McLing, T., and Wood, T., 2005, Borehole and Well Middle-1823 and Its Relationship to the Stratigraphy of the South-Central Idaho National Laboratory: ICP/EXT-05-00790.
- Hofmann, W., 1997, Mantle Geochemistry: The Message from Oceanic Volcanism: Nature, v. 385, p. 219-229.
- Hon, K., Kauahihaua, J., Denlinger, R., and McKay, K., 1994, Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii: Geological Society of America Bulletin, v. 106, p. 351-370.

Hughes, S., Smith, R., Hackett, W., and Anderson, S., 1999, Mafic volcanism and

environmental geology of the eastern Snake River Plain, *in* S.S. Hughes and G.D. Thackray, eds., Guidebook to the Geology of Eastern Idaho: Idaho Museum of Natural History, p. 143-168.

- Hughes, S.S., Wetmore, P.H., Casper, J.L., 2002, Evolution of Quaternary Tholeiitic Basalt
 Eruptive Centers on the Eastern Snake River Plain, Idaho, *in* Bonnichsen, B., White, C.M.,
 and McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain
 Volcanic Province: Idaho Geological Survey Bulletin v. 30, p. 363-385.
- Jean, M.M., Shervais, J.W., Champion, D.E., and Vetter, S.K., 2013, Geochemical and paleomagnetic variations in basalts from the Wendell Regional Aquifer Systems nalysis (RASA) drill core: Evidence for magma recharge and assimilation—f ractional crystallization from the central Snake River Plain, Idaho: Geosphere, v. 9, no. 5, p. 1319– 1335, doi: 10.1130/GES00914.1.
- Koppers ,A.A.P., 2002, ArArCALC—software for ⁴⁰Ar/³⁹Ar age calculations: Computers and Geosciences, v. 28, p. 605–619.
- Koppers, A.A.P., Staudigel, H., and Wijbrans, J.R., 2000, Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique: Chemical Geology, v. 166, no. 1–2, p. 139–158.
- Kuntz, M.A., 1978, Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and potential volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho with a section on Statistical treatment of the age of Iava flows by John O. Kork: U.S. Geological Survey Open-File Report 78-691, 70 p.
- Kuntz, M., Dalyrymple, G., Champion, D., and Doherty, D., 1980. Petrography, age, and paleomagnetism of volcanic rocks at Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho, with an evaluation of volcanic hazards: U.S. Geological Survey Open-File Report 80-388, 63 p.
- Kuntz, M., Champion, D., Spiker, E., and Lefebvre, R., 1986. Contrasting magma types and steady-state, volume-predictable volcanism along the Great Rift, Idaho: Geological Society of America Bulletin, v. 97, p. 579-594.
- Kuntz, M., Covington, H., and Schorr, L., 1992. An overview of basaltic volcanism of the eastern Snake River Plain, Idaho, *in* P.K. Link, M.A. Kuntz, and L.P. Platt, eds., Regional Geology of Eastern Idaho and Western Wyoming: Geological Society of America Memoir 179, p. 227-267.
- Kuntz, M.A., Anderson, S.R., Champion, D.E., Lanphere, M.A., and Grunwald, D.J., 2002, Tension cracks, eruptive fissures, dikes, and faults related to late Pleistocene-Holocene basaltic volcanism and implications for the distribution of hydraulic conductivity in the eastern Snake River Plain, in Idaho, *in* P.K. Link, and L.L. Mink, eds., Geology, Hydrogeology, and Environmental Remediation: Idaho National Engineering and Environmental Laboratory,

Eastern Snake River Plain, Idaho: Geological Society of America Special Paper 353, p. 111-133.

- Leeman, W.P, 1982. Evolved and hybrid lavas from the Snake River Plain, Idaho, *in* Bill Bonnichsen and R.M. Breckenridge, eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 181-191.
- Lindholm, G. F., 1996. Summary of the Snake River regional aquifer system analysis in Idaho and eastern Oregon. U.S. Geological Survey Professional Paper 1408-A, 59 p.
- McCurry, M., Hayden, K., Morse, L., and Mertzman, S., 2008, Genesis of post-hotspot, A-type rhyolite of the eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite: Bull. Vocanol., v. 70, p. 361-383.
- McCurry, M., and Rodgers, D.W., 2009, Mass transfer along the Yellowstone hotspot track I: Petrologic constraints on the volume of mantle-derived magma: Journal of Volcanology and Geothermal Research, v. 188, p. 86-98.
- McFadden, P.L., and Reid, A.B., 1982, Analysis of palaeomagnetic inclination data: Geophysical Journal International, v. 69, no. 2, p. 307–319.
- Morgan, W.J., 1972. Plate motions and deep mantle convection: Geological Society of America Memoir 132, p. 7-22.
- Peng, X., and Humphreys, E.D., 1998, Crustal velocity structure across the eastern Snake River Plain and Yellowstone Swell: Journal of Geophysical Research, v. 103, no. B4, p. 7171-7186.
- Pierce, K.L., and Morgan, L.A., 1992, The track of the Yellowstone Hotspot: volcanism, faulting, and uplift, *in* Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional geology of Eastern Idaho and Western Wyoming: GSA Memoir 179, p. 1-53.
- Pierce, K.L., and L.A. Morgan. 2009, Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data. Journal of Volcanology and Geothermal Research. 188, p. 1-25.
- Putirka, K.D., Kuntz, M.A., Unruh, D.M., and Vaid, N., 2009, Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, Southern Idaho, USA: Implications for the Evolution of Polygenetic and Monogenetic Volcanic Fields: Journal of Petrology, v. 50, no. 9, p. 1639–1665.
- Reiners, P.W., 2002, Temporal-compositional trends in intraplate basalt eruptions: Implications for mantle heterogeneity and melting processes, Geochemistry Geophysics Geosystems, v. 3(2), paper 2001GC000250.
- Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T., and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating:

Chemical Geology (Isotope Geoscience Section), v. 145, p. 117–152.

- Sant, C.J., and Shervais, J.W., 2011, Project Hotspot: Preliminary analysis of secondary mineralization in basaltic core, Central Snake River Plain. Geothermal Resources Council Transactions, v.. 35, p. 987-989.
- Saunders, A. D., 2005, Large igneous provinces: Origin and environmental consequences: Elements, v. 1(5), p. 259-263.
- Schutt, D.L., an Dueker, K., 2008, Temperature of the plume layer beneath the Yellowstone Hotspot: Geology v. 36, p. 623–626.
- Self, S., Keszthelyi, L., and Thordarson, T., 1998, The importance of Pahoehoe: Annual Review of Earth and Planetary Sciences, v. 26, p. 81-110.
- Shervais, J., Vetter, S., and Hackett, W., 1994, Chemical stratigraphy of basalts in coreholes NPR-E and WO-2, Idaho National Engineering Laboratory, Idaho: Implications for plume dynamics in the Snake River Plain: Proceedings of the VIIth International Symposium on the Observation of Continental Crust Through Drilling, Santa Fe, New Mexico, p. 93-96.
- Shervais, J.W., Vetter, S.K., and Hanan, B.B., 2006, Layered mafic sill complex beneath the eastern Snake River Plain: evidence from cyclic geochemical variations in basalt: Geology, v. 34, p. 365- 368.
- Shervais, J.W.; Evans, J.P.; Christiansen, E.J.; Schmitt, D.R.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; and Freeman, T.G., 2011, Project Hotspot– The Snake River Scientific Drilling Project: Geothermal Resources Council Transactions, v. 35, p. 995-1003.
- Shervais, J. W., Nielson, D. L., Evans, J. P., Lachmar, T., Christiansen, E. H., Morgan, L., and Freeman, T. G., 2012, Hotspot: The Snake River Geothermal Drilling Project—Initial report: Geothermal Resources Council Transactions, v. 36, p. 767-772.
- Shervais, John W., Douglas R. Schmitt, Dennis Nielson, James P. Evans, Eric H. Christiansen, Lisa Morgan, and James A. Kessler, et al., 2013, First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.: Scientific Drilling, v. 15, p. 36-45.
- Smith, R.E., 1967, Segregation vesicles in basaltic lava: American Journal of Science, v. 265, no. 8, p. 696–713.
- Smith, R. B., Braille, L.W., 1994, The Yellowstone hotspot: Journal of Volcanology and Geothermal Research, v. 61, p. 121-188.
- Steiger, R. H., and Jüger, E., 1977, Subcommission on geochronology: Convention on the use ofdecay constants in geo-and cosmochronology: Earth Planet. Sci. Lett., v. 36, p. 359362.

- Twining, B.V., Hodges, M.K., and Orr, S.M., 2008, Construction diagrams, geophysical logs, and lithologic descriptions for boreholes USGS 126a, 126b, 127, 128, 129, 130, 131, 132, 133, and 134, Idaho National Laboratory, Idaho: U.S. Geological Survey Digital Series 350.
- Twining, B.V., and Bartholomay, R. C., 2011. Geophysical logs and water-quality data collected for boreholes Kimama-1A and-1B, and a Kimama water supply well near Kimama, southern Idaho. U.S. Geological Survey Data Series 622 (DOE/ID 22215), 18 p., plus appendix.
- Walker, G.P.L., 1971, Compound and simple lava flows and flood basalts: Bulletin Volcanologique, v. 35, p. 579-590.
- Walker, G.P.L., 1991, Structure, and origin by injection of lava under surface crust, of tumuli, "lava rises", "lava-rise pits" and "lava-inflation clefts" in Hawaii: Bulletin of Volcanology, v. 53, p. 46-558.
- Walker, G.P.L., 1993, Basaltic-volcano systems: Geological Society, London, Special Publications, v. 76, p. 3-38.
- Welhan, J.A., Johannesen, C.M., Reeves, K.S., Clemo, T.M., Glover, J.A., and Bosworth, K.W., 2002, Morphology of inflated pahoehoe lavas and spatial architecture of their porous and permeable zones, eastern Snake River Plain, Idaho: Geological Society of America Special Paper, v. 353, p. 135-150.

CHAPTER 3

PETROLOGIC AND GEOCHEMICAL EVOLUTION OF BASALTS FROM THE KIMAMA 1912 M CORE HOLE, CENTRAL IDAHO

Abstract

New geochemical data from basalts in the Kimama core hole document 6.4 m.y. of magma evolution on the central Snake River Plain. In 1912 m of continuous core, four compositional rock types are identified: olivine tholeiite, very low K, high Fe-Ti, and very high K-FeO*. Episodes of high-K, low-K, olivine tholeiite, and Fe-Ti magmatism are evident throughout the core, and are found within individual flow groups, which represent magmatic events. The chemical variation evident in 71 flow groups demonstrate source heterogeneity and differences in magma processing during ascent are important in generating basalt volcanism on the Snake River Plain.

High-K basalt is found at two depths, 319 m and 1078 m, and in flows with thicknesses less than 1.5 m. These evolved flow groups are chemically analogous to the evolved Holocene polygenetic lavas from the Craters of the Moon lava field. Snake River olivine tholeiite, low-K, and Fe-Ti basalt compositional types occur throughout the core and in thicknesses ranging from 150 m to 11 m. The presence of multiple, unrelated compositional types supports the hypothesis that different parent magmas evolve through varying degrees of crystal fractionation at shallow to intermediate depths over short durations, and are modified by episodic recharge of more primitive magmas and by assimilation of the layered mafic sill complex.

Thirty flow groups show very little chemical change with time, signifying either rapid evacuation from the magma chamber (without sufficient time for differentiation) or consistent differentiation processes. The 16 upward fractionation cycles, 12 reversed cycles, four reversefractionation cycles, five fractionation-reverse cycles, and two reversal-fractionation-reversal cycles over eruption intervals generally less than 100 years show that chemical changes have continuously occurred over the 6.4 M.y. period during which Kimama basalts were erupted. We propose that typical Snake River olivine tholeiite represent typical fractionation and recharge patterns, consistent with varying degrees of assimilation with gabbroic country rock. The high-K evolved flows low-K flows, and Fe-Ti flows represent separate magma batches that infiltrated the Kimama system and are unrelated to melts that result from typical differentiation processes within the mid crustal sill.

Introduction

The Snake River Plain (SRP) of central Idaho, the manifestation Yellowstone-Snake River Plain (Y-SRP) volcanic province, contains intriguing evidence for mantle hotspot impingement on continental crust (Pierce and Morgan, 1992; Shervais and Hanan, 2008; Smith et al., 2009; Sigloch, 2011). The SRP, with a record of continuous bimodal volcanism extending over 12 M.y. to the present, documents the migration of time-transgressive rhyolitic volcanism from the Bruneau-Jarbridge caldera complex (circa 12 Ma) to its present location beneath the Yellowstone Plateau (Pierce and Morgan, 1992; Anders et al., 2009). Interaction between the mantle hotspot and overlying continental lithosphere has resulted in large rhyolite calderaforming eruptions, followed by eruption of smaller basaltic shield volcanoes (McCurry and Rodgers, 2009; Bonnichsen et al., 2008). The post-caldera basaltic flows form a veneer over the rhyolite ash flows, masking the complete volcanic record. Understanding the origin and
evolution of the post-caldera basalts is a challenge because the lack of later uplift and erosion means that younger flows conceal older basalts that erupted in the same location.

Project HOTSPOT drilled three deep core holes in the Snake River Plain in order to provide a more complete understanding of the volcanic history of the SRP (Shervais et al., 2012; 2013). The 1912 m deep Kimama core hole, located in the Axial Volcanic Zone of the Snake River Plain, recovered over 1900 m of continuous core, including 1803 m of basalt and 110 m of intercalated sediment (including sidetrack core). We present a detailed petrologic and geochemical investigation of basalts from the Kimama core. Our main goal is to determine the nature and extent of chemical changes through time at a fixed location, where physical and chemical characteristics of the crust and mantle lithosphere are relatively set.

Other deep drill holes on the SRP include the Sugar City core hole (0.7 km; Doherty et al., 1979), the Idaho National Laboratory (INL) hole WO-2 (1.52 km; Shervais et al., 2006), and the Wendall-RASA (0.3 km; Jean et al., 2013) (Figure 11). Previous workers have shown, based on geochemical and isotope analyses that significant fractionation occurred at lower or midcrustal depths in the layered mafic magma chambers, and that interaction with continental lithosphere is the primary influence on basalt chemistry in the SRP. Assimilation of genetically-related, previously-intruded mafic sills occurs in mid-crustal magma chambers (Shervais et al., 2006; Jean et al., 2013), and a range of primary magma compositions suggests the involvement of multiple, small magma batches (Leeman 1982b; Vetter and Shervais, 1992; Geist et al., 2002; Hughes et al., 2002a; Shervais et al., 2006; Jean et al., 2013). Shifts in the composition of primary magma sources through time have been documented by Vetter and Shervais (1992), Shervais et al. (2006), and Shervais and Vetter (2009).

I hypothesize that basalts erupted in the SRP and preserved in the Kimama core reveal temporal chemical heterogeneity related to varying processes of assimilation and fractional

crystallization through time. Using 39 documented cycles of geochemical fractionation and recharge, I seek to identify and model petrogenetic processes in basaltic lava flows cored by the Kimama drill hole, and to demonstrate temporal-compositional trends in the petrogenesis of the central SRP volcanic province.

Geological Background

Regional Setting

The central SRP is loosely defined as the portion of the SRP between the Owyhee Plateau, a highland in SW Idaho, and the Great Rift, a north-northwest-trending fissure system that extends ~50 km southward from Craters of the Moon National Monument to the Wapi National Monument (Figure 11) (Kuntz et al., 1982, 1992). Major geologic features on the central SRP include the 12.7-8.5 Ma Twin Falls eruptive center, visible today as an ovoid gravity anomaly (Shervais et al., 2011), and the 10.3-8.2 Ma Picabo eruptive center, for which the boundaries are poorly defined (Pierce and Morgan, 1992; Bonnichsen et al., 2008). Beyond the SRP, to the north and south of Kimama, is the Basin and Range Province.

The Kimama area includes late Neogene to Quaternary basalts that were erupted from low-relief shield volcanoes. Shield volcanoes and basaltic lava flows overlie rhyolite from the Twin Falls and Picabo volcanic centers (Kuntz et al., 1988; Bonnichsen et al., 2008), although rhyolite was not encountered in the Kimama drill core (Potter et al., submitted). Although inflated flow fronts and pressure ridges are still visible as rugged topography, surface flow morphology in the Kimama area includes nearly continuous loess mantles of variable thickness and well-developed soils. Surface drainages are poorly defined (Shervais et al., 2005).

Figure 11: Map of the Snake River Plain showing location of the Kimama core hole in relation to inferred locations of silicic volcanic centers. The Great Rift, shown in purple, marks the transition between the central SRP and eastern SRP provinces. The locations of the Idaho National Lab (INL) and Craters of the Moon NationalMonument (COM) are also shown.

Mafic volcanism on the SRP began within 1 m.y. of the cessation of Y-SRP hotspot-trackrelated silicic volcanism, and is primarily expressed by the eruption and coalescence of monogenetic, diktytaxitic olivine tholeiite basalt shields with relatively primitive compositions (Hughes et al., 2002a). The unique style of volcanism along the SRP has been recognized as a product of small, mid-crustal magma chambers feeding eruptions from coalesced low-relief shield volcanoes, over relatively short durations, described as "plains-style volcanism" by Greeley (1982). "Plains-style" volcanism is similar to modern volcanic processes on the island of Hawaii and transitional between quiescent Hawaiian-style and continental-style volcanism (Greeley, 1982; Kuntz, 1978). Vent constructs for SRP volcanoes are typically unimpressive due to the efficient transport of low-viscosity lava away from the vent in lava tubes. Because relatively little lava accumulates near the vent, eruptive centers often blend in with the surrounding topography (Self et al., 1998).

During the late Pliocene through Pleistocene, the SRP was the locus of densely-spaced mafic volcanic centers along the track of the Y-SRP hotspot that erupted thick packages of basalt flows and formed the Axial Volcanic High (AVH) (Hackett and Smith, 1992; Hackett et al., 2004). Although time-progressive basalt eruptions are evident at the inception of post-rhyolitic volcanism, Pliocene-Holocene lavas on the SRP are distributed throughout the volcanic province (Hughes et al., 1999; Bonnichsen and Godchaux, 2002). Snake River Plain basaltic volcanism is manifested as monogenetic, single-pulse lava fields, erupted as low volume (3-5 km³) flows from fissures during short-duration (days) eruptions (Kuntz et al., 1992). Later volcanism at Hells Half Acre (2270 \pm 50 years BP), Cerro Grande (13380 \pm 350 years BP), Wapi (2270 \pm 50 years BP), Shoshone (10130 \pm 350 years BP), and Craters of the Moon (COM) occurred over months to decades and produced greater-volume eruptions (3.3-30 km³) within a localized area (Kuntz et al., 1992). Lavas at COM are the most recent products of SRP volcanism, with multi-phase eruptions with ⁴⁰Ar/³⁹Ar ages of 480 ka to 50 ka (Bonnichsen and Godchaux, 2002).

Snake River Plain Basalt Petrology

Although SRP olivine tholeiites are relatively homogenous, previous research has demonstrated that chemical variation between basalt flows is a result of fractional crystallization, crustal contamination, and partial melting occurring within the mid-crustal sill at pressures of ~8-10 kbar and temperatures of 1205 ± 27°C (Wager and Brown, 1967; Irvine, 1970; Jackson, 1970, 1971; McBirney and Noyes, 1979; Pallister and Hopson, 1981; Leeman, 1982c; Kuntz et al., 1992; Shervais et al., 2006; McCurry and Rodgers, 2009; Putirka et al., 2009; Miller and Hughes, 2009). Putirka et al. (2009) argue for a three-stage process to explain the entire range of SRP lava compositions: at depths of 10-20 km, picrites ascend to the middle crust, where they undergo partial crystallization of olivine ± clinopyroxene. Storage of olivine tholeiite magmas in the middle crust (20-10 km) causes magma compositions to evolve to moderate MgO wt% (10%), at which point positive buoyancy is reached and migration through the middle crust occurs. Finally, at depths of 15-0 km, differentiation and resulting volatile content increases (1-2 wt% H₂O) cause the final eruption and ascent of magma through the middle and upper crust (Putirka et al., 2009). This mode of generation is in agreement with the magma-mush column model of Marsh (2004), the MASH (mixing, assimilation, storage and homogenization) model of Hildreth and Moorbath (1988) and the SRP magma petrogenetic model of Shervais et al. (2006), in which magmas are shown to evolve through complex pathways of fractional crystallization, assimilation, and mixing at multiple crustal levels before eruption.

Monogenetic eruptive centers on the SRP are most likely fed by individual magma sources, as demonstrated by chemical variation between and within flow groups (Hughes et al., 2002b). However, in order to produce separate magma batches for every monogenetic center on the SRP, a stratified source region in which melts were produced over a range of depths and degrees of melting would be required (Hughes et al., 1997). In such an environment, and with a primitive mantle magma source, chemical variations suggest that magma batches experienced differing degrees of partial melt and fractionation of a heterogeneous enriched subcontinental mantle (Leeman and Vitaliano, 1976; Menzies et al., 1984; Reid, 1995; Hanan et al., 1997; Hughes et al., 2002b). Potter et al. (see Chapter 2) have identified 462 distinct basalt flow units which comprise 155 separate lava flows, based on physical and lithologic logs of the drill core, borehole geophysical logs, paleo-secular variations in magnetic stratigraphy, and the presence of sedimentary interbeds. Using these data and limited geochemical indicators (FeO* (total ferrous iron), K₂O, La/Lu), they recognize 71 distinct flow groups, ranging in thickness from 0.700 to 183.4 m thickness. They further document that this sequence represents ~5.5 million years of volcanism (from 6.5 Ma to 720 Ka). We will use this stratigraphic framework to interpret our results here. We seek to identify chemical variations within cored Kimama basalts to investigate magma source and differentiation processes in the central SRP.

Methods

We selected 261 whole rock samples from the Kimama core for analysis, representing all 30 basalt flow groups. Major elements and select trace elements were analyzed by fused bead X-ray fluorescence spectrometry (XRF), and trace elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS).

For major and trace element analysis, mini core plug halves were broken in two to three fragments using a rock hammer. Samples were crushed using a Gyral Grinder shatterbox with a tungsten carbide vessel, and then ground again with an agate mortar and pestle. Samples were ignited at 800°C for 24 hours, after which 1 g of sample was mixed with 5 g of a Claisse Li-borate flux and 6 drops of Lil (added as a releasing agent). Sample mixes were melted in Pt-Au metal crucibles at 1200°C in a muffle furnace, then poured into a heated Pt-Au metal disk mold and quenched into glass. Major element (SiO₂, TiO₂, Al₂O₃, MnO, FeO*, MgO, CaO, Na₂O, K₂O, P₂O₅ Cr_2O_3) were analyzed with a Philips 2400 X-Ray fluorescence (XRF) spectrometer at Utah State University.

Trace-element concentrations were measured at Centenary College (Shreveport, LA) using a PerkinElmer 600 inductively coupled plasma-mass spectrometer (ICP-MS). Approximately 60 mg of each sample was dissolved in 2mL HF and 3 mL HNO₃ for 3 hours, with watch glasses preventing evaporation. Watch glasses were then removed and samples dried, after which another 3 mL of HNO₃ was added to the samples. The sample solution was left at 50°C overnight, and then dried at 90°C. A further addition of 3 mL of HNO3 to the sample preceded immediate drying. Finally, the sample was brought into solution with 2-3 mL of 50% HNO3, and brought to a total volume of 50 mL with 5% HNO3. This procedure is modified from Jenner et al. (1990) and Neal (2001). Five milliliters of 10 ppb In, Rh, and Ru were added to the sample solution as internal standards to calibrate measured concentrations. Plasma lab software was used to map out sampling order and record measurements over the duration of the experiment.

Results

Major Elements

The whole-rock major-and trace-element compositions of Kimama samples (Table 4), and MgO-variation diagrams (Figure 12) reveal similarity to olivine tholeiite basalt compositions from the eastern SRP. Geochemistry displayed in stratigraphic context (Figure 13) demonstrates more variation. Kimama basalts have major-element compositional ranges of 43.2- 50.4 wt% SiO₂, 9.80- 17.6 wt% FeO*, 1.22-4.65 wt% TiO₂, 5.00-11.0 wt% MgO, 8.84-14.0 wt% CaO, 11.5-15.8 wt% Al₂O₃, 1.75-2.75 wt% Na₂O, and 0.120-0.920 wt% K₂O, 0.170-1.65 wt% P₂O₅. Loss on ignition (LOI) is less than 1%. In general, Kimama basalts demonstrate smooth to variable increasing and decreasing patterns on MgO variation plots (Figure 12). Increases in TiO₂, FeO^{*}, and K_2O are observed with respect to decreasing MgO. Concentrations of SiO₂, Al₂O₃, CaO, and Cr decrease with decreasing MgO.

These data reveal that the Kimama basalts define four distinct, geochemically-defined groups: (1) a 'Snake River Olivine Tholeiite' (SROT) group that represents most of the basalt samples from surface outcrops on the SRP, (2) a low-K SROT group, characterized by K₂O < 0.4 wt%, but otherwise broadly similar to normal SROT is observed throughout the Kimama core, (3) iron and titanium-rich "Fe-Ti" basalts similar to many basalts found within Craters of the Moon, with 16-18 wt% FeO* and 3.0-4.5 wt% TiO₂ 3-4 wt%; and (4) a rare high-K suite, characterized by K₂O > 0.65 wt% (Figure 14). Fe-Ti basalts are preferentially located in the upper 600 m of the core, whereas the high-K flow groups are located at only two depth ranges, near 318 m and 1077 m. SROT basalts dominate the upper 1000 m of the Kimama core, whereas low-K basalts are the dominant compositional type from 1000 m to 1912 m depth.

Trace-element analyses of Kimama basalts (Table 1) indicate that compositional trends in rare earth elements (REE) are generally similar to those observed in basalts of the eastern SRP. However, Kimama basalts are generally higher in light rare earth elements (LREE) than eastern SRP basalts, a trait best observed on chondrite-normalized (McDonough and Sun, 1995) multi-element spider diagrams (Figure 15). Within the core, REE trends show no discernable trends of depletion or enrichment with depth, although upsection heavy rare earth element (HREE), LREE, and incompatible element trends correlate to recharge and fractionation cycles within individual flow groups (Figure 16).

clin. 60° ow 2 mple <u>2</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u> 1 <u>3</u>	5 2 KAIA127 47.0 13.2 14.7 6.63 9.25 9.25 2.49 0.730				Flow G	roup 2				Ū	roup 3	Flow Grot	h dr	Flo	w Group 5		Group 6 (Fe-Ti)	Flow Gr	2 dno	Flow Gr	8 dno
ow 2 imple k1455 lajor Elements*** 146.6 1203 143 143 143 143 143 143 143 143 143 143	5 KA1A127 47.0 14.7 6.63 9.25 2.49 0.730				51	•					43°	38°			-56°		'-63°	-64	•	22	•
Impre- Antrastructure 02 02 46.6 13.1 1203 13.1 13.1 13.1 13.1 1203 14.6 7.01 3.1 14.6 201 202 7.01 2.01 2.01 202 2.20 0.710 2.20 0.2330 205 0.8300 0.2300 0.2300 0.210 205 0.0300 0.2300 0.2300 0.2300	47.0 13.2 14.7 6.63 9.25 2.49 2.49 0.730	0614147	6 VA1A1EE	8	11 11	0000000	12	7 020414	13	2000	14 140 - 14	15 15	7 0964	0000010	16	0104E4	17	18 V 0.1 AE 70 - 1	19	20	21
02 46.6 1203 13.1 50* 14.9 14.9 7.01 80 7.01 820 9.071 820 2.071 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 2.47 820 3.22 920 0.210 921 0.210	47.0 13.2 14.7 6.63 9.25 2.49 0.730	ACTIVITIVA	CCTATAN	16THTW	OCZATAN	GH7WTWN	COZATAN	V Z/ZATA	TWY DOTHTH		N 07CHT	AN SHOWIN	L COCHT	V 60+WTW	V /7+WTW	+CHWTW	+TCYTW	6/CHTHN	TOONTHY	DODGTWN	T/DOTWO
1203 13.1 20* 14.9 14.0 7.01 80 9.071 80 9.071 820 9.071 820 9.071 820 9.071 820 2.47 820 9.071 820 9.071 820 9.071 820 9.071 820 9.021 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 920 0.830 9200 0.830 9200 0.830	13.2 14.7 6.63 9.25 2.49 2.49	47.3	46.4	47.3	46.6	46.5	46.2	47.9	47.0 41	. 9.9	46.6	46.7	46.7	46.7	45.1	46.8	45.5	46.2	47.1	46.6	47.0
50° 149 140 149 140 2.01 101 2.47 120 2.47 120 2.10 1220 3.22 140 0.210 140 0.2100 140 0.210 140 0.2100 140 0.210	14.7 6.63 9.25 2.49 0.730	13.7	14.2	13.7	14.8	14.7	14.2	14.3	14.5 1-	4.6	14.7	14.6	14.6	14.2	13.9	14.6	13.7	14.0	13.2	14.6	14.4
lgo 7.01 a0 9.07 a20 2.47 2.20 0.710 102 3.220 2.05 0.830 mo 0.210	6.63 9.25 2.49 0.730	13.9	14.1	13.9	13.2	13.4	13.3	12.9	13.2 1.	3.2	13.6	12.9	13.4	14.1	14.9	13.7	15.2	14.6	14.7	14.2	13.9
30 9.07 a2O 2.47 20 0.710 (02 3.22 205 0.830 4n0 0.210	9.25 2.49 0.730	7.33	6.68	7.33	7.36	7.61	9.26	7.24	7.56 7	2.9	7.40	8.41	7.24	5.83	6.07	6.17	6.96	6.82	6.66	6.09	6.62
a20 2.47 20 0.710 .02 3.22 205 0.830 410 0.210	2.49	9.22	9.52	9.22	9.72	9.71	9.37	9.85	9.8 9.	.78	9.68	10.0	9.84	9.81	10.1	9.73	9.32	9.27	9.08	9.68	9.21
20 0.710 02 3.22 205 0.830 fn0 0.210	0.730	2.43	2.48	2.43	2.64	2.45	2.34	2.44	2.44 2.	.47	2.37	2.28	2.42	2.64	2.6	2.63	2.53	2.55	2.37	2.35	2.57
02 3.22 205 0.830 1hO 0.210		0.730	0.760	0.730	0.690	0.690	0.670	0.690	0.700 0.	700 0	0.570	0.570	0.640	0.720	0.730	0.680	0.650	0.700	0.700	0.470	0.790
205 0.830 1nO 0.210	3.28	2.89	3.09	2.89	2.64	2.63	2.38	2.5	2.59 2.	C,	2.70	2.40	2.79	3.15	3.45	2.9	3.29	3.18	3.35	3.14	2.97
hO 0.210	0.680	0.520	0.630	0.520	0.520	0.510	0.460	0.440	0.490 0.	.490 (0.580	0.450	0.550	0.920	1.150	0.860	0.960	0.710	0.700	0.700	0.670
	0.210	0.200	0.210	0.200	0.200	0.200	0.200	0.190	0.200 0.	200 (0.200	0.200	0.200	0.200	0.220	0.200	0.220	0.210	0.210	0.210	0.200
1g# 32.1	31.1	34.6	32.1	34.5	35.7	36.3	41.1	36.0	36.5 3	7.4	35.2	39.5	35.0	29.2	29.0	31.1	31.4	31.8	31.2	30.0	32.3
r 279	234	250	232	231	308	355	127	305	316 3	352	284	404	307	128	97	145	249	244	228	196	212
589	606	909	631	606	573	573	556	573	581 5	581	473	473	531	598	606	565	540	581	581	390	656
362	297	227	275	227	227	223	201	192	214 2	14	253	196	240	401	502	375	419	310	305	305	292
race Elements***																					
b 14.9	17.2	12.4	22.1	5.14	19.7	19.0	9.25	18.7	20.1 1.	9.6	10.3	13.5	16.4	16.4	9.86	19.3	13.6	13.8	11.9	5.76	14.8
a 616	721	654	689	210	591	573	349	506	528 5	531	509	485	573	712	564	802	679	575	549	770	572
r 536	678	534	648	196	611	596	277	542	534 5	546	534	483	517	559	326	690	644	522	476	491	478
b 7.24	6.25	6.80	5.08	2.46	4.94	4.61	4.28	3.93	4.10 4	.45	5.53	4.94	6.24	9.17	6.91	8.60	8.00	8.86	6.85	<i>TT.T</i>	7.69
h 2.20	1.91	1.63	2.04	0.79	1.78	1.77	1.40	1.85	1.88 1.	86	1.94	2.11	2.55	3.01	2.17	3.19	2.13	1.96	1.93	2.37	3.03
0.740	0.610	0.600	0.540	0.250	0.530	0.530	0.410	0.540	0.540 0.	580 L	0.660	0.660	0.780	1.03	0.660	0.970	0.700	0.650	0.660	1.09	0.980
r 506	530	499	357	145	325	320	264	276	307 3	313	345	289	351	628	536	636	550	433	420	416	466
f 10.6	10.2	10.0	8.96	3.54	7.67	7.76	6.27	6.92	7.14 7	8, 1	8.05	7.04	9.04	11.5	9.22	11.7	10.4	9.35	9.49	9.65	9.86
a 2.04	2.07	1.71	1.88	0.550	1.57	1.54	1.12	1.37	1.44	65.	1.53	1.48	2.11	2.62	2.27	2.93	2.58	1.99	1.94	1.40	1.90
55.8	9.93	51.4	54.3	1/.8	47.9	4/14 2.12	67	42.3	45.4 4	7.0	46.9	43.3	48.9	66.6	41.5	0.17	8.95	5.05	23.2	38.1	48.1
1b 36.4	34.8	31.2	29.9	9.00	24.9	24.6	18.4	21.7	22.7 2		29.0 20 F	26.0	32.5	53.1	40.7	54.9	47.0	34.6	35.7	31.3	8.55
C 39.7 race Flements***	43.54	38.8	6.04	6.22	43./	44.0	6.42	5.04	48.0 4	8.4	c.85	44.9	45.4	42.3	9.65	47.7	c.04	38.8	505	T.12	55.9
i 122	120	107	100	52.7	128	133	57.8	100	122 1	30	145	168	119	87.8	71.8	113	101	107	103	93.4	96.5
492	557	525	543	241	415	424	306	470	475 4	122	418	395	443	530	361	427	451	489	424	413	480
а 46.4	41.9	37.8	35.9	13.0	29.4	29.2	25.1	24.4	26.6 2	7.0	38.2	30.6	38.3	73.3	54.2	77.4	54.6	41.2	43.1	39.6	45.3
e 106	95.6	90.5	80.7	29.6	67.6	67.8	55.4	56.7	61.3 6.	2.7	86.1	68.0	85.7	161	115.1	158.7	120.1	92.6	1.66	89.7	98.8
r 14.1	13.1	12.0	11.0	4.04	9.28	9.25	7.39	7.82	8.42 8.	55	11.0	8.92	11.0	19.3	13.9	19.6	15.3	12.3	13.0	11.1	12.4
ld 62.0	57.9	54.4	49.5	19.8	41.9	41.6	34.6	35.0	38.5 3	8.4	47.1	38.4	47.8	79.3	64.1	80.4	65.9	54.0	57.5	47.3	53.0
m 13.7	13.0	12.4	11.3	4.68	9.81	9.71	7.86	8.31	8.98	.04	10.4	8.63	10.7	15.9	13.0	16.2	14.2	12.0	12.9	10.1	11.5
1.4.//	4.72	4.38	4.10	1./1	80.5 7 1 1	10.5	2.68	90.5 6	3.29 3	97	3.62	3.05	3./4	10.2	90.5	17.5	4.80	4.1b	4.30	10.5	3.90
7.CL D	1.61	14.U 2 01	1 88	00.c	C.LL 1.66	1.65	cU.e 1 19	9.69 1 44	1 1 1 5.6 1	0.0 5	1 73	1 51	1 80	1.81	1 78	18.2	C.01 2 28	1 98	2 10	0'TT	13.1 186
v 12.6	12.7	11.7	11.0	5.22	69.6	9.63	8.00	8.84	9.22 9.	27	10.1	9.30	10.7	14.2	11.5	14.5	13.0	11.5	11.8	9.19	10.9
0 2.46	2.54	2.30	2.17	0.930	1.95	1.96	1.43	1.83	1.85 1.	18	2.02	1.91	2.11	2.81	1.98	2.79	2.54	2.26	2.34	1.82	2.13
r 6.80	6.89	6.35	6.07	2.89	5.50	5.47	4.45	5.08	5.22 5.	.20	5.61	5.38	6.01	7.87	6.40	7.83	7.03	6.13	6.38	5.00	5.96
m 0.900	0.920	0.840	0.830	0.340	0.740	0.740	0.520	0.690	0.720 0.	720 0	0.740	0.720	0.830	1.050	0.710	1.08	0.940	0.820	0.870	0.670	0.790
b 5.69	5.83	5.20	5.33	2.54	4.84	4.89	3.86	4.42	4.64 4.	. 66	4.86	4.69	5.31	6.67	5.37	6.82	5.88	5.24	5.51	4.15	5.02
u 0.830	0.850	0.740	0.770	0.320	0.700	0.710	0.480	0.650	0.680 0.4	680 C	0.700	0.690	0.770	0.950	0.660	1.00	0.860	0.760	0.790	0.600	0.720

***Measured by inductively coupled plasma-mass spectrometer

Flow Group				Εk	ow Group	~									Flov	v Group 9						
Inclin.					22°											-61°						
Flow Same	21	1007C VA1	22	23	7 002 4	24	24 24 27 24	25	1 A 760	A1D70F	26	7 002 0 F V	4 TOTO14	27 27 27	7 F0007	7 0000	28	29	4 1 COG 1	. KU CCOA 1	30	1 DOLO
Major Elements*, **	V C/ONTR	TEN C/ORTH	AD51 NA		N NO/WT	VID/9TY	V CZ/ATA	V /t/gtw		V C2/9Th	V 10/ALA	A 16/91 K	4 /6/9TH	A REVATA	ALBOU/ N	ALASUS N	N STORTA		VY 1709TV	TASZZ KA	1803/ NA.	0C291
sio2	47.9	47.9 4	, 9'Lt	46.8	47.6	48.3	47.3	48.3	48.4	46.8	46.3	47.1	46.2	47.3	47.3	46.5	47.4	46.2	46.2	46.2	46.3	46.8
AI203	13.7	13.7 1	13.3 1	14.74	13.8	14.2	14.6	13.6	13.7	13.5	14.5	13.9	14.1	13.6	13.4	14.1	13.7	13.8	14.8	14.3	14.4	14.0
FeO*	14.0	13.9 1	14.2	14.0	14.0	13.3	13.5	13.8	13.5	14.6	14.2	14.3	14.7	14.3	14.6	14.7	14.1	15.0	14.0	14.5	14.4	14.0
MgO	6.55	6.55 £	5.55	6.52	6.42	6.64	6.92	6.18	6.33	6.63	6.99	6.68	6.60	6.55	6.29	6.22	6.65	6.50	7.13	6.67	6.69	7.29
CaO	6	5	9.19	9.33	9.22	9.02	9.11	9.13	9.07	9.53	9.50	9.35	9.49	9.33	9.37	9.46	9.32	9.50	9.45	9.56	9.55	9.63
Na2O	2.62	2.62 2	2.59	2.55	2.58	2.56	2.61	2.61	2.62	2.57	2.54	2.44	2.54	2.51	2.46	2.6	2.49	2.49	2.54	2.51	2.52	2.46
K20	0.780	0.780 0.	1.820 (0.670	0.780	0.830	0.840	0.920	0.900	0.610	0.580	0.530	0.630	0.610	0.610	0.620	0.610	0.640	0.560	0.580 ().580 C	0.510
Ti02	2.97	2.97 3	3.14	2.99	3.04	2.81	2.76	3.04	2.91	3.16	2.96	3.08	3.23	3.18	3.36	3.29	3.08	3.33	2.85	3.17	3.13	2.83
P205	0.610	0.610 0	,590 (0.670	0.610	0.570	0.620	0.630	0.610	0.560	0.600	0.580	0.670	0.570	0.590	0.690	0.570	0.700	0.570	0.640 (0.610 0	0.490
DIIM	002.0	0 002.0	1 007.	007.0	0.12.00	06T-0	06T-0	0.200	061.0	0.200	012.0	0.200	012.0	0.200	0.200	012.0	0.200	0.220	0.200	0177.0	0 017-0	06T''
Mg#	32.0	32.0 3	31.5	31.8	31.5	33.3	33.9	31.0	31.9	31.3	33.0	31.8	31.0	31.4	30.1	29.8	32.0	30.2	33.8	31.5	31.7	34.2
ů :	221	233	197	217	216	226	230	212	225	221	218	229	193	167	123	199	223	196	146	212	202	268
~ 0	040	240	190	000	2010	140	160	/04	747	905	184	440	520			CIC POC		150	C045	184	481	473
Trace Flaments ***	007	. 007	107	767	007	647	1/7	6/7	007	744	707	507	767	647	10	TOP	243	che	647	6/7	007	714
Rb	18.6	17.2 2	21.3	14.9	16.0	24.1	14.0	20.2	28.4	10.2	8.01	12.4	12.0	7.67	12.3	13.9	12.7	4.22	4.86	12.0	11.4	9.69
Ba	596	624 5	520	605	598	594	513	634	616	504	486	587	562	419	463	619	542	185	206	568	518	429
Sr	507	533 4	469	504	480	525	428	493	510	530	466	595	547	355	220	593	553	203	142	589	556	523
Pb	8.00	7.62 7	7.67	11.1	8.58	7.26	7.68	9.94	8.41	8.45	60.9	6.44	6.34	4.98	4.21	6.95	6.29	1.91	2.61	6.72	5.83	5.29
Дh	3.41	3.06	3.40	3.23	3.71	3.58	3.05	4.01	4.32	2.09	1.65	2.58	2.36	1.49	1.46	2.39	2.23	0.500	0.650	2.22	1.96	1.62
D	1.02	0.920 0.	.910 0	0.980	1.04	1.09	1.04	1.22	1.21	0.740	0.670	0.680	0.730	0.430	0.470	0.760	0.720	0.160	0.220	0.700 ().640 C	0.510
Zr	459	409	408	436	424	462	410	444	478	416	377	447	457	303	261	422	393	139	174	394	349	331
Hf	9.48	9.56 8	3.84	9.59	9.79	9.14	9.06	10.7	10.3	9.70	8.65	9.68	10.1	6.98	5.98	9.80	9.22	3.34	3.91	9.38	8.36	7.82
Та	2.26	1.73 2	2.14	2.15	2.26	1.87	2.14	2.56	2.49	2.15	1.40	2.24	1.91	1.30	0.85	1.96	1.81	0.57	0.62	1.85	1.65	1.66
٨	53.2	48.6 5	51.3	49.8	51.5	50.2	43.6	53.1	57.4	50.5	42.2	57.3	51.1	31.6	25.2	58.2	53.7	15.7	18.8	54.8	48.4	47.6
qN	40.3	33.5 3	36.8	37.6	38.9	35.2	36.6	42.3	42.5	33.6	27.5	32.6	32.2	21.4	14.1	34.0	31.8	8.40	10.8	32.3	28.1	27.6
Sc Trace Flements***	36.2	37.5 3	38.2	37.2	36.4	38.9	29.5	38.9	42.6	37.6	33.6	44.9	37.0	32.5	22.8	43.0	42.8	20.1	20.1	41.1	38.0	40.9
N	98.3	110 8	31.5	99.3	95.0	105	109	87.8	90.1	0.66	102	101	86.2	75.9	71.2	82.2	97.1	63.9	51.1	98.4	93.9	119
>	468	411 4	444	426	418	487	427	449	496	534	444	561	577	368	256	590	555	214	224	482	423	499
La	48.1	46.3 4	t5.2 ,	46.7	46.5	45.5	41.2	47.4	50.4	39.7	33.9	41.8	38.8	27.5	21.7	43.5	39.3	10.6	14.8	40.3	34.5	31.8
Ce	103.5	100.8 5	97.3 1	101.6	103.8	99.1	93.0	106	110	89.9	78.4	92.1	86.8	61.4	49.6	96.0	89.2	24.3	33.5	91.4	79.5	73.6
Pr	13.3	12.8 1	12.4	12.8	13.1	12.6	11.9	13.5	13.8	12.0	10.1	12.3	11.6	8.05	6.80	12.7	11.9	3.39	4.56	12.2	10.5	9.72
PN	56.1	53.4	51.9	53.8	54.8	52.6	49.7	57.0	58.0	52.7	45.0	53.4	50.9	40.1	33.6	55.5	52.1	16.6	21.8	53.2	46.8	43.0
Sm	12.1	11.5	11.2	11.7	12.0	11.5	11.0	12.4	12.7	12.1	10.3	12.2	11.5	9.03	7.63	12.7	11.8	4.05	4.99	12.0	10.7	10.0
EU	4.04	3.80	5./4	3.9U	3.92 1 2 E	3./3	10.5	4.04	21.4	4.1U	10.5	4.27	06.5	11.2	2./4	4.3U	5.59	0C.1	L.03	4.07	3.04	3.12
₿f	1 04	- 1 26 L	0.21		1 00	1 22	1 77	2.02	2 10	1 08	1.68	1.1.1	1 02	1 37	1 12	0.41	1 02	190.4	70.U	1 00	1 77	1 70
P A	11.1	10.7 1	10.6 1	11.00	11.2	10.8	10.1	11.7	12.2	11.6	9.54	11.8	11.3	8.78	7.61	11.9	11.3	4.34	5.33	11.4	10.4	10.0
Но	2.19	2.07 2	11.5	2.18	2.25	2.15	2.00	2.32	2.36	2.34	1.88	2.36	2.26	1.51	1.33	2.39	2.28	0.790	0.940	2.27	2.07	1.98
Er	6.05	5.89 5	5.86	6.13	6.24	5.88	5.51	6.45	6.74	6.34	5.23	6.64	6.20	4.89	4.17	6.64	6.29	2.42	2.97	6.26	5.76	5.46
Tm	0.810	0.780 0.) 067. ⁰	0.820	0.850	0.800	0.740	0.890	0.930	0.860	0.700	0.890	0.830	0.540	0.470	0.900	0.860	0.280	0.350 (0.850 (0.770 0	0.750
γb	5.20	4.96 5	5.10	5.28	5.32	5.12	4.75	5.44	5.94	5.39	4.39	5.55	5.31	4.17	3.46	5.73	5.40	2.14	2.56	5.48	4.93	4.72
Lu	0.760	0.710 0.	1,730 C	0.750	0.780	0.740	0.680	0.800	0.840	0.780	0.640	0.820	0.780	0.510	0.430	0.840	0.780	0.270	0.330 (0.790 (0.700 C	0.700
٤	lote: Major o.	<ides are="" in="" td="" wei<=""><td>ght percent,</td><td>trace elem</td><td>ents and rar</td><td>e earth eleme</td><td>nts are in par</td><td>is per million.</td><td>⁼low groups as</td><td>in text.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ides>	ght percent,	trace elem	ents and rar	e earth eleme	nts are in par	is per million.	⁼ low groups as	in text.												
- •	Measured by	X-ray fluoresce	ence	-																		
	*Normalized	to 100 wt% on . inductively of	a volatile rre	e basis.																		
	""Measured	by inductively u	coupled paiduoc	ma-mass sp.	ectrometer																	

Flow Group	Flow	Flow					BowG	roun 11					Flow	Flow Group	12 (VHK)			ow Groun 13			Flow
	Group 9	Group 10						1				5	Broup 11		(max) ==		:				Group 14
Inclin.	-61°	-61°					-61°						-61°	-63				-64°			-64°
Flow	104440	31	21 000 ¥ ¥ ¥ 21	32		1 1000101	35	3		34	*// OCO14	34	35	36		VARDA OF A	37	101010	38	1004.4.5	39
Maior Elements*. *	CCSPTAS	VAIB86U	A AVAXAS	V DIESTO V	1 7T6YTY	1 /769TM	ATA927 K	WTB941 K	N DI LANTA	ALB987 N	A UZUZA	TATUZB K	WIB1034	CHOLATAN	0+0TRTA	I TCOTRTEY			AN CEULAIN	CENTAL	VOTT GT V
SiO2	46.3	47.6	46.0	45.4	46.1	47.2	46.6	46.3	46.4	47.1	48.0	48.0	47.8	46.2	46.1	46.6	46.6	46.5	46.6	46.6	45.4
AI2O3	15.0	12.5	14.6	14.5	14.6	14.2	14.0	15.1	14.9	14.8	14.1	14.1	14.0	11.3	11.2	14.1	14.1	14.1	13.2	13.2	14.4
FeO*	13.7	15.2	14.2	13.5	13.6	12.7	13.1	12.6	12.8	12.1	12.0	12.0	12.2	17.8	17.9	14.7	14.6	14.0	14.3	14.3	14.0
MgO	7.36	5.63	7.23	8.19	7.72	8.29	8.23	8.54	8.26	8.80	8.90	8.90	8.77	3.94	3.91	6.01	6.06	6.13	7.36	7.36	8.25
CaO	9.70	9.12	9.72	9.96	10.06	10.33	10.5	10.3	10.2	10.0	9.91	9.86	9.89	TT.T	7.80	10.31	10.32	10.31	9.89	9.89	10.1
Na2O	2.51	2.58	2.50	2.33	2.41	2.31	2.43	2.39	2.42	2.42	2.36	2.37	2.36	2.68	2.72	2.44	2.45	2.42	2.31	2.31	2.28
K20	0.450	0.760	0.500	0.470	0.540	0.540	0.570	0.490	0.530	0.580	0.580	0.600	0.630	1.81	1.84	0.530	0.560	0.540	0.490	0.490	0.380
TiO2	2.70	3.56	2.91	2.58	2.64	2.26	2.31	2.20	2.30	2.08	2.05	2.04	2.14	3.50	3.54	3.16	3.16	3.17	3.06	3.06	2.66
P205	0.490	0.820	0.560	0.470	0.540	0.450	0.460	0.480	0.510	0.460	0.440	0.440	0.490	2.22	2.22	0.800	0.780	0.790	0.770	0.770	0.740
MnO	0.190	0.230	0.200	0.200	0.200	0.190	0.190	0.190	0.190	0.190	0.180	0.180	0.190	0.320	0.320	0.210	0.210	0.200	0.210	0.210	0.210
Mg#	35.0	27.0	33.7	37.8	36.3	39.5	38.7	40.5	39.3	42.0	42.6	42.6	41.7	18.1	17.9	29.0	29.3	30.4	34.0	34.0	37.1
c	253	160	234	421	367	448	394	489	479	636	331	740	579	0.760	NA	192	191	185	309	320	367
¥	374	631	415	390	448	448	473	407	440	481	481	498	523	1503	1527	440	465	448	407	407	315
٩	214	358	244	205	236	196	201	209	223	201	192	192	214	696	696	349	340	345	336	336	323
Trace Elements***	LO U	0 1		100	L S		c, c		00 0			1	Ļ	1	0.00		00.0		1000	0,0	
KD -	cU.a	8.CI	9.0T	97.6	11.5 1	1.21	9.00	17.1	20.8	18.1	10.4	5./1	c [44.0	38.U	10.0	8.29	0.13	7.01	9.09	47.C
Ba 5.	385	636 7.00	200	3//	418	9/5	3/3	409	335	405	213	407	357	1,/13	1,504	554	543	489	509	609	523
	404	210	100	403	4/8 F 7F	439	47T	100	7 5 4	404	154 7 07	408	145	202	450	184	100	430	039 F F.O	5/4	243 CF3
8	4./0	0T-6	2.32	4.07	0.2.0	4.13	10.0	3.00	4.04	10.4	76.7	4.80	5.13 6	7.02	23.4	0.83	15.0	0.00		0.48	0.22
= =	0.440	7.04	0.260	0.460	1.09 0.55.0	0 510	1.32 0 5 3 0	0 500	1.48 0.660	2.43	0.410	1/.7	0 700	9.90 120	2 020	1.42 0 560	1.4.1 0.560	1.35 0 5 8 0	16.1 0 570	PC-1	CT.L
4 C	0.4440 205	0.030	160	0.400	00000 010	016.0	055.0	256	000.0	0.740	166	00/.00 201	067.0	1 075	050.6	121	161	000-0	0/010	000.0	004-0
JH	6.62 A6.46	24C	3 78	657	7TC	677 651	6/2	6 10	5 45	6 5.6	4 07	6 5.0	6 5 G	37.1	34 3	4 53	104	9.65 0.65	000 27 p	9 06 0 06	C/C
= E	1 3.7	7.21	0/.r	147	18	1 44	1 37	0T-0	88.0	1 38	0.76	1 45	1 40	1.10	2.40	1 88	154	1.86	00 0	86.6	141
2 ×	35.3	72.7	17.9	38.6	44.4	39.5	37.2	40.6	27.2	41.8	20.2	43.7	41.0	221	181	53.7	53.5	51.2	62.2	62.7	45.2
dN	22.9	43.2	10.4	24	26.8	23.8	23.1	20.8	17.0	23.0	12.4	23.6	23.4	143	67.8	35.7	31.5	33	35.8	40.2	27.7
Sc	32.2	45.6	21.2	40.8	43.3	39.6	35.4	42.3	28.5	44.4	25.6	43.3	40.8	45.8	38.7	41.5	41.8	36.2	49.3	48.9	38.9
Trace Elements***																					
ïz	117	73.0	106	153	136	150	145	150	156	167	111	186	170	0.500	1.00	75.6	73.8	79.4	119	121	151
>	509	434	219	528	527	431	421	442	329	388	231	410	372	134	123	478	551	505	579	600	393
La	25.1	53.1	12.7	26.4	30.5	27.1	26.0	26.6	20.9	28.7	16.2	29.0	28.3	171.4	154.6	45.2	46.1	45.0	48.4	48.5	36.1
Ce	59.8	120.4	29.2	6.09	70.0	61.1	59.8	60.2	50.4	64.1	34.9	65.0	64.3	390.7	359.9	103.3	103.2	103.6	107	109	81.9
PN	35.6	1.01	4.01 19.3	35.6	41 1	6T-0	35.1	9.04 35.6	0.4U	64.0 7 7 5	4.70	36.8	37 1	110	199	0.61	13.4 58.6	0.61 58 9	14.1	14.4 62 5	46.6
Sm	8.10	16.0	4.59	8.44	9.51	8.47	8.23	8.16	6.36	8.62	5.13	8.40	8.60	46.0	43.1	12.9	12.8	13.2	13.8	13.7	10.4
Eu	2.92	5.26	1.68	3.02	3.33	2.98	2.87	2.87	2.22	2.92	1.69	2.83	2.79	13.3	12.4	4.48	4.55	4.53	4.77	4.86	3.81
Gd	9.43	18.4	5.41	9.73	11.2	9.89	9.44	9.64	7.51	10.1	5.97	10.1	10.0	51.3	48.5	14.7	14.8	14.8	15.8	15.8	12.2
Tb	1.36	2.69	0.72	1.43	1.62	1.42	1.38	1.40	1.09	1.48	0.79	1.49	1.48	7.35	6.88	2.09	2.09	2.09	2.21	2.25	1.72
Dy	7.81	15.8	5.01	8.48	9.73	8.64	8.07	8.40	6.23	8.91	5.51	8.77	8.70	41.6	39.6	11.8	11.9	12.3	12.7	12.6	10.0
Но	1.57	3.12	0.91	1.69	1.94	1.72	1.61	1.70	1.24	1.78	1.00	1.78	1.72	8.23	7.89	2.32	2.35	2.46	2.55	2.52	2.00
Er	4.33	8.53	2.83	4.65	5.48	4.78	4.52	4.69	3.45	4.97	3.17	5.04	4.93	23.3	21.7	6.49	6.48	6.71	7.04	6.93	5.52
Ē	0.580	1.14	0.330	0.630	0.750	0.650	0.610	0.640	0.470	0.670	0.370	0.700	0.670	3.24	2.97	0.860	0.860	0.890	0.940	0.970	0.730
dY .	3.66	7.39	2.46	4.04	4.72	4.18	3.85	4.09	2.98	4.35	2.71	4.53	4.33	20.4	19.0	5.41	5.41	5.63	6.01	6.08	4.61
П	0.530	1.070	0.320	0.580	0.700	0.610	0.570	0.600	0.420	0.640	0.350	0.670	0.630	2.99	2.77	0.790	0.780	0.800	0.890	0.870	0.670
	Note: Major -	oxides are in w	eight percent,	trace elemen	ts and rare ,	earth elemer.	ts are in part	s per million.	Flow groups as	In text.											
	**Normalized	4 to 100 wt% or	uenue v a volatila frac	thacic																	
	***Measured	4 hv inductively	roupled plasn	d Davis. Na-mass speci	rometer																
		to a second to a	doordooo																		

ī	Flow		1							1				Flow				;		í
FIOW GLOUD	Group 14		FIOW GLOL	(11 -9-1) cT di		Ĩ	low Group It	0		НС	w Group 1/			Group 18	Ξ	ow Group 19		FIOW C	eroup 20 (Fe	(ij
Inclin.	-64°			52°			-62°				-57°			60°		60°			22°	
Flow	39	TC 5 5 C 5 5 M		40	12 4 4 4 4 4 4	41	4.		43	44	AND ADD ADD	45	100000	47	49	50		000000000	51	0019094
Maior Elements*. *	KAIBIII9	CATBILISS	V4TE114/	/STIBIEN	C/TTRTEN	KAIB1191	KAIB1210	WAIB1224	KAIBISUU F	A151327 K	AIB1338 N	4181387 N	TASTRIA	TTPTTTTTTT	VAIB1424 1	VAIB1434 K	418146/	VALB1488 N	VALB1491 K	AIB1203
si02	47.7	46.5	46.2	45.8	46.6	46.5	46.9	45.8	45.9	45.7	46.4	46.3	46.2	46.1	46.0	46.8	46.3	46.3	46.5	45.8
AI2O3	14.0	12.3	11.8	13.0	13.3	13.2	14.4	14.1	13.9	14.1	14.5	14.2	14.4	15.8	15.3	14.1	14.9	13.3	13.3	13.6
FeO*	11.7	15.1	16.0	15.3	14.6	15.0	13.8	14.9	14.8	14.7	14.0	13.8	13.8	13.0	13.4	12.8	12.5	14.7	14.8	14.9
MgO	10.2	6.49	5.66	6.01	6.65	6.70	5.93	5.89	6.51	7.22	6.43	7.99	7.54	7.16	7.32	9.17	9.28	7.18	7.26	6.86
CaO	10.4	10.0	10.1	9.84	9.78	9.42	9.98	9.92	9.87	9.68	10.1	9.71	9.76	10.1	9.94	10.0	10.3	9.78	9.42	96.6
Na2O	2.09	2.29	2.45	2.45	2.43	2.41	2.46	2.52	2.45	2.39	2.44	2.33	2.40	2.53	2.50	2.38	2.32	2.42	2.36	2.43
K20	0.210	0.540	0.630	0.650	0.500	0.580	0.530	0.580	0.570	0.530	0.570	0.500	0.560	0.440	0.490	0.430	0.430	0.580	0.570	0.550
Ti02	1.76	3.75	4.00	3.73	3.36	3.38	3.50	3.53	3.46	3.23	3.24	2.88	2.88	2.62	2.70	2.06	2.04	3.06	3.08	3.28
P205	0.330	008.0	016.0	1.050	05/ 0	0.64.0	0.630	0//.0	00/.0	0.520	0.22.0	0.510	0/5/0	0.480	0.530	0.370	0.390	0.640	0710	0//.0
MINO	0.180	0.230	0.240	0.230	0.220	017.0	06T'0	0.22.0	0.220	017.0	017.0	0.200	0.200	061.0	0.200	0.130	0.130	017:0	017.0	0.220
Mg#	46.6	30.0	26.1	28.2	31.3	30.8	30.1	28.4	30.5	32.9	31.5	36.8	35.3	35.5	35.4	41.8	42.6	32.9	33.0	31.5
c	352	128	202	136	215	194	98.3	122	210	254	247	352	167	307	287	741	703	300	317	287
×	174	448	523	540	415	481	440	481	473	440	473	415	465	365	407	357	357	481	473	457
٩.	- 144	349	397	458	327	301	275	336	305	271	240	223	249	209	231	161	170	279	314	336
Trace Elements***		00 0			000		5		1	1		c T		i c	0	c c r		10	200	
RD Do	/./8	90.6	9.24	4.8/	50.9	4.92 700	18.0	11.4	10.7	10.5	12.5	9./3	04.0	5/.P	9C.8	07./	11.1	C8./	10.8	5.32
5a	900	212	(č. 1	097	799	682	424	038	500	195	245	480 730	0/7	405	435	215 QFC	CK7	075	975	233
۲. H	444C	06T	5.45 5.77	183	670	18/	3/U	203	000	7 66	0TQ	20.5	152	020	610	6/5	434	4/1	489	624
2 f	1 39	0000	136	1.04	1 30	10.2	10.c	CO.U	9.14 1.55	1.42	156	1 26	61.6	1 14	1.09	1 23	9./0 1.66	1 43	1 59	147
=	0 510	0.240	0.580	0320	0.470	0.20	0.310	0.570	0.530	0.480	0.510	0.450	0.270	0.350	095.0	0.460	0.530	0,620	0620	0.710
2 7	010.0	133	000-00 676	075.0	0.470	077:0	966	484	000.0	370	SAF	308	206	196	180	208	016	458	478	01/10
Hf	0 UU b	2 2 2	11 7	4 88	100	4.61	06.2	10.2	10 3	9.15	046 8.46	2 59	4 70	107	107	5 26	017	07t	9.54	10.3
Ē	1 60	73.0	1 78	02.7	00 F	10.7	1 1 4	1 94	1 67	1.67	1.58	1 35	0,640	1 38	1 35	0 970	118	176	1 60	112
8- >	CO.1	16.1	613	4.0	58.6	7.77	30.7	61.1 61.1	10.1 55 3	51.3	20.02	41.5	20.7	0C-T	38.7	28.3	32.55	45.8	48.7	71.1
, qN	31.5	8.80	31.7	13.0	33.4	11.3	18.0	31.9	27.9	26.6	25.2	22.2	10.7	21.2	23.0	16.7	19.3	30.0	30.1	24.6
Sc	43.2	17.3	43.7	21.6	45.2	25.0	31.4	44.8	44.5	42.5	44.6	40.2	20.8	43.7	37.5	35.4	45.7	34.3	36.3	32.1
Trace Elements***								2							2					
ïz	134	46.8	57.1	50.1	91.6	60.3	75.1	91.2	105	132	98.4	177	56.8	122	119	178	161	100	108	88.5
>	543	190	720	254	461	270	360	607	481	455	455	535	227	560	478	413	399	507	508	580
La	43.0	11.8	46.0	17.6	41.1	15.2	23.0	38.5	35.2	30.5	28.4	24.6	18.0	26.4	26.0	18.3	22.3	37.1	38.5	37.5
Ce	95.9	26.0	108	38.8	93.9	35.3	52.9	88.1	81.7	71.3	65.1	58.0	40.2	60.0	59.9	42.7	49.9	84.2	87.5	87.9
Pr	12.8	3.52	14.6	5.26	12.8	5.00	7.08	12.2	11.4	9.83	9.14	7.89	5.35	8.10	8.10	5.57	6.57	11.2	11.6	11.4
DN	9.44 6.45	16.8	64./	1.62	0.02 0.01	24.1	30.5	0.55	c.2c	45.2	41.1	30.b	25.8	35./	30.1	25.2	4.62	49.3	21.2	0.12
511 F11	7.21	1 45	L4.2	7 10 10	0.61	2./4 2.18	0.39	0.21	4 51	4 10	2.72 2.78	3.35	2.04 2.10	0.00 2.10	3.20	10.0	0.50	C.11	0.11	0.11
Gd	14.3	4.71	17.0	6.87	15.0	6.85	10.2	15.2	14.3	12.5	11.9	10.2	6.80	9.84	9.82	7.22	8.42	12.8	13.5	13.5
Tb	2.04	0.620	2.40	0.92	2.15	0.91	1.27	2.17	2.07	1.81	1.72	1.51	0.86	1.42	1.43	1.07	1.26	1.85	1.9	1.87
Dy	11.7	4.28	14.0	6.17	12.4	6.11	8.57	12.4	12.0	11.0	10.3	8.76	5.80	8.36	8.43	6.44	7.43	10.4	10.8	10.9
Но	2.28	0.770	2.80	1.12	2.53	1.11	1.44	2.47	2.38	2.21	2.10	1.76	1.03	1.63	1.67	1.28	1.53	2.04	2.12	2.16
Er	6.33	2.40	7.66	3.44	6.86	3.43	4.69	6.87	6.61	6.04	5.94	4.95	3.13	4.54	4.60	3.64	4.24	5.61	5.87	6.01
щ	0.860	0.290	1.00	0.410	0.930	0.400	0.520	0.930	0.900	0.810	0.800	0.670	0.370	0.620	0.620	0.490	0.590	0.750	0.780	0.790
γb	5.45	2.09	6.33	3.03	5.85	2.98	3.93	5.82	5.62	5.12	5.06	4.24	2.67	4.01	4.00	3.13	3.74	4.74	5.02	4.91
Lu	0.800	0.260	0.920	0.380	0.850	0.380	0.480	0.840	0.810	0.750	0.740	0.620	0.340	0.580	0.570	0.460	0.550	0.690	0.730	0.710
	Note: Major (oxides are in w	eight percent,	trace elemen	its and rare eart	ch elements are	in parts per m	illion. Flow groi	ups as in text.											
	* Measured D	y X-ray fluores.	cence	o back																
	***Measured	1 by inductively	coupled plasn	na-mass speci	trometer															,
		· · · · · · · · · · · · · · · · · · ·																		-

Flow Group		Flow 0	sroup 20 (Fe	(II)		Flow Gr	oup 21		low Group 22		Flow Gr	oup 23	_	low Group 24-	-	Flow Group 25	Flow Group 26	Flow G	.coup 27
Inclin.			22°			-27			56°		-22			-54°		-54°	-54°	ιņ	•+
Flow	52		53			27		55	56		22	2	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	59	60	61	9	5
Sample KA	181519	KA1B1530b	KA1B1538	KA1B1563	KA1B1593	KA1B1617	KA1B1643	KA1B1662	KA1B1685 k	(A1B1708	KA1B1767	KA1B1796	KA1B1815	KA1B1827	KA1B1834	KA1B1845	KA1B1869	KA1B1873	KA1B1923
Major Elements*, **																			
Si02	45.2	45.4	45.4	45.4	45.0	47.0	45.8	46.2	45.5	46.6	43.2	44.4	45.6	45.4	45.4	45.0	45.5	48.0	45.5
AI203	12.9	14.1	13.7	13.9	13.4	13.7	14.6	14.7	13.8	13.2	12.3	11.5	14.7	15.0	14.6	12.3	14.2	13.0	14.5
FeO*	15.8	14.8	15.0	14.8	15.9	14.6	14.3	13.8	14.9	14.7	17.6	17.6	14.3	13.8	14.4	16.4	14.6	14.1	14.6
MgO	6.39	7.31	7.18	7.60	6.48	7.10	7.56	7.36	6.99	7.00	5.73	5.53	7.30	7.71	6.96	5.50	7.12	6.07	6.77
CaO	10.1	9.82	9.83	9.75	9.70	9.36	9.85	9.73	9.93	9.59	60.6	8.84	9.87	9.90	9.99	10.3	06'6	69.6	10.0
Na2O	2.42	2.38	2.42	2.36	2.56	2.42	2.41	2.46	2.37	2.36	2.70	2.69	2.47	2.41	2.44	2.38	2.44	2.47	2.45
K20	0.550	0.540	0.520	0.520	0.600	0.470	0.430	0.630	0.570	0.54	0.900	006.0	0.440	0.380	0.460	0.600	0.470	0.390	0.440
Ti02	4.04	3.09	3.26	3.07	3.54	2.94	2.75	2.67	3.18	3.28	4.65	4.62	2.85	2.67	2.97	4.25	3.05	3.60	3.25
P205	0.760	0.720	0.740	0.690	0.840	0.450	0.410	0.520	0.960	0.670	1.650	1.430	0.710	0.610	0.690	1.010	0.750	0.620	0.640
MnO	0.230	0.220	0.220	0.210	0.230	0.210	0.200	0.200	0.220	0.210	0.280	0.270	0.210	0.200	0.210	0.250	0.210	0.190	0.210
Hgm Hgm	28.8	33.1	32.4	33.9	29.0	32.7	34.7	34.7	31.9	32.3	24.6	23.9	33.8	35.8	32.6	25.1	32.7	30.0	31.7
c,	221	360	294	339	149	188	137	127	239	291	55.1	58.9	317	324	213	122	107	138	9.99
×	457	448	432	432	498	390	357	523	473	448	747	747	365	315	382	498	390	324	365
Ч	332	314	323	301	367	196	179	227	419	292	720	624	310	266	301	441	327	271	279
Trace Elements***																			
Rb	12.4	1.63	10.0	12.6	7.10	7.99	4.92	6.08	13.9	9.17	15.7	17.2	6.19	6.82	4.60	3.80	6.68	4.88	6.22
Ba	655	164	554	561	484	442	201	294	637	546	875	957	466	462	372	182	296	310	314
Sr	585	133	502	583	340	517	138	260	628	554	459	533	515	607	330	158	176	250	258
Pb	6.33	2.37	5.62	5.00	4.81	5.03	2.04	2.89	6.73	5.57	10.0	10.2	5.61	3.88	3.16	2.11	3.59	3.13	3.09
Th	2.07	0.69	1.77	1.81	1.33	1.22	0.58	0.70	2.22	1.34	3.06	3.08	1.00	0.970	0.690	0.480	1.04	0.670	0.840
D	0.740	0.200	0.650	0.580	0.450	0.460	0.180	0.250	0.740	0.490	1.140	1.140	0.430	0.340	0.250	0.170	0.330	0.240	0.280
Zr	591	137	520	464	394	328	138	233	577	443	881	920	368	291	238	152	220	228	247
Hf	11.4	3.57	10.0	9.44	8.39	7.64	3.17	5.40	10.9	9.55	18.2	17.6	8.34	6.97	5.33	3.57	5.12	5.32	5.61
Та	2.15	0.68	1.87	1.52	1.34	1.36	0.54	0.84	2.57	1.84	2.88	3.14	1.60	1.32	0.890	0.560	0.790	0.870	0.810
٢	62.2	18.6	52.2	52.6	34.5	44.1	14.0	21.7	64.7	53.0	94.5	98.8	47.5	43.9	26.8	14.2	22.1	24.5	24.8
Nb	36.0	8.40	32.3	26.8	22.6	22.6	9.23	13.6	43.5	29.4	50.2	54.1	27.5	22.5	14.3	8.89	14.1	14.5	13.6
Sc	53.1	30.0	42.0	45.0	32.6	41.4	16.3	22.1	46.7	41.9	40.0	44.6	35.3	40.2	29.0	20.1	21.8	23.6	20.5
Trace Elements***																			
iz	79.4	103	97.0	112	66.5	108	61.1	60.4	91.0	108	38.4	44.1	102	110	76.8	67.1	45.8	47.5	66.3
>	810	261	547	535	365	423	191	326	601	537	461	415	481	437	303	251	268	256	252
La	45.3	11.1	39.4	38.4	30.9	27.1	11.9	16.4	53.4	34.6	73.0	74.5	34.1	29.5	21.7	10.5	19.5	20.4	18.9
Ce	102	25.5	89.1	84.4	69.0	61.9	26.7	38.3	119	80.8	174	169	79.8	66.5	49.2	24.7	43.9	46.4	43.6
Pr	13.5	3.51	11.8	11.3	8.93	8.35	3.56	5.29	15.5	11.3	22.2	22.4	10.9	9.01	6.56	3.38	5.82	6.23	6.10
PN	59.3	17.4	52.6	50.2	44.7	37.8	17.6	25.9	67.7	51.0	98.3	99.4	48.5	40.6	33.3	16.8	27.9	30.5	29.6
Sm	13.6	4.20	12.0	11.2	10.1	9.20	4.03	6.14	14.8	12.0	22.2	22.5	11.4	9.31	7.59	4.03	6.35	6.94	6.87
Eu	4.85	1.55	4.37	4.12	3.27	3.54	1.49	2.30	5.16	4.38	7.37	7.41	4.15	3.56	2.54	1.58	2.18	2.50	2.54
i dd	15.6	5.20	13.9	13.2	11.8	11.0	4.70	7.04	17.0	13.7	25.3	25.5	13.0	10.9	9.08	4.84	7.52	8.13	7.93
₽ i	2.24	0.73	1.96	1.86	1.47	1.59	0.60	0.94	2.38	1.98	3.61	3.65	1.86	1.60	1.12	0.630	0.940	1.04	1.03
λη :	12.7	5.21	11.3	10.8	9.53	9.29	3.96 0 20	6.28	13.5	11./	21.3	1.12	10.7	9.14		4.24	0.33	6.99 2 2 2	6.94
HO	2.54 7.15	0.96	47.7 47.7	2.14	1.64	1.85	0.70	1.11	2.b4	2.3U	4.18	4.20	0I.2	1.79	1.27	0.740	1.12	1.23	1.24
	CL./	3.04	21.0	06.0	17.0	51.C	21.2	3.3/	87.1	0.35	0.11	11./	57.C	4.94	4.07	67:7	5.53	3.77	3.87
Ē	0.950	0/E-0	0.810	0.800	0.560	0.690	0.250	0.400	0.970	0.850	1.570	1.550	0.770	0.680	0.450	0.260	0.420	0.440	0.450
0.	cu.a	6/.7	6 T. C	0.04	4.3/	4.30	02.10	2.50	61.0	15.0	0.01	4.83	4.60	4.28	40°5	/ F.T	06.2	9.17 0.400	45.5 0 420
	0.880	0.340	0.750	0.760	0.540	0.640	0.230	0.360	0.890	06/.0	1.430	1.450	0.690	0.620	0.420	0.250	0.370	0.400	0.420
NO	te: Major o.	v soufloored	int percent, tra	ice elements	and rare earth	elements are in p	oarts per million	. Flow groups a	s in text.										
- *	Vormalized	A-fay illuurescent to 100 wt% on 2	nce a volatile free b	acis.															
***	*Measured	to two wros on a	a VOIduire II tee v	abb. -mass snertro	mater														
	No IncesiAl	Dy Illuuruvery 🗠	minepid naidhe	where could	וווקרכו														

Flow Group	Flow Group 28		Flow Gr	roup 29				FIC	w Group 30				Flow Group 31	Flow Group 32			Flow Gro	up 33		
	_EΛ°			°V.					-EA®				20				02			
Inclin.	, , 4	ţ	ņ	ŧ					ŧ0-	ŝ			ĥ ł	25 1			n f			
Sample	60 KA1B1947	60 KA1B2005	KA1B2027	ь/ КА1В2063	KA1B2093	o: KA1B2126	ج KA1B2143 ا	KA1B2180 k	A1B2198 K	ли А1В2227 К	A1B2257 K,	A1B2297	/1 (A1B2316	/2 KA1B2375	KA1B2406 k	A1B2411 K	/3 A1B2437 K	A1B2453 K	A1B2472 K/	182476
Major Elements*,	 																			
SiO 2	45.5	45.6	45.5	45.3	46.0	45.9	46.8	45.8	45.8	45.5	46.1	45.4	47.2	45.6	46.3	47.4	47.4	47.3	46.4	46.5
AI2O3	13.6	14.0	14.1	14.5	14.4	15.0	14.5	14.6	14.6	14.71	13.8	14.4	14.1	14.0	14.3	13.5	13.4	13.4	14.0	14.2
FeO*	15.3	14.5	14.2	14.2	14.4	13.0	12.8	13.5	13.5	13.8	14.2	14.2	13.1	15.1	13.9	14.0	13.9	13.7	13.9	13.9
MgO	6.8	7.26	7.52	7.26	7.04	8.99	8.79	8.35	8.35	8.18	8.02	7.93	7.85	7.19	6.58	6.85	7.17	7.76	7.86	7.05
CaO	9.73	10.03	9.37	9.92	9.78	10.1	9.89	10.1	10.1	9.90	9.68	9.78	9.77	9.25	10.3	9.53	9.66	9.60	9.71	10.0
Na2O	2.44	2.37	2.14	2.46	2.53	2.29	2.36	2.48	2.48	2.50	2.55	2.46	2.41	2.64	2.39	2.33	2.37	2.30	2.35	2.35
K20	0.500	0.420	0.530	0.420	0.460	0.380	0.380	0.420	0.420	0.430	0.470	0.450	0.620	0.650	0.710	0.770	0.720	0.680	0.660	0.690
TiO2	3.40	3.13	3.04	2.96	3.04	2.21	2.24	2.55	2.55	2.64	2.68	2.77	2.54	3.27	2.99	3.02	2.86	2.75	2.74	2.88
P205	0.730	0.610	0.560	0.500	0.570	0.390	0.400	0.490	0.490	0.500	0.500	0.570	0.450	0.420	0.640	0.580	0.590	0.560	0.610	0.640
MnO	0.220	0.210	0.210	0.200	0.210	0.190	0.190	0.200	0.200	0.200	0.200	0.210	0.190	0.210	0.210	0.200	0.200	0.200	0.200	0.210
Mg#	30.8	33.4	34.6	33.8	32.8	41.0	40.8	38.3	38.2	37.3	36.1	35.8	37.4	32.3	32.1	32.8	34.1	36.2	36.1	33.7
່ວ	176	118	233	215	273	626	553	473	406	154	380	272	350	177	306	318	350	435	472	384
¥	415	349	440	349	382	315	315	349	349	357	390	374	515	540	589	639	598	565	548	573
٩	_ 319	266	244	218	249	170	175	214	214	218	218	249	196	183	279	253	257	244	266	279
Trace Elements**.	. 1																			
Rb	6.18	9.44	5.16	4.79	9.30	8.07	4.83	8.63	15.8	8.86	9.83	5.60	13.7	13.5	14.2	14.6	15.3	16	18.8	18.2
Ba	298	285	303	314	491	320	334	372	424	380	403	299	441	471	547	520	540	533	588	560
Sr	246	258	197	319	549	481	370	453	564	291	514	201	497	564	467	441	480	502	565	495
Pb	2.96	2.88	3.38	3.11	4.50	3.12	3.00	4.29	4.54	3.70	4.43	2.78	5.27	4.82	5.23	7.15	6.04	5.25	5.52	5.62
Th	0.720	1.07	0.860	0.710	1.20	0.930	0.770	1.23	1.85	1.19	1.53	0.920	1.80	1.44	1.90	2.26	2.38	2.28	2.7	2.58
D	0.260	0.320	0.280	0.230	0.470	0.310	0.330	0.480	0.490	0.310	0.480	0.280	0.590	0.500	0.780	0.780	0.750	0.710	0.760	0.840
Zr	234	180	249	216	350	203	220	268	249	261	289	208	271	275	351	362	404	347	336	401
Ŧ	5.36	4.32	5.72	5.06	7.98	5.01	5.03	6.29	5.96	6.46	6.83	4.82	6.36	6.88	8.05	8.37	8.38	7.8	8.18	8.41
Та	0.720	0.770	0.940	0.820	1.36	1.06	0.880	1.23	1.48	1.38	1.46	0.87	1.57	1.69	1.68	1.74	1.65	1.4	1.66	1.56
7	22.6	19.0	27.4	23.9	44.5	35.3	29.9	38.1	48.3	26.4	44.9	25.1	38.5	41.3	36.5	44.0	46.8	45.8	48.1	47.8
ЧN	12.3	12.7	14.3	12.9	22.6	16.0	15.5	20.5	21.6	18.8	22.3	13.8	27.2	27.3	28.1	28.8	28.5	25.6	27.1	27.2
Sc	21.3	20.3	32.4	31.8	39.6	45.0	34.7	38.6	51.7	24.1	42.7	31.2	40.8	37.1	32.6	38.3	39.8	43.3	43.1	43
Trace Elements**	;			1														į	1	
Ī;	68./	0.00	8.67	72.8	5.29 CC7	118	EI 1	93.2	94.8	69.7 202	6.78	722	99.4	97.8	99.2	104		134	136	
> _	202	16.3	CTC	160	77C	17.0	16.7	440	T ##	707 707	3 9C	200 8 7 1	400 28.1	375	8 LC	31.0	3 1 5	20.7	33 F	015
8 8	41.4	35.6	42.7	37.4	60.1	41.6	40.0	53.0	60.0	52.0	60.4	40.3	63.0	62.5	68.7	73.4	77.8	73.9	73.9	0.07
Pr	5.75	4.70	5.87	5.05	8.32	5.76	5.47	6.89	8.29	7.03	8.13	5.33	8.25	8.43	8.33	9.72	10.2	9.55	9.84	10.4
PN	28.4	22.1	30.5	26.2	37.8	26.4	25.4	30.9	37.0	34.6	36.8	27.3	35.9	38.1	36.6	43.2	45.5	42.5	43.1	45.6
Sm	6.53	4.99	7.28	6.42	9.20	6.61	6.19	7.45	8.95	7.71	8.64	6.47	8.29	9.13	8.52	10.1	10.4	9.77	9.76	10.5
Eu	2.38	1.85	2.44	2.23	3.50	2.50	2.36	2.78	3.23	2.77	3.14	2.13	3.04	3.37	3.05	3.51	3.70	3.49	3.49	3.65
Gd	7.61	5.93	8.84	7.85	11.0	7.96	7.46	9.15	10.8	8.90	10.2	7.82	9.65	10.4	9.80	11.5	12.0	11.4	11.6	12.1
Tb	0.980	0.780	1.10	66.0	1.59	1.17	1.11	1.35	1.60	1.13	1.52	1.01	1.40	1.53	1.39	1.66	1.72	1.65	1.69	1.76
Ą	6.64	5.40	7.40	6.63	9.77	7.06	6.68	8.27	9.48	7.64	9.21	6.85	8.29	8.99	7.81	9.58	10.1	9.62	10.2	10.2
Ю	1.16	0.950	1.29	1.14	1.98	1.44	1.34	1.71	1.93	1.33	1.84	1.20	1.63	1.79	1.55	1.89	2.01	1.94	2.07	2.04
Er	3.59	3.01	4.22	3.66	5.47	4.04	3.73	4.83	5.33	4.13	5.18	4.00	4.61	5.00	4.35	5.23	5.67	5.42	5.79	5.71
ш	0.410	0.350	0.470	0.410	0.730	0.560	0.510	0.650	0.740	0.480	0.700	0.440	0.630	0.670	0.580	0.720	0.770	0.740	0.780	0.770
Чb	3.03	2.63	3.56	3.28	4.66	3.60	3.23	4.14	4.79	3.46	4.58	3.41	4.00	4.34	3.68	4.58	4.95	4.71	5.11	5.00
Lu	0.380	0.330	0.450	0.390	0.690	0.530	0.470	0.610	0.700	0.440	0.670	0.410	0.580	0.610	0.530	0.670	0.710	0.660	0.740	0.710
	Note: Major (oxides are in w.	eight percent, .	trace element.	s and rare eartr.	i elements are	in parts per m	illion. Flow grc	ups as in text.											

73

**Normalized to 100 wt% on a volatile free basis.
***Measured by inductively coupled plasma-mass spectrometer

Flow Group	Flow (Group 34			ť	ow Group 35				Flow Group 36	Flow Gro	37	Ε	ow Group 38			Fk	ow Group 39		
Inclin.		62°				-45°				-65°	-65	0		-40°				-55°		
Flow	74	75	76	77	78		78			79	80	_	81		82	83	84	85		86
Sample	KA1B2485	KA1B2522	KA1B2541	KA1B2570	KA1B2612	KA1B2646 1	KA1B2656 k	(A1B2685 k	(A1B2727	KA1B2740	KA1B2770	KA1B2779	KA1B2794 K	A1B2815	(A1B2841	KA1B2890	KA1B2895	KA1B2911 K	A1B2915 K	A1B2933
Major Elements*,			0					c I	ļ	0			0	ľ	0		ŗ	ļ		
5102 A1203	6.04 14.3	40.5 15.5	50.4 13.2	40.3 13 q	40.b 15.2	40.8 15.6	46./ 15.4	47.9	47.2 15.0	4b.8 13 3	44.b 13.3	4.c.4 7.8.f	46.8 13.9	46./ 14 3	4.24	46.2	47.7 13.8	47.7	40.0 14.4	40.8 13 9
FeO*	14.0	12.6	11.0	14.2	12.9	12.5	12.5	12.5	12.7	14.5	15.8	15.4	14.1	13.8	13.5	14.4	13.8	14.0	14.1	14.3
MgO	7.15	7.71	7.06	6.9	6.99	7.65	7.68	7.42	7.85	7.02	7.25	6.60	6.80	7.14	6.98	6.98	6.89	6.72	6.89	6.59
CaO	9.78	10.6	11.1	10.1	11.0	10.2	10.5	10.0	9.81	9.48	9.94	9.83	9.59	9.67	10.4	9.75	9.30	9.44	9.54	9.54
Na2O	2.65	2.44	2.21	2.61	2.39	2.39	2.38	2.37	2.42	2.39	2.53	2.39	2.48	2.45	2.41	2.43	2.41	2.45	2.48	2.48
K20	0.520	0.490	0.530	0.550	0.490	0.540	0.490	0.560	0.530	0.560	0.570	0.550	0.670	0.620	0.610	0.580	0.700	0.730	0.640	0.670
Ti02	2.78	2.16	2.74	3.01	2.36	2.16	2.32	2.29	2.21	3.21	3.31	3.52	3.11	2.91	2.73	3.05	2.89	3.09	2.91	3.12
P205	0.500	0.420	0.270	0.530	0.480	0.440	0.400	0.430	0.470	0.730	0.740	0.770	0.710	0.640	0.620	0.760	0.540	0.560	0.590	0.640
MnO	0.200	0.190	0.160	0.210	0.190	0.190	0.190	0.180	0.190	0.210	0.230	0.230	0.210	0.200	0.200	0.210	0.200	0.200	0.200	0.210
#gM	33.9	38.0	39.1	32.7	35.1	38.0	38.0	37.2	38.2	32.6	31.5	30.0	32.5	34.1	34.1	32.6	33.3	32.5	32.9	31.5
ŭ	109	192	304	310	279	295	139	218	252	317	124	164	249	287	284	256	271	202	262	183
×	432	407	440	457	407	448	407	465	440	465	473	457	556	515	506	481	581	606	531	556
٩	_ 218	183	118	231	209	192	175	188	205	319	323	336	310	279	271	332	236	244	257	279
Trace Elements**	. 1																			
Rb	6.01	12.1	11.8	10.8	15.7	11.8	8.46	8.12	9.71	13.0	14.9	6.50	15.4	8.85	13.2	12.2	15.3	9.80	13.9	8.64
Ba	231	481	507	399	499	418	278	331	354	609	350	202	567	514	585	635	584	405	548	398
Sr	210	530	551	507	544	512	305	268	481	624	239	182	533	486	621	660	596	336	554	325
Pb	3.18	5.91	4.93	4.29	4.68	4.79	3.36	3.58	4.12	5.28	3.92	2.34	4.80	5.12	5.00	5.65	6.32	4.46	5.56	4.65
f	0.72	1.59	1.92	1.69	2.00	1.91	1.02	1.33	1.57	1.71	1.43	0.860	1.79	1.38	1.65	1.67	2.19	1.47	1.97	1.48
D	0.210	0.520	0.610	0.560	0.590	0.600	0.300	0.390	0.540	0.550	0.490	0.260	0.550	0.550	0.550	0.510	0.710	0.410	0.630	0.410
Zr	183	361	324	280	286	273	176	215	273	429	241	146	328	334	328	415	360	271	329	265
Ŧ	4.36	8.75	7.68	6.44	6.82	6.53	4.49	4.92	6.30	9.76	5.61	3.55	7.74	7.74	7.86	9.84	8.72	6.20	8.13	6.38
Ta	0.72	1.69	1.38	1.14	1.37	1.17	0.76	0.800	1.08	1.75	0.840	0.560	1.59	1.20	1.31	2.02	1.61	1.09	1.46	1.19
٨	21.8	58.3	46.5	38.8	45.1	38.9	21.2	23.2	38.8	58.3	24.3	14.7	45.4	37.2	44.1	55.4	48.9	28.3	43.6	28.6
Nb	11.6	27.8	22.8	19.9	21.6	19.6	11.4	13.2	18.9	29.3	13.6	9.00	26.5	23.6	24.4	32.6	27.0	18.2	25.8	18.1
Sc	23.3	50.6	46.7	42.6	46.9	37.5	23.1	29.4	39.6	44.1	22.9	22.2	39.6	30.6	37.8	42.5	39.2	32.0	35.5	30.8
Trace Elements**	; ;						0					0	0					į	0.00	
Z		8.16	103	711	100	116	63.0	7.68		6TT	04.4	0.95	87.8	110	113	171	90.3	1.10	80.9	64.3
> .	267	689	549	497	524	471	303	297	400	443	264	246	493	422	418	430	494	363	548	343
la S	14.6	32.2	29.8	24.2	27.2	25.1	15.3	7.71	23.5	39.7	19.5	11.3	33.4	28.8	32.5	38.4	35.8	23.7	32.3	23.4
5	33.Z	101	00.9	0.40	01.0	1.00	34./ A 7C	39.2 E 0.6	0.50	91.4 10.7	6.17 5.17	26.6	74.2	0.60	6.67 0.02	0.00	80.9	0.5.0 C 0C	0.20	1.2C
PN	00.4	45.7	39.5	95.1	35.8	33.3	03.9	25.2	31.7	1.21	30.4	16.3	43.9	39.6	43.8	6.53	47.5	34.3	42.9	34.3
Sm	5.27	10.8	9.34	7.71	8.62	7.75	5.66	6.00	7.67	13.3	6.89	3.79	06.6	9.06	9.80	12.1	10.8	7.87	9.70	7.91
Eu	1.87	3.80	3.39	2.82	3.11	2.78	2.11	1.93	2.71	4.97	2.52	1.42	3.64	3.35	3.63	4.55	3.76	2.50	3.44	2.49
Gd	6.30	13.0	11.3	9.10	10.1	9.2	6.70	7.20	9.00	15.4	8.10	4.60	11.4	10.6	11.5	14.3	12.5	9.30	11.3	9.20
đ	0.87	1.95	1.62	1.35	1.49	1.38	0.88	0.92	1.33	2.21	1.05	0.61	1.65	1.51	1.63	2.03	1.80	1.17	1.65	1.16
D	5.97	11.5	9.67	8.18	8.86	8.09	6.11	6.18	8.12	12.3	7.11	4.18	9.40	8.75	9.55	11.7	10.4	7.75	9.50	7.90
Но	1.08	2.34	1.95	1.64	1.80	1.61	1.08	1.09	1.62	2.38	1.25	0.770	1.84	1.73	1.91	2.36	2.09	1.32	1.87	1.36
EL	3.42	6.62	5.37	4.62	5.06	4.51	3.33	3.58	4.61	6.62	3.89	2.43	5.19	4.77	5.27	6.44	5.83	4.19	5.22	4.36
Ē	0.410	0.910	0.740	0.630	0.69.0	0.620	0.380	0.410	0.640	0.870	0.460	0.280	0.710	0.630	0.700	0.850	0.780	0.470	0.730	0.490
ЧЪ	3.08	5.95	4.80	3.94	4.55	4.10	2.79	3.16	4.03	5.50	3.32	2.10	4.44	3.90	4.45	5.53	5.07	3.68	4.55	3.78
п	0.380	0.860	0.700	0.580	0.660	0.580	0.350	0.390	0.590	0.810	0.410	0.260	0.660	0.570	0.650	0.800	0.740	0.440	0.650	0.470
	Note: Major	oxides are in w	eight percent, t	trace element	s and rare eart	h elements are	e in parts per n	nillion. Flow gr	oups as in text	.;										
	*Measured	by X-ray fluores	cence																	
	***NOTHER	o vivo non o construction o	n ä volaure ir ee	e Dasis.	actor															
	" Measure	ed by inductively	/ coupled plasm	Ia-mass spect	rometer															

Flow Group	Flow Group 39	Flow	/ Group	40	Flow	/ Group 4	44			Flow	r Group 45			9	Flow roup 46 (Flow Broup 47	Flow Gro	up 48	Flow Group 49 (VHK)	Flow Group 50
Inclin.	-55°		65°			65°					-60°				63°	63°	63°		-71°	-72°
Flow	87		88		92	63		94	95		96		97	98	100	101	102	103	105	106
Sample	KA1B2960	KA1B3009	KA1B3039 F	KA1B3061	KA1B3120 k	(A1B3146 K	A1B3153	(A1B3160 K	41B3178 K/	A1B3182 KA	1B3187 KA1	B3188 KA1	B3223 KA1	LB3266 KA	1B3404 K	A1B3423 K	A1B3437 Kv	A1B3506	A1B3536	KA1B3546
SiO2	- 46.7	44.8	48.4	44.9	46.0	46.1	45.8	44.9	46.4	47.6	47.3	47.3	46.5	45.8	46.0	47.1	45.5	46.4	46.3	46.8
AI203	14.3	14.7	14.3	13.8	14.1	14.1	14.4	13.9	14.1	13.4	13.2	13.2	14.0	14.4	14.4	14.3	14.2	14.0	11.2	13.1
FeO*	14.0	13.2	12.0	12.7	14.3	14.2	14.3	15.2	14.8	14.4	14.5	14.5	14.8	14.7	14.4	13.4	13.9	14.3	18.4	14.8
MgO	6.95	9.28	8.44	11.0	6.92	7.35	7.65	7.23	6.82	6.62	6.62	6.62	5.47	6.96	6.98	8.00	8.55	6.26	3.40	6.89
CaO	9.54	10.7	10.0	11.0	9.58	9.61	9.73	10.2	9.74	9.28	9.73	9.73	9.47	9.79	9.92	9.92	10.2	9.48	7.89	9.61
Na2O	2.53	2.71	2.28	2.40	2.35	2.37	2.40	2.61	2.33	2.38	2.41	2.41	2.46	2.62	2.44	2.04	2.31	2.56	2.75	2.39
K20	0.620	0.530	0.520	0.480	0.500	0.570	0.520	0.580	0.460	0.600	0.610 C	.610 (0.600	0.63	0.400	0.220	0.300	0.720	1.77	0.500
TiO2	2.91	2.03	2.05	1.81	3.05	2.93	2.90	2.97	3.04	3.10	3.09	3.09	3.25	2.86	3.01	2.53	2.60	3.09	3.43	3.20
MnO	0.200	0.190	0.400	0.190	0.190	0.200	0.200	0.210	0.210	0.200	0.200 0	.200	1,400 (0.200	0.210	0.2.10	0.190	0.200	0.330	0.220
		C 17		C	5 66		0		L č	L T			L	• • • •	0.00	, 	, oc	, OC	() 	0
Mg#	53.2 772	41.3	41.4	40.3	32.b	34.1	34.9	2.25 2.25	31.5	31.5	31.4	51.3	50.5 101	32.1	52.b	37.4	38.1	30.4	0.61	31.8
צ ל	427 515	440	6/0	398 398	415	1/7	400	481	387	672 498	c/ 7	506	151	062	232	183	046 249	232 298	-2 1469	415
: 4	262	175	175	153	244	253	227	244	196	188	192	192	201	179	271	231	275	257	964	327
Trace Elements***	1 - 1																			
Rb	10.8	7.17	12.4	12.0	6.60	6.62	11.5	14.0	8.4	14.4	11.4	14.7	7.16	11	2.25	1.17	3.51	21.2	50.9	2.98
Ba	238	315	349	283	451	371	482	439	216	442	26.0	519	267	451	133	126	409	536	1,688.00	420
Sr	153	403	417	347	463	342	595	566	276	583	627	694	161	573	202	134	526	597	467	508
Pb	3.28	3.74	4.23	3.36	5.35	3.95	4.66	5.47	3.03	5.54	1.82	5.43	3.2	4.95	2.51	2.56	5.3	5.82	24.6	7.95
f :	1.56	1.28	1.89	1.67	1.43	1.15	1.51	2.34	1.24	1.92	1.82	2.05	0.93	1.53	0.56	1.02	1.35	2.55	8.45	2.85
	0.420	0.460	0.580	0.470	0.640	0.340	0.480	0.690	0.280	0.570	0.530 0		.280	0.5 20	0.190	0.260	0.490	0.770	2.860	0.840
Zr	173	212	238	191	336	255	293	332	160	294	266	286	178	255	172	118	313	403	1,787.00	394
H	4.25	5.08	5.76	4.87	7.58	5.91	7.21	7.9	4.52	7.38	1.24	7.54	4.21	6.6	3.89	2.98	7.33	9.7	32.5	9.6
Ta ;	0.77	0.94	1.13	0.96	1.01	1.05	1.49	1.32	0.88	1.45	5.00	1.49	0.68	1.22	0.54	0.5	1.48	1.79	2.87	1.9
× 4	20.6	28.7	36.2	34.1	33.0	25.9	42.0	44.6	19.4	46.6	42.7	8.8	18.8	36.2	1./1	16.2	45.1	52.7 25 4	233	5/3
an -	11.3	10.9	19.1	8.CT	20.6	10.3	57 J	4.22		8.77	c.02	1.22	5.11	19.4	7.01	x .	7.97	4.62	24.7	31.1
Sc Trace Elements***	26.4	32.6	41.5	43.8	25.0	30.8	43.1	37.8	19.9	41.9	30	44.7	19.3	33.9	18.8	19.4	41.6	43.1	39.5	38.8
ïz	84.1	91.8	80.2	98.8	109	97.9	131	110	61.8	101	107	106	48.6	121	84.0	84.6	134	89.5	NA	62.4
>	239	387	458	351	580	349	592	480	255	543	448	592	222	541	241	191	396	529	113	458
La	16.3	19.5	23.0	19.0	25.4	21.4	28.4	28.9	13.6	27.8	59.2	28.3	15.7	22.6	14.1	12.6	29.6	30.8	161	37.9
e Ce	36.4	45.4	52.2	42.7	60.8	48.2	63.7	67.2	31.3	64.2	8.10	64.1	35.2	53.1	32.6	27.5	67.6	71.5	368	86.9
Pr Nd	4./b 22.7	5.89 7.7	6.94 30.6	5.66 25.0	رب. ۲. ۲۶	6.28 31 5	8./4 38.8	01.6	4.30 20.8	8.89 30 7	30.8 8 0.6	8./b	4./8 27 0	/.16 37 3	4.32 20.7	3.70	9.07 20.8	19.9 1 A A A	4.54 188	11.8 53 0
Sm	5.16	6.21	7.28	6.00	8.16	7.24	8.87	9.83	5.09	9.65	3.31	9.47	5.17	7.86	4.73	3.99	9.14	10.7	40.8	12.5
Eu	1.75	2.23	2.58	2.20	3.01	2.37	3.31	3.61	1.89	3.47	10.56	3.53	1.87	2.92	1.76	1.38	3.36	3.98	12.36	4.27
Gd	6.10	7.30	8.60	7.50	9.60	8.50	10.4	11.6	6.00	11.4	1.50	11.3	5.20	9.20	5.70	4.70	10.8	12.7	45.6	14.5
dT 1	0.81	1.07	1.27	1.11	1.39	1.07	1.50	1.68	0.82	1.68	8.98	1.66	0.79	1.34	0.73	0.65	1.58	1.86	6.36	2.11
Λn :	50.5	6.40	/0	0.9Z	8.21	11./	8.79	c/.9	75.5	1.1	1./9	0.01	0.32	0 ¹ .'	10.2	4.39	9.74	5.01	3/.b	12.4
Ho	1.02	1.29	1.56	1.42	1.63	1.23	1.74	1.92	0.96	1.95	4.97	2.06	0.940	1.55	0.900	0.810	1.95	2.20	7.57	2.48
н н.	3.27	3.62	4.35	3.97	4.4/	3.90	4.90	87.5	2.36 0.350	05.5	10.0 / 0.0	20.02	2.98	4.30	11.2	15.2	0.45 0.45	0.15 0.00	1.12	6./8
ŧ,	06C.U	3 11	2 8.7	3 56	277 5	3 46	0.00U	0.720 A 55	0.530	0./3U A 65	0.63	06/1	0.40	000.0	0.000	0005.0 55 C	0.7.0 A 65	0.03U 5 36	18 43	0.940 5 93
2 -	40.2 0 360	117.C	20.C	05.0	0.540	04.c	4.20 0.620	4.33 0.660	4C.2	4.00 0.670	0.02	1200	0 0 2 2 0 2 2 1	3.72 D.550	0300	0.290	0.68.0	05.0	0 670	0.88.0
2	Note: Major o	xides are in wei	tht percent, tr,	ace elements a	and rare earth e	ements are in	A parts per milli	on. Flow group.	s as in text.	0.000	040-0		242	0000	2020	0.40	0000	0	2014	2000
	*Measured by	<pre>/ X-ray fluoresce</pre>	nce																	
	**Normalized	l to 100 wt% on	a volatile free	basis.																
	***Measured	by inductively c	oupled plasma	a-mass spectro.	meter															

		+. NIVI			())(L)														
Flow Group	FIO	w Group 5(0	Flow Group	Flow Group 52	Flow	FIG	w Group 54			Flow Gro	up 55		Flow	Flow Group	Flow Group	Flow G	iroup 60	Flow Group
				10	(Fe-Ti)	cc dno.p									ŝ	۶C			TO
Inclin.		-72°		°,	-69°	-49°		58°			58°					59°	5	.6	59°
Flow	106	108	108	109	110	111	00000000000	113	010000000	114	115	Loocast	116	117	119	120	121	122	126
Maior Elements*. *:	KAIB3503 K	A163020	KA1B3044	VG0581FA	KA1B30/1	KA1B3/33	KAIB3/9U P	A1B3/92 1	0C8581PA	KAIB38/1 K	A1B3884 K	A C2458LA	C162945	CSECUTAN	KA1B4U50	KA1B4118	CT2481EA	KA16426/	KA 1645UZ
SiO2	47.5	46.9	46.8	47.1	44.5	44.5	48.0	47.9	47.8	47.4	47.8	47.6	45.6	47.8	48.4	45.0	47.3	45.7	46.8
AI203	13.6	14.3	14.2	13.1	13.2	12.7	13.6	13.3	13.9	13.1	14.6	13.6	13.5	13.4	12.9	14.3	12.5	14.4	15.1
FeO*	14.2	13.0	13.2	14.8	17.2	17.0	13.6	13.0	13.7	14.9	13.5	14.1	14.5	14.3	14.6	12.9	14.8	13.8	11.2
MgO	6.46	7.95	7.91	6.57	5.94	6.36	6.96	7.13	5.95	6.28	6.88	6.65	6.1	6.67	5.00	7.19	6.35	7.54	10.4
CaO	9.68	10.03	10.0	9.13	8.87	9.08	9.76	9.61	9.94	9.29	8.98	9.50	9.56	9.43	10.3	10.2	9.77	10.2	10.9
Na2O	2.43	2.29	2.30	2.41	2.49	2.49	2.25	2.29	2.30	2.37	2.26	2.30	2.34	2.21	2.21	2.11	2.50	2.36	2.06
K2O	0.310	0.420	0.360	0.7	0.420	0.520	0.380	0.590	0.350	0.760	0.560	0.510	0.810	0.320	0.400	0.220	0.810	0.460	0.310
TiO2	3.19	2.70	2.78	3.33	4.20	4.09	2.92	2.91	3.47	3.31	2.85	3.12	3.40	3.30	3.63	2.48	3.38	2.73	1.50
P205	0.560	0.550	0.590	0.69.0	0:930	0.900	0.610	0.670	0.610	0.650	0.570	0.610	0.69.0	0.520	0.690	0.540	0.650	0.560	0.240
MnO	0.200	0.190	0.180	0.210	0.230	0.240	0.210	0.200	0.190	0.200	0.230	0.200	0.200	0.200	0.180	0.160	0.210	0.200	0.190
Mg#	31.2	38.0	37.4	30.8	25.7	27.2	33.9	35.5	30.3	29.7	33.8	32.0	29.6	31.8	25.5	35.8	30.1	35.3	48.2
° '5	226	366	317	277	49.3	95	381	354	189	163	209	240	160	315	227	275	244	324	753
×	257	349	299	581	349	432	315	490	291	631	465	423	672	266	332	183	672	382	257
Ь	244	240	257	301	406	393	266	292	266	284	249	266	301	227	301	236	284	244	105
Trace Elements ***															1				
ď -	5.76	6.73	9.59	6.17	3.25	4.11	9.73	13.1	5.16	16.9	6.75	19.7	9.94	7.98	17.1	7.64	26.6	1.84	4.49
Ba	368	398	398	366	578	575	641	550	458	283	612	608	333	387	462	356	587	415	215
ار	566	502	526	443	403	359	478	452	497 5 90	453	461	566	198	531	466	504	482	468	288
67 1	90.0 1. c	4.//	10.6	20.0	11.1	27.8 21.6	0.43	0.89	68.0	07./	<i>د/ د</i>	0.03 C	2.74	5.54 715	CE./	5.33	\$ 1	10.0	50.2
= :	17.7	1.5/L	1.04	2.22 0 EDD	C7:7	072 0	4.74 0.040	2.83	0.700	70000	00L 0	7010 0	0.84	CT.2	5 CEO	1.57	2.34	16.1	0.360
D 6	0//0	DIC.U	005.0	0.550	0.740	0./00	0.840	0.940	06/.0	006.0	0./30	N18.U	0070	0.080	000.0	016.0	0.550	0.640	062.0
7L	32b 0 75	Q/7	300	324 7 EE	513 10.66	70 C	3//	415	104	463	342	384	190	309	443	316 7 74	11 16	305 0 1 0	1/6
Ē	0.23	40.0	60°7	cc./	00.UL	77.11	0.03	4.04	97.6	55.UL	05.7	4.04	4.74	0.4/	0.01	17./	01.11	01.0	4.12
e ,	1.27	1.51	1.29	1.36	2.36	2.38	1.83	1.60	1.53	1.80	1.58	1.54	0./80	1.44	2.39	1.36	2.24	1.6	0.06 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 1	40 707	44.7	40.4	0,04 U 100	4.70	00./	0.20	2.4.0	0.04	0.40	40.0	91.4	n.u2	49.0	0.20	49.7	7.00	40.0	1.26
QN	23.1	23.2	6.22	23.5	40.1	39.1	30.4	28.3	70.6	30.7	24.4	8.42	12.4	24.0	37.b	24.6	37.1	797	1.11
Sc Trace Elements ***	34.1	42.3	36.9	42.5	39	37.2	42.9	42.0	40.2	37.3	33.7	38.6	22.2	41.5	50.4	36.4	44.6	37.9	49.7
Ni Ni	81	104	108	78.8	69.7	68.7	111	107	86.3	100	119	120	76.6	117	65.6	139	123	155	125
>	427	386	379	430	612	566	415	409	466	395	371	396	233	430	609	358	517	482	391
La	30.5	27.3	29.4	30.9	47.5	47.9	37.5	40.9	34.2	38.6	33.4	34.8	15.9	28.9	45.8	31.7	46.2	32.4	13.9
Ce	71.0	62.0	67.5	70.1	106	108	83.9	92.1	80.4	6'06	77.1	79.4	36.6	68.6	103	71.6	104	73.8	31.8
Pr	9.32	8.33	9.12	69.6	14.0	14.5	11.1	12.1	10.7	12.2	10.4	10.7	5.04	9.60	13.7	9.66	14.2	10.0	4.32
PN	41.0	37.8	40.8	42.8	61.2	63.9	48.9	53.5	48.0	55.0	45.9	48.0	24.6	43.9	61.2	41.7	62.4	44.4	20.1
Sm	9.57	8.93	9.43	9.93	14.0	14.5	11.3	12.2	11.1	12.8	10.9	11.3	5.58	10.6	14.0	9.48	14.5	10.6	5.08
Eu	3.34	3.19	3.29	3.52	4.82	4.94	4.01	4.36	4.05	4.60	4.06	4.19	2.04	3.94	4.68	3.33	4.90	3.71	2.00
ed I	11.3	10.6	11.1	11.8	16.3	16.9	13.0	14.3	12.8	14.5	12.2	12.8	6.60	12.3	16.3	10.8	16.7	12.2	6.40
≘ 2	1.64	1.54	1.03	1./3	CE.2	2.48 1F.0	10.0	10.2	2.01 2.01	2.08	1./8	1.8/	C8.U	10.2	0.61	1.58 0.75	2.44	1.79 10.6	10.1
Ϋ́Ε	1 95	183	1 94	1 96	0.78 2.78	2 98	2.18	7 37	2 12	2.21	2 06	1.11	1 00	2.01	0.54 07.0	1 90	2,88	2.13	1 38
с -	5.40	5.14	5.45	5.47	7.85	8.30	6.04	6.61	5.82	6.60	5.75	6.10	3.19	5.61	7.66	5.16	8.00	5.91	4.00
Tm	0.720	0.720	0.740	0.750	1.080	1.130	0.800	0.880	0.780	0.890	0.770	0.810	0.370	0.770	1.03	0.700	1.09	0.800	0.560
Чb	4.62	4.47	4.81	4.81	7.00	7.35	5.24	5.52	4.88	5.64	4.87	5.16	2.73	4.80	6.50	4.46	7.08	5.08	3.67
Lu	0.660	0.660	0.700	0.680	1.010	1.060	0.740	0.810	0.700	0.820	0.700	0.750	0.340	0.700	0.960	0.640	1.00	0.750	0.560
	Note: Major oxi	ides are in w	reight percent,	trace elements a	and rare earth e	lements are in p	arts per million.	Flow groups	as in text.										
	*Measured by ;	X-ray fluores	cence																
	**Normalized t	to 100 wt% o	n a volatile fre	e basis.															
	***Measured b	y inductively	y coupled plasr	ma-mass spectroi	meter														

~	
щ	
Š	
Ļ	
₹	
₹	
Ļ.	
≤	
Ξ	
Ξ	
2	
ш	
ш	
X	
ŏ	
Ř	
÷.	
╡	
ы	
щ	
R	
В	
Ā	
Ś	
Ā	
Σ	
$\overline{\mathbf{z}}$	
÷	
й	Í
2	
Ā	
F	

Flow Group	Flow Group 6	2 Flow G	oup Flow Grou 64	đ	Flow Group 6	5		ш	low Group 66			Flow Gro	up 67		Flow Grou	up 68		Flow Group 70
Inclin.	-43°	-58	-58°		°89				62°			43°			-45°			64°
Flow	127 KA1RA577 KA1RA	128 547 KATRAS	129 52 KA1BA601	130 KA1BA637	132 KA1BA757	132 KA1BA778	KA1BAR03	133 KA1RA815	KA1RA875 4	134 134 005 K	1 018/036	135 135 KA1RAGZO K	A1 R4 999	136 KA1R5075 I	139 (A1B5202 KA	141 3185444 K	142 A1R5583	144 (A1B577A
Major Elements*, *			100101-01 10	Inter to a	IC LOT VI	DI LATUR	COLOTION	010101	- Cotores	2001010	DOCTOT V		COLOT	CAOCATUM			- Concert	tionto
SiO2	48.9 47	1.0 46.C	46.6	46.4	45.4	44.8	46.7	46.8	46.2	46.9	46.4	46.1	46.2	46.5	47.1	46.7	45.5	45.1
AI203	15.5 15	5.8 14.6 2	13.4	14.3	14.3	14.6	14.9	15.0	14.9	14.8	13.8	14.7	14.8	14.3	14.6	14.6	15.0	14.7
FeO*	9.9 1(12.5	14.1	13.5	12.9	12.6	11.1	10.9	11.9	12.1	12.8	11.3	12.1	12.2	11.7	11.0	9.81	13.5
MgO	9.41 9.	72 8.75	69.7	75.1	7.12	7.18	7.40	6.82	1.89	7.23	6.76	8.96	9.67	05.7	9.81	8.66	8.51	7.36
N220	-T C.TT		66.6	10.2 7 57	90°C	0.4.5 11	10.4 2 11	0.11	10.4	85.5 7 A A	9.92 2 1 0	2.02	11.U	2.UL	2.1E	1 0.4	8.9/	10.3
K2D	0.150 0.1	20 2.00 20 0.16	0.460	76.2 0 390	0 220	0.160	0.160	0.190	71.2	0 510	0190	0.180	0320	01.230	0.380	0.190	0.160	0.240
TIO2	1.22 1.2	23 2.05	2.91	2.78	2.45	2.28	1.85	1.99	1.69	2.32	2.62	1.63	1.80	2.19	1.75	1.64	1.68	2.62
P205	0.190 0.1	70 0.37	0 0.740	0.480	0.410	0.400	0.420	0.440	0.370	0.570	0.410	0.260	0.380	0.400	0.320	0.260	0.290	0.510
MnO	0.260 0.1	80 0.18	0 0.210	0.190	0.190	0.200	0.180	0.150	0.170	0.180	0.180	0.210	0.190	0.180	0.170	0.160	0.140	0.210
Mg#	48.7 48	41.7	35.2	35.3	35.5	36.2	39.9	38.4	39.8	37.4	34.6	44.3	44.4	38.1	45.6	44.1	46.5	35.2
Ċ	479 45	139 739	232	300	312	291	353	393	255	199	307	531	529	341	501	678	348	202
×	125 10	133 133	382	324	183	133	133	158	282	423	158	149	266	191	315	158	133	199
Ь	. 83 7	4 161	323	209	179	175	183	192	161	249	179	113	166	175	140	113	127	223
Trace Elements***																		
Rb	4.93 0.4	87 3.81	. 8.91	7.66	2.96	3.62	4.68	2.35	31	11	4.83	5.14	8.77	3.59	11	3.24	4.48	1.71
Ba	87 15	18 280	622	484	426	212	192	295	288	473	319	202	336	329	262	273	108	278
S,	151 1t	350 350	646	485	479	472	384	434	333	467	577	311	248	420	384	351	124	319
d :	1.82 1.	95 4.2(5.49	5.49	4.54	4.38	5.14	8.27	4.24	6.23	5.55	2.97	3.94	5.16	5.05	3.82	2.58	3.69
f:	0.67 0.	62 1.75 10 2.17	1.36	1.66	2.03	1.98	2.29	2.45	1.82	2.64	2.62	1.14	1.55	2.23	1.35	1.78	0.86	1.27
	0.220 0.2	40 0.46	0 0.480	0.530	0.620	0.620	0.660	0.710	0.460	0.820	0.630	0.340	0.460	0.630	0.480	0.470	0.280	0.420
z	109	22 279	487	404	263	255	271	307	248	428	307	179	241	243	189	162	106	224
H	2.91 3.	16 6.65	10.2	8.38	99.9	6.26	6.62	7.32	6.09	8.83	7.78	4.4	0.0 80	5.99	4.75	4.35	2.76	5.66
Ta	0.5 0.	55 1.17	2.12	1.42	1.05	1.19	1.21	1.54	1.16	1.63	1.44	0.93	1.26	1.25	0.98	0.92	0.47	1.24
× 4	17 7.07 17 80.8		0.1.0	9.55	40.8	38.1	42.1 74 F	4/i5	41 10.0	75	48.6	35.9	59.4 C OC	40.6	1.65	54.5	20.9	c.24 د در
nn ,	0.40 9.	76T T7	0.00	0.07	1.51	5.02	C.12	7.67	14.0	6.07	0.22	с ;	5.02	4.1.2	7.01	14.1	PC./	7.07
SC Trace Elements***	45.8 42	5.3 48.t	45.I	45.8	1.65	33.9	44.1	9.14	45.9	40	42	49.8	43.8	42.3	40.2	48./	9.72	42.9
īz	113 11	.2 169	114	163	118	130	155	114	152	130	146	193	174	146	253	162	103	115
>	328 35	58 454	587	491	367	341	345	386	347	422	440	438	348	377	366	358	234	485
La	10.1 10	1.1 25.5	43.2	30.8	26.9	24.3	30.4	33.3	26.5	40.3	28.9	18.1	24.7	27.4	20.2	18.7	13.6	26.4
Ce	22.8 24	1.7 57.5	98.6	70.8	61.3	55.4	65.8	73.6	58.7	87.2	65.3	41.4	54.6	61.1	46.3	41.9	27.7	63.2
Pr	3.2 3.	32 7.78	13.5	9.82	8.08	7.30	8.55	9.59	7.67	11.2	8.88	5.6	7.26	7.98	6.25	5.54	3.63	8.42
PN	14.5 15	34.5	60.0	44.4	36.4	32.2	36.7	41.0	33.3	48.5	39.5	25.2	32.1	35.2	27.8	24.5	17.7	37.7
En la	3.82 3.	9/ 8.4: 10 7.00	13.b	01.0 07 c	8.58	Uč./	8.24	9.14 2.0.5	7.49 2.55	10.b	9.3/ 0C C	b.14	7 E O	21.8	67.d	90°C	4.29	8.94 2.02
Gd		30 10.3	15.8	12.4	06.6	9.10	9.94	11.0	00.6	12.5	11.2	CL	8.96	77.9	8.03	90.2	5.66	10.7
1	0.800 0.8	35 1.54	2.26	1.85	1.46	1.34	1.46	1.62	1.35	1.80	1.65	1.19	1.35	1.46	1.22	1.13	0.77	1.59
Dy	5.22 5.4	14 9.35	12.9	10.8	8.71	7.89	8.59	9.52	8.12	10.8	10.1	7.33	8.1	8.56	7.46	6.85	5.40	9.49
Но	1.10 1.:	14 1.91	. 2.52	2.16	1.72	1.62	1.71	1.95	1.65	2.15	2.04	1.50	1.70	1.72	1.53	1.42	0.99	1.89
Er	3.27 3.	37 5.41	. 6.98	60.9	4.86	4.57	4.89	5.56	4.82	6.03	5.71	4.22	4.81	4.86	4.23	4.05	3.08	5.35
Ē	0.470 0.4	90 0.76	0.930	0.830	0.660	0.620	0.670	0.760	0.670	0.810	0.760	0.590	0.660	0.660	0.590	0.570	0.360	0.730
dY .	3.15 3.	20 4.90	5.98	5.36	4.24	3.91	4.27	4.86	4.29	5.20	4.92	3.81	4.24	4.30	3.78	3.66	2.60	4.61
п	0.470 0.4	70 0.71	0 0.880	0.770	0.630	0.590	0.640	0.720	0.630	0.770	0.710	0.560	0.620	0.620	0.560	0.540	0.320	0.650
	Note: Major oxides an	e in weight percent	, trace elements a	nd rare earth elei	ments are in par	s per million. Flo	w groups as in t	ext.										
	**Normalized to 100 w	uorescence #% on a volatile fre	sistery of															
	*** Measured by induc	tively coupled plas	ma-mass spectrol	neter														
	the second second second	HINGLY COMPANY TIM																

	TABLE 4: FIFMFN	KIMAMA TALANALY	CORE BUL	K-ROCK
Flow Group	Flow Group 70		Flow Group 7	1
Inclin.	64°		-45*	
Flow	144	145	146	148
Sample Maior Elements	KA1B5799	KA1B5811	KA1B5825	KA1B5990
SI02	- 47.1	46.9	47.6	45.9
AI203	14.6	15.3	14.6	14.9
FeO*	11.9	12.5	13.1	12.3
MgO	5.81	8.09	6.92	7,85
CaO	14.0	10.8	10.54	10.9
Na2O	2.14	2.17	2.29	2.22
K20	0.380	0.160	0.220	0.270
T102	2.07	2.20	2.56	2.42
P205	0.310	0.350	0:430	0.500
	0.400	007/0	06710	0070
Hg#	32.9	39.3	34.7	39.1
Ċ	401	394	245	308
×	315	133	183	224
٩.	135	153	188	218
Trace Elements ⁴	:,			
Rb	16.5	6.42	2.15	2.53
Ba	239	150	325	332
Sr.	414	326	496	424
2 4	9/15 1	00.5	n c • •	4.14
: 5	062.0	0.450	0.480	0.530
zr.	206	207	249	252
Ŧ	5.12	5.19	6.43	6.25
Та	1.06	1.07	1.76	1.65
*	36.6	36.7	57.1	47.0
Nb	16.4	16.6	29.2	27.0
Sc	41.5	43.8	66.2	47.4
Trace Elements ⁴	÷.,			
īz	166	159	135	121
>	320	338	697	460
a (19.7	19.9	30.7	31.3
5 4	45.0	40.2	/1.3	1.1/
E N	18.5	9.34	20.6	9.49 A1 Q
- ES	6.90	7.04	10.8	9.57
Eu	2.50	2.52	3.78	3.25
Gd	8.36	8.50	12.9	11.3
đ	1.24	1.29	1.95	1.66
Dy	7.60	7.65	11.7	9.89
Но	1.54	1.53	2.34	1.98
ы	4.31	4.35	6.78	5.50
Ē	0.600	0.590	0.940	0.760
q,	3.86	3,85	6.07	4.83
E	0.570	0.560	0.880	0.700
	Note: Major oxid	es are in weight perce	ent, trace elements a	ind rare earth element
	*Measured by X-	av fluorescence	1	
	** Normalized to	100 wt% on a volatile	free basis.	
	***Measured by	inductively coupled p	dasma-mass spectro	meter
	1			

Trace Elements

Kimama basalts are LREE enriched compared to basalts of the eastern SRP. The HREE compositions of Kimama basalts plot in a narrower range of values compared to other SRP basalts, but compositions are generally similar (Hughes et al., 2002a). Although the basalts in the Kimama core are less enriched in LREE than COM (exceptions being the two highly evolved flow groups), their REE patterns are similar. Kimama basalts have a steeper LREE and HREE pattern than other SRP basalts (Figure 15). Similar incompatible element trends exist between SRP and Kimama basalts, i.e. Ba, Ta, Nd, Hf, Tm, and Lu, but subtle depletions in Sr, and Y are evident in Kimama samples.

are in

Figure 12: Selected major and trace element variation diagrams with compositions of Kimama basaltscompared to compositions of eastern Snake River Plain (ESRP) olivine tholeiites (Hughes et al., 2002). Kimama flow groups are distinguished by colored symbols, ESRP samples are distinguished by gray crosses.

Figure 14: Selected major and trace element variation diagrams showing chemical trends evident in the four Kimama compositional suites. The Fe-Ti flows are represented by the diamond shape and are shaded in orange. The SROT flows are represented by the cross shape and are shaded in green. HK flows are represented by the star shape and are shaded in yellow. LK flows are represented by the triangle shape and are shaded blue.

Figure 15: A) Multielement spider diagram and B) rare earth-element (REE) plot of Kimama basalt samples (colored lines), normalized to primitive mantle (McDonough and Sun, 1995). Snake River Plain (SRP) olivine tholeiites and Craters of the Moon (COM) evolved lavas are plotted for comparision. Trace elements are arranged in order of decreasing compatibility from right to left.

Discussion

Chemical Suites and Stratigraphic trends

Lava flows in Kimama core are classified as basalts, and plots of major and trace

elements plotted against depth identify four basalt compositional types (Figure 16). Thirty-five

flow groups are standard SROT basalts. Two flow groups consist of high-K, high-Fe (high K) lavas that are essentially identical to those erupted within COM during the latest Pleistocene and Holocene. We identified 22 low-K lava flow groups, which represent the least evolved flow groups in the Kimama core. Eleven high-Fe, high-Ti (Fe-Ti) flow groups are also identified in the Kimama basalt stratigraphy. Fe-Ti, low-K, and high-K flow groups are thought to represent distinct magma batches separate from SROT magmas. Whether Fe-Ti, low-K, high-K, and SROT are compositionally related will be discussed herein.

Despite the overall chemical similarity in SRP Neogene basalts, individual flow groups in the Kimama core exhibit several temporal-compositional trends. The 71 flow groups identified in the Kimama core are classified into four compositional types based upon whole rock TiO_2 wt%, K₂O wt%, FeO* wt%, and ratios of K/P (Figure 14). Oxides such as CaO, Al₂O₃, and Na₂O vary without discernable trend, perhaps owing to the crystallization and flotation of plagioclase within the magma. A total of 39 flows and 18 flow groups are classified as SROT, based upon compositional ranges of to 5.00 to 11.0 wt% MgO, 11.0 to 15.8 wt% FeO*, 0.210 to 0.920 wt% K₂O, and 1.76 to 3.63 wt% TiO₂. SROT flows are found through the entire Kimama core, with the highest concentration in the 16 m to 1236 m depth range. Six Fe-Ti flow groups and 18 flows are recognized in the Kimama core based upon elevated concentrations of FeO*, 13.8 to 17.6 wt. %, and TiO₂, 2.67 to 4.65 wt. %. Fe-Ti flows are preferentially located in the upper 754 m of the core in flow groups 3, 10, 13, 15, 16, and 25. Six low-K flow groups and 31 flows are distinguished by low $K_2O_1 \le 0.3$ wt. %, low FeO*: 9.80 to 14.8 wt. %, and higher MgO: 5.81 to 10.4 wt. %. Low-K flow groups are concentrated from 4500 m to 1912 m depth and comprise flow groups 27, 28, 29, and 30. The two flow groups and flows of the high-K suite are the most chemically distinct flows in the Kimama core, with FeO* of \geq 17.8 wt. %, K₂O of 1.77 to 1.84 wt. %, TiO₂ of 3.43 to 3.54 wt. %, and MgO of 3.40 to 3.94 wt. % (Figure 14). High-K flow groups 8

and 23 are located at 318 m and 1077 m depths, respectively. The REE patterns of SROT, Fe-Ti, and low-K suites are broadly similar, but high-K flow groups are 10x more enriched in both LREE and HREE compositions, and fall within the COM compositional array (Figure 14).

Fractionation/Enrichment and Recharge Cycles

The progressive enrichment of incompatible elements between flow units upsection stratigraphically is commonly interpreted to represent ongoing eruptions from a fractionating magma chamber (e.g., Shervais et al., 2006). Likewise, progressive depletion in incompatible elements, and concomitant enrichment of compatible elements upsection, is interpreted to represent magma chamber recharge with primitive or parental melt compositions (Shervais et al., 2006). These trends are best illustrated by plots of element concentrations MgO, FeO*, TiO₂, and K₂O vs. depth (Figure 16). Upward fractionation cycles are indicated by a decrease in MgO and increases in FeO*, TiO₂, K₂O. Recharge cycles are indicated by increasing MgO, and decreases in FeO*, TiO₂, K₂O (Figure 16).

Figure 16: Generalized stratigraphic column, mean paleomagnetic inclination (A), and selected chemical compositions of the Kimama core as a function of depth below the surface (in meters) (B-E). We identify 32 flow groups, which are numbered from top to bottom. The Fe-Ti, HK, and LK flows are highlighted by shaded fields in columns C through E. Refer to Table 1 for flow group details. Figures B and C are annotated with arrows,

displaying our interpretation of fractionation (F) and recharge (R) cycles. Flow groups 1 and 22 show upsection recharge followed by a fractionation event. Flow group 20 shows upsection fractionation followed by recharge. Flow groups 6, 7, 9, 10, 11, 12, 15, 17, 27, and 29 show upsection fractionation. Flow groups 17, 24, 26, and 28 show upsection recharge. Flow groups 2, 3, 4, 5, 8, 13, 14, 18, 19, 21, 23, 25, 30, 31, and 32 show relatively constant upsection composition. See text for full discussion of recharge and fractionation cycles.

Stratigraphically defined flow groups based on lithology, paleosecular magnetic variations, and sediment intercalations, as defined by Potter et al. (see Chapter 2), do not correspond directly to magma fractionation or recharge cycles (Figure 12). Thirty flow groups, beginning with the uppermost flow groups 1, 3, 6, 9, 10, 12, 23, 24, 25, 26, 28, 31, 32, 36, 39, 41,

46, 47, 49, through the lower flow groups 52, 53, 56, 57, 57, 59, 62, 63, 64, 68, and 69, show relatively constant compositional trends with depth, suggesting the emptying of a magma chamber over relatively short time spans, with little or no coeval fractional crystallization. This is consistent with relatively high eruption rates that empty the magma chamber quickly.

Upward fractionation cycles are recognized in twenty flow groups in the Kimama core: flow groups 2, 8, 11, 13, 14, 19, 21,27, 29, 33, 34, 38, 40, 42, 50, 55, 60, 61, 65, and 70. A few groups show brief intervals of upward fractionation superimposed on recharge trends (flow groups 20, and 66). These short upward fractionation "steps" probably represent periods of quiescence during which neither eruptions nor recharge occur.

Other flow groups document progressive recharge of their magma chambers coeval with ongoing eruptions, such that lavas become progressively more primitive upsection, trending to low-K, high MgO compositions. This can be observed in 16 flow groups: 4, 7, 8, 16, 17, 18, 22, 27, 30, 35, 37, 43, 48, 51, 54, 67, and 71. Flow groups 13, 17, 20 and 24 also display brief intervals of upward fractionation superimposed on the dominant recharge trends.

HK flow groups (flow groups 12 and 49) are compositionally constant, but too thin to represent prolonged time intervals. Although both sit atop underlying upward fractionation cycles, the need for a separate parent magma makes connecting these to underlying flow groups problematic.

The occurrence of upward fractionation cycles and recharge cycles is consistent with the proposal of Shervais et al. (2006), which suggests that basalt magmas are processed through a mid-crustal sill complex, in which individual sills commonly form layered mafic intrusions as the cumulate extract of crystal-melt fractionation. These layered mafic intrusions act as reactive filters which process the magma before it erupts. Individual sills may represent a single pulse of primitive magma, which then feeds a single monogenetic volcano on the surface.

Crystallization Models

The low-pressure fractional crystallization of olivine and plagioclase has historically been accepted as the dominant process controlling the composition and evolution of SRP olivine tholeiite basalts (Leeman and Vitaliano, 1976; Leeman, 1982a, 1982b, 1982c; Geist et al., 2002). We used COMAGMAT to model fractional crystallization (FC) processes in the Kimama core. Sample KA1A263 of flow group 1 was modeled as a representative, unaltered SROT basalt (Figure 17).

Fractional crystallization appears to play a moderate role in the generation of observed compositions. Compositional trends in Figure 16 appear to align with expected paths for assimilation-fractional crystallization (AFC) of previously intruded basalt (AFC-gabbro). Our COMAGMAT model used olivine and plagioclase fractionating phases in a 40:60 ratio; changing this ratio or introducing clinopyroxene into the system did not change the results.

We used the four primitive flows, KA1B1467, KA1B3061, KA1B4502, and KA1B4527 and the FC-AFC-FCA-mixing Excel spreadsheet of Erstoy and Helvaci (2010) to generate step-wise and end-member chemical compositions for comparison to the less evolved low-K flow groups, and to the more evolved Fe-Ti and high-K flow groups observed in the Kimama core (Figure 18).

Figure 17: COMAGMAT variation diagrams showing the expected fractionation path of a primitive basalt (black filled circles) as compared to actual chemical values for the flow group (red circles) KA1A263, sampled from 80.2 mbs, has MgO 9.26 wt% and is the most primitive lava in flow group 1 (13.1-118.3 mbs). Arrows show predicted fractional crystallization (FC), fractional crystallization with assimilation of felsic crust (AFC-crust), and fractional crystallization with assimilation of previously intruded gabbro (AFC-gabbro).

Figure 18: Crystallization model of expected differentiation processes for Kimama basalts. Compositions of Fe-Ti, SROT, HK, and LK basalts are plotted with four primitive basalt samples as proxies for parent magma compositions. Fractional crystallization values (FC; green diamond) are shown in percent crystallization, in increments of 5%. Bulk mixing values (grey squares) are shown as percent assimilated in increments of 10%. Assimilation-fractional crystallization (AFC) values are shown in percent crystallization in increments of 5%, with r values presented at the end of each AFC trend. GPI is Graveyard Point Intrusion. Calculations made from the model of Estoy and Helvaci (2010).

Melt Source

Chemical variations in basalts may be attributed to different petrogenetic conditions in the middle crust. Differing degrees of partial melting can cause compositional disparities in magmas of similar source regions, and partial melting of magma source regions that vary significantly in trace elements may also cause variations in basalt chemistry (Leeman, 1982b; Hughes et al., 2002a; Putirka et al., 2009). Subsequent fractional crystallization of primitive magma may also cause compositional changes. Since small amounts of fractional crystallization have little effect on incompatible element compositions, our models of Kimama basalts focus on the effect of variations in the amount of partial melting and of source composition.

We use multi-element (spider) diagrams normalized to primitive mantle concentrations to evaluate fractional crystallization and partial melting processes. Spider diagrams efficiently organize large amounts of data for easier comparison.

We have constructed a series of spider diagram melting models in order to interpret Kimama melt variations (Figure 19). Chemical compositions in Kimama basalts represent the source regions of normal mid-ocean ridge basalts (N-MORB; depleted relative to primitive mantle), primitive mantle (PM), and enriched mid ocean ridge basalts (E-MORB; enriched relative to primitive mantle). Source modes used are spinel and garnet Iherzolite, representing relative shallow (spinel: <20 Kb or 66 km depth) and deep (> 20 kb or 66 km depth) melting regimes. We compared these models to five representative high-MgO basalts from the Kimama core. Partition coefficients are from McKenzie and O'Nions (1991, 1995) and Arth (1976); primitive mantle and N-MORB source compositions are from McKenzie and O'Nions (1995). The E-MORB source composition is from Mertz et al. (2001) using N-MORB source + 8% metasomatic melt (0.3% fractional melt of MORB source; Mertz et al., 2001). The non-modal batch melting equation was used to calculate melt variations, and the primitive mantle- normalized results are shown in Figure 19.

Partial melting of an N-MORB composition source in the spinel lherzolite facies results in depleted LREE concentrations (relative to HREE) in model melts. At extremely low melt fractions (less than 2%), HREE concentrations in the model melts are too high and LREE/HREE ratios too low to match observed primitive basalt compositions (Figure 19). High field strength elements (HFSE) and K₂O also show suppressed values in the model melts. Within the garnet lherzolite facies, partial melting of an N-MORB composition source results in model melts that are

depleted in LREE relative to HREE. An exception to this observation occurs at extremely low melt fractions (< 2%), in which case HREE, K₂O, and HFSE concentrations in the model melts are too low to fit the data.

When primitive mantle source compositions are melted in the spinel lherzolite facies, the model melts generated are too low in LREE and LREE/HREE ratios. Partial melting of a primitive mantle composition in the garnet lherzolite facies (4% modal garnet) produces model melts that are too low in LREE at large melt fractions and too low in HREE at low melt fractions. At all but the lowest melt fractions, the model melts are too low in HFSE.

We observed the best fit to the Kimama primitive basalts when we compared model melts generated from the partial melting of the calculated E-MORB source composition in the spinel lherzolite facies (Figure 19b). Coherence is observed for all elements in the 7% to 15% melting range with the exception of Sr, which is consistently high in all of the model melts. Using the same source composition in a garnet-poor lherzolite mode (4% modal garnet) resulted in good fits for the LREE within the ~10% to 20% melting range, but poor fits for the HREE (Figure 19b).

The relatively high concentrations of Sr, both in source composition and facies models, suggest small amounts of plagioclase fractionation (which would have a minor effect on the other elements modeled), or a mantle source region with lower Sr than our modeled source. Considering that the composition of the E-MORB source was calculated to model oceanic island basalts and not continental tholeiites (Mertz et al., 2001), the fit of the model melts derived from the E-MORB source to our observed data is unexpectedly good for basalt magmas generated in continental lithosphere.

Figure 19: Multielement spider diagrams normalized to primitive mantle (McDonough and Sun, 1! Six source compositions are plotted after varying percentages of melting. A) and B): Enriched mid ocean ridge basalt (E-MORB), C) and D): normal mid ocean ridge basalt (N-MORB), and E) and F): primitive mantle (PM) source compositions of spinel Iherzolite and garnet Iherzolite are used. We compare compositions of four primitive basalt samples, proxies for parent magma to determine the composition and melting conditions of the Kimama source magma. Trace elements are arranged in order of decreasing compatibility from right to left.

Pressures inferred from major phase equilibria are consistent with observed upper mantle pressures; the observed peridotite facies assemblages imply pressures within the spinel lherzolite to garnet-poor facies (1.0-2.4 GPa for the spinel facies and probably < 3.0 GPa for the garnet-poor facies).

Potential Temperatures

Potential temperature of the source mantle represents the hypothetical temperature that the mantle would have if it were to reach Earth's surface uncompressed and unmelted (McKenzie and Bickle, 1988). Increasingly, mantle potential temperature (T_p), is used in the absence of reliable or coherent seismic data as a tool to discern the mantle thermal anomalies that herald the presence of mantle plumes (Putirka, 2005). At Iceland, T_p is estimated to be 1480-1520°C (MacLennan et al., 2001), while at Hawaii, T_p is estimated to be 1558°C (Watson and McKenzie (1991).

We used PETROLOG to model reverse fractionation in four high-MgO basalts, used as proxies for parent magma compositions, in order to calculate their primitive parent magma compositions and olivine equilibration temperatures, which should equal the temperature of the mantle source region. Each sample represents the most primitive basalt erupted in a chemical cycle, based upon high Mg#, high MgO content, low Ni content. All but sample KA1B3061 and 4527 are the oldest flows in their respective flow groups. Input parameters were 15Kbar pressure and Fo89, conditions thought to exist within the mid-crustal sill. Sample compositions and modeled parent magma compositions are shown in Table 5. Although no compositional trends are evident in most major element oxides, MgO composition appears to decrease with depth in reverse fractionation models.

Table 5: Actual and reverse fractionation compositional results for primitive Kimama basalt samples at Fo 89 using PETROLOG. Tp refers to the potential temperature of the mantle.

SAMPLE Tp Olv Kd Lg(fO2) Density Viscosity Starting melt % Olv % SiO2 TiO2 Al2O3Fe2O3 FeO FeO* MnO MgO CaO Na2O K2O P2O5 Cr2O3 melt %

	. ,																			
KA1B1467					Sample	Compos	ition:	46.3	2.04	14.9	13.9		12.5	0.190	9.28	10.3	2.32	0.430	0.390	0.100
1467	1407	0.314	-6.3	2.771	4.13	81.8	18.2	45.1	1.67	12.2	1.59	11.2	12.7	0.155	16.0	8.39	1.90	0.352	0.319	0.083
KA1B3061					Sample	Compos	ition:	44.9	1.81	13.8	14.1		12.7	0.190	11.0	11.0	2.40	0.480	0.350	0.150
3061	1401	0.304	-6.37	2.785	2.35	87.7	12.3	44.2	1.58	12.0	1.67	11.1	12.6	0.166	15.4	9.64	2.10	0.419	0.306	0.13
KA1B4502					Sample	Compos	ition:	46.8	1.50	15.1	12.4		11.2	0.190	10.4	10.9	2.06	0.310	0.240	0.110
4502	1372	0.316	-6.61	2.752	4.61	89.0	11.0	46.0	1.33	13.4	1.37	10.1	11.3	0.169	14.4	9.70	1.83	0.275	0.213	0.099
KA1B4527					Sample	Compos	ition:	48.9	1.22	15.5	11.0		9.9	0.26	9.41	11.5	1.75	0.15	0.19	0.700
4527	1345	0.326	-6.82	2.714	5.00	89.1	10.9	48.4	1.10	13.9	1.19	9.18	10.3	0.234	13.6	10.3	1.57	0.135	0.171	0.063

Melt density is calculated following the model of Lange & Carmichael 1987

Melt viscosity is calculated following the model of Bottinga & Weill 1972

The amount of a mineral phase added to 100% of melt on each step is: 0.01 %

From these calculations, Kimama mantle potential temperatures are estimated to be between 1345° and 1407°C, lower than known plume temperatures, but higher than MORBsource mantle ($T_p = 1250^\circ$ -1300°C). However, this could be explained by the calculation of T_p at 50 km depth, the suggested depth of the mantle beneath the SRP (i.e. mantle potential temperature from a mantle depth). Perhaps more relevant is the position of the Y-SRP hotspot underneath the Heise volcanic field during the eruption of Kimama basalts. At a distance of ~150 km from Kimama, there may have been significant heat loss from the plume by the time mantle-derived Heise melts intruded into the mid-crustal sill beneath the Kimama core hole site.

Using geochemical data with previously-determined core stratigraphy and

paleomagnetic data, we show that Kimama basaltic lavas have varied in composition from low-K to SROT to high-K to Fe-Ti lavas throughout 6.4 Ma of continuous deposition. We interpret the multiple chemical cycles evident in stratigraphic comparisons of Kimama geochemistry to represent the fractionation of individual magmas and the progressive recharge of crustal magma reservoirs, with each cycle representing an eruption from a vent or vent system. Fractionation and assimilation of continental crust does not explain the trends of enrichment in P₂O₅ and Cr and depletion in K₂O and Zr, and in agreement with Shervais et al. (2006) and Jean et al. (2013), our FC-AFC models suggest that fractionation and assimilation of previously intruded gabbro

Parameters to stop calculations at: final olv composition: Fo = 89 mol%
best explain the overall geochemistry of Kimama basalts. The Graveyard Point Intrusion (gabbro), is used as an analog for the composition of the gabbro within the mid crustal sill complex, and demonstrates the mafic compositions necessary to generate observed trends in primitive flows through assimilation (White, 2007). Melting models of primitive Kimama compositions suggest a petrogenetic history of 7-15% melting of an E-MORB spinel Iherzolite source, also in accord with previous models of SRP basaltic magmas.

Contrary to previous models of SRP volcanism, evolved, COM-type lava flows are not confined to the margins of the SRP, nor are they temporally limited to the last 15 k.y. (Kuntz et al., 1986, 2007; Leeman, 1982c; Putirka et al., 2009). The two HK lava flow groups identified in the Kimama core represent unrelated batches of magma that tapped a source similar to that of COM. The incompatible element-enriched Fe-Ti basalt flows may demonstrate longer-duration storage in magma reservoirs, where fractionation was not cut short by the rapid ascent of magma to the surface.

Conclusion

The Kimama core samples lava flows presumably erupted from multiple shields in the region, but the similarity of mantle melting conditions and transport paths has resulted in lavas with generally similar compositions. The compositional variance of the four compositional types observed in the Kimama core must reflect differing processes of petrogenesis from magmas of the same source.

Upward fractionation, or upsection increases in incompatible elements and K₂O and FeO* wt%, suggest fractional crystallization cycles as observed in layered mafic intrusions. Chemical reversals, or upsection increases in compatible elements and MgO wt%, suggest

episodes of recharge of the system by more primitive melt. The chemical stratigraphy of the Kimama core provides evidence of the changing influences of continental lithosphere and mantle hotspot material over relatively short to long periods of time.

Cycles of fractionation and recharge are demonstrated in gradual variations in major and trace element trends. Evidence for upward fractionation is thought to lie in the upsection decrease in MgO and Cr and the increase in Fe₂O₃, K₂O, TiO₂, P₂O₅, Zr, and La (Shervais et al., 2006). Phase assemblage changes may indicate the influx of a new magma, while phase composition changes may result from the ascent of magma through lower temperature conditions. The repetition of cycles upsection that involve the same or similar phase assemblages suggests the system was drawn back to its original chemistry through an influx of primitive magma (Shervais et al., 2006).

Other possible consequences of magma transport through the mid-crustal mafic sill are evident as gradual to abrupt geochemical transitions. Shervais et al. (2006) suggests magma recharge, occurring over a period of time and without sufficient volume to significantly overwhelm residual magma from previous fractionation cycles, to explain progressive upsection variations in lava geochemistry. Conversely, abrupt transitions between cycles suggest a complete turnover of magma or the tapping of a new magma storage chamber (Shervais et al., 2006). Once a conduit has been established, ascending magma bodies are shielded from interaction and assimilation with felsic crust; it is possible for magma batches to travel through thick sections of continental crust without substantial interaction. The lack of geochemical disparity between SROT can be attributed to processes of fractionation and assimilation in the middle crust, processes that homogenize major and trace element geochemistry.

References

- Anders, M.H., Saltzman, J., and Hemming, S.R., 2009, Neogene tephra correlations in eastern Idaho and Wyoming for Yellowstone hotspot-related volcanism and tectonic activity: Geological Society of America Bulletin v. 121, p. 837–856.
- Arth J. G., 1976, Behavior of trace elements during magmatic processes--a summary of theoretical models and their applications: Journal of Research U.S. Geological Survey, v. 4, p. 41-47.
- Bonnichsen, B., Leeman, W. P., Honjo, N., McIntosh, W. C., and Godchaux, M. M., 2008, Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain: Bulletin of Volcanology, v. 70(3), p. 315-342.
- Bonnichsen, B., and Godchaux, M. M., 2002, Late Miocene, Pliocene, and Pleistocene geology of southwestern Idaho with emphasis on basalts in the Bruneau-Jarbidge, Twin Falls, and western Snake River Plain regions: Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin, v. 30, p. 233-312.
- Ersoy, Y., and Helvaci, C., 2010, FC–AFC–FCA and mixing modeler: A Microsoft Excel spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing: Computers & Geosciences, v. 36, p. 383–390.
- Geist, D. J., Sims, E. N., Hughes, S. S., and McCurry, M., 2002, Open-system evolution of a single episode of Snake River Plain magmatism, *in* Link, P. K., and Mink, L. L., eds., Geology, hydrogeology, and environmental remediation, Idaho National Engineering and Environmental Laboratory, eastern Snake River Plain, Idaho: Geologic Society of America Special Paper 353, p. 193-204.
- Greeley, R., 1982, The Snake River Plain, Idaho: Representative of a new category of volcanism: J. Geophys. Res., v. 87(B4), p. 2705–2712.
- Hackett, W., and Smith, R., 1992, Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area, *in* J.R. Wilson, ed., Field Guide to Geologic Excursions in Utah and Adjacent areas of Nevada, Idaho and Wyoming: Utah Geological Survey Miscellaneous Publications v. 92-3, p 1-18.
- Hackett, W.R., Smith, R.P., and Khericha, 2004, Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho, *in* B. Bonnichsen, C.M.
 White, and M. McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin 30, p. 461-482.
- Hanan, B., Vetter, S., and Shervais, J., 1997. Basaltic volcanism in the eastern Snake River Plain:
 Lead, neodymium, strontium isotope constraints from the Idaho INEL WO-2 core site
 basalts: Geological Society of America Abstracts with Programs, v. 29, p. A298.

- Hughes, S., Wetmore, P., Casper, J., 1997, Geochemical interpretation of basalt stratigraphy and Quaternary mafic volcanism, eastern Snake River Plain, Idaho: Geological Society of America Abstracts with Programs, v. 29, p. A-298.
- Hughes, S., Smith, R., Hackett, W., and Anderson, S., 1999, Mafic volcanism and environmental geology of the eastern Snake River Plain, *in* S.S. Hughes and G.D.
 Thackray, eds., Guidebook to the Geology of Eastern Idaho: Idaho Museum of Natural History, p. 143-168.
- Hughes, S.S., McCurry, M., and Geist, D.J., 2002a, Geochemical correlations and implications for the magmatic evolution of basalt flow groups at the Idaho National Engineering and Environmental Laboratory, *in* Link, P.K., and Mink, L.L., eds., Geology, Hydrogeology, and Environmental Remediation: Idaho National Engineering and Environmental Laboratory, Eastern Snake River Plain, Idaho: Geological Society of America Special Paper 353, p. 151-173.
- Hughes, S.S., Wetmore, P.H., and Casper, J.L., 2002b, Evolution of Quaternary Tholeiitic Basalt Eruptive Centers on the Eastern Snake River Plain, Idaho, *in* Bonnichsen, B., White, C.M., and McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin 30, p. 363-385.
- Irvine, T.N., 1970, Crystallization sequences in the Muskox intrusion and other layered intrusions, *in* Symposium on the Bushveld Igneous complex and other layered intrusions: Geological Society of South Africa Special Publication 1, p. 441–476.
- Jackson, E.D., 1970, The cyclic unit in layered intrusions—A comparison of repetitive stratigraphy in the ultramafic parts of the Stillwater, Muskox, Great Dyke, and Bushveld complexes, *in* Symposium on the Bushveld Igneous complex and other layered intrusions: Geological Society of South Africa Special Publication 1, p. 391-424.
- Jackson, E.D., 1971, The origin of ultramafic rocks by cumulus processes: Fortschritte Der Mineralogie, v. 48, p. 128–174.
- Jean, M.M., Shervais, J.W., Champion, D.E., and Vetter, S.K., 2013, Geochemical and paleomagnetic variations in basalts from the Wendell Regional Aquifer Systems Analysis (RASA) drill core: Evidence for magma recharge and assimilation–fractional crystallization from the central Snake River Plain, Idaho: Geosphere, v. 9, no. 5, p. 1319–1335.
- Jenner, G.A., Longerich, H.P., Jackson, S.E., and Fryer, B.J., 1990, ICP–MS—A powerful tool for high- precision trace-element analysis in Earth Science: Evidence from analysis of selected U.S.G.S. reference samples: Chemical Geology, v. 83, p. 133–148.
- Kuntz, M.A., 1978, Geology of the Arco-Big Southern Butte area, eastern Snake
 River Plain, and potential volcanic hazards to the radioactive waste management complex,
 and other waste storage and reactor facilities at the Idaho National Engineering
 Laboratory, Idaho with a section on Statistical treatment of the age of lava flows by John

O. Kork: U.S. Geological Survey Open-File Report 78-691, 70 p.

- Kuntz, M., Champion, D., Spiker, E., Lefebvre, R., Covington, H., and McBroome, L., 1982. The Great Rift and the evolution of the Craters of the Moon lava field, Idaho, *in* Bill Bonnichsen and R.M. Breckenridge, eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 423-438.
- Kuntz, M., Champion, D., Spiker, E., and Lefebvre, R., 1986. Contrasting magma types and steady-state, volume-predictable volcanism along the Great Rift, Idaho: Geological Society of America Bulletin, v. 97, p. 579-594.
- Kuntz, M., Champion, D., Lefebvre, and Covington, H., 1988. Geologic map of the Craters of the Moon, Kings Bowl, Wapi lava fields and the Great Rift volcanic rift zones, south-central Idaho: U.S. Geological Survey Miscellaneous Investigations Series Map I-1632, scale 1:100,000.
- Kuntz, M., Covington, H., and Schorr, L., 1992, An overview of basaltic volcanism of the eastern Snake River Plain, Idaho, *in* P.K. Link, M.A. Kuntz, and L.P. Platt, eds., Regional Geology of Eastern Idaho and Western Wyoming: Geological Society of America Memoir 179, p. 227-267.
- Kuntz, M.A., Skipp, B., Champion, D.E., Gans, P.B., Van Sistine, D.P., and Snyders, S.R., 2007,
 Geologic map of the Craters of the Moon 30' x 60' quadrangle, Idaho: U.S. Geological
 Survey Scientific Investigations Map 2969, 64-p. pamphlet, 1 plate, scale 1:100,000.
- Leeman, W.P., 1982a, Development of the Snake River Plain-Yellowstone Plateau Province, Idaho and Wyoming: An overview and petrologic model, *in* Bonnichsen, B., and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 155-177.
- Leeman, W.P., 1982b, Olivine tholeiitic basalts of the Snake River Plain, Idaho, *in* Bonnichsen, B., and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 181-191.
- Leeman, W.P, 1982c, Evolved and hybrid lavas from the Snake River Plain, Idaho, *in* Bill Bonnichsen and R.M. Breckenridge, eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 181-191.
- Leeman, W.P., and Vitaliano, C., 1976, Petrology of the McKinney basalt, Snake River Plain, Idaho: Geological Society of America Bulletin, v. 87, p. 1777-1792.
- McBirney, A.R., and Noyes, R.M., 1979, Crystallization and layering of the Skaergaard Intrusion: Journal of Petrology, v. 20, p. 487–554.
- McCurry, M., and Rodgers, D.W., 2009, Mass transfer along the Yellowstone hotspot track I: Petrologic constraints on the volume of mantle-derived magma: Journal of Volcanology and Geothermal Research, v. 188, p. 86-98.

- McDonough, W. F., and Sun, S. S., 1995, The composition of the Earth, Chemical Geology, v. 120(3), p. 223-253.
- McKenzie, D., and Bickle, M. J., 1988, The volume and composition of melt generated by extension of the lithosphere: Journal of petrology, v. 29(3), p. 625-679.
- McKenzie, D.A.N., and O'Nions, R. K., 1991, Partial melt distributions from inversion of rare earth element concentrations: Journal of Petrology, v. 32(5), p. 1021-1091.
- McKenzie, D.A.N., and O'Nions, R.K., 1995, The source regions of ocean island basalts: Journal of Petrology, v. 36(1), p. 133-159.
- Menzies, M., Leeman, W., and Hawkesworth, C., 1984, Geochemical and isotopic evidence for the origin of continental flood basalts with particular reference to the Snake River Plain Idaho, U.S.A.: Philosophical Transactions of the Royal Society of London, v. 310, p. 643-660.
- Mertz, D. F., Weinrich, A. J., Sharp, W. D., and Renne, P. R., 2001, Alkaline intrusions in a neartrench setting, Franciscan complex, California: constraints from geochemistry, petrology, and 40Ar/39Ar chronology: *American Journal of Science*, v. 301(10), p. 877-911.
- Miller, M., and Hughes, S., 2009, Mixing primitive and evolved olivine tholeiite magmas in the Eastern Snake River Plain, Idaho: Journal of Volcanology and Geothermal Research, v. 188, p. 153-161.
- Moye, F. J., Hackett, W. R., Blakley, J. D., and Snider, L. G., 1988, Regional geologic setting and volcanic stratigraphy of the Challis volcanic field, central Idaho: Guidebook to the geology of central and southern Idaho: Idaho Geological Survey Bulletin, v. 27, p. 87-97.
- Neal, C.R., 2001, The interior of the Moon: The presence of garnet in the primitive, deep lunar mantle: Journal of Geophysical Research, v. 106, p. 27865–27885.
- Pallister, J.S., and Hopson, C.A., 1981, Samail ophiolite plutonic suite; field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, *in* Coleman, R.G., and Hopson, C.A., eds., Oman ophiolite: Journal of Geophysical Research, p. 2593–2644.
- Pierce, K.L., and Morgan, L.A., 1992, The Track of the Yellowstone Hotspot: Volcanism, faulting, and uplift, *in* Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional geology of eastern Idaho and western Wyoming: GSA Memoir 179, p. 1-53.
- Putirka, K. D., 2005, Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes: Geochemistry, Geophysics, Geosystems, v. 6(5).

Putirka, K.D., Kuntz, M.A., Unruh, D.M., and Vaid, N., 2009, Magma Evolution and Ascent at the

Craters of the Moon and Neighboring Volcanic Fields, Southern Idaho, USA: Implications for the Evolution of polygenetic and monogenetic volcanic fields: Journal of Petrology, v. 50, no. 9, p. 1639–1665.

- Reid, M. R., 1995, Processes of mantle enrichment and magmatic differentiation in the eastern Snake River Plain: Th isotope evidence: Earth and Planetary Science Letters, v. 131(3), p. 239-254.
- Self, S., Keszthelyi, L., and Thordarson, T., 1998, The Importance of Pahoehoe: Annual Review of Earth and Planetary Sciences, v. 26, p. 81-110.
- Sigloch, K., 2011, Mantle provinces under North America from multi-frequency P-wave tomography: Geochemistry Geophysics Geosystems, v. 12, p. 1–27.
- Shervais, J. W., Kauffman, J. D., Gillerman, V. S., Othberg, K. L., Vetter, S. K., Hobson, V. R., and Hanan, B. B., 2005, Basaltic volcanism of the central and western Snake River Plain: A guide to field relations between Twin Falls and Mountain Home, Idaho: Field Guides, v. 6, p. 27-52.
- Shervais, J.W., Vetter, S.K., and Hanan, B.B., 2006, Layered mafic sill complex beneath the eastern Snake River Plain: Evidence From cyclic geochemical variations in basalt: Geology, v. 34, p. 365- 368.
- Shervais, J. W., and Hanan, B. B., 2008, Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot: Tectonics, v. 27, p. 5
- Shervais, J.W., Evans, J.P., Christiansen, E.H., Schmitt, D.R., Kessler, J.A., Potter, K.E., Jean, M.M., Sant, C.J., and Freeman, T.G., 2011, Project Hotspot: The Snake River Scientific Drilling Project. *Geothermal Resources Council Transactions*, v. 35, p. 995-1003.
- Shervais, J. W., Nielson, D. L., Evans, J. P., Lachmar, T., Christiansen, E. H., Morgan, L., and Freeman, T. G., 2012, Hotspot: The Snake River Geothermal Drilling Project—Initial report: Geothermal Resources Council Transactions, v. 36, p. 767-772.
- Shervais, John W., Douglas R. Schmitt, Dennis Nielson, James P. Evans, Eric H. Christiansen, Lisa Morgan, and James A. Kessler, et al., 2013, First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.: Scientific Drilling, v. 15, p. 36-45.
- Smith, R. B., Jordan, M., Steinberger, B., Puskas, C., Farrell, J., Waite, G.P., Husen, S., Chang, W.
 L., and O'Connell, R., 2009, Geodynamics of the Yellowstone Hotspot and mantle plume:
 Seismic and GPS imaging, kinematics, and mantle flow: Journal of Volcanolology and
 Geothermal Research, v. 188, p. 26–56.
- Wager, L.R., and Brown, G.M., 1967, Layered igneous rocks: San Francisco, California, W.H. Freeman and Company, 588 p.

- Watson, S., and McKenzie, D., 1991, Melt generation by plumes: A study of Hawaiian volcanism: J. Petrol., v. 32, p. 501–537.
- White, C.M., 2007, The Graveyard Point Intrusion: An example of extreme differentiation of Snake River Plain Basalt in a shallow crustal pluton: Journal of Petrology, v. 48, p. 303– 325.

CHAPTER 4

EVIDENCE FOR AN AXIAL VOLCANIC LOW IN THE KIMAMA CORE: HEISE FIELD VOLCANOGENIC ZIRCONS AND THE LATE MIOCENE PALEO-WOOD RIVER IN THE CENTRAL SNAKE RIVER PLAIN

Abstract

The 1912 m Kimama deep drill hole and core is located on the axial volcanic high of the central Snake River Plain, NE of Twin Falls, Idaho and provides a depositional record of basaltic lava flows, loess, and fluvial sand on the central Snake River Plain from the late Miocene through Pleistocene epochs. Based on Ar/Ar and paleomagnetic dating records, we infer that these sands were deposited within a relatively linear basalt accumulation rate of ~335 m/m.y. (~1,100 ft/my), with a projected bottom hole age of 6.4 Ma.

Detrital zircons were recovered from two upward fining sandstone interbeds at 1842-1844 m (6044-6050 ft) and 1707-1748 m (5602-5737 ft) depth and analyzed for U-Pb and ɛHf at the University of Arizona LaserChron laboratory. At the base of the core, both interbeds contain mainly Miocene detrital zircons of the Yellowstone-Snake River Plain magmatic system (5 to 10 Ma). Higher sands contain successively older, pre-Neogene zircon grains including Challis magmatic event (45 to 50 Ma), Idaho batholith (90 to 100 Ma), Paleozoic magmatic grains recycled from Devonian Milligen Formation and Pennsylvanian-Permian Sun Valley Group, and, variable Grenvillean and Meso- and Paleoproterozoic grains or and Archean grains.

Detrital zircon ages (barcodes) within the five samples indicate two incursions of the Wood River system at depths of 1842-1844 m (6044-6050 ft) and 1707-1748 m (5602-5737 ft).

Each fluvial succession systematically changes upward from dominantly Neogene zircons to mainly Paleogene zircons, but inconstant Archean vs. Proterozoic populations in the upper succession suggest that the paleo-Wood River tributary tapped the structurally uplifted lower and middle plates of the Pioneer core complex. This observation, coupled with the 5.7 Ma estimated depositional age of the sand, constrains the unroofing of the Pioneer core complex and the exhumation of the Wildhorse complex to between 5.6 and 5.8 Ma. The top of the upper succession records the only population of Paleozoic grains present within the Kimama core, indicating a source west of the Pioneer thrust fault. We suggest that after 5.7 Ma, the paleo-Wood River system shifted westward, and that after 5.6 Ma, basaltic volcanism along the Axial Volcanic Zone diverted the paleo-Wood River system southwestward through the Hagerman area between 3.8 and 3 Ma.

In addition to older recycled grains, a large fraction of the recovered grains represent Neogene primary zircons formed during eruptions of rhyolite ash from the Y-SRP magmatic system. The fresh, rod- and blade-shapes of grains, with minimal rounding, suggest a primary fallout origin of these volcanic zircon grains. These volcanogenic detrital zircons were likely ejected during caldera-forming eruptions in the central SRP, transported by aeolian or fluvial processes, and deposited within the fluvial deposits shortly after their eruption. This implies that the depositional age of the sediment intervals corresponds to the age of youngest zircons in each unit (5.8 Ma and 6.2 Ma).

Hf isotopic compositions vary from εHf of -7.3 to -3.9, and the Hf variation is highly correlated with age: volcanogenic zircons ages of 7.1, 6.7, 6.2, and 5.8 Ma have on average corresponding εHf of -7.3, -6.4, -4.9. -3.9. This progressive decrease in εHf in the younger zircons indicates an increase in mantle-derived Hf through time, with a corresponding decrease in crustal Hf. Furthermore, U-Pb ages of younger volcanogenic zircons in each interbed are in

105

accord with the depositional age inferred from the calculated accumulation rate, consistent with deposition less than 100,000 years after their eruption.

Introduction

The motion of the North American Plate over the fixed Snake River Plain (SRP) mantle hotspot is thought to have resulted in a northeastward-propagating track of silicic volcanic fields and the formation of the Yellowstone-Snake River Plain province (Pierce and Morgan, 1992). Explosive rhyolitic volcanism began at ~16 Ma on the Oregon-Nevada border and progressed across the Owyhee Plateau and the eastern SRP to a present location beneath the Yellowstone Plateau (Pierce and Morgan, 1992; Smith and Braile, 1994; Camp, 1995; Camp and Ross, 2004; Schmandt et al., 2012). The chemical and isotopic characteristics of eastern SRP basalts are consistent with a mantle plume source with varying degrees of interaction with continental lithosphere, and with residence within a mid-crustal sill complex prior to eruption (Shervais et al., 2006; Hanan et al., 2008; Jean et al., 2014).

The Kimama core hole was drilled on the axis of the YP-SRP hotspot track, primarily for the purpose of recovering the thickest and most continuous record of basalt volcanism (Figure 20). The 1912 m of core consists of basaltic lava flows intercalated with minor loess deposits. Potter et al. (2013) have identified 30 separate magmatic episodes, or basalt flow groups, based upon geochemical and paleomagnetic characteristics. Two packages of upward-fining fluvial sandstone were identified at 1707 m and 1842 m measured depth (Figure 21). Five detrital zircon samples from these two fluvial interbeds were analyzed for U-Pb ages and ɛHf.

Figure 20: Digital elevation map (DEM) of the Snake River Plain and Yellowstone regions showing the location of Kimama, as well as topographic and geologic features. The long dashed lines delimit the location of the Yellowstone crescent of high terrain, while the short dashed lines indicate the position of drainage divides on the margin of the Snake River Plain (SRP). The white outlined polygons are silicic volcanic centers and ages (Pierce and Morgan, 1992; Bonnichsen et al., 2008). Solid white lines show the locations of selected normal faults. The locations of the Kimama and INEL-1 core holes are shown by white circles. Figure 2 is a more detailed map of the region within the black frame, with P indicating the Pioneer Mountains and B indicating the Boulder Mountains. Rivers north of the SRP drain to southeast, following the NW-SE vergence of range-front faults. Modified from Vogl et al. (2014).

Figure 21: Lithologic and paleomagnetic stratigraphy of the Kimama core (see Chapter 1). Seventy-one flow groups were identified based upon lithologic observations, chemical variation, and magnetic polarity. Paleomagnetic polarity and associated ages are displayed to the left of the lithologic log. Five Chrons and nine subchrons are identified in the Kimama core (Champion and Duncan, 2012).

Regional Geology

The SRP and the Basin and Range region to the north have experienced an extended history of magmatism and regional tectonics beginning from the late Cretaceous through the

early Cenozoic (Armstrong, 1982; Burchfiel et al., 1992; DeCelles, 1994, 2004). Proterozoic and Mesozoic strata in the Snake River Plain region were influenced by east-vergent Antler, Sevier, and Laramide contraction (Burchfiel and Davis, 1975; DeCelles, 2004) followed by Cenozoic extensional collapse and magmatism (Armstrong, 1982; Dickinson, 2002). The central Idaho and Idaho-Wyoming thrust belts bound the SRP to the north and south and are overprinted by Basin and Range normal faults. Also to the north of the SRP is the 110-70 Ma Atlanta lobe of the Idaho batholith, which intrudes the Idaho-Wyoming thrust belt at its eastern extent (Armstrong et al., 1977; Criss and Fleck, 1987; Foster et al., 2007; Johnson et al., 1988). Volcanism in the Challis volcanic field of north central Idaho began at 51 Ma and covered much of the state of Idaho with voluminous eruptive products over the next ~5-10 Ma (Moye et al., 1988; Janecke and Snee, 1993; Gaschnig et al., 2010).

The SRP is bounded to the north and south by the northern Basin and Range province. Dominantly east-west extension in the northern Basin and Range since ~15-10 Ma (Colgan and Henry, 2007; Egger et al., 2003, 2010; Fosdick and Colgan, 2008; Wells et al., 2000) has lead to the development of detachment fault systems, the exhumation of metamorphic core complexes, and the formation of extensional basins (Coney, 1980; Janecke, 1992; Foster and Fanning, 1997; Foster et al., 2007, 2010). Basin and Range extension is thought to have occurred south of the SRP both before and during plume-related magmatism (Colgan and Henry, 2007; Egger et al., 2010; Konstantinou et al., 2012).

A ~750 m to 2 km layer of Quaternary basalt obscures overlapping caldera complexes and associated deposits along the length and width of the eastern SRP (Doherty et al., 1979; Kuntz et al., 1992; Whitehead, 1992; Pierce and Morgan, 1992). Isostatic gravity and aeromagnetic and Bouger anomalies show approximate locations of caldera complexes in the general absence of exposed outflow deposits (Pierce and Morgan, 1992). This geological history resulted in the exposure and exhumation of a wide range of sedimentary sources, which can be deciphered with detrital zircon analyses (Link et al., 2005; Beranek et al., 2006).

Detrital Zircon Provenance

Detrital zircon studies demonstrate Neogene drainage reversal in the Snake River watershed, with streams that flowed away from the tumescent Yellowstone highland during active volcanism, and reversed flow direction into the subsiding SRP following the migration of silicic volcanism to the northeast (Beranek et al., 2006). Using the current topographically high position of Yellowstone National Park as an analog, Pierce and Morgan (1992) inferred that previous positions of hotspot volcanism along the eastern SRP acted as continental divides with about 1 km relief (Pierce et al., 2002; Pierce and Morgan, 2009), directing drainage away from the highland in all directions (cf. Crough, 1983; Hill et al., 1992). As volcanism moved eastward, cooling and subsidence of the plateau allowed streams that had previously drained from the highland to be captured and redirected into the Snake River watershed (Link et al., 1999, 2002). Radial paleocurrent patterns in the sedimentary record are possible evidence of this migrating topographic bulge (Morgan and McIntosh, 2005; Beranek et al., 2006).

Previous workers have used the detrital zircon age populations from modern stream deposits and sedimentary rocks within the SRP region to piece together the geochronology of the Northern Rockies (Geslin et al., 1999, 2002; Link et al., 2002, 2005; Beranek et al., 2006). Detrital zircon geochronology in the SRP region (Table 6) provides evidence for migrating uplift and erosion from the Miocene to Holocene, processes associated with the passage of the North American plate over the SRP-YP hotspot since 17 Ma (Beranek et al., 2006).

Detrital zircon population	Minimum age (Ma)	Maximum age (Ma)	n Source regions	
	-		Spake Piver Plain and Vellowstone system, parth control poyada to parthwest Wyoming	
Yellowstone Hotspot system 0 17 Shake Kiver Plan and Fellowstone System, horti-tellowstone System, hort-tellowstone System, hort-		(Pierce and Morgan, 1992)		
Early to middle Eocene Challis Volcanic Group	42	52	South-central Idaho, north of Snake River Plain	
Cretaceous Atlanta lobe of the Idaho batholith and equivalents	70	110	South-central Idaho, north of Snake River Plain; Owyhee Mtns., south of Snake River Plain	
Jurassic intrusive rocks of northern Nevada	150	170	Point source in Contact pluton, Salmon Falls Ck.	
Early to middle Paleozoic	330	450	Central ID thrust belt (Antler allocthon), Idaho-Wyoming thrust belt	
Neoproterozoic Bannock Volcanic Member	680	720	Pocatello, Idaho area (Fanning and Link, 2004)	
Pioneer Mtns. metamorphic core complex	580	800	Pioneer Mtns. metamorphic core complex (Beranek et al., 2004) recycled through Cretaceous granites, unmapped Neoproterozoic rocks	
Recycled Grenville grains	950	1300	Central Idaho and Idaho-Wyoming thrust belts; Neoproterozoic to Paleozoic miogeocline (Gerhrels, 2000; Link et al., 2005)	
Syn-Belt Supergroup volcanics and A- Type Wyoming magmatism	1400	1470	Missoula and Lemhi groups (Evans et al., 2000; Link and Fanning, 2003); Wyoming anorogenic granites (Frost et al., 1993)	
Non-North American grains recycled through Belt Supergroup	1500	1610	South Australia, Gawler Craton (Ross et al., 1992; Link and Fanning, 2003)	
Recycled Yavapai-Mazatzal Province and southwest Montana Proterozic grains	1600	1800	Recycled from Cretaceous sandstones, Mesoproterozoic Missoula and Lemhi Groups, Cordilleran miogeocline, Pennsylvanian-Permian Sun Valley Group and Albion Mtns. Core complex (Link et al., 2005)	
Recycled Peace River Arch grains	1800	2000	Recycled through Ordovician sandstones and Mississippian Copper Basin Group (Smith and Gehrels, 1994; Link et al., 1999)	
Archean basement	2400	2400 2800 Exposed Archean Wyoming Province; also recycled through Cordilleran miogeocline (Gehrels, 2000; Link et al., 2005)		

Table 6: Regional Snake River Plain Detrital Zircon Populations. Modified after Beranek et al. (2006).

Methods

The sedimentary petrology classification of Ingersoll (1990) and Ingersoll et al. (1993) forms the basis for provenance determination of detrital zircons in sedimentary systems. Detrital zircon age-groupings are generally classified as either *defining, major* or *minor* (Link et al., 2005) based upon the statistical model of Vermeesch (2004). Defining populations of detrital zircons comprise over 50% of zircons in a sample, while populations that range from 10% to 50% are classified as major, and those below 10% are classified as minor (Link et al., 2005). Previous studies, i.e. Link et al. (2005), Beranek et al. (2006), have established the consistency of detrital zircon age spectra of first and second-order drainage systems with exposed bedrock at the headwaters and along the drainage. First-order sedimentary systems include talus piles to small drainages, while second-order systems include streams and rivers that drain mountain ranges, fold and thrust belts, or magmatic arcs.

Fluvial sediment packages were identified within Kimama core in two depth intervals: an upper sequence from 1707 m to 1755 m measured depth and a lower sequence from 1841 m to 1900 m measured depth. Approximately 1 kilogram of the cleanest medium or finer-grained rock was collected from these two upward-fining sedimentary cycles. Samples were taken at 1842 m and 1844 m in the lower sequence and at 1708 m, 1733 m, and 1749 m in the upper sequence. Specimens from each depth were made into thin sections for textural and compositional evaluation. Separation methods, with the Wilfley table, heavy liquids, and Frantz magnetic separation, were conducted at Boise State University. Zircons were retained in the final heavy mineral fraction and split so that ~500-1000 grains were incorporated into a 1" epoxy mount along with fragments of zircon standards. Grain mounts were polished to a depth of ~20 microns and polished, imaged, and cleaned prior to analysis.

Approximately 100 detrital zircon grains were analyzed from each of five sediment samples using laser ablation-multicollector-inductively coupled mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center. The ablation of zircon grain mounts was conducted using a New Wave UP193HE Excimer laser operating at a wavelength of 193 nm, using a spot diameter of 30 microns, and with ablation pits typically ~15 microns in depth. Helium gas carried ablated material into the Nu HR ICPMS plasma source, the flight tube of which has a width sufficient to simultaneously measure U, Th and Pb. Faraday detectors with 3x10¹¹ ohm resistors were used to measure isotopes of ²³⁸U, ²³²Th, ²⁰⁸Pb-²⁰⁶Pb, and discrete dynode ion counters for ²⁰⁴Pb and ²⁰²Hg while in static mode. Ion yields during measurements were ~0.8 mv per ppm. Isotopic analyses consisted of one 15-second integration on peaks with the laser off in order to produce backgrounds, followed by 15 one-second integrations with the laser firing. A 30 second delay insured the purge of previous sample material, readying the laser for the next analysis. The interference of 204 Hg with 204 Pb was corrected by measurement of 202 Hg during laser ablation and subsequent subtraction of 202 Hg in accordance to the natural 202 Hg/ 204 Hg ratio of 4.35. Most analyses demonstrated the insignificance of 202 Hg corrections due to their generally low backgrounds (<150 cps at mass 204).

The correction of common Pb was carried out using Hg-corrected ²⁰⁴Pb values and the assumption that initial compositions from Stacey and Kramers (1975) were applicable. Variation in Pb isotopic compositions in modern crustal rocks were accounted for in assigning uncertainties to assumed compositions of initial ²⁰⁶Pb/²⁰⁴Pb (\pm 1.5) and ²⁰⁷Pb/²⁰⁴Pb (\pm 0.3). Initial ²⁰⁶Pb/²⁰⁴Pb uncertainties were used in determining total age uncertainties.

Isotope fractionation of Pb/U and Pb during analysis was corrected by the in-run analysis of Sri Lanka zircon standard fragments. With a known age of 563.5 \pm 3.2 Ma (2 σ error), Sri Lanka zircons were analyzed every fifth measurement. The inter-element fractionation of Pb/U was recognized in <5% of analyses, and apparent fractionation of Pb isotopes was recognized in <0.2% of analyses. Calibration correction uncertainty was generally 1-2% (2 σ error) for ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁶Pb/²³⁸U ages. Lastly, concentration of U and Th were calibrated using the ~518 ppm U and 68 ppm Th concentrations of the Sri Lanka zircon standard.

Resulting data are plotted in U-Pb concordia diagrams and age-probability diagrams following the routines in Isoplot software (Ludwig, 2008). Age-probability diagrams use a combination of age and measurement error uncertainty as the Gaussian distribution for each zircon grain. Distributions from all grains are summed into a single composite sample distribution. Probability plots of composite ages are made such that each curve is normalized according to the number of constituent analyses; each curve contains the same area so that probability curves may be more accurately compared. Hf Methods

Hf isotopes were measured on the youngest, Late Miocene zircon crystals at the Arizona LaserChron Center at the University of Arizona by Nu Plasma HR-LA-ICPMS. The mass spectrometer has 12 fixed Faraday detectors that are equipped with $3x10^{11} \Omega$ resisters to measure masses ¹⁷¹Yb through ¹⁸⁰Hf for improved detection. The Lu-Hf decay system is used to understand the growth and evolution of the crust through time. Magmatic rocks, whether juvenile (mantle-derived), recycled (remelted crust), or mixed or derived from multiple sources, can be genetically identified using the behavior of the whole-rock Lu-Hf isotopic system.

Crustal-evolution models have made extensive use of the Sm-Nd isotopic system, especially in combination with age data from the U-Pb dating of zircons. Zircon is stable up to high metamorphic grade following crystallization. Non-metamict zircons resist isotopic diffusion and exchange (e.g. Cherniak et al., 1997) and contain very low concentrations of Lu/Hf. We use ¹⁷⁶Hf/¹⁷⁷Hf in SRP zircons to model the composition, age, and origin of the parental magma at the time of crystallization. Values of ¹⁷⁶Hf/¹⁷⁷Hf in zircon demonstrate the origin of magma; high values indicate juvenile melts, while low values indicate recycled crust (Amelin et al., 2000; Griffin et al., 2000; Condie et al., 2005; Harrison et al., 2005; O'Reilly et al., 2008). Epsilon units express the ratio ¹⁷⁶Hf/¹⁷⁷Hf in terms that relate the analyzed rock sample to bulk silicate earth (CHUR), where

$$\epsilon^{0}_{Hf} = \{[(^{176}Hf/^{177}Hf)^{0}_{sample}/(^{176}Hf/^{177}Hf)^{0}_{CHUR}]-1\} \times 10^{4}.$$

We use ϵ_{Hf} to determine the influence of mantle material in the generation of SRP magmas. Values for ϵ^0_{Hf} in the present-day range from +15 to -70.

Results

U-Pb Dates of Detrital Zircons

Here we present LA-MC-ICPMS U-Pb ages and sedimentary petrology for each sample. Complete provenance details on specific detrital zircon populations are given in Table 6. Detailed age data results and thin section photographs are shown in Table 7 and Figure 22, respectively.

KZ6050

Sample KZ6050, recovered from 1844 m depth, is a medium-grained, clay-cemented grey sand with > 3 mm angular lithic fragments. In thin section, the sample shows fine-grained clay cement (20%) possibly derived from devitrified glass; subhedral angular quartz (40%); subhedral subrounded, resorbed plagioclase (30%); and subhedral to euhedral zircon, clinopyroxene, angular glass fragments, microcrystalline quartz, and lithic fragments of gneiss, chert, and volcanics (10%) (Figure 22a). Sample KZ6050 is classified as an immature feldspathic volcanic lithic arenite. Dominant detrital zircon populations from sample KZ6050 (n=65) are combined in Figure 23a. The populations include: (1) Miocene (10-6 Ma; 23 grains; 35%); (2) Eocene (51-38 Ma; 18 grains; 28%); (3) Cretaceous (95-90 Ma; 5 grains; 8%); (4) Mesoproterozoic (1563-1034 Ma; 6 grains; 9%); (5) early to middle Paleoproterozoic (1936-1638 Ma; 9 grains; 14%); (6) and Archean (3229-2730 Ma; 4 grains; 6%).

Table 7

Sample KZ6050 Sample KZ6044			Sample KZ5737			Sample KZ5684			Sample KZ5602					
1846 m depth			1842 m depth			1749 m	1749 m depth		1732 m depth			1704 m depth		
Grain	Best age	+	Grain	Best age	+	Grain	Best age	+	Grain	Best age	+	Grain	Best age	+
Spot	(Ma)	<u>т</u>	Spot	(Ma)		Spot	(Ma)		Spot	(Ma)	<u> </u>	Spot	(Ma)	I
17	6.1	2.6	12	6.1	2.9	62	3.5	3.4	98	5.3	0.2	85	89.5	1.7
49	6.2	2.7	55	6.1	1.6	58	4.6	4.2	36	5.6	2.3	95	93.4	1.5
13	6.3	3.0	43	6.3	2.6	13	4.6	2.3	45	6.2	2.3	89	95.7	1.6
9	6.3	2.6	64	6.4	1.7	49	4.8	2.7	93	22.1	0.9	70	95.8	1.4
63	6.4	1.5	30	6.7	1.0	23	5.0	4.7	86	26.8	3.9	53	97.8	2.3
1	6.4	2.0	31	8.7	2.4	71	5.0	2.3	58	33.1	4.7	39	99.9	9.3
54	6.6	3.0	15	11.6	4.0	78	5.0	3.9	56	34.8	2.9	13	100.8	4.2
8	6.9	1.2	1	42.0	4.7	46	5.0	3.4	66	46.6	2.0	72	100.9	2.8
55	6.9	3.1	84	44.0	2.6	97	5.1	4.8	47	46.8	1.6	80	165.7	2.4
44	7.0	3.0	39	44.1	4.3	75	5.2	4.1	91	48.4	2.1	3	388.7	7.5
51	7.1	0.4	52	45.3	1.5	52	5.2	5.2	48	48.6	3.3	38	409.1	3.3
28	7.3	3.4	86	45.3	2.3	95	5.5	1.5	18	48.6	3.7	97	416.6	7.2
42	7.3	1.3	65	45.3	3.2	77	5.6	4.3	61	49.0	2.9	44	417.3	6.5
29	7.4	0.3	20	45.5	1.8	3	5.6	2.7	77	49.0	1.6	49	418.9	6.1
56	7.5	0.6	27	46.0	2.1	40	5.8	1.8	83	49.3	3.9	2	419.1	2.8
22	8.0	2.8	14	46.1	1.2	20	5.9	2.9	26	49.4	2.3	30	430.5	7.3
31	8.1	2.4	37	46.1	1.4	55	6.0	5.9	52	51.2	5.6	65	437.3	16.7
50	8.2	3.7	38	46.2	3.2	54	6.0	4.3	54	67.5	8.3	75	439.2	5.9
61	8.3	2.9	5	46.3	3.2	33	6.1	4.7	25	92.6	4.7	98	500.8	6.1
16	8.9	3.0	24	46.3	2.0	4	6.1	2.6	76	94.6	1.7	100	609.1	10.1
34	9.0	4.0	70	46.4	1.9	8	6.1	4.4	91	95.8	2.1	6	992.3	56.4
5	9.1	4.4	6	46.5	1.8	74	6.2	2.5	88	95.9	2.1	23	1006.9	48.2
65	10.2	3.2	21	46.6	3.0	11	6.2	3.3	59	96.4	2.0	43	1010.1	18.9
67	38.3	1.0	13	46.7	3.5	80	6.3	2.4	51	98.4	1.6	73	1019.5	84.6
14	41.4	2.1	80	46.8	2.5	50	6.3	0.9	44	99.4	1.7	25	1027.5	119.9
15	46.9	5.6	73	46.8	2.3	94	6.4	0.4	27	99.5	2.1	19	1050.1	98.0
23	47.7	1.6	71	46.9	2.1	19	6.4	5.3	96	99.9	3.6	83	1055.4	49.2
7	47.8	1.6	78	47.0	2.7	66	6.4	0.8	84	101.4	5.5	24	1064.9	49.5
26	48.0	1.3	89	47.0	1.4	88	6.5	2.0	24	102.7	2.8	40	1066.7	32.6
64	48.1	1.3	44	47.0	1.7	43	6.5	1.9	90	103.4	2.1	31	1068.8	43.1
19	48.4	1.6	/	47.0	4.4	92	6.6	1.4	46	109.2	2.7	92	1070.4	11.5
6	48.4	2.7	81	47.1	2.7	6	6.6	1.0	99	134.6	10.2	33	1070.5	66.6
25	48.8	1.8	63	47.1	2.4	1	6.7	1.8	62	155.8	2.8	62	1075.0	23.9
60	49.2	1.6	25	47.2	1.2	86	6.7	3.6	100	168.1	3.8	63	1095.7	40.7
33	49.3	1.4	67	47.5	2.9	89	6.7	3.7	95	249.1	4.4	34	1102.3	195.5
41	49.4	2.7	49	47.7	1.9	30	6.7	4.3	53	352.3	6.3	50	1109.0	64.6
40	49.5	1.2	41	47.8	3.8	79	6.9	1./	1	429.6	6.0	51	1152.8	182.8
55	49.6	1.4	46	47.8	2.7	21	5.9	1.4	/5	445.6	15.2	22	1186.9	81.0
58 19	49.8	1.9	3	48.0	1./	00 21	7.0	2.2	33	405.4	9.3	10	1187.9	5.8
10	49.0	1.5	52	40.1	1.0	25	7.2	1.Z	09	499.5	10.4	00	1201.9	14.0
38	50.9 80 F	3.8 1 1	17	48.2	1.0	25	7.3	5.1	9	570.0	10.4	0 1 E	1209.0	0.3 10.0
21	89.5	1.1	17	48.2	1.0	01	7.4	0.4	39 10	1024 7	8.Z	15	1222.5	19.0
47	91.9	1.0	47	40.2	5.1 2.0	42	7.5	4.5	19	1024.7	11 1	01	1240.5	11 7
40	94.5	5.9 1.0	10	40.2	2.0	42	7.5	2.0	1/	1026.5	11.1	04 40	1341.5	11.2
52 77	94.8 05 0	1.U	08	40.4 10 F	5.7 1 0	99	7.7 7 0	5.4 0 E	4 20	1007 -	45.5 70 0	48 E0	1408.U	22.0
2/	95.0 1024 2	10.0	91	40.5 10 C	2.0	30	7.6 7.0	0.5	58 71	1000.0	70.5	59 70	1/70.0	33.U
45	1121.0	12.0	92	48.0 10 C	5.U 1 7	38 57	٥./ م ح	5.1 6 1	71	1000 0	62.0	10	1/0.0	102.0
12	1101.0	16.6	48	40.0	1.7	5/	7.8	0.4	/4 or	1090.0	247	14	1400.2	22.0
24	1121.9	70'0 70'0	00	48.8	1.Z	41	8.U	0.ð	85 20	1110.2	54./ 103.4	09	1602.0	ð.U 144
10	14/0.4	7,1,17	78	40.9	1.2	44	0.1	4./		1110.5	102.4	99	T207 2	14.4

Table 7 Detrital zircon U-Pb age data for the Kimama core hole

Sample KZ6050		Sample KZ6044			Sample KZ5737			Sample KZ5684			Sample KZ5602			
1846 m depth			1842 m depth		1749 m depth			1732 m depth			1704 m depth			
Grain	Best age		Grain	Best age		Grain	Best age		Grain	Best age		Grain	Best age	
Spot	(Ma)	Ĩ	Spot	(Ma)	Ĩ	Spot	(Ma)	Ŧ	Spot	(Ma)	Ŧ	Spot	(Ma)	Ĩ
4	1498.1	6.1	77	49.0	3.4	47	8.4	4.4	20	1118.2	33.1	4	1506.1	24.0
32	1562.5	15.6	59	49.2	0.9	16	8.5	6.8	92	1119.3	172.9	88	1508.8	145.3
57	1638.4	11.7	74	49.6	2.3	91	9.1	7.5	65	1131.5	7.5	94	1557.6	35.2
62	1708.4	2.3	95	49.8	2.0	100	9.1	7.3	11	1141.5	52.2	57	1604.7	6.0
20	1747.5	16.2	9	50.0	5.6	67	9.2	3.7	32	1149.6	60.8	79	1626.6	30.5
53	1764.1	11.3	35	50.9	3.4	64	10.2	2.4	67	1253.8	44.6	1	1640.0	30.4
43	1783.5	5.6	2	51.0	3.9	10	10.4	5.6	2	1281.3	71.5	64	1706.3	5.0
37	1852.2	5.0	75	51.0	3.7	28	10.5	9.9	15	1304.3	30.2	56	1719.3	3.0
30	1863.8	6.0	94	51.1	2.5	45	11.3	9.3	49	1322.6	32.9	82	1724.4	10.0
48	1863.9	8.8	11	51.4	17.8	22	45.7	1.2	55	1336.0	4.9	81	1740.8	35.4
2	1935.7	50.7	62	52.3	3.3	84	97.6	3.6	79	1351.1	14.3	46	1741.8	6.2
59	2730.3	4.9	88	52.6	13.4	29	97.7	7.1	68	1387.2	19.9	37	1749.4	6.9
3	2936.3	1.6	51	84.8	6.4	15	124.8	114.5	42	1398.7	28.0	6/	1755.6	7.8
39	3226.7	12.0	90	8/./	3.9	3/	1160.3	90.1	40	1409.8	17.1	20	1756.5	24.7
	3229.1	13.9	82	89.7	2.4	10	2403.3	10.6	89	1440.4	15.5	30	1/95.3	13.1
			54	89.7	2.2	18	2490.9	7.4	57	1449.0	94.7	32	1822.0	33.2
			23	90.0	2.8				41	1409.8	12.2	5	1849.2	38.2
			65 97	92.0	1.5				10	1400.1	12.5	12	1050.0	15.7
			0/	92.1	4.0				10	1400.0	11.7	70	1005 1	26.0
			02	92.0	1.0				12	1557.5	12.0	20	1000.2	50.0
			25	92.7	2.0				212	1622.0	9.0 7.0	33	2051 0	3.2 27.1
			53	95.1	2.0				16	1644.8	7.5	74	2001.0	19.0
			56	95.1	2.0				13	1670 /	16.8	96	2553.7	10.4
			28	95.6	۶.1 ۸ ۹				21	1684 3	12.6	54	2646.7	12.4
			20	95.6	3.0				87	1716 7	4.8	90	2672.1	12.0
			57	96.0	5.2				82	1752.1	3.1	11	2770.3	11.1
			19	96.7	6.6				29	1789.3	22.3	18	2798.7	22.4
			72	96.8	1.9				80	1815.9	50.1	91	2943.2	7.8
			76	97.3	7.6				63	1848.6	11.5	68	2982.8	1.6
			33	98.3	8.8				72	1850.1	10.8	55	3184.4	5.1
			42	100.0	5.6				78	1856.7	7.3	93	3252.4	11.1
			16	432.8	7.3				23	1866.3	7.9			
			45	488.4	6.7				8	1886.5	19.8			
			34	1044.3	37.4				6	1891.5	6.1			
			69	1066.6	71.9				34	2545.0	1.9			
			40	1132.8	7.7				30	2727.2	13.9			
			4	1177.1	48.8				37	2743.2	10.8			
			60	1268.1	89.7				14	2771.0	28.0			
			79	1383.1	18.2									
			10	1431.6	17.0									
			8	1635.6	10.3									
			29	1700.1	16.9									
			26	1706.5	10.8									
			50	2815.3	3.1									

FIGURE 22: Thin sections photomicrographs. (a) KZ5602 (1707 m depth). Under polarized light and at 10x magnification, sub-rounded to sub-angular grains of quartz are visible in a clay-dominated matrix. Rounded grains of calcite and partially resorbed plagioclase are also present. This rock is classified as a submature feldspathic lithic arenite. (b) KZ5687 (1733 m depth). In polarized light (10x magnification), angular to sub-angular grains of blue-grey quartz are visible in a glassy-clay matrix. Calcite, plagioclase, and clinopyroxene (yellow) are present in

lesser amounts. This rock is classified as a submature feldspathic volcanic lithic arenite. (c) Thin section of sampleKZ5737 (1749 mdepth). Very fine-grained clay is visible under 44x magnification and polarized light. Although rare, most mineral grains are subhedral to anhedral, and there is some evidence of clay pseudomorphs after plagioclase due to secondary alteration. Additionally, isotropic glass in the sample appears to be altering to clay. The image is representative of the sample, with clay-dominated matrix and a scarcity of mineral grains and lithic fragments; imaged is grey, sub-angular subhedral quartz with ragged margins and black glass fragments. The rock sample is classified as a mudstone. (d) KZ6044 (1842 m depth). Under polarized light and 10x magnification, angular fragments of isotropic glass, sub-angular to angular grey-white quartz, and sub-angular lithic fragments of metamorphosed rocks are visible. Minor amounts of subhedral resorbed plagioclase, and mm to sub-mm lithics and glass fragments are also present. The sample is dominated by fine-grained, oxidized clay matrix. The rock sample is classified as a volcanic lithic wacke. (e) KZ6050 (1844 m depth). In polarized light and under 10x magnification, the sample is dominated by angular to sub-angular grey to white quartz and black angular glass fragments. Minor grains of angular brown clinopyroxene, sub-rounded and partially resorbed plagioclase, rounded calcite, and a fine-grained clay matrix are also observed in the sample. This sample is classified as an immature feldspathic volcanic lithic arenite.

Figure 23: Paleomagnetic and lithologic stratigraphy of the Kimama core showing locations of sampled intervals and detrital zircon age populations. Histograms, overlain by probability-density curves (figures 23a-23e), show detrital zircon age spectra and probable source provenance (after Link et al., 2005 and Beranek et al., 2006). Plots are shown for 0 to 150 Ma and 0 to 3500 Ma grains. Two upward-fining interbeds are recognized from 1749 to 1707 m depth and from 1844 to 1842 m depth. Each interbed changes upward from mainly Heise field Miocene zircons to Paleozoic and Proterozoic zircons derived the paleo- Wood River drainage. Figure 23f: Histogram with superimposed relative probability curve of modern Wood River stream sediment detrital zircon age data (From Beranek et al., 2006).

KZ6044

Sample KZ6044, recovered from 1842 m depth, is fine to medium grained tan oxidized sand with clay cement and angular < 5mm lithic fragments. In thin section, the sample is cemented with fine-grained clay with iron-oxide staining (70%); and contains rounded to angular quartz (10%); subhedral, resorbed plagioclase (15%); and mm to sub-mm lithics and glass fragments (5%) (Figure 22b). Sample KZ6044 is classified as a volcanic lithic wacke. Grain-age populations from sample KZ6044 (n=95) include: (1) Miocene (11.6-6.1 Ma; 7 grains; 7%); (2) Eocene (53-42 Ma; 55 grains; 58%); (3) Cretaceous (100-85 Ma; 20 grains; 21%); (4) late Silurian to early Ordovician (488-433 Ma; 2 grains; 2%); and (5) early Mesoproterozoic to early Paleoproterozoic (1707-1044 Ma; 10 grains; 11%) (Figure 23b).

KZ5737

Sample KZ5737 was recovered from 1749 m depth, and is a very fine-grained, brick-red laminated oxidized siltstone with clay cement. In thin section, the sample is very fine-grained clay (95%), with minor subhedral angular quartz (5%) (Figure 22c). This particular sample is classified as a mudstone. Detrital zircon age populations (n=66) from sample KZ5737 are combined in Figure 23c. The populations include: (1) Miocene (11-4 Ma; 59 grains; 89%); Cretaceous (125-98 Ma; 3 grains; 5%); and Mesoproterozoic to Paleoproterozoic (2490-1160; 3 grains; 5%).

KZ5687

Sample KZ5687, recovered from a depth of 1733 m, is coarse to medium-grained sand, showing normal gradation of grains and lithic fragments and cemented by clay. In thin section, the sample is made up of fine-grain and clay cement (20%); subhedral to angular quartz (40%); subrounded to angular subhedral plagioclase (35%); subhedral to euhedral zircon, plagioclase, and lithics (5%)(Figure 22d). KZ5687 is classified as a submature feldspathic volcanic lithic arenite. The following detrital zircon populations were observed in sample KZ5687 (n = 89; Figure 23d: (1) Miocene (22-5 Ma; 4 grains, 4%); (2) Eocene (51-33 Ma; 11 grains; 12%); Cretaceous (135-93 Ma; 14 grains; 16%); Devonian-Cambrian (570-352 Ma; 6 grains; 7%); Neoproterozoic to early Mesoproterozoic (1150-683 Ma; 14 grains; 16%); middle Mesoproterozoic to late Mesoproterozoic (1550.9-1253.8 Ma; 16 grains; 18%); Paleoproterozoic (1892-1620 Ma; 14 grains; 16%); and Archean (2771-2545; 4 grains; 4%).

KZ5602

Sample KZ5602, recovered from a depth of 1707 m, is a medium-grained lithic sandstone with clay cement. Thin section observations show it to be a submature feldspathic lithic arenite, with fine-grained clay cement (20%); subhedral angular quartz (40%); resorbed, sub-rounded plagioclase (30%); and subhedral to euhedral zircon, clinopyroxene and lithics (10%)(Figure 22e). Dominant detrital zircon populations (n=82) from KZ5602 are combined in Figure 23e. The populations do not include any Paleogene or Neogene grains and are (1) Cretaceous (104-88 Ma; 8 grains; 10%); (2) Devonian-Ordovician (445-380 Ma; 9 grains; 10%); (3) Neoproterozoic to early Mesoproterozoic (1202-600 Ma; 22 grains; 25%); middle to late Mesoproterozoic (1605-1210 Ma; 13 grains; 15%); Paleoproterozoic (2554-1627 Ma; 20 grains; 23%); and Archean (3252-2647 Ma; 8 grains; 9%).

Neogene Grains

In the two lowermost fluvial successions, a large percentage of the grains are bladed, euhedral, and angular zircons with Neogene U-Pb ages (Figure 24). In order to trace the origin of these magmatic grains, additional U-Pb ages were collected and Lu-Hf isotope ratios were measured in samples KZ5737 (1749 m depth) and KZ6050 (1844 m depth) using Nu Plasma HR MC-ICPMS at the Arizona LaserChron Center. The instrument is optimized for analysis of U-Th-Pb and Hf isotopes, and contains 12 faraday collectors are arranged to measure ²³⁸U, ²³²Th, and 180-171 (for Hf, Lu, and Yb). Epsilon Hf and high precision U-Pb results are shown in Table 8 (U-Pb and Hf isotopic data).

Figure 24: Cathodoluminescence (CL) image of detrital zircons mounted in grain mounts. (a) KZ5737 (1749 m depth). Grains are euhedral, angular, and bladed, suggesting a more recent volcanic origin. Internal concentric zonation is also present. Spot locations for laser ablation (LA) Nu plasma highresolution multi-collector inductively-coupled plasma mass spectrometry (HR-MC-ICPMS) are visible as circular craters in the core and margin regions of the grains. (b) KZ6050 (1850 m depth). Grains are euhedral, angular, and bladed, suggesting a more recent volcanic origin. Internal concentric zonation is also present. Spot locations for LA-HR-MC-ICPMS are visible as circular craters in the core and margin regions of the grains.

KZ6050

Sample KZ6050 (Figure 24a) higher resolution U-Pb measurements of grains in sample KZ6050 yielded ages that range from 6.2 ± 0.1 Ma to 7.4 ± 0.3 Ma (Table 8). The ϵ Hf in sample KZ6050 ranges from -5.1 in a 6.9 ± 0.2 Ma grain, to -9.7 in a 6.7 ± 0.2 Ma grain. The oldest and youngest grains have ϵ Hf of -6.4 and -7.6, respectively. Most grains have ϵ Hf of -7.6. Ages for the Neogene grains recovered from 1749 m and 1844 m depth fall into four main statistical populations: 5.84 ± 0.13 Ma, 6.2 ± 0.08 Ma, 6.86 ± 0.09 Ma, and 7.25 ± 0.14 Ma (Figure 25).

Table 8: U-Pb and Hf isotopic data for sample KZ5737, 1749 m depth, and for KZ6050, 1844 m depth.

	Grain	Best age	±	E-Hf	
Sample	Spot	(Ma)	(Ma)	(T)	
KZ5737	71	5.7	0.1	-3.3	
KZ5737	95	5.8	0.4		
KZ5737	46	5.8	0.1	-5.8	
KZ5737	8	5.9	0.5		
KZ5737	103	5.9	0.5		
KZ5737	97	5.9	0.1	-2.7	
KZ5737	11	5.9	0.3		
KZ5737	102	6.0	0.2	-7.1	
KZ5737	52	6.1	0.2	-2.0	
KZ5737	77	6.1	0.1	-2.8	
KZ5737	33	6.3	0.1	-2.5	
KZ5737	3	6.3	0.1	-4.0	
KZ5737	54	6.3	0.2	-4.0	
KZ5737	62	6.5	0.1	-5.6	
KZ5737	74	6.8	0.1	-6.3	
KZ5737	60	6.8	0.2	-5.9	
KZ5737	4	6.8	0.1	-5.8	
KZ5737	79	6.9	0.3		
KZ5737	80	7.3	0.8		
KZ5737	78	7.6	0.2	-4.3	
KZ6050	101	6.2	0.1	-7.6	
KZ6050	93	6.2	0.0	-9.3	
KZ6050	10	6.7	0.2	-9.7	
KZ6050	103	6.9	0.2	-5.1	
KZ6050	13	7.0	0.1	-7.0	
KZ6050	80	7.0	0.1	-9.0	
KZ6050	104	7.1	0.2	-6.7	
KZ6050	41	7.1	0.1	-9.1	
KZ6050	65	7.2	0.1	-6.1	
KZ6050	102	7.2	0.4	-6.6	
KZ6050	105	7.3	0.1	-8.3	
KZ6050	58	7.4	0.3	-6.4	

KZ5737

Sample KZ5737 (Figure 24b) the second measurement of ages from sample KZ5737

yielded ages that range from 5.7 \pm 0.1 Ma to 7.6 \pm 0.2 Ma (Table 8). Epsilon Hf ranges from -3.3

in the youngest (5.7 Ma) sample to -7.0 in a sample with a measured age of 6.0 ± 0.1 Ma. The oldest measured grain (7.6 \pm 0.2 Ma) has a corresponding ϵ Hf of -4.3.

Discussion

Robust detrital zircon provenance studies require a point source—an origin that is characterized by a specific age and geologic framework. Provenance signature changes with distance from the headwaters of second-order systems as major tributaries join the main stem (Link et al., 2005). Large river and marine systems are classified as third-order systems and have uniform provenance; they are the only reliable predictors of plate tectonic setting (Ingersoll et al., 1993; Critelli et al., 1997).

The modeled response of continental lithosphere to plume impact is large-scale uplift, a process complicated by the multilayered (elastic-brittle-ductile) nature of the lithosphere (Burov and Guillou-Frottier, 2005; Burov et al., 2007). Central uplift over the plume head may be accompanied by the formation of an annulus of lower elevation (e.g. Burov and Guillou-Frottier, 2005; Burov et al., 2007), that may accommodate future basalt eruptions (Shervais et al., 2006).

FIGURE 25: Bar graphs of U-Pb ages for samples KZ5737 and KZ6050 (1749 and 1850 m depth, respectively). Each plot shows averages obtained from a combination of KZ5737 and KZ6050 volcanic zircon ages. Ages were obtained using Nu plasma HR-MC-ICPMS during a secondary analysis of Kimama Neogene grains at the Arizona LaserChron laboratory. The four plots generate age means of 5.84 ± 0.13 Ma, 6.215 ± 0.78 Ma, 6.858 ± 0.091 Ma, and 7.133 ± 0.087 Ma.

Basin and Range extensional basins to the north and south of the SRP accommodate multiple river drainages, many with unique geology (Ore, 1999). Geological characteristics of several drainage systems in the SRP region generate distinct detrital zircon age population spectra, or barcodes, that are traceable in fluvial sands (Link et al., 2005). In particular, populations of detrital zircon grains record ages that are characteristic of their drainage basin source. Within fluvial systems, the presence of minor defining populations of similarly-aged detrital zircons (5 to 10% of total population) is a consistent indicator of provenance. In situations where populations of detrital zircons are less than 60 zircon grains per sample, provenance may be indicated by the absence of a specific detrital zircon population (Dickinson and Gehrels, 2008; Hodges et al., 2009).

Provenance of Zircon Grains

The lower parts of each sandstone bed sequence contain mainly Miocene detrital zircons of the Yellowstone-Snake River Plain (YSRP) magmatic system (10 to 5 Ma), and Archean to Paleoproterozoic 2.6 and 2.1 Ga zircon grains. We interpret the Archean and Paleoproterozoic grains to be inherited based upon observations of complex zonation and the lack of a likely geological point source in the region. Sands at 1732 m contain zircon groupings representing the Challis magmatic event (50 to 45 Ma), Idaho batholith (100 to 90 Ma), recycled Paleozoic magmatic grains, plus recycled Grenvillean and Meso- and Paleoproterozoic grains. Sands at 1707 m depth lack Yellowstone and Challis-age grains but contain very similar populations of Cretaceous through Meso- and Paleoproterozoic grains to sample KZ5684.

We interpret the absence of detrital zircon barcodes from regions south of the SRP and the predominance of Atlanta and Challis-aged grains to signify a drainage source north of the SRP. Based upon characteristic detrital zircon barcodes (Figure 23), we interpret the interbeds to represent two incursions of the Wood River system (Link et al., 2005; Beranek et al., 2006). Each fluvial succession systematically changes upward from dominantly hotspot zircons to mainly detrital grains. Our findings agree with Hodges et al. (2009), who showed that ca. 695 Ma detrital zircon grains derived from the Pioneer core complex were deposited in the central Snake River plain by the earliest Pliocene, indicating eastern SRP subsidence by that time. Variable Archean and Proterozoic populations in the upper interbed suggest a paleo-Wood River tributary that tapped the structurally uplifted Pioneer core complex. U-Th/He apatite ages from the Pioneer Core Complex show evidence for rapid exhumation since 33 Ma, with a rate of ~0.3 km/my. Thermochronology also documents an extensional exhumation event at ~10 Ma (Vogl et al., 2014). The 5.8 Ma estimated age of the upper interbed suggests unroofing of the Pioneer core and breaching of the Wildhorse detachment occurred by that time. The absence of Challis grains in the uppermost sample requires either localized, largescale erosion or a drainage source west of the Pioneer core complex, where Challis volcanic units have been largely eroded (Vogl et al., 2014).

Rivers and Core Complex

The Wood River System is classified as a second-order system (Link et al., 2005) and includes the Big Wood River, the Little Wood River, Trail Creek, and the headwaters of the Salmon River (Beranek et al., 2006). The Big Wood River drains from the headwaters of the Salmon River along the western slope of the Pioneer Mountains core complex, where it incises the Wood River and Milligen Formations along the Wood River thrust (Hall et al., 1978; Dover, 1983; Link et al., 2005). The barcode-defining detrital zircon grains in the Wood River System are Challis (~52-42 Ma peak), followed by grains from the Cretaceous Atlanta Lobe of the Idaho batholith (~100-70 Ma peak), and Miocene grains (~8-12) (Link et al., 2005; Beranek et al., 2006). Small populations of Paleozoic and Proterozoic populations also are present within Big Wood River detrital zircon grain samples, including Ordovician to Devonian (ca. 450-350 Ma), early Neoproterozoic to middle Mesoproterozoic (1300-900 Ma), late Mesoproterozoic (2000-1800 Ma), late to middle Paleoproterozoic (2000-1600 Ma), early Paleoproterozoic (2000-1800 Ma), and early Paleoproterozoic to Archean (2200-2900 Ma). Miocene grains are absent from the Big Wood River as sampled upstream from the ~5 Ma Magic Volcanic complex (Figure 23f) (Honjo et al., 1986; Worl et al., 1991; Kuntz et al., 1994; Link et al., 2005).

The Little Wood River, with headwaters in the Pioneer Mountains, accumulates zircons from the Antler allochthon, the Wood River basin, and the Pioneer core complex (Worl et al., 1991; Kuntz et al., 1994; Link et al., 1994). Collectively, the Wood River System drains the Cretaceous Atlanta lobe of the Idaho Batholith, the early to middle Eocene Challis Volcanic Group (Johnson et al., 1988; Worl and Johnson, 1995), Paleozoic rocks of the Cordilleran eastern and western assemblages of the central Idaho thrust belt (Dover, 1980; Turner and Otto, 1988; Rodgers et al., 1995), and westerly-sourced siliciclastic rocks of the Antler foreland flysch in the Mississippian Copper Basin Group (mainly Ordovician quartzite source) and the Pennsylvanian-Permian Wood River Group (Laurentian source) (Mahoney et al., 1991; Link and Rodgers, 1995; Link et al., 1996; Geslin, 1998). The system also drains the Pioneer Mountains metamorphic core complex, an early to middle Cenozoic extensional province that exposes Paleoproterozoic to Neoproterozoic crystalline basement (Wust and Link, 1988; Burton and Link, 1995; Beranek et al., 2006).

The Little Wood River contains Miocene detrital zircon grains from ~8-12 Ma Idavada and ~6-10 Ma Yellowstone Hotspot volcanism, Detrital zircons are recycled through Paleozoic rocks of the Cordilleran passive margin, as indicated by the large presence of Proterozoic (1300-950 Ma; 1800-1600 Ma; 2000-1800 Ma) populations (Beranek et al., 2006).

The Pioneer Mountains core complex is located ~15 km to the north of the Kimama corehole in the Lost River Range of central Idaho, at the northwest boundary of the Miocene Basin and Range province, the eastern boundary of the Atlanta lobe of the Idaho batholith, and at the headwaters of the Wood River system. The Pioneer Mountains show evidence of Mesozoic synkinematic plutonism and Paleogene extensional movement along the Wildhorse

detachment system, which includes the Wildhorse thrust and a portion of the Pioneer thrust system (Dover, 1983; Wust and Link, 1988). Cooling ages from ⁴⁰Ar/³⁹Ar, U-Pb, and U-Th/He data show evidence for very slow cooling since 33 Ma, with an average rate of <5°C/Ma. U-Th/He apatite ages document an extensional exhumation event at ~10 Ma and suggest an exhumation rate of ~0.3 km/Ma (Vogl et al., 2014). It appears that volcanism, extension, and exhumation were widespread during the period over which the Pioneer core complex was exhumed (11-8 Ma) (Clemens, 2003; Bonnichsen et al., 2008; Vogl et al., 2014). Prior to core complex exhumation, the Challis magmatic event (51-43 Ma) and the intrusion(s) of the Atlanta lobe (83-67 Ma), both in response to widespread extension, modified the western border of the Pioneer core complex (Gaschnig et al., 2010).

The Wildhorse detachment system separates the metamorphosed Precambrian lower plate (core) from the unmetamorphosed Paleozoic rocks of the upper plate (Pavlis and O'Neill, 1985, 1987; Wust and Link, 1988). The core contains Ordovician to Archean orthogneisses and paragneisses that were intruded by granitic melts at 50-70 Ma (Vogl et al., 2012). Within the upper plate of the Pioneer core complex, the Pioneer thrust plate contains of mostly unmetamorphosed Paleozoic units that have been proposed to be equivalent to "western or oceanic assemblage" Antler belt sequences exposed in Nevada (Wust and Link, 1988).

Volcanogenic Zircon Grains

A large number of the detrital zircon grains represent Neogene primary magmatic zircons formed during eruptions of rhyolite ash from the YSRP magmatic system (Figure 26). Four U-Pb age populations of volcanic zircons are observed: 7.1 Ma, 6.7 Ma, 6.2 Ma, and 5.8 Ma (Figure 25). The fresh, rod- and blade grains, with minimal rounding, suggest a primary fallout origin. Rounded Heise volcanogenic grains would imply fluvial transport over an approximate distance of 150 km to the Kimama site (Figure 26). The ages of volcanic zircon grains in the Kimama core are coincident with eruptive events from the Heise volcanic center (Table 8) (Anders et al., 2009).

Table 9: U-Pb ages of Heise volcanic field eruptive						
units and volcanic detrital zircons of the Kimama						
core. Eruptive unit ages from Anders et al. (2009).						
Source Age (Ma)						
Kimama Core	5.84 ± 0.13					
Tuff of Wolverine Creek	5.84 ± 0.03					
Kimama Core	6.22 ± 0.078					
Walcott Tuff	6.23 ± 0.01					
Kimama Core	6.86 ± 0.091					
Tuff of Edie School	6.61 ± 0.01					
Kimama Core 7.25 ± 0.014						
VPT-1 tephra of Grand Valley	7.27 ± 0.03					

We interpret that volcanogenic detrital zircons to have been ejected during caldera eruptions in the Heise volcanic field, transported westward by aeolian or fluvial processes, and deposited at the base of fluvial sands in the Kimama drill hole. Thin sections (Figure 22) obtained from fluvial sands demonstrate immature textures and extensive devitrification of glass, indicative of minimal transport distance and rapid burial. The youngest zircon grains match the projected age of the core derived from accumulation rate alone, so that depositional lag time must have been substantially less than 100 k.y. after eruption. Therefore, the age of the interbeds approximates the age of youngest zircons in each unit, 5.8 ± 0.1 Ma at 1749 m depth and 6.2 ± 0.1 Ma at 1844 m depth (Potter et al., 2013).

Figure 26: Location map of Snake River Plain-Yellowstone eruptive centers. Caldera and volcanic center locations are modified from Christiansen (1982) and Perkins et al. (1995). The location of the Kimama site is marked by the red circle. Lanphere et al. (2002) obtained the three youngest 40Ar/39Ar ages from corrections based on Renne et al. (1998). Unit ages older than 2.09 Ma and younger than 10.35 Ma are measured 40Ar/39Ar ages from the Lamont-Doherty Earth Observatory argon laboratory (modified from Anders et al., 2009).

The Hf isotopic compositions of hotspot zircons vary from ɛHf of -7.3 to -3.9, and the variation is highly correlated with age: volcanogenic zircons with ages of 7.1, 6.7, 6.2, and 5.8 Ma have corresponding Hf of -7.3, -6.4, -4.9. -3.9 (Table 8, Figure 27). This progressive increase in ɛHf in the younger zircons indicates an increase in mantle-derived Hf through time, evidence for greater mantle input in younger volcanics. Although the continental lithosphere thickens to the east, the continued action of the SRP-Yellowstone plume is thought to have structurally eroded and chemically modified the overlying lithosphere (e.g. Shervais and Hanan, 2008). We
propose that increasingly mantle-like ɛHf signatures in young zircons reveal the continued action of a thermally and chemically buoyant mantle plume that has etched a channel into cratonic lithosphere (i.e. Shervais and Hanan, 2008).

Figure 27: Plot of average values ϵ Hf plotted against average values U-Pb age (Ma). A negative correlation between ϵ Hf and U-Pb age is especially apparent in the lower plot. A progressive increase in ϵ Hf in the younger zircons indicates an increase in mantle-derived Hf through time, signifying that Kimama basalts have become more mantle-like in more recent SRP mafic volcanism.

The top of the upper succession contains the only significant population of Paleozoic

grains within the Kimama core and lacks Eocene Challis grains. We suggest that after 5.8 Ma,

the source of the paleo-Wood River system shifted westward to west of the Pioneer thrust fault.

After 5.6 Ma, basaltic volcanism along the Axial Volcanic Zone (AVZ) diverted the paleo-Wood River system southward to the reach the Hagerman area between 3.8 and 3 Ma.

Yellowstone-SRP volcanism from 10 Ma to 5 Ma in the central SRP is broadly coeval with exhumation and breaching of the Pioneer core complex and development of the Wood River System. U-Pb age data of detrital zircons in the Kimama core record volcanic events as young as 5.8 Ma superimposed upon an active extensional system. Although the 10.44-6.62 Ma Picabo volcanic center (Drew et al., 2013) was active immediately prior to the deposition of Kimama basalts, volcanic zircons from the Heise volcanic center, further east of Picabo, are the only identified Neogene population. We propose that the conspicuous absence of volcanic zircon grains derived from the Picabo volcanic complex is explained by rapid erosion and deposition of volcanic zircons derived from eruptions of the Heise volcanic center, evidence for which are angular and bladed grains, and their rapid, <100 k.y. burial by basalt flows. If mechanisms of ash eruption and transport were similar throughout the 10 Ma history of silicic volcanism, it is presumed that ash derived from Picabo volcanic eruptions had been largely eroded and deposited prior to eruptions of Heise ignimbrites.

Conclusion

Our new data on fluvial-derived volcanic and detrital zircons from the Kimama drill hole from Project Hotspot suggest: 1) Neogene volcanic activity in the Heise volcanic center began as early as 7.3 Ma, 2) Yellowstone-Snake River Plain volcanism coincided with the unroofing of the Pioneer core complex as early as 10 Ma, and 3) the Wood River System originally flowed south and east into the central SRP before being smothered and diverted southwestward by recurrent volcanism from the AVZ. The lower fluvial sands in the Kimama core record fallout deposits of

Heise ash. An upward increase in Proterozoic grains signals two incursions of the paleo Wood

River System. The ash was rapidly buried by fluvial deposits of distal sands derived from the

unroofing of the Pioneer and Smoky mountains to the north.

References

- Amelin, Y., Lee, D.C., and Halliday, A.N., 2000, Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains, Geochimica et Cosmochimica Acta, v. 64, p. 4205-4225.
- Anders, M.H., Saltzman, J., and Hemming, S.R., 2009, Neogene tephra correlations in eastern Idaho and Wyoming Yellowstone for hotspot-related volcanism and tectonic activity: Geological Society of America Bulletin v. 121, p. 837–856.
- Armstrong, R.L., 1982, Cordilleran metamorphic core complexes—From Arizona to southern Canada: Annual Review of Earth and Planetary Sciences, v. 10, p. 129-154.
- Armstrong, R.L., Taubeneck, W.H., and Hales, P.O., 1977, Rb-Sr and K-Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho: Geological Society of America Bulletin, v. 88, p. 397–411.
- Beranek, L.P., Link, P. K., and Fanning, C.M., 2006, Miocene to Holocene landscape evolution of the western Snake River Plain region, Idaho: Using the SHRIMP detrital zircon provenance record to track eastward migration of the Yellowstone hotspot: GSA Bulletin, v. 118, p. 1027-1050.
- Bonnichsen, B., Leeman, W. P., Honjo, N., McIntosh, W. C., and Godchaux, M. M., 2008,
 Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and
 evolution of the central Snake River Plain: Bulletin of Volcanology, v. 70(3), p. 315-342.
- Burchfiel, B.C., and Davis, G.A., 1975, Nature and controls of Cordilleran orogenesis, western United States: Extensions on an earlier synthesis: American Journal of Science, v. 272, p. 97–118.
- Burchfiel, B.C., Cowan, D. S., and Davis, G. A., 1992, Tectonic overview of the Cordilleran orogen in the western United States, *in* Burchfiel, B.C., Lipman, P. W., and Zoback, M. L., eds., The Geology of North America, v. G3, The Cordilleran Orogen: Conterminous United States: Geological Society of America, p. 407-479.

- Burov, E., and Guillou-Frottier, L., 2005, The plume head–continental lithosphere interaction using a tectonically realistic formulation for the lithosphere: Geophysical Journal International, v. 161(2), p. 469-490.
- Burov, E., Guillou-Frottier, L., d'Acremont, E., Le Pourhiet, L., and Cloetingh, S. A. P. L., 2007, Plume head–lithosphere interactions near intra-continental plate boundaries: Tectonophysics, v. 434(1), p. 15-38.
- Burton, B.R., and Link, P.K., 1995, Structural setting of ore deposits in the Lake Creek mineralized area, Blaine County, south-central Idaho, *in* Worl, R.G., Link, P.K., Winkler, G.R., and Johnson, K.M., eds., Geology and mineral resources of the Hailey 1° x 2° Quadrangle and the western part of the Idaho Falls 1° x 2° Quadrangle, Idaho: U.S. Geological Survey Bulletin 2064-A-R, p. F1–F15.
- Camp, V.E., 1995, Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region: Geology, v. 23, p. 435–438.
- Camp, V.E., and Ross, M.E., 2004, Mantle dynamics and genesis of mafic magmatism in the Intermontane Pacific Northwest: Journal of Geophysical Research, v. 109, p. 1-14.
- Champion, D., and Duncan, R. A., 2012, Paleomagnetic and 40Ar/39Ar studies on tholeiite basalt samples from "HOTSPOT" corehole taken at Kimama, Idaho, central Snake River Plain: Eos Transactions, AGU, v. 13B-2842.
- Cherniak, D.J., Hanchar, J.M., and Watson, E.B., 1997, Diffusion of tetravalent cations in zircon: Contributions to Mineralogy and Petrology, v. 127, p. 383-390.
- Christiansen, R.L., 1982, Late Cenozoic volcanism of the Island Park area, eastern Idaho, *in* Bonnichsen, B., and Breckenridge, R.M., eds., Cenozoic geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 345–368.
- Clemens, J. D., 2003, S-type granitic magmas—petrogenetic issues, models and evidence: Earth-Science Reviews, v. 61(1), p. 1-18.
- Colgan, J.P., and Henry, C.D., 2007, Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada: International Geology Review v. 51, p. 9-11.
- Condie, K.C., Beyer, E., Belousova, E., Griffin, W.L., and O'Reilly, S.Y.O., 2005, U–Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust: Precambrian Research, v. 139, p. 42–100.
- Coney, P. J., Jones, D. L., and Monger, J. W. H., 1980, Cordilleran suspect terranes: Nature, v. 288, p. 329–333.
- Criss, R.E., and Fleck, R.J., 1987, Petrogenesis, geochronology, and hydrothermal systems of the northern Idaho batholith and adjacent areas based on 180/160, D/H, 87Sr/86Sr, K-Ar, and 40Ar/39Ar studies, *in* Vallier, T.L., and Brooks, H.C., eds., Geology of the Blue

Mountains region of Oregon, Idaho, and Washington: U.S. Geological Survey Professional Paper 1436, p. 95–170.

- Critelli, S., Le Pera, E., and Ingersoll, R. V., 1997, The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand: Sedimentology, v. 44: p. 653–670.
- Crough, S.T., 1983. Hotspot swells: Annual Review of Earth and Planetary Sciences, v. 11, p. 165– 193.
- DeCelles, P.G., 1994, Late Cretaceous-Paleocene synorogenic sedimentation and kinematic history of the Sevier belt, northeast Utah and southwest Wyoming: Geological Society of America Bulletin, v. 106, p. 32-56.
- DeCelles, P.G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A.: American Journal of Science, v. 304, p. 105–168.
- Dickinson, W. R., and Gehrels, G. E., 2008, Sediment delivery to the Cordilleran foreland basin: Insights from U-Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau: American Journal of Science, v. 308(10), p. 1041-1082.
- Dickinson, W.R., 2002, The Basin and Range province as a composite extensional domain: International Geology Review, v. 44, p. 1–38.
- Doherty, D.J., McBroome, L.A., and Kuntz, M.A., 1979, Preliminary Geologic Interpretation and Lithologic Log of the Exploratory Test Well (INEL-1), Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho: U.S. Geological Survey Open- File Report 79-1248, 10 p.
- Dover, J.H., 1980, The status of the Antler orogeny in central Idaho—Clarifications and constraints from the Pioneer Mountains, *in* Fouch, T.D., and Magathan, E.R., eds., Paleozoic paleogeography of western United States: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 275–299.
- Dover, J.H., 1983, Geologic map and sections of the central Pioneer Mountains, Blaine and Custer Counties, central Idaho: U.S. Geological Survey Miscellaneous Investigations Series, Map I-1319, scale 1:48,000.
- Egger, A.E., Dumitru, T.A., Miller, E.L., and Savage, C.F.E., 2003, Timing and nature of Tertiary plutonism and extension in the Grouse Creek Mountains, Utah: International Geology Review, v. 45, p. 497–532.
- Egger, A.E., Glen, J.M., and Ponce, D.A., 2010, The northwestern margin of the Basin and Range province. Part 2: Structural setting of a developing basin from seismic and potential field data: Tectonophysics, v. 488, p. 150–161.

- Fosdick, J.C., and Colgan, J.P., 2008, Miocene extension in the East Range, Nevada: A two-stage history of normal faulting in the northern Basin and Range: Geological Society of America Bulletin, v. 120, p. 1198–1213.
- Foster, D. A., and Fanning, C. M., 1997, Geochronology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contemporaneous with extension. Geological Society of America Bulletin, v. 109, p. 379-394.
- Foster, D. A., Doughty, P. T., Kalakay, T. J., Fanning, C. M., Coyner, S., Grice, W. C., and Vogl, J., 2007, Kinematics and timing of exhumation of metamorphic core complexes along the Lewis and Clark fault zone, northern Rocky Mountains, USA: Geological Society of America Special Papers, v. 434, p. 207-232.
- Foster, D.A., Grice, W.C., and Kalakay, T.J., 2010, Extension of the Anaconda metamorphic core complex: 40/Ar/39Ar thermochronology and implications for Eocene tectonics of the northern Rocky Mountains and the Boulder batholith: Lithosphere, v. 2, p. 232-246.
- Gaschnig, R.M., Vervoort, J.D., Lewis, R.S., and McClelland, W.C., 2010, Migrating magmatism in the northern US Cordillera: in situ U-Pb geochronology of the Idaho batholith: Contributions to Mineral Petrology, v. 159, p. 863-883.
- Geslin, J.K., 1998, Distal Ancestral Rocky Mountains tectonism: Evolution of the Pennsylvanian-Permian Oquirrh–Wood River basin, southern Idaho: Geological Society of America Bulletin, v. 110, p. 644–663.
- Geslin, J.K., Link, P.K., and Fanning, C.M., 1999, High Precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho: Geology, v. 27, p. 295-298.
- Geslin, J. K., Link, P. K., Riester, J. W, Kuntz, M. A., and Fanning, M. C., 2002, Pliocene and Quaternary stratigraphic architecture and drainage systems of the Big Lost Trough, northeastern Snake River Plain, Idaho, *in* Link, P. K., and Mink, L. L., eds., Geology, hydrogeology, and environmental remediation, Idaho National Engineering and Environmental Laboratory, eastern Snake River Plain, Idaho: Geologic Society of America Special Paper 353, p. 11-26.
- Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., O'Reilly, S.Y., van Achterberg, E., Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica et Cosmochimica Acta, v. 64, p. 133–147.
- Hall, W. E., Batchelder, J. N., and Tschanz, M., 1978, Preliminary geologic map of the Sun Valley
 7.5 minute quadrangle, Idaho: U. S. Geological Survey Open-File Report 78-1056, scale
 1:24,000.
- Hanan, B., Shervais, J., Vetter, S., 2008, Yellowstone plume-continental lithosphere interaction beneath the Snake River Plain: Geology, v. 36, p. 51-54.

- Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., and Mojzsis, S.J., 2005, Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga: Science, v. 310, p. 1947–1950.
- Hill, R.I., Campbell, I.H., Davies, G.F., and Griffiths, R.W., 1992, Mantle plumes and continental tectonics: Science, v. 256, p. 186–193.
- Hodges, M.K.V., Link, P.K., Fanning, C.M., 2009, The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track: Journal of Volcanology and Geothermal Research, v. 188, p. 237-249.
- Honjo, N., McElwee, K.R., Duncan, R.A., Leeman, W.P., 1986, K–Ar ages of volcanic rocks from the Magic Reservoir eruptive center, Snake River plain, Idaho: Isochron/West v. 46, p. 15–17.
- Ingersoll, R.V., 1990, Actualistic sandstone petrofacies: Discrimination of modern and ancient source rocks: Geology, v. 18, p. 733–736.
- Ingersoll, R.V., Kretchmer, A.G., and Valles, P.K., 1993, The effect of sampling scale on actualistic sandstone petrofacies: Sedimentology, v. 40, p. 937–953.
- Janecke, S.U., 1992, Kinematics and timing of three superposed extensional systems, east central Idaho; evidence for an Eocene tectonic transition: Tectonics, v. 11, p. 1121–1138
- Janecke, S.U., Snee, L.W., 1993, Timing and episodicity of middle Eocene volcanism and onset of conglomerate deposition, Idaho: J Geol v. 101, p. 603–621
- Jean, M.M., Hanan, B.B., Shervais, J., W, 2014, Yellowstone hotspot-continental lithosphere interaction, Earth and Planetary Science Letters, v. 389, p. 119-131.
- Johnson, K.M., Lewis, R.S., Bennett, E.H., and Kiilsgaard, T.H., 1988, Cretaceous and Tertiary intrusive rocks of south-central Idaho, *in* Link, P.K., and Hackett, W.R., eds., Guidebook to the geology of central and southern Idaho: Idaho Geological Survey Bulletin 27, p. 55– 86.
- Konstantinou, A., Strickland, A., Miller, E. L., & Wooden, J. P., 2012, Multistage Cenozoic extension of the Albion–Raft River–Grouse Creek metamorphic core complex: Geochronologic and stratigraphic constraints. *Geosphere*, v. 8, p. 1429-1466.
- Kuntz, M., Covington, H., Schorr, L., 1992. An overview of basaltic volcanism of the eastern Snake River Plain, Idaho, *in* P.K. Link, M.A. Kuntz, and L.P. Platt, eds., Regional Geology of Eastern Idaho and Western Wyoming: Geological Society of America Memoir 179, p. 227-267.
- Kuntz, M., Skipp, B., Lanphere, M., Scott, W., Pierce, K., Dalrymple, G., Champion, D., Embree,G., Page, W., Morgan, L., Smith, R., Hackett, W., and Rodgers, D., 1994, Geologic map of

the Idaho National Engineering Laboratory and adjoining areas, eastern Idaho: U.S. Geological Survey Miscellaneous Investigations Series Map 1-2330, scale 1:100,000.

- Link, P.K., Miller, J.M.G., and Christie-Blick, N., 1994, Glacial-marine facies in a continental rift environment: Neoproterozoic rocks of the western United States Cordillera, *in* Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J., and Young, G.M., eds., International Geological Correlation Project 260: Earth's glacial record: Cambridge, UK, Cambridge University Press, p. 29–59.
- Link, P.K., and Rodgers, 1995, Geologic Map of the Northeastern Part of the Hailey 1° x 2° Quadrangle, South-Central Idaho: U.S. Geological Survey Bulletin 2064-B, plate 1, scale 1:100,000.
- Link, P.K., Warren, I., Preacher, J.M., and Skipp, B., 1996, Stratigraphic analysis and interpretation of the Copper Basin Group, McGowan Creek Formation and White Knob Limestone, south central Idaho, *in* Longman, M.W., and Sonnenfeld, M.D., eds., Paleozoic systems of the Rocky Mountain region: Denver, Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 117–144.
- Link, P.K., Kaufman, D.S., and Thackray, G.D., 1999, Field guide to Pleistocene Lakes Thatcher and Bonneville and the Bonneville Flood, southeastern Idaho, *in* Hughes, S.S., and Thackray, G.D., eds., Guidebook to the geology of eastern Idaho: Pocatello, Idaho, Idaho Museum of Natural History, p. 251–266.
- Link, P.K., McDonald, H.G., Fanning, C.M., and Godfrey, A.E., 2002, Detrital zircon evidence for Pleistocene drainage reversal at Hagerman Fossil Beds National Monument, central Snake River Plain, Idaho, *in* Bonnichsen, B., White, C.M., McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin, v. 30, p. 105–119.
- Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detritalzircon age spectra in the Snake River system, Idaho and Wyoming: an example of reproducing the bumpy barcode: Sed. Geol. v. 182, p. 101–142.
- Link, P.K., Fanning, C.M., Lund, K.I., and Aleinikoff, J.N., 2007, Detrital zircons, correlation and provenance of Mesoproterozoic Belt Supergroup and correlative strata of east-central Idaho and southwest Montana. In: Link, P.K., Lewis, R.S. (Eds.), Proterozoic geology of western North America and Siberia: SEPM Spec. Pub., v. 86, p. 101–128.
- Ludwig, K.R., 2008, Isoplot 3.60: Berkeley Geochronology Center, Special Publication No. 4, 77 p.
- Mahoney, J.B., Link, P.K., Burton, B.R., Geslin, J.K., and O'Brien, J.P., 1991, Pennsylvanian and Permian Sun Valley Group, Wood River Basin, south-central Idaho, *in* Cooper, J.D., and Stevens, C.H., eds., Paleozoic paleogeography of the western United States, Volume II: Pacific Section, Society of Economic Paleontologists and Mineralogists Publication 67, p. 551–579.

- Morgan, L. A., and McIntosh, W. C., 2005, Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA: Geological Society of America Bulletin, v. 117, p. 288 – 306.
- Moye, F. J., Hackett, W. R., Blakley, J. D., and Snider, L. G., 1988, Regional geologic setting and volcanic stratigraphy of the Challis volcanic field, central Idaho: Guidebook to the geology of central and southern Idaho: Idaho Geological Survey Bulletin, v. 27, p. 87-97.
- O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., Jackson, S.E., Belousova, E.A., Alard, O., and Saeed, A., 2008, Taking the pulse of the earth: linking crust and mantle events: Australian Journal of Earth Sciences, v. 55, p. 983–995.
- Ore, H.T., 1999, Topographic and geomorphic development of southeastern Idaho, segments from an essay, *in* Hughes, S.S., and Thackray, G.D., eds., Guidebook to the geology of eastern Idaho: Pocatello, Idaho, Idaho Museum of Natural History, p. 254–255.
- Pavlis, T. L., and O'Neill, R. L., 1985, Superposition of Cenozoic extension on Mesozoic compressional structures of the Pioneer Mountains, central Idaho: Geological Society of America Abstracts with Pro- grams, v. 17, p. 397-398.
- Pavlis, T. L., and O'Neill, R. L., 1987, Comment on "Extensional deformation with northwest vergence, Pioneer core complex, central Idaho": Geology, v. 15, p. 283-284.
- Perkins, M. E., Nash, W. P., Brown, F. H., and Fleck, R.J., 1995, Fallout tuffs of Trapper Creek, Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province: Geological Society of America Bulletin, v. 107, p. 1484–1506.
- Pierce, K.L., and Morgan, L.A., 1992, The Track of the Yellowstone Hotspot: Volcanism, faulting, and uplift, *in* Link, P.K., Kuntz, M.A., and Platt, L.B., eds., Regional geology of eastern Idaho and western Wyoming: GSA Memoir 179, p. 1-53.
- Pierce, K.L., Morgan, L.A., and Saltus, R.W., 2002. Yellowstone Plume Head: postulated tectonic relations to the Vancouver Slab, continental boundaries, and climate, *in*: Bonnichsen, B., White, C.M., and McCurry, M., eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geol. Survey Bull., vol. 30. Idaho Geological Survey, Moscow, ID, United States, p. 5–33.
- Pierce, K.L. and Morgan, L.A., 2009, Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data: Journal of Volcanology and Geothermal Research. v. 188, p. 1-25.
- Potter, K.E., Link, P.K., Shervais, J.W., and Janecke, S.U., 2013, Volcanogenic detrital zircons from the Kimama Drill core (Project Hotspot): Evidence for source evolution in the Yellowstone-Snake River Plain magmatic sys- tem, central Snake River plain, ID.
 Geological Society of America Abstracts with Programs, v. 45, no. 7, p. 345

- Renne P.R., Swisher C.S., Deino A.L., Karner, D.B., Owens, T.L., and DePaolo, D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating: Chemical Geology, v. 145, p. 117–152.
- Rodgers, D.W., Link, P.K., and Huerta, A.D., 1995, Structural Framework of Mineral Deposits Hosted by Paleozoic Rocks in the Northeastern Part of the Hailey 1° x 2° Quadrangle, South-Central Idaho, *in* Worl, R.G., Link, P.K., Winkler, G.R., and Johnson, K.M., Geology and Mineral Resources of the Hailey 1° x 2° Quadrangle and the Western Part of the Idaho Falls 1° x 2° Quadrangle, Idaho: U.S. Geological Survey Bulletin 2064-B, p. 1–18.
- Schmandt, B., Dueker, K., Humphreys, E., and Hansen, S., 2012, Hot mantle upwelling across the 660 beneath Yellowstone, Earth and Planetary Science Letters, v. 331, p. 224-236.
- Shervais, J.W., Vetter, S.K., and Hanan, B.B., 2006, Layered mafic sill complex beneath the eastern Snake River Plain: evidence from cyclic geochemical variations in basalt: Geology, v. 34, p. 365- 368.
- Shervais, J. W., and Hanan, B. B., 2008, Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot: Tectonics, v. 27, p. 5.
- Smith, R. B., and Braille, L.W., 1994, The Yellowstone hotspot: Journal of Volcanology and Geothermal Research, v. 61, p. 121-188.
- Stacey, J. T., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26(2), p. 207-221.
- Turner, R.J.W., and Otto, B.R., 1988, Stratigraphy and structure of the Milligen Formation, Sun Valley area, Idaho, *in* Link, P.K., and Hackett, W.R., eds., Guidebook to the geology of central and southern Idaho: Idaho Geological Survey Bulletin v. 27, p. 153–167.
- Vermeesch, P., 2004, How many grains are needed for a provenance study?: Earth and Planetary Science Letters, v. 224, p. 441–451.
- Vogl, J. J., Foster, D. A., Fanning, C. M., Kent, K. A., Rodgers, D. W., and Diedesch, T., 2012, Timing of extension in the Pioneer metamorphic core complex with implications for the spatial-temporal pattern of Cenozoic extension and exhumation in the northern US Cordillera: Tectonics, v. 31, 22 p.
- Vogl, J.J., Min, K., Carmenate, A., Foster, D.A., and Marsellos, A., 2014, Miocene regional hotspot-related uplift, exhumation, and extension north of the Snake River Plain: Evidence from apatite (U-Th)/He thermochronology: Lithosphere, v. 6, p. 108-123.
- Wells, M.L., Snee, L.W., and Blythe, A.E., 2000, Dating of major normal fault systems using thermochronology: An example from the Raft River detachment, Basin and Range, western United States: Journal of Geophysical Research, v. 105, p. 16,303–16,327.

- Whitehead, R. L., 1992, Geohydrologic framework of the Snake River Plain regional aquifer system, Idaho and eastern Oregon: US Geological Survey professional paper (USA).
- Worl, R.G., Kiilsgaard, T.H., Bennett, E.H., Link, P.K., Lewis, R.S., Mitchell, V.E., Johnson, K.M., and Snyder, L.D., 1991, Geologic map of the Hailey 1°2° quadrangle, Idaho. U.S. Geol. Surv. Open- File Rep. 91-340, scale 1:250,000.
- Worl, R.G., and Johnson, K.M., 1995, Geology and mineral deposits of the Hailey 1° x 2°
 Quadrangle and western part of the Idaho Falls 1° x 2° Quadrangle, south-central
 Idaho—An overview, *in* Worl, R.G., Link, P.K., Winkler, G.R., and Johnson, K.M., eds.,
 Geology and mineral resources of the Hailey 1° x 2° Quadrangle and the western part of
 the Idaho Falls 1° x 2° Quadrangle, Idaho: U.S. Geological Survey Bulletin 2064-A-R, p.
 A1–A21
- Wust, S.L., and Link, P.K., 1988, Field guide to the Pioneer Mountains core complex, southcentral Idaho, in Link, P.K., and Hackett, W.R., eds., Guidebook to the geology of central and southern Idaho: Idaho Geological Survey Bulletin 27, p. 43–54.

CHAPTER 5

Conclusion

As one of the youngest and best-preserved continental hotspot provinces, the SRP of Idaho provides an unprecedented record of volcanism, sedimentation, and magma genesis, and of the dynamic effect of these mechanisms on surface topography. The Kimama core samples 1912 m of continuous basalt stratigraphy along the Axial Volcanic High of the SRP. We have combined a variety of tools and methods to piece together the stratigraphy of volcanism and sedimentation, the frequency and timing of basalt accumulation, and the magnitude and origin of magma compositional variability. Our major goals in this research were to generate complete lithologic, geochemical, and stratigraphic records of the Kimama core.

In chapter two, we identified 71 basalt flow groups, 141 flows, and 446 flow units based upon lithologic observations and Ar/Ar and paleomagnetic age data. Our Ar/Ar and paleomagnetic ages show that basalt volcanism on the central Snake River has been relatively continuous over the past 6.4 Ma, and our basalt facies observations suggest very similar eruptive and emplacement processes through time. Flow groups average 10 m to 60 m thick and show an average accumulation rate of 335 m/M.y. The relatively gentle relief of the SRP and the lack of an elevated edifice at the Kimama site belies the vertical accumulation of 1912 m of basalts, especially as little erosion was observed in cored basalts. The basalts must have filled almost 2 km of accommodation space in the vicinity of the Kimama core hole. The temporallysteady input of erupted lavas into the Kimama basin (displayed in chapter 1, figure 9), and very few facies observations very thick, ponded lava flows in the Kimama core, imply a steady-state equilibrium of basalt deposition and subsidence over 6.4 M.y. In the third chapter, our goal was to recognize variations in magma chemistry and to identify the processes responsible for compositional differences in basalts of the Kimama core. To determine the extent by which magma chemistry is controlled by differentiation, we modeled potential paths of partial melting, assimilation of crust or the mid-crustal sill, and fractionation. Although chemical trends within the Kimama olivine tholeiites are broadly similar, upsection chemical variability in the Kimama core suggests a dynamic mid-crustal sill magma storage system. Periods of magma storage and fractionation are punctuated by episodes of magma recharge from more primitive batches, and ascending magma bodies are filtered through and react with previously emplaced gabbro. Variation diagrams show that gabbro assimilation is the most important cause of chemical changes in Kimama basalts, more so than fractionation and the assimilation of more felsic continental crust. Melting models of E-MORB spinel lherzolite source produce similar rare earth element compositional trends as those observed in Kimama at 7-15% melting.

Our geochemical results have two important implications: 1) Petrogenetic processes of Kimama basalts have remained largely similar over the 6.4 Ma record. Progressions from more primitive, low K₂O basalt compositions to more evolved, high K₂O, FeO*, and TiO₂ basalt compositions, have occurred at multiple time/depth intervals. These results imply that the midcrustal sill and magma ascent paths were established well before 6.4 Ma. 2). Highly evolved, Craters of the Moon-type lavas are not confined to the margins of the Snake River Plain, and are not temporally limited to the last 15 k.y. Although only two such flow groups were observed, the Kimama core demonstrates that Craters of the Moon-type lavas erupted at two separate intervals, almost 2 Ma apart.

Two important implications arise from our work in chapter four, regarding the deposition of volcanogenic and detrital zircons in fluvial sediments within the Kimama core. 1)

Each sampled fluvial interbed contains a different distribution of age populations of detrital zircon grains. We interpret a broad similarity of the age spectrum to the Wood River system, but the varying detrital zircon barcodes demonstrates the effect of silicic and basaltic volcanism during the relatively short depositional duration of fluvial sediments in the Kimama core. Furthermore, the interruption of fluvial sedimentation from depths of 1874-1753 m and above 1707 m depth, and hyaloclastitic basalt at multiple depths below 1753 m, suggest interaction between lava and water in the early part of the Kimama volcanic record. 2) Although the Kimama core did not intercept the rhyolite at depth, we identified volcanogenic zircons with ages ranging from 7.1 to 5.8 Ma in fluvial sediment interbeds at depths between 1844 to 1749 m. Neogene volcanogenic zircons represent eruptive products from Yellowstone-Snake River Plain hotspot track caldera complexes. In Project Hotspot's Kimberley core, drilled within the Twin Falls caldera complex, rhyolite on the surface is dated at 6.25 Ma), implying a temporal and depositional correlation to the 5.8 to 6.2 Ma sediments in the Kimama core, which are buried by almost 1750 m of basalt. These observations suggest the existence of a depositional basin within the central SRP, the study of which is a topic for future research.

The Kimama core records 6.4 M.y. of volcanic and sedimentological history, including magmatic flux and magma compositional changes through time. We observe that Kimama SROT basalts are higher in Fe, Ti, K, etc., than MORB magmas and are compositionally equivalent to OIB magmas. Our data demonstrate that SRP magmatism is mantle-plume derived and does not originate from the melting of a shallow MORB-source asthenosphere. Our observations, combined with new mantle tomography, refute non-plume models for the origin and development of the SRP volcanic province.

APPENDIX

														u	proi) le	աւ	oN	SƏ	qur	าวย																	ı	ιτοι	e Cl	verse	'9Я
	DESCRIPTION			Oxidized			R ad load soit, well outs' with the the reason is cardiact, appears to be weld-hered	thed models of curvature and checking parameters in \$5.5 (\$5.2). We instruct and a grow buck an understand with a weaking	Oxidized rubbly interval ~8"		Contract, manuater 5 opposite transmit 2 moders can be made, for during out in the , not out 2 to an anot. Oxided Proved: stand 4 constraine events. Should's on advance from 4 no. ~18.8 q ?			Ovidiand from two		Oxidized flow top with sediment vesicle/fracture fill			Shelly pahoehoe to 188.5			Shelly pahoehoe to 214.2'		Oxidized, spattery. Obvious vesicular manfestation	Possible flow break; color change and veside increase	Scorlaceous and oxiditation, beginning, of shelfy partnerhoe interval	Weathered surfaces on vesicular rubble	Uxidized and glassy, nign vesicle adundance	In crease in vesicle abundance, glassy, possible flow mold	Glassy, oxidized, increased vesicle abundance	Baked sediment interbed of ~5" thickness	Oxidized and increased vesicle abundance	Valic utation in oreases, no oxidation present (thick massive)	End of previous flow, start of thick sediment interbed	Thick sediment interbed	Flow break out, oxidized and vesicular	Oxidized, glassy and vesicular; start of shelly pahoehoe	Oxidized, vesicular, glassy	Oxid ized, vesicular, glassy Vesicular gradation, somewhat weathered	Circlined, vesic ular: shelly parto ence (could be flow break?)	Conduct, vesicular, shelly pathoehoe (could be flow break?) Connareous and spattery. Oxidized	acollected wire already variety of
		BOX		A5			A10	49	A11		A11 A15	2		A16		A18			A17			A21		A22	A23	A23	A26	A27	A29	A29		A31	A34	437	A38	A38	A39	A39	A40 A41	442	A42 A43	ł
	ŧ	iick (ft)		38.5			9.1	37.3	10.0		14.8 25.2	4. C C		6.7	10	7.3			16.0			28.5		12.6	5.6	14.3	10.1	14.4	13.9	3.9	0.7	8.8	29.0	29.1	18.0	3.8	4.3	2.5	3.3 11.0	10.0	6.4 2.9)
:	epth ow ottom U	÷ ;	#	82.5	0.000	8.611	128.9		138.9		143.7	0.011		107.6	0.001	210.9			203.6	210.9		239.4		252.0	257.6	271.9	282.0	296.4	310.3	314.2	314.9	329.9	358.9	0 995	406.0	409.8	414.1	416.6	419.9 430.9	bluv	447.3	1000
4	pth w Top Br	e.		44	1.00	ç:78	119.8		128.9		142.7	1041		170.0	0.011	203.6			187.6	203.6		210.9		239.4	252.0	257.6	271.9	282.0	296.4	310.3	314.2	321.1	329.9	358.9	388.0	406.0	409.8	414.1	415.5 419.9	430.9	440.9	Ì
	lean ow De rickness Fle	ц) (г					5 F3	600				01 01	67177						7.10						14.23		7.79			12.89		96.6	C 7 - 7	0	600							
	2 =	hick (m) (n		11.73		11.4	2.77	11.37	3.05		10.73			2.65		2.23			4.88	2.22		8.69		3.84	1.71	4.36	3.08	4.39	4.24	1.19	0.21	2.68	8.84	8.87	5.49	1.16	1.31	0.76	3.35	3.05	1.95	-
:	epth ow ottom	-T		25.15	1	30.5	39.29	36.52	42.34		43.80			57 18		64.28			62.06	64.28		72.97		76.81	78.52	82.88	85.95	90.34	94.58	95.77	95.98 07.07	100.55	109.39	118.26	123.75	124.91	126.22	126.98	131.34	134.39	136.34 137.22	
4	epth FI ow Top B	-) (r		13.41		1.62	36.52	25.15	39.29		42.34 43.80			54 53		62.06			57.18	62.06		64.28		72.97	76.81	78.52	82.88	ck.c8	90.34	94.58	95.77 or oo	97.87	100.55	109.39	118.26	123.75	124.91	126.22	120.98	131.34	134.39 136.34	
	Nol-	Jnit (n					m	2	4		ഗ	þ		٢		6			8			10		11	12	13	1 4	CI CI	16	17	ç	19	20	15	1	23	24	25	27	28	3 6 6	?
	Flow	nit L	T	7		m	ъ	7	∞		6 6	3	11			12			13	14		15		16	17	18	19	20	21	22	ć	24	25	36	04	27	28	29	30	65	33 33	ţ
	Flow	•	1	2	,	'n	4	5	9		7		∞			6				10		11				12	13				;	4	r 15			r 16						
indaries	w Flow	TOD3	SKUL					SROT																							1000		SROT		arv (0.78 Mi	SROT						
group bou	ber Flo sup Grou		-					2																						_		n	4		ama bound	5						
a super §	clin. Sur Gro	03	00					51								T														-	9	2	88		hes-Matav	56 E						
group, an	nnd Vpe	-		Wa		iem.	iem.	ncl.		iem.	iem.		iem.			em.				iem.		iem.				lem.	iem.				1	<u>.</u>	ncl.		Bru	ol.						
W, TIOW	₩ ÷	bth	. 9	5 7 10	2 2	5 C	4.4 CI 6.7 6.7	7.0	3.9	8.7 CI 8.7	9.0 C	D C C C	7.9 Ct	9.7	6.4	4.0 C	4.3		5.6	7.7 Ct	2 2	8.0 Ct		6.0	9.0	3.0 G	2:0	0. 4	6.0	2.3	4.6		9.0	120	0.0	0.6	5. 02	5.4	5 0 ^{.7}	7.4	4.1 2 8	
v unit, Tio		a/Lu De	4 4	55.9		нн	12 12	49.3 12	13	13	51.1 13	6.65 15	9 9	16	43.0 10	40.6 19	19	61 6	1 19	20	88	20	88	42.0 23	41.1 24	52.3 26	37.5 27	39.1 28	39.7 30	31	31	54.6 32	44.3 34	36 36 36 36	39	77.2 40	41	41	41 82.1 42	42	144	4
mine rio		Zr/Nb L	13.6 13.6	13.90 14.1	13.8	12.4	12.7	15.23		12.6 12.4	15.99	16.5	13.7	15.2	14.2	12.5	14.6	13.0	13.0	15.6	13.7 13.7		13.4 12.8	13.05	13.01	14.35 13.4	12.72	13.52 15.0	13.43 11.6			11.90	11.12	11.4	00004	11.83	10.7		3.17	10.4		10.3
to deter		Ti/K	2.8 2.8	3.27 3.6	3.7	3.3 3.3	3.6 3.5	3.24		4.1 4.2	2.86	2.9	3.5	3.3	3.2	3.1 2.86	3.1	3.3	5.5	2.7	2.6 2.6	2.57	3.2 3.2	2.76	2.4 2.75	2.56	2.62	2.67 2.8	2.61 2.5			3.42	3.04	3.6	646	3.16	ç,		3.41 15	2.9		3.6
ata used		TiO2	3.12	3.23 3.57	3.60	2.91	2.58	3.29		3.40 3.39	2.90	2.75 2.75	2.83	2.80	2.82	2.81	3.02	303	3.03	2.93	2.93 2.93	2.64	2.64	2.65	2.39 2.64	2.39	2.51	2.60 2.23	2.54			2.71	2.41	2 23 2 80	00:14	3.16	7.94		3.46	2.72		3.26
mical de		K20	62.0	0.71 0.72	02.0	0.63	0.52	0.73		0.59 0.58	0.73	69:0 69:0	0.58	0.61	0.64	0.73	0.69	69:0	/9:0	62.0	0.81	0.74	0.50	0.69	0.72	0.67	0.69	0.7	0.7	5		0.57	0.61	05.0	50	0.72	4C.U		0.73	0.67		0.65
Geoche		Fe0*	9.83 9.83	14.85 11.69	11.79	13.48	10.77	14.67		12.33	13.86	10.55	13.03	13.04	13.12	13.11	12.79	12.7	1771	12.98	13.01	13.23	10.88	13.23	11.97 13.35	13.29	12.87	13.16 11.10	13.2 12.25			13.62	10.62	10.76		14.13	10.11		14.85	11.39		11.31
phic and		K/P		1.62				2.04			2.67	67.7				2.67						2.87		2.52	2.57	2.77	2.98	2.72	2.72			1.87	2.41	3.75		1.48			1.21			
Stratigra		Sample		KA1A52				KA1A127			KA1A139	CCTWTW		0210100	ODIVITVO	KA1A194						KA-1A-208		KA1A236	KA1A249	KA1A263	KA1A272	KA1A280	KA1A306			KA1A328	KA1A349	KA1A369	COCUTACI	KA1A409			KA1A427			

emey	etelv	N						u	срго	qn	s c	ollin	nere	۱																																
oxelled, glassy and vesicular (shelfy phoehoe interval Glassy and vesicular (shelfy pahoehoe)	Glassy and vesicular, sediment coating on surface Possible flow boundary based on vesiculation; no coedation	Ovidated and vestorias; sediment coating, break out at 5310°	Vesicle distribution; possible sediment coating	Vesicle distribution; sediment coating	Contact of overlying basalt flow with sediment; rubbly	te a reger to de transmission a prova vege provinsion a separa de serve das terrates de transmissiones.	Outlevel and search and a react the set of the set of an ability and search and the first test and a set of a ball and a set of and ability of a set of and ability ab	Weathered and aftered? Sediment coafing, vesicle gradation	Increase in vesicle abundance; flow break suggested by distribution	Westhered surface with veside coasing. Oxidation and color change	Vesicle schmearing, sediment coatings	Row moid? Sediment coating & glassines; shelly pahoehoe Vesicle transition, glassy texture	Contact of basel with underlying pediment interbal, thick periodine frough TBLS'	Obvious transition; basait overlies sediment interbed	Contact of sediment to underlying basalt flow Top of underlying basalt flow; contact with sediment		Contact of two divership ways induced meet. She by particulate induced from contact to Weil 4,	beginning or seament into vesides, increase in veside size Discelible flow model is addiment constinue	Rubby, oxdated & veicular with sedment coaling shelp tabledoe	Possible flow mold. sediment coating	Rubbly & oxidized; vesicular with sediment coating	Glassy, sediment-filled vesicles	Vescular with southern coating, sherry paroence Oxided and vescular, adment oxiding; overfies "1" of same to xure	Sediment coafing increased vesiculation & glassy texture	Rubbly, oxidized & vesicular, sediment coating	Fracture; sediment-filled vesicles, overlying rubbly area	Rubbly, oxidiad & vescular with sedment coaling; shelfy pathoence	Glassy, sediment, increased vesiculation Fractured and rubbly, actual contact at 825.7?	Rubbly, oxidized & vesicular with sediment coatings	Sediment filled vesicles; Vesicle progress on within flow	Possible flow unit boundary; sediment costing and glassy rind	Glassy, oxidited, å veskolar with ædiment coathig shely pahoehoe Calista a stronistica son existence a sheallt, and son a son	Veature vestore codurigs, areny partoerioe Weathered, vesicular and glassy surface; rub biy	Vesicular with sediment coating: shelly pahoehoe	Weathered, vesicular and glassy surface; rub bly	Oxidized & vestoriar with sediment costing: shelly pahoehoe	Shelly pahoeho e	Lange fracture filled with sediment, oxid and & vesicular, shely pains that e	weathered surface shally had hoped	Weathered surface	Glassy, oridited, sediment to alling in welcles and fracture	wetherd, and and yet writere Oxidized & vesicular with sediment coating		Weathered and oxidized, glassy surface	Rubbhy, oxidized & vesicular with sediment coating	Weathered, sediment coated, vesicular (shelly pahoehoe) Oxidued, glasy& vesicular with soliment coating shelly pahoehoe
A43 A44	A50 A51	A52	A57	A58	A59	B1	B2 A63	82	A64	B2	A65	A65 A70	811	A73	B12 A75		813	613 A76	B14	A76	B14	A77	B15	A78	B15	A78	B15	A79 A80	B18	A80	A81	819	A84	B21	A85	821	A84	B22 ^ 95	A85	A85	B25	A87 R26		A88	B26	A89 B27
7.8 10.9	53.0 7.8	111	46.8	11.9	3.6	4.2	5.5 4.0	5.0	9.0	3.5	5.4	18.6 40.6	32.4	21.4	14.4 15.1		2.10	4.4	45	4.7	2.0	8.5	6.7	10.2	6.2	2.1	2.10	4.7	3.4	12.5	2.8	2.80	14.3	13.5	2.7	2.70	3.4	8.00	0.2 4 1	7.1	14.5	15.3 17.0		10.8	4.3	4.3
458.0 468.9	521.9	540.8	587.6	599.5	603.1	663.0	665.0 669.0	673.5	678.0	685.2	683.4	702.0	730.0	742.4	762.4 763.8		776.8	7.8.9	787.0	788.8	791.5	793.5	793.5	802.0	809.0	812.2	815.2	814.3 819.0	819.0	826.7	839.2	838.3	838.3	851.7	866.0	865.3	868.7	868.7	8/b./ 870.5	883.6	883.6	887.5 ana n	0.706	905.4	914.0	916.2 918.3
450.2 458.0	468.9 521.9	529.7	540.8	587.6	599.5	603.0	663.8 665.0	668.0	0.669	676.7	678.0	683.4	685.2	702.0	730.0 742.4		762.4	778.0	782.6	783.4	787.0	788.8	243.5	793.5	801.1	802.0	809.0	812.2 814.3	815.2	819.0	826.7	834.9	842.0	838.3	851.7	851.8	866.0	865.3	876.7	879.5	876.5	883.6 887 5	2	890.1	902.0	905.4 914.0
1 92				00	9.49		2.50			5.94		17.98			9.07	5.28						0.41	74-0			8.11		2.53					7.63		17.65	C0./1										12.92
2.38 3.32	16.15 2.38	3.38	14.26	3.63	1.10		1.28 1.22	1.68	2.74	1.52	1.65	<mark>5.61</mark> 12.37	13.66		9.88 6.52	16.40	187.60	1.37	1.34	1.65	1.37	1.43	0000	2.59	2.41	3.11	1.89	0.64	1.16	2.35	3.81	1.04	-1.13	4.08	4.36	4.11	0.82	1.04	0.85	1.25	2.16	0.61		4.66	3.66	3.29 1.31
139.60 142.92	159.08 161.45	164.84	179.10	182.73	183.82		203.61 203.91	206.26	206.65	207.78	208.30	<mark>213.91</mark> 226.28	222.50		232.38 232.81		236.77	14.762	239.88	240.43	241.25	241.86	241.86	244.45	246.58	247.56	248.47	248.20 249.63	249.63	251.98	255.79	255.51	255.51	259.60	263.96	263.74	264.78	264.78 767 77	268.07	269.32	269.32	270.51 274.93		275.97	278.59	279.26 279.90
137.22 139.60	142.92 159.08	161.45	164.84	179.10	182.73	183.79	202.33 202.69	203.61	203.91	206.26	206.65	208.30 213.91	208.85		222.50 226.28		232.38	17.052	238.54	238.78	239.88	240.43 341.35	241.86	241.86	244.18	244.45	246.58	247.56 248.20	248.47	249.63	251.98	254.48 255.48	256.64	255.51	259.60	259.63	263.96	263.74 76.4 78	267.22	268.07	267.16	269.32 270.51		271.30	274.93	275.97 278.59
31 32	33 34	35	36	39	40		97 41	98	42	100	43	<mark>4</mark> ₹	102		103 46		1	47	105	48	106	57	108	58	109	59	110	61	111	62	63	112	6 02	113	73	114	74	115 75	с б С	80	116	81		84	118	85 119
35 36	37	96 30	40	41	42		43 44	45	46	47	48	49	50		51			22	54	5	56	57	59	1	60		61	62	63	64	65	;	67 67	68	69	70	71	ţ	77	74		75	2	76A	77	78
	17		18		19		20	21			22	23	24		25			26					27	i			28	92	30							31							32			
	Fe-Ti		Fe-Ti				SROT											SROT																		Fe-Ti							SROT			
	9		7				8											б																		10							11			
					_	le 1B	U				_							•					_													_		_					_	_		
	-63		-64			Begin Ho	22											-61																												
	Incl.		Incl.		Chem		Pol.	Chem.			Chem.	Chem.	Chem.		Chem.				į				Chem				Chem.		Chem.							Chem.							Chem.			
454.0 463.5	514.0 525.8	535.3	579.0	593.6	601.0	633.0	666.0 667.0	671.0	674.5 675.0	675.0	681.0	686.0 700.0	707.0	725.0	747.0 750.0	750	769.6	0.777 C 1.97	785.0	786.5 787.0	789.0	791.2	0.797	0'662	806.6 807.0	809.0	813.0	813.3 818.0	821.0	822.0	833.0 836.8	837.0	840.b 840.2	850.0	855.0	860.0	867.4	867.0	8/1.0	881.6	880.1	885.6	896.5	898.0	910.0	912.0 916.2
77.4	63.5		54.2		54.6		66.0	62.9	63.3	65.2	61.9	62.3 59.6	61.5	9.09	59.3 60.0				50.9	53.0	51.0		49.7	53.9	50.5	51.8	50.4	30.3	44.8	51.0		49.3		45.4	47.4	49.6		0.5	47.0					39.7	45.5	43.6
11.58	11.70		12.51		11.76		13.29	13.02	12.0 11.39	12.21	11.09	11.60	13.12	11.2	10.50 11.25	12.0			12.38	13.71	13.71		14.19	14.16	18.51	12.41	12.36	16.55	16.11	12.20	12.7	12.42		11.99	12.88	12.55		¢ ;;	17:0				12.4	15.38	11.5	11.64
3.08	3.65		3.28	3	3.46		4.82	2.71	2.3 2.75	2.75	2.76	3.22 2.81	2.44	2.37	2.39 2.33	1.8			3.74	4.5 3.68	4.20		3 70	3.76	4.9 3.98	3.83	3.65	3.76	3.67	3.95	4.7	3.90		4.01	4.33	3.38							5.4	4.20	3.3 3.96	3.53
2.91	3.30		3.19		3.36		3.15	2.98	2.51 2.98	2.98	3.15	3.05	2.82	2.77	3.05 2.92	2.84			3.17	2.93	3.09		3 24	3.19	3.79 3.37	3.30	3.09	334	2.86	3.18	2.79	3.14		2.84	2.71	3.57							3.46	2:92	2.59	2.65
0.68	0.65		0.7	B L	0.7		0.47	0.79	0.78 0.78	0.78	0.82	0.78	0.83	0.84	0.92 0.9	1.11			0.61	0.58	0.53		0.63	0.61	0.56	0.62	0.61	0.64	0.56	0.58	0.43	0.58		0.51	0.45	0.76							0.46	0.5	0.47	0.54
13.68	15.2		14.63	8 5	14.67		14.22	13.9	12.98 13.95	13.9	14.22	13.95	13.32	13.5	13.77 13.5	11.47			14.58	12.55 14.7	14.31		14.7	14.31	12.53 14.58	14.65	14.13	15.0	13.97	14.5	12.55	14.4		14.04	13.69	15.21							12.53	14.2	10.49 13.48	13.55
1.50	1.29		1.87		1.90		1.27	2.24	2.43	2.43	2.65	1.90 2.43	2.79	2.58	2.79 2.81				2.07	1.84	1.73		1 79	2.03	1.96	1.71	2.03	1.74	1.87	1.87		1.81		1.98	1.75	1.76								1.70	1.90	1.90
KA1A454	KA1A514		KA1A579		KA14601		KA1B666	KA1B671	KA1A675	KA1B675	KA1A681	KA1A686 KA1A700	KA1B707	KA1A725	KA1B747 KA1A750				KA1B785	KA1A787	KA1B789		KA1R797	KA1A799	KA1B807	KA1A809	KA1B813	KA1A818	KA1B821	KA1A822		KA1B837		KA1B850	KA1A855	KA1B860		PLOS P.C.	KA1A8/1					KA1A898	KA1B910	KA1A912

									u	olr	4D 8	srse	eve?	j eu	۸sı	etel	N																											
	Weathered surface	Oxidized, vesicular with sediment coating Vesicular, weathered and oxidized surface	i universitation of a war and a second war in a second of a second	umuuseu, vessuural aitu vessuseren suitasen, reginer ruuure Obkous contace, Rubidy, oxidaad & veskular, overlies -2° of rubide	check gamma tog at 1007.2" (in situ). We athered, or idized	shelly pahoehoe	Pubbly and sediment costed & oxidized; overlies 3" of rubble	Overlies contact with baked sediment	Baked Sed Sediment contact with underlying basalt	Provenues of leavestie according to below deviced and first probability	Contact of basait overlying baked sediment interbed Contact with overlying sed. Oxidized, rubbly (shely pahoohoe)		Sediment contact with underlying rubbly sediment coated baselt	Rubbh. oxidized, vesicular & sediment-coated	Visioular, and and, flow mold contact, owelles "2 of shelly pathodolog	Vesicular, gassy and sediment-coated; shelly pahoehoe Weathered, oxidized and rubbly	Vesicular, rubbly, & oxidized	Weathered (caliche), visicular (shelly panochoe)	Uxauee, vescuer & seamer.coxee, ovensis 2.0 i stery prinence	Sediment-baselt contact; beginning shelly pahoehoe interval	Rubbly & sediment-coosed;rubbly & fragmented shely pahoehoe Rubbly, glusy& vel cuker; sedment cashings, shely pahoehoe to 11.32.7	Rubby, oxidited & vescular web sedment coaring: shely partochoe	الملكاني ما منظم مذله موالمماز ومقالي الأطرار والمعالمان والملكان ومعالما الاواران والمالي والمرامض	Oxidated, glassy verticular with sed meet or allog, overlass shelp pair oritise	Positi seel - shee u - so ssibile vasis la interación - shelltra ak ostoos	Sediment-coated vesides; shelly pancehoe interval	Glassy, oxidized, we joular with sediment cost higs; shelp patrochoe news or set in the second se	basait overlying contact with sediment	Contact of sediment overlying baselt (baselt is massive-vestoular Overlained Austricular & continuout constant		Oxidited, rubbly, wesolar & sedment-cost of: shelly parkothoe flow midd with sediment cost is a cost or a	Sediment-coated fracture	Christier) nabels, weisodar weits weitweit coatriegt begrenegelweits partoerkoeinternal "2". Seedmeert coadreg in reel des and Pachtures, oodd andt, enternieve i held y partoerkoe	Classes susteined south continues	Classy, vestored with securitient contribution Dated high vestore in ready over dange for trans or at 127 0, 1228.1	Rubbly, oxidized with sediment-filled vesicles	Rubbly, glassy, & vesicular with sediment coating	Oxidized & vesicular with sediment costing: shelly pahoehoe 	Doctors of Versions may reserve reserve and the second of the second of the second sec		our a croxive user with southern counties are type around a suit ou. Oxidized & glassy, veicles coated with sediment: shelfy patrochoe	Glassy, possible flow break out; shelly pahoehoe	Sediment coased fracture & verjoule (flow break?); shely, pahoehoe	Rubbly, oxidized . Sediment coating (shelly pahoehoe)
	A90	B29 A91	B30	764	B36 A98	A101	B37	B39	B39	040	B40	A102	B40	R47	B43	B45 A104	B46	A105) E	B1	B48 B48	B50	851	852	5	B53	853	202	854 854	5	856 856	B56	B56 B56	DEO	B60	B61	B62	B63 P43	864	* 50	B64	B66	B67	B67
	1.3	11.5	9.1	C.01	60.1 10.3	59.4	11.5	17.0	3.9	00	3.9 0.9	1.8	2.5	17.1	9.4	25.5	1.6	0.0	3.1	663.8	11.6 4.8	9.2	12.9	11.4		3.0	2.1	4.1	0.5	8	13.5 10.7	3.8	1.9 2.8	0.01	10.8	16.1	9.1	5.4	4.5	c L	15.3	15.30	2.1	2.10
	918.3	928.4	943.0	6.246	952.1 953.2	1012.6	1012.2	1023.7	1023.7		1042.4 1046.3	1047.2	1046.3			1048.8 1049.0	1065.9	1066.1	10/5.3	1079.3	1100.8 1102.4	1112.1	1123.7	1128.5		1150.6	1162.0	1167.5	1170.5	0.2/11	7.9711	1183.2	1196.7	A POCA	1211.2	1213.1	1215.9	1226.7	1253.6		1268.1	1271.5	1276.0	1281.9
	916.2	918.3 930.1	928.4	+.Tcs	943.0 942.9	953.2	952.1	1012.2	1012.6	E 0808	1040.7 1042.4	1046.3	1042.4			1046.3 1047.2	1048.8	1049.0	6.cout	1066.1	1075.3 1100.8	1102.4	1112.1	1123.7	3 90.11	1137.7	1150.6	0.2911	1167.5 1170 5		1172.6 1176 7	1177.2	1183.2	7 3011	1207.4	1211.2	1213.1	1215.9	1237.5		1262.7	1268.1	1271.5	1276.0
	19.85					36.09			17:67									00 01	12.89		12.49			8.08						14.90				02.0		9.19		a 17	17:0					
	0.64	3.08	4.45		3.14	18.11	18.32	3.51	5.18	0.63	1.19	0.27	1.19			0.76 0.55	5.21	12.6	/0.7	4.23	7.77 0.49	2.96	3.54	1.46	08.0	3.93	3.47	00.1	0.64		1.25 0.15	1.83	4.11	3 26	1.16	0.58	0.85	3.29 3.79	4.91	7.F. C	1.65	1.04	1.37	1.80
	79.90	82.98 83.89	87.43 87.40	01.70	90.20 90.54	08.64	08.52	12.02	17.21	CL 21	1/./1	19.19	18.91			19.67 19.74	24.89	24.92	c1.17	29.18	35.52 36.01	38.97	42.50	43.97	A6 77	50.70	54.18 cc oc	00.00	56.77 57.41		58.66 58.81	60.64	64.75	68.07	69.17	69.75	70.61	73.90	82.10	10 10	86.52	87.55	88.92	90.72
	9.26 2	9.90 2 3.49 2	2.98 2		7.43 2	0.54 3	0.20 3	8.52 3	8.64 3 2.02 3	c 10 L	7.72 3	8.91 3	7.72 3			8.91 3 9.19 3	9.67 3	5 14 6 00 4 6 00 4	6 60.4	4.95 3	7.75 3 5.52 3	6.01 3	8.97 3	2.50 3	3 07 3	6.77 3	0.70 3	6 01.4	5.85 3 6.77 3		7.41 3 8.66 3	8.81 3	0.64 3	A 75 3	8.02 3	9.17 3	9.75 3	0.61 3 2 an 3	7.19 3	c 01 c	4.87 3	6.52 3	7.55 3	8.92 3
	86 27	20 89 23	21 22		22 28 91 28	92 29	23 29	24 30	25 31 25 31	10	31	94 31	26 31			31 31	27 31	۲۶ ور د	20	96 32	30 33 30 33	31 33	32 33	33 34	10 VC	35 34	36 35	6 /0	38 35	2	40 35	41 35	42 36	95	5 4 8 8	45 36	46 36	47 37 48 37	49 37 37	30 E 0	21 38 38	52 38	23 38	54 38
	4	-	1		-	A	1	1				10	-				1	-	-		~ ~			1				-		-	1	0	1		3 1	4	5 1	9 1	1 8			1	2 1	3 1
	38	22	8		80	82	82	80	8			6 85	5				8	ŝ			86 86 86	0	6	11 92	ŝ	n 61	6	5	6	ň	12 99	10	10	ę	10	10	10	10	10		9 5	11	11	11
	(1)					ľ	•)					Ŧ	(1)				ROT 3		-	,		LK 4		e-Ti 4							4	4			ROT 4				ROT 4					
												12					13 S					14		15 F								16			s				17 S					
L																	u.															-												
[Τ						robasa	-63				-64							-62							Г	-							-57					
	Chem.						Uemo		Chem.			Chem. Fer					ncl./Chem.		Chem			Chem.		Incl./Chem							Chem.				Chem.				ncl./Chem.					
	<mark>925.5</mark> 927.0	927.0	935.7 935.7	937.2 946.5	947.0 948.1	977.0	987.0	1020.0	1026.0	1034.2	1041.6 1044.4	1045.0	1045.7 1046.0	1046.0	1046.0	1047.6 1048.1	1051.0	1057.0 1057.8	1058.0	1095.0	1095.0 1101.6	1107.0	1118.6 1119.0	1126.1	1134.9	0.0011	1157.0	1157.0 1157.2		1174.4	1175.0	1179.0	1179.0 1191.0	1191.3	1210.0	1210.4 1212.2	1214.5	1224.0	1232.1	1248.3	1265.4	1269.8	1274.0	0.979.0
	45.6	44.4			44.3	49.8	44.8	46.3	43.3			57.3	55.8				57.2	59.1	56.3	55.7	54.4	53.9	53.8			50.0		46.3			48.4		40.0		47.9			45.8					42.7	
	12.3 12.08	11.72		13.1	12.31	14.06	12.52	13.39	1233	12.0		13.14	12.8 25.96				12.07	14.63 12.6	13.27	12.39	14.19	13.47	11.8 15.17		16.1	19.75	00.00	16.00		13.1	13.08		17.7	16.3	16.44	13.8		15.17		16.4			13.59	* 1
	3.4 2.93	3.02		3.3	3.24	3.13	2.59	3.1 2.55	2.45 2.45	2.5		1.40	1.5 1.39	141	141 143		4.30	4.07	4.24	4.51	4.51	5.05	6.4 6.05		6.3	4.58	4.14	4.14 4.4		5.0	4.85	4.11	4.15 4.21	4.5	4.77	4.2		4.39		4.4				4 2
	1.81 2.32	2.27		2.25	2.21	2.31	2.09	2.20 2.06	2.15	2.05		3.51	3.44 3.55	3.48	3.57		3.17	3.17 2.83	3.18	3.07	3.07	2.67	3.58 1.77		3.88	4.01	3.74	3.74 3.51		4.12	3.37	3.14	3.23 3.39	4.11	3.51	3.64		3.54		3.39			0000	5.5
	0.38 0.57	0.54		0.49	0.49	0.53	0.58	0.58	0.63	0.59		1.81	1.66	1.78	1.8		0.53	0.56	50.54	0.49	0.49	0.38	0.40		0.44	6.6 0.63	0.65	0.57		0.59	0.5	0.55	0.56	0.66	0.53	0.62		0.58		0.55			2	R-0
	9.73 13.05	12.69		12.98	12.55	12.78	12.14	12.31	11.97	11.24		17.82	11.71	17.64	18.02		14.04	14.04 11.66	13 20	14.3	14.31	14	12.08		12.45	16.02	15.35	15.3 13.25		14.35	14.58	14.46	14.85 15.0	13.48	13.77	12.34		14.85		11.19			00 00	12.00
	2.36	2.28			1.95	1.98	2.39	2.51	2.59			1.55	1.58	1.57	1.38		1.27	1.37	1.30	1.21	1.21	0.98	1.19			1.23	1.17	1.18			1.26	1.22	1.34		1.61			1.42						
	KA1A927	KA1B927			KA1B947	KA1A977b	KA1B987	KA1B1020	KA1A1026 KA1B1034			KA1A1045	KA1B1046	KA1B1046B	KA-1B-1046 KA-1B-1046		KA1B1051	KA1A1057	KA1B1058	KA1A1095	KA1B1095	KA1B1107	KA1B1119			KA1B1147	KA-1B-1157	KA1B1157			KA1B1175	KA-1B-1175	KA1B1179 KA1B1191		KA1B1210			KA1B1224					KA1B1274	

																u	pro	pc	ns	lem.	lor	∕l is∖	۱np	10											ron	үсү	ns	lem	lor	1 iev	\npj(D
Rubby & vescular, oxitized and sodiment coosted; the ty painatese Oxidated & glassy, sediment coaling in fracture (flow mold?)	Sediment costed rubble within massive interval (flow break?	Oxidized & glassy, sediment-coated vesicles Oxidized & glassy, sediment coating, rubbly	Rubbly, oxidized, & sediment-coated vesicles & fractures	Oxidized, glassy, and sediment coated. Also rubbly	Glassy & oxidized rubble Vesicle distribution, sediment coating, glassy	Fractured & glassy with thick adment coating: shelfy palbethoe		ا المحتملة بعدائمة الملائمة عنائمة معاملة والماري المالية المالية المالية المالية المالية المالية الم	Rubbly, oxidized & vesicular with sediment coating	Rudde by, seedime nf coast ext(which in most low in through many rank for flow to reads)	RubbA, coditard & glassy; glass appears to be altering; weathered	Rubbly, sediment coated, & glassy	Gassy and sed insert covered fracture & costed vesicles, oxid and contact. Rasalth or verthing that end send inn en t	Sediment overhying contact with basalt, "2' transition	Oxidited, glassy, and sediment coated fracture and vesicles, also rub by	Glassy, vesicular	Gassy oxids of & visicular contact with sed meet coating oxidation cortaat	Outland, well outly, retrors and ment coulding; overfees "3.5 of shelp, pathod on flows	Rubbly, oxidited & glacsy, with and mare coaliting (actual flow break?)	Oxdited, rubby & gassy, adment coange extend through ~6"	Oxidized & glassy; sediment coating: shelly pahoehoe	Rubby, glassy, appears to be weath ere d. Shely pahosho e	Gassy, oxidiard & rubbly, minor as diment coating, shelly painsence	Gasoy, oo dureo, sedment coatrig on if acture; shelfy parbence	Glassy, west utar, (scoriac eous?); obvious ves kie transition Glassy, oxidized, rubbly with minor sed. coating	Rubbly, glassy, oxidized & sediment-coated	Rubbly, sediment coating, in creased vesiculation	Oxidated & glassy with sedment coating, vesicle transition	Oxid ized, vesicular, & rubbly. Minor sediment coating Oxid ized, glassy, & sediment coating. Vesicle transition		Veskle transition, oxid æd, glæsy, æd ment costing, shidly pahochoe	RAMMy, gins sy its coid soch soch ment contrag, shreifty pathorehoer frow breests cut (\$1612, 6	Rudely, glassy, & oxidized; sediment coaling, shelly, pahoehoe Oxidized, rub blv & vesic ular, sediment coating	Oxidi zed, glassy, & rubbly; over lies rubbly zones	Glaccv & rwidized with sediment coatine. rubbly	olazay ex oxivuced mini securinent coaning, i uduri y Oxidited, gasy & vericular, possible flow mold; shelly pahoehoe	Rubbly, oxidized, & sediment coated Basalt overvine baked sediment & basalt rubble		Sediment & basait rub ble overlying basait flow Ruby, outreds admen cased overlis -2 of stely patient only the	Basalt contact overlying baked sediment interbed (~4)	Sediment interb el contact with basisht cold lavd & veck cular, shrely partochoe Possilis	Amount warmen as many for easy the more than the second data of the se
B68 B69	871	871 872	B73	B76	B76 B77	877		877	878	878	B80	B81	B82 B85	B86	B87	B87	068	B91	891*	B92	893	893	B94	669	895 R98	B100	B102	B103	B103 B104		B105	B105	B106 B107	B107	R108	B109	B109 B111		B112 B118	B118	B119	6115
6.3 6.30	12.1	7.1 3.4	8.8	27.3	6.2 4.8	4.0		4.00	5.0	2.6	4.9	12.7	14.1 29.9	4.9	6.1	11.9	19.7	7.5	3.1	11.6	10.9	11.60	5.0	3.4	31.1	20.9	19.6	6.2	3.6 10.5		5.6	3.6	2.5	5.4	12.7	3.4	4.1		3.1	4.7	1.8	A.1.1
1297.2 1304.0	1306.1	1314.3 1320.6	1329.9	1342.0	1349.1 1352.5	1361.3		1388.6	1394.8	1300.6	1403.6	0.0	1417.7	1425.2	1437.9	1452.0	1481.9	1486.8	1492.9		1504.8	1524.5	1532.0	1535.1	1546.7 1557 6	0.0	1566.7	1570.1	1573.9 1605.0		1625.9	1645.5	1651.7	1665.8	V 1231	1675.0	1677.5 1686.6	0.0001	1692.0	1708.6	1712.7	1/30.3
1281.9 1297.2	1304.0	1306.1 1314.3	1320.6	1329.9	1342.0 1349.1	1352.5		1361.3	1388.6	1394.8	1399.6	1403.6	1412.7 1417.7	1420.3	1425.2	1437.9	1452.0	1481.9	1486.8		1492.9	1504.8	1524.5	1532.0	1535.1	1557.6	1561.7	1566.7	1570.1 1573.9		1605.0	1625.9	1645.5	1655.3	1465 8	971.4	1677.5		1686.6 1692.0	1705.2	1708.6	1/14.1
			60.07			12.41	15.98			10.21	2.68	2.59	2.32			9.39	17.28		5.49			12.01	24.54														6.77					10.00
4.66 2.07	0.64	2.50	2.83	3.69	2.16 1.04	2.68		8.32	1.89	1.46	1.22	2.77	1.52	1.49	3.87	4.30	9.11	1.49	1.86		3.63	6.00	2.29	0.94	3.54 3.32	1.25	1.52	1.04	1.16 9.48		6.37	5.97	1.89	3.20	1.71	1.10	0.76		4.02	1.04	1.25	20.0
395.39 397.46	398.10	400.60 402.52	405.35	409.04	411.21 412.24	414.92		423.25	425.14	426.60	427.82	430.59	432.11 432.91	434.40	438.27	442.57	451.68	453.18	455.04		458.66	464.67	466.95	467.90	471.43 474.76	476.01	477.53	478.57	479.72 489.20		495.57	501.55	503.44 504.54	507.74	509.44	510.54	511.30 514.08		519.74	520.78	522.03	nt: 170
390.72 395.39	397,46	398.10 400.60	402.52	405.35	409.04	412.24		414.92	423.25	425.14	426.60	427.82	430.59 432.11	432.91	434.40	438.27	442.57	451.68	453.18		455.04	458.66	464.67	66.004	467.90 471.43	474.76	476.01	477.53	478.57 479.72		489.20	495.57	501.55 503.44	504.54	507.74	509.44	510.54 511.30		515.72	519.74	520.78	CN:77C
155 156	157	158 159	160	161	162 163	164		165	166	167	168	169	170 171	172	173	174	175		176		177	178	179	180	181 182	183	184	185	186 187		188	189	191	192	193	194	195		19/	199	200	TUZ
114 115	116	117 118	119	120	121 122	123		105	106	107	108	109	110	112	113	114	115		116		117	118	119	120	121	123	124	125	126 127		128	129	130	132	122	133	135	0.51	137 138	139	140	141
			46				47			48	f	49	50	51	52				53			54	55								56			57			3	Ŗ				
										CBOT	DVP			SROT					Fe-Ti												SROT			SROT								
										10	9			19					20												21			22								
										e	2			-					т															_								
										9	8			57					22												27			m. 56								
			Chem.				Chem.			Incl /Cho		Chem.	Chem.	Incl.	Chem.				Chem.			Chem	Chem.								Pol.			Pol./Che			med					
1289.6 1300.0	1305.1	1310.2 1317.5	1327.0	1336.0	1345.6 1350.8	1352.2 1358.0	1386	1386 1387.0	1391.0	1391	1401.6	1410.0 1410	1415.2	1424.0	1434.0	1434 1445.0	1466.7 1467.0	1484.4	1488.0	1491.0 1491.1	1503.0	1519.0 1519.1	1530.0	1533.6 1537.9	1538.0	778.8	1562.8 1563.0	1568.4	1572.0 1593.0	1593 1616.7	1617.0	1643.0	1648.6 1652 5	1662.0	1662.2	1673.2	1676.3 1685.0	1685.4	1698.6	1708.0	1710.7	C.12/1
43.5			40.7			38.4		39.7	52.9			45.5		45.6	39.8		40.5		53.8	52.7	52.8	51.5	32.6		52.5		50.5		57.2		42.3	51.7		45.6			60.0	0.000		43.8		
14.84	1.4		13.91			14.5 13.73	13.8	13.87	19.25	12.4		12.31 22.0		12.22	12.46	16.1	12.5 11.19		15.27	15.88 18.8	21.38	16.42 16.3	16.31	14.8	16.1		15.2 17.31		17.43	17.2	14.51	14.95 14.95		17.13	11.6		12.26	12.8		15.07	17.2	1
4.38	2.2		4.40			4.9 4.10	3.9	3.9 4.16	3.71	4.7		4.30 5.0	11	3.98	3.46	4.3	3.5 3.43		3.81	3.90 4.5	4.31	5.30 4.6	4.13	5.3	4.53		5.6 4.26		4.26	4.5 3.7	4.52	4.62		3.06	3.3		4.02	3.6		4.39	5.7	96
3.47	3.63	000	3.24			3.45 3.25	283	2.83 2.89	2.89	3.02		2.63 2.35	16.6	2.71	2.07	1.99	1.78 2.05		3.07	3.09 3.34	3.29	4.05 3.67	3.10	3.38	3.27		3.03 3.08		3.55	3.43 2.41	2.95	2.76		2.68	2.20		3 10	2.63		3.29	3.51	
0.57	6.5	ł	0.53			0.51 0.57	0.52	0.52	0.56	0.46		0.44 0.34	0 50	0.49	0.43	0.33	0.37		0.58	0.57	0.55	0.55	0.54	0.46	0.52		0.39		0.6	0.55	0.47	0.43		0.63	0.48		0 57	0.52		0.54	0.44	91.6
14.8	12.42	1	14.7			12.41 14	11.86	11.86 13.75	13.81	11.44		13.03 9.27	14.40	13.38	12.78	10.01	10.34 12.5		14.67	14.76	14.9	15.8 12.61	14.8	12.93	15.0		11.52 14.8		15.9	12.72	14.58	14.25		13.83	10.96		140	11.09		14.67	13.61	21.21
1.55			1.63			1.97		1.87	1.86			1.72	1 02	1.78	2.25		2.10		1.73	1.53	1.36	1.38	1.43		1.34		1.43		1.36		1.99	1.99		2.34			1 12	6111		1.52		
KA1B1300			KA1B1327			KA1B1358		KA1B1387	KA1B1391			KA1B1410	0111010	KA1B1424	KA1B1434		KA1B1467		KA1B1488	KA1B1491	KA1B1503	KA1B1519	KA1B1530b		KA1B1538		KA1B1563		KA1B1593		KA1B1617	KA1B1643		KA1B1662			KA181685	CONTRIEN		KA1B1708		

												ı	Сһгог	rse	вүеле	ewe	yetel	N												tu eN	19v3 ; 1 64.
Service periods, unusion of glassy write securities they use	Glassy & vesicular; vesicle transition	Glassy, oxidiand, & vericulars sediment mathing: shelly patronhoe "2"	Glassy & rubbly; shelly pahoehoe	Oxidized, glassy; veside transition; overlies 6' of rubble Oxidized, glassy, sediment-coated vesicles	Glassy & oxidized, vesicle transition; shelly pahoehoe	Glassy, oxidized & highly vesicular; shelly pahoehoe Glassy, oxidized & highly vesicular; weathered surface?	Glassy, oxidized & spattery; shelly pahoehoe Oxidized, glassy; shelly pahoehoe	Oxidized, vesicular, & glassy	Oxidized, glassy & vesicular Oxidized, glassy & vesicular	Oxidized & glassy; shelly pahoehoe	Oxidized, glassy & vesicular; flow mold? Nutrix, glav & vescular transform molecule fightly: #44 v prior drive	Barry & codract, weich transfor (moderate Alghy weicular) Glassy & codract, weich transfor (moderate Alghy weiche Glassy & codract, weiche transfilter), shelly patherbee Glassy & codract, weiche transfilter), shelly patherbee	Glasy, oodined, possible flow mold, şetily phoehoe to 1983.0	Glassy, oxidized & rubbly; vesicular shelly pahoehoe	Glassy, spattery & oxidized daw.orderd.stuth.htth.vacate.overles_1 of weatherd basis	Glassy, vesicular & rubbly; overlies ~2' of rubbly	Rubbly, glassy & oxidized; vesicular Rubbly, oxidized & glassy: sediment coating in vesicles	Glassy, oxidized, & weathered flow surface Oxidized, elsese, & ruhhlv	Oxidized, glassy & rubbly	Oxidized, glassy, weathered-looking rubble orderd & nuby, wethered toxing andly patrone trough 25.23	daws on down ruddy, wethered appearance; thich patronics through 282. F Wide Scherberton et al. Hold Mark Andre 2014 Sciences and Sciences a	Vesicle transition; oxidized, glassy & rubbly	Vesicle transition, oxidized, & sediment coated	Contact of basalt to underlying baked sediment	Contact of baked sediment to underlying basalt	Oxidized basalt with sediment-fracture fill $^{\rm \sim4^{\circ}}$	Glassy basalt contact with baked sediment	Sediment contact with basist; interesting laminations?	das y, oxited & weathered surface sederert courty enfratures weather Classy, oxited, rubBV; weathered op arence & welthrent weach fil	Publicky, could and its plus syste of deard meet its alloweous (7) could by, sheeky pathodrose	Glassy, oxidized, spattery & rubbly; shelly pahoehoe
B120	B120	B121	8121	B122 B123	B124	B124 B126	8127 8127	B128	B129 B130	B130	B132 B133	B133 B134/B135 B135	8137/8138 8138	B140	B140 B142	B143	B144 B144	B149 B150	B151	B154 B155	B160 B160/B161	B164*	B170	8171	8171	B173	B181	B181*	B182 B182	B183	B184
2.1	6.6	3.2	3.7	7.6 8.5	2.0	3.20 13.3	4.9 0.00	7.3	9.6	9.60	14.0 6.4	4.0 12.8 7.10	22.3 3.1	19.0	6.0 15 8	5.6	10.5 6.1	39.7 11.3	13.4	28.2 5.2	48.1 8.5	30.4	63.1	3.9	0.4	23.6	78.2	2.1	3.7 5.7	3.70	18.2
1/33.4	1792.7	1797.4	1799.2	1804.1	1816.7	1819.9 1823.6	1831.2 1839.7	1846.7	1857.1 1870.4	1875.3	1881.7 1889.0	1898.8 1908.4 1915.5	<mark>1929.5</mark> 1935.9	1939.9	1952.7	1980.8	1983.9 2002.9	2008.9	2030.3	2040.8 2046.9	2086.6	2111.3	2139.5	2144.7	2192.8	2201.3	2231.7	2294.8	2298.7 2299.1	2322.7	2400.9
1/30.3	1733.4	1792.7	1797.4	1802.2 1808.0	1810.1	1816.7 1819.9	1823.6 1831.2	1839.7	1846.7 1857.1	1870.4	1875.3 1881.7	1889.0 1898.8 1908.4	1915.5 1929.5	1935.9	1939.9 1952 7	1958.5	1980.8 1983.9	2002.9	2024.7	2030.3 2040.8	2046.9 2086.6	2097.9	2111.3	2139.5	2144.7	2192.8	2201.3	2231.7	2294.8 2298.7	2299.1	2322.7
							5.58 8.56				5.67	8.07	7.06	7.44				6.64			11.01			10.18	28.56				46.94		
+6'0	18.07	1.43	0.55	1.49 0.64	2.01	0.98 1.13	2.32 2.59	2.13	3.17 4.05	1.49	1.95 2.23	2.99 2.93 2.16	4.27 1.95	1.22	3.90 1.77	6.80	0.94 5.79	1.83 4.82	1.71	3.20 1.86	12.10 3.44	4.08	8.60	1.58	14.66	2.59	9.27	19.23	1.19 0.12	7.19	23.84
1000	546.41	547.85	548.40	549.89 551.72	553.73	554.71 555.83	558.15 560.74	562.87	570.10	571.59	573.54 575.77	578.75 581.68 583.84	588.11 590.06	591.28	595.18 596.95	603.75	604.69 610.48	612.31 617.13	618.84	622.04 623.90	636.00 634.44	643.52	652.12	653.70	668.37	670.96	680.22	699,46	700.64 700.77	707.96	731.79
04170	528.34	546.41	547.85	548.40 551.08	551.72	553.73 554.71	555.83 558.15	560.74	562.87 566.04	570.10	571.59 573.54	575.77 578.75 581.68	583.84 588.11	590.06	591.28 595.18	596.95	603.75 604.69	610.48 612.31	617.13	618.84 622.04	623.90 636.00	639.44	643.52	652.12	653.70	668.37	670.96	680.22	699.46 700.64	700.77	707.96
	202	203	204	205 206	207	208 209	210 211	212	213 214	215	216 217	218 219 220	221 222	223	224 225	226	227 228	229 230	231	232 233	234 235	236	237	238	239	240	241	242	243	244	245
	142	143	2	144 145	146	147 148	149 149	150	151 152	153	154 155	156 157 158	159 160	161	162	164	165 166	167 168		169 170	171	173	175	176	177	178	179	180	181	182	183
	59			60			61	62	63	64		65	66		67			68	69			20	71		72					73	74
	Fe-Ti			×			SROT	Fe-Ti	SROT	×					Fe-Ti			SROT					LK							SROT	Fe-Ti
	23			24				25	26	27					28			29					30							31	32
	-		Т	-					-													_								_	-
	Pol52			Pol54			Chem.	Chem.	Chem.?	Chem.		Chem.?	Chem.		Chem.			Chem.	Chem.			Chem.	Chem.		Chem.					-55	Pol. 32
/31.9	766.3 767.0	794.7 796.0	798.3	803.2 809.1	815.0	818.3 821.8	26.4 327.0 334.0	344.5 345.0	6.1.9	869.2	87 8.5 885.4	396.7 397.0 303.5 303.5	122.3 323.0 332.7	37.9	946.8 947.0	0.00	13.4 382.4 93.4	04.4 005.0 116.8	027.0	27.2 35.6 343.9)44.6)62.5)63.0	93.1 104.6	125.7 126.0	42.5 (43.0	180.0 180.2 197.7	198.0	27.0	257.0 26.7	97.0 98.9	816.0	375.0
	1 51.0 1	1 T		88	49.4 11		1 47.6 1 51.7 1	1 42.0 11	52.7 1	11 51.0 11		1 45.8 11 11	10 45.0 19	1 11	1 46.6 19	4 24 3	4 2 2	20 49.4 20	40.9 20	й й <mark>й</mark>	41.0 26 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2	2: 33.8 2:	35.5 2:	35.6 2: 2: 2: 2:	39.1 2:	51.4 21	39.6 2 2	43.4 2:	48.4 2	45.1 2
	14.1 17.55	12.01	10.11		13.38 16.2		15.5 12.93 16.64	12.8 17.10	15.60	16.7 15.72		14.4 14.00	18.5 18.16		17.6 19.02		1	19.8 14.17	17.41	13.1	17.3 13.7 16.74	16.8	13.7 12.69	14.19	13.07 12.1 14.1	11.53 12 5	13,88	12.96 12.7	15.07	9.96	10.07
	4.0 3.73	4.2 3.71	11.0		4.68 5.1		6.5 5.07 4.66	5.6 5.11	4.69	6.3 6.66		7.1 5.23	<mark>5.2</mark> 5.33		6.7 4.91	e U	0	7.4 5.38	4.14	6.0	5.8 5.2 4.77	6.2	5.1 4.20	0.7 4.26	4.38 3.9 5.3	4.38	4,43	3.3 4.12 5.5	4,44	2.96 2.9	3.63
	4.75 4.66	4.72	60#		2.86 2.67		2.79 2.68 2.98	4.43 4.26	3.06	4.19 3.61		2.98 3.05	2.48 3.26		4.08 3.41		897 7	3.21 3.14	3.05	3.11	2.90 3.33 2.97	3.28 0.00	2.40 2.22	2.25	2.56 2.55 2.50	2.56	2.65	2.69 2.76	2.78 0.00	2.55	3.28
	0.86 0.9	0.81	65		0.44		0.31 0.38 0.46	0.57	0.47	0.48		0.30 0.42	0.34		0.44 0.5	8	3	0.31 0.42	0.53	0.37	0.36 0.46 0.42	0.38	0.34 0.38	0.38	0.42 0.47 0.34	0.42	0.43	0.36	0.45	0.62	0.65
	15.23 17.6	17.64			14.52		9.22 13.84 14.41	15.65 16.44	14.64	14.28 14.13		12.80 15.77	10.57		13.43 15.28	2	19.5T	11.74 14.45	14.23	13.08	9.47 12.69 14.19	12.44	11.02 12.96	12.78	13.46 12.71 13.51	13.5	13.77	14.22 13.57	14.23	13.14	15.1
	1.04	1 20	77.1		1.18		1.18	1.13	1.19	1.20		10.61	1.31		1.30			1.31	1.80		1.60	6C-T	1.85	1.81	1.63	1.63	1.64	1.78	1.50	2.63	2.94
	KA1B1767	KA1R1796	DETTTT		KA1B1815		KA1B1827 KA1B1834	KA1B1845	KA1B1869	KA1B1873		KA1B1897	KA1B1923		KA1B1947			<a1b2005< th=""><th>KA1B2027</th><th></th><th>KA1B2063</th><th>CENZETVA</th><th>KA1B2126</th><th>KA1B2143</th><th>KA1B2180</th><th>KA1B2198</th><th>KA1B2227</th><th>KA1B2257</th><th>KA1B2297</th><th>KA1B2316</th><th>KA1B2375</th></a1b2005<>	KA1B2027		KA1B2063	CENZETVA	KA1B2126	KA1B2143	KA1B2180	KA1B2198	KA1B2227	KA1B2257	KA1B2297	KA1B2316	KA1B2375

7																							uou	чэ	srse	элә	ЯE	ue	εkei	вM											
x	shelly pahoehoe	nualinas payen Sui.	<mark>basalty sheliy pahodho e</mark> y & wathendi, theb pahothoe	th sediment filling	lar; shelly pahoehoe	thered rubble	rubble	aftered fracture surface	ed rubbly surfaces	shelly pahoehoe	oating shelly pahoehoe	elly pahoehoe	rearish was barred. Budy patratice	hat weathered?	it veside costing; shelly phroetoe	n veskleg exensively nabity shelly pahoehoe	a to be weathered	shelly pahoehoe	sediment vesicle fillings	ediment vesicle fillings	sicular; minor sediment Ve shet yshoehoe or flow kide	tendive sodiment coating			with sediment coating inderlying basalt	ily, minor sediment coating	w molds, vesicle transition Ent: oxidized & alias sv	matrix; highly vesicular	ment-coated vesicles	iki be coaiting with in v esicles to costad sedment within fracture	ted by caliche(?)	ite) weid te filling: shally patroethoe	(a zerre crizer di) accorded	andy principal ad leaders (BCLY & 2011)	socia ted with to write right ow)	ed(:/) rubble & rubble	toture & vesicle surfaces	ed fracture & rubble ediment coatings	0	Vesicular & oxinitiero	ed (?); shelly paho ehoe & sediment coating
	Glassy, oxidized & rubbly;	CONTRACT OF DASART WITH UNDERLY	Contact of sediment with underlying Dati red glum, notaby; odd wher coultry, spatter	Glassy, oxidized & rubbly w	Glassy & oxidized, highly vesicu	Glassy, oxidized & wea	Glassy, oxidized	Glassy, celdized & vesicular with we	Glassy, oxidized & weathen	Glassy, oxidized, spattery,	Gaos, collicel & watered rubbleartics Oxidized & vesicular with sediment o	Oxidized & rubbly; she	Gauge Areabolis Carado Fandabon miror undiment, pr	Rubbly, glassy, somewh	Weld et anotion, rubilly & oxistant. Minor sector an	Autabiy, oxidized, & sedment austing with Rubbly, glassy, & oxidized;	Oxidized & rubbly, appears	Oxidized, glassy & rubbly;	Glassy, coldized & rub bly w/ minor :	Glassy, oxidized & rubbly, minor s	Rubbh, coldized, glassy & highly ve Pubby, oxided & plass; somere coting on nb	Rubbly, vestoular, oxidized & glassy, ex	Contact of basek to underlying sedment		Kutory, glassy & concrect spattery Contact of sediment to u	Vesicle transition, oxidized, glassy & rubb	Calcerfiled & recemented rubble; flov Flow contact with intrinsic sedim	Sediment coated vesicles in glassy	Oxidized, glassy & rubbly, sedir	Oodd ærd, spætter, å glassy; sed mentå o Gasså ndds, veied ærett som er contrag; onb	Glassy & rubble recemen	G asov, Adddy, spatten, & andked, sedment (calo	Annual Carlon and A failed Second A world in the second	A first framework of the set tree of the set	d any & veri at lar, posit lai, flowoutbreak (a	Oxidized & weather Vesicle transition	Oxidized, glassy, sediment coated fra	Glassy, calcite & sediment coat Glassy & vesicular rubble; s		Glassy & weathered () : unver	Glassy, rubby & ceidized; weathen Glassy & vesicular; weathered
	B188	8818	B188 B189	R101	B191	8192	B193	B194	B196	B197	B197 B199	B199	B201	B201	B204	B204 B207	B207	B208	B208	B209	B210 R211	B211	B213		8212 8213	B215	B216-B217 R218	B219	B220	B221 B222	8222	B223	477Q	B225	B226*	B229 B230	B230	B231 B231		9727	B233 B235
	36.5	n n	0.8 9.5	14.7	5.3	8.0	10.7	<u>19.3</u>	12.7	13.8	3.3 11.7	7.1	14.8	4.1	22.2	2.1 29.2	2.2	7.3	4.10	10.9	4.2	6.0	8.3		4.8 1.2	12.7	12.3	13.4	10.8	10.0	4.2	4.2	9 J	3.9	10.8	9.1 9.4	4.6	5.6 7.4		7.7	7.40
	2403.0	2406.7	2412.4 2419.7	0 2 64 6	2474.4	2478.2		2479.0	2488.5	2502.7	2508.0 2516.0	2526.7	2546.0	2558.7	2572.5	2575.8 2587.5	2594.6	2609.4	2613.5	2635.7	2637.8 2669.2		2669.2		2676.5 2697.2	2701.4	2703.7 2709.7	2714.5	2719.3	2727.6 778 8	2741.5	2760.2	2772.5	2785.9	2796.7	2806.7 2811.9	2816.1	2820.3 2838.1		2842.0	2868.4 2877.5
	2400.9	2403.0	2406.7 2412.4	7 010 7	2437.9	2474.4		2478.2	2479.0	2488.5	2502.7 2508.0	2516.0	2526.7	2546.0	2558.7	2572.5 2575.8	2587.5	2594.6	2609.4	2613.5	2635.7 2637.8		2676.5	e 000e	2669.2 2686.3	2697.2	2701.4	2709.7	2714.5	2719.3 2727.6	2728.8	2741.5	2.0012	2772.5	2785.9	2796.7 2806.7	2811.9	2816.1 2820.3		2838.1	2842.0 2868.4
											11.28	7.27					14.81	19.19												36.88				12 67	10:71			15.91			9.24
	0.64	CT-T	1.74 -735.30	55.5	11.13	1.16		0.24	2.90	4.33	1.62 2.44	3.26	5.88	3.87	4.21	3.57	2.16	4.51	1.25	6.77	0.64 8.90				3.32	1.28	0.70	1.46	1.46	2.53 0.37	3.87	5.70 2.75	2	4.08	3.29	3.05 1.58	1.28	1.28 5.43	¢	61 T	8.05
	732.43	00.007	735.30 0.00	743.07	754.20	755.36		755.60	758.49	762.82	764.44 766.88	770.14	776.02	779.89	784.10	785.10	790.83	795.35	796.59	803.36	804.00 813.57			011 00	822.11	823.39	824.09	827.38	828.84	831.37 831.74	835.61	841.31 045.06	0000	849.14	852.43	857.07	858.35	859.63 865.05	FC 330	900.24	874.29 877.06
	731.79	C#:70/	733.56 735.30	737.52	743.07	754.20		755.36	755.60	758.49	762.82 764.44	766.88	770.14	776.02	779.89	785.10	788.67	790.83	795.35	796.59	803.36 804.00			010 67	818.78	822.11	823.39 824.09	825.92	827.38	828.84 831.37	831.74	835.61	10.140	845.06	849.14	855.48	857.07	858.35 859.63	90 DE	c0.c08	866.24 874.29
	1	240	247 248	949	250	251			252	253	254 255	256	257	258	259	260 261	262	263	264	265	266 267	i	270	000	209 271	272	273	275	276	277	278	279	007	781	282	283 284	285	286 287	000	202	289 290
		184	185 186	107	188	189			190	191	192 193	194	195	196	197	198 199	200	201	202	203	204			1	206 207	208	209	211	212	213	214	215	216	219	220	221 222	223	224 225		226	227 228
		75						1	76			11	78	79				80													81	;	82	60	8				84		85
		SROT							SROT					SROT																	SROT	i	-9- -	CDOT							SROT
		n n						1	ж т				35																		36	1	37	00	ĥ						39
		×					_																							_				Т							
		iem58							ith. -62			ė	n45	æ				÷													-65		ė	00-	7				-		-55
	-	Lith./Ch						-	Ind!/U			Chem	Chen	Chen				Chen													Incl.	1	Chen	Incl					Chen		Incl.
2375.1	2402.0	2406.0	2411.0	2436.7	2453.0	2471.5	2476.0	2478.6	2484.7 2485.0	2495.6 2506.7	2507.0	2522.0	2541.0 2541.2	2552.4	2570.0	2574.2 2581.7	2591.1	2593.4 2602.0	2612.0	2624.6	2636.8	2656.0	2656.3 2672.9	2683.6	2685.0	2699.3	2702.6	2712.1	2716.9 2726.7	2727.0	2739.7 2740.0	2750.9	2770.0	2702.0	2794.0	2801.7 2809.3	2814.5 2815.0	2818.2	2840.5	2862.5	2864.0
6		9 52.5 4	7 47.6	3 40 6	5 49.5	8 0 45.3	4 49.3		5 8 38.4	5	4 52.4	9 37.4 9	1 42.6 2		7 41.7		9 43.1	0	4 41.2	,	2 43 3	4 43.7	m	9	9 45.4					4 39.8	8 4 49.0		5 47.6	2 43.5	8 50.6		7 5 50.5		2	4 50.0	4 50.1
12.		12.4	12.5	4	13.5	12.4	14.7		15.7 15.7	ų	14.8	12.9	14.2 15.	ų	14.0		13.	ų	13.2	1	12.0	15.4	ä	Ξ.	16.2				17	14.4	15. 14.6		1.11	16.2	12.3		14.1		Ξ.	al ti	14.0
3.5		00 3.04	33 2.83	0 3.5	76 2.92	32 3.5 75 3.00	39 3.01		34 4.5 79 3.86	16 4.8		17 3.18 30 5.6	75 3.73 38 3.6	0 6	3.95			17 4.0	37 3.48	4	7 2.80	33 3.42	33.4	75 3.1	30 2.95				9 3.1	22 3.01	86 5.5 22 4.14		82 4.19 56 4.5	33 4.62 00 3.7	12 3.35		37 4.6 32 3.39		3.6	74 3.25 34 4.3	
0.83 4.(0.71 3.0	0.77 3.0	290	2.7 2.1 2.1 2.1	0.54 2.6 0.66 2.1	0.69 2.8		22 23	0.37 2.4		0.49 2.1	0.53 2.7	2010	0.55 3.0			2.3	0.49 2.5	1	, c N3 (0.49 2	31 05.0	040	0.56 2.5				0.51 2.1	0.53 2.2	0.44 3.5		0.57 3.0 0.59 3.6	0.55 3.5			0.48 3.0		0.52 2.6	0.61 2.	
10.41 (13.93	14.04	12.83	13.68	13.43 13.9	13.9 (11.52	12.97		12.33	11.00	500	14.23			00.11	12.9		1 74 71	12.52	9.32	10.93	12.51 (10.39	12.72	14.48 (14.49 (15.8	11.65 (14.1		11.27		11.23	13.48 10.21	
		2.12	2.53	3.35	2.34	2.06	2.05		1.95			2.22	3.80		1.97				1.94		2 33	2.33		:	2.48					2.14	1.46		1.46	1.36	1.79		1.84			1.85	
		KA1B2406	KA1B2411	20000101	KA1B2457 KA1B2453	KA1B2472	KA1B2476		KA1B2485		KA1B2507	KA1B2522	KA1B2541		KA1B2570				KA1B2612		KA1R76A6	KA1B2656			KA1B2685 KA1B2685					KA1B2727	KA1B2740		KA1B2770	KA1B2779	KA1B2794		KA1B2815			KA1B2841	KA1B2864

												ï																		15	3	
								le	on Jorma	1 ssn	БÐ	U ;	chroi erse ena	npo 36v Ka	S	I	uo Jew ssr	СЪг Иогі				uc	Subchro	ierse	/əЯ	цтоп	սաթլ	Ν				ron
Oxidized, rubbly & vesicular; shelly pahoehoe	Bakeh, coldred, veix dar & ridth; weathered [] (drefs parcetoe treated @ 2044.8'	Oxidized & vesicular with red sediment vesicle fillings Glasy, oxidized & vesicular rub ble with sediment costing	Glassy, oxidized, & red sediment-coated rubble Glassy, vesicular, with sediment-vesicle filling	Oxidized, glassy, & weathered; shelly pahoeho e	Glassy, weathered surface, increased vesiculation	Oxidized, glassy, & highly vesicular; shelly pahoehoe Oxidized e lassov, & vosicular: rohor chanze	oonusteers (seasoy) oo eessoonies (oonus respective)	Basait-sediment contact basait overhing baled sediment	Basik soliment contact; basikt overlying, acdiment; "2' interhed Glassy & vesic ular, weathered surfax e overlying rubble zone	We affiered rubble; shelly pahoehoe & spattery flow to p	Weathered rubble Weathered, oxidized, & glassy rubble; shelly pahoehoe	Glassy, vesicular & weathered; shelly pahoehoe	Bank solewet cortal; shelp pited or @ J 20 5; bank cortyleg "13' solewet kire ted	Sediment-basish contact: sediment overlying & infiltrating baselt	Weathered, vesicular & glassy rubble	Oxidized, glassy & weathered flow surface; shelly pahoehoe Oxidaed, plany & vestul ar; shely pahoehoe @31687, weathered flow ar face	Basait -soliment contact; basalt overlying ~5' soliment interbed	Sediment-bas alt contact; sediment over lying bas alt Codiment-costed in Inhibit: oxidized & alseev	Basit sedment consists baselt own/ying "2" actiment interbed	Sediment-basalt contact; sediment over himg basalt	Weathered, vesicular rubble Weathered & glassy rubble; shelliy pahoehoe	Vertauler & glassyr, minor axiation; shelty pahoehoe @ 3300.5*6.3204.6 Oxid ized & adissors: soastteery: shelly pahoehoe @ 3246.7	Oxidized, glassy & vesicular, weathered surface Glassy, vesicular & weathered	Glasoy, vesicular; a brupo coxistion transition; arbity pahoehoe Clasy & weathreed nubble; coxise ditu w mold; their typ Anorhoe @ 3322.4	Oxidized rubble with sediment coating	Basilt-sedment contact; basilt overlying ~2.5' sediment interbed	Sediment-basalt contact	Glassy & vesicular; weathered	Rubbly, glassy & oxidized; weathered surface Buside solment consid: busit confring "2" solment insufed	Sediment-baselt contact; sediment overlying baselt subble		Basilt-sedment cortact; basilt overlying =2.5' sediment interfeed
B235	B238	B238 B240	B240 B243	B244	B245	B246 B248	B252	B253	B253 B254	B254	B254 B255	8257	B257	B257	B258	B258 B259	B260	B260 B260	B260	B261	B261 B262	B266 R268	B268 B269	B272 B273	B278	B284	B284 B286	B291	B294 B296	B296		B296
5.8	26.3	5.8	4.30 24.2	16.0	26.3	2.20	13.7	13.9	42.1 5.80	4.40	7.10	6.90	5.20	1.70	7.10	3.30 6.70	5.90	0.600	3.10	0.200	2.30 7.00	47.8 13.8	3.90	32.3	2.50	6.69	3.00 12.3	49.8	25.9 15.5	1.80		4.60
2886.9	2891.5	2897.1 2904.5	2913.6 2926.5	2936.7	2968.8	2980.5	2988.5	3012.7	3028.7 3030.9	3044.6	3051.7 3065.6	3107.7	3111.8	3116.9	3122.7	3127.1 3133.5	3142.5	3149.4	3156.3	3163.4	3166.7 3173.4	3179.3	3184.5 3187.6	3187.8 3190.1	3244.9	3258.7	3264.5 3268.4	3300.7	3311.8 3353.2	3355.7	3415.3	3420.6
2877.5	2886.9	2891.5 2897.1	2904.5 2913.6	2926.5	2942.5	2968.8 2980 5	2984.2	2988.5	3012.7 3028.7	3030.9	3044.6 3051.7	3065.6	3107.7	3111.8	3116.9	3122.7 3127.1	3133.5	3142.5	3154.6	3156.3	3163.4 3166.7	3173.4 3179.3	3179.9 3184.5	3187.6 3187.8 3100.4	3197.1	3244.9	3258.7 3264.5	3268.4	3300.7 3311.8	3353.2	3355.7	3415.3
	7.04	3.96	6.71	0	9.15		14.02										7.80	5.74 3.60			5.21	96'6	2.35	00 0	64	10 70	2.96		25.85			
2.87	1.40	1.71 2.26	2.77 3.93	3.11	8.02	3.57	1.31	7.38	4.88 0.67	4.18	4.24	934.39	1.25	948.48	1.77	1.34 1.95	2.74	2.10	0.52	2.16	1.01 2.04	1.80 0.18	1.40	0.06	14.57	4.21	1.77 1.19	9.85	3.38 12.62	0.76		21.31
879.93	881.33	883.04 885.29	888.07 892.00	895.11	904.89	908.46 909 58	910.89	918.27	923.15 923.82	927.99	934.39	00:0	948.48	0.00	951.80	953.14 955.09	957.83	959.94 061.52	962.04	964.20	965.21 967.25	969.05 969.23	970.64 971.58	971.64 972.34 074 40	989.05	993.25	995.02 996.21	006.05	009.44	022.82		.044.12
377.06	379.93	381.33 383.04	885.29 888.07	392.00	396.87	904.89 108.46	09.58	910.89	318.27 323.15	323.82	330.16	34.39	947.23	348.48	50.03	951.80 953.14	55.09	957.83 550 0.4	961.52	962.04	964.20 965.21	967.25 969.05	969.23 970.64	971.58 971.64	374.48	389.05	93.25 95.02	96.21 1	1 06.05 1 009.44 1	122.06 1		122.82
291 8	292	293 294 8	295 8 296 8	297 8	299 8	300	302	303	304 305	306	308	309	310	311 9	312	313 314 9	315	316	5	318	319 320	321 9	322 9	324 37E	326	327	328 329	330	331 IC 332 IC	333 1(334 ¹⁽
229	230	231 232	233 234	235	237	238	240	241	242 243	244	245 246	247	248	249	250	251 252	253	254 257	667	256	257 258	259	260 261	262	264	265	266 267	268	269 270	271		272
		86	87	88	89			06				91	92	93	94			95		96		97	98	66	100		101	102		103		
								SROT				SROT	SROT	SROT	SROT					SROT		SROT								SROT		
								40				41	42	43	44					45										46		
								L				Σ			z					0										٩		
								. 65				LL-	-73	-76	56					-60										63		
		Chem.	Chem.	Chem.	Chem.			Pol./Chem				Incl.	Incl.	Incl.	Pol.					Pol.		Chem.	Chem.		Chem.		Chem.	Chem.		Pol./Incl.		
2882.2	2889.5 2890.0	2894.6 2895.0 2900.8	<mark>2910.5</mark> 2911.0 2915.0	2933.0 2933	2960.0	2960.3 2974.7	2986.4 2986.5 2986.5	3009.0	3020.7 3029.8	3038.5 3039.0	3048.2 3061.0 3064.6	3090.0	3109.8	3114.4	3117.8 3120.0	3124.9 3130.3	3138.0	3144.7 3146.0	3155.5	3160.0 3160.5	3165.1 3170.1	3178.0	3180.7 3182.0 3187.0	3187.7 3188.0	3223.0	3228.7 3251.8 э263 с	3266.0 3266.5	3290.5 3297.0	3306.3 3324.9 3345.0	3354.5	3368.7 3404.0 3409.8	3418.0
	48.0	48.4	53.9 49.7	49.8	45.3			44.3		41.8	36.5				47.0			51.0	0.07	43.8		41.2	41.5 8.7	40.4	49.1		41.1	44.1	46.1		47.0	
	12.73	<mark>13.1</mark> 13.33	15.5 14.89 12.75	14.64 15.2	15.31	18.2	12.0	12.54	C.#1	15.3 12.46	12.09 20.4	00			14.5 16.31			14.8 15.64	1477	14.82 16.3		14.41	15.5 12.89 12.98	12.6	15.75	15.0	13.14	19.3 13.96	13.8 18.16		14.5 16.86 14.9	
	4.5 3.80	4.5 2.98	3.0 3.06 3.28	3.36 4.3	3.39	3.7	3.5	2.77 2.8	0.7	3.4 2.85	2.72 3.4	3.46			4.8 4.40			4.0 3.71	C (1)	3.70 4.4		4.77	4.2 3.73 3.66	3.66	3.91	3.4	3.28	3.3	2.5	:	4.1 5.43 8.0	
	2.84 3.06	2.46 2.90	2.42 3.10 2.92	3.13 3.19	2.92	3.13	2.55	2.04	t.	2.19 2.06	1.82 1.67	3.03			2.85 3.06			2.40 2.94	167	2.98 2.98		3.05	2.89 3.11 3.10	3.10	3.26	2.67	2.87	2.18	2.26		3.23 3.02 2.99	
	0.45	0.39	0.59 0.73 0.64	0.67 0.54	0.62	0.61	0.53	0.53	ŧ	0.46	0.35	0.63			0.43		\$	0.57	76-0	0.58 0.49		0.46	0.49 0.6 0.61	0.61	0.6	0.57	0.63	0.47	0.65	5	0.56 0.4 0.27	
	11.64	9.50 13.77	11.23 13.95 14.07	14.33 12.83	14	11.84	12.53	13.2	+ T.D	10.91 11.97	12.7 10.09	13.86			13.30 14.31			14.21	2	15.2 11.00		14.8	12.27 14.4 14.49	14.5	14.77	11.36	14.7	9.62	11.36		12.94 14.4 12.95	
	1.45	2.44	2.47 2.04	2.01	1.96			2.52		2.49	2.61	1.71			1.69			1.85	DC-T	1.97		1.94	2.64 2.67	2.64	2.49		2.92				1.23	
	KA1B2890	KA1B2895	KA182911 KA182915	KA1B2933	KA1B2960			KA1B3009		KA1B3039	KA1B3061	KA-1B-309C			KA1B3120			KA1B3146	CETERTAN	KA1B3160		KA1B3178	KA1B3182 KA1B3187	KA1B3188	KA1B3223		KA1B3266	KA1B3297	KA1B3345		KA1B3404	

																																						1	54	
) len	lorn	l ssr	вÐ								ι	nor	4D 9	vers	/әЯ	ħ	ədliE)											uc	суго	qng	; len	lorn	N III	idə	0)				rt Reverse Chron
Weathered rubble (alteration makes boundary terruous)	Glassy, weathered flow surface (alternation); shelly pahoehoe	Ruddly & weather oil, verial large starty pairs at one as 265.9.0°, 2607.0° (ruddly)	ک انتخار می میلاد به اینام به اینام به ۵۰ اینکار او میداند. در رامند، به اینکار به میلاد به بیمار به ا	Altered glass & vesicle fillings at flow top; weathered?	Transition to more vestaular basels, vesicle fillings & altered glass at flow top	Atomit glass and weathering; thitly patroshoo/sochwork fracture (Bing) (\$152.7 Numbering in boxs off. 5 ediments control rubble & alterned dates	Possible flow boundary, sediment fracture /kubite fils; shely parto choe	Ba safe sediment contact; baselt overlying $^{\infty}\mathbb{T}$ sediment interbed	Sediment-basalt contacts sediment overlying & infiltrating baselt Baselts confinence renearer baselt exercision confinencem ************************************	and a second a state of a construction of a second second second second second second second is	and entertainty and a start of a second start and a second start of a second start o	Sother one. A lived on idea charack ruck of possible sectioners interfeed (5 m), show 372055	At wed glassy rubble with soliment infiling; thelity phoshoe	Rederert baskt cortact, sedereret influenze, vesicular hav inset hele patrochoe Basis R-sediment contact; basist overfying ~1' sediment interbed	Sedment-basalt contact: sedment infiltration vesicles	uko kanten na kaka ku turuku, a kuanten na anaka ku ku kata jena kana kata jenako ina 18.18.7	Transfort to proter vesculatory wethered is their photonom @ NOLLE	Sodionant sootaal sidishia shallar sakaahaa 2012 Y		Veskular, glassy & ruboly, snelly panoenoe Sediment-coated rubble: vesicle transition		veskulal, glassy & luuury, sitelly palloenoe	Rubbly, weathered & glassy	Baselt-adment constrict basit overlying ~1" adment interbed Conditionant-there alt-constract	Sediment-basait contact Altered a lassy rubble	Weathered, sediment cost of & outland; shelly pair ontool @ 383.2.0*	Oxidized & altered, vesicular	Shelly pahoehoe @ ~3913', 3916.7' & 3920.0'	Oxidized & glassy rubble, we athered surfaces	veside transition, oxidized œgiassy	Baalcodment ourset baalcover(wg " 75 baked antimentine fool Sediment-baselt contact sediment infiltrating baselt rub ble	Bas alt-sed ment contact; basalt overlying minor in te deed	Sediment-basish contact; sediment overlying & infikrating baselt.	Basalt-sediment contact; basilit overlying "-f-sediment interted Sediment-basilit contact; sediment overlying vest-ular basalit		Basale sediment contact; basit contriving ~7 sediment interfeed Vest util ; weathered surface (attenation prolific in this interval)	which is subtract the set of they. Thus and special is how point that the life processments in tracks Anothered than when set instrument and provide and which off, it was projectional at 2017. If does 2	Weathered flow surface, sediment coating and rubble	به فنظه هذا محد قدم و فرهم فرها الم المعلية المالية. ومحافظ الم أنهما و 1.11.1. 10 قوم المعاط و مسالم الم	Track to A down of the Context and the Context of the Context of the A model of these class. The DAM, wantaket, context of the Anna Development of the Anna Ontext
B298	B299	B301	B302	B303	B305	B307 B307	B308	B308	B308	0000	B313	B314	8321	B321 B321	1000	B323	B324	non.	C260	8326 8326	1000	/769	B327	8329	8329 8331	B332	8334	B336 B336	B339	0.047	B343 B343	B349	B349	B349 B350	-	B350 B353 B354	B355	B356	B357	B360 B362
15.6	8.90	21.4	7.60	4.40	23.4	14.8 3 00	6.00	5.10	1.10		42.0	5.40	64.2	3.00 1.00		18.2	13.0	01.0	0//0	3.90		OT 'C	3.30	19.1	24.0	7.50	21.3	19.4	4.30	1.12	14.2 0,600	56.9	4.80	3.00	2010	9.20 11.0 6.30	8.00	10.0	18.3	20.5 23.8
3428.6	3440.9	3490.7	3516.6	3532.1	3533.9	3538.5	3541.1	3556.7	3565.6	0.700	3599.0	3622.4	3637.2	3640.2 3646.2	561 3	3652.4	3660.8		2003.1	3705.1 3710.5		5//4./	3779.2	3780.2	3/81.0	3812.2	3820.9	3824.8	3832.9	5850.2	3855.3 3856.2	3880.2	3887.7	0.9095	1.0700	3947.6 3951.9 2070 0	3993.2	3993.8	1050.7	4055.5 4058.5
3425.6	3428.6	3440.9	8490.7	3516.6	3532.1	3533.9	8538.5	3541.1	3556.7 ccc c	0.000	3594.6	0.992	8622.4	8637.2 8640.2	646.7	3651.3	8652.4	0.000	0000.0	8063.1 8705.1	1.045	COLY	3776.2	8779.2	8781.0	3799.2	8812.2	8820.9	8829.8	6.700	8836.2	3856.2	3880.2	887.7		3928.4 8947.6 8951.9	979.0	8993.2	8993.8	1050.7 1055.5
		18.93	10.52	,				,	13 00		., .,	10.79	11.20	., .,	8.81	100		Ì							.,	,,	,	., .	, ., .	.,			12.48	14.69		15.42				
0.91	3.75	15.18	7.89	4.72	0.55	1.40	0.79	4.75	2.71 6.57	, e c	1.34	7.13	4.51	1.83 1.83	1 55	0.34	2.56	02.0	12 00	1.65	10.67	10.61	0.91	0.30	5.55	3.96	2.65	1.19	0.94	10.1	0.27	7.32	2.29	6.49 5.91		5.85 1.31 8.26	4.33	0.18	17.34	1.46 0.91
45.04	148.79	163.97	071.86	176.58	77.13)78.53	79.33	84.08	386.79 193 37	05.62	50°56	104.11	108.62	111.36	17 97	13.25	115.81	16 61	10.00	15.621 130.96	E0 E3	66.06	151.90	152.20	158.00	161.96	164.61	165.80 167 37	168.27 69.27	17.00	(75.37	182.68	184.97	191.46 197.38		203.23 204.54 212.80	217.13	217.31	234.65	236.12 237.03
44.12 10	45.04 10	48.79 10	63.97 10	71.86 10	76.58 1(77.13 10	78.53 1(79.33 10	84.08 1(86.79 1()L CC CD	95.63 1(96.98	04.11 1	09.53 11	11 36 11	12.92	13.25 11	15 01 11	10.01	10.01 L	1 20.00	TT DE'DE	50.99	51.90 11	52.45 1	58.00 11	61.96 11	64.61 11 65.80 11	67.32 11	17'00	75.10 11	75.37 11	82.68 11	84.97 11 91.46 11		97.38 L 03.23 L 04.54 L	12.80 15	17.13 12	17.31 12	34.65 12 36.12 12
10	335 10	336 10	337 10	338 10	10	339 10	10	340 10	341 10 342 10	24.0	344 10	345 10	346 11	347 II 348 II	340	11 C+C	350 11		11 11	352 11	11 2E2	17 CCC	11	354 11	355 11	356 11	357 11	358 11 350 11	360 11		362 II	363 11	364 11	365 11 366 11		367 11 368 12 369 12	370 12	12	371 12	12 372 12
274	275	276	277	278		279		280	281 201	707	284	285	286	287 288	000	583	290			292 293		294		295	296	297	298	299	301	302	303	304	305	306 307	100	308 309 310	311		312	313
	105		106	107		108		109		110			111				112		1	113	114			115								116	117		118		119		120	121
	Ľ					¥		×					SROT				ΓK		i	Fe-TI	Fe-Ti			SROT								SROT					×		SROT	ΓK
	48					49		50									51		;	23	53			54								55					56		57	58
						σ		æ									s			F				-																>
	51					-71		-72									'n		:	69-	-49			58	~														99	-60
	Incl.		Chem.	Chem.		Incl./Chem		Incl.		Chem.			Chem				Pol./Incl.			Pol.	Incl./Chem			Pol.	ith /Chem							Lith./Chem	Chem.		Chem.		Chem.		Incl.	Pol.
3422.0 3431.5	3436.7 3437.0	3456.7 3461.0	3504.7 3506.0	3527.0	3533.0	3536.0	3539.8	3546.0	3563.0	3579.5		3610.7	3626.0	36.44.0 36.44.0	3644.1	3651.9	3656.0 3657.0	3659.9	3662.0	3671.0 3681.5 3707.8	3731.7	3733.0 3733.0	3777.7	3778.7	3790.0	3792.0	3816.6	3822.9 0.900	3831.4	3837.2	3850.0 3855.8	3871.0	3884.0	3901.0	3932.7	3938.0 3945.0 3065 5	3985.0	3993.5	4023.6 4030.0	4041.0 4053.1 4056.0
	43.5	47.5	39.0	39.5		60.3	2.00	43.1	46.2				41.4	42.0			45,4		1	47.0		45.2			50.7	50.5		0 00	0.00		48.9	47.1	47.7	48.3	t.01	46.8	41.3		53.5	47.7
18.3	14.3 12.42	13.6 14.89	14.4 15.87	13.70		32.67	+O'CT	12.67	14.11	14.6			11.9	13.10	12.6		13.79	16.6	1	12.79 13.9	13.3	12.97			12.40	14.66	9 1	10.01	67'01	13.6	15.08	15.08	14.02	17.17	16.2	15.32	15.38		10.5	11.78
3.3	10.6 6.26	5.4	6.2 3.10			1.40	0.6T	4.62	7.43	6.3		;	4.64	5.58	4.3		9.89 3.43	12.9		7.22 5.9	5.0	5.68 5.68			2 22		0.4			4.1	7.16	3.14	3.67	64.6	8.6	3.03	7.45		1.1 0.90	6.5 6.55
2.18	2.79 2.61	2.12	2.92 3.10			3.44	*****	3.21	3.20	2.79			2.71	2.79	2.56		3.16 3.34	2.87		4.21 4.27	3.89	4.08			2.93		offic			2.40	3.48	3.32	2.86	515	3.48	3.41	3.31		1.66 1.94	2.04 3.64
0.47	0.19	0.28	0.34			1.7	1177	0.5	0.31	0.32			0.42	0.36	0.43		8 0.23 0.7	0.16	1	0.42	0.56	0.52			0.38		À.			0.42	0.35	0.76	i 0.56	0 51	0.29	1 0.81	0.32		1.10	0.4
12.16	11.7 13.5	11.8	12.10 14.31			18.36	-0T	14.8	14.2	13.5			12.96	13.23	11.7		14.15 14.76	12.7		17.1	15.14	16.9			13 50		77.1			11.5	13.6	14.85	13.46	14 12	12.95	14.45	14.3		10.2	14.56
	0.91		2.32			1.52	2011	1.26	1.05				1.45	1.18			0.77 1.93			0.86	000	1.10			1 18						1.09	2.22	1.87	1 50	CC:T	2.23	1.17		6.7	1.10
	KA1B3437	KA1B3461	KA1B3506	KA1B3527		KA183536	DECERTION	KA1B3546	KA1B3563				KA1B3626	KA1B3644			KA1B3656 KA1B3657			KA1B3671		KA-1B-3/3 KA1B3733			KA1R3790	KA1B3792		00000143	OZOCOTAN		KA1B3850	KA1B3871	KA1B3884	KA1B3901 KA1B3975	CZECOTWO	KA1B3945	KA1B3985		KA1B4030	KA1B4056

eill		Nunivak Normal Subchron		Gilbert Reverse Chron	,	nordodu2 len
Vescuar with secondary mineralization of filming oxidized	Weschair and contents was recording mean attraction of May Weschair with recording international or filling or obtained by the proceeding international or filling or filling proceeding and the content with the content attraction or filling means and a second was recording in the proceeding of the obtained was a second was international or filling means and a second was international or filling content or an externational or proceeding or filling content or an externational or filling or filling or filling content or an externational or filling or filling or filling content or an externational or filling or filling or filling	 Determine a summer of much structures in a manufacture structure and a summer of the structure of the structure	flow break (@ 4532.2° Basile-sediment c stif fine grained, well consolidated; catar 3, sediment-filled vesicles, transition and celadonie (?) filled vesicles, transition Basiale-sediment contrat	Process and search instantion constrained and the process of th	Sedement (And Factors, conference and sedement interfactor Sedement (And Factors, conference and sedement interfactor interactional and a second and a second and a second Sedement/second and a second a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a se	Verte resolution, autors with surface of Autorsky monoral action Oxford, automatic autorsky manual Mark watcher Marchan Autorsky autorsky autorsky manual Autorsky autorsky for an autorsky autorsky autorsky autorsky autorsky autorsky Section Autorsky autorsky autorsky autorsky autorsky
B304	8365 8367 8367 8368 8369 8370 8371 8372	8373 8374 8374 8375 8375 8375 8379 8381 8381 8381 8383 8384 8389 8389 8393 8393 8393 8393	8401 8402 8403 8407 8411	8411 8413 8414 8416 8419 8423 8423	8424 8425 8425 8426 8426 8426 8432 8432	B433 B434 B434 B438 B441 B442
13.7	22.1 22.1 9.50 9.70 9.60 12.4	5.00 12.4 6.40 6.40 17.2 12.0 11.1 14.6 14.6 14.6 14.6 14.6 14.6 15.9 10.3 32.8 32.8 6.10 6.10	26.6 0.500 7.90 10.0 14.8 25.7	4.80 12.3 14.6 21.8 31.5 31.5 6.70	8.10 7.40 3.00 19.4 19.4 15.2 15.2	13.1 5.80 39.3 37.1 2.50
4000.5	40/5./ 4086.7 4101.0 4101.0 4111.0 4129.3 4173.6	4182.5 4195.7 4217.8 4213.5 4223.5 4233.0 4233.0 4259.6 4259.4 4259.7 4259.7 4259.7 4259.7 4259.7 4256.7 4326.7 4747.7 4756.7 4756.7 4756.7 4756.7 4756.7 4756.7 47	4419.0 4433.6 4454.7 4470.6 4475.1 4485.4 4518.2	4524.3 4530.4 4557.0 4557.6 4565.4 4575.4 4575.4 4516.2	4631.0 4656.7 4651.5 4673.8 4673.8 4730.2 4737.5 4737.5 4737.5	4775.7 4783.8 4791.2 4794.2 4801.8
2 9066 5	4000.5 4075.7 4093.0 4101.0 4111.0 4129.3 4149.8	4173.6 4182.5 4195.7 4217.8 4233.5 4233.5 4233.6 4233.0 4259.6 4277.0 4259.6 4277.0 4259.3 4259.3 4353.3 4355.9 4353.0	4385.7 4419.0 4433.6 4454.7 4470.6 4475.1 4485.4	4518.2 4524.3 4530.4 4557.0 4557.5 4555.4 4575.4	4616.2 4631.0 4656.7 4661.5 4673.8 4688.4 4710.2 4737.5	4769.0 4775.7 4783.8 4791.2 4794.2
		12.81 26.21 5.30 6.92 6.92	14.60 22.20 25.79		17.50 14.97 16.28	16.37 24.43
2.80	3.35 3.35 1.92 2.44 3.05 5.58 6.25 7.25	2.71 4.02 6.74 1.74 2.96 2.96 2.93 3.78 3.78 3.78 1.195 1.195 1.195 1.195 1.195 3.56 6.92 6.92	10.15 4.45 6.43 4.85 1.37 3.14 10.00	1.86 1.86 8.11 8.11 2.41 2.41 3.05 12.44	4.51 7.83 1.46 3.75 6.64 8.32 9.60	2.04 2.47 2.26 0.91 2.32
1242.27	1245.63 1247.55 1249.98 1259.03 1258.61 1258.61 1264.86 1264.86	1274.83 1278.59 1287.59 1287.22 1292.40 1292.40 1296.33 1393.63 1393.63 1393.63 1393.63 1310.55 1310.55 1322.48 1322.48 1322.48 1322.68	1346.91 1351.36 1357.79 1362.64 1364.01 1367.15 1377.15	1379.01 1380.87 1380.97 1389.13 1389.153 1391.53 1394.58 1407.02	1411.53 1419.36 1420.83 1424.57 1428.57 1435.67 1433.59 1453.59	1455.63 1458.10 1460.36 1461.27 1463.59
1239.47	1242.27 1245.63 1247.55 1249.98 1253.03 1258.61 1258.61	1272.11 1278.85 1285.59 1285.59 1285.59 1285.59 1290.23 1290.50 1290.60 1297.68 1310.55 1310.55 1310.55 1310.55 1310.55 1322.44 1322.84	1336.76 1346.91 1351.36 1357.79 1362.64 1364.01 1367.15	1377.15 1379.01 1380.87 1388.97 1389.13 1391.53 1394.58	1407.02 1411.53 1419.36 1420.83 1424.57 1429.02 1435.67 1443.99	1453.59 1455.63 1458.10 1460.36 1461.27
373	375 375 375 375 377 378 378 379 379	381 381 383 383 385 385 386 386 339 390 391 392 393 395 395 395 395 395 395 395	399 400 401 402 403 403 405	406 407 407 408 409 410	411 412 413 413 414 415 415 417	418 419 420 421
114	314 315 316 316 318 319 320 321	322 323 325 325 325 326 326 328 333 331 333 333 333 333 333 335 335 335	340 341 342 343 345 345 345	347 348 348 349 350 351	352 353 354 355 356 356 356 358	359 360 361 361
CC1	771	123 124 125 126	127	129	132 133 134	ŝ
2	5	s Rot		skol	srot	¥
	ň	66		99 99 99 	59	ĕ
5	ະ ກ	×		67 88	2	
	o đ		£ £	en ci.		
C.2	- - - - - - - - - - - - - -	67 Ch 88.1 4.9 4.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 4.5 5.5 4.1 7 7 6 5.5 4.5 1 1 0 7 7 8 6 5 5 6 5 6 5 6 7 7 1 1 6 8 8 3 3 2 2 5 7 9 9 1 1 8 8 3 3 5 5 6 9 9 1 1 8 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 9 9 1 1 8 1 8	2.0 LU 5.7 LU 6.0 LU 6.0 LU 5.5 S.5 S.5 S.5 S.5 S.5 S.5 S.5 S.5 S.5	113 70 72 72 73 73 70 72 73 75 73 75 75 75 75 75 75 75 75 75 75 75 75 75	2 0 C C C C C C C C C C C C C C C C C C	8.0 8.5 9.0 7.0
400	0.0 40/0 0.5 408 0.5 410 0.5 411 0.5 411	416 417, 4213 6.2 4214 423 423 423 423 426 426 426 426 426 426 426 427 428 429 429 427 429 429 427 429 427 429 427 429 429 427 429 427 427 427 427 427 427 427 427 427 427	2.8 440 440 440 2.2 444 2.2 444 448 450	452 1.5 452 1.5 454 1.5 454 5.9 456 5.9 456 0.1 460 4600	0.0 463 463 0.0 463 669 0.3 469 469 2.7 475 475	1.2 477, 478 478 1.5 478 479 0.7 479
10.75	12.42 14.6 12.42 12.85 4	14.5 16.0 13.96 4 13.67 4 13.67 4 13.58 13.58 13.58 4 13.66 4	15.04 3 22.3 18.8 15.53 2 15.53 2 15.86 2 15.86 2	13.16 2 21.3 2 13.25 2 14.02 3 14.02 3 16.8	16.2 16.97 4 18.57 4 16.5 13.77 4 14.3	12.56 4 13.8 12.57 4 12.92 4
	6.3 8.14	4.3 3.01 4.28 4.28 9.05 6.5	4.8 5.5 3.49 7.1	5.87 11.6 7.40 9.25 9.25 6.1	3.8 5.15 6.0 4.0	9.4 9.4
	2.09	2.43 3.23 3.39 3.39 3.39 2.81 2.74 1.71 1.80	1.47 1.07 1.50 1.48	1.22 1.13 1.23 2.06 2.05 2.92	2.51 2.79 1.67 1.83 1.83	2.29 1
	0.24	0.41 0.79 0.81 0.46 0.46 0.12 0.46	0.22 0.14 0.31 0.15	0.15 0.07 0.12 0.16 0.16 0.19	0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	0.16 0.16
	10.05	10.55 14.76 14.76 13.79 13.79 13.79 13.79	8.23 9.58 11.2 9.74	9.9 8.22 10.28 12.25 14.13 9.03	11.82 13.48 10.55 10.46	12.64 9.78
	0.77	2.37	2.46	1.50 1.34 0.82 1.18	1.54	0.76
020641644	KA184082 KA184082 KA184118	KA184215 KA184267 KA184267	KA1B4402 KA1B4446 KA1B446	KA184527 KA184547 KA184562 KA184562 KA184601	KA1B4637 KA1B4695 KA1B4695	KA1B4778 KA1B4789 KA1B4797

																											e la																				15	6			
Nor	l er	IAVI	ЧL																					u	u,	чЭ	rse	ə٧	ЪЯ	tr:	əqı	פו															u	οιι	hch	ns I	IE
														_											6		e (?) se		_																	_					
Vesicles filled with sear relay minered badan/polimeer, re-corrected rubb	Realities diment contact, sedment is baked in uppermost 2.5	Sedment in terbed; un detiying basalt is oxid zed and rubbly	sedenen & vaceda prevent batter controp on rubbiok a from an under, worder prontiso Rascalt- se of imment, con intart-	Sedment interbed; underfying basilit is oxid/sed and rubb)	. Faith: Advoc. advoc 4.000 are a filmed. Indicated & version of the environments of the filmer of Annual	Versita for with great execution or state for a state for each of the Control of the Control of the state of the	Oxd aed & vesicular with sedim end/record ary mineral task on in vesicles		Daidae (a recould (a ref ar divise (Yoncordae) wite endication within mechan (Die fo (p 1 201 4/ 2012	Oodteed & vestular, sediment coasing within vestilles, shely @ 515.1.1	Oxd1æd & vestodær with sediment/secondærymheraltzation filting:	Out do ed. & vest as lary vest bles filled with sed meet β can rulery mineral battan	Vesterular with celadonite (2) filling & sediment fill	On dead & ve to fing ontedentin (1), secondary the restation & a diment veriand	and a second second second provides and under the second second second second second second second second	Oxid level, vesi vlar & nddby, re-conserted nddd e with secondary mineral taxi or	Rubbly, west to der with cell adord to (7) secondsrymfraeod and on & sectiment-fil	Basik-se dravit contact; baked sed in ent 'kniss' within rubble zone	seament interted, underying bisaint is oxiduzed and ruppy	Ruddly, could of 8 advects vest las filed with secondary relevances/sechrant	Oxidited with secondary mineral sation/sedment fill within weiches	O midteel, wel ou ar welt-on-devent/secondary mineral luctico R1, Greek, @ 5.07.1.0.85.0.5.	uxuuteeti, ves cluer ruutee wen second any mineralization. Masteri far ueth are an sarrond are min arsite atten : ni hite.	Vestoular with satiment/secondary mineralization within vestor	Oxidized, attered & vesicular, green secondary mineralization	Oxidited, celatorite (?) secondary mineralization, minor sed mant fil	Minor oxidation, vesicle fill of celadonite	Vesioular with sediment/secondary mineralization-fill	Vesicular with secondary mineralization/sediment fil	Abruget of a transition bronking high gas y to caldine dread, according mineral listicol, we also der	Angt okritektiv fen antiges to cell a find or this scordary minal field easile soon and soon and soo	ves ouer with seamen by contrast many mineral and on theory wai de la macture Veskoular & oxidited with secondary mineralization/sediment fill	Vesicular with sediment/secondary mineral-fill	Vestod ar with secondary minimal task investigation (and the	. Vesicular & France of the Discondingnet Proof Isolon/South Ford and Do. B. France of a second secon		Basial-se diment contact, allor ed basial to welves gine, grained red insid we control has not only from a control and the second	Altered basalt	Massive fine slit stone; dusky grey with shell fragments	Med-thin bedded pebble layers	Light grey to brick red mudrock	Soil	Grey massive mudrock	Rring-upwardiaminated, ducky red fine-grained sandstone	Brick red siltstone	Petitie grand e congioner ate with much marche, grantie, quartie dias: Fine-medium prained siltstone	Basalt, vesicular and rubbly	tearts was (the CO-OPT), Contest, while it will reset that a connect of the low word as menotype	week harf order Anger color transion from durf group to ond notified robbly Basalt - sediment contact	Sederest bank to only the set is restain, on shores, shore on the set is non-	Vision for with secondary intersitiation/sector and 11, reaching on another of the
B444 B447	0444	DACO	8453 R453	B453	B454	B458	B458		B459	B461	B462	B464	RAGS	B465	B466	B467	B470	B471 B471		B472	B473	B475	B476	B477	B477	B479	B482	B483	B484	B486	B488 B489	B499	B500	B502	B505	0010	0059											B518	B519 B520	B520	B522
24.0	5	2.30 57.6	4.60	1.30	57.6	10.9	6.50		9.50	15.7	13.9	15.3	10.1	4.10	6.30	12.3	14.9	13.0		6.50	16.8	3 00	4.10	6.60	6.60	17.5	26.8	16.2	12.7	11.4	13.8	97.0	16.5	20.4	13.0	110	29.0	51.0	7.30	31.2	8.00	4.30	2.60	4.30	12.6	6.00	12.1	11.9	16.2 4.70	2.30	18.0
4804.0	4.6204	4844.0	2.6004	4878.1	4917.4	4954.5	4957.0		4981.0	5007.4	5009.7	5067.3	6.1702	5073.2	5103.4	5118.8	5130.3	5146.0	C'ECTC	5175.2	5185.3	5189.4 E10E 7	0 8065	5219.7	5234.6	5247.6	5247.9	5254.4	5271.2	5289.6	5292.6 5.296.7	5303.3	5311.4	5328.9	5371.9	0.000	5396.0	5411.9	5425.7	5522.7	5529.3	5559.6	5570.2	5583.2	5594.7	5674.7	5682.0	5713.2	5721.2 5725.5	5728.1	5732.4
4801.8	4004.0	4823.4	4859.2	4872.3	4878.1	4917.4	4954.5		4957.0	4981.0	5007.4	5009.7	5067.3	5071.9	5073.2	5103.4	5118.8	5130.3	0.0410	5159.9	5175.2	5185.3	5195.7	5208.0	5219.7	5234.6	5247.6	5247.9	5254.4	5271.2	5289.6 5202.6	5296.7	5303.3	5311.4	5353.2	0	5384.6	5396.0	5411.9	5425.7	5522.7	5529.3	5559.6	5570.2	5583.2	5623.7	5674.7	5682.0	5713.2 5721.2	5725.5	5728.1
				1	25.57	06.66	67.67								21.55							35.36				5	70.01		7.10					26.36	01.04			17.13			38.80				16.92						
0.67 5.91		6.28 4.63	3.99	1.77	11.98	11.31	0.76		7.32	8.05	0.70	17.56	1.40	0.40	9.21	3.32	2.90	4.74		4.66	3.08	1.25	3.75	3.57	4.54	3.96	0.09	1.98	5.12	5.61	1.25	2.01	2.47	5.33	4.94	2.87	3.47	4.85	4.21 70.57	10.67	5.03	6.22	3.23	3.96	3.51	15.54	2.23	9.51	2.44 1.31	0.79	1.31
1464.26 1470.17		1476.45 1481.08	1485.08	1486.84	1498.82	1510.13	1510.89		1518.21	1526.26	1526.96	1544.51	1545.92	1546.31	1555.52	1558.84	1563.72	06.80dt 1572.74		1577.40	1580.48	1581.73 1583.65	1587.40	1590.96	1595.51	1599.47	1599.56	1601.54	1606.66	1612.27	1613.18 1614.43	1616.45	1618.91	1624.25	1637.36	16.41.72	1644.70	1649.55	1653.75	76.6001	1688.35	1694.57	1697.80	1701.76	1705.26	1729.65	1731.87	1741.38	1743.82 1745.13	1745.92	1747.24
463.59		1470.17 1476.45	1481.08	1485.08	1486.84	1498.82	1510.13		1510.89	1518.21	1526.26	1526.96	1544.51	1545.92	1546.31	1555.52	1560.82	1568.50		1572.74	1577.40	1580.48 1581.73	583.65	1587.40	1590.96	1595.51	1599.47	1599.56	1601.54	1606.66	1612.27 1613.18	1614.43	1616.45	1618.91	1632.42	627 36	1641.23	1644.70	1649.55 cro.ar	c/.cco	1683.32	1688.35	1694.57	1697.80	1701.76	1714.10	1729.65	1731.87	1741.38 1743.82	1745.13	1745.92
422 3423	2	424	426	427	428	429			430	431		432	433		434	435	437	438	-	440	441	442	444	445	446	447		448	449	450	451	453	454	455	457	150	459	460	461	407	463	464	465	466	467	468					
363 264	+DC	365	367	365	366	367			368	369		370	371		372	373	375	376	10	378	379	380	38.7	383	384	385		386	387	388	389 300	391	392	393	395 395	200	397 397	398	399	400	401	402	403	404	405	406					
					136			137				138			139								140					141		142					143				144			145				146					
								Ľ				¥			ĸ													SROT		×																~					
								67				89			69																																				
_					_							Ą											_						_						_																
								4				-45			-67																								ć												
					Chem.			Pol.				Incl.			Incl.								ŧ					Lith.		Chem.					Lith.				Lith./Chen			Η				Lith.					
4803.0 4915.0	4817.5			4875.0	4904.5 4905.0	4936.0	4955.8	4969	4970.0	4999.0	5008.6	5025.0	5042.9 5071.0	5072.6	5078.0	5100.0			5170.1	5171.0			5201 9			5243.0	5247.8	5252.0	5262.8	5287.0	5292.0				5367.0	5367.5		5404.0	5418.8	5444.0 5459.3	5526.0	5552.0	SSGALS	5583.0	5589.0	5649.2	5678.4	5697.6	5717.2 5723.4	5726.8	5730.3
47.5	40.0			42.1	52.3	40.7			32.3	39.8		44.2	33.9		41.4	47.9				39.7						45.1		46.2		38.3	36.1				38.7					34.6		29.3		42.5							
12.60	0.01 16.0			12.53	14.7	13.46	q	11.2	11.93	11.87		11.36	16.38 16.38		11.37	13.53 13.53			10.6	11.91						11.51	C'14	14.38		11.85	11.67				11.52	12.8				11.49 13.6		11.6	2.21	13.97							
8.35	9C'/			3.59	3.28	96.6	2	9.4	6.54	4.06		6.87	6.0		6	л xx			4.2							2	0				3.32					3.1				623 43			2	7.58							
1.86	1.69			1.70	1.86 2.33	2.63	÷1.2	1.69	1.64	1.81		2.20	2.09			C :2			1.98							96.6	00.7				1.76					1.74				1.65		1	ġ	1.69							
0.16	0.16			0.34	0.49	0.19	9	0.13	0.18	0.32		0.23	0.25		8	21			0.34							5	7C'N				0.38					0.40				00 22.0		6		0.16							
11.13	10.49			11.93	9.57 12.1	12.79	14.71	9.82	11.26	12.13		12.18	10.29		-	156			11.36							:	8				11.7					11.73				10.99		201	Root	9.81							
0.72	70.0			1.75	1.70	0.88			1.32	1.60		1.09																			2.26									1.39				1.05							
KA1B4803	CTOHOTYN			KA1B4875	KA184905	KA1B4936			KA1B4970	KA1B4999		KA1B5025	KA1B5071		KA1B5078	KA1B5100				KA1B5171						KA1B5243		SR		KA1B5287	KA1B5292				KA1B5367					KA1B5444		KA185552		KA1B5583							

nıoN		٦A	c3												u	JLC	łJo	qn	s	əs.	ıə	۰ə	Я.	Ĺ.r	١A	ED											
There also have a find a grant to more conducted, and not a character () of the radio of non-tendent The matter is true may any sumature trant for conduct of a character and	Original with secondary minaculication (sed in act uside in 40	Ruddy with re-comentation via secondary miner als adoint and at on present		Re-comented rubble, minor sediment & copious after ation of gass.	the second state of the se	Post in the hard day of every particle of gain is making in the matchese.		Sedment/secondary mineralization within fracture & veside fill		Bu self sectioned contain. O million of the divertification of the containty million of welfs the east los-	Highly after od barait i ense within sediment interbed = 1.5° thick and most transmission intervention intervention and most transmission.		Sector erekkassik coretaci, red iectoreek jastapo iect with lighk grey, missive basik	Basalt breccia [HYALOCLASTITE]	Tarration into fundiación ets, sandatore to clayatone with leidopan grains in matrix	Breccia (Pillow?)	Light grey laminated claystone	Non-volcanic silt	Planar bedded siltstone	Chloritized basalt	Basalt breccia [HYALOCLASTITE]	High hy at terred, wes kovier towards. Wes kines if hed wild's secondar y miner alto abloin	Vesicular with sediment/secondary mineralization	Highly after ed with sed in ent/second ary miner al astion with in weicles											Contact of sediment to underlying basalt now	Increased vesiculation, sediment, glassy texture	
8532 8524 8526	8533	B534	Dr. Jr	0000	R538	R530		8541		8543	B544 R544		B545	B545	B546							8557	B559	B562										100	403	A75	
13.3 4.70 17.9	20.4	12.1	00.0	12.7	17.9	12.5		25.1		20.4	3.70 1.50		6.80	8.80	5.00		24.8	2.00	6.10	43.0	38.0	12.4	26.6	37.9	5.00	24.8	2.00	6.10	43.0	38.0	12.4	26.6	37.9	0.40	6'TQ	4.5	
5745.0 5749.0 5755.0	5767-1	5779.0	0.100.1	0.002.5	5.0012	5820.2	1.0.00	5833.5		5838.2	5856.1 5926.5		5938.6	5944.8	5957.5		5975.4	5987.9	6013.0	6033.4	6037.1	6038.6	6045.4	6054.2	6059.2	6084.0	6086.0	6092.1	6135.1	6173.1	6185.5	6212.1	6250.0	0.000	0.500	778.9	
5732.4 5745.0 5749.0	5755 0	5767.1	0.0000	0.6110	6.799.9	9 5802.2	aia000	5820.2		5833.5	5838.2 0 5856.1		5926.5	5938.6	5 5944.8		5957.5	5975.4	2 5987.9	6013.0	6033.4	6037.1	6038.6	5 6045.4	6054.2	6059.2	6084.0	6086.0	6092.1	6135.1	6173.1	6185.5	6212.1	• • • •	1.500	763.8	
4 C	65	33	5	t	0	16.8)5	-	2 3	16 32.4		69	39	37 9.4		16	31	55 16.9	22	3	91	22	58 4.7	52	99	51	20	= :	2 2	× -	= :	55 48 1	1.0+	2.5	2 8	0
2 2 8 2 8 8	81 3.0	44 3.1	00	81	51 0.	00 5.4		05 4.(48	94 5. 40 21.		09 3.0	98 1.4	85 3.4		30 5.4	11 3.4	76 7.0	98 6.	11 1.	57 0.4	64 2.0	32 2.4	84 1.	40 7.	0.0	2/ T'	98 13.		- 17 - 17	40 20 20	00	101 101		33 202	1973 CC
24 1/51. 08 1752. 30 1754.	12 1757.	81 1761.	2271 1766	38 1767	81 1768.	51 1774.		00 1778.	0110	-6/ /T - 50	48 1/84. 94 1806.		40 1810.	09 1811.	98 1815.		85 1821.	30 1825.	11 1832.	76 1838.	98 1840.	11 1840.	57 1842.	64 1845.	32 1846.	84 1854.	40 1855.	00.001 10	87 1869.	70 1001.	C001 0C	34 I893.	45 1905.	00 00	202 20	00 237.	
1/4/. 1751. 1752.	1754.	1 1757.	1321	1766	73 1767.	1768.		·5 1774.	0000	9.17	7 1/79. 8 1784.		79 1806.	30 1810.	31 1811.		32 1815.	33 1821.	34 1825.	1832.	35 1838.	1840.	36 1840.	87 1842.	1845.	1846.	1854.	1800.	38 1856. 1856.	1007 1007	10 1881. 14 100F	.0221 It	1893.	100	100	732. U	5
	17 46	8 47	- - -	Ť	0 4	1	1	2 47	;	ui 4 :	4 4 4 4		.6 47	.7 48	8		9 46	148	1 48		2 48		34	4 48					ۍ 4	9 4	4	80 4	6				
	47 AC	4		#	48 41	49 41	F	50 41		41	41	51	41	41	41	52	41	42	42		53 42		54 42	42					55 42	42	42	42	42				
	1 1				-	IK 1	*	1				-				1					? 1		1						ROT 1								
	20	!				71																															
	AR					٩C	ł																														
	64	;				-45	ł																													real materia	Engmore
	pol				Ψ.	Dol	5	Chem.				Chem.				Chem.					Lith.		Lith.						EF.								
5738.7 5747.0 5752.0	6764 1	5774.0	5786.4	5707 G	0.9972	5806.0	5811.0	5825.0	5831			5908.6				5965.5			5990.0	6030.0	6035.3	6037.9	6042.0	6049.8	6056.7	6071.6	6085.0	6089.1	6113.6	6154.1	6179.3	6201.0	6247.0	010070			
		40.6			34.6	35.1	35.5	34.9											44.7	42.2												39.2	41.3				
		9.66	10.9		12.56	12.28	12.47	8.53	14.7			12.8				9.1			9.33	9.28												9.28	9.28	1.01			
		7.88	8.5		3.93		9.93	8.40	9.6			6.0				5.8			6.47														4.8	0			
		2.63	2.35		2.08	0014	2.21	2.57	1.73			1.91				2.40			2.43														CV C	74-7			
		0.24	0.20		0.38	20	0.16	0.22	0.13			0.23				0:30			0.27														98.0	R:D			
		13.54	13.03		11.86		12.5	13.05	11.63			11.83				12.26			12.25														14.35	R:H			
		0.89			2.33	-	0.87	0.98											1.03																		
		KA1B5774			KA185799	KA1R5R06	KA1B5811	KA1B5825											KA1B5990	KA1B6030												KA1B6201	KA1B6247				

Curriculum Vitae

Katherine Elizabeth Potter,

(July 2014)

Education:

B.S.: Geology, 2005, Fort Lewis College, Durango, CO; May, 2005, GPA: 3.30 M.S.: Geology, 2010, Idaho State University, Pocatello, ID; May 2010, GPA: 3.82 PhD: Geology, 2014, Utah State University, Logan, UT; May, 2012, GPA: 3.71

Honors and Awards:

Rocky Mountain Association of Geologists Neal J. Harr Outstanding Student Award, Fort Lewis College, 2005.

Student Membership Nomination, Sigma Xi, Fort Lewis College, 2005 'Outstanding Presentation' Geothermal Resources Council National Meeting, San Diego, CA, 2012. Outstanding PhD researcher, 2012, Utab State University

Outstanding PhD researcher, 2012, Utah State University Dr. Bob Oakes Citizenship Award, 2014, Utah State University

Membership in Professional Societies:

American Association of Petroleum Geologists (Vice President, 2013-2014) American Geophysical Union Geological Society of American Sigma Xi (student member)

Professional Experience:

Geologist Intern, Anadarko Petroleum Corporation May 2013-August 2013

 Interpreted seismic data and correlated gamma and resistivity logs to identify exploration targets in the Gulf of Mexico

- Learned and used a variety of new software and tools to reconstruct the basin history, determine charge timing, and estimate resource volume
- Carried out full petroleum system evaluation in a structurally complex area with limited available data

Project Hotspot Chief Scientist

October 2010-January 2011

- Manage core logging team & supervise core logging operations
- Coordinate with DOSECC drill crews to optimize drilling progress
- Evaluate and document mineralogical and structural anomalies in core
- Identify rock and soil types and probable depositional history
- Report progress of drilling & summarize petrologic observations for Project Hotspot/DOE/DOSECC investigators

USGS Lab Tech

June 2008-August 2008 USGS, Idaho National Laboratory

- Examined 1198 feet of basalt core (and some sediment interbeds) from core hole USGS 135 in the southwest corner of INL
- Interpreted basalt flow boundaries based upon lithologic and textural features
- Created a lithologic, conductivity, and porosity log of USGS 135 for future publication and use in SRP aquifer studies

Geologist

January 2007-June 2008 EMC/Golden Predator/Uranium One, Durango, CO

- Evaluated assay values, geologic maps, and geophysical/lithologic logs
- Recommended viable U.S. & Canadian mining properties based upon the above evaluations
- Acted as a consultant at a newly acquired tungsten mine outside of Winnemucca, NV, where I assisted in organizing, digitizing and evaluating older assay data, stope and geologic maps, and lithologic logs

Academic Experience:

Senior (Undergraduate) Thesis, Fort Lewis College, May 2006

'A petrochemical test of competing ideas on the emplacement of South Mountain Rhyolite, Valles Caldera, NM.'

- Advised by Dr. David Gonzales (Fort Lewis College) and Drs. Fraser and Cathy Goff (University of New Mexico and formerly Los Alamos National Laboratory)
- Used ICP-MS major and trace element data and petrography to determine the origin and relationship of rhyolite flows on South Mountain, a post eruptive dome emplaced within the Valles Caldera.
- Presented poster and published abstract: Potter, K., Gonzales, D., Goff, F., Goff, C., 2006, 'A petrochemical test of competing ideas on the emplacement of South Mountain Rhyolite, Valles Caldera, NM: Geological Society of America 58th Annual Meeting, Gunnison, Colorado, GSA Abstracts with programs, vol. 38, No. 6, p. 37 (Abstract attached)
- Invited speaker, Four Corners Geological Society, May 2006

Publication:

Gonzales, D.A., Potter, K.E., Turner, B.E., 2010, Geologic Map of the Bayfield Quadrangle, La Plata County, Colorado: Colorado Geological Survey Open File Report 08-15, scale 1:24,000

Masters Thesis, Idaho State University, August 2010

'Subsurface stratigraphy of the Arco-Big Southern Butte volcanic rift zone and implications for late Pleistocene volcanism, Eastern Snake River Plain, Idaho'

- Advised by Dr. Scott Hughes
- Used Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for major and trace element analysis of 56 samples collected from USGS 135 core, drilled in the Idaho National Laboratory on the eastern Snake River Plain
- Identified and correlated basalt flow groups based upon geochemistry, lithologic logs, petrographic analyses, published geophysical logs, and paleomagnetic logs
- Presented poster at December 2009 annual American Geophysical Union (AGU) national meeting. (Abstract attached)

Publication:

Hodges, M.K.V., Potter, K.E., LeMaitre, T.R., (in press), Construction diagrams, geophysical logs, and lithologic descriptions for boreholes NRF 15, NRF 16, USGS 103, 105, 108, and 135, Idaho National Laboratory, Idaho: U.S. Geological Survey Data Series Report

PhD Dissertation, Utah State University, Spring 2014

'The Kimama Core: A 6.4 Ma Record of Volcanism, Sedimentation, and Magma Petrogenesis on the Axial Volcanic High, Snake River Plain, ID'

- Advised by Dr. John Shervais
- Using ICP-MS and XRF for major and trace element analysis, and Thermal Ionization Mass Spectrometry (TIMS) and NU-1700 High Resolution Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) for isotope analysis, of 250 basalt samples collected from the 1912 m Kimama core. This core was drilled approximately 20 miles north of Burley, Idaho in the central Snake River Plain through the DOE/ICDP-funded Project Hotspot
- Identified and correlated individual basalt eruptive suites within the Kimama core based upon lithological, geochemical, and geophysical log data
- Presented talk at the May 2011 annual meeting of the Rocky Mountain/Cordilleran sections of the Geological Society of America (GSA) (Abstract attached)
- Presented talk at the October 2011 annual meeting of the Geothermal Resources Council (GRC).
- Speaker at the December 2013 annual AGU national meeting.
- Speaker at the 2013 annual GSA national meeting.

Publication:

Potter, K.E., Shervais, J.W., Sant, C.J., (2011) Project Hotspot: Insight into the subsurface stratigraphy and geothermal potential of the Snake River Plain: Geothermal Resources Council Transactions, vol. 35.

Software Experience:

Familiarity with and/or proficiency in use of Petrosys, Petra, Landmark, Seisworks, Adobe Illustrator, Matlab, and Excel.