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ABSTRACT

The Kimama core: a 6.4 Ma record of volcanism, sedimentation, and magma petrogenesis

on the Axial Volcanic High, Snake River Plain, Idaho

by

Katherine Elizabeth Potter, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. John Shervais
Department: Geology

The Snake River Plain (SRP) is one of the youngest and best-preserved examples of
continental hotspot volcanism, with a continuous record of volcanism that extends over 16 Ma
to the present. As part of the Yellowstone-Snake River Plain volcanic province, the Snake River
records the migration of plume-tail volcanism from inception at the Bruneau-Jarbridge caldera
complex at 12.6 Ma to its present locus, under the Yellowstone Plateau. Hotspot volcanic
products on the Snake River Plain include rhyolite lavas and ignimbrites, minor coeval basalts,
and an overlying veneer of younger basalts erupted from fissures and low shield volcanoes.

Although the eastern SRP has been the focus of scientific drilling in the past, the central
SRP has received comparatively little attention. The Kimama core hole was drilled as part of
Project Hotspot, the Snake River Scientific Drilling Project, which seeks to understand the long-

term volcanic and sediment logical history of the SRP volcanic province. The central SRP is the



hinge point between the older western SRP province and the younger eastern province, and
represents a transition between Pleistocene bimodal volcanism and the Pleistocene through
Holocene olivine tholeiite basalt volcanism. It is the only part of the SRP that has not been
scientifically drilled and cored to a significant depth. Investigations of subsurface stratigraphy in
continental volcanic provinces such as the SRP-YP are limited by the limited depth and spatial
distribution of cored wells. The Kimama core is a continuous record of basalt and minor
sediment deposition.

Our investigation of the Kimama core reveals a dynamic relationship between magmatic
systems, volcanic processes, and the topography of the SRP over the past ~6.4 Ma. The long-
term volcanic history of the SRP, documented by magmatic flux and magma composition,
demonstrates that magmatism is mantle plume-derived and does not represent melting of a
shallow mid-ocean ridge basalt-source within the asthenosphere. Our investigation of the
Kimama core, combined with new mantle tomography, refutes non-plume models for the origin
of the Snake River Plain volcanic province.

(173 pages)



PUBLIC ABSTRACT
The Kimama core: a 6.4 Ma record of volcanism, sedimentation, and magma petrogenesis
on the Axial Volcanic High, Snake River Plain, Idaho

Katherine Elizabeth Potter

The Snake River Plain (SRP) is one of the best-preserved examples of continental
hotspot volcanism, with a continuous record of volcanism that extends over 16 Ma to the
present. Yellowstone-Snake River Plain records the migration of plume-tail volcanism from
inception at the Bruneau-Jarbridge caldera complex at 12.6 Ma to its present locus, under the
Yellowstone Plateau.

Records kept by the Snake River Plain volcanic actions include rhyolite lavas and
ignimbrites, minor coeval basalts, and an overlying veneer of younger basalts. The central SRP
has received comparatively little attention in the past. The Kimama core hole was drilled as part
of Project Hotspot, the Snake River Scientific Drilling Project, which seeks to understand the
long-term volcanic and sediment logical history of the SRP volcanic province.

The Kimama core hole is the only part of the SRP that has not been scientifically drilled
and cored to a significant depth in the past. Investigations of subsurface stratigraphy in
continental volcanic provinces such as the SRP-YP are limited by the by the relatively low depth
and spatial distribution of cored wells. The study of the Kimama core provides us with a
continuous record of basalt and minor sediment deposition.

The long-term volcanic history of the SRP, documented by moving magma and its
composition, demonstrates that magmatism is mantle plume-derived. Our investigation of the
Kimama core, combined with new mantle tomography, provides evidence that refutes non-

plume models for the origin of the Snake River Plain volcanic province.
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CHAPTER |

INTRODUCTION

The Snake River Plain (SRP) is a 500 km long arcuate region of low relief in southern
Idaho, bordered to the north and south by Basin and Range topography with its northeast apex
at Yellowstone National Park. As one of the youngest and best-preserved examples of a
continental hotspot volcanic province, the Yellowstone-Snake River Plain (Y-SRP) region contains
a continuous record of rhyolite and post-rhyolite basaltic volcanism that extends from 12.6 Ma
to the present (Pierce and Morgan, 1992; Pierce et al., 2000; Camp and Ross, 2004; Waite et al.,
2006; Smith et al., 2009). The SRP records the migration of silicic volcanism from inception at
the Bruneau-Jarbridge caldera complex in SW Idaho to the current locus under the Yellowstone
Plateau (Pierce and Morgan, 1992; Bonnichsen et al., 2008 Shervais et al., 2006; Hanan et al.,
2008). Interaction between the Y-SRP plume and overlying lithosphere has resulted in large-
scale caldera-forming eruptions, and smaller-output, quiescent basaltic volcanism (Pierce et al.,
2002; Mason et al., 2004; Pierce and Morgan, 2009). Rhyolite-coeval basalts exhibit
compositions akin to mantle-derived melts, and post-rhyolite basalts are compositionally similar
to tholeiitic ocean island basalts, such as those present in Hawaii (Kuntz et al., 1992; Hughes et
al., 2002a).

Time-transgressive linear chains of volcanics, broad regions of topographic tumescence,
and associated geoid anomalies are all distinct features of hotspot volcanism (Morgan, 1972;
Crough, 1978, 1983; Davies, 1988; Sleep, 1990, 1992; Burov and Guillou-Frottier, 2005; Ito and

van Keken, 2007; Burov et al., 2007). Along the 700-km long, eastward-younging Y-SRP chain of



2
silicic calderas, volcanism has modified the composition of the continental lithosphere (Morgan,

1971, 1972; Matthews and Anderson, 1973; Smith and Sbar, 1974; Armstrong et al., 1975;
Smith, 1977; Bonnichsen, 1982; Morgan et al., 1984; Pierce and Morgan, 1990, 1992; Kuntz et
al., 1992; Smith and Braile, 1994; Morgan et al., 1995; DeNosaquo et al., 2009). The Yellowstone
geoid anomaly is a 15 m + dynamically-uncompensated topographic high that represents a zone
of low-density lithospheric-asthenospheric material and mass deficit beneath the North
American plate (Richards et al., 1994; Waschbusch and McNutt et al., 2009). An accounting of
geophysical, structural, geochemical, and volcanological observations has led to wide
acceptance that the explanation for the volcanic and physiographic features present in the SRP
is the interaction between a deep mantle hotspot and the continental lithosphere (Pierce and
Morgan, 1992; Anders, 1994; Smith and Braile, 1994; Saltzer and Humphreys, 1997; Camp and
Ross, 2004; Shervais and Hanan, 2008; Smith et al., 2009).

Various other models of lithospheric and mantle-driven processes have been suggested
for the formation of the Y-SRP volcanic province, including a propagating rift (Christiansen and
McKee, 1978), edge-driven mantle convection (King and Anderson, 1998; King, 2007), a self-
sustaining convective roll (Humphreys et al., 2000), and mantle upwelling through a Farallon
slab gap (James et al., 2011). While these models explain some of the features unique to the Y-
SRP volcanic province, most rely on a shallow asthenosphere source for post-rhyolite basaltic
magmatism, similar to mid-ocean ridge basalts, which are typically depleted in incompatible
trace elements.

As imaged by seismic data, the subsurface of the SRP is thought to be comprised of
Paleozoic clastic and carbonate rocks and Miocene granites associated with magmatism from 6-
10 km (Sparlin et al., 1982). Gravity and seismic data indicate a 2-5 km thick package of

Miocene-Pliocene rhyolite lavas, tuffs, and epizonal granitic plutons above 6 km depth (Braile et



al., 1982; Sparlin et al., 1982). Regionally, drilling has indicated a ~1-2 km veneer of Pliocene-
Pleistocene tholeiitic basalt, interbedded with sparse ferro-basalt lava flows and minor eolian,
fluvial, and lacustrine sediments that overlie silicic volcanic products on the SRP (Doherty et al.,
1979; Kuntz et al., 1992; Anderson and Liszewski, 1997). The emplacement of a dense mafic
mid-crustal sill is thought to have caused subsidence of the SRP volcanic province; subsidence
caused by the mafic mid-crustal sill is ongoing (Braile et al., 1982; Sparlin et al., 1982; Mabey et
al., 1978; McQuarrie and Rodgers, 1998; Rodgers et al., 2002).

The SRP exhibits both vestiges of Y-SRP hotspot track-related silicic volcanism and its
own unique petrogenetic and geochemical basaltic volcanic processes and products (Leeman,
1982a; Kuntz et al., 1992; Pierce and Morgan, 1992, 2009; Reid, 1995; Hanan et al., 1997,
Hughes et al., 2002a,b; Geist et al., 2002; Shervais et al., 2006, Shervais and Hanan, 2008).
Associated processes of assimilation, fractionation, solidification and remelting resulted in the
bimodal volcanic products that characterize the SRP volcanic province (Leeman, 1982a; Hildreth
et al., 1991; Hughes et al., 1999; McCurry and Rodgers, 2009; Leeman et al., 2009). Post-rhyolite
mafic volcanism on the SRP began within 1 m.y. of the cessation of hotspot-track-related silicic
volcanism, and has been primarily expressed by the eruption and coalescence of monogenetic,
olivine tholeiite basalt shields with relatively primitive, high MgO compositions (Hughes et al.,
2002b). The ubiquitous olivine tholeiite lavas of the SRP are distinguished by major MORB-like
depleted mantle chemical signatures (Hart and Carlson, 1987; Carlson and Hart, 1988) as well as
chemical signatures indicative of sub-continental lithospheric mantle (Leeman, 1982b; Hart and
Carlson, 1987).

The topographic effects of Y-SRP hotspot magmatism during the Pliocene and

Pleistocene were the development of east-northeast-migrating continental divides and related



northeastward-successive drainage captures by tributaries to the west-flowing Snake River
(Pierce and Morgan, 1992; Fritz and Sears, 1993; Ore, 1999; Pierce et al., 2002; Beranek et al.,
2006; Sears and Thomas, 2007). Fluvial sand deposits within the SRP preserve evidence of
drainages modified by thermal uplift and subsidence associated with the migration of silicic
volcanism (Beranek et al., 2006; Hodges et al., 2009). From the Miocene to the Holocene,
regional drainage patterns and the history of sedimentation in the SRP can be constrained using
the presence or absence of specific age-populations of detrital zircon grains. Several unique
zircon point sources are located at the headwaters of stream systems in the Snake River
watershed, providing an age-correlated framework upon which to identify the fluvial sources of
detrital zircon grains (i.e. Geslin et al., 1999; Mahoney et al., 1999; Link et al., 2002, 2005;
Beranek et al., 2006; Hodges et al., 2009). Of particular relevance to the Kimama core, fluvial
sands intercalated between basalt flows demonstrate topographic and drainage system
development and can provide depositional age constraints using the U-Pb ages of detrital
zircons.

Although the eastern SRP has been the focus of scientific drilling in the past, the central
SRP has received comparatively little attention. The central SRP is the transitional region
between the older western SRP province and the younger eastern province, and represents a
transition between late Miocene bimodal volcanism and the Pleistocene through Holocene
olivine tholeiite basalt volcanism (Armstrong et al., 1975; Pierce and Morgan, 1992). Itis the
only part of the SRP that has not been scientifically drilled and cored.

The Kimama core hole (Fig. 1) was drilled as part of Project Hotspot, the Snake River
Scientific Drilling Project (Shervais et al., 2013), which seeks to understand the long-term

volcanic and sedimentological history of the SRP volcanic province and its potential as a



geothermal resource. Understanding the volcanic and sedimentary stratigraphy is made
possible by the recovery of core, but is augmented by geophysical wire line data including
natural gamma and neutron logs. These data sets, used in conjunction, provide a clear record of
deposition and hiatus in the 1912 m of continuous core. Investigations of subsurface
stratigraphy in continental volcanic provinces such as the Y-SRP are limited by the depth and
spatial distribution of cored wells. The Kimama core hole is one of three core holes drilled

through Project Hotspot, and is a continuous record of basalt and minor sediment deposition.

Kimama

®oril Site
Butie

T Kimbedy
Drill Site

Cassia
Mountains 4

Figure 1: A shaded relief map of Idaho and the Snake River Plain (SRP) region showing locations
of Project Hotspot drill sites (red stars) and older drill sites (open circles). The Kimama drill site
(yellow star) is located at the hinge point between the western SRP and the eastern SRP, along
the trace of the Axial Volcanic Zone. Twin Falls (TF) and Mountain Home Air Force Base (MH
AFB) are shown for reference. The image is derived from NASA 10-m DEM data and contoured

to 30 m intervals (modified from Shervais et al., 2013).



Based upon observations of existing core, workers have shown that cycles of upward
increases in incompatible oxides such as K,O0 and TiO, demonstrates magma fractionation.
Magma replenishment is revealed by upsection increases in MgO and Cr, suggesting that the
lavas reflect a system in which periodic recharge of more mafic magmas interrupts fractionation
in a layered mafic sill complex (Geist et al., 2002; Hughes et al., 2002a; Shervais et al., 2006).
Older basalts show chemical and isotopic variations indicative of assimilation of continental
crust, whereas younger basalts pass through and assimilate genetically related crystallized melts
of the layered magma system (Shervais et al., 2006; Jean et al., 2013). The proof of these
interactions is the decoupling of major and trace element fractionation without substantial
variation in isotopic composition (Shervais et al., 2006). SRP basalts are compositionally similar
to Hawaiian basalts in their major and trace element chemistry (Hughes et al., 2002b).

Due to the subsidence and lack of uplift of the SRP, a complete analysis of the evolution
of volcanism can only be obtained through drilling (Shervais et al., 2014). A core provides a
powerful tool in understanding the dynamics of plume-related volcanism. Recent and ongoing
studies have focused attention on hotspot activity in oceanic lithosphere (HSDP, IODP) (DePaolo
and Weis, 2007), but hotspot volcanism within continental lithosphere is both more complex
and less well studied.

My primary focus in the study of the Kimama core is: 1) how have the physical
characteristics, frequency, and volume of post-rhyolitic SRP volcanism changed through time,
and are these changes related to compositional variation? 2) Of broader importance, how do
mantle hotspots interact with continental lithosphere through time, and how does this
interaction affect the geochemistry of generated magmas? 3) We also hope to address: how has
Y-SRP hotspot volcanism affected the topography and drainage development of the SRP, and

what do populations of detrital zircon grains in cored fluvial sands tell us about the tectonic and



physiographic evolution of the SRP region? Finally, can observations of the Kimama core
corroborate recent mantle tomography data in support of the mantle plume magmatic source
hypothesis?

These major questions regarding the formation and evolution of the SRP volcanic
province are addressed in this dissertation; and the results are presented four chapters and a
concluding chapter. These chapters are as follows.

Chapter 2 describes volcanic stratigraphy and the record of basaltic volcanism and
sedimentological processes through time. Here, | document the lithostratigraphy of basaltic
lavas in the Kimama core, including flow and flow unit thickness, volcanic facies, the presence of
sediment interbeds, and contact relationships. Using lithologic observations, wire line
geophysical logs, and radiometric and paleomagnetic dating, | interpret the volcanic record and
magmatic flux in the central SRP. Magma flux is a measure of the frequency and duration of
volcanism through time. Distinct magmatic episodes, or flow groups, are identified through
major and trace element geochemistry. | seek to identify the stratigraphic distribution of
basaltic lavas in the Kimama core and to determine their temporal geochemical variability.
Chapter 3 addresses the geochemical and petrological evolution of basaltic lavas in the Kimama
core. Using my established stratigraphy, the major and trace element geochemistry of cored
basalts are used to locate, identify, and group geochemically-distinct flows into four
compositional suites. Geochemical-stratigraphic trends within the Kimama core reveals the
variable effect of fractionation, magma recharge, mixing, and assimilation of continental crust
within the layered mafic sill complex. Forward and reverse fractionation modeling of

compositionally primitive Kimama basalts illustrates potential genetic relationships between the



four geochemical suites identified in the Kimama core, and demonstrates whether the suites
underwent similar petrogenetic processes.

Chapter 4 examines the U-Pb dating of detrital and volcanic zircon populations and
volcanic zircon Lu-Hf isotope chemistry in the Kimama core. Detrital zircons recovered from
sediment interbeds at 1707 and 1844 m depth and analyzed for U-Pb ages constrain periods of
stream incursion and diversion. Detrital zircon geochronology is used to illustrate the timing of
regional uplift and exhumation, silicic volcanism, and regional subsidence. Populations of
Neogene volcanic zircons in lower interbeds were analyzed for Hf isotopes to interpret the origin
of Y-SRP silicic volcanism. Epsilon Hf provides a measure of the amount of juvenile, or mantle-
like magma, incorporated into a system, and therefore, the amount of crustal vs. plume material
contributing to silicic volcanism on the SRP.

Chapter 4 summarizes the observations of magmatic flux, magma composition, and
sediment deposition from previous chapters and integrates them into the greater history of
topographic and magmatic evolution on the SRP. Finally, we state that SRP magmatism is

derived from a mantle plume source rather than a non-plume, shallow mantle magma source.
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CHAPTER 2

VOLCANIC STRATIGRAPHY AND AGE MODEL OF THE KIMAMA DEEP CORE HOLE (PROJECT

HOTSPOT), CENTRAL SNAKE RIVER PLAIN, IDAHO

Abstract

The Snake River Plain, central Idaho, represents the world’s best example of a mantle
hotspot track in continental crust, with a record of bimodal volcanism extending from over 12
Ma to the present. Project Hotspot: the Snake River Scientific Drilling Project recovered over 2
km of continuous core from the Kimama drill site, located in central Idaho on the Axial Volcanic
Zone of the Snake River Plain.

We identify a total of 462 basalt flow units, representing 155 basalt flows, seventy-one
basalt flow groups, twenty-seven super groups, and four compositional basalt types that are
recognized using volcanic facies observations, geochemical data, stratigraphic relationships,
sedimentary interbeds, borehole geophysical logs, and measurements of paleosecular variation
in the magneto-stratigraphy. Intercalated sedimentary deposits represent lulls in regional
volcanic activity and show a relationship to polarity reversals representing thousands of years of
time. Neutron logs document individual flow units through the contrast between massive flow
interiors and more porous flow tops. Gamma ray logs document the depth and thickness of
sedimentary interbeds, and also highlight the occurrence of high-K,0 basalt lavas.

Six basalt lava flows were dated using “°Ar/*’Ar incremental heating by broad-beam
infrared laser. Flows sampled at 320 m, 454 m, 1155 m, 1184 m, 1284 m, and 1489 m provide
reliable ages of 1.54 £ 0.15 Ma, 1.62 + 0.15 Ma, 3.74 £ 0.13 Ma, 4.18 £ 0.58 Ma, 4.39 + 0.30 Ma,
and 5.05 £ 0.81 Ma respectively. Paleomagnetic inclination was measured in over 1200 samples

collected at 2 m depth intervals. Twenty-one magnetic reversals were identified and correlated
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to dated paleomagnetic Chrons and Subchrons using radiometric ages. Paleosecular variations

in the magnetic data distinguish flow groups on time scales too short for radiometric dating. A
linear fit to ages determined from “°Ar/*’Ar dates and paleomagnetic time scale extrapolates to

a bottom hole age of 6.4 Ma and define a mean igneous accumulation rate of 335 m/Ma.

Background

Project Hotspot: the Snake River Scientific/Geothermal Drilling Project, funded by the
U.S. Department of Energy, the International Continental Drilling Program, and a consortium of
universities, drilled three 1.8-1.94 km holes in the central and western Snake River Plain of Idaho
(U.S.) (Shervais et al., 2013). The goals of this project were to document the history of hotspot
volcanism in the wake of the Yellowstone plume, to understand how plume-related magmas
interact with continental lithosphere, and to understand how this interaction affects the
geochemical evolution of mantle-derived magmas and of the continental lithosphere. A further
goal was to investigate innovative approaches to geothermal resource exploration in complex
volcanic terranes (Shervais et al., 2011, 2012, 2013).

Although recent seismic tomography has imaged upper mantle thermal and velocity
anomalies beneath the Snake River Plain-Yellowstone volcanic province (Peng and Humphreys,
1998; Schutt et al., 2008), obtaining a clear understanding of the source and evolution of
magmatism and the extent of crustal interaction is only possible through the chemical analysis
of erupted basalts (Hofmann, 1997; Reiners, 2002). Of further importance to continental
hotspot studies is a record of how these interactions varied through time as demonstrated by
stratigraphic chemical variations and age constraints. Without basalt stratigraphy and the ability
to assign chemical characteristics and ages to individual basalt flows, it is impossible to

accurately measure either magmatic flux or the temporal source of chemical and isotopic
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heterogeneity related to the varying interaction between the continental lithosphere and a

mantle hotspot source through time.

The Y-SRP hotspot represents the youngest, and most complete record of continental
hotspot volcanism in the world. Investigations of stratigraphy in young continental volcanic
provinces such as the SRP are restricted by the lack of uplift and tilting, and by limited
stratigraphic exposure of incised river canyons. As a result, detailed stratigraphic investigations
in these terranes is limited by the depth and spatial distribution of cored wells (Shervais et al.,
1994; Anderson et al., 1997; Helm-Clark et al., 2005). Many of the deeper wells in the Snake
River Plain have been drilled to study groundwater and contaminant flow, and most are
clustered on the Idaho National Laboratory site, located along the northern margin of the Snake
River Plain north of the Axial Volcanic Zone (AVZ). The AVZ is a topographic high composed of
tholeiitic shield volcanoes that represents the locus of basaltic volcanism during the late
Pliocene and Pleistocene, and is mirrored by a subsided keel of buried basalts that has been
documented geophysically (Lindholm, 1996).

The Kimama drill site is located on the central Snake River Plain (SRP), about 21 km
north of Burley, Idaho, and 65 km southwest of Craters of the Moon National Monument (see
Fig. 1). Kimama drill site was chosen specifically to study the volcanic stratigraphy of the AVZ,
and to investigate elevated thermal gradients beneath theSnake River Regional Aquifer
(Shervais et al., 2013). Previous drilling in other areas of the SRP has indicated a veneer up to
1.2 km thick of Pliocene-Pleistocene basalt, with minor fluvial, and lacustrine sediments that
overlie silicic volcanic products on the SRP (Doherty et al., 1979; Kuntz et al., 1992; Anderson
and Liszewski, 1997).

The Kimama drill hole was cored continuously from below the ground surface (~¥12 m) to

a total depth of 1912 m, with >99.5% recovery rate (as measured by length cored: (core
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recovered); an additional 134 m of sidetrack core was obtained in the upper part of the drill

hole. This core represents a nearly continuous record of volcanic activity and sedimentation at
the Kimama site. Basalt flows make up 94% of the core, with eolian and fluvial sediments
making up the remaining 6%. The drill hole spudded into hyaloclastic basalt.

When discussing volcanic stratigraphy, it is important to note that the processes of
basaltic volcanism make drill cores an imperfect record of eruptive activity and hiatus.
Continuous lava flow inundation on one flank of a volcano may occur while another remains
unaffected; similarly, a dormant volcano may be inundated by lavas from an adjacent volcano.
In addition, inter-fingering of lava flows from adjacent volcanoes may occur if both are active
simultaneously (Jean et al., 2013). Despite these limitations, core provides the most complete
record of deposition in the subsurface, and error may be diminished through the use of seismic

data or additional, closely-spaced core holes.

Approach

We combine direct observation of drill core with wireline geophysical logs,
magnetostratigraphy, radiometric ages, and geochemistry to examine the volcanic stratigraphy
in the central SRP. Core provides our most direct record of the volcanic stratigraphy, flow
contacts, flow characteristics, and sedimentary interbeds, as well as samples for geochemical
and magnetic secular variation analyses. Wireline geophysical logs are used to supplement or
replace core, especially in situations where core recovery is limited or too costly to obtain. In
particular, gamma-ray and neutron logs are useful for interpreting basalt flows and interbedded
sediments (Helm-Clark et al, 2005). Gamma-ray logs are sensitive to sedimentary interbeds,

whereas neutron logs may document variations in porosity associated with flow unit
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boundaries. Thick packages of sediments may demonstrate long periods of volcanic quiescence

and bracket flow groups derived from a distinct magmatic source (typically a single volcano).

Temporal information about basalt deposition comes from paleosecular variations in
the magnetic stratigraphy, magnetic reversals, and radiometrically-determined ages.
Paleosecular variations in magnetic inclination occur over decade to multi-decade time scales,
while polarity reversals represent significant decade to century-scale events (Kuntz et al., 1986;
Champion et al., 1988). These variations can be used to distinguish individual basalt flows
(which typically comprise multiple flow units) and to identify flow groups. Radiometric dating of
individual lava flows at critical depths provides direct information on ages and accumulation
rates, and provides calibration of the paleomagnetic time scale, which can then be used to
refine the stratigraphic age model. Geochemical data (Ti/K, La/Lu, Zr/Nb, K,0, TiO, and total iron
as FeO*) may be used as a tool to identify flow groups and super-groups.

We merge lithologic observations of the Kimama core with ages and with major- and
trace-element concentrations, and radiogenic isotope ratios, to generate a complete history of
basaltic volcanism in the central Snake River Plain. The integration of lithology, flow structures,
wireline logs, magneto-stratigraphy, and geochemistry provides a powerful set of tools to
interpret the timing, extent, and source of regional volcanism related to passage of the
Yellowstone hotspot. The volcanic flux, and the volume of magma erupted through time, are
first-order constraints on the ultimate origin of the hotspot and on its interaction with
continental lithosphere. These calculations will rely critically on the stratigraphic and age

models developed here.
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Geologic Background
Regional Setting

The 500-km long SRP formed as the North American continent passed over the fixed
SRP-YP hotspot during the late Tertiary. As the archetype of a continental hotspot track, the SRP
contains a continuous record of violent, caldera-forming rhyolitic eruptions and quiescent,
Hawaiian-type basaltic volcanism (Morgan, 1972; Armstrong et al., 1975; Smith and Braile, 1994;
Pierce and Morgan, 1992, 2009). The sequence of rhyolite, basalt, and sediment strata that
comprise the SRP, spans 12 m.y. of volcanic and inter-volcanic activity (Pierce and Morgan,
1992; Bonnichsen, 2008; Anders et al., 2009).

During the late Pliocene through Pleistocene, the SRP was the locus of densely-spaced
mafic volcanic centers along the hotspot track that locally erupted thick packages of basalt
flows; this volcanic activity was concentrated along the central axis of the plain to form the AVZ
(Hackett and Smith, 1992; Hackett et al., 2004; Kuntz et al., 2002). Holocene lavas, e.g., the
Shoshone lava flow and Craters of the Moon, erupted on the margins of the plain, or, like the
Great Rift, form volcanic rift zones that cross the plain at high angles (Kuntz et al., 2002). Late
Pleistocene to Holocene lavas of Craters of the Moon form multi-phase eruptions with ages of 2

ka to 480 ka (Bonnichsen and Godchaux, 2002).

Basalt Flow Stratigraphy

The unique style of volcanism along the SRP (Figure 2C) has been recognized as a
product of small, mid-crustal magma chambers feeding eruptions from low shield volcanoes
over relatively short durations, described as “plains-style volcanism” by Greeley (1982) (Figure

2B). The single-episode eruptives common on the SRP are similar to modern volcanic processes
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on the island of Hawaii and transitional between Hawaiian-style and continental-style volcanism

(Figure 2A) (Greeley, 1982; Kuntz, 1978).

Volcanic rift zones and low-relief shield volcanoes erupted olivine tholeiite basalt lavas,
filling basins and controlling the direction and deposition of subsequent lava and water flow.
During periods of decreased volcanism, lava flows in low areas were mantled by loess and by
lacustrine and fluvial sediments. Loess deposition can occur relatively quickly, although
preservation of sediments is thought to be relatively short-lived from modern observations
(Kuntz et al., 1986, 1992). Vents of SRP shield volcanoes are typically low-relief, due primarily to
the efficient transport of low-viscosity lava away from the vent in lava tubes and the short
duration of eruptions; because relatively little lava accumulates near the vent, eruptive centers
often blend in with the surrounding topography (Self et al., 1998).

As a result of these eruptive processes and flow mechanisms, the classification of
multiple assemblages of lava flows is scale dependent. Basalt flows are classified as either
simple or compound lava flows, depending on whether the flow consists of a single coherent
flow unit, or an amalgamation of many thinner flow units (Walker, 1971, 1991, 1993).
Compound flows typically comprise stacks of relatively thin shelly pahoehoe, with or without an
underlying core of massive basalt (which represents another flow unit). In contrast, simple lava
flows typically comprise a massive flow unit with a shelly or rubbly upper surface. In either case,
the lava flow is considered to represent a single eruptive event formed over a time scale of

weeks to years, but commonly less than a few decades (Figure 3A and Figure 3B).
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Figure 2: Schematic illustration of plains-style volcanism on

the eastern Snake River Plain showing laterally extensive,
stacked lava flows, coalesced shield volcanoes, and sedimentary
interbeds. (A) Modified from Greeley (1977) and Hughes et al.
(1999). B) Schematic illustration of the interpreted structure

of the mafic sill complex (Shervais et al., 2006). Magma batches
are chemically distinct and may pond at different depths within
the sill complex. Partial or residual melts in partly congealed
Fe-Ti basalt cumulates may interact with stored magmas prior
to eruption or replenishment. Modified from Shervais et al.
(2006). C) Cross section of the Snake River Plain region,
showing the crust and mafic sill complex from the seismic
velocity model of Peng and Humphreys (1998). The location
and thickness of the inferred mafic sill complex are shown.
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Figure 3: Spatial relationship between inflated pahoehoe flow units, flows, and flow groups in
map and cross section views. Modified from Self et al. (1998). A) Map view of a flow field. Flows
emanate from a central volcanic vent during a magmatic event. Older flows may be blanketed by
newer flows over time. B) Cross sections of transects shown in map view: A-A’ illustrates the flow
front, where flow lobes (flow units), advance as incandescent lava oozes through the cooled rind at
the very tip of the flow. Flow units in the Kimama core range in thickness from 0.3 to 29.6 m. Bubbles
trapped in the moving lava form vesicles. Depressurization during flow lobe breakout causes a pulse
of vesiculation in the liquid lava, which eventually cools into a horizontal vesicle layer (Hon et al.,
1994). B-B’ illustratesthe lava flow, where flow units thicken by inflation as they extend outward
during a volcanic eruption. Flow units in the Kimama core range in thickness from 0.3 to 48.1. Pipe
vesicles form in the lower crystallization front. As the lava flow cools, vesicular residuum rises slowly
through the stagnant lava and to the base of the upper crust, where it forms horizontal vesicle sheets.
Cracks in the surface of the flow develop during cooling; cracks that extend intothe visco-elastic layer
of the flow speed cooling of the flow interior (Self et al., 1998). C-C’ illustrates the lava flow group, a
complex aggregate of genetically related flows and flow units erupted during the life of a volcano.

In the Kimama core, flow groups range in thickness from 1.2 to 202.7 m. Sediment washed down
from the surface may collect between constituent flows, but most thick sediment interbeds in the
Kimama core are divide separate flow groups and/or paleomagnetic chronological boundaries.
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Inflationary pahoehoe flows produce complex stratigraphy, with younger eruptions of

lava conducted away from the vent through the molten interiors of older flow units, a process
known as inflation (Walker, 1991; Chitwood, 1994; Self et al., 1998). Therefore, the massive
core of a flow represents the last or a later pulse of an eruption, whereas the shelly and rubbly
surface and basal facies represent earlier eruptions. In core, younger flow units may be
bounded at top and bottom by relatively older basalt flow units from the same eruption, an
observation that has important implications for stratigraphic interpretation. Self et al. (1998)
recognized that the inflation mechanism of pahoehoe produces lava flows that display similar
geometries at variable spatial scales. Small-scale lava flow units and larger-scale lava flows may
emanate from a single monogenetic source or from coeval sources sharing a magma reservoir.
Packages of lava flows erupted from a single magma reservoir form a complex aggregate of
flows termed flow groups (Figure 3A) (Welhan et al., 2002; Hughes et al., 2002). Lava flow
groups have areal dimensions of kilometers to tens of kilometers and are synonymous with lava
fields, such as the Wapi and Hell’s Half Acre lava fields (Figure 3B) (Greeley, 1982; Welhan et al.,
2002). Super groups are defined by polarity and significant geochemical variation from the
typical Snake River Plain olivine tholeiites. Modern basaltic shields, lava flows, and lava tubes
such as those at Mauna Loa and Kilauea provide a tangible corollary to aid in the identification
of subsurface features in drill core (Hon et al., 1994). Chemical distinctions between basalts of
the SRP are made difficult by the general similarity between flow group compositions. Previous
workers have suggested that similarity of basalts of the SRP results from a similar source and

petrogenetic history within the mafic mid-crustal sill (Figure 3C) (Shervais et al., 2006).
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Methods

Lithologic Logging

Detailed lithologic logging of core and high-resolution core photographs were used to
interpret stratigraphy. Basalt core was visually inspected for the presence of large-scale
features such as fractures, oxidation or scoriaceous regions, sediment interbeds, mega-vesicles,
vesicle-rich zones (vesicle sheets, vesicle bands or vesicle cylinders), pillows, and rubble zones.
Features such as ropey flow tops, flow and mold structures, and spatter are also documented.
Core samples displaying alteration, oxidation, secondary mineralization, xenoliths, autoliths,
anomalous vesiculation, and other distinguishing characteristics were described when observed.

Flow unit boundaries were identified throughout the entire 1912 m of Kimama core
using the model of Self et al. (1998), who suggest that individual pahoehoe lava flows and their
constituent flow units display three distinctive zones: surface, interior, and basal facies. The
flow surface is characterized by oxidized, platy or rubbly, and highly vesicular textures, often
with ropey morphology (Figure 4l). Stacks of multiple surface facies are occasionally observed,
with washed-down sediment forming simple boundaries (Figure 4a and Figure 4b). Surface

facies thicknesses range from 30 cm to 1 m.
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Figure 4: Facies model of typical (~6.2 m) inflated basalt flow as

observed in the Kimama core. Photographs of the Kimama core illustrate
lava flow facies characteristics. Surface Facies: glassy spatter (3a), ropey pahoehoe
(3b), and sediment-coated rubble (3m), and flow and mold structures (3n).
Interior Facies: diktytaxitic texture (3f), a result of secondary exsolution;
massive flow interior, no vesicles (3g); segregation vein, about 8 cm thick

(3h); segregation vein, about 4 cm thick (3i); elongate vesicles are the result

of continued lava flow during the cooling stage (3j); pipe vesicles are formed
near the base of the lava flow as lava interacts with a moist ground surface

(31); remobilized spatter (also referred to as autolithic basalt)(3c);

macrovesicle, measuring about 5 cm across (3e); vesicle with secondary
crystallization of calcite, 4.5 cm across (3k); vesicles filled with secondary
mineralization of smectite-group clays (3p) (Sant and Shervais, 2011). Sediment
Interbeds: baked loess, fine grained, homogenous clay baked to terra cotta

by the overlying flow (3d); fluvial sediment interbed showing normal

gradation of coarse to medium grained sand (30). Detrital zircon samples

were recovered from fluvial interbeds at the base of the core for U-Pb
geochronology and Lu-Hf analyses. Modified from Self et al. (1998).
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Wireline Geophysical Measurements

Wireline geophysical logs for both holes (Kimama 1A and 1B) occurred in stages as
drilling progressed, with the final logging shortly before completion of hole 1B. The upper ~760
m were logged by the U.S.G.S. using tools and techniques described in Twining and Bartholomay
(2011). Hole 1A was logged in October 2010 (0-298 m depth), Hole 1B was logged in November
2010 (0-759 m). Logs for both holes included natural gamma-ray, neutron, gamma-gamma
density, temperature, and gyro deviation. Further logging was carried out by Century Wireline
Services in January 2011; neutron and natural gamma log measurements were made inside the
drill string in order to avoid tool loss (206-1850 m), and caliper, natural gamma, sonic porosity,
resistivity, self potential, and temperature logs were measured in an open hole below the HQ
drill string. Temperatures in the lower 100 m of the drill hole exceeded the limits of the
instruments, resulting in electronic noise below ~1800 m depth.

Natural gamma-rays in the SRP are emitted primarily by “°K, which is concentrated in
the sedimentary interbeds, enabling us to identify stratigraphic breaks between basalt flow
groups. Furthermore, natural gamma logs may be used to identify individual basalt flows should
they contain measurable differences in the relative abundance in K,0 (Twining et al., 2008). In
general, sedimentary interbeds are characterized by high natural gamma-ray (> 75 API) signals
relative to the surrounding tholeiitic basalts (0-75), whereas high K,O lavas are characterized by
moderately high gamma-ray signals (higher than the tholeiitic basalts, lower than the
sediments).

Neutron logs measure the absorption of neutrons by hydrogen (typically as H,0 in the
SRP), such that porous, water-rich rocks have high neutron absorption (low backscattered
signal), whereas dense rocks with low porosity and low water contents have low neutron

absorption (high backscattered signal to the detector). The absorption of neutrons in water-
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filled vesicles and fractures results contrasts sharply with dense, water-free basalt. Void spaces

created by vesicles and fractures are dominantly found in rubbly lava flow tops and flow bases,
whereas the massive flow interiors have low porosity. This allows us to distinguish individual

lava flows and correlate them with flows and flow contacts found in core.

Paleomagnetic methods

More than 1200 paleomagnetic samples were cored out over the entire 1912 m length
of the core, and subjected to AF and thermal demagnetization protocols. The Kimama drill core
was carefully logged and sampled using INL Lithologic Core Storage Library protocols described
in Davis et al. (1997). Prior to sampling, the core material was described and the tops and
bottoms of lava flows were identified. Depths were measured from depth markers recorded by
the drillers at the time of coring. Mean inclination values for each lava flow group, and 95
percent confidence limits about the mean value were calculated using the method of McFadden
and Reid (1982).

To facilitate paleomagnetic interpretation, the corehole is assumed to be vertical in its
original drilling orientation. A gyroscopic deviation log of the Kimama was made at 0.3 m (1 ft)
intervals, and it records moderate deviations from vertical. Deviation from vertical for any
particular depth interval in the Kimama corehole typically is less than one degree, and does not
significantly affect paleomagnetic remanent inclination interpretations, and has no effect on the
remanent polarity determinations used here. Further details of the paleomagnetic study of the

Kimama corehole will be released later (Champion and others, in prep.).

Radiometric Dating
Age determinations for six samples from the recovered Kimama core were derived from

groundmass separates. The groundmass samples were prepared from whole-rock core pieces
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by crushing and sieving to obtain a 200-300 um size fraction, then acid leached following the

procedure described by Koppers et al. (2000). This consisted of 15 minute sequential leaching in
1 N HCI, 5N HCI, 1 N HNOs, and 5 N HNO3. Before irradiation, 50-100 mg of material was hand
picked from the final leached separate to remove fragments of phenocrysts and any remaining
alteration minerals. All samples were irradiated at the Oregon State University 1 MW TRIGA
Reactor. Neutron flux was monitored using a Fish Canyon Tuff biotite (FCT-3) with a monitor age
of 28.021+0.16 Ma (Renne et al., 1998). Argon extraction and analysis was achieved with a
Merchantek 10 W CO, laser and an MAP-215-50 mass spectrometer following the methods
outlined in Duncan and Hogan (1994) and Duncan et al. (1997). Data reduction utilized
ArArCALC v.2.2 (Koppers, 2002) using decay constants proposed by Steiger and Jiger (1977).

Samples were heated from 400° to 1400°C (fusion) in 7-8 steps with gas cleanup and Ar-
isotopic measurement after each temperature step. We calculated ages from the isotopic data
in a number of standard ways. Total fusion ages incorporate all heating steps in a given
incremental heating experiment, essentially equivalent to a conventional K-Ar age
determination. Plateau ages, calculated as the weighted mean (by inverse variance) of multiple
step ages, are considered reliable if they include three or more contiguous step ages
constituting > 50% of the total gas released. A statistical parameter, mean square of weighted
deviations (MSWD), compares error within step ages with scatter about the mean step age, and
has a 2-sigma (95%) confidence limit below about 2.5 (depending on the number of heating
steps). Isochron ages are calculated from the slopes of linear regressions through the step
isotopic compositions (*°Ar/*®Ar vs **Ar/**Ar) that comprise the plateaus, and make no
assumption about the initial Ar composition (*°Ar/**Ar).

Our analyzed samples show petrographic evidence for low temperature alteration, to

clays and zeolites. In such cases the possibility for “°Ar-loss and K-addition during fluid-rock
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chemical exchange is significant. Baksi (2007) compared fresh and altered basalts dated by “°Ar-

*¥Ar incremental heating experiments and developed several quantitative measures of levels of
alteration at which age data may be compromised. The first is the concentration of *°Ar
(atmospheric, corrected for reactor produced **Ar from Ca), which lies below about 3x10™

mol/g for whole rock basalts in samples that produced acceptable (crystallization) plateau ages.

Results

Flow Units and Flows

Almost all of the lava flows identified in the Kimama core are compound flows
comprising two or more flow units. The few simple flows that contain a single flow unit are
generally thin sheets that are distinct from flows above and below. We identify 446 basalt flow
units, which range in thickness from 0.3 m to 29.6 m and average 13.4 m thick (Figure 5). Using
lithologic observations, petrography, and geochemical and paleomagnetic stratigraphy, we
grouped flow units into 141 lava flows, 0.3 m to 48.1 m thick, (most 10-20 m thick; 12 m
average). Flows and flow units are summarized in Table 1, and reviewed in detail in Appendix A.
Massive basalt flows are commonly overlain by multiple shelly pahoehoe flow units, and
typically show evidence of sediment infiltration along cooling boundaries. Intercalated
sediment ranges in thickness from 0.2 m to 80 m, and the thicker layers are clearly visible in
natural gamma logs as high gamma spikes (Figure 6). A total of 113 m of sediment was
recovered from the Kimama core, with the majority of eolian sediment located between 115
and 560 m depth (Figure 5). Two thick packages of fluvial sediment are identified at 1707 m-

1760 m depth and 1840 m-1905 m depth.



Table 1: Summary of Kimama flow groups, flows, and flow units

. Flow Mean
Polarity & [ Pmag No. Start End
Super | Flow o CHRON | Chem.| No. Group Flow No. Sed.
Inclination| Age Flow Depth | Depth . X
Group | Group subchron | Type |Flows . Thickness | Thickness [ Intervals
Range (Ma) Units (m) (m)
(m) (m)
1 60 ~0.72 @ SROT 4 11 13.4 25.2 11.7 8.63 0
A 2 51 . g SROT 9 16 25.2 95.8 70.6 14.2 1
3 43 - 2 SROT 1 2 96.0 100.6 4.60 - 0
4 38 @ SROT 1 2 100.6 118.3 17.7 1
5 -56 0.78 SROT 1 10 123.8 142.9 19.1 0
B 6 -63 MATUYAMA | Fe-Ti 1 3 142.9 164.8 21.9 0
7 -64 - Fe-Ti 2 3 164.8 183.8 19.0 9.49 1
C 8 22 0.99 ] ] SROT 6 9 202.3 232.8 30.5 9.07 1
9 -61 107 | Jaramile |ceor s 18 2368 2596 228 7.63 0
D 10 -61 Fe-Ti 1 7 259.6 274.9 15.3 0
11 -61 SROT 4 9 274.9 317.2 42.3 19.9 1
E 12 -63 - § High-K 1 1 317.7 319.7 2.00 - 1
13 -64 g SROT 2 4 319.8 336.0 16.2 12.9 0
14 -64 2 LowK 1 2 3360 3425 6.50 0
F 15 -62 § Fe-Ti 2 8 342.5 358.7 16.2 8.08 1
16 -62 SROT 2 8 358.8 377.2 18.4 9.19 0
17 -52 SROT 3 18 377.2 425.1 47.9 16.0 0
18 60 1.77 SROT 3 5 425.1 432.9 7.80 2.59 1
G 19 57 - SROT 2 4 432.9 451.7 18.8 9.39 1
20 22 g Fe-Ti 3 12 453.2 489.2 36.0 12.0 0
H 21 27 he SROT 1 4 489.2 504.5 15.3 0
22 56 SROT 2 10 504.5 527.4 22.9 11.4 1
23 -52 1.95 Fe-Ti 1 2 528.3 547.9 19.6 - 1
24 -54 Low-K 2 7 548.4 560.7 12.3 5.58 0
25 -54 - Fe-Ti 1 2 560.7 566.0 5.30 -- 0
26 -54 s SROT 1 1 5660 5701 410 0
1 27 -54 g low-K 3 9 570.1 575.8 5.70 7.06 0
28 -54 2 Fe-Ti 1 5 5758  584.8 9.00 0
29 -54 § SROT 3 7 584.8 591.3 6.50 11.0 0
30 -54 Low-K 2 7 591.3 610.5 19.2 28.6 1
31 -55 - SROT 1 1 610.5 617.1 6.60 --- 0
J 32 32 2.43 X-Event Fe-Ti 1 1 617.1 731.8 114.7 1
33 -58 SROT 1 6 732.4 755.4 23.0 1
34 -62 < SROT 2 5 755.6 770.1 14.5 7.27 0
35 -45 5 SROT 3 19 776.0 831.4 55.4 19.2 1
K 36 -65 - S SROT 1 2 831.7 841.3 9.60 -- 0
37 -65 = FeTi 1 2 8413  849.1 7.80 0
38 -40 2 SROT 2 8 849.1 865.1 16.0 12.6 0
39 -55 - SROT 5 13 874.3 910.9 36.6 9.15 0
L 40 65 2.58 GAUSS SROT 1 6 910.9 934.4 235 - 0
41 77 3.04 SROT 1 1 934.4 947.2 12.8 0
M 42 -73 g SROT 1 1 947.2 948.5 1.30 0
43 -76 - ] SROT 1 1 948.5 950.0 1.50 --- 0
N 44 56 3.11 SROT 2 6 950.00  961.5 115 5.74 1
o 45 -60 3.22 SROT 7 15 962.0  1022.1 60.1 9.96 2
46 63 333 | mammoth | geor a1 1 10221 10228 0700 2
[ 47 63 a Low-K 1 2 1044.1  1045.0 0.900 0
48 51 3 low-K 3 4 1045.0 1076.6 31.6 10.5 1
Q 49 71 3.58 © High-k 1 1 1077.1  1078.5 1.40 1
R 50 72 — Low-K 3 10 10793 1112.9 33.6 11.2 1
S 51 5 [+ low-K 1 1 11133 11158 2.50 1
T 52 -69 - % Fe-Ti 1 2 1116.5 1131.0 14.5 --- 1
53 -49 Fe-Ti 1 1 1131.0  1150.9 19.9 2
54 58 418 SROT 1 9 11519  1175.1 23.2 0
U 55 58 - E=S SROT 3 7 1175.4 1212.8 374 12.5 1
56 58 § Low-K 1 1 12128 12171 4.30 1
57 66 © SROT 1 1 12173 1234.7 17.4 1
\' 58 -60 4.29 Low-K 1 1 1236.1 1237.0 0.900 - 1
w 59 59 4.48 nunivak | oK1 8 12395 12721 32.6 0
X 60 59 4.62 SROT 3 13 12721 13106 38.5 12.8 0
61 59 - - Low-K 3 12 1310.6 1377.2 66.6 22.2 1
62 -43 [+ Low-K 1 2 1379.0  1389.0 10.0 1
Y 63 -58 - g Low-K 1 2 1389.1 1394.6 5.50 --- 0
64 -58 © SROT 1 1 13946  1407.0 12.4 1
65 68 4.98 SROT 3 20 14115  1460.4 48.9 16.3 1
z 66 62 - g Low-K 2 9 1461.3 1510.1 48.8 244 1
67 43 Z Low-K 1 2 15109  1526.3 15.4 1
AA 68 -45 5.23 low-K 1 2 1527.0  1545.9 18.9 1
69 -67 - GILBERT Low-K 9 34 1546.3 1729.7 183.4 21.6 2
AB 70 64 5.89 Low-K 2 4 1754.1  1766.4 12.3 1
AC 71 -45 6.14 [Cc3An/c3an.1 [ Lowk 7 19 1768.5  1912.0 143.5 16.9 4
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Figure 5: Lithologic and paleomagnetic stratigraphy of the Kimama core. 71 flow
groups were identified based upon lithologic observations, chemical variation, and
magnetic polarity. Paleomagnetic polarity and associated ages are displayed to the

left of the lithologic log. Five Chrons and nine subchrons are identified in the

Kimama core (Champion and Duncan, 2012).

The transition from surface facies to interior facies is observed as near-surface vesicle
bands, or segregation veins, visible as sub millimeter-sized vesicles within fine-grained

crystalline basalt (Figure 4l). Segregation veins result from episodic gas exsolution during
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repeated episodes of lava inflation. Multiple, stacked segregation veins, without chilled

margins, may be present within a single lava flow and are a principle facies indicator of inflated
pahoehoe flows (Smith, 1967; Walker, 1993; Chitwood, 1994; Self et al., 1998).

Flow interiors are characterized by massive fine-grained intergranular textures, to
coaser-grained diktytaxitic textures with isolated vesicles. Flow interiors commonly exceed
three meters in thickness (Figure 4g). Because thicker flow units take longer to solidify, their
interiors typically exhibit few vesicles from the lower and middle portions (Walker, 1993).
Diktytaxitic texture (Figure 4f), vesicle pipes (Figure 4k), macro vesicles (Figure 4e), and vesicle
segregation veins, also present in interior flow facies, are thought to be a product of cyclic
vesiculation, or repeated cycles of lava flow inflation and gas exsolution (Figure 4g) (Hughes et
al., 2002).

The flow unit base contains minor vesiculation and may contain rubble (Figure 4). In
Kinama drill core, the basal valve flow unit facies occurs in thicknesses generally less than 5 cm..
Degassing is most efficient in the lower portion of the flow unit, resulting in relatively minor
vesiculation in the basal facies relative to the interior and surface facies. A thin, >2 cm rind of
glass often designates the chilled contact of the lava flow unit with the ground surface

Individual flow units almost invariably transition from dark gray basalt in the upper and
lowermost portions of the flow unit to light gray within the interior, indicating a greater content
of groundmass glass in the more rapidly cooled upper and lower portions (Figure 4). Vesicles,
always sub-rounded to rounded, also display an inverse trend of increased size and decreased
frequency through the flow interior, after which their concentration increases and size
decreases to the end of the flow unit. When flows exceed one another without sufficient time
separation, new lava flows may make molds of the underlying flow surfaces as they cool,

creating flow and mold structures (Twining et al., 2008) (Figure 4m).
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Missing intervals (unrecovered core) within flow groups identified within the Kimama

core are usually associated with rubble sections (Figure 4l) or sediment interbeds (Figure 4d),
both of which are easily disturbed by drilling.

Significant time separation between eruptive events are sometimes indicated by eolian,
fluvial, and lacustrine sediment horizons, which collect in topographic lows or leeward settings.
Eolian sediments lack internal structure or depositional facies, whereas lacustrine and fluvial
sediments in Kimama core typically contain bedforms. Fining upward sequences associated with
fluvial deposition are especially apparent in cored Kimama sediments below 1730 m (Figure 40).
In some cases, sediment layers may have been baked by overlying lava flows (Figure 4d). As a
result of weathering and water movement, sediment-filled vesicles are most common within
flow units that are immediately beneath sediment interbeds (Figure 4l).

At two depth intervals, increased natural gamma signal response is observed without a
corresponding sediment package. Geochemical analyses of samples from 319 m and 1078 m
depth demonstrate high K,0 and high Fe,03 (~2.0 wt.% and 19.0 to 21.0 wt.%, respectively)
relative to the olivine tholeiite composition (0.25-1.00 K,0 wt.%; 13.0 to 17.0 wt.% Fe,03)
observed in the majority of the core. Elevated K,0 and Fe,0O; compositions are observed basalt
compositions.

Below the ~250 m-depth of the top of the vadose zone in the Kimama drill hole,
secondary mineralization by dogtooth spar commonly occurs as vesicle and fracture fillings
(Figure 4k). Carbonate clay commonly coats basalt rubble zones within the vadose zone, and at
depths greater than ~900 m, clay alteration is common as montmorillonite vesicle fillings (Figure
4p).

Basalt shows evidence of interaction with water (hyaloclastite) are found at depths of

1697.8 to 1704.3 m, from 1842.9 m to 1846.7, and from 1855.7 m to 1912 m. Kimama
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hyaloclastites are angular basalt breccias bounded by a matrix of sand and basaltic glass

fragments, which have been subsequently altered and silicified by hydrothermal fluids.

Hyaloclastite overlies or is interlayered with packages of fluvial sediments.

Flow Groups

The lava flows recognized above are collated into Flow Groups based on their chemistry
and petrology, magnetic polarity, and contact relations (Figure 5). In particular, sediment
horizons > 1 m meter thick (and up to 80 m thick) represent interruptions in lava accumulation,
or local eruptive hiatuses (Anderson et al., 1997). Previous workers suggest that typical SRP
flow groups were deposited during eruptive events that lasted no more than a few hundred
years, with an average lapse of 10 to 20 ka between each flow group eruption (Kuntz et al.,
1980). Hiatiidentified in a stratigraphic interval generally represent less than a few tens of
thousands of years (Anderson and Liszewski, 1997; Champion and Duncan, 2012).

We distinguished 71 flow groups, ranging in thickness from 0.7 to 183.4 m, based on
these criteria (Figure 5, Table 1, see also Electronic Supplement). Four general compositional
types were identified; thirty-seven flows are standard SRP olivine tholeiites, recognized in
wireline logs as areas of greater neutron signal response than sediment or sediment-coated
rubble stratigraphic intervals.

Two flow groups, 14 and 49 (Figure 6), consist of evolved high-K lavas that are
essentially identical to those erupted within the Craters of the Moon lava field during the latest
Pleistocene and Holocene (Kuntz et al., 1986; Putirka et al., 2009). These high-K flow groups,
which were initially recognized based on their relatively high gamma-ray signal response,

erupted from polygenetic, or multi-pulse vent systems. We identified 20 low-K lavas, which
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represent the least evolved flow groups in the Kimama core (Figure 6). Twelve high-Fe and Ti

(Fe-Ti) flow groups are also identified in the Kimama basalt stratigraphy.

Sharp variations in major and minor element concentrations or ratios are also used to
distinguish flow groups, and these group boundaries correlate to lava flow divisions made using
lithology and paleomagnetic inclination (Figure 7). Polarity reversals are also thought to
represent distinct time breaks that define flow group boundaries, especially if they occur within

a major sediment horizon.
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Paleomagnetic Results

Magnetic susceptibility records paleomagnetic polarity and inclination, by which
geologic ages of basalt flows are constrained. Polarity, K-Ar age, and stratigraphic data from the

Kimama core are consistent with five paleomagnetic chrons and eight paleomagnetic Plio-Paleo
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subchrons (Table 2 and Figure 8). Twenty-one magnetic reversals, where the polarity of basalt

changes from normal to reversed, are recorded in the Kimama core. The distribution of basalt
flows within identified subchrons and chrons demonstrates that the majority of flow groups in

the Kimama core erupted over <100 years. Flow groups 32, 50, and 70 erupted over ~10,000

years, and flow group 40 erupted over ~300,000 years.

Table 2: Paleomagnetic Chrons and Subchrons by depth

. . Age Range Depth Start Depth End
Paleomagnetic Unit (Ma) (m) (m)
Brunhes Chron 0.72-0.78 120 = 2 -—-
Matuyama Chron 0.78 911 120 £ 2
Jaramillo Subchron 0.99-1.07 235 + 2 193 +£ 9
Oluvai Subchron 1.77-1.95 528 £ 0.6 425
X' Event 2.43 708 -—
Gauss Chron 2.58-3.58 950 = 0.3 935
Kaena Subchron 3.04-3.11 1077 911
Mammoth Subchron 3.22-3.33 1022 962
Gilbert Chron 3.58-5.89 1728 = 23 1077
Cochiti Subchron 4.18-4.29 1236 = 0.61 1151 £ 1.5
Nunivak Subchron 4.48-4.62 1378 =+ 0.9 1238 = 1.2
Thvera Subchron 4.98-4.98 1526 1409 = 2.1
C3AnN Chron 5.89-6.43* T.D. 1728 = 23
C3An.1 Subchron 6.14-6.43* T.D 1768

Measured depth locations of five paleomagnetic Chrons and
eight Subchrons identified in the Kimama core. T.D. is 1912 m
*6.43 Ma age estimated from modeled accumulation rate
Ages from Champion and Duncan, 2012
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Figure 8: Kimama basalt accumulation rate estimated from linear fit model of Ar/Ar and

paleomagnetic ages. The onset and termination of paleomagnetic Chrons and Subchrons are shown
by the small red dots, with normal polarity intervals demonstrated by grey shading. Ar/Ar ages are
indicated by filled blue circles. The youngest U-Pb ages of detrital zircon grains in the lower fluvial
successions are 5.8 + 0.1 Ma at 1749 m, and 6.2 = 0.1 Ma at 1844 m depth; these ages (pink filled
circles) are overlain on the linear fit projection to demonstrate concurrence with the 335 m/m.y.
accumulation rate and indicate a depositional period of <100,000 years (modified from Champion

and Duncan, 2012).

The Matuyama Chron spans 790.4 + 2 Ma of basalt eruptions and comprises super
groups B through K and flow groups five through 39. Within the Matuyama Chron, the Jaramillo
subchon spans 42 + 11 Ma. Super groups C and D and flow groups eight and nine were erupted
during the Jaramillo subchron. The Olduvai subchron spans 103 + 0.6 Ma and includes super
groups G and H and flow groups 18 through 22. At 2.43 Ma, the ‘X-event’, a period of normal

polarity within the Matuyama Chron, includes super group J and flow group 32. The 166.2 Ma

Gauss Chron encompasses super groups L through Q and flow groups 40 through 49. The
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Gilbert Chron spans 2.31 Ma and includes super groups R through AB and flow groups 50

through 70. Within the Gilbert Chron, the 0.11 Ma Cochiti subchron includes super group U and
V and flow groups 54 through 58. The Nunivak subchron covers 0.14 Ma and includes super
groups W and X and flow groups 59 and 60. The 0.25 Ma Thvera subchron includes super
groups Z and AA and flow groups 65 through 68. The last identified Chron in the Kimama core is
the C3An Chron, which terminates at 6.14 Ma and at a depth of 1768.5 m and continues to
1912.0 m. The paleomagnetic inclination of Kimama flow groups ranges from 22 degrees to -27

degrees, with minor variation within flows of each flow group.

Radiometric Dating Results

Total fusion, plateau, and isochron ages are summarized for all analyzed samples in
Table 3, and Figure 8. In general, the incremental heating experiments produced clear age
plateaus comprised of most of the gas released, although some step ages appear to be
influenced by irradiation-induced **Ar, *’Ar recoil, resulting in high low-temperature step ages in
samples KMAB1488 (454 m depth) and KMA4788 (1459 m depth), and low high-temperature
step ages in sample KMA3791 (1155 m depth). None of the samples appears to be affected by
Ar-loss. The six samples from the Kimama core hole provided reliable plateau ages, composed

of 86-100% of the total gas released, ranging from 1.54 to 5.05 Ma (Table 3).



43

Table 3:  40Ar-39Ar Age Determinations for Kimama Well Core

- Total 20 Plateau 20 20 40Ar/ o 36Ar E-
Sample (r:) Fusion error Age error N MSWD Isochron error MSWD 36Ar error 14
(Ma) (Ma) (Ma) (Ma) Age (Ma) (Ma) Initial mol/g

KMA1050 320 1.47 0.23 1.54 0.15 8/8 0.29 1.63 030 025 2946 23 0.185
KMA1488 454 178 0.18 1.62 0.15 7/8 044 2.25 134 035 288.7 14.7 0.151
KMA3791 1155 3.58 0.20 3.74 0.13 6/8 0.39 3.79 0.15 0.18 2945 1.7 0.127
KMA3885 1184 4.17 0.64 4.18 058 7/7 0.43 3.97 0.71 048 29%.5 26 0.079
KMA4214 1284 4.40 0.40 439 030 7/7 0.04 4.40 031 0.04 2951 5.6 0.058
KMA4788 1489 5.70 0.93 505 0.81 6/7 0.23 4.87 1.20 0.27 2971 85 0.063

Ages calculated using biotite monitor FCT-3 (28.02 Ma) and the total decay constrant A = 5.530E-10/yr. N is the
number of heating steps (defining plateau/total); MSWD is an F-statistic that compares the variance within step
ages with the variance about the plateau age. J combines the neutron fluence with the monitor age.

Preferred (plateau) ages are shown in bold, concordant with isochron ages.

The ages increase with depth, in stratigraphic order. In all cases plateau ages are
consistent with isochron ages and show no evidence for significant recoil, or *°Ar-loss (Figure 9).
Because the step compositions do not typically show large dispersion, the slopes determined by
linear regressions of “°Ar/*®Ar vs. *Ar/*°Ar are not well constrained and the corresponding the
analytical uncertainties for isochron ages are larger than for corresponding plateau ages. In all
cases, however, the plateau and isochron ages are concordant and initial “°Ar/**Ar compositions
are indistinguishable from the atmospheric value (295.5). Thus, we find no evidence for
undegassed (“excess”) “°Ar during cooling, and we report the plateau ages as our best estimate
of the times of crystallization of these lava flows. The **Ar concentrations, calculated as a
guantitative measure of alteration (Baksi, 2007) from the isotopic data (Table 3) are below the
suggested cutoff value for whole rocks. Hence, alteration and Ar-loss have not significantly

compromised the measured plateau ages as reliable estimates of the times of crystallization of

these lava flows.
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Discussion

Measured paleomagnetic and K-Ar ages and interpreted stratigraphic relations of basalt
super groups, flow groups, flows, and flow units, were used to estimate accumulation rate and
volcanic flux in the Axial Volcanic High of the central Snake River Plain. Geologic ages of basalt
core were constrained using paleomagnetic polarity and inclination measurements of over 1200
cores and K-Ar analyses of six basalt samples (Figure 9). Accumulation rate and volcanic flux
were estimated from standard linear regressions of mean K-Ar ages, mean paleomagnetic ages,
stratigraphic depths of basalt flows and flow groups, and the estimated areal dimension of

Kimama basalt accumulation.

Volcanic Stratigraphy

The Kimama core contains 71 flow groups, each made up of one to seven flows of
similar paleomagnetic inclination and major and trace element composition. Flow groups
comprise 155 lava flows and 462 flow units, and commonly contain two to six flows and 10 to 20
flow units. Most flow groups are 10 to 60 m thick, and are compositionally similar to typical SRP
olivine tholeiites (SROT). Flow groups are estimated to have erupted over durations of 100 to
10,000 years. Flow groups at the base of the Kimama core contain more flows, an observation
attributed to greater accumulation from less-frequent volcanism.

High K, low K, and Fe-Ti flow groups are interpreted to represent flow groups that are
petrologically distinct from the tholeiitic lavas above and below them (see Chapter 3). Although
not recognized by natural gamma-ray wireline logs, Fe-Ti and low-K flow groups are also thought
to represent distinct magma batches separate from typical tholeiitic basalt eruptions.

Within flow groups of the same magnetic polarity and general inclination range, abrupt

chemical variance between lithologically distinct flows signal unrelated batches of magma, new
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eruptive episodes, and different basalt flows. Within a basalt flow, flow units share the same

general chemistry but are distinguished by lithologic facies. Variance of the inclination suggests
and may require elapsed time of hundreds to tens of thousands of years, while polarity reversals
may signify millennial-scale duration (Figure 8; Champion et al., 1988; Champion and Duncan,
2012).

Depth intervals of alternating magnetic polarity and subordinate intervals of similar
mean remanent inclination values can be organized into 54 independent eruptive episodes
ending in the Brunhes Normal Polarity Epoch and beginning within the C1An Normal Polarity
Epoch. The median and range of remanent intensity and magnetic susceptibility values remain
remarkably constant over the length of the drillcore. Density determinations made from the
samples are also uniform in their range of values, despite significant alteration evident in the
deeper parts of the core where temperatures are elevated. Density results suggest similar
melting conditions in the mid crust for erupted basalts.

The use of neutron and natural gamma-ray logs for identifying porous and rubbly zones
between more impermeable, massive basalt flows is validated through the results of this
preliminary investigation. Using wireline data as a tool in preliminary geothermal exploration is
a cost-effective method for mapping subsurface stratigraphy and probable fluid transport
routes. The pronounced fluctuation of neutron and natural gamma measurements closely
mirrors the location of massive flow interiors and associated flow boundaries. Increased signal
response in both natural gamma and neutron logs correlate to actual sediment interbed
locations identified during lithologic logging. Especially at depths of 734.8 m and 1226.4 m,
spikes and dips in natural gamma and neutron log signals (respectively) accurately identify the

presence of sediment interbeds.
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Age and Accumulation Rate

The *°Ar/*°Ar age determinations on six samples produce plateau ages that increase
monotonically with depth, with an age of 5.05 + 0.81 Ma in the deepest sample at 1459 m. The
age progression determined from the paleomagnetic time scale fills in the gaps in the
radiometric dates (Figure 9) and further refines the age vs. depth relationship among the lava
flows (Figure 8).

In the bottom 200 m of core, basalt flows are interbedded with fluvial sand and
hyaloclastite, an indication that lava flows interacted with surface water. Angular and bladed
detrital zircons, interpreted to be derived from a fallout tuff source, were recovered from two
fluvial interbeds and dated using laser ablation ICPMS U-Pb geochronology (see Chapter 4). The
youngest magmatic zircons in each interbed are interpreted to represent (within analytical
uncertainty) the depositional age of the sediment, because unwelded ash fall and ash flow tuffs
will begin to erode shortly after deposition. The magmatic zircons in the lower fluvial section
have ages of 6.2 £ 0.1 Ma (see Chapter 4), whereas the youngest magmatic zircons in the upper
fluvial succession have ages of 5.8 £0.1 Ma. These ages are consistent with the age progression
defined by the Ar dates and the paleomagnetic time scale, and together these data projectto a
bottom hole age of 6.4 Ma.

We document a linear accumulation rate through time of 335 m/Ma (Figure 8), based
on an age of 720 Ka for the surface flows and 6.25 Ma for the oldest basalts (or 5.5 My elapsed
time). Accumulation rates must be averaged over hundreds of thousands of years to account
for hiatuses due to vent construction, periods of decreased volcanism, differential subsidence,
and uplift (Anderson et al., 1997; Anderson and Liszewski, 1997). Each stratigraphic lava flow
generally represents a time period of volcanic activity no longer than a few hundred years;

therefore, a sedimentary interbed or variation in paleomagnetic inclination can represent 10 to
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20 thousand years of volcanic inactivity. This is sufficient time to allow deposition of thick layers

of sediment and for the Earth’s magnetic fields to undergo several degrees of secular variation
(Anderson et al., 1997; Champion et al., 1988).

The eruption rate of Kimama basalts is estimated using a linear regression model fitted
to ages obtained from K-Ar and paleomagnetic age analyses. The data conform to a rate of
growth of about 335 m/Ma between 6.25 Ma and 0.72 Ma. A 1912-m-thick sequence of cored
basaltic lava flows yields K-Ar ages that range from about 1.54 Ma to about 5.05 Ma and
paleomagnetic ages that range from 0.72 Ma to 6.14 Ma. A linear regression model fit to age
data demonstrates a uniform rate of accumulation of basalt with time. In the Kimama region,
one flow group erupted on average every 112 k.y.

At INL on the eastern SRP, paleomagnetic and K-Ar ages of surface and subsurface
basalts were analyzed for eruptive periods ranging from 200 to 700 k.y. during the past 1.8 m.y.
Rates ranging from 521.2 m/m.y. to 823.0 m/m.y., averaging 664.5 m/m.y, are estimated for

areas of past subsidence (Anderson et al., 1997).

Magmatic Flux

In order to calculate the magmatic flux we make a few simplifying assumptions
regarding crustal thickness and density. Since the thickness of the eruptive basalt accumulation
is about 2 km in the Axial Volcanic Zone, and approaches zero on the plain margins (where
rhyolites have little or no basalt cover), we calculate the cross-sectional area of the basalt as a
triangular wedge 100 km across and 2 km high (Figure 10), or 100 km”. The velocity of North
America during this time period was 29 mm/year, which for a duration of basalt volcanism of 5.5
Ma corresponds to a linear track 160 km long (parallel to plate motion). Multiplied by the cross-

sectional area of 100 km?, we calculate a long-term post-plume eruptive flux of 16 x 10° km?
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over 5.5 Ma, equivalent to 2.9 x 10°> km?®/Ma or 2.9 km?/Ka. This compares well with an eruptive

flux for recent volcanism in the SRP of 3.3 km?®/Ka calculated by Kuntz et al. (1992) or 2.5 km?/Ka
calculated by McCurry and Rodgers (2009). These calculations show that eruptive flux has been

remarkably consistent over the last 5.5 Ma in the central and eastern SRP, and imply a relatively

stable rate of mantle upflow under the region.

Magmatic Flux W

Area = 100 km’ 29 mm/year x 5.5 Ma = 160 km

100 km2x 160 km = 16 x 10° km’
(Over 5.5 Ma)

Figure 10: Schematic cartoon showing calculations for SRP magmatic flux over an
area of 100 km2 and a depth of 2 km. The post-plume eruptive basalt flux for the
SRP is ~16 x 103 km3 over 5.5 Ma. The post-plume intrusive basalt flux is calculated
by using the commonly accepted 1:4 ratio of magma eruption to magma intrusion
(Hughes et al., 2002). The calculation does not consider rhyolite flux. If the ratio is
correct, the total amount of basalt intruded as ~64 x 103 km3, and the total basaltic
flux (intruded+extruded) as ~8 x 104 km3, both over 5.5 Ma. This corresponds to a
flux of 1.5 x 104 km3 per Ma, consistent with measured rates in small LIPs

(Saunders, 2005).

We need to make a further assumption to calculate the total magmatic flux (= eruptive
flux + intrusive flux): the ratio of magma eruption to magma intrusion. This is commonly
assumed to be around 1:4, that is, 4 volumes of magma intruded for every volume erupted

(Kuntz et al., 1992; Hughes et al., 2002). This ratio is consistent with the relative thickness of
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erupted basalt (2 km) versus the mid-crustal sill complex (~8-10 km; Peng and Humphries,

1998). If this ratio is correct, we calculate the volume of basalt intruded as ~64 x 10° km?, and
the total basaltic flux (intruded+extruded) as ~8 x 10* km?, both over 5.5 Ma. This corresponds
to a flux of 1.5 x 10* km* per Ma.

Thus, total basaltic flux in the central SRP (~10° km? over 6.4 Ma) is consistent with
measured rates in small Large Igneous Provinces (LIPs) (Saunders, 2005). For comparison, large
LIPs are thought to erupt more than 1 x 10° km® of basalt in less than 10 Ma. The total flux of
Hawaii (Kilauea) is 1.1 x 10° km*®/Ma (Denlinger, 1997), or about 10x higher that that observed in
the SRP. Note however, that these calculations include only basaltic flux; the volume of rhyolite
present (including that erupted as lavas or ash flows, and intruded into the crust as A-type
granites) requires magmatic flux volumes that are 5-10x those calculated here (Leeman, 1982;

McCurry et al., 2008; McCurry and Rodgers, 2009).

Conclusion

The Kimama core provides an unprecedented opportunity to interpret a continuous
sequence of basalt and intercalated sediment, through which the volcanic history of the central
SRP may be characterized and temporally constrained. Subsurface geophysical data provide an
accurate proxy to lithologic observations made from cored basalt and sediment of the Kimama
drill hole. The identification of individual basalt flow units and flows is possible through the use
of natural gamma-ray and neutron well log data. Combined with magnetostratigraphic and
geochemical logging tools, geophysical logs enable the interpretation of subsurface basalt flow

group stratigraphy and the characterization of volcanic processes. Over the past 6.4 Ma, basalt
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volcanism on the central SRP in the region of the Kimama core hole has been relatively

continuous. Flow groups average most 10 m to 60 m thick and show an average accumulation
rate of 335 m/Ma.

The majority of basalt flow breaks within the Kimama core are delineated by the
presence sediment in fractures and vesicles. Although not a robust tool for determining
avenues of porosity between basalt flows, natural gamma logs accurately delineate large
sediment interbeds within the Kimama core and highlight geochemical anomalies within the
basalt stratigraphy. Natural gamma anomalies highlight geochemical variations that could
indicate changes in magma generation processes and associated volcanism. Furthermore,
natural gamma logs provide a valuable resource in determining sample locations for
geochemical studies of SRP magmatism.

Slimhole drilling used with neutron and natural gamma logs is a relatively low-cost,
time-effective, and accurate means of determining viable geothermal targets. Although core
provides the most reliable and tangible means of characterizing the subsurface in areas of high
geothermal potential, the use of geophysical wireline logs is a reliable proxy for identifying flow
boundaries, geochemical transitions, and probable routes for fluid transport in the subsurface
and represents the future of efficient, geothermal exploration. The comparison of logging
methods employed to characterize the Kimama core provide clear evidence that that neutron

wireline logs correlate closely to actual basalt flow breaks.
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CHAPTER 3

PETROLOGIC AND GEOCHEMICAL EVOLUTION OF BASALTS FROM THE KIMAMA 1912 M CORE

HOLE, CENTRAL IDAHO

Abstract

New geochemical data from basalts in the Kimama core hole document 6.4 m.y. of
magma evolution on the central Snake River Plain. In 1912 m of continuous core, four
compositional rock types are identified: olivine tholeiite, very low K, high Fe-Ti, and very high K-
FeO*. Episodes of high-K, low-K, olivine tholeiite, and Fe-Ti magmatism are evident throughout
the core, and are found within individual flow groups, which represent magmatic events. The
chemical variation evident in 71 flow groups demonstrate source heterogeneity and differences
in magma processing during ascent are important in generating basalt volcanism on the Snake
River Plain.

High-K basalt is found at two depths, 319 m and 1078 m, and in flows with thicknesses
less than 1.5 m. These evolved flow groups are chemically analogous to the evolved Holocene
polygenetic lavas from the Craters of the Moon lava field. Snake River olivine tholeiite, low-K,
and Fe-Ti basalt compositional types occur throughout the core and in thicknesses ranging from
150 m to 11 m. The presence of multiple, unrelated compositional types supports the
hypothesis that different parent magmas evolve through varying degrees of crystal fractionation
at shallow to intermediate depths over short durations, and are modified by episodic recharge
of more primitive magmas and by assimilation of the layered mafic sill complex.

Thirty flow groups show very little chemical change with time, signifying either rapid

evacuation from the magma chamber (without sufficient time for differentiation) or consistent
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differentiation processes. The 16 upward fractionation cycles, 12 reversed cycles, four reverse-

fractionation cycles, five fractionation-reverse cycles, and two reversal-fractionation-reversal
cycles over eruption intervals generally less than 100 years show that chemical changes have
continuously occurred over the 6.4 M.y. period during which Kimama basalts were erupted. We
propose that typical Snake River olivine tholeiite represent typical fractionation and recharge
patterns, consistent with varying degrees of assimilation with gabbroic country rock. The high-K
evolved flows low-K flows, and Fe-Ti flows represent separate magma batches that infiltrated
the Kimama system and are unrelated to melts that result from typical differentiation processes

within the mid crustal sill.

Introduction

The Snake River Plain (SRP) of central Idaho, the manifestation Yellowstone-Snake River
Plain (Y-SRP) volcanic province, contains intriguing evidence for mantle hotspot impingement on
continental crust (Pierce and Morgan, 1992; Shervais and Hanan, 2008; Smith et al., 2009;
Sigloch, 2011). The SRP, with a record of continuous bimodal volcanism extending over 12 M.y.
to the present, documents the migration of time-transgressive rhyolitic volcanism from the
Bruneau-Jarbridge caldera complex (circa 12 Ma) to its present location beneath the
Yellowstone Plateau (Pierce and Morgan, 1992; Anders et al., 2009). Interaction between the
mantle hotspot and overlying continental lithosphere has resulted in large rhyolite caldera-
forming eruptions, followed by eruption of smaller basaltic shield volcanoes (McCurry and
Rodgers, 2009; Bonnichsen et al., 2008). The post-caldera basaltic flows form a veneer over the

rhyolite ash flows, masking the complete volcanic record. Understanding the origin and
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evolution of the post-caldera basalts is a challenge because the lack of later uplift and erosion

means that younger flows conceal older basalts that erupted in the same location.

Project HOTSPOT drilled three deep core holes in the Snake River Plain in order to
provide a more complete understanding of the volcanic history of the SRP (Shervais et al., 2012;
2013). The 1912 m deep Kimama core hole, located in the Axial Volcanic Zone of the Snake River
Plain, recovered over 1900 m of continuous core, including 1803 m of basalt and 110 m of
intercalated sediment (including sidetrack core). We present a detailed petrologic and
geochemical investigation of basalts from the Kimama core. Our main goal is to determine the
nature and extent of chemical changes through time at a fixed location, where physical and
chemical characteristics of the crust and mantle lithosphere are relatively set.

Other deep drill holes on the SRP include the Sugar City core hole (0.7 km; Doherty et
al., 1979), the Idaho National Laboratory (INL) hole WO-2 (1.52 km; Shervais et al., 2006), and
the Wendall-RASA (0.3 km; Jean et al., 2013)(Figure 11). Previous workers have shown, based
on geochemical and isotope analyses that significant fractionation occurred at lower or mid-
crustal depths in the layered mafic magma chambers, and that interaction with continental
lithosphere is the primary influence on basalt chemistry in the SRP. Assimilation of genetically-
related, previously-intruded mafic sills occurs in mid-crustal magma chambers (Shervais et al.,
2006; Jean et al., 2013), and a range of primary magma compositions suggests the involvement
of multiple, small magma batches (Leeman 1982b; Vetter and Shervais, 1992; Geist et al., 2002;
Hughes et al., 2002a; Shervais et al., 2006; Jean et al., 2013). Shifts in the composition of
primary magma sources through time have been documented by Vetter and Shervais (1992),
Shervais et al. (2006), and Shervais and Vetter (2009).

| hypothesize that basalts erupted in the SRP and preserved in the Kimama core reveal

temporal chemical heterogeneity related to varying processes of assimilation and fractional
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crystallization through time. Using 39 documented cycles of geochemical fractionation and

recharge, | seek to identify and model petrogenetic processes in basaltic lava flows cored by the
Kimama drill hole, and to demonstrate temporal-compositional trends in the petrogenesis of the

central SRP volcanic province.

Geological Background

Regional Setting

The central SRP is loosely defined as the portion of the SRP between the Owyhee
Plateau, a highland in SW Idaho, and the Great Rift, a north-northwest-trending fissure system
that extends ~50 km southward from Craters of the Moon National Monument to the Wapi
National Monument (Figure 11) (Kuntz et al., 1982, 1992). Major geologic features on the
central SRP include the 12.7-8.5 Ma Twin Falls eruptive center, visible today as an ovoid gravity
anomaly (Shervais et al., 2011), and the 10.3-8.2 Ma Picabo eruptive center, for which the
boundaries are poorly defined (Pierce and Morgan, 1992; Bonnichsen et al., 2008). Beyond the
SRP, to the north and south of Kimama, is the Basin and Range Province.

The Kimama area includes late Neogene to Quaternary basalts that were erupted from
low-relief shield volcanoes. Shield volcanoes and basaltic lava flows overlie rhyolite from the
Twin Falls and Picabo volcanic centers (Kuntz et al., 1988; Bonnichsen et al., 2008), although
rhyolite was not encountered in the Kimama drill core (Potter et al., submitted). Although
inflated flow fronts and pressure ridges are still visible as rugged topography, surface flow
morphology in the Kimama area includes nearly continuous loess mantles of variable thickness

and well-developed soils. Surface drainages are poorly defined (Shervais et al., 2005).
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Figure 11: Map of the Snake River Plain showing location of the Kimama core hole in relation to
inferred locations of silicic volcanic centers. The Great Rift, shown in purple, marks the transition
between the central SRP and eastern SRP provinces. The locations of the Idaho National Lab (INL) and
Craters of the Moon NationalMonument (COM) are also shown.

Mafic volcanism on the SRP began within 1 m.y. of the cessation of Y-SRP hotspot-track-
related silicic volcanism, and is primarily expressed by the eruption and coalescence of
monogenetic, diktytaxitic olivine tholeiite basalt shields with relatively primitive compositions
(Hughes et al., 2002a). The unique style of volcanism along the SRP has been recognized as a
product of small, mid-crustal magma chambers feeding eruptions from coalesced low-relief
shield volcanoes, over relatively short durations, described as “plains-style volcanism” by

Greeley (1982). “Plains-style” volcanism is similar to modern volcanic processes on the island of
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Hawaii and transitional between quiescent Hawaiian-style and continental-style volcanism

(Greeley, 1982; Kuntz, 1978). Vent constructs for SRP volcanoes are typically unimpressive due
to the efficient transport of low-viscosity lava away from the vent in lava tubes. Because
relatively little lava accumulates near the vent, eruptive centers often blend in with the
surrounding topography (Self et al., 1998).

During the late Pliocene through Pleistocene, the SRP was the locus of densely-spaced
mafic volcanic centers along the track of the Y-SRP hotspot that erupted thick packages of basalt
flows and formed the Axial Volcanic High (AVH) (Hackett and Smith, 1992; Hackett et al., 2004).
Although time-progressive basalt eruptions are evident at the inception of post-rhyolitic
volcanism, Pliocene-Holocene lavas on the SRP are distributed throughout the volcanic province
(Hughes et al., 1999; Bonnichsen and Godchaux, 2002). Snake River Plain basaltic volcanism is
manifested as monogenetic, single-pulse lava fields, erupted as low volume (3-5 km?®) flows from
fissures during short-duration (days) eruptions (Kuntz et al., 1992). Later volcanism at Hells Half
Acre (2270 + 50 years BP), Cerro Grande (13380 + 350 years BP), Wapi (2270 + 50 years BP),
Shoshone (10130 + 350 years BP), and Craters of the Moon (COM) occurred over months to
decades and produced greater-volume eruptions (3.3-30 km?®) within a localized area (Kuntz et
al., 1992). Lavas at COM are the most recent products of SRP volcanism, with multi-phase

eruptions with “°Ar/*°Ar ages of 480 ka to 50 ka (Bonnichsen and Godchaux, 2002).

Snake River Plain Basalt Petrology

Although SRP olivine tholeiites are relatively homogenous, previous research has
demonstrated that chemical variation between basalt flows is a result of fractional
crystallization, crustal contamination, and partial melting occurring within the mid-crustal sill at

pressures of ~8-10 kbar and temperatures of 1205 + 27°C (Wager and Brown, 1967; Irvine, 1970;
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Jackson, 1970, 1971; McBirney and Noyes, 1979; Pallister and Hopson, 1981; Leeman, 1982c;

Kuntz et al., 1992; Shervais et al., 2006; McCurry and Rodgers, 2009; Putirka et al., 2009; Miller
and Hughes, 2009). Putirka et al. (2009) argue for a three-stage process to explain the entire
range of SRP lava compositions: at depths of 10-20 km, picrites ascend to the middle crust,
where they undergo partial crystallization of olivine # clinopyroxene. Storage of olivine tholeiite
magmas in the middle crust (20-10 km) causes magma compositions to evolve to moderate MgO
wt% (10%), at which point positive buoyancy is reached and migration through the middle crust
occurs. Finally, at depths of 15-0 km, differentiation and resulting volatile content increases (1-2
wt% H,0) cause the final eruption and ascent of magma through the middle and upper crust
(Putirka et al., 2009). This mode of generation is in agreement with the magma-mush column
model of Marsh (2004), the MASH (mixing, assimilation, storage and homogenization) model of
Hildreth and Moorbath (1988) and the SRP magma petrogenetic model of Shervais et al. (2006),
in which magmas are shown to evolve through complex pathways of fractional crystallization,
assimilation, and mixing at multiple crustal levels before eruption.

Monogenetic eruptive centers on the SRP are most likely fed by individual magma
sources, as demonstrated by chemical variation between and within flow groups (Hughes et al.,
2002b). However, in order to produce separate magma batches for every monogenetic center
on the SRP, a stratified source region in which melts were produced over a range of depths and
degrees of melting would be required (Hughes et al., 1997). In such an environment, and with a
primitive mantle magma source, chemical variations suggest that magma batches experienced
differing degrees of partial melt and fractionation of a heterogeneous enriched subcontinental
mantle (Leeman and Vitaliano, 1976; Menzies et al., 1984; Reid, 1995; Hanan et al., 1997;

Hughes et al., 2002b).
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Potter et al. (see Chapter 2) have identified 462 distinct basalt flow units which

comprise 155 separate lava flows, based on physical and lithologic logs of the drill core,
borehole geophysical logs, paleo-secular variations in magnetic stratigraphy, and the presence
of sedimentary interbeds. Using these data and limited geochemical indicators (FeO* (total
ferrous iron), K,0, La/Lu), they recognize 71 distinct flow groups, ranging in thickness from 0.700
to 183.4 m thickness. They further document that this sequence represents ~5.5 million years
of volcanism (from 6.5 Ma to 720 Ka). We will use this stratigraphic framework to interpret our
results here. We seek to identify chemical variations within cored Kimama basalts to investigate

magma source and differentiation processes in the central SRP.

Methods

We selected 261 whole rock samples from the Kimama core for analysis, representing all
30 basalt flow groups. Major elements and select trace elements were analyzed by fused bead
X-ray fluorescence spectrometry (XRF), and trace elements were analyzed by inductively
coupled plasma mass spectrometry (ICP-MS).

For major and trace element analysis, mini core plug halves were broken in two to three
fragments using a rock hammer. Samples were crushed using a Gyral Grinder shatterbox with a
tungsten carbide vessel, and then ground again with an agate mortar and pestle. Samples were
ignited at 800°C for 24 hours, after which 1 g of sample was mixed with 5 g of a Claisse Li-borate
flux and 6 drops of Lil (added as a releasing agent). Sample mixes were melted in Pt-Au metal
crucibles at 12002C in a muffle furnace, then poured into a heated Pt-Au metal disk mold and

guenched into glass. Major element (SiO,, TiO,, Al,03, MnO, FeO*, MgO, Ca0, Na,0, K,0, P,05
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Cr,03) were analyzed with a Philips 2400 X-Ray fluorescence (XRF) spectrometer at Utah State

University.

Trace-element concentrations were measured at Centenary College (Shreveport, LA)
using a PerkinElmer 600 inductively coupled plasma-mass spectrometer (ICP-MS).
Approximately 60 mg of each sample was dissolved in 2mL HF and 3 mL HNOs for 3 hours, with
watch glasses preventing evaporation. Watch glasses were then removed and samples dried,
after which another 3 mL of HNO; was added to the samples. The sample solution was left at
50°C overnight, and then dried at 90°C. A further addition of 3 mL of HNO3 to the sample
preceded immediate drying. Finally, the sample was brought into solution with 2-3 mL of 50%
HNO3, and brought to a total volume of 50 mL with 5% HNO3. This procedure is modified from
Jenner et al. (1990) and Neal (2001). Five milliliters of 10 ppb In, Rh, and Ru were added to the
sample solution as internal standards to calibrate measured concentrations. Plasma lab
software was used to map out sampling order and record measurements over the duration of

the experiment.

Results

Major Elements

The whole-rock major-and trace-element compositions of Kimama samples (Table 4),
and MgO-variation diagrams (Figure 12) reveal similarity to olivine tholeiite basalt compositions
from the eastern SRP. Geochemistry displayed in stratigraphic context (Figure 13) demonstrates
more variation. Kimama basalts have major-element compositional ranges of 43.2- 50.4 wt%
Si0,, 9.80- 17.6 wt% FeO*, 1.22-4.65 wt% TiO,, 5.00-11.0 wt% MgO, 8.84-14.0 wt% CaO, 11.5-

15.8 wt% Al,03, 1.75-2.75 wt% Na,0, and 0.120-0.920 wt% K,0, 0.170-1.65 wt% P,0s. Loss on
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ignition (LOI) is less than 1%. In general, Kimama basalts demonstrate smooth to variable

increasing and decreasing patterns on MgO variation plots (Figure 12). Increases in TiO,, FeO*,
and K,0 are observed with respect to decreasing MgO. Concentrations of SiO,, Al,03, Ca0O, and
Cr decrease with decreasing MgO.

These data reveal that the Kimama basalts define four distinct, geochemically-defined
groups: (1) a ‘Snake River Olivine Tholeiite’ (SROT) group that represents most of the basalt
samples from surface outcrops on the SRP, (2) a low-K SROT group, characterized by K,0 < 0.4
wt%, but otherwise broadly similar to normal SROT is observed throughout the Kimama core, (3)
iron and titanium-rich “Fe-Ti” basalts similar to many basalts found within Craters of the Moon,
with 16-18 wt% FeO* and 3.0-4.5 wt% TiO, 3-4 wt%; and (4) a rare high-K suite, characterized by
K;0 > 0.65 wt% (Figure 14). Fe-Ti basalts are preferentially located in the upper 600 m of the
core, whereas the high-K flow groups are located at only two depth ranges, near 318 m and
1077 m. SROT basalts dominate the upper 1000 m of the Kimama core, whereas low-K basalts
are the dominant compositional type from 1000 m to 1912 m depth.

Trace-element analyses of Kimama basalts (Table 1) indicate that compositional trends
in rare earth elements (REE) are generally similar to those observed in basalts of the eastern
SRP. However, Kimama basalts are generally higher in light rare earth elements (LREE) than
eastern SRP basalts, a trait best observed on chondrite-normalized (McDonough and Sun, 1995)
multi-element spider diagrams (Figure 15). Within the core, REE trends show no discernable
trends of depletion or enrichment with depth, although upsection heavy rare earth element
(HREE), LREE, and incompatible element trends correlate to recharge and fractionation cycles

within individual flow groups (Figure 16).
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Trace Elements

Kimama basalts are LREE enriched compared to basalts of the eastern SRP. The HREE
compositions of Kimama basalts plot in a narrower range of values compared to other SRP
basalts, but compositions are generally similar (Hughes et al., 2002a). Although the basalts in
the Kimama core are less enriched in LREE than COM (exceptions being the two highly evolved
flow groups), their REE patterns are similar. Kimama basalts have a steeper LREE and HREE
pattern than other SRP basalts (Figure 15). Similar incompatible element trends exist between
SRP and Kimama basalts, i.e. Ba, Ta, Nd, Hf, Tm, and Lu, but subtle depletions in Sr, and Y are

evident in Kimama samples.
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Figure 12: Selected major and trace element variation diagrams with compositions of Kimama
basaltscompared to compositions of eastern Snake River Plain (ESRP) olivine tholeiites

(Hughes et al., 2002). Ximama flow groups are distinguished by colored symbols, ESRP samples are distinguished

by gray crosses.
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Figure 13: Selected trace

element ratios plotted by
stratigraphic depth. Cycles
of upward fractionation

are shown as increased

ratios of incompatible:

compatible trace elements.

Reverse cycles are shown as

decreased ratios. Trace

element ratios mimic major

element fractionation and

recharge trends.
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Discussion

Chemical Suites and Stratigraphic trends
Lava flows in Kimama core are classified as basalts, and plots of major and trace

elements plotted against depth identify four basalt compositional types (Figure 16). Thirty-five
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flow groups are standard SROT basalts. Two flow groups consist of high-K, high-Fe (high K) lavas

that are essentially identical to those erupted within COM during the latest Pleistocene and
Holocene. We identified 22 low-K lava flow groups, which represent the least evolved flow
groups in the Kimama core. Eleven high-Fe, high-Ti (Fe-Ti) flow groups are also identified in the
Kimama basalt stratigraphy. Fe-Ti, low-K, and high-K flow groups are thought to represent
distinct magma batches separate from SROT magmas. Whether Fe-Ti, low-K, high-K, and SROT
are compositionally related will be discussed herein.

Despite the overall chemical similarity in SRP Neogene basalts, individual flow groups in
the Kimama core exhibit several temporal-compositional trends. The 71 flow groups identified
in the Kimama core are classified into four compositional types based upon whole rock TiO,
wt%, K,0 wt%, FeO* wt%, and ratios of K/P (Figure 14). Oxides such as CaO, Al,03, and Na,0
vary without discernable trend, perhaps owing to the crystallization and flotation of plagioclase
within the magma. A total of 39 flows and 18 flow groups are classified as SROT, based upon
compositional ranges of to 5.00 to 11.0 wt% MgO, 11.0 to 15.8 wt% FeO*, 0.210 to 0.920 wt%
K,0, and 1.76 to 3.63 wt% TiO,. SROT flows are found through the entire Kimama core, with the
highest concentration in the 16 m to 1236 m depth range. Six Fe-Ti flow groups and 18 flows are
recognized in the Kimama core based upon elevated concentrations of FeO*, 13.8 to 17.6 wt. %,
and TiO,, 2.67 to 4.65 wt. %. Fe-Ti flows are preferentially located in the upper 754 m of the
core in flow groups 3, 10, 13, 15, 16, and 25. Six low-K flow groups and 31 flows are
distinguished by low K,0, < 0.3 wt. %, low FeO*: 9.80 to 14.8 wt. %, and higher MgO: 5.81 to
10.4 wt. %. Low-K flow groups are concentrated from 4500 m to 1912 m depth and comprise
flow groups 27, 28, 29, and 30. The two flow groups and flows of the high-K suite are the most
chemically distinct flows in the Kimama core, with FeO* of 2 17.8 wt. %, K,0 of 1.77 to 1.84 wt.

%, TiO, of 3.43 to 3.54 wt. %, and MgO of 3.40 to 3.94 wt. % (Figure 14). High-K flow groups 8
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and 23 are located at 318 m and 1077 m depths, respectively. The REE patterns of SROT, Fe-Ti,

and low-K suites are broadly similar, but high-K flow groups are 10x more enriched in both LREE

and HREE compositions, and fall within the COM compositional array (Figure 14).

Fractionation/Enrichment and Recharge Cycles

The progressive enrichment of incompatible elements between flow units upsection
stratigraphically is commonly interpreted to represent ongoing eruptions from a fractionating
magma chamber (e.g., Shervais et al., 2006). Likewise, progressive depletion in incompatible
elements, and concomitant enrichment of compatible elements upsection, is interpreted to
represent magma chamber recharge with primitive or parental melt compositions (Shervais et
al., 2006). These trends are best illustrated by plots of element concentrations MgO, FeO*, TiO,,
and K,0 vs. depth (Figure 16). Upward fractionation cycles are indicated by a decrease in MgO
and increases in FeO*, TiO,, K,0. Recharge cycles are indicated by increasing MgO, and

decreases in FeO*, TiO,, K,0 (Figure 16).



85

0 [ ) Il
H ] |
E r i o | B
\B A o' E | B Flow Group 8: R-F
E Beo i g E g Basalt Flow Group 'x’ o gow group ?05
P 2 g4 [ - T w © Flow Group 10: s
& i r\‘o: & : L3 VAl Basalt Flow Group ‘y Flow Group 11: F
T- 7 o b Loess ® F}ow group %% )
500 E E E D - Massive Sandstone v ng G;gﬂs 14% £
7 : I - S silt, Siltstone, or 3 Fow g::gﬂs R
. A || ' ShalySilt Flow Group 17: F-R-F
\ o, i | Volcanic Breccia or Flow Group 18: R
a 4 > ! Agglomerate e E oW group %3 E FR
< [ 2, (Hyaloclastie) ¥ How aroup 21 F
r e B High K20, High Fe0 5 EIoW Broup 22:R
,000 \ H i ! Basalt N E gw g:ggs %g
" e ;- f; e g .‘ E High Fe-Ti Basalt & Flow gruup %G‘
§ ~ = gv i ‘§~ :' b [1':‘—:! Low K20 Basalt = ; gw G:gﬂg 257; BeR
<3 v ! % Ar/Ar Sample Location + E gx g:g::g %g E
. & o ! o + Normal Polarity i Flow Group 31
8 of 3 'S = Reversed Polarity v Flow Group 32
A ] N OH - @ Primitive Kimama sample x; ow g'r_ggg 33 E‘F
,500 " # T a1 - Sediment = Flow Group 35: F-R
— i % 4 ?!+ ! f w © Flow Group 1 > Flow Group 36
E + * ‘.’ b ' g 21 O Flow Group 2: F Flow Group 37: R
o A ey ' , "&‘.’:“.’E'.'.‘:.' © Flow Group 3 Flow Group 38: F
= . H : | g Flow Group 4: R = Flow Group 39
g |38 R 8 - L 73 © Flow Group 5: F-R
a ] B &) & e - 1.  Flow Group 6 7\ Recharge Cycle (R)
: " ‘3 4 E E 4 SO GroUs LR 7\Fractiunation Cycle (F)
,000 1 = - ol I}
‘ ! : ! . . . .
: aatlaa + " 3 s Figure 16: Generalized stratigraphic
‘ ~ i A o
§ } i‘g § : :§ column, mean paleomagnetic inclination
¢ H ! . S
: : < CAEE (A (A), and selected chemical compositions
v . . vl )
500 | ¢ N i {8 33 of the Kimama core as a function of
. x e T Ih& [ 1A .
7| R e 1R ma  depth below the surface (in meters)
‘ [ Vi ? ol (B-E). We identify 32 flow groups,
i SO0 &t which are numbered from top to bottom.
3 A ' | it 1 4 A : 2
: . o o e bt The Fe-Ti, HK, and LK flows are highlighted
H b .- ¢ 3
,000 L ' - 0 ields i .
O T R T T by shaded fields in columns C through E

Inclination (*) MgO wt. % FeO® wt. %Tio2 wt. %k20 wt. % KIMAMA  Refer to Table 1 for flow group details.
(A) (8) (o] (D) (E) Strat. Figures B and C are annotated with arrows,

displaying our interpretation of fractionation (F) and recharge (R) cycles. Flow groups 1 and 22 show
upsection recharge followed by a fractionation event. Flow group 20 shows upsection fractionation
followed by recharge. Flow groups 6, 7, 9, 10, 11, 12, 15, 17, 27, and 29 show upsection fractionation.
Flow groups 17, 24, 26, and 28 show upsection recharge. Flow groups 2, 3, 4, 5, 8, 13, 14, 18, 19, 21, 23,
25, 30, 31, and 32 show relatively constant upsection composition. See text for full discussion of recharge
and fractionation cycles.



86

3,000

L
-
M

e

2 Basalt Flow Group “x
Basalt Flow Group ‘y’

- Loess

- Massive Sandstone

Silt, Siltstone, or
Shaly Silt
Volcanic Breccia or
Agglomerate
(Hyaloclastite)
@ High K20, High FeO
Basalt
High Fe-Ti Basalt

Eﬁ Low K20 Basalt

¢ Ar/Ar Sample Location

+ Normal Polarity
= Reversed Polarity
® primitive Kimama sample

7\ Recharge Cycle (R)
7‘ Fractionation Cycle (F)

SN

* eed

o
“eq
. o4

-f'.)‘va
- -‘5
-

i

' 1111[1‘!5{';’)‘

..

T IR

M

=

\\

o g,
},
o

3,500

o

At
S

w00
¥
et
Fego®
:_ka

N
>4
~

1

vewa
AN i S

W

° Oy
@
n.---.,,------.--..---------------u--‘-'-l--

4,000 2

"‘9—---."—..;'.

Depth (ft)

4,500 - Wil il St 11 el /.
Sediment
@ Flow Group 40: F
© Flow Group 41
o Flow Group 42: F
<>Flow Group 43: F-R
v Flow Group 44
* Flow Group 45
Flow Group 46
@ Flow Group 47
© Flow Group 48
* Flow Group 49
10 Flow Group S0: F
1|1 ] Flow Group 51: R
== | X Flow Group 52
vudl o L » Flow Group 53
‘“u||‘1|| |“l 1!1 B Flow Group S4:R
n + Flow Group 55: R-F
™ Flow Group 56
wn i e || o Flow Group 57
et gt < Flow Group 58
e s Flow Group 59
Flow Group 60: F
* Flow Group 61: F
o Flow Group 62
Flow Group 63
JFlow Group 64
Flow Group 65: F
Flow Group 66: R-F-R
™ Flow Group 67: R

.100‘ 0 100 S 9 10 13 16 191 2 3 4 50 10 2.01830m s ElowgmuDgg
Inclination (%) MgO wt. % FeO* wt. % TiO2 wt. % K20 wt. % . S Flow Group 70: F

(A) (8) (C) (D) (E) 222(;0 S | & Flow Group 71: F-R

-
b1
E-4

W

T e T

OO Sam e @
¢

Lo i
Ql_
-

1
R
a

5,000

:.-----3"

o o®
-0

5,500 ; /|

S —ow—— -

)
—¥ o
>~ —-‘Oq.n f—

Nlﬂ
"

a
':_‘ Sl v

6,000

Stratigraphically defined flow groups based on lithology, paleosecular magnetic
variations, and sediment intercalations, as defined by Potter et al. (see Chapter 2), do not
correspond directly to magma fractionation or recharge cycles (Figure 12). Thirty flow groups,

beginning with the uppermost flow groups 1, 3, 6, 9, 10, 12, 23, 24, 25, 26, 28, 31, 32, 36, 39, 41,
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46, 47, 49, through the lower flow groups 52, 53, 56, 57,57, 59, 62, 63, 64, 68, and 69, show

relatively constant compositional trends with depth, suggesting the emptying of a magma
chamber over relatively short time spans, with little or no coeval fractional crystallization. This
is consistent with relatively high eruption rates that empty the magma chamber quickly.

Upward fractionation cycles are recognized in twenty flow groups in the Kimama core:
flow groups 2, 8, 11, 13, 14, 19, 21,27, 29, 33, 34, 38, 40, 42, 50, 55, 60, 61, 65, and 70. A few
groups show brief intervals of upward fractionation superimposed on recharge trends (flow
groups 20, and 66). These short upward fractionation “steps” probably represent periods of
quiescence during which neither eruptions nor recharge occur.

Other flow groups document progressive recharge of their magma chambers coeval
with ongoing eruptions, such that lavas become progressively more primitive upsection,
trending to low-K, high MgO compositions. This can be observed in 16 flow groups: 4, 7, 8, 16,
17, 18, 22, 27, 30, 35, 37, 43, 48, 51, 54, 67, and 71. Flow groups 13, 17, 20 and 24 also display
brief intervals of upward fractionation superimposed on the dominant recharge trends.

HK flow groups (flow groups 12 and 49) are compositionally constant, but too thin to
represent prolonged time intervals. Although both sit atop underlying upward fractionation
cycles, the need for a separate parent magma makes connecting these to underlying flow
groups problematic.

The occurrence of upward fractionation cycles and recharge cycles is consistent with the
proposal of Shervais et al. (2006), which suggests that basalt magmas are processed through a
mid-crustal sill complex, in which individual sills commonly form layered mafic intrusions as the
cumulate extract of crystal-melt fractionation. These layered mafic intrusions act as reactive
filters which process the magma before it erupts. Individual sills may represent a single pulse of

primitive magma, which then feeds a single monogenetic volcano on the surface.
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Crystallization Models

The low-pressure fractional crystallization of olivine and plagioclase has historically been
accepted as the dominant process controlling the composition and evolution of SRP olivine
tholeiite basalts (Leeman and Vitaliano, 1976; Leeman, 1982a, 1982b, 1982c; Geist et al., 2002).
We used COMAGMAT to model fractional crystallization (FC) processes in the Kimama core.
Sample KA1A263 of flow group 1 was modeled as a representative, unaltered SROT basalt
(Figure 17).

Fractional crystallization appears to play a moderate role in the generation of observed
compositions. Compositional trends in Figure 16 appear to align with expected paths for
assimilation-fractional crystallization (AFC) of previously intruded basalt (AFC-gabbro). Our
COMAGMAT model used olivine and plagioclase fractionating phases in a 40:60 ratio; changing
this ratio or introducing clinopyroxene into the system did not change the results.

We used the four primitive flows, KA1B1467, KA1B3061, KA1B4502, and KA1B4527 and
the FC-AFC-FCA-mixing Excel spreadsheet of Erstoy and Helvaci (2010) to generate step-wise
and end-member chemical compositions for comparison to the less evolved low-K flow groups,

and to the more evolved Fe-Ti and high-K flow groups observed in the Kimama core (Figure 18).
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Compositions of Fe-Ti, SROT, HK, and LK basalts are plotted with four primitive basalt samples as proxies for
parent magma compositions. Fractional crystallization values (FC; green diamond) are shown in percent
crystallization, in increments of 5%. Bulk mixing values (grey squares) are shown as percent assimilated
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crystallization in increments of 5%, with r values presented at the end of each AFC trend. GPI is Graveyard
Point Intrusion. Calculations made from the model of Estoy and Helvaci (2010).

Melt Source

Chemical variations in basalts may be attributed to different petrogenetic conditions in
the middle crust. Differing degrees of partial melting can cause compositional disparities in
magmas of similar source regions, and partial melting of magma source regions that vary
significantly in trace elements may also cause variations in basalt chemistry (Leeman, 1982b;
Hughes et al., 2002a; Putirka et al., 2009). Subsequent fractional crystallization of primitive

magma may also cause compositional changes. Since small amounts of fractional crystallization
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have little effect on incompatible element compositions, our models of Kimama basalts focus on

the effect of variations in the amount of partial melting and of source composition.

We use multi-element (spider) diagrams normalized to primitive mantle concentrations
to evaluate fractional crystallization and partial melting processes. Spider diagrams efficiently
organize large amounts of data for easier comparison.

We have constructed a series of spider diagram melting models in order to interpret
Kimama melt variations (Figure 19). Chemical compositions in Kimama basalts represent the
source regions of normal mid-ocean ridge basalts (N-MORB; depleted relative to primitive
mantle), primitive mantle (PM), and enriched mid ocean ridge basalts (E-MORB; enriched
relative to primitive mantle). Source modes used are spinel and garnet lherzolite, representing
relative shallow (spinel: <20 Kb or 66 km depth) and deep ( > 20 kb or 66 km depth) melting
regimes. We compared these models to five representative high-MgO basalts from the Kimama
core. Partition coefficients are from McKenzie and O’Nions (1991, 1995) and Arth (1976);
primitive mantle and N-MORB source compositions are from McKenzie and O’Nions (1995). The
E-MORB source composition is from Mertz et al. (2001) using N-MORB source + 8% metasomatic
melt (0.3% fractional melt of MORB source; Mertz et al., 2001). The non-modal batch melting
equation was used to calculate melt variations, and the primitive mantle- normalized results are
shown in Figure 19.

Partial melting of an N-MORB composition source in the spinel Iherzolite facies results in
depleted LREE concentrations (relative to HREE) in model melts. At extremely low melt fractions
(less than 2%), HREE concentrations in the model melts are too high and LREE/HREE ratios too
low to match observed primitive basalt compositions (Figure 19). High field strength elements
(HFSE) and K,0 also show suppressed values in the model melts. Within the garnet lherzolite

facies, partial melting of an N-MORB composition source results in model melts that are
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depleted in LREE relative to HREE. An exception to this observation occurs at extremely low

melt fractions (< 2%), in which case HREE, K,0, and HFSE concentrations in the model melts are
too low to fit the data.

When primitive mantle source compositions are melted in the spinel lherzolite facies,
the model melts generated are too low in LREE and LREE/HREE ratios. Partial melting of a
primitive mantle composition in the garnet lherzolite facies (4% modal garnet) produces model
melts that are too low in LREE at large melt fractions and too low in HREE at low melt fractions.
At all but the lowest melt fractions, the model melts are too low in HFSE.

We observed the best fit to the Kimama primitive basalts when we compared model
melts generated from the partial melting of the calculated E-MORB source composition in the
spinel lherzolite facies (Figure 19b). Coherence is observed for all elements in the 7% to 15%
melting range with the exception of Sr, which is consistently high in all of the model melts.
Using the same source composition in a garnet-poor lherzolite mode (4% modal garnet) resulted
in good fits for the LREE within the ~10% to 20% melting range, but poor fits for the HREE
(Figure 19b).

The relatively high concentrations of Sr, both in source composition and facies models,
suggest small amounts of plagioclase fractionation (which would have a minor effect on the
other elements modeled), or a mantle source region with lower Sr than our modeled source.
Considering that the composition of the E-MORB source was calculated to model oceanic island
basalts and not continental tholeiites (Mertz et al., 2001), the fit of the model melts derived
from the E-MORB source to our observed data is unexpectedly good for basalt magmas

generated in continental lithosphere.
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Figure 19: Multielement spider diagrams normalized to primitive mantle (McDonough and Sun, 1!

Six source compositions are plotted after varying percentages of melting. A) and B): Enriched
mid ocean ridge basalt (E-MORB), C) and D): normal mid ocean ridge basalt (N-MORB), and E) and F):
primitive mantle (PM) source compositions of spinel lherzolite and garnet lherzolite are used. We
compare compositions of four primitive basalt samples, proxies for parent magma to determine the

composition and melting conditions of the Kimama source magma. Trace elements are arranged in order
of decreasing compatibility from right to left.
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Pressures inferred from major phase equilibria are consistent with observed upper

mantle pressures; the observed peridotite facies assemblages imply pressures within the spinel
Iherzolite to garnet-poor facies (1.0-2.4 GPa for the spinel facies and probably < 3.0 GPa for the

garnet-poor facies).

Potential Temperatures

Potential temperature of the source mantle represents the hypothetical temperature
that the mantle would have if it were to reach Earth’s surface uncompressed and unmelted
(McKenzie and Bickle, 1988). Increasingly, mantle potential temperature (T,), is used in the
absence of reliable or coherent seismic data as a tool to discern the mantle thermal anomalies
that herald the presence of mantle plumes (Putirka, 2005). At Iceland, T, is estimated to be
1480-1520°C (MacLennan et al., 2001), while at Hawaii, T, is estimated to be 1558°C (Watson
and McKenzie (1991).

We used PETROLOG to model reverse fractionation in four high-MgO basalts, used as
proxies for parent magma compositions, in order to calculate their primitive parent magma
compositions and olivine equilibration temperatures, which should equal the temperature of
the mantle source region. Each sample represents the most primitive basalt erupted in a
chemical cycle, based upon high Mg#, high MgO content, low Ni content. All but sample
KA1B3061 and 4527 are the oldest flows in their respective flow groups. Input parameters were
15Kbar pressure and Fo89, conditions thought to exist within the mid-crustal sill. Sample
compositions and modeled parent magma compositions are shown in Table 5. Although no
compositional trends are evident in most major element oxides, MgO composition appears to

decrease with depth in reverse fractionation models.
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Table 5: Actual and reverse fractionation compositional results for primitive Kimama basalt samples at Fo 89
using PETROLOG. Tp refers to the potential temperature of the mantle.

SAMPLE (Tg) Olv Kd Lg(fO2) Density Viscosity Sr:lrltt'f)f Olv % Si02 Ti02 Al203Fe203 FeO FeO* MnO MgO CaO Na20 K20 P205 Cr203
KA1B1467 Sample Composition: 46.3 2.04 149 13.9 12.5 0.190 9.28 10.3 2.32 0.430 0.390 0.100
1467 1407 0314 -63 2771 413 818 182 451 1.67 122 159 11.2 12.7 0.155 16.0 839 1.90 0.352 0.319 0.083
KA1B3061 Sample Composition: 44.9 1.81 13.8 14.1 12.7 0.190 11.0 11.0 2.40 0.480 0.350 0.150
3061 1401 0304 -6.37 2785 235 877 123 442 158 12.0 1.67 11.1 12.6 0.166 154 9.64 2.10 0.419 0.306 0.13
KA1B4502 Sample Composition: 46.8 1.50 15.1 12.4 11.2 0.190 10.4 10.9 2.06 0.310 0.240 0.110
4502 1372 0316 -6.61 2752 461 89.0 11.0 460 1.33 134 1.37 10.1 11.3 0.169 14.4 9.70 1.83 0.275 0.213 0.099
KA1B4527 Sample Composition: 48.9 1.22 155 11.0 9.9 026 941 115 175 015 0.19 0.700

4527 1345 0.326 -6.82 2.714 5.00 89.1 10.9 484 1.10 139 1.19 9.18 10.3 0.234 13.6 10.3 1.57 0.135 0.171 0.063
Melt density is calculated following the model of Lange & Carmichael 1987
Parameters to stop calculations at: final olv composition: Fo = 89 mol%
Melt viscosity is calculated following the model of Bottinga & Weill 1972
The amount of a mineral phase added to 100% of melt on each step is: 0.01 %

From these calculations, Kimama mantle potential temperatures are estimated to be
between 1345° and 1407°C, lower than known plume temperatures, but higher than MORB-
source mantle (T, = 1250°-1300°C). However, this could be explained by the calculation of T, at
50 km depth, the suggested depth of the mantle beneath the SRP (i.e. mantle potential
temperature from a mantle depth). Perhaps more relevant is the position of the Y-SRP hotspot
underneath the Heise volcanic field during the eruption of Kimama basalts. At a distance of
~150 km from Kimama, there may have been significant heat loss from the plume by the time
mantle-derived Heise melts intruded into the mid-crustal sill beneath the Kimama core hole site.

Using geochemical data with previously-determined core stratigraphy and
paleomagnetic data, we show that Kimama basaltic lavas have varied in composition from low-K
to SROT to high-K to Fe-Ti lavas throughout 6.4 Ma of continuous deposition. We interpret the
multiple chemical cycles evident in stratigraphic comparisons of Kimama geochemistry to
represent the fractionation of individual magmas and the progressive recharge of crustal magma
reservoirs, with each cycle representing an eruption from a vent or vent system. Fractionation
and assimilation of continental crust does not explain the trends of enrichment in P,O5 and Cr
and depletion in K,0 and Zr, and in agreement with Shervais et al. (2006) and Jean et al. (2013),

our FC-AFC models suggest that fractionation and assimilation of previously intruded gabbro
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best explain the overall geochemistry of Kimama basalts. The Graveyard Point Intrusion

(gabbro), is used as an analog for the composition of the gabbro within the mid crustal sill
complex, and demonstrates the mafic compositions necessary to generate observed trends in
primitive flows through assimilation (White, 2007). Melting models of primitive Kimama
compositions suggest a petrogenetic history of 7-15% melting of an E-MORB spinel Iherzolite
source, also in accord with previous models of SRP basaltic magmas.

Contrary to previous models of SRP volcanism, evolved, COM-type lava flows are not
confined to the margins of the SRP, nor are they temporally limited to the last 15 k.y. (Kuntz et
al., 1986, 2007; Leeman, 1982c; Putirka et al., 2009). The two HK lava flow groups identified in
the Kimama core represent unrelated batches of magma that tapped a source similar to that of
COM. The incompatible element-enriched Fe-Ti basalt flows may demonstrate longer-duration
storage in magma reservoirs, where fractionation was not cut short by the rapid ascent of

magma to the surface.

Conclusion

The Kimama core samples lava flows presumably erupted from multiple shields in the
region, but the similarity of mantle melting conditions and transport paths has resulted in lavas
with generally similar compositions. The compositional variance of the four compositional types
observed in the Kimama core must reflect differing processes of petrogenesis from magmas of
the same source.

Upward fractionation, or upsection increases in incompatible elements and K,0 and
FeO* wt%, suggest fractional crystallization cycles as observed in layered mafic intrusions.

Chemical reversals, or upsection increases in compatible elements and MgO wt%, suggest
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episodes of recharge of the system by more primitive melt. The chemical stratigraphy of the

Kimama core provides evidence of the changing influences of continental lithosphere and
mantle hotspot material over relatively short to long periods of time.

Cycles of fractionation and recharge are demonstrated in gradual variations in major
and trace element trends. Evidence for upward fractionation is thought to lie in the upsection
decrease in MgO and Cr and the increase in Fe,0s, K,0, TiO,, P,0s, Zr, and La (Shervais et al.,
2006). Phase assemblage changes may indicate the influx of a new magma, while phase
composition changes may result from the ascent of magma through lower temperature
conditions. The repetition of cycles upsection that involve the same or similar phase
assemblages suggests the system was drawn back to its original chemistry through an influx of
primitive magma (Shervais et al., 2006).

Other possible consequences of magma transport through the mid-crustal mafic sill are
evident as gradual to abrupt geochemical transitions. Shervais et al. (2006) suggests magma
recharge, occurring over a period of time and without sufficient volume to significantly
overwhelm residual magma from previous fractionation cycles, to explain progressive upsection
variations in lava geochemistry. Conversely, abrupt transitions between cycles suggest a
complete turnover of magma or the tapping of a new magma storage chamber (Shervais et al.,
2006). Once a conduit has been established, ascending magma bodies are shielded from
interaction and assimilation with felsic crust; it is possible for magma batches to travel through
thick sections of continental crust without substantial interaction. The lack of geochemical
disparity between SROT can be attributed to processes of fractionation and assimilation in the

middle crust, processes that homogenize major and trace element geochemistry.
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CHAPTER 4

EVIDENCE FOR AN AXIAL VOLCANIC LOW IN THE KIMAMA CORE: HEISE FIELD
VOLCANOGENIC ZIRCONS AND THE LATE MIOCENE PALEO-WOOD RIVER IN THE

CENTRAL SNAKE RIVER PLAIN

Abstract

The 1912 m Kimama deep drill hole and core is located on the axial volcanic high of the
central Snake River Plain, NE of Twin Falls, Idaho and provides a depositional record of basaltic
lava flows, loess, and fluvial sand on the central Snake River Plain from the late Miocene through
Pleistocene epochs. Based on Ar/Ar and paleomagnetic dating records, we infer that these
sands were deposited within a relatively linear basalt accumulation rate of ~335 m/m.y. (~1,100
ft/my), with a projected bottom hole age of 6.4 Ma.

Detrital zircons were recovered from two upward fining sandstone interbeds at 1842-
1844 m (6044-6050 ft) and 1707-1748 m (5602-5737 ft) depth and analyzed for U-Pb and eHf at
the University of Arizona LaserChron laboratory. At the base of the core, both interbeds contain
mainly Miocene detrital zircons of the Yellowstone-Snake River Plain magmatic system (5 to 10
Ma). Higher sands contain successively older, pre-Neogene zircon grains including Challis
magmatic event (45 to 50 Ma), Idaho batholith (90 to 100 Ma), Paleozoic magmatic grains
recycled from Devonian Milligen Formation and Pennsylvanian-Permian Sun Valley Group, and,
variable Grenvillean and Meso- and Paleoproterozoic grains or and Archean grains.

Detrital zircon ages (barcodes) within the five samples indicate two incursions of the

Wood River system at depths of 1842-1844 m (6044-6050 ft) and 1707-1748 m (5602-5737 ft).
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Each fluvial succession systematically changes upward from dominantly Neogene zircons to

mainly Paleogene zircons, but inconstant Archean vs. Proterozoic populations in the upper
succession suggest that the paleo-Wood River tributary tapped the structurally uplifted lower
and middle plates of the Pioneer core complex. This observation, coupled with the 5.7 Ma
estimated depositional age of the sand, constrains the unroofing of the Pioneer core complex
and the exhumation of the Wildhorse complex to between 5.6 and 5.8 Ma. The top of the upper
succession records the only population of Paleozoic grains present within the Kimama core,
indicating a source west of the Pioneer thrust fault. We suggest that after 5.7 Ma, the paleo-
Wood River system shifted westward, and that after 5.6 Ma, basaltic volcanism along the Axial
Volcanic Zone diverted the paleo-Wood River system southwestward through the Hagerman
area between 3.8 and 3 Ma.

In addition to older recycled grains, a large fraction of the recovered grains represent
Neogene primary zircons formed during eruptions of rhyolite ash from the Y-SRP magmatic
system. The fresh, rod- and blade-shapes of grains, with minimal rounding, suggest a primary
fallout origin of these volcanic zircon grains. These volcanogenic detrital zircons were likely
ejected during caldera-forming eruptions in the central SRP, transported by aeolian or fluvial
processes, and deposited within the fluvial deposits shortly after their eruption. This implies
that the depositional age of the sediment intervals corresponds to the age of youngest zircons in
each unit (5.8 Ma and 6.2 Ma).

Hf isotopic compositions vary from gHf of -7.3 to -3.9, and the Hf variation is highly
correlated with age: volcanogenic zircons ages of 7.1, 6.7, 6.2, and 5.8 Ma have on average
corresponding eHf of -7.3, -6.4, -4.9. -3.9. This progressive decrease in eHf in the younger zircons
indicates an increase in mantle-derived Hf through time, with a corresponding decrease in

crustal Hf. Furthermore, U-Pb ages of younger volcanogenic zircons in each interbed are in
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accord with the depositional age inferred from the calculated accumulation rate, consistent with

deposition less than 100,000 years after their eruption.

Introduction

The motion of the North American Plate over the fixed Snake River Plain (SRP) mantle
hotspot is thought to have resulted in a northeastward-propagating track of silicic volcanic fields
and the formation of the Yellowstone-Snake River Plain province (Pierce and Morgan, 1992).
Explosive rhyolitic volcanism began at ~16 Ma on the Oregon-Nevada border and progressed
across the Owyhee Plateau and the eastern SRP to a present location beneath the Yellowstone
Plateau (Pierce and Morgan, 1992; Smith and Braile, 1994; Camp, 1995; Camp and Ross, 2004;
Schmandt et al., 2012). The chemical and isotopic characteristics of eastern SRP basalts are
consistent with a mantle plume source with varying degrees of interaction with continental
lithosphere, and with residence within a mid-crustal sill complex prior to eruption (Shervais et
al., 2006; Hanan et al., 2008; Jean et al., 2014).

The Kimama core hole was drilled on the axis of the YP-SRP hotspot track, primarily for
the purpose of recovering the thickest and most continuous record of basalt volcanism (Figure
20). The 1912 m of core consists of basaltic lava flows intercalated with minor loess deposits.
Potter et al. (2013) have identified 30 separate magmatic episodes, or basalt flow groups, based
upon geochemical and paleomagnetic characteristics. Two packages of upward-fining fluvial
sandstone were identified at 1707 m and 1842 m measured depth (Figure 21). Five detrital

zircon samples from these two fluvial interbeds were analyzed for U-Pb ages and €Hf.
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Early Miocene to Holocene I:l Mesoproterozoic Belt Supergroup

Plain Volcanics
I:l Early to Middle Eocene
Challis Volcanic Group

Cretaceous Atlanta lobe
of Idaho batholith

Pioneer Mountains
metamorphic core complex

Figure 20: Digital elevation map (DEM) of the Snake River Plain and
Yellowstone regions showing the location of Kimama, as well as
topographic and geologic features. The long dashed lines delimit the
location of the Yellowstone crescent of high terrain, while the short
dashed lines indicate the position of drainage divides on the margin

of the Snake River Plain (SRP). The white outlined polygons are silicic
volcanic centers and ages (Pierce and Morgan, 1992; Bonnichsen et al.,
2008). Solid white lines show the locations of selected normal faults.
The locations of the Kimama and INEL-1 core holes are shown by white
circles. Figure 2 is a more detailed map of the region within the black
frame, with P indicating the Pioneer Mountains and B indicating the
Boulder Mountains. Rivers north of the SRP drain to southeast, following
the NW-SE vergence of range-front faults. Modified from Vogl et al. (2014).
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Figure 21: Lithologic and paleomagnetic stratigraphy of the Kimama core (see Chapter 1).
Seventy-one flow groups were identified based upon lithologic observations, chemical
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KEY

M Basalt Flow Group ‘X’
- Basalt Flow Group ‘y’

E Silt, Siltstone, or
Shaly Silt

- Volcanic Breccia or
Agglomerate (Hyaloclastite)

O Ar/Ar Sample Location

o Detrital zircon Sample
Location

Normal Polarity Basalt
Chronostratigraphic
Boundary

Reverse Polarity Basalt

variation, and magnetic polarity. Paleomagnetic polarity and associated ages are displayed

to the left of the lithologic log. Five Chrons and nine subchrons are identified in the

Kimama core (Champion and Duncan, 2012).

Regional Geology

The SRP and the Basin and Range region to the north have experienced an extended

history of magmatism and regional tectonics beginning from the late Cretaceous through the
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early Cenozoic (Armstrong, 1982; Burchfiel et al., 1992; DeCelles, 1994, 2004). Proterozoic and

Mesozoic strata in the Snake River Plain region were influenced by east-vergent Antler, Sevier,
and Laramide contraction (Burchfiel and Davis, 1975; DeCelles, 2004) followed by Cenozoic
extensional collapse and magmatism (Armstrong, 1982; Dickinson, 2002). The central Idaho and
Idaho-Wyoming thrust belts bound the SRP to the north and south and are overprinted by Basin
and Range normal faults. Also to the north of the SRP is the 110-70 Ma Atlanta lobe of the
Idaho batholith, which intrudes the Idaho-Wyoming thrust belt at its eastern extent (Armstrong
et al., 1977; Criss and Fleck, 1987; Foster et al., 2007; Johnson et al., 1988). Volcanism in the
Challis volcanic field of north central Idaho began at 51 Ma and covered much of the state of
Idaho with voluminous eruptive products over the next ~5-10 Ma (Moye et al., 1988; Janecke
and Snee, 1993; Gaschnig et al., 2010).

The SRP is bounded to the north and south by the northern Basin and Range province.
Dominantly east-west extension in the northern Basin and Range since ~15-10 Ma (Colgan and
Henry, 2007; Egger et al., 2003, 2010; Fosdick and Colgan, 2008; Wells et al., 2000) has lead to
the development of detachment fault systems, the exhumation of metamorphic core
complexes, and the formation of extensional basins (Coney, 1980; Janecke, 1992; Foster and
Fanning, 1997; Foster et al., 2007, 2010). Basin and Range extension is thought to have
occurred south of the SRP both before and during plume-related magmatism (Colgan and Henry,
2007; Egger et al., 2010; Konstantinou et al., 2012).

A ~750 m to 2 km layer of Quaternary basalt obscures overlapping caldera complexes
and associated deposits along the length and width of the eastern SRP (Doherty et al., 1979;
Kuntz et al., 1992; Whitehead, 1992; Pierce and Morgan, 1992). Isostatic gravity and
aeromagnetic and Bouger anomalies show approximate locations of caldera complexes in the

general absence of exposed outflow deposits (Pierce and Morgan, 1992). This geological history
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resulted in the exposure and exhumation of a wide range of sedimentary sources, which can be

deciphered with detrital zircon analyses (Link et al., 2005; Beranek et al., 2006).

Detrital Zircon Provenance

Detrital zircon studies demonstrate Neogene drainage reversal in the Snake River
watershed, with streams that flowed away from the tumescent Yellowstone highland during
active volcanism, and reversed flow direction into the subsiding SRP following the migration of
silicic volcanism to the northeast (Beranek et al., 2006). Using the current topographically high
position of Yellowstone National Park as an analog, Pierce and Morgan (1992) inferred that
previous positions of hotspot volcanism along the eastern SRP acted as continental divides with
about 1 km relief (Pierce et al., 2002; Pierce and Morgan, 2009), directing drainage away from
the highland in all directions (cf. Crough, 1983; Hill et al., 1992). As volcanism moved eastward,
cooling and subsidence of the plateau allowed streams that had previously drained from the
highland to be captured and redirected into the Snake River watershed (Link et al., 1999, 2002).
Radial paleocurrent patterns in the sedimentary record are possible evidence of this migrating
topographic bulge (Morgan and Mcintosh, 2005; Beranek et al., 2006).

Previous workers have used the detrital zircon age populations from modern stream
deposits and sedimentary rocks within the SRP region to piece together the geochronology of
the Northern Rockies (Geslin et al., 1999, 2002; Link et al., 2002, 2005; Beranek et al., 2006).
Detrital zircon geochronology in the SRP region (Table 6) provides evidence for migrating uplift
and erosion from the Miocene to Holocene, processes associated with the passage of the North

American plate over the SRP-YP hotspot since 17 Ma (Beranek et al., 2006).
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Table 6:  Regional Snake River Plain Detrital Zircon Populations. Modified after Beranek et al. (2006).

Minimum [ Maximum

Detrital zircon population age (Ma) | age (Ma)

Source regions

Snake River Plain and Yellowstone system, north-central nevada to northwest Wyoming

Yellowstone Hotspot system 0 17 )
(Pierce and Morgan, 1992)

Early to middle Eocene Challis Volcanic

42 52 South-central Idaho, north of Snake River Plain
Group
Cretac?ous Atlant? lobe of the Idaho 70 110 South-central Idaho, north of Snake River Plain; Owyhee Mtns., south of Snake River Plain
batholith and equivalents
Jurassic intrusive rocks of northern 150 170 Point source in Contact pluton, Salmon Falls Ck.
Nevada
Early to middle Paleozoic 330 450 Central ID thrust belt (Antler allocthon), Idaho-Wyoming thrust belt
Neoproterozoic Bannock Volcanic
Mer:ber zo! : 680 720 Pocatello, Idaho area (Fanning and Link, 2004)

Pioneer Mtns. metamorphic core 580 300 Pioneer Mtns. metamorphic core complex (Beranek et al., 2004) recycled through
complex Cretaceous granites, unmapped Neoproterozoic rocks
Central Idaho and Idaho-Wyoming thrust belts; Neoproterozoic to Paleozoic miogeocline

Recycled Grenville grains 950 1300 (Gerhrels, 2000; Link et al., 2005)

Syn-Belt Supergroup volcanics and A- 1400 1470 Missoula and Lemhi groups (Evans et al., 2000; Link and Fanning, 2003); Wyoming

Type Wyoming magmatism anorogenic granites (Frost et al., 1993)

Non-North American grains recycled 1500 1610 |South Australia, Gawler Craton (Ross et al., 1992; Link and Fanning, 2003)

through Belt Supergroup

Recycled Yavapai-Mazatzal Province Recycled from Cretaceous sandstones, Mesoproterozoic Missoula and Lemhi Groups,

and southwest Montana Proterozic 1600 1800 |Cordilleran miogeocline, Pennsylvanian-Permian Sun Valley Group and Albion Mtns. Core
grains complex (Link et al., 2005)

Recycled Peace River Arch grains 1800 2000 Recycled through Ordovician sandstones and Mississippian Copper Basin Group (Smith and

Gehrels, 1994; Link et al., 1999)
Exposed Archean Wyoming Province; also recycled through Cordilleran miogeocline
(Gehrels, 2000; Link et al., 2005)

Archean basement 2400 2800

Methods

The sedimentary petrology classification of Ingersoll (1990) and Ingersoll et al. (1993)
forms the basis for provenance determination of detrital zircons in sedimentary systems.
Detrital zircon age-groupings are generally classified as either defining, major or minor (Link et
al., 2005) based upon the statistical model of Vermeesch (2004). Defining populations of
detrital zircons comprise over 50% of zircons in a sample, while populations that range from
10% to 50% are classified as major, and those below 10% are classified as minor (Link et al.,
2005). Previous studies, i.e. Link et al. (2005), Beranek et al. (2006), have established the
consistency of detrital zircon age spectra of first and second-order drainage systems with
exposed bedrock at the headwaters and along the drainage. First-order sedimentary systems

include talus piles to small drainages, while second-order systems include streams and rivers
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that drain mountain ranges, fold and thrust belts, or magmatic arcs.

Fluvial sediment packages were identified within Kimama core in two depth intervals:
an upper sequence from 1707 m to 1755 m measured depth and a lower sequence from 1841 m
to 1900 m measured depth. Approximately 1 kilogram of the cleanest medium or finer-grained
rock was collected from these two upward-fining sedimentary cycles. Samples were taken at
1842 m and 1844 m in the lower sequence and at 1708 m, 1733 m, and 1749 m in the upper
sequence. Specimens from each depth were made into thin sections for textural and
compositional evaluation. Separation methods, with the Wilfley table, heavy liquids, and Frantz
magnetic separation, were conducted at Boise State University. Zircons were retained in the
final heavy mineral fraction and split so that ~500-1000 grains were incorporated into a 1”
epoxy mount along with fragments of zircon standards. Grain mounts were polished to a depth
of ~20 microns and polished, imaged, and cleaned prior to analysis.

Approximately 100 detrital zircon grains were analyzed from each of five sediment
samples using laser ablation-multicollector-inductively coupled mass spectrometry (LA-MC-
ICPMS) at the Arizona LaserChron Center. The ablation of zircon grain mounts was conducted
using a New Wave UP193HE Excimer laser operating at a wavelength of 193 nm, using a spot
diameter of 30 microns, and with ablation pits typically ~15 microns in depth. Helium gas
carried ablated material into the Nu HR ICPMS plasma source, the flight tube of which has a
width sufficient to simultaneously measure U, Th and Pb. Faraday detectors with 3x10'" ohm
resistors were used to measure isotopes of 238y, 2327, 208pp2%ppy and discrete dynode ion
counters for **Pb and ***Hg while in static mode. lon yields during measurements were ~0.8 mv
per ppm. Isotopic analyses consisted of one 15-second integration on peaks with the laser off in
order to produce backgrounds, followed by 15 one-second integrations with the laser firing. A

30 second delay insured the purge of previous sample material, readying the laser for the next
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f204 Hg during

204 202
h f

analysis. The interference of © Hg wit Pb was corrected by measurement o

f 2Hg in accordance to the natural ***Hg/***Hg ratio

laser ablation and subsequent subtraction o
of 4.35. Most analyses demonstrated the insignificance of ***Hg corrections due to their
generally low backgrounds (<150 cps at mass 204).

The correction of common Pb was carried out using Hg-corrected **Pb values and the
assumption that initial compositions from Stacey and Kramers (1975) were applicable. Variation
in Pb isotopic compositions in modern crustal rocks were accounted for in assigning
uncertainties to assumed compositions of initial °°Pb/?**Pb (+ 1.5) and **’Pb/**Pb (+ 0.3). Initial
2%pp /20%ph uncertainties were used in determining total age uncertainties.

Isotope fractionation of Pb/U and Pb during analysis was corrected by the in-run
analysis of Sri Lanka zircon standard fragments. With a known age of 563.5 + 3.2 Ma (20 error),
Sri Lanka zircons were analyzed every fifth measurement. The inter-element fractionation of
Pb/U was recognized in <5% of analyses, and apparent fractionation of Pb isotopes was
recognized in <0.2% of analyses. Calibration correction uncertainty was generally 1-2% (20
error) for 2°°Pb/*’Pb and **°Pb/***U ages. Lastly, concentration of U and Th were calibrated
using the ~518 ppm U and 68 ppm Th concentrations of the Sri Lanka zircon standard.

Resulting data are plotted in U-Pb concordia diagrams and age-probability diagrams
following the routines in Isoplot software (Ludwig, 2008). Age-probability diagrams use a
combination of age and measurement error uncertainty as the Gaussian distribution for each
zircon grain. Distributions from all grains are summed into a single composite sample
distribution. Probability plots of composite ages are made such that each curve is normalized
according to the number of constituent analyses; each curve contains the same area so that

probability curves may be more accurately compared.
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Hf Methods

Hf isotopes were measured on the youngest, Late Miocene zircon crystals at the Arizona
LaserChron Center at the University of Arizona by Nu Plasma HR-LA-ICPMS. The mass
spectrometer has 12 fixed Faraday detectors that are equipped with 3x10'" Q resisters to
measure masses ’*Yb through “®°Hf for improved detection. The Lu-Hf decay system is used to
understand the growth and evolution of the crust through time. Magmatic rocks, whether
juvenile (mantle-derived), recycled (remelted crust), or mixed or derived from multiple sources,
can be genetically identified using the behavior of the whole-rock Lu-Hf isotopic system.

Crustal-evolution models have made extensive use of the Sm-Nd isotopic system,
especially in combination with age data from the U-Pb dating of zircons. Zircon is stable up to
high metamorphic grade following crystallization. Non-metamict zircons resist isotopic diffusion
and exchange (e.g. Cherniak et al., 1997) and contain very low concentrations of Lu/Hf. We use
8H£/27Hf in SRP zircons to model the composition, age, and origin of the parental magma at
the time of crystallization. Values of *"*Hf/*’’Hf in zircon demonstrate the origin of magma; high
values indicate juvenile melts, while low values indicate recycled crust (Amelin et al., 2000;
Griffin et al., 2000; Condie et al., 2005; Harrison et al., 2005; O'Reilly et al., 2008). Epsilon units
express the ratio °Hf/*"’Hf in terms that relate the analyzed rock sample to bulk silicate earth
(CHUR), where

€% = {L(°HE/"THN sampie/ (7°HE/TH cuurl-1} x 10°.

We use gy to determine the influence of mantle material in the generation of SRP magmas.

Values for €%;in the present-day range from +15 to -70.
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Results

U-Pb Dates of Detrital Zircons

Here we present LA-MC-ICPMS U-Pb ages and sedimentary petrology for each sample.
Complete provenance details on specific detrital zircon populations are given in Table 6.
Detailed age data results and thin section photographs are shown in Table 7 and Figure 22,

respectively.

KZ6050

Sample KZ6050, recovered from 1844 m depth, is a medium-grained, clay-cemented
grey sand with > 3 mm angular lithic fragments. In thin section, the sample shows fine-grained
clay cement (20%) possibly derived from devitrified glass; subhedral angular quartz (40%);
subhedral subrounded, resorbed plagioclase (30%); and subhedral to euhedral zircon,
clinopyroxene, angular glass fragments, microcrystalline quartz, and lithic fragments of gneiss,
chert, and volcanics (10%) (Figure 22a). Sample KZ6050 is classified as an immature feldspathic
volcanic lithic arenite. Dominant detrital zircon populations from sample KZ6050 (n=65) are
combined in Figure 23a. The populations include: (1) Miocene (10-6 Ma; 23 grains; 35%); (2)
Eocene (51-38 Ma; 18 grains; 28%); (3) Cretaceous (95-90 Ma; 5 grains; 8%); (4)
Mesoproterozoic (1563-1034 Ma; 6 grains; 9%); (5) early to middle Paleoproterozoic (1936-1638

Ma; 9 grains; 14%); (6) and Archean (3229-2730 Ma; 4 grains; 6%).
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Sample KZ6050
1846 m depth

Sample KZ6044
1842 m depth

Sample KZ5737
1749 m depth

Sample KZ5684
1732 m depth

Sample KZ5602
1704 m depth

Grain Best age Grain Best age Grain Best age Grain Best age Grain Best age
Spot (Ma) Spot (Ma) Spot (Ma) Spot (Ma) Spot (Ma)
17 6.1 2.6 12 6.1 29 62 35 34 98 53 0.2 85 89.5 1.7
49 6.2 2.7 55 6.1 1.6 58 46 4.2 36 5.6 2.3 95 93.4 1.5
13 6.3 3.0 43 6.3 26 13 46 23 45 6.2 2.3 89 95.7 1.6
9 6.3 26 64 64 1.7 49 48 2.7 93 22.1 0.9 70 95.8 14
63 6.4 1.5 30 6.7 1.0 23 50 4.7 86 26.8 3.9 53 97.8 2.3
1 6.4 2.0 31 8.7 24 71 50 23 58 33.1 4.7 39 99.9 9.3
54 6.6 3.0 15 11.6 4.0 78 50 39 56 348 2.9 13 100.8 4.2
8 69 1.2 1 420 4.7 46 50 34 66 46.6 2.0 72 100.9 2.8
55 69 3.1 84 440 2.6 97 51 48 47 46.8 1.6 80 165.7 24
44 7.0 3.0 39 441 43 75 52 41 91 48.4 2.1 3 388.7 7.5
51 71 04 52 453 1.5 52 52 5.2 48 48.6 33 38 409.1 33
28 73 34 86 453 23 95 55 15 18 48.6 3.7 97 416.6 7.2
42 73 13 65 453 3.2 77 56 4.3 61 49.0 2.9 44 417.3 6.5
29 74 03 20 455 1.8 3 56 2.7 77 49.0 1.6 49 418.9 6.1
56 75 0.6 27 46.0 2.1 40 58 1.8 83 49.3 3.9 2 419.1 2.8
22 8.0 28 14 46.1 1.2 20 59 29 26 49.4 2.3 30 430.5 7.3
31 81 24 37 46.1 14 55 6.0 5.9 52 51.2 5.6 65 4373 16.7
50 82 37 38 46.2 3.2 54 6.0 43 54 67.5 8.3 75 439.2 5.9
61 83 29 5 46.3 3.2 33 6.1 4.7 25 92.6 4.7 98 500.8 6.1
16 89 3.0 24 463 2.0 4 6.1 26 76 94.6 1.7 100 609.1 10.1
34 9.0 4.0 70 464 19 8 6.1 4.4 91 95.8 21 6 992.3 56.4
5 9.1 44 6 46.5 1.8 74 6.2 25 88 95.9 2.1 23 1006.9 48.2
65 10.2 3.2 21 46.6 3.0 11 6.2 33 59 96.4 2.0 43 1010.1 18.9
67 383 1.0 13 46.7 3.5 80 63 24 51 98.4 1.6 73 1019.5 84.6
14 414 21 80 46.8 2.5 50 6.3 09 44 99.4 1.7 25 1027.5 119.9
15 469 5.6 73 468 2.3 94 64 04 27 99.5 2.1 19 1050.1 98.0
23 47.7 1.6 71 469 2.1 19 6.4 53 96 99.9 3.6 83 1055.4 49.2
7 478 1.6 78 47.0 2.7 66 64 038 84 101.4 5.5 24 1064.9 49.5
26 480 1.3 89 470 14 88 6.5 2.0 24 102.7 2.8 40 1066.7 32.6
64 48.1 1.3 44 470 1.7 43 6.5 1.9 90 103.4 2.1 31 1068.8 43.1
19 484 1.6 7 470 44 92 6.6 14 46 109.2 2.7 92 1070.4 115
6 48.4 2.7 81 47.1 2.7 6 6.6 1.0 99 1346 10.2 33 1070.5 66.6
25 488 1.8 63 471 24 1 6.7 1.8 62 155.8 2.8 62 1075.0 23.9
60 49.2 1.6 25 472 1.2 86 6.7 3.6 100 168.1 3.8 63 1095.7 40.7
33 493 14 67 47.5 2.9 89 6.7 3.7 95 249.1 4.4 34 1102.3 195.5
41 49.4 2.7 49 47.7 1.9 36 6.7 43 53 352.3 6.3 50 1109.0 64.6
40 495 1.2 41 47.8 3.8 79 69 17 1 429.6 6.0 51 1152.8 182.8
66 496 1.4 46 478 2.7 21 6.9 14 75 4456 152 22 1186.9 81.0
58 498 1.9 3 480 1.7 60 7.0 22 33 465.4 9.3 10 1187.9 5.8
18 49.8 1.3 32 48.1 1.8 31 72 1.2 69 499.3 7.0 86 12019 14.0
38 509 3.8 61 482 1.0 25 73 51 9 570.0 10.4 8 1209.6 8.3
21 895 1.1 17 482 16 61 74 64 39 682.9 8.2 15 12225 19.0
47 919 16 47 482 3.1 9 7.5 45 19 10247 229 61 12403 26.6
46 945 59 18 482 2.8 42 75 26 17 10285 11.1 84 13415 11.2
52 948 1.0 68 484 37 99 77 5.4 4 1037.6 455 48 1408.0 12.2
27 95.0 6.3 91 485 1.8 98 7.8 05 38 1087.6 78.3 59 14285 33.0
45 10342 18.0 92 486 3.0 38 78 31 71 1089.6 80.7 76 1470.0 105.0
12 1131.0 13.0 48 486 1.7 57 78 6.4 74  1090.0 62.9 14 1480.2 22.6
24 11819 16.6 66 488 1.2 41 8.0 0.8 85 10979 34.7 69 1492.6 8.0
10 1428.4 35.6 58 489 13 44 8.1 47 22 11103 102.4 99 1502.3 14.4
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Sample KZ6050
1846 m depth

Sample KZ6044
1842 m depth

Sample Kz5737
1749 m depth

Sample KZ5684
1732 m depth

Sample KZ5602
1704 m depth

Grain Best age Grain Best age Grain Best age Grain Best age Grain Best age
Spot (Ma) Spot (Ma) Spot (Ma) Spot (Ma) Spot (Ma)
4 14981 6.1 77 49.0 3.4 47 84 44 20 1118.2 331 4 1506.1 24.0
32 15625 15.6 59 49.2 09 16 85 6.8 92 11193 1729 88 1508.8 145.3
57 1638.4 11.7 74 496 23 91 9.1 7.5 65 11315 7.5 94 1557.6 35.2
62 17084 23 95 498 20 100 9.1 73 11 11415 522 57 1604.7 6.0
20 17475 16.2 9 50.0 5.6 67 9.2 37 32 11496 60.8 79 1626.6 30.5
53 1764.1 11.3 35 50.9 3.4 64 102 24 67 1253.8 446 1 1640.0 30.4
43 17835 5.6 2 51.0 3.9 10 104 56 2 12813 715 64 1706.3 5.0
37 18522 5.0 75 51.0 3.7 28 105 9.9 15 13043 30.2 56 1719.3 3.0
30 1863.8 6.0 94 51.1 2.5 45 113 93 49 13226 329 82 1724.4 10.0
48 18639 8.8 11 51.4 17.8 22 457 1.2 55  1336.0 4.9 81 1740.8 35.4
2 1935.7 50.7 62 523 33 84 976 3.6 79 13511 143 46 1741.8 6.2
59 27303 49 88 52.6 13.4 29 977 71 68 1387.2 19.9 37 1749.4 6.9
3 29363 16 51 84.8 6.4 15 124.8 114.5 42 1398.7 28.0 67 1755.6 7.8
39 3226.7 15.0 90 87.7 3.9 37 1160.3 90.1 40 1409.8 17.1 77 1756.5 24.7
11 3229.1 13.9 82 89.7 24 7 2463.3 10.6 89  1446.4 155 36 1795.3 13.1
54 89.7 2.2 18 24909 7.4 57 1449.0 947 32 1822.6 33.2
23 90.6 2.8 41 1469.8 7.3 5 1849.2 38.2
85 920 13 73 1488.1 123 12 1850.0 15.7
87 92.1 4.6 10 14888 11.7 78 1877.9 7.8
83 926 1.8 7 15375 120 58 1885.1 36.8
93 92.7 3.8 12 1550.9 9.6 35 1900.2 5.2
36 93.1 39 3 16320 7.9 9 2051.8 27.1
53 95.1 2.0 16 1644.8 7.4 74 2306.1 19.0
56 953 3.1 13 16704 16.8 96 2553.7 104
28 95.6 4.9 21 16843 126 54 2646.7 12.6
22 95.6 3.0 87 1716.7 4.8 90 2672.1 123
57 96.0 5.2 82 17521 31 11 27703 111
19 96.7 6.6 29 1789.3 223 18 2798.7 224
72 96.8 1.9 80 18159 50.1 91 2943.2 7.8
76 973 7.6 63 1848.6 11.5 68 2982.8 1.6
33 98.3 8.8 72 1850.1 10.8 55 3184.4 5.1
42 100.0 5.6 78  1856.7 7.3 93 32524 11.1
16 432.8 7.3 23 1866.3 7.9
45 488.4 6.7 8 1886.5 19.8
34 1044.3 37.4 6 18915 6.1
69 1066.6 71.9 34  2545.0 1.9
40 11328 7.7 30 27272 139
4 1177.1 48.8 37 27432 108
60 1268.1 89.7 14 2771.0 28.0
79 1383.1 18.2
10 1431.6 17.0
8 1635.6 10.3
29 1700.1 16.9
26 1706.5 10.8
50 28153 3.1
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FIGURE 22: Thin sections photomicrographs. (a) Kz5602
(1707 m depth). Under polarized light and at 10x magnification,
sub-rounded to sub-angular grains of quartz are visible in a
clay-dominated matrix. Rounded grains of calcite and partially
resorbed plagioclase are also present. This rock is classified as a
submature feldspathic lithic arenite. (b) KZ5687 (1733 m depth).
In polarized light (10x magnification), angular to sub-angular

grains of blue-grey quartz are visible in a glassy-clay matrix.

g : ¢ K . ?3 Calcite, plagioclase, and clinopyroxene (yellow) are present in

lesser amounts. This rock is classified as a submature feldspathic volcanic lithic arenite. (c) Thin section of
sampleKZ5737 (1749 mdepth). Very fine-grained clay is visible under 44x magnification and polarized light.
Although rare, most mineral grains are subhedral to anhedral, and there is some evidence of clay pseudomorphs
after plagioclase due to secondary alteration. Additionally, isotropic glass in the sample appears to be altering to
clay. The image is representative of the sample, with clay-dominated matrix and a scarcity of mineral grains and
lithic fragments; imaged is grey, sub-angular subhedral quartz with ragged margins and black glass fragments.
The rock sample is classified as a mudstone. (d) KZ6044 (1842 m depth). Under polarized light and 10x
magnification, angular fragments of isotropic glass, sub-angular to angular grey-white quartz, and sub-angular
lithic fragments of metamorphosed rocks are visible. Minor amounts of subhedral resorbed plagioclase, and
mm to sub-mm lithics and glass fragments are also present. The sample is dominated by fine-grained, oxidized
clay matrix. The rock sample is classified as a volcanic lithic wacke. (e) KZ6050 (1844 m depth). In polarized
light and under 10x magnification, the sample is dominated by angular to sub-angular grey to white quartz and
black angular glass fragments. Minor grains of angular brown clinopyroxene, sub-rounded and partially resorbed
plagioclase, rounded calcite, and a fine-grained clay matrix are also observed in the sample. This sample is
classified as an immature feldspathic volcanic lithic arenite.




Paleomagn

etic

Lithologic

119

Stratigraphy Stratigraphy % Fidteoot KZ5602 n=8
. H S| v
Lithology Key s — 5400 Kz5602n=82  Paleo-Wood River zf or Challs! ‘Aﬂa“‘?} be (23e)
- Basalt flow & (
) wn | A > siliR. A ha ) KZ5684 n=32
. MaZSIVe 2\ KZ5684 n=91 Recycled Core Complex and H
sandstone s 5600' 7 ] I nPenn.-Perm. Sun Valley Gp. i e ] )
E Silt, siltstone, = 2 Antler-age H /R)ecycled Miss} - :
or shaly silt 2 L fdAMMA A :wpperBas"f"Gp',lh i H | (23d)
Vol icB i 2 KZ5737 n=64
olcanic Breccia 25737 n=63 | fofjHeise Field
or agglomerate ™ 51 204l | and Hotspot: ¢ !
(hyaloclastite) U‘L 5800 ‘g 0 20 40 60 80 100 120[ 140
Detrital zircon @ 20 . I (23c)
. Kol G
sample location = 140 500 1000 1500 2000 2500 3000 3500
) O KZ6044 n=95 TAChallis T(KZ6044 n=82
Normal polarity 30tHotspoy Atlanta th{ T 3 3 3
Chronostratigraphy 6000’ 2 2040 6080 100 120 140 i H H H
boundary 1 n : : : : : (23b)
Reversed polarity H H H H H
26050 nesa | T W atis KZ6050 n=46
3 MO [ opf |l Atignta Lob
34+ 0 20 40 0 80 100 1 14
6200' 24 ]
1 i Ll b l I (23a)
~6.4 Mal— 16921725;11 140 500 1000 1500 2000 2500 3000 3500
" Beranek et al., 2006
5 40 + c"’"'\s Atlanta lobe
£20f / n=109
20 ; : s b
(23f)
0 25 50 75 100 125 150 Ma
P Recycled
Antler Yavapai-Mazatzal n=75+6 =z
Neoproterozoic 7
Allochthon ™ Dispersed Grenville “ ] 5
Sl *%
Gl THHTITH M 0 2
150 500 1000 1500 2000 2500 3000 Ma

Figure 23: Paleomagnetic and lithologic stratigraphy of the Kimama core showing locations of

sampled intervals and detrital zircon age populations. Histograms, overlain by probability-density curves
(figures 23a-23e), show detrital zircon age spectra and probable source provenance (after Link et al., 2005 and
Beranek et al., 2006). Plots are shown for 0 to 150 Ma and 0 to 3500 Ma grains. Two upward-fining interbeds are
recognized from 1749 to 1707 m depth and from 1844 to 1842 m depth. Each interbed changes upward from mainly
Heise field Miocene zircons to Paleozoic and Proterozoic zircons derived the paleo- Wood River drainage. Figure 23f:
Histogram with superimposed relative probability curve of modern Wood River stream sediment detrital zircon age
data (From Beranek et al., 2006).

Kz6044

Sample KZ6044, recovered from 1842 m depth, is fine to medium grained tan oxidized
sand with clay cement and angular < 5mm lithic fragments. In thin section, the sample is
cemented with fine-grained clay with iron-oxide staining (70%); and contains rounded to angular
guartz (10%); subhedral, resorbed plagioclase (15%); and mm to sub-mm lithics and glass
fragments (5%) (Figure 22b). Sample KZ6044 is classified as a volcanic lithic wacke. Grain-age

populations from sample KZ6044 (n=95) include: (1) Miocene (11.6-6.1 Ma; 7 grains; 7%); (2)
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Eocene (53-42 Ma; 55 grains; 58%); (3) Cretaceous (100-85 Ma; 20 grains; 21%); (4) late Silurian

to early Ordovician (488-433 Ma; 2 grains; 2%); and (5) early Mesoproterozoic to early

Paleoproterozoic (1707-1044 Ma; 10 grains; 11%) (Figure 23b).

Kz5737

Sample KZ5737 was recovered from 1749 m depth, and is a very fine-grained, brick-red
laminated oxidized siltstone with clay cement. In thin section, the sample is very fine-grained
clay (95%), with minor subhedral angular quartz (5%) (Figure 22c). This particular sample is
classified as a mudstone. Detrital zircon age populations (n=66) from sample KZ5737 are
combined in Figure 23c. The populations include: (1) Miocene (11-4 Ma; 59 grains; 89%);
Cretaceous (125-98 Ma; 3 grains; 5%); and Mesoproterozoic to Paleoproterozoic (2490-1160; 3

grains; 5%).

Kz5687

Sample KZ5687, recovered from a depth of 1733 m, is coarse to medium-grained sand,
showing normal gradation of grains and lithic fragments and cemented by clay. In thin section,
the sample is made up of fine-grain and clay cement (20%); subhedral to angular quartz (40%);
subrounded to angular subhedral plagioclase (35%); subhedral to euhedral zircon, plagioclase,
and lithics (5%)(Figure 22d). KZ5687 is classified as a submature feldspathic volcanic lithic
arenite. The following detrital zircon populations were observed in sample KZ5687 (n = 89;
Figure 23d: (1) Miocene (22-5 Ma; 4 grains, 4%); (2) Eocene (51-33 Ma; 11 grains; 12%);
Cretaceous (135-93 Ma; 14 grains; 16%); Devonian-Cambrian (570-352 Ma; 6 grains; 7%);

Neoproterozoic to early Mesoproterozoic (1150-683 Ma; 14 grains; 16%); middle
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Mesoproterozoic to late Mesoproterozoic (1550.9-1253.8 Ma; 16 grains; 18%); Paleoproterozoic

(1892-1620 Ma; 14 grains; 16%); and Archean (2771-2545; 4 grains; 4%).

Kz5602

Sample KZ5602, recovered from a depth of 1707 m, is a medium-grained lithic
sandstone with clay cement. Thin section observations show it to be a submature feldspathic
lithic arenite, with fine-grained clay cement (20%); subhedral angular quartz (40%); resorbed,
sub-rounded plagioclase (30%); and subhedral to euhedral zircon, clinopyroxene and lithics
(10%)(Figure 22e). Dominant detrital zircon populations (n=82) from KZ5602 are combined in
Figure 23e. The populations do not include any Paleogene or Neogene grains and are (1)
Cretaceous (104-88 Ma; 8 grains; 10%); (2) Devonian-Ordovician (445-380 Ma; 9 grains; 10%);
(3) Neoproterozoic to early Mesoproterozoic (1202-600 Ma; 22 grains; 25%); middle to late
Mesoproterozoic (1605-1210 Ma; 13 grains; 15%); Paleoproterozoic (2554-1627 Ma; 20 grains;

23%); and Archean (3252-2647 Ma; 8 grains; 9%).

Neogene Grains

In the two lowermost fluvial successions, a large percentage of the grains are bladed,
euhedral, and angular zircons with Neogene U-Pb ages (Figure 24). In order to trace the origin
of these magmatic grains, additional U-Pb ages were collected and Lu-Hf isotope ratios were
measured in samples KZ5737 (1749 m depth) and KZ6050 (1844 m depth) using Nu Plasma HR
MC-ICPMS at the Arizona LaserChron Center. The instrument is optimized for analysis of U-Th-

Pb and Hf isotopes, and contains 12 faraday collectors are arranged to measure 22U, **Th, and
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180-171 (for Hf, Lu, and Yb). Epsilon Hf and high precision U-Pb results are shown in Table 8 (U-

Pb and Hf isotopic data).

g
100 pm;"l N7 KZ6050

200 pm

Figure 24: Cathodoluminescence (CL) image of detrital zircons
mounted in grain mounts. (a) KZ5737 (1749 m depth). Grains are euhedral,

angular, and bladed, suggesting a more recent volcanic origin. Internal concentric
zonation is also present. Spot locations for laser ablation (LA) Nu plasma high-
resolution multi-collector inductively-coupled plasma mass spectrometry
(HR-MC-ICPMS) are visible as circular craters in the core and margin regions

of the grains. (b) KZ6050 (1850 m depth). Grains are euhedral, angular, and
bladed, suggesting a more recent volcanic origin. Internal concentric zonation

is also present. Spot locations for LA-HR-MC-ICPMS are visible as circular craters

in the core and margin regions of the grains.

KZ6050

Sample KZ6050 (Figure 24a) higher resolution U-Pb measurements of grains in sample
KZ6050 yielded ages that range from 6.2 £ 0.1 Ma to 7.4 £ 0.3 Ma (Table 8). The eHf in sample
KZ6050 ranges from -5.1in a 6.9 + 0.2 Ma grain, to -9.7 in a 6.7 £ 0.2 Ma grain. The oldest and
youngest grains have eHf of -6.4 and -7.6, respectively. Most grains have eHf of -7.6. Ages for
the Neogene grains recovered from 1749 m and 1844 m depth fall into four main statistical

populations: 5.84 + 0.13 Ma, 6.2 + 0.08 Ma, 6.86 + 0.09 Ma, and 7.25 = 0.14 Ma (Figure 25).



Table 8: U-Pb and Hf isotopic data
for sample KZ5737, 1749 m depth, and
for K26050, 1844 m depth.

sample Grain | Best age + E-Hf
Spot (Ma) (Ma) | (T)
Kz5737 71 5.7 0.1 -33
Kz5737 95 5.8 0.4 -
Kz5737 46 5.8 0.1 -5.8
Kz5737 8 5.9 0.5 -
Kz5737 103 5.9 0.5 -
Kz5737 97 5.9 0.1 -2.7
Kz5737 11 5.9 0.3 ---
Kz5737 102 6.0 0.2 -7.1
Kz5737 52 6.1 0.2 -2.0
Kz5737 77 6.1 0.1 -2.8
Kz5737 33 6.3 0.1 -2.5
Kz5737 3 6.3 0.1 -4.0
Kz5737 54 6.3 0.2 -4.0
Kz5737 62 6.5 0.1 -56
Kz5737 74 6.8 0.1 -6.3
Kz5737 60 6.8 0.2 -59
Kz5737 4 6.8 0.1 -5.8
Kz5737 79 6.9 0.3 -
Kz5737 80 7.3 0.8 -
Kz5737 78 7.6 02 -43
KzZ6050 101 6.2 0.1 -7.6
Kz6050 93 6.2 00 93
KZ6050 10 6.7 0.2 -9.7
KZ6050 103 6.9 0.2 5.1
KZ6050 13 7.0 0.1 -7.0
Kz6050 80 7.0 0.1 -9.0
KZ6050 104 7.1 0.2 -6.7
KZ6050 41 7.1 0.1 9.1
KZ6050 65 7.2 0.1 -6.1
KzZ6050 102 7.2 04 -6.6
KZ6050 105 7.3 0.1 -8.3
KZ6050 58 7.4 0.3 -6.4

Kz5737

Sample KZ5737 (Figure 24b) the second measurement of ages from sample KZ5737
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yielded ages that range from 5.7 £ 0.1 Ma to 7.6 + 0.2 Ma (Table 8). Epsilon Hf ranges from -3.3
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in the youngest (5.7 Ma) sample to -7.0 in a sample with a measured age of 6.0 + 0.1 Ma. The

oldest measured grain (7.6 £ 0.2 Ma) has a corresponding eHf of -4.3.

Discussion

Robust detrital zircon provenance studies require a point source—an origin that is
characterized by a specific age and geologic framework. Provenance signature changes with
distance from the headwaters of second-order systems as major tributaries join the main stem
(Link et al., 2005). Large river and marine systems are classified as third-order systems and have
uniform provenance; they are the only reliable predictors of plate tectonic setting (Ingersoll et
al., 1993; Critelli et al., 1997).

The modeled response of continental lithosphere to plume impact is large-scale uplift, a
process complicated by the multilayered (elastic-brittle-ductile) nature of the lithosphere (Burov
and Guillou-Frottier, 2005; Burov et al., 2007). Central uplift over the plume head may be
accompanied by the formation of an annulus of lower elevation (e.g. Burov and Guillou-Frottier,

2005; Burov et al., 2007), that may accommodate future basalt eruptions (Shervais et al., 2006).
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FIGURE 25: Bar graphs of U-Pb ages for samples KZ5737 and KZ6050 (1749 and 1850 m
depth, respectively). Each plot shows averages obtained from a combination of KZ5737 and

KZ6050 volcanic zircon ages. Ages were obtained using Nu plasma HR-MC-ICPMS during a
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secondary analysis of Kimama Neogene grains at the Arizona LaserChron laboratory. The four
plots generate age means of 5.84 + 0.13 Ma, 6.215 + 0.78 Ma, 6.858 + 0.091 Ma, and

7.133 £ 0.087 Ma.

Basin and Range extensional basins to the north and south of the SRP accommodate

multiple river drainages, many with unique geology (Ore, 1999). Geological characteristics of

several drainage systems in the SRP region generate distinct detrital zircon age population

spectra, or barcodes, that are traceable in fluvial sands (Link et al., 2005). In particular,

populations of detrital zircon grains record ages that are characteristic of their drainage basin

source. Within fluvial systems, the presence of minor defining populations of similarly-aged
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detrital zircons (5 to 10% of total population) is a consistent indicator of provenance. In

situations where populations of detrital zircons are less than 60 zircon grains per sample,
provenance may be indicated by the absence of a specific detrital zircon population (Dickinson

and Gehrels, 2008; Hodges et al., 2009).

Provenance of Zircon Grains

The lower parts of each sandstone bed sequence contain mainly Miocene detrital
zircons of the Yellowstone-Snake River Plain (YSRP) magmatic system (10 to 5 Ma), and Archean
to Paleoproterozoic 2.6 and 2.1 Ga zircon grains. We interpret the Archean and
Paleoproterozoic grains to be inherited based upon observations of complex zonation and the
lack of a likely geological point source in the region. Sands at 1732 m contain zircon groupings
representing the Challis magmatic event (50 to 45 Ma), Idaho batholith (100 to 90 Ma), recycled
Paleozoic magmatic grains, plus recycled Grenvillean and Meso- and Paleoproterozoic grains.
Sands at 1707 m depth lack Yellowstone and Challis-age grains but contain very similar
populations of Cretaceous through Meso- and Paleoproterozoic grains to sample KZ5684.

We interpret the absence of detrital zircon barcodes from regions south of the SRP and
the predominance of Atlanta and Challis-aged grains to signify a drainage source north of the
SRP. Based upon characteristic detrital zircon barcodes (Figure 23), we interpret the interbeds
to represent two incursions of the Wood River system (Link et al., 2005; Beranek et al., 2006).
Each fluvial succession systematically changes upward from dominantly hotspot zircons to
mainly detrital grains. Our findings agree with Hodges et al. (2009), who showed that ca. 695 Ma
detrital zircon grains derived from the Pioneer core complex were deposited in the central

Snake River plain by the earliest Pliocene, indicating eastern SRP subsidence by that time.
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Variable Archean and Proterozoic populations in the upper interbed suggest a paleo-

Wood River tributary that tapped the structurally uplifted Pioneer core complex. U-Th/He
apatite ages from the Pioneer Core Complex show evidence for rapid exhumation since 33 Ma,
with a rate of ~0.3 km/my. Thermochronology also documents an extensional exhumation
event at ~10 Ma (Vogl et al., 2014). The 5.8 Ma estimated age of the upper interbed suggests
unroofing of the Pioneer core and breaching of the Wildhorse detachment occurred by that
time. The absence of Challis grains in the uppermost sample requires either localized, large-
scale erosion or a drainage source west of the Pioneer core complex, where Challis volcanic

units have been largely eroded (Vogl et al., 2014).

Rivers and Core Complex

The Wood River System is classified as a second-order system (Link et al., 2005) and
includes the Big Wood River, the Little Wood River, Trail Creek, and the headwaters of the
Salmon River (Beranek et al., 2006). The Big Wood River drains from the headwaters of the
Salmon River along the western slope of the Pioneer Mountains core complex, where it incises
the Wood River and Milligen Formations along the Wood River thrust (Hall et al., 1978; Dover,
1983; Link et al., 2005). The barcode-defining detrital zircon grains in the Wood River System
are Challis (~52-42 Ma peak), followed by grains from the Cretaceous Atlanta Lobe of the Idaho
batholith (~100-70 Ma peak), and Miocene grains (~8-12) (Link et al., 2005; Beranek et al.,
2006). Small populations of Paleozoic and Proterozoic populations also are present within Big
Wood River detrital zircon grain samples, including Ordovician to Devonian (ca. 450-350 Ma),
early Neoproterozoic to middle Mesoproterozoic (1300-900 Ma), late Mesoproterozoic (1610-
1580 Ma), late to middle Paleoproterozoic (1800-1600 Ma), early Paleoproterozoic (2000-1800

Ma), and early Paleoproterozoic to Archean (2200-2900 Ma). Miocene grains are absent from
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the Big Wood River as sampled upstream from the ~5 Ma Magic Volcanic complex (Figure 23f)

(Honjo et al., 1986; Worl et al., 1991; Kuntz et al., 1994; Link et al., 2005).

The Little Wood River, with headwaters in the Pioneer Mountains, accumulates zircons
from the Antler allochthon, the Wood River basin, and the Pioneer core complex (Worl et al.,
1991; Kuntz et al., 1994; Link et al., 1994). Collectively, the Wood River System drains the
Cretaceous Atlanta lobe of the Idaho Batholith, the early to middle Eocene Challis Volcanic
Group (Johnson et al., 1988; Worl and Johnson, 1995), Paleozoic rocks of the Cordilleran eastern
and western assemblages of the central Idaho thrust belt (Dover, 1980; Turner and Otto, 1988;
Rodgers et al., 1995), and westerly-sourced siliciclastic rocks of the Antler foreland flysch in the
Mississippian Copper Basin Group (mainly Ordovician quartzite source) and the Pennsylvanian-
Permian Wood River Group (Laurentian source) (Mahoney et al., 1991; Link and Rodgers, 1995;
Link et al., 1996; Geslin, 1998). The system also drains the Pioneer Mountains metamorphic
core complex, an early to middle Cenozoic extensional province that exposes Paleoproterozoic
to Neoproterozoic crystalline basement (Wust and Link, 1988; Burton and Link, 1995; Beranek et
al., 2006).

The Little Wood River contains Miocene detrital zircon grains from ~8-12 Ma ldavada
and ~6-10 Ma Yellowstone Hotspot volcanism, Detrital zircons are recycled through Paleozoic
rocks of the Cordilleran passive margin, as indicated by the large presence of Proterozoic (1300-
950 Ma; 1800-1600 Ma; 2000-1800 Ma) populations (Beranek et al., 2006).

The Pioneer Mountains core complex is located ~15 km to the north of the Kimama
corehole in the Lost River Range of central Idaho, at the northwest boundary of the Miocene
Basin and Range province, the eastern boundary of the Atlanta lobe of the Idaho batholith, and
at the headwaters of the Wood River system. The Pioneer Mountains show evidence of

Mesozoic synkinematic plutonism and Paleogene extensional movement along the Wildhorse
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detachment system, which includes the Wildhorse thrust and a portion of the Pioneer thrust

system (Dover, 1983; Wust and Link, 1988). Cooling ages from OAr/*Ar, U-Pb, and U-Th/He data
show evidence for very slow cooling since 33 Ma, with an average rate of <5°C/Ma. U-Th/He
apatite ages document an extensional exhumation event at ~10 Ma and suggest an exhumation
rate of ~0.3 km/Ma (Vogl et al., 2014). It appears that volcanism, extension, and exhumation
were widespread during the period over which the Pioneer core complex was exhumed (11-8
Ma) (Clemens, 2003; Bonnichsen et al., 2008; Vogl et al., 2014). Prior to core complex
exhumation, the Challis magmatic event (51-43 Ma) and the intrusion(s) of the Atlanta lobe (83-
67 Ma), both in response to widespread extension, modified the western border of the Pioneer
core complex (Gaschnig et al., 2010).

The Wildhorse detachment system separates the metamorphosed Precambrian lower
plate (core) from the unmetamorphosed Paleozoic rocks of the upper plate (Pavlis and O’Neill,
1985, 1987; Wust and Link, 1988). The core contains Ordovician to Archean orthogneisses and
paragneisses that were intruded by granitic melts at 50-70 Ma (Vogl et al., 2012). Within the
upper plate of the Pioneer core complex, the Pioneer thrust plate contains of mostly
unmetamorphosed Paleozoic units that have been proposed to be equivalent to “western or

oceanic assemblage” Antler belt sequences exposed in Nevada (Wust and Link, 1988).

Volcanogenic Zircon Grains

A large number of the detrital zircon grains represent Neogene primary magmatic
zircons formed during eruptions of rhyolite ash from the YSRP magmatic system (Figure 26).
Four U-Pb age populations of volcanic zircons are observed: 7.1 Ma, 6.7 Ma, 6.2 Ma, and 5.8 Ma

(Figure 25). The fresh, rod- and blade grains, with minimal rounding, suggest a primary fallout
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origin. Rounded Heise volcanogenic grains would imply fluvial transport over an approximate
distance of 150 km to the Kimama site (Figure 26). The ages of volcanic zircon grains in the
Kimama core are coincident with eruptive events from the Heise volcanic center (Table 8)

(Anders et al., 2009).

Table 9: U-Pb ages of Heise volcanic field eruptive
units and volcanic detrital zircons of the Kimama
core. Eruptive unit ages from Anders et al. (2009).

Source Age (Ma)
Kimama Core 5.84+0.13
Tuff of Wolverine Creek 5.84 +0.03
Kimama Core 6.22 £ 0.078
Walcott Tuff 6.23 £0.01
Kimama Core 6.86 £ 0.091
Tuff of Edie School 6.61 +0.01
Kimama Core 7.25+0.014

VPT-1 tephra of Grand Valley ~ 7.27 £ 0.03

We interpret that volcanogenic detrital zircons to have been ejected during caldera
eruptions in the Heise volcanic field, transported westward by aeolian or fluvial processes, and
deposited at the base of fluvial sands in the Kimama drill hole. Thin sections (Figure 22)
obtained from fluvial sands demonstrate immature textures and extensive devitrification of
glass, indicative of minimal transport distance and rapid burial. The youngest zircon grains
match the projected age of the core derived from accumulation rate alone, so that depositional
lag time must have been substantially less than 100 k.y. after eruption. Therefore, the age of
the interbeds approximates the age of youngest zircons in each unit, 5.8 + 0.1 Ma at 1749 m

depth and 6.2 £ 0.1 Ma at 1844 m depth (Potter et al., 2013).
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Figure 26: Location map of Snake River Plain-Yellowstone eruptive centers. Caldera and volcanic center
locations are modified from Christiansen (1982) and Perkins et al. (1995). The location of the Kimama site
is marked by the red circle. Lanphere et al. (2002) obtained the three youngest 40Ar/39Ar ages from
corrections based on Renne et al. (1998). Unit ages older than 2.09 Ma and younger than 10.35 Ma are
measured 40Ar/39Ar ages from the Lamont-Doherty Earth Observatory argon laboratory (modified from
Anders et al., 2009).

The Hf isotopic compositions of hotspot zircons vary from eHf of -7.3 to -3.9, and the
variation is highly correlated with age: volcanogenic zircons with ages of 7.1, 6.7, 6.2, and 5.8
Ma have corresponding Hf of -7.3, -6.4, -4.9. -3.9 (Table 8, Figure 27). This progressive increase
in eHf in the younger zircons indicates an increase in mantle-derived Hf through time, evidence
for greater mantle input in younger volcanics. Although the continental lithosphere thickens to
the east, the continued action of the SRP-Yellowstone plume is thought to have structurally

eroded and chemically modified the overlying lithosphere (e.g. Shervais and Hanan, 2008). We
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propose that increasingly mantle-like eHf signatures in young zircons reveal the continued

action of a thermally and chemically buoyant mantle plume that has etched a channel into

cratonic lithosphere (i.e. Shervais and Hanan, 2008).
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Figure 27: Plot of average values eHf plotted against average values
U-Pb age (Ma). A negative correlation between eHf and U-Pb age is
especially apparent in the lower plot. A progressive increase in eHf
in the younger zircons indicates an increase in mantle-derived Hf
through time, signifying that Kimama basalts have become more
mantle-like in more recent SRP mafic volcanism.

The top of the upper succession contains the only significant population of Paleozoic
grains within the Kimama core and lacks Eocene Challis grains. We suggest that after 5.8 Ma,

the source of the paleo-Wood River system shifted westward to west of the Pioneer thrust fault.
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After 5.6 Ma, basaltic volcanism along the Axial Volcanic Zone (AVZ) diverted the paleo-Wood

River system southward to the reach the Hagerman area between 3.8 and 3 Ma.
Yellowstone-SRP volcanism from 10 Ma to 5 Ma in the central SRP is broadly coeval with
exhumation and breaching of the Pioneer core complex and development of the Wood River
System. U-Pb age data of detrital zircons in the Kimama core record volcanic events as young as
5.8 Ma superimposed upon an active extensional system. Although the 10.44-6.62 Ma Picabo
volcanic center (Drew et al., 2013) was active immediately prior to the deposition of Kimama
basalts, volcanic zircons from the Heise volcanic center, further east of Picabo, are the only
identified Neogene population. We propose that the conspicuous absence of volcanic zircon
grains derived from the Picabo volcanic complex is explained by rapid erosion and deposition of
volcanic zircons derived from eruptions of the Heise volcanic center, evidence for which are
angular and bladed grains, and their rapid, <100 k.y. burial by basalt flows. If mechanisms of ash
eruption and transport were similar throughout the 10 Ma history of silicic volcanism, it is
presumed that ash derived from Picabo volcanic eruptions had been largely eroded and

deposited prior to eruptions of Heise ignimbrites.

Conclusion

Our new data on fluvial-derived volcanic and detrital zircons from the Kimama drill hole
from Project Hotspot suggest: 1) Neogene volcanic activity in the Heise volcanic center began as
early as 7.3 Ma, 2) Yellowstone-Snake River Plain volcanism coincided with the unroofing of the
Pioneer core complex as early as 10 Ma, and 3) the Wood River System originally flowed south

and east into the central SRP before being smothered and diverted southwestward by recurrent
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volcanism from the AVZ. The lower fluvial sands in the Kimama core record fallout deposits of

Heise ash. An upward increase in Proterozoic grains signals two incursions of the paleo Wood
River System. The ash was rapidly buried by fluvial deposits of distal sands derived from the

unroofing of the Pioneer and Smoky mountains to the north.
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CHAPTER 5

Conclusion

As one of the youngest and best-preserved continental hotspot provinces, the SRP of
Idaho provides an unprecedented record of volcanism, sedimentation, and magma genesis, and
of the dynamic effect of these mechanisms on surface topography. The Kimama core samples
1912 m of continuous basalt stratigraphy along the Axial Volcanic High of the SRP. We have
combined a variety of tools and methods to piece together the stratigraphy of volcanism and
sedimentation, the frequency and timing of basalt accumulation, and the magnitude and origin
of magma compositional variability. Our major goals in this research were to generate complete
lithologic, geochemical, and stratigraphic records of the Kimama core.

In chapter two, we identified 71 basalt flow groups, 141 flows, and 446 flow units based
upon lithologic observations and Ar/Ar and paleomagnetic age data. Our Ar/Ar and
paleomagnetic ages show that basalt volcanism on the central Snake River has been relatively
continuous over the past 6.4 Ma, and our basalt facies observations suggest very similar
eruptive and emplacement processes through time. Flow groups average 10 m to 60 m thick
and show an average accumulation rate of 335 m/M.y. The relatively gentle relief of the SRP
and the lack of an elevated edifice at the Kimama site belies the vertical accumulation of 1912 m
of basalts, especially as little erosion was observed in cored basalts. The basalts must have filled
almost 2 km of accommodation space in the vicinity of the Kimama core hole. The temporally-
steady input of erupted lavas into the Kimama basin (displayed in chapter 1, figure 9), and very
few facies observations very thick, ponded lava flows in the Kimama core, imply a steady-state

equilibrium of basalt deposition and subsidence over 6.4 M.y.
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In the third chapter, our goal was to recognize variations in magma chemistry and to

identify the processes responsible for compositional differences in basalts of the Kimama core.
To determine the extent by which magma chemistry is controlled by differentiation, we
modeled potential paths of partial melting, assimilation of crust or the mid-crustal sill, and
fractionation. Although chemical trends within the Kimama olivine tholeiites are broadly similar,
upsection chemical variability in the Kimama core suggests a dynamic mid-crustal sill magma
storage system. Periods of magma storage and fractionation are punctuated by episodes of
magma recharge from more primitive batches, and ascending magma bodies are filtered
through and react with previously emplaced gabbro. Variation diagrams show that gabbro
assimilation is the most important cause of chemical changes in Kimama basalts, more so than
fractionation and the assimilation of more felsic continental crust. Melting models of E-MORB
spinel lherzolite source produce similar rare earth element compositional trends as those
observed in Kimama at 7-15% melting.

Our geochemical results have two important implications: 1) Petrogenetic processes of
Kimama basalts have remained largely similar over the 6.4 Ma record. Progressions from more
primitive, low K,0 basalt compositions to more evolved, high K,0, FeO*, and TiO, basalt
compositions, have occurred at multiple time/depth intervals. These results imply that the mid-
crustal sill and magma ascent paths were established well before 6.4 Ma. 2). Highly evolved,
Craters of the Moon-type lavas are not confined to the margins of the Snake River Plain, and are
not temporally limited to the last 15 k.y. Although only two such flow groups were observed,
the Kimama core demonstrates that Craters of the Moon-type lavas erupted at two separate
intervals, almost 2 Ma apart.

Two important implications arise from our work in chapter four, regarding the

deposition of volcanogenic and detrital zircons in fluvial sediments within the Kimama core. 1)
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Each sampled fluvial interbed contains a different distribution of age populations of detrital

zircon grains. We interpret a broad similarity of the age spectrum to the Wood River system,
but the varying detrital zircon barcodes demonstrates the effect of silicic and basaltic volcanism
during the relatively short depositional duration of fluvial sediments in the Kimama core.
Furthermore, the interruption of fluvial sedimentation from depths of 1874-1753 m and above
1707 m depth, and hyaloclastitic basalt at multiple depths below 1753 m, suggest interaction
between lava and water in the early part of the Kimama volcanic record. 2) Although the
Kimama core did not intercept the rhyolite at depth, we identified volcanogenic zircons with
ages ranging from 7.1 to 5.8 Ma in fluvial sediment interbeds at depths between 1844 to 1749
m. Neogene volcanogenic zircons represent eruptive products from Yellowstone-Snake River
Plain hotspot track caldera complexes. In Project Hotspot’s Kimberley core, drilled within the
Twin Falls caldera complex, rhyolite on the surface is dated at 6.25 Ma), implying a temporal and
depositional correlation to the 5.8 to 6.2 Ma sediments in the Kimama core, which are buried by
almost 1750 m of basalt. These observations suggest the existence of a depositional basin
within the central SRP, the study of which is a topic for future research.

The Kimama core records 6.4 M.y. of volcanic and sedimentological history, including
magmatic flux and magma compositional changes through time. We observe that Kimama SROT
basalts are higher in Fe, Ti, K, etc., than MORB magmas and are compositionally equivalent to
OIB magmas. Our data demonstrate that SRP magmatism is mantle-plume derived and does not
originate from the melting of a shallow MORB-source asthenosphere. Our observations,
combined with new mantle tomography, refute non-plume models for the origin and

development of the SRP volcanic province.
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Curriculum Vitae

Katherine Elizabeth Potter,
(July 2014)
Education:

B.S.: Geology, 2005, Fort Lewis College, Durango, CO; May, 2005, GPA: 3.30
M.S.: Geology, 2010, Idaho State University, Pocatello, ID; May 2010, GPA: 3.82
PhD: Geology, 2014, Utah State University, Logan, UT; May, 2012, GPA: 3. 71

Honors and Awards:

Rocky Mountain Association of Geologists Neal J. Harr Outstanding Student Award, Fort Lewis
College, 2005.

Student Membership Nomination, Sigma Xi, Fort Lewis College, 2005

‘Outstanding Presentation’ Geothermal Resources Council National Meeting, San Diego, CA,
2012.

Outstanding PhD researcher, 2012, Utah State University

Dr. Bob Oakes Citizenship Award, 2014, Utah State University

Membership in Professional Societies:

American Association of Petroleum Geologists (Vice President, 2013-2014)
American Geophysical Union

Geological Society of American

Sigma Xi (student member)

Professional Experience:

Geologist Intern, Anadarko Petroleum Corporation
May 2013-August 2013
= |nterpreted seismic data and correlated gamma and resistivity logs to identify
exploration targets in the Gulf of Mexico
= Learned and used a variety of new software and tools to reconstruct the basin history,
determine charge timing, and estimate resource volume
= Carried out full petroleum system evaluation in a structurally complex area with limited
available data

Project Hotspot Chief Scientist
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October 2010-January 2011

Manage core logging team & supervise core logging operations

Coordinate with DOSECC drill crews to optimize drilling progress

Evaluate and document mineralogical and structural anomalies in core
Identify rock and soil types and probable depositional history

Report progress of drilling & summarize petrologic observations for Project
Hotspot/DOE/DOSECC investigators

USGS Lab Tech
June 2008-August 2008 USGS, Idaho National Laboratory

Examined 1198 feet of basalt core (and some sediment interbeds) from core hole USGS
135 in the southwest corner of INL

Interpreted basalt flow boundaries based upon lithologic and textural features

Created a lithologic, conductivity, and porosity log of USGS 135 for future publication
and use in SRP aquifer studies

Geologist
January 2007-June 2008 EMC/Golden Predator/Uranium One, Durango, CO

Evaluated assay values, geologic maps, and geophysical/lithologic logs
Recommended viable U.S. & Canadian mining properties based upon the above
evaluations

Acted as a consultant at a newly acquired tungsten mine outside of Winnemucca, NV,
where | assisted in organizing, digitizing and evaluating older assay data, stope and
geologic maps, and lithologic logs

Academic Experience:

Senior (Undergraduate) Thesis, Fort Lewis College, May 2006

‘A petrochemical test of competing ideas on the emplacement of South Mountain Rhyolite,
Valles Caldera, NM.’

Advised by Dr. David Gonzales (Fort Lewis College) and Drs. Fraser and Cathy Goff
(University of New Mexico and formerly Los Alamos National Laboratory)

Used ICP-MS major and trace element data and petrography to determine the origin
and relationship of rhyolite flows on South Mountain, a post eruptive dome emplaced
within the Valles Caldera.

Presented poster and published abstract: Potter, K., Gonzales, D., Goff, F., Goff, C., 2006,
‘A petrochemical test of competing ideas on the emplacement of South Mountain
Rhyolite, Valles Caldera, NM: Geological Society of America 58" Annual Meeting,
Gunnison, Colorado, GSA Abstracts with programs, vol. 38, No. 6, p. 37 (Abstract
attached)

Invited speaker, Four Corners Geological Society, May 2006

Publication:

Gonzales, D.A., Potter, K.E., Turner, B.E., 2010, Geologic Map of the Bayfield
Quadrangle, La Plata County, Colorado: Colorado Geological Survey Open File Report 08-
15, scale 1:24,000
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Masters Thesis, Idaho State University, August 2010
‘Subsurface stratigraphy of the Arco-Big Southern Butte volcanic rift zone and implications for
late Pleistocene volcanism, Eastern Snake River Plain, Idaho’

Advised by Dr. Scott Hughes

Used Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence
(XRF) for major and trace element analysis of 56 samples collected from USGS 135 core,
drilled in the Idaho National Laboratory on the eastern Snake River Plain

Identified and correlated basalt flow groups based upon geochemistry, lithologic logs,
petrographic analyses, published geophysical logs, and paleomagnetic logs

Presented poster at December 2009 annual American Geophysical Union (AGU) national
meeting. (Abstract attached)

Publication:

Hodges, M.K.V., Potter, K.E., LeMaitre, T.R., (in press), Construction diagrams,
geophysical logs, and lithologic descriptions for boreholes NRF 15, NRF 16, USGS 103,
105, 108, and 135, Idaho National Laboratory, Idaho: U.S. Geological Survey Data Series
Report

PhD Dissertation, Utah State University, Spring 2014
‘The Kimama Core: A 6.4 Ma Record of Volcanism, Sedimentation, and Magma Petrogenesis on
the Axial Volcanic High, Snake River Plain, ID’

Advised by Dr. John Shervais

Using ICP-MS and XRF for major and trace element analysis, and Thermal lonization
Mass Spectrometry (TIMS) and NU-1700 High Resolution Multi-Collector Inductively
Coupled Mass Spectrometry (MC-ICPMS) for isotope analysis, of 250 basalt samples
collected from the 1912 m Kimama core. This core was drilled approximately 20 miles
north of Burley, Idaho in the central Snake River Plain through the DOE/ICDP-funded
Project Hotspot

Identified and correlated individual basalt eruptive suites within the Kimama core based
upon lithological, geochemical, and geophysical log data

Presented talk at the May 2011 annual meeting of the Rocky Mountain/Cordilleran
sections of the Geological Society of America (GSA) (Abstract attached)

Presented talk at the October 2011 annual meeting of the Geothermal Resources
Council (GRC).

Speaker at the December 2013 annual AGU national meeting.

Speaker at the 2013 annual GSA national meeting.

Publication:

Potter, K.E., Shervais, J.W., Sant, C.J., (2011) Project Hotspot: Insight into the subsurface
stratigraphy and geothermal potential of the Snake River Plain: Geothermal Resources
Council Transactions, vol. 35.

Software Experience:
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Familiarity with and/or proficiency in use of Petrosys, Petra, Landmark, Seisworks, Adobe
Illustrator, Matlab, and Excel.



	The Kimama Core: A 6.4 Ma Record of Volcanism, Sedimentation, and Magma Petrogenesis on the Axial Volcanic High, Snake River Plain, ID
	Recommended Citation

	KP-hook-together 1-9

