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ABSTRACT 

Estimating the Effectiveness of a Seasonal Gas Tax for Controlling Episodic PM2.5 

Concentrations in Cache County, Utah 

by 

Leo A. Moscardini, Master of Science 

Utah State University, 2014 

Major Professor: Dr. Arthur J. Caplan 

Department: Applied Economics 

 For several years, residents of Cache County, Utah have suffered from the 

recurrence of what has come to be known as the winter-inversion, or “red-air-day” 

season. Each year during this season – which occurs primarily in the months of 

December, January, and February – particulate matter concentrations measuring two and 

half micrometers or less (commonly known as      ) rise and languish (for periods of 

days or even weeks) above federally mandated standards, causing extensive harm to 

community health and confounding what have thus far been the relatively tepid control 

efforts undertaken by local and state policymakers.  

 Through time-series regression modeling, we establish a statistical relationship 

between       concentrations and vehicle use in Cache County, and further calculate a 

gas-price elasticity for the region. Next, we analyze the benefits and costs associated with 

a potential seasonal gas tax which, if set appropriately and enforced effectively, could 

decrease vehicle use and thereby lower health costs through concomitant decreases in 

      concentrations. Specifically, we find a relatively strong positive relationship 
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between percentage of vehicle trips reduced and associated reductions in       

concentrations, and a gas price elasticity of approximately -0.31 in what we call a “high 

price variability environment.”  

 Based upon these results, benefit-cost analysis suggests a potentially positive 

social net benefit for Cache County associated with imposing a seasonal gas tax to reduce 

      concentrations during the winter-inversion season. Our benefit-cost analysis, 

which uses quantitative estimation techniques on both sides of the ledger, yields a first-

of-its-kind social net benefit estimate for controlling elevated       concentrations in 

Cache County through the imposition of a seasonal gas tax.       

(71 pages) 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 
 

PUBLIC ABSTRACT 

Estimating the Effectiveness of a Seasonal Gas Tax for Controlling Episodic PM2.5 

Concentrations in Cache County, Utah 

by 

Leo A. Moscardini, Master of Science 

Utah State University, 2014  

Major Professor: Dr. Arthur J. Caplan 

Department: Applied Economics 

Cache County, Utah boasts an abundance of awe-inspiring natural beauty. 

However, at times, its air quality rivals the worst in the United States. During the winter 

months of December through February, particulate matter measuring two and a half 

micrometers or less, commonly known as      , often concentrates to dangerously high 

levels causing extensive harm to public health. Lawmakers have scrambled to pass 

legislation aimed at mitigating the risks posed by poor air quality, recently adopting a 

county-wide vehicle emissions testing program designed to reduce exhaust emissions 

from on-road mobile sources. However, its efficacy has been hotly debated and many 

similar programs around the country have failed to produce significant results.  

Using ten years of daily data on       concentrations, vehicle use, and 

meteorological variables to control for the climactic determinants of inversions in Cache 

County, we construct an econometric model which attempts to explain the variation in 

      levels caused by motor vehicles. Next, employing similar methodology using 

historical Cache County gas price data, we model how drivers in the county respond to 
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substantial changes in the price of gasoline. Ultimately, these two models together enable 

us to estimate how increases in gas price might lower vehicle use, thereby reducing 

public health costs through concomitant decreases in       concentrations. In fact, 

empirical analysis indicates that a winter-time (seasonal) tax on gasoline may be a more 

effective control mechanism for       than the recently adopted vehicle emissions 

testing program in Cache County. Moreover, we show that the benefits of clean air in the 

county outweigh the costs of such a tax under the right conditions.  

(71 pages) 
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INTRODUCTION 

 Situated in northern Utah, Cache County boasts an abundance of awe-inspiring 

natural beauty (see Figure 1 for the county’s location in Utah). However, at times its air 

quality rivals the worst in the United States (Nierenberg 2009). Particularly during the 

winter months, inversions trap polluted air in Cache Valley
1
 for days or weeks at a time. 

Much of the pollution is particulate matter measuring two and half micrometers or less, 

or      , a term used to describe dust, soot, dirt, or smoke particles, as well as liquid 

droplets (EPA 2014a). These particles pose a great risk to human health, as their small 

size enables them to lodge deep in lung tissues.  

 

 

Fig. 1   Location of Cache Valley, Utah
2
 

  

                                                           
1
 Cache Valley is the population center and predominant area of Cache County. Hence, we use Cache 

County and Cache Valley (sometimes referred to as “the valley”) interchangeably.  
2
 Source: Utahrealestateguide.org 
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 Both point and non-point pollution sources contribute to       concentrations, 

with agricultural and industrial processes, wood burning, and vehicle emissions 

contributing the most (EPA 2014a). In an effort to improve air quality in the valley, 

lawmakers recently adopted a vehicle emissions testing program (VETP) aimed at 

curbing the harmful exhaust that contributes to       concentrations (Anderson 2013). 

However, because the exact relationship between vehicle use and       levels is as yet 

unknown for the region, the efficacy of a VETP has been hotly debated (Anderson 2013).  

 

 

Fig. 2   Relative size of PM2.5
3
 

  

 This thesis establishes a precise statistical relationship between vehicle use (in the 

form of vehicle trips) – a proxy for human-induced emissions – and       concentrations 

                                                           
3
 Source: U.S. EPA 
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in Cache County using time-series regression analysis. The results reveal that a reduction 

in vehicle trips would quite dramatically decrease       concentrations. Furthermore, 

using somewhat similar regression methodology, a relationship between vehicle trips and 

at-the-pump gas prices is estimated, thus laying a policy foundation for a seasonal gas 

tax. Finally, using a variety of approaches, this paper explores the benefits and costs of 

such a tax and shows that, under the right conditions, the policy passes a benefit-cost 

analysis. 
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THE PROBLEM AND PROPOSED SOLUTION 

 For approximately 75 percent of each year, Cache County is virtually free of 

      concentrations that exceed EPA safe standards. However, in 2008, it was 

designated by the EPA as a nonattainment area, meaning that the valley had not complied 

with “the national primary or secondary ambient air quality standards” for       

concentrations over a period of successive years (EPA 2014a). Currently, the 24-hour 

standard for       concentrations, as measured by the “three year average of the annual 

98
th

 percentile of readings,” is less than or equal to 35 micrograms per cubic meter 

(µg/m³).
4
 For several days of the year, particularly during the winter months of 

December, January, and February, Cache County’s       concentrations rise well above 

that level (EPA 2014a).  

 Figure 3 depicts the distribution of       concentrations during the 2010 – 2011 

season (note the spikes above the 35 µg/m³ standard (horizontal red line) in early 

December and early-to-mid January in that year). Figure 4 shows the distribution of 

monthly average       concentrations in Cache County for the years 2002 – 2012 (note 

the distribution’s mass for the months of December – February). 

 

 

                                                           
4
 The current standard represents a drastic tightening of the previous 1997 standard of 65 µg/m³. 
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Fig. 3   PM 2.5 concentrations in Cache County for the 2010 – 2011 season 

 

 

 

Fig. 4   Monthly average PM 2.5 concentrations for 2002 – 2012 
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Inversion 

 In no small way, residents of Cache County are victims of both their climatology 

and topography. Under certain meteorological conditions, cold air becomes trapped 

between the mountains close to the surface and is held in place by a layer of warm air 

above, a process known as “inversion” (State of Utah 2013).  

 

 

Fig. 5   Inversion
5
 

 

 Figure 5 illustrates the inversion problem. As elevation rises, temperature 

gradually decreases. However, given certain barometric pressure, precipitation, and wind 

speed conditions, descending warm air can create an inversion layer, at which point 

temperature increases with increasing elevation constituting the reverse of normal air 

patterns. This inversion layer traps       concentrations between geologic barriers 

which, around Cache County, are the Wellsville and Bear River Mountains. Figure 6 

depicts the aesthetic consequences of inversion.  

 Heightened concentrations of       brought about by winter-time inversions 

                                                           
5
 Source: Indiana State University 
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carry significant consequences for human health. Data collected by Utah State 

Representative Ed Redd, formerly a medical doctor at the Bear River Department of 

Health in Logan, indicate that during the winter months of 2004, three deaths, five 

hospitalizations, and 109 emergency room visits were attributable to dangerous levels of 

the pollutant, resulting in estimated health costs of more than $23 million in four months 

(Coulombe 2011). This amount can be thought of as one measure of the annual cost of 

elevated       concentrations in Cache County. 

 

 

 

Fig. 6   Absence and presence of inversion, respectively, in Cache County 
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Sources of and Control Mechanisms for       

 Because large industrial point sources are scarce in Cache County, researchers 

have linked the region’s agriculturally-dominated economy to heightened       

concentrations. When mixed with exhaust emissions, ammonium vapors from livestock 

waste form      . A study conducted by researchers at Utah State University show that 

“the urine and manure of Cache County's 75,000 cows release about 5.3 tons of ammonia 

vapors into the air each winter day” (Fahys 2004). These ammonia vapors, trapped in the 

valley by an inversion, can concentrate between five and ten times their normal levels 

(Fahys 2004). Figure 7 illustrates that the largest contributor to       concentrations in 

Cache County is ammonium nitrate. 

 

 

Fig. 7   PM2.5 distribution in Cache County
6
 

 

                                                           
6
 Source: UDEQ (2014b), Dec-Feb: 2000-2007, N=212. 
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 Due to the high concentrations of ammonium vapors found in Cache County, and 

because ammonia is a precursor to       concentrations, some have proposed that stricter 

regulations be enforced on farms and ranches in the valley. Research has shown that there 

are indeed effective ways to control ammonia emissions from cattle. For example, a study 

conducted by Iowa State University showed that ammonia emissions “can be reduced 40-

50 percent by using biofiltration” in animal housing areas (Shih et al. 2006). A biofilter, 

which is “simply a porous layer of organic material that supports a population of 

microbes,” funnels dirty air from animal housing areas and converts the pollution to 

carbon dioxide and water (Nicolai 2011). At a cost of approximately $200 dollars per 

filter, and annual operating and maintenance costs typically not exceeding $5 to $10 

dollars per filter, biofiltration is both an efficient and cost-effective way to control 

ammonia emissions (Nicolai 2011). However, local officials in Cache County have been 

reluctant to adopt such policies. Referring to general livestock curbs, Cache County 

executive Lynn Lemon stated, “I think we need to make sure we are on firm ground when 

we go there. The agricultural community gets really offended when we blame it on the 

cows” (Fahys 2004). 

 In March 2013, Cache County Council members voted to adopt a vehicle 

emissions testing program (VETP). The narrow 4-3 decision was a result of intense 

pressure from the EPA, as well as a reaction to studies showing that a small percentage of 

vehicles (around 10-15 percent) contribute the most to       concentrations (Fahys 

2004). The VETP makes it mandatory for residents of the county to submit their vehicles 

for inspection every other year. However, its benefits have yet to be proven and the 

program’s economic viability is cause for concern. Indeed, a prominent report 
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commissioned by the National Academy of Sciences points to mounting evidence 

suggesting that VETPs have been much less effective than initially anticipated, on 

average reducing emissions by only half of promised amounts (National Research 

Council 2001). With an estimated implementation cost of $1.8 million and relatively low 

anticipated benefits, many Cache County residents have strong reservations (Anderson 

2013). Cache County Council member Val Potter recently expressed his dissent, stating, 

“It really doesn’t solve the problem. I feel like $1.8 million for the effect that it’s going to 

have on air pollution in this valley really isn’t justified” (Anderson 2013). In all, the 

VETP is expected to reduce total air pollution in the valley by just three to five percent 

(Anderson 2013).  

 Due to both the high costs and relatively low predicted efficacy of Cache 

County’s VETP, a policy that would lower vehicle use during the inversion season may 

prove to be more beneficial. During an inversion, “anywhere from 60 to 85 percent of all 

      found on the Utah Department of Air Quality’s monitoring files is created by 

secondary particulate formation” (UDEQ 2014b). Secondary particulate formation occurs 

when precursor emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particularly 

volatile organic compounds (VOCs) react and combine in the atmosphere to create       

(UDEQ 2014b). According to the Utah Department of Environmental Quality (UDEQ), 

VOCs are highly reactive. As they break apart, they combine with other gaseous 

chemicals to form nitrates. These nitrates then react with ammonia to form ammonium 

nitrate, the leading contributor to       concentrations in Cache County (see figure 7).  

 Hence, the UDEQ concludes that reducing VOC emissions “provides the best 

approach to reducing       levels during winter inversions in Utah in the near future” 
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(UDEQ 2014b). Figure 8 shows that transportation accounted for the majority of 

anthropogenic VOC emissions from 1900-1996 (CMA 1998). 

 

 

Fig. 8   Volatile organic compound (VOC) emissions inventory, 1900-1996
7
 

 

Today, approximately 50 percent of anthropogenic VOC emissions are attributable to 

industrial and commercial processes, 45 percent to motor vehicles, and just five percent 

to consumer solvents (NASA 2014). Therefore, a policy that reduces vehicle use may be 

a highly effective way of advancing the UDEQ’s ambition of lowering VOC emissions. If 

set at the appropriate level, a seasonal gas tax may be a more powerful control 

mechanism for       concentrations than the recently adopted VETP in Cache County.
8
 

                                                           
7
 Source: Chemical Manufacturers Association, data from the EPA, National Air Pollutant Emission 

Trends, 1900-1996. 
8
 To our knowledge, Cropper et al. (2014) is the only extant study that investigates the use of a market-

based policy to control what it calls “episodic pollution” attributable to mobile sources (i.e., vehicle 
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Furthermore, questions arise as to the benefits (in the form of induced medical cost 

savings) and costs associated with such a tax. The research and results presented in the 

following sections are aimed at empirically evaluating the potential role a gas tax may 

play in reducing       concentrations in Cache County, and in exploring attendant 

questions concerning the benefits and cost associated with reducing these concentrations 

in the valley during the winter months.  

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                             
emissions), in specific ground-level ozone in Washington, DC. The authors propose a permit scheme that 

they estimate would – after accounting for non-compliance – result in approximately one million vehicles 

removed from the road during high-ozone days, which in turn would result in the reduction of more than 30 

tons of NOx emissions per day (reductions in percentage terms not provided by the authors) and raise an 

estimated $111 million in revenue per ozone season. 
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DATA SOURCES 

 To analyze the merits of a seasonal gas tax in Cache County, two separate 

regression models are required to (1) establish a statistical relationship between       

concentrations and vehicle travel (a “      regression”), and (2) to establish a statistical 

relationship between vehicle travel and gas prices (a “gas-price regression”). In doing 

this, a correlation between gas prices and       concentrations can be estimated.  

 The       regression models are built around three key measures: daily       

concentrations, daily vehicle trip counts, and a vector of daily weather variables to 

control for inversion-inducing meteorological conditions in Cache County. Data for these 

models are collected from three primary sources, and have a date range from 2002 to 

2012. Note that because inversions are solely a wintertime phenomenon, only data from 

winter months are used for analysis (December through February).       concentrations 

are recorded by the Utah Division of Air Quality at EPA station code 490050004 located 

in downtown Logan, Cache County’s largest city (UDEQ 2014a). This data is collected 

hourly, and we aggregate these readings and divide by 24 to obtain daily averages.   

 Trip count data were obtained from the Utah Department of Transportation 

(UDOT). UDOT has six automatic traffic recorder (ATR) stations located strategically 

throughout Cache County (UDOT 2014b). However, only four stations have been in 

service since 2002. Data collection at the two additional ATR stations began in 2005 and 

2008, respectively. To preserve continuity in the data, only readings from the first four 

stations are used.  Figure 8 shows the locations of all six active ATR stations in the 

valley. For our study, data from ATR stations #303, #363, #510, and #511 are used. 

Station #303 borders Idaho, while station #363 lies central to Wellsville and Hyrum. 
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Station #510 is located in Smithfield, and station #511 lies in North Logan, located next 

to Utah State University. We aggregate the trip counts from these four stations in order to 

generate an estimation of the total vehicle trips taken in the valley per day.  

 Daily measurements for temperature, wind speed, humidity, and precipitation are 

recorded at a weather station based at Logan-Cache Airport. The data for Cache County 

was obtained from Weather Underground and is certified by the National Weather 

Service (Weather Underground 2013).  

 Similar to the       regressions, the gas-price regressions are built around several 

crucial variables: trip count, gas price, temperature, and household income. Note that 

while trip count appears as an explanatory variable in the       regression, it becomes 

the dependent variable in the gas-price regression.
9
 Gas price data is obtained from 

GasBuddy.com, which compiles statistics from consumers, credit card transaction 

records, and gas stations themselves (GasBuddy 2013).  Household income is proxied by 

a dummy variable for pre- and post-recession years (year ≤ 2008=0, year >2008=1). 

Unlike the       regressions, the gas-price regressions use data from all months (year-

round). Unfortunately, adequate gas price data for Cache County is unavailable prior to 

2006. Therefore, the gas price regression models are restricted to the date range 2006-

2012. 

 

                                                           
9
 This creates a scenario in which there is a potential for endogeneity in our       regressions. We explore 

this problem at length in the following section.   
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Fig. 9   ATR locations in Cache County, Utah
10

 

 

                                                           
10

 Source: Utah Department of Transportation (2014b) 
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 Table 1 provides descriptions and summary statistics for the variables used in 

both the       and gas-price regressions.
11

 The variable PM2.5 is calculated as the 

natural log of the average daily value of       concentrations (taking the antilog shows 

this average to be approximately 12.76 µg/m³) and Trip_Count the natural log of the 

three-day rolling average of total trip count in Cache County (indicating an average of 

approximately 31,000). A rolling average is used to control for any lingering vehicle 

emissions from two days lagged.
12

 Wind, Temp, Humid, and Precip measure the average 

daily wind speed, temperature, humidity, and total precipitation in the valley, 

respectively. Similar to       concentrations, these averages are for hourly readings. 

 

Table 1    Variable Definitions and Summary Statistics 

Variable Description Mean (SD) 

PM2.5 Natural log of daily average       concentrations in 

Cache Valley, UT 

2.546 (0.971) 

Trip_Count Natural log of the three-day rolling average of daily 

vehicle trips taken in Cache County, UT 

10.346 (0.116) 

Wind Average daily wind speed (MPH) in Cache Valley, UT 3.029 (2.667) 

Temp Average daily temperature (°F) in Cache Valley, UT 46.118 (19.225) 

Humid Average daily relative humidity (%) in Cache Valley, UT 82.664 (8.782) 

Precip Total daily precipitation (in) in Cache Valley, UT 0.04 (0.107) 

HumWind Interaction term of Humid and Wind (Humid x Wind) 243.736 (203.886) 

GPrice Natural Log of daily average at-the-pump gas price for 

Cache County, UT  

1.061 (0.216) 

Recession Dummy variable for pre- and post-recession years; 

(year ≤ 2008=0, year >2008=1) 

0.455 0.498 

 

 

 

 

                                                           
11

 Augmented Dickey Fuller tests were performed on each variable to ensure stationarity.  
12

 We tried various lag lengths for Trip_Count and the regressions results were qualitatively unchanged. 
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REGRESSION ANALYSIS 

 This section describes the various empirical models tested in this thesis, and 

discusses the ensuing results from our regression analyses. To ultimately establish a link 

between gas prices and       concentrations, we start by regressing      concentrations 

(PM2.5) against vehicle trips (Trip_Count) along with a variety of meteorological 

variables that control for the various climactic determinants of a typical winter inversion. 

Next, we analyze the effect that gas prices (GPrice) have on Trip_Count using a 

regression configuration based upon a simple household-production model. The 

following empirical results suggest that a seasonal gas tax may be an effective tool in 

reducing vehicle travel in Cache County (and thereby       concentrations) during the 

winter inversion season.  

Methodology 

      Estimation 

 Our       regression models are built to explain the variation in       

concentrations caused by vehicle use. We start with an admittedly “naïve”       

regression: one that ignores the issue of potential endogeneity brought about by 

Trip_Count’s possible statistical relationship with GPrice. Equation (1) shows our initial 

      regression used to model Trip_Count’s effect on PM2.5,  

              =   +       +          (1) 

where   is a constant term,     is the vector of (constant) coefficients to be estimated, 

and    is a matrix of the explanatory variables Trip_Count, Temp, Wind, Humid, Precip, 
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and HumWind for time period(s) t.
13

 

 This initial       regression tests an autoregressive integrated moving average, or 

ARIMA model. ARIMA models can correct for serial correlation in time series data and 

“produce better explanations of the residuals from an existing regression equation” 

(Studenmund 2011). These models are specified with the shorthand notation (#p, #d, #q), 

where “the dependent variable and any independent variables are differenced #d times, 

and 1 through #p lags of autocorrelations and 1 through #q lags of moving averages are 

included in the model” (STATA 2013a). To show how an autoregressive process may 

correct for possible first-order serial correlation, we estimate a generalized least squares 

(GLS) version of (1) following Studenmund (2011). In general, we can think of a 

regression equation with serial-correlated error terms as,  

   =   +       +   , where    = ρ     +   .   (2) 

 In (2),    is a serially correlated error term,   is the associated correlation 

coefficient, and   is a classical error term. In order to effectively remove the ρ    term 

from (2), we first multiply both sides of the equation by   and then lag the new equation 

by one time period, resulting in equation (3) (Studenmund, 2011), 

              =     +          + ρ    .   (3)  

Subtracting (3) from (2) we have: 

                                                           
13

 We tested several alternative specifications (with different combinations and transformations of the 

explanatory variables listed in Table 1) of the model described in (1). We did not include stationary-source 

emissions as a separate explanatory variable for two reasons. First and foremost, we were unable to obtain 

these emissions estimates on a daily basis from the UDEQ. Second, because our PM2.5 measure is 

effectively incorporating the effects of stationary-source emissions (in terms of their contributions to 

concentration levels), the coefficient on our Trip_Count variable can effectively be interpreted as the 

percentage of       concentrations that are explained by mobile sources, on average. 
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         =  (1-  ) +   (           ) +      (4) 

which is re-written as: 

                    
  =    +      

  +          (5) 

where   
  =         ,    

  =     -       , and    =   -   . 

Equation (5) is a GLS version of equation (2). Note that (i) the error term    is not 

serially correlated, and (ii) the slope coefficients    are identical to the respective slope 

coefficients of the original serially correlated equation (2), meaning that the    

coefficients may be interpreted identically across equations. In all, the autoregressive 

process “expresses the dependent variable    as a function of past values of the dependent 

variable” (Studenmund 2011). 

 In contrast, the moving-average component of the ARIMA model “expresses the 

dependent variable    as a function of past values of the error term” (Studenmund 2011). 

Both the autoregressive and moving-average processes are shown in (6), where the  s 

and the  s are the coefficients of the autoregressive and moving-average processes, 

respectively, and p and q are the number of past values used of Y and  , respectively 

(Studenmund 2011). 

  Autoregressive process 

  

   =    +        +         + … +        +      (6) 

 +        +        + … +        

    

  Moving-average process 



20 

 

 
 

 While our initial       regression is corrected for serial correlation, it ignores the 

potential endogeneity associated with the Trip_Count variable. Endogeneity is the 

violation of a basic assumption of regression analysis which occurs when the error term is 

correlated with an explanatory variable. Without testing for potential endogeneity in the 

      regression, we assume that a shock in gas prices would be captured solely by the 

regression’s error term, not Trip_Count. To test for endogeneity of the Trip_Count 

variable, a standard Hausman test is used. For this test, a gas-price regression model is 

estimated. Next, the residuals from this regression are added as an explanatory variable to 

the       regression. Should the residuals be statistically significant, we can conclude 

that Trip_Count is behaving as an endogenous variable in the       regression.  

 To control for endogeneity, we shift focus away from our original ARIMA model 

and test a more sophisticated instrumented variable (IV) regression model. This 

configuration essentially replaces the potentially endogenous variable, Trip_Count, with 

a set of instrumental variables, or instruments. In theory, the instruments used should be 

both independent of the error term and highly correlated with the endogenous variable 

(Studenmund 2011). The IV model can be corrected for heteroskedasticity and serial 

correlation through a heteroskedasticity- and autocorrelation-consistent (HAC) weighting 

matrix. The appropriate number of lags is determined using Newey and West’s (1994) 

automatic lag-selection algorithm (STATA 2013b).  

Gas-Price Estimation  

 This section describes the methodology used to calculate the statistical 

relationship between GPrice and Trip_Count in Cache Valley, and is divided into two 

subsections. The first presents a simple household-production model upon which we base 
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our gas-price regression, and the second discusses the specification of our empirical 

models.  

Theoretical framework 

 The theoretical framework for our gas-price regressions can be represented most 

conveniently by a variation of Becker’s (1965) household production model, where a 

household i’s welfare in time period t is a function of a composite good obtained via 

vehicle trips (Z1), a numeraire good (Z2), and parameterized by the study area’s       

concentration level (  ), and a vector of seasonal variables proxied by temperature (ϴ) 

(time subscripts t are removed from the variables and functions for convenience),
14

 

                  (   ,    ;   , ϴ)      (7) 

which we assume exhibits standard curvature conditions for    ,    , and   .  In particular, 

we note that   
     and    

     Equation (7) can be re-written as:  

             (           )    ;   , ϴ)    (8) 

where     represents total amount of gas used to obtain    ,     represents household i’s 

time spent obtaining    , and     is the household production function for    . Similar to 

function   , we assume     exhibits standard production-function curvature conditions. 

Household i maximizes (8) subject to its budget constraint, 

                 +     +        = T   ,          (9) 

                                                           
14

 Our empirical estimation of the gas price regression assumes that function    is additively separable in 

Z1 and Z2.  
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where    represents the per-unit price of    ,     represents household i’s composite wage 

rate, and T represents total work time available to household. Solving the corresponding 

maximization problem yields the following four first order conditions (FOC’s):  

 

    
 :     

     
   –     = 0     (10) 

 

    
 :     

  –    = 0      (11) 

 

    
 :     

     
   – λ    = 0     (12) 

 

   
 : T     -       -     -        = 0    (13) 

where λ represents the problem’s Lagrangian multiplier (marginal utility of income). 

FOC’s (10) – (13) can be solved for household i’s demand for gas, the numeraire good, 

and time spent obtaining    , i.e.,    (   ,   , ϴ,   ),    (   ,   , ϴ,   ), and    (   ,   , ϴ, 

  ), respectively. The demand for goods obtained via vehicle trips can then be written as 

    =    (     ),      )). For future reference, the household’s gas price elasticity is 

shown by (14),  

                        

  = 
    

   
 

  

      
     (14) 

 To establish the benchmark, socially optimal allocation of the household’s 

demands, assume a social planner maximizes the sum of all individual’s utilities over the 

sum of individual incomes and expenditures (i.e., an economy-wide resource constraint). 

Hence, the optimization problem becomes: 

   
                

    
 (   (   ,    ),    ,    

  (   ,    );  )   (15) 
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where now    is explicitly recognized by the planner as variable       
  (   ,    ), 

where   represents an emissions factor, subject to the economy-wide resource constraint: 

         –     –   –                     (16) 

Solving the maximization problem yields the following FOC’s for i=1,...,N, where   is 

this problem’s Lagrangian multiplier representing the marginal social utility of aggregate 

income:   

 

    
 :     

     
   +      

     
   –     = 0   (17) 

 

    
 :     

  –   = 0      (18) 

 

    
 :     

     
   +      

     
   –      = 0   (19) 

 

    
 :        –      –   –        = 0   (20) 

The social planner is tasked with implementing a socially optimal gas tax. To accomplish 

this, the planner sets the tax according to (21), where      
 represents the optimal, 

(Pigovian), individualistic tax rate on gas used to obtain   . 

                    
  = - 

     
     

  

  
      (21) 

The optimal gas tax is added to   , and the social planner further normalizes    by 
 

  
 so 

that (10) becomes     
     

   –   [ (
 

  
)    + 

     
     

  

  
 ] which collapses to (17). Similarly, 

the social planner sets a socially optimal tax on individual i’s time spent obtaining   , 

shown by (22), also normalizing     by 
 

  
 so that (12) becomes (19): 
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  = - 

     
     

  

  
      (22) 

Finally, to transform (11) to (18) the social planner normalizes each individual’s adjusted 

net income by 
 

  
 . In determining each tax rate, the social planner evaluates both     

  and 

     
 at the solution’s optimal values. This implies that, in a world with perfect 

information, the social planner would assign a unique tax to each individual. Thus, there 

would be no uniform gas tax, but instead one tailored to an individual’s “adjusted” 

marginal utility.  In reality, “smart” gas-pumps would be required to identify each (type 

of) individual and change the price at the pump accordingly.  

Model and specification 

 Because social planners (i.e., regulators) do not have perfect information, we 

move beyond normative tax analysis to a positive analysis – estimation of a uniform 

seasonal gas tax. To determine the effect that an at-the-pump gas tax would have on 

vehicle use in Cache County, we establish an empirical relationship between Trip_Count 

and GPrice (i.e., estimate a “gas-price regression”) using a methodology somewhat 

similar to that of the initial       regression. Equation (23) shows the regression model 

chosen to explain this relationship, where   is a constant term,    is the vector of 

coefficients to be estimated,    is the matrix of the explanatory variables, in this case 

GPrice, Temp, and Recession, and    is a mean-zero, constant variance error term,
15

 

                   =   +       +       (23) 

                                                           
15

 As with the       regressions, we ran several alternative specifications for (23). 
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 Analysis of the Trip_Count variable indicates that it exhibits seasonality.
16

 In 

other words, Cache County residents maintain consistent and predictable driving patterns 

depending on the day of the week (i.e. there is a strong correlation between trips taken on 

any given Monday and the Monday preceding, between trips taken on any given Tuesday 

and the Tuesday preceding, etc.). Therefore, this apparent seasonal trend in Trip_Count 

must be controlled for if the marginal effects associated with the various explanatory 

variables in (23) are to be accurately estimated.
17

 To accomplish this, we test a 

multiplicative seasonal ARIMA model (SARIMA), which is specified with the shorthand 

notation (#p, #d, #q) x (#P, #D, #Q)#s, where “the dependent variable and any 

independent variables are lag-#s seasonally differenced #D times, and 1 through #P 

seasonal lags of autoregressive terms and 1 through #Q seasonal lags of moving-average 

terms are included in the model” (STATA 2013a). Appendix A illustrates the seasonality 

of Trip_Count and shows how the effects of the seasonal trend are mitigated through 

multiplicative SARIMA modeling. Similar to the       regression, the multiplicative 

SARIMA model used for the gas price regressions also corrects for first-order serial 

correlation. 

 To more accurately capture the potential effects that large increases in gas prices 

over relatively short periods of time might have on vehicle usage in Cache County, we 

limit our data to only observations in which there is a $1.00 or greater increase in gas 

                                                           
16

 In time-series data, seasonality is a regular pattern of changes that repeats over S time periods 

(Pennsylvania State University, 2014). 
17

 Although explicit control for seasonality in PM25 (equation (1)) was unnecessary, we note that in our 

initial       regression (represented by equation (6)) moving average processes “eliminate the repetitive 

seasonal component” (Giles, 2014). In the subsequent IV       regression equation, we use a HAC 

weighting matrix to correct for autocorrelation, the main source of which is seasonality (Yafee, 2014).  
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prices over a four-month interval.
18

 This simulates a “high price variability environment,” 

and enables us to predict the potential impact of a relatively aggressive gas tax that 

empirical results from previous resource demand studies suggest would likely be 

necessary, all while preserving degrees of freedom for econometric analysis.  

 Numerous prior studies have found the household price elasticity of demand for 

gasoline to be relatively inelastic. As an example, Dahl and Sterner (1991) estimate a 

short- to intermediate-run price elasticity between -0.22 to -0.31 based on a meta-analysis 

of 97 estimates on data prior to 1989. Similarly, Espey’s (1998) meta-analysis of 277 

prior estimates between 1929 and 1993 yield mean short-run and long-run elasticities of -

0.26 and -0.58, respectively. These results align closely to those obtained from our gas-

price regressions, detailed in the following section.
19

 

Empirical Results  

      Regression Analysis 

 Results from both the initial ARIMA and IV       regressions are presented in 

Table 2. These results show that Trip_Count is strongly correlated with       

concentrations for the average winter-inversion season in Cache County. The functional 

form of our regression model allows us to interpret Trip_Count’s effect on PM2.5 as an 

elasticity measure, since both variables are (natural) logged. We start by examining the 

ARIMA (1,0,0) specification, labeled Model 1 in Table 2. The coefficient estimate for 

Trip_Count in this model indicates that, ignoring endogeneity for the time being, a one-

                                                           
18

 A four-month interval was necessary in order to obtain a large enough subsample for econometric 

estimation. 
19

 We also conducted a literature review of prior estimates for household-level price elasticities of demand 

for resources such as water and electricity (see Olmstead et al. (2007) and Espey (1997) for meta-analyses 

of water demand literature, and Branch (1993) for a meta-analysis of electricity demand literature). Similar 

to the estimates of gas price elasticities, these studies show household demand for resources to be generally 

price-inelastic.  
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percent increase in Trip_Count leads to an approximately 0.89 percent increase, on 

average, in       concentrations for Cache County during the average winter-inversion 

season. This implies that taking 100% of vehicles off the road in the valley during the 

winter months would lead, on average, to an 89% reduction in       concentrations. This 

result affirms evidence presented by the UDEQ that vehicle emissions, particularly 

VOC’s, play a key role in the formation of       (UDEQ 2014b).  Utilizing a moving-

average process in the initial       regression yields an even stronger correlation 

between Trip_Count and PM2.5. Model 2 in Table 2 shows that, with an ARIMA (1,0,3) 

specification, there is a virtually one-to-one relationship between these two variables, 

suggesting that removing all vehicles from the valley’s streets during the typical winter-

inversion season would eliminate       concentrations altogether. 

Both the ARIMA (1,0,0) and ARIMA (1,0,3) specifications produce the expected 

relationships between PM2.5 and the various weather variables included in the models. 

For example, because inversions are primarily a winter-time occurrence, we expect 

increases in temperature to bring about reductions in       concentrations. This 

expectation is supported by the results in Table 2 showing both a statistically significant 

and inverse relationship between Temp and PM2.5. While Wind is statistically 

insignificant, much of wind’s effect on       concentrations is captured by the 

interaction term HumWind.
 20

 Slight breezes stimulate the evaporation of water, thus 

leading to increases in humidity. Therefore, as expected, HumWind exhibits a negative 

                                                           
20

 A         term was also included in the model, but was found to be statistically insignificant.  
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relationship with PM2.5.
21

 Overall, Model 2 fits the data best, as demonstrated by a 

larger, or less negative, log-likelihood value compared with Model 1.  

 

 

Table 2    PM2.5 Regression Analysis
ab

 

Explanatory Variable Model 1 

AR(1,0,0) 

Model 2 

ARIMA(1,0,3) 

Model 3 

IV 

Constant -8.669* 

(2.635) 

-9.736* 

(2.676) 

-7.475*** 

(3.837) 

Trip_Count 0.893* 

(0.252) 

0.999* 

(0.256) 

0.751** 

(0.365) 

Temp -0.009* 

(0.003) 

-0.01* 

(0.003) 

-0.023* 

(0.005) 

Precip -0.845* 

(0.178) 

-0.863* 

(0.176) 

-1.190* 

(0.359) 

Humid 0.031* 

(0.004) 

0.031* 

(0.004) 

0.040* 

(0.004) 

Wind 0.049 

(0.045) 

0.053 

(0.045) 

– 

 

HumWind -0.002* 

(0.001) 

-0.002* 

(0.001) 

-0.002* 

(0.001) 

AR(1) 

 

0.731* 

(0.025) 

0.926* 

(0.027) 

– 

MA(1) – -0.211* 

(0.053) 

– 

MA(2) – -0.234* 

(0.049) 

– 

MA(3) – -0.129* 

(0.047) 

– 

Number of 

Observations 

646 646 646 

Log Likelihood -489.25 -481.45 – 

   – – 0.55 

* = significant at 1% level, ** = significant at 5% level, *** = significant at the 10% 

level 
a
Dependent variable is PM2.5.  

b
Standard errors in parenthesis, IV model reports HAC standard errors. 

                                                           
21

 Models tested without HumWind yielded comparable results. In these models, Wind exhibited a negative 

relationship with PM2.5 and was statistically significant at the 1% level. 
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 While the results of the initial       regressions are promising, they do not take 

into account the potential endogeneity of Trip_Count. The existence of endogeneity can 

be uncovered using a Hausman test, detailed results for which are shown in Appendix B. 

In fact, even with multiple lag lengths of gas price, endogeneity remains a robust problem 

in our system of regression equations (shocks in gas prices are felt largely by Trip_Count 

in our       regressions). Table 3 contains the results of Hausman tests conducted for 

two-, four-, six-, eight-, ten-, and twelve-week lagged gas prices. The significance of the 

χ² statistic indicates the existence of endogeneity, meaning that the residuals of 

Trip_Count from the gas-price regressions are statistically significant in the       

regressions. 

 

Table 3    Hausman Tests for Endogeneity of Trip_Count in PM2.5 

Lagged gas price (weeks)       χ² 

2     2.37** 

4     3.47* 

6     2.59** 

8     3.24* 

10     2.89* 

12     5.02* 

* = significant at 1% level, ** = significant at 5% level 

 

 

 To correct for endogeneity, we test an IV model, with Trip_Count the 

instrumented variable and Temp, Humid, HumWind, Precip, and dummy variables for 

each week-day
22

 the instruments (note that we have excluded Wind from the model 

because of its statistical insignificance). First order serial-correlation is corrected with a 

                                                           
22

 We also tested an IV model using two lags of Trip_Count as instruments, following Wadsworth (2006). 

This model yielded comparable results.  
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HAC matrix following the Newey-West method (STATA 2013b). Model 3 in Table 2 

shows that, when corrected for endogeneity, the relationship between Trip_Count and 

PM2.5 in our IV       regression is still negative and statistically significant. We find 

that a one percent increase in Trip_Count in Cache County during the winter months 

leads to an approximately 0.75 percent increase in       concentrations. In other words, 

removing all vehicles from the streets in the valley during the wintertime will, on 

average, drop total       concentrations by roughly 75 percent. Moreover, we continue 

to achieve the expected relationships between PM2.5 and the inversion-inducing weather 

variables. An adjusted    value of 0.55 indicates that 55% of the variation in PM2.5 is 

explained by the model.  

Gas-Price Regression Analysis 

 Because we are interested solely in the effects that dramatic gas price changes 

might have on vehicle usage in Cache County (simulating the likely gas tax rates that 

would be necessary to curtail vehicle trips taken in the valley during winter inversions), 

recall that we have limited observations in our dataset to only those where gas-price 

increases are greater than or equal to $1.00 per gallon over four-month intervals. This 

time interval was not chosen arbitrarily, but rather out of statistical necessity. Shorter 

time differentials were too restrictive in terms of limiting the number of usable 

observations, which made estimating the effect of gas prices on Trip_Count untenable.  

To explain the variation in Trip_Count caused by GPrice, we estimate three different 

models, each with the same multiplicative SARIMA (1/7,0,0) x (0,1,0)7 specification but 
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reflecting slightly higher gas price increases over four-month intervals.
23

 Models 1, 2, 

and 3 in Table 4 show that more significant gas-price increases lead to fewer trips taken 

in the valley, as evidenced by an increasingly negative GPrice coefficient (an increasing 

elasticity).  

 

Table 4    Gas-Price Regression Analysis
abcd

 

Explanatory Variable Model 1 

Gas Price  

$1.00 

Model 2 

Gas Price 

$1.05 

Model 3 

Gas Price 

$1.09 

Constant -0.005 

(0.005) 

-0.001 

(0.006) 

-0.010 

(0.008) 

GPrice -0.276*** 

(0.151) 

-0.312** 

(0.152) 

-0.352*** 

(0.192) 

Temp 0.002** 

(0.001) 

0.002** 

(0.001) 

0.003*** 

(0.001) 

AR(1) 

 

0.582* 

(0.082) 

0.550* 

(0.090) 

0.443* 

(0.117) 

AR(7) -0.405* 

(0.070) 

-0.436* 

(0.080) 

0.504* 

(0.100) 

Number of Observations 

Wald χ² 

93 

932.81 

78 

818.22 

64 

312.83 

Log likelihood  145.69 116.62 88.60 

* = significant at 1% level, ** = significant at 5% level, *** = significant at 10% level 
a
Dependent variable is Trip_Count.  

b
Standard errors in parenthesis. 

c
Recession dropped due to collinearity.  

d
All variables are lag-7 seasonally differenced. 

 

 

 In our gas-price regression models, GPrice can be interpreted in a fashion similar 

to Trip_Count in our       regressions (note that Trip_Count is now the dependent 

                                                           
23

 Seasonal ARIMA (1/7,0,0) x (0,1,0)7 is used to account for the weekly (7-day) trend in Trip_Count. This 

specification applies the lag-7 seasonal difference operator to the dependent and independent variables, 

which removes the seasonal trend. Note that only lags 1 and 7 of the non-seasonal autoregressive terms of 

the structural model’s disturbance are included. This accounts for additive seasonal effects and corrects for 

autocorrelation (STATA, 2013).  
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variable).  Model 1 in Table 4 indicates that, on average, in what we have labeled a 

“high-price-variability environment” where price increases (e.g., brought about by 

aggressive tax rates) are no less than $1.00 per gallon, a one-percent increase in per-

gallon gas price leads to an approximately 0.28 percent decrease in Trip_Count. Another 

way to conceptualize this result is that a doubling of the average gas price in Cache 

County would decrease Trip_Count by roughly 28 percent.
24

 

As Table 4 indicates, larger increases in gas price cause greater declines in 

Trip_Count. For example, Model 3 in Table 4 shows that, based on the sub-sample of our 

data where price increases are no less than $1.09 per gallon, doubling gas prices in Cache 

County leads to an approximately 35 percent decrease in Trip_Count. Our results 

therefore provide some evidence to suggest that valley residents’ driving habits may 

indeed be at least as sensitive in a high-price-variability environment as estimates from 

the previous literature would suggest. Coupled with our results from the       regression 

analysis of the previous section, these findings indicate that a gas tax may be an effective 

control mechanism for elevated       concentrations during the winter inversion season 

in Cache County. 

 

 

 

 

 

                                                           
24

 The average 2012 gas price in Cache County was $3.49 per gallon (GasBuddy 2013). Therefore, 

doubling gas price effectively satisfies the lower-bound condition placed on our regression analyses, where 

price increases brought about by a seasonal tax are greater than or equal to $1.00. 
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BENEFIT-COST ANALYSIS: CONTROLLING       CONCENTRATIONS 

 In order to subject the concept of a seasonal gas tax to benefit-cost analysis, we 

first approximate the benefits associated with the tax using a variety of different 

approaches, including (1) analyzing local health-care estimates provided by Utah State 

Representative Ed Redd (mentioned previously in The Problem and Proposed Solution), 

(2) utilizing the EPA’s COBRA simulation software, and (3) compiling results from the 

clean-air willingness-to-pay (WTP) literature. Next, we estimate the gross, net, and 

adjustment costs, as well as deadweight loss, associated with a large-enough gas tax to 

bring about necessary reductions in wintertime       concentrations in Cache County, 

using both the elasticity estimates obtained from the regression analyses of the previous 

sections, as well as estimates of the number of registered vehicles and miles driven in 

Cache County from the Utah State Tax Commission and the Utah Department of 

Transportation.
25

 

Estimating the Benefits of Control 

Approaches 

 Traditionally, economists have relied on hedonic techniques for estimating the 

value of improved air quality (Smith & Huang 1995). Over 40 years ago, Ridker and 

Henning (1967) suggested that “property value differences as a result of variations in air 

pollution with location could be used to estimate the benefits from policies intended to 

reduce that pollution” (Smith & Huang 1995). Unfortunately, the studies on household’s 

marginal WTP (MWTP) for clean air have yielded vastly disparate results.
26

  

                                                           
25

 The methodology for the cost analysis is explained in detail in the following sections.  
26

 See Smith & Huang (1995) for a meta-analysis of MWTP for clean air estimates. 
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 Smith and Huang (1995) conducted an early meta-analysis of 37 air pollution 

studies that accounts for 86 separate estimates of household MWTP for clean air
27

 

between 1982-1984. Like similar studies, MWTP estimates were calculated as the change 

in the asset value of property. Smith and Huang’s (1995) hedonic meta-analysis estimated 

a statistical average of these MWTP values under specific circumstances across several 

U.S. cities, and reported a mean MWTP of approximately $110 per household (in 1992 

dollars) for each unit reduction in air pollution (Smith & Huang 1995). 

 The Clean Air Act, passed in 1963 and amended for the first time in 1970,
28

 

provided an exciting opportunity to evaluate MTWP for clean air. Chay and Greenstone’s 

(2005) study on MWTP “exploits the structure of the Clean Air Act Amendments 

(CAAs) to provide new evidence on the capitalization of air quality into housing values” 

(Chay & Greenstone 2005). In their study, Chay and Greenstone (2005) use 

“nonattainment status as an instrumental variable for changes in total suspended particles 

(TSPs) in first-differenced equations for the 1970-80 change in county-level housing 

prices” (Chay & Greenstone 2005). Their estimate of household MWTP for a one unit 

reduction in TSPs, approximately $22 (in 1982-84 dollars), is much lower than the 

statistical average derived from Smith and Huang’s (1995) earlier hedonic meta-analysis. 

However, the authors find that “nonattainment status is uncorrelated with virtually all 

other observable determinants of change in housing prices, including economic shocks” 

(Chay & Greenstone 2005). Therefore, their model is far less sensitive to specification 

than those prior. 

                                                           
27

 It is important to note that this analysis explored reductions in particulate matter measuring 10 

micrometers or less (    ), not      . Most of this literature focuses either on     concentrations or total 

suspended particles (TSPs). 
28

 The 1970 amendment required federal and state regulations for both stationary and mobile pollution 

sources. 
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 While studies using conventional hedonic techniques for estimating the value of 

clean air are prolific, most “rely on the assumption that households move freely among 

locations” (Bayer et al. 2009). Instead, a study by Bayer et al. (2009) shows that “when 

moving is costly, the variation in housing prices and wages across locations may no 

longer reflect the value of differences in local amenities,” such as air quality (Bayer et al. 

2009). Therefore, the authors develop an alternative discreet-choice approach that 

directly models household location decision (Bayer et al. 2009). In this model, air quality 

is instrumented using the “contribution of distant sources to local pollution” (Bayer et al. 

2009). Their study finds that, when migration is accounted for, the median household’s 

MWTP for a one-unit reduction in      concentrations ranges from $149 to $182 (in 

constant 1982-84 dollars) (Bayer et al. 2009). The authors compare this result to that 

yielded when a conventional hedonic technique is used to model the same data. They 

estimate that, with a traditional hedonic model, MTWP for a one-unit reduction in 

    concentrations is approximately $55 (in constant 1982-84 dollars) (Bayer et al. 

2009). Because this estimate is roughly three times less than that which accounts for 

mobility costs, the authors stress the importance of considering migration and 

instrumenting for local air pollution (Bayer et al. 2009).  

 Because the aforementioned studies measure the benefits of reducing either      

concentrations or TSPs (broader measures of air pollution compared to       

concentrations alone), we consider them to be upper-bound estimates of the benefits of 

reducing       concentrations in Cache County. In order to approximate lower-bound 

estimates (i.e., estimates that consider the medical benefits of reduced       

concentrations only), we include two additional approaches that act as “comparables” 
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with the MWTP studies. First, we use the data collected in 2004 by Utah State 

Representative Ed Redd, which indicate that the annual medical cost of elevated       

concentrations in Cache County exceeds $23 million per winter-inversion season, as 

shown in Table 5. For the purposes of our analysis, we assume that if       

concentrations are reduced by half - on average during a given winter-inversion season - 

then so would Redd’s estimate of roughly $23.9 million.  

 

Table 5    Annual Public Health Cost of       in Cache County
ab

 

Incident Frequency Cost/incident Total cost 

Deaths 3 $7.9 million* $23,700,000 

Hospitalizations 5 $18,000 $90,000 

ER Visits 109 $26,000 $26,000 

Asthma Attacks 344 $20 $7,000 

Follow-up Visits 200 $65 $13,000 

Extra Prescriptions 300 $80 $24,000 

Sick Days 400 $160 $64,000 

  Grand Total: $23,924,000 
a
From winter 2004: 2003 as cost basis.  

b
Data: Ed Redd, M.D., Bear River Department of Health. 

*EPA life value > age 70 
 

 

 Second, we estimate Cache County’s potential public health savings using the 

EPA’s Co-Benefits Risk Assessment (COBRA) Screening Model. According to the EPA, 

COBRA is “a screening tool that provides preliminary estimates of the impact of air 

pollution emission changes on ambient particulate matter air pollution concentrations, 

translates this into health effect impacts, and then monetizes these impacts” (EPA 2012). 

COBRA is programmed using predicted emissions estimates
29

 for the year 2017, and uses 

                                                           
29

 COBRA Emissions Estimates include those for      , NOx, SO2, NH3, and VOCs. 
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these estimates as a base, or control, scenario. Users can then “create their own scenarios 

by specifying increases or reductions to the emissions estimates for the analysis year” 

(2017) (EPA 2012). COBRA then calculates changes in       concentrations between 

the control and user-supplied scenario: a source receptor (S-R) matrix “translates the air 

pollution emission changes into changes in ambient      ” (EPA 2012).  

 Next, using a multitude of health impact functions, COBRA transforms ambient 

      changes into incidences of human health impacts (EPA 2012). Appendix C 

provides a summary of the epidemiological studies in COBRA used to estimate health 

impacts of       concentrations (EPA 2012). Lastly, COBRA assigns a monetary value 

to these health impacts. Note that, according to the EPA, COBRA’s approach is 

“consistent with EPA Regulatory Impact Analyses,” and “reflects the current state of the 

science regarding the relationship between particulate matter and adverse human health” 

(EPA 2012).  

 To conduct our simulation analysis, COBRA allows us to select the State of Utah 

and Cache County specifically. COBRA further enables us to select the category to which 

our proposed policy would apply. In our case, because we are considering a seasonal gas 

tax, we choose what COBRA calls the “Highway Vehicles” category, which 

encompasses the tiers of light-duty gas vehicles and motorcycles, light-duty gas trucks, 

heavy duty gas trucks, and diesels.  Next, COBRA requests that we input emissions 

reduction estimates (in tons) that we predict will be realized through the gas tax, 

including reductions in       concentrations, as well as SO2, NOx, NH3, and VOC 

emissions.  
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Table 6    Mobile Source Emissions Inventories for Cache County
a
 

Pollutant Mobile Source 

Inventory per Inversion 

Season (2010-2011)* 

Emissions Reductions 

from Proposed Gas 

Tax 

COBRA Estimated 

Mobile Source 

Inventory (2017) 

      58.7 28.8 45.1 

SO2 2.6 1.3 9.6 

NOx 532.5 260.9 1113.2 

VOC 316.7 155.2 500.5 

NH3** 80.3 20.1 26.7 
a
 Emissions are in tons 

*Source: UDEQ (2014c) 

**NH3 data from 2002.  

 

 

Table 6 shows mobile source emissions estimates by pollutant in Cache County 

for the 2010 - 2011 inversion season. Furthermore, it indicates the emissions reductions 

that we project our proposed seasonal gas tax will achieve (we discuss these calculations 

below). Finally, COBRA’s 2017 mobile source emissions estimates for Cache County are 

shown. Note that in some cases, they are higher than current emission conditions, perhaps 

to account for future population growth. COBRA provides high- and low-bound 

estimates of public health savings for each simulation.  

Total Benefit Projections 

 To estimate the total benefits of control, we must first approximate the required 

reduction of wintertime       concentrations in Cache County necessary to comply with 

EPA standards (recall that the 24-hour standard for       concentrations is less than or 

equal to 35 µg/m³). To accomplish this, all instances in our dataset where       

concentrations exceeded this standard are isolated and averaged. The result reveals that 

the mean       concentration level during a wintertime inversion is approximately 56 

µg/m³. Therefore, should Cache County residents desire clean air (air that complies with 
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EPA regulations), it will be necessary to reduce       concentrations, on average, by 

about 21 µg/m³ during the winter-inversion season, which translates to an approximately 

38 percent reduction overall. The elasticity estimate obtained from our IV       

regression (Table 2, Model 3), indicates that in order to obtain a 38 percent reduction in 

      concentrations, a 51 percent reduction in Trip_Count is required.
30

 

 Based on the estimates of household MWTP presented previously, we can derive 

a rough estimate of the total benefits associated with reductions in       concentrations 

using MWTP estimates from the existing literature. To do so, we multiply the estimate of 

MWTP given in each study by 21 (the amount that       concentrations must be 

reduced, on average, in Cache County in order to achieve compliance with EPA 

standards). This product provides our best approximation of the total benefit per 

household of achieving the necessary reductions in       concentrations during an 

average winter-inversion season. To estimate the total benefit for Cache County as a 

whole, we multiply the benefit per household by the total number of households in the 

valley (35,234 in 2012) (Census Bureau 2014). Table 7 shows the results of these 

calculations for each MWTP study, and indicates that Cache County may potentially 

realize an approximate total benefit of between $16 million and $136 million per winter-

inversion season (recall that we consider this range to be an interval of upper-bound 

estimates).
31

 

 

                                                           
30

 From our IV       regression, we estimate that a 100% decrease in Trip_Count will lead to, on average, 

a 75% reduction in      . Therefore, we solve the ratio (
   

  
 = 

 

  
) for x, where 38 represents the desired 

38% decrease in       concentrations and x represents the percent reduction in Trip_Count necessary to 

achieve this goal. Solving for x equals (approximately) 51%. 
31

 The studies discussed in the previous section estimate the MWTP for clean air based on either      or 

TSPs. Therefore, we most likely overestimate the benefit that would be realized from reducing       only.  
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Table 7    Estimates of the Benefits of Controlling an Average Winter Inversion Season 

Approach Estimated MWTP
*
 Total Benefit 

Smith and Huang (1995) $110 $81,390,540 

Chay and Greenstone 

(2005) 

$22 $16,278,108 

Bayer et al. (2009)   

    Conventional Hedonic $55.20 $40,843,253 

    Migration and IV   

Low-bound $149 $110,247,186 

High-bound $185 $136,884,090 

Ed Redd, (R-Utah) (2004) – $9,091,120 

COBRA
**

   

Low-bound – $479,403 

High-bound – $1,086,075 

Mean  104.24 $48,710,972 

Median  110 $28,560,681 

Standard Deviation (66.57) (54,082,938) 
*
We assume that the estimated annual MWTP values from the literature are not affected 

by the fact that the winter inversions in Cache County occur solely during a three-four 

month window, i.e., are episodic. By their very nature, elevated       concentrations are 

episodic in any location, with episode lengths varying across locations.
 

**
COBRA uses a 3% discount rate for future benefits. 

 

 

 As shown in Table 7, we estimate that the total public health savings from 

reducing       concentrations by 38 percent in Cache County to be approximately $9 

million based on Dr. Redd’s data. COBRA simulations yield lower estimates,
32

 as we 

estimate that, on average, valley residents may realize an approximately $1 million dollar 

benefit from a 38 percent reduction in       concentrations during the winter-inversion 

season. Because both the data provided by State Representative Redd and the simulations 

estimated by COBRA account only for public health impacts, we consider them to be 

lower-bound estimates. In all, the average across our upper- and lower- bound benefit 

                                                           
32

 To estimate using COBRA, we reduce each pollutant found in the mobile source emissions inventory for 

Cache County per season (Table 6) by 51% (we require a 51% reduction in Trip_Count to realize a 38% 

reduction in       concentrations). Once done, these values (in tons) are used as inputs to COBRA for 

purposes of simulation.  
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estimates is approximately $48.7 million per typical winter-inversion season. However, 

due to the relatively large standard deviation associated with this mean estimate, we use 

the median benefit estimate of $28.5 million per winter-inversion season to compare with 

the gross, net, adjustment, and deadweight loss costs of a seasonal gas tax in Cache 

County, presented below.   

Estimating the Costs of Control 

 In this section we estimate the various costs involved with the imposition of a gas 

tax necessary to reduce       concentrations by an average of 38 percent. Recall that this 

reduction is necessary for Cache Country to meet the national EPA standard for       

concentrations during a typical winter-inversion season, which, as our regression results 

indicate, requires a concomitant 51 percent decrease in Trip_Count.  

Gross cost serves as our estimate of the upper bound on costs incurred by the 

household as a result of the gas tax, where it is assumed that (1) the costs associated with 

the adjustments households make in response to the tax (i.e., the costs associated with 

making fewer trips by vehicle) are just equal to the extra tax burden they would have 

encountered had they not made the adjustments (in sum, rather than just on the margin), 

and (2) that none of the tax revenue obtained by the regulator is returned to the 

households in any way. With net cost, it is assumed that the adjustment costs are zero 

(i.e., there are essentially no costs associated with a household’s adjustments made in 

response to the gas tax), but, similar to gross cost, no tax revenue is returned to the 

households. The difference between gross and net costs therefore represents our (upper-

bound) estimate of the adjustment costs associated with the tax. If we further assume that 

tax revenues are returned in full to the households in some lump-sum fashion (e.g., 
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through subsidies for green energy, transportation, etc.), our adjustment cost estimate 

reflects the sole economic cost of the gas tax incurred by the households.  

Additionally, we provide our best estimate of the social deadweight loss, or 

excess burden, associated with the seasonal gas tax we recommend. Based on a meta-

analysis of existing literature regarding the excess burden of taxation, Conover (2010) 

finds the deadweight loss associated with an excise tax to be, on average, 32 cents per 

dollar of tax revenue. Because this estimate assumes a full transfer of tax revenue and 

zero adjustment costs, we consider it to be a lower-bound estimate of the cost associated 

with the imposition of a seasonal gas tax in Cache County.  

To begin, our question is: at what level should the gas tax be set?  For our answer, 

we use the average over our gas-price elasticities (approximately -0.31) to determine the 

amount that gas prices must increase to decrease Trip_Count by 51 percent, which we 

find to be roughly 165 percent.
33

 From our dataset, we calculate that the average 2012 gas 

price in Cache County was $3.49 per gallon. Thus, in 2012, our seasonal gas tax would 

need to be set at, on average, $5.76 per gallon in order to induce the requisite 51 percent 

reduction in Trip_Count. Therefore, in 2012, Cache County residents would have needed 

to pay approximately $9.25 per gallon during the winter-inversion season in order to 

attain the target reduction in       concentrations of 38 percent, on average, if the tax 

were the sole policy instrument used to achieve the targeted reduction.
34

   

                                                           
33

 The average across all elasticities from our gas-price regressions is -0.31. In other words, a 100% 

increase in gas prices leads to, on average, a 31% reduction in Trip_Count. Therefore, we solve the ratio 

(
   

  
 = 

 

  
) for x, where 51 represents the desired 51% decrease in Trip_Count and x represents the percent 

reduction in gas prices necessary to achieve this goal. Solving for x equals approximately 165%.  
34

 Given the size of the tax needed to induce the requisite reductions in vehicle trips, two potential social 

dilemmas present themselves. First, gas prices for Cache County residents would also have to rise outside 

of the valley in order to prevent residents from “driving across the border” for cheaper prices. Second, 
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While the tax we propose may perhaps seem outlandish at first glance, it is not 

necessarily unreasonable when compared to the fuel excise duties imposed by several 

European countries on a regular, non-seasonal basis. Between 1980 and 2012, the 

average tax on fuel – adjusted to a dollar-per-gallon basis – in the Netherlands was $3.61 

(corrected for inflation to 2005 prices), which was then added on top of a 21 percent 

value added tax (VAT) to determine the final fuel price (EEA 2013). Average gas taxes 

for larger European nations such as Italy and the United Kingdom between the same 

years were $3.52 and $3.26, respectively, again adjusted to a dollar-per-gallon basis and 

corrected for inflation to 2005 prices (EEA 2013).  

 To estimate the gross cost to Cache County households of the seasonal gas tax, 

we begin by dividing the number of registered passenger vehicles by the total annual 

vehicle miles traveled (both values for Cache County in 2012) to obtain an estimate for 

the annual miles traveled per vehicle in Cache County, which we calculate to be 11,244.
35

 

Separately, we divide the number of registered vehicles in the county by the number of 

households in 2012 to determine the number of vehicles per household, which we find to 

be 2.21. The product of this value and our previous estimate of the annual miles traveled 

per vehicle yields an estimate for the number of miles traveled annually per Cache 

County household. This figure, multiplied by 0.25 (the percent of the year that Cache 

County witnesses inversions), yields an approximation of the average number of miles 

traveled per Cache County household per winter-inversion season, roughly 6,212 miles.  

                                                                                                                                                                             
some form of control would need to be put in place to prevent Cache County residents from hoarding 

gasoline during the non-winter-inversion season for use during the inversion season. 
35

 Data from the Utah State Tax Commission (2012) indicate that there were 77,932 registered passenger 

vehicles in Cache County in 2012. The Utah Department of Transportation (2012) estimated that the annual 

vehicle miles traveled for vehicles registered in Cache County was 876,333,868 in 2012.   
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 The Utah Department of Transportation (2012) estimates that the average Utah 

vehicle achieves a fuel efficiency of 24.06 miles per gallon (MPG). Hence, dividing the 

miles traveled per Cache County household per season by UDOT’s estimate of average 

MPG enables us to approximate the total gallons of gas used by the average Cache 

County household per inversion season, which we calculate to be 258.19. Finally, we 

multiply this value by our proposed per-gallon tax ($5.76) and then again by the number 

of households in Cache County to estimate the gross cost of a 2012 seasonal gas tax to 

Cache County residents: approximately $52.4 million per season.  

To calculate the net cost associated with the gas tax we simply reduce the gross 

cost by a factor of 0.51, representing the estimated reduction in vehicle trips induced by 

the requisite gas tax of $5.76 per gallon. This results in a net cost of approximately $25.7 

million per winter-inversion season in Cache County. The difference between gross and 

net costs, which represents our estimate of the costs faced by Cache County households 

in adjusting to the tax by reducing vehicle trips, is therefore approximately $26.7 million 

per inversion season. Finally, recall that there is excess burden associated with taxation; 

in particular, we use Conover’s (2010) estimate that 32 percent of tax revenues associated 

with an excise tax result in deadweight loss. Therefore, to calculate the excess burden 

imposed on society associated with our seasonal gas tax, we multiply net cost by 32 

percent, thus obtaining a deadweight loss estimate of $8.2 million.  

 

 

 

 



45 

 

 
 

  

  

  

 

 

 Again, neither the gross nor net costs of the seasonal gas tax assume that any gas-

tax revenue is rebated to Cache County residents (e.g., in the form of subsidies for green 

energy and/or community reinvestment). On the other hand, the adjustment cost assumes 

no leakage in tax revenues due to government inefficiency, and that 100 percent of these 

revenues are transferred back to taxpayers. Alternatively, our deadweight loss estimate 

assumes no adjustment cost and a full transfer of tax revenues. In examining our 

estimated costs – gross, net, adjustment, and deadweight loss – and comparing those costs 

with the median benefit of reduced       concentrations in Cache County, it becomes 

apparent that the tax passes a cost-benefit analysis based on gross costs only if an 

effective rebate system is in place. In all, approximately 45 percent of the gross cost of 

the tax (about $23.9 million) would need to be refunded to Cache County residents in 

order for the policy to prove beneficial when weighed against gross costs.
36

 Cost-benefit 

analysis based upon net cost requires no tax rebate, while adjustment cost and deadweight 

loss assume a full tax revenue transfer. Table 8 compares each cost measure to the 

corresponding estimated social net benefit for Cache County. We approximate social net 

                                                           
36

 We estimate the median benefit of clean air in Cache County to be approximately $28.5 million, while 

the gross cost of the tax to be approximately $52.4 million. Reducing gross cost by approximately 45 

percent equates the cost to the benefit. Hence, about $23.9 million would need to be refunded to taxpayers 

annually.  

Table 8    Estimates of Social Net Benefit by Cost Measure 

Cost Measure Cost (millions) Social Net Benefit (millions) 

Gross $52.4 ($23.9) 

Net $25.7 $2.8 

Adjustment 

Deadweight Loss 

$26.7 

$8.2 

$1.8 

$20.3 
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benefit by subtracting each respective cost from $28.5 million, our estimation of the 

median benefit of reduced       concentrations in the valley. 

Sensitivity Analysis: Accounting for Future Technology 

 While a seasonally-imposed gas tax in excess of five dollars per-gallon may lead 

some to despair, there is good reason to be optimistic about the future. The EPA’s Tier 3 

Vehicle Emission and Fuel Standards Program will set new vehicle emission standards 

and lower the sulfur content of gasoline beginning in 2017 (EPA 2014b). The expected 

result is dramatically reduced mobile-source emissions from that point forward, with 

particularly large reductions in nitrogen oxides (NOx) and VOCs, the precursor emissions 

of       concentrations (Redd 2014). According to Redd (2014), approximately five Tier 

3 vehicles collectively emit as much as a single Tier 2 vehicle, and approximately 30 Tier 

3 vehicles collectively emit as much as a single Tier 1 vehicle. Thus, the adoption of this 

technology over time portends rather pronounced emissions reductions in Cache County. 

 Figure D1 presented in Appendix D shows that, while controlling for future 

population growth in the valley, Tier 3 technology is expected to drastically reduce both 

NOx and VOC emissions versus Tier 2 (Redd 2014). Hence, it is quite possible that in the 

coming years, it may no longer be necessary to reduce Trip_Count (via a seasonal gas 

tax) by the full 51 percent to achieve       concentrations that comply, on average, with 

EPA standards. This implies that the cost of a per-gallon gas tax in Cache County could 

effectively be decreased each successive season in response to the progressive adoption 

of Tier 3 technology. Additionally, higher gas prices have been shown to have an effect 

on vehicle fleet composition. Li et al. (2009) estimated that “a ten percent increase in 

gasoline prices will generate a 0.22 percent increase in fleet fuel economy in the short run 



47 

 

 
 

(one year), and a 2.04 percent increase in the long run (after the current vehicle stock is 

replaced).” Because our proposed gas tax is seasonal, its effect on fuel economy in Cache 

County may not be as dramatic. However, there will likely be a “spillover” effect that 

incentivizes the more rapid adoption of Tier 3 technology, thus leading to larger 

emissions reductions that are realized faster than those depicted in Figure D1. 

 

Table 9    Sensitivity Analysis 

Reduction in Trip_Count 

(%) 

Required Seasonal Gas Tax 

(per gallon) 

45 $5.06 

40 $4.50 

35 $3.94 

30 $3.39 

25 $2.83 

20 $2.27 

15 $1.68 

10 $1.12 

 

 

 Table 9 shows that with each five-percent reduction in Trip_Count equivalent 

(brought about via the steady adoption of Tier 3 technology over time), there is a 

reduction of about $0.56, on average, in the required cost of a per-gallon seasonal gas tax 

(again using the average gas price in 2012 as a base) needed to obtain the EPA       

standard.
37

  

 

 

                                                           
37

According to Redd (2014), Tier 3 vehicle prices are expected to rise by roughly $135 per new car, and the 

EPA estimates that Tier 3 fuel will add an additional penny to the per-gallon cost of gasoline at the pump. 
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CONCLUSION 

 Elevated winter-time       concentrations have been a persistent problem in 

Cache County, Utah for several years, and the predicament remains almost wholly 

unsolved today. While some preventative measures are in place to aid in reducing 

harmful       precursor emissions, more can be done to improve air quality in the 

valley, particularly during winter months. Using time-series, instrumented-variable 

regression analysis, we show that reducing vehicle trips in Cache County by one percent 

during the inversion season will, on average, lead to an approximately 0.75 percent 

reduction in average       concentrations.  

Furthermore, through multiplicative seasonal ARIMA modeling, we find that 

Cache County residents’ driving habits in a “high price volatility environment” (which 

mimics the imposition of an aggressive gas tax) are indeed as elastic as conventional 

estimates of resource-use elasticities typically suggest. Specifically, we find that a one-

percent increase in gas prices leads to an approximately 0.31 percent reduction in vehicle 

trips. These results lean in favor of an argument for a seasonal tax on gasoline. Should the 

tax be appropriately set – which we find would be approximately $5.00 more per-gallon 

than the current per-gallon price of about $3.50 – we estimate that Cache County would 

witness a dramatic reduction in vehicle use, thus decreasing health costs through 

concomitant decreases in       concentrations during the typical winter-inversion 

season. Furthermore, we predict that the benefits of cleaner wintertime air would 

outweigh the costs associated with such a tax, particularly in tandem with a system that 

effectively transfers tax revenues back to Cache County residents.   
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 Further investigation into the logistical practicalities of implementing a seasonal 

gas tax is needed, as there would need to be strong cooperation between the communities 

and municipalities surrounding Cache County to prevent tax evasion.  Moreover, detailed 

plans would need to be generated on how best to (equitably) refund tax revenue back to 

Cache County residents, perhaps through community reinvestment, education, or even 

subsidies for public transportation. Finally, as Tier 3 vehicles become integrated into the 

valley’s fleet over the next several decades, the statistical relationship between vehicle 

emissions and       concentrations must be reevaluated on a regular basis, as the per-

gallon cost of a seasonal gas tax in Cache County may be allowed to progressively 

decrease, all while maintaining comparable outcomes over time.   
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Appendix A: Seasonal Trend and Variable Transformation  

 To illustrate its seasonality, we examine a graph of Trip_Count’s autocorrelations, 

shown below in Figure B1.  

 

 

Fig. A1   Autocorrelations of Trip_Count 

 

Note the seasonal (weekly) trend S, where S repeats every 7
th

 observation. To mitigate the 

adverse effects that this trend may have on our gas price regressions, we lag-7 seasonally 

difference Trip_Count (along with all other explanatory variables) to remove the trend 

(STATA 2013b). Figure B2 shows the transformation of Trip_Count after seasonal 

adjustment, shown now as S7Trip_Count: 
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Fig. A2   Autocorrelations of S7Trip_Count 

  

 Comparing figure B2 to figure B1, we conclude that seasonal-differencing has 

mitigated the potential effect of the seasonal trend in confounding GPrice’s marginal 

effect on Trip_Count. Recall that we also use autoregressive processes at lags 1 and 7 in 

our multiplicative SARIMA models to correct for potential autocorrelation.   
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Appendix B: Hausman Test with 12-week Lagged Gas Price 

 We begin by estimating a simple gas price regression with Trip_Count as the 

dependent variable. The explanatory variables include 12-week lagged gas prices 

(Gprice12), Temp, and Recession. The results of this regression are shown in Table A1. 

Note that in this instance, the relationship between between GPrice12 and Trip_Count is 

positive but insignificant. Similar to the gas-price regressions used for empirical analysis, 

our gas-price regression used for the Hausman test is structured to a multiplicative 

SARMA (1/7,0,0)x(0,1,0,)7  specification to control for the seasonal trend in Trip_Count 

and first-order serial correlation.  

 

Table B1    Gas-Price Regression with 12-Week Lagged Gas Price
abc

 

Explanatory Variable Result 

Constant -0.002 

(0.002) 

GPrice12 0.014 

(0.017) 

Temp 0.001* 

(0.001) 

Recession 0.002 

(0.020) 

AR(1) 

 

0.746* 

(0.009) 

AR(7) -0.197* 

(0.012) 

Number of Observations 1783 

Log likelihood  3314.19 

* = significant at 1% level 
a
Dependent variable is Trip_Count  

b
Standard errors in parentheses. 

c
All variables are lag-7 seasonally differenced 
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 Next, we collect the residuals of the above regression and include them as an 

explanatory variable, (Trip_Count_Resid), to our initial       regression. We use an 

ARIMA (1,0,3) specification to correct for first-order serial correlation and seasonality. 

The results are shown in Table A2. Note the statistical significance of Trip_Count_Resid, 

indicating endogeneity.  

 

Table B2    Hausman Test of Trip_Count for Endogeneity
ab

 

Explanatory Variable Result 

Constant -4.064 

(3.419) 

Trip_Count 0.405 

(0.334) 

Temp -0.005 

(0.004) 

Precip -1.263* 

(0.309) 

Humid 0.034* 

(0.006) 

Wind 0.068 

(0.072) 

HumWind -0.002* 

(0.001) 

Trip_Count_Resid 

 

1.364* 

(0.609) 

AR(1) 

 

0.943* 

(0.033) 

MA(1) 

 

-0.377* 

(0.066) 

MA(2) -0.259* 

(0.075 

MA(3) -0.076 

(0.068) 

Number of Observations 380 

Log Likelihood -282.004 

 χ² 3832.21 

* = significant at 1% level 
a
Dependent variable is PM2.5.  

b
Standard errors in parentheses.  
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Appendix C: Epidemiological Studies Used in COBRA 

Table C1   Epidemiological Studies Used to Estimate Adverse Health Impacts of PM2.5
a
 

Endpoint Author Age 

Mortality, All Cause Krewski et al. (2009) 30-99 

Mortality, All Cause Laden et al. (2006) 25-99 

Mortality, All Cause Woodruff et al. (1997) Infant 

Acute Myocardial Infarction, Nonfatal Peters et al. (2001) 18-99 

Acute Myocardial Infarction, Nonfatal Pope et al. (2006) 18-99 

Acute Myocardial Infarction, Nonfatal Sullivan et al. (2005) 18-99 

Acute Myocardial Infarction, Nonfatal 

Zanobetti and Schwartz 

(2006) 18-99 

Acute Myocardial Infarction, Nonfatal Zanobetti et al. (2009) 18-99 

HA, All Cardiovascular (less Myocardial 

Infarctions) Bell et al. (2008) 65-99 

HA, All Cardiovascular (less Myocardial 

Infarctions) Moolgavkar (2000) 18-64 

HA, All Cardiovascular (less Myocardial 

Infarctions) Peng et al. (2008) 65-99 

HA, All Cardiovascular (less Myocardial 

Infarctions) Peng et al. (2009) 65-99 

HA, All Cardiovascular (less Myocardial 

Infarctions) Zanobetti et al. (2009) 65-99 

HA, All Respiratory Zanobetti et al. (2009) 65-99 

HA, Asthma Babin et al. (2007) 0-18 

HA, Asthma Sheppard (2003) 0-18 

HA, Chronic Lung Disease Moolgavkar (2000a) 18-64 

Emergency Room Visits, Asthma Mar et al. (2010) 0-99 

Emergency Room Visits, Asthma Slaughter et al. (2005) 0-99 

Acute Bronchitis Dockery et al. (1996) 8-12 

Asthma Exacerbation, Cough Mar et al. (2004) 6-18 

Asthma Exacerbation, Cough Ostro et al. (2001) 6-18 

Asthma Exacerbation, Shortness of Breath Mar et al. (2004) 6-18 

Asthma Exacerbation, Shortness of Breath Ostro et al. (2001) 6-18 

Asthma Exacerbation, Wheeze Ostro et al. (2001) 6-18 

Minor Restricted Activity Days 

Ostro and Rothschild 

(1989) 18-64 

Lower Respiratory Symptoms 

Schwartz and Neas 

(2000) 7-14 

Upper Respiratory Symptoms Pope et al. (1991) 9-11 

Work Loss Days Ostro (1987) 18-64 
a
Source: COBRA Users Manual, 2012 
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Appendix D: Tier 2 versus Tier 3 Technology 

 The arrival of Tier 3 technology in 2017 is estimated to provide drastic reductions 

of mobile-source emissions, particularly NOx and VOCs. Figure D1 shows that, while 

controlling for future population growth (represented by yearly increases in daily vehicle 

miles traveled), the per-day emissions (in tons) of these pollutants will significantly 

decrease in Cache County compared to Tier 2 technology (Redd 2014). 

 

 

Fig. D1   Estimates of emissions reductions from Tier 3 technology for Cache County 
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