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ABSTRACT 

 

 

Distribution and Drivers of a Widespread, Invasive Wetland Grass, Phragmites australis,  

 

in Great Salt Lake Wetlands 

 

 

by 

 

 

Arin Lexine Long, Master of Science  

 

Utah State University, 2014 

 

 

Major Professor: Dr. Karin Kettenring 

Department: Watershed Sciences 

 

 

The introduced grass  Phragmites australis (hereafter Phragmites) is one of the 

most widespread invasive plants in North American wetlands.  Phragmites has been 

extensively studied in some regions of North America, such as the Chesapeake Bay and 

the Great Lakes, but little research has evaluated the extent and drivers of Phragmites 

invasion in the Intermountain West, particularly around the hemispherically important 

Great Salt Lake (GSL) wetlands.  We used high resolution multispectral imagery to map 

the current distribution of Phragmites around GSL.  We then used random forest models 

to determine factors associated with Phragmites presence in GSL and compared these 

factors with what is known about Phragmites invasion in other regions.  We used these 

results to identify areas around GSL that might be vulnerable to future invasion.  Using 

these methods, we estimated that Phragmites occupies over 93 km
2
 around GSL.  

Phragmites was more likely to be found in wetland areas close to point sources of 

pollution, with lower elevations with prolonged inundation, and with moderate salinities.  
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Results from our study will assist wetlands managers in prioritizing areas for Phragmites 

monitoring and control by closely monitoring areas of prime Phragmites habitat.  

(51 pages) 
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PUBLIC ABSTRACT 

 

 

Distribution and Drivers of a Widespread, Invasive Wetland Grass, Phragmites australis,  

 

in Great Salt Lake Wetlands 

 

 

by 

 

 

Arin Lexine Long 

 

 

Non-native invasive plant species can often have negative effects on native 

ecosystems, such as altered nutrient cycling, decreased habitat for wildlife, and 

outcompeting native plants.  Around the Great Salt Lake (GSL), Utah, the invasive 

wetland grass Phragmites australis has become abundant in wetlands around the lake. 

Phragmites is replacing many native wetland plants provide important waterfowl habitat 

around the GSL. For successful management of Phragmites in GSL wetlands, it is 

important to know the current distribution of Phragmites, as well as areas that might be 

vulnerable to future invasion by Phragmites. To do this, we used multispectral aerial 

imagery to map the current distribution of Phragmites. We then created a model that 

statistically related the Phragmites distribution data to a suite of environmental predictor 

variables such as salinity, proximity to nutrient sources, or proximity to roads.  Results 

from our model suggest that Phragmites is more likely to be found in wetland areas close 

to point sources of pollution, with lower elevations with prolonged inundation, and with 

moderate salinities.  We used these results to identify areas around GSL that might be 

vulnerable to future invasion.  Results from our study will assist wetlands managers in 
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prioritizing areas for Phragmites monitoring and control by closely monitoring areas of 

prime Phragmites habitat. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Invasive plants can negatively affect wetland ecosystems by outcompeting native 

vegetation, decreasing wildlife habitat, reducing water quality, and altering nutrient 

cycles (Zedler and Kercher 2005).  Wetland systems are especially vulnerable to plant 

invasions as they act as landscape sinks where plant propagules and pollutants, including 

nutrients from upstream can accumulate (Zedler and Kercher 2004).  Because of the 

increased vulnerability of wetlands to invasion there is a need for innovative tools for 

invasive species monitoring and management.  Successful management of invasive 

wetland vegetation requires a comprehensive approach, including mapping the current 

distribution of invasive species, understanding the drivers of invasion, determining risk of 

invasion at currently unoccupied sites, and prioritizing control and management efforts 

(Jakubowski et al. 2010).  

Detailed distribution data across large extents are important for successful 

invasive species management (Bradly and Marvin 2011).  However, developing detailed 

distribution maps across large areas (such as watersheds) can be expensive, time 

consuming, and impractical (Andrew and Ustin 2009, Adam et al. 2009, Bradley and 

Marvin 2011), particularly in wetlands, which can be hard to access due to flooded 

conditions.  Advances in remote sensing technology have led to increased availability of 

high resolution data (1m or less), making it possible to create detailed distribution maps 

of vegetation at the species level (Adam et al. 2009).  In fact, remotely sensed 

environmental and species presence data have been shown to perform as well as field 

data when used in ecological modeling applications (Davis et al. 2007).  Such data can be 
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useful for (1) managing current invasions (i.e., where to target control efforts), (2) 

assisting with early detection and rapid response efforts (EDRR) by identifying small, 

isolated stands of invasive vegetation (Bradley and Marvin 2011), (3)  monitoring 

changes in the distribution of invasive wetland vegetation over time, and (4) can be used 

as presence and absence inputs for predictive species distribution models (Santos et al. 

2009).   

Identifying environmental factors that may increase the likelihood of invasion, 

and predicting areas vulnerable to invasion, is another important aspect of invasive 

species management in wetlands (Gallien et al. 2010, Jakubowski et al. 2010, Bradley 

and Marvin 2011).  Species distribution modeling (SDM) is a correlative statistical 

technique that associates presence or absence of species with biotic or abiotic predictor 

variables (Franklin 2009).  Use of SDM is becoming increasingly common in invasion 

ecology to explain current distributions of riparian and wetland invasive species and 

predict areas of future invasions (Andrew and Ustin 2009, Menuz and Kettenring 2012.  

This information can aid land managers in prioritizing areas for EDRR efforts, and 

addressing factors that can make areas more vulnerable to invasion (Franklin 2009, 

Dullinger et al. 2009, Stohlgren et al. 2010).  SDM requires detailed, fine-resolution data 

sets collected over large spatial scales, making data derived from remote sensing a good 

option for use in developing SDMs.    

Introduced Phragmites australis (common reed; hereafter Phragmites), which 

includes multiple haplotypes introduced from Eurasia,  is one of the most problematic 

invasive plants in North American wetlands (Saltonstall 2002, Meyerson et al. 2012, 
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Kettenring et al. 2012).  Phragmites is a tall (2-4 m), clonal, perennial grass, found in 

freshwater and brackish wetlands and moist, disturbed habitats.  It creates dense 

monocultures and thereby displaces beneficial native wetland vegetation and reduces the 

quality of the habitat and ecosystem services provided by wetlands (Silliman and 

Bertness 2004, Chambers et al. 2008).  Significant resources are spent controlling 

introduced Phragmites on public and private lands across North America including our 

study area, the Intermountain West (Hazelton et al 2014, Kettenring et al 2012, Martin 

and Blossey 2013).  It is therefore essential for Phragmites managers to understand both 

the current extent of invasion and biotic and abiotic conditions that contribute to invasion 

(Carlson Mazur 2014).  

Phragmites invasion has been linked to human disturbance and elevated nutrients 

in a number of experimental studies in New England, Chesapeake Bay, and the Great 

Lakes region of North America (Silliman and Bertness 2004, King et al. 2007, Chambers 

et al. 2008, Tulbure and Johnston 2010, Bourgeau-Chavez et al. 2012).  However, little 

research has evaluated drivers of Phragmites invasion outside of these regions where 

Phragmites is also prolific but its invasion is less well understood.  Understanding the 

ecological patterns of Phragmites invasion across different regions in North America is 

important for a more comprehensive understanding of its invasion ecology under 

different conditions (Kettenring et al. 2012).   

Here we apply high-resolution remote sensing technology and SDM to understand 

the distribution of Phragmites in wetlands of the Great Salt Lake (GSL), the largest saline 

lake in North America (Figure 1).  The 1,600 km
2
 of wetlands around GSL constitute the 
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majority of wetlands in the state of Utah, provide critical habitat to migratory birds on the 

Pacific and Central flyways (Paul and Manning 2002, Evans and Martinson 2008), and 

are a significant portion of wetlands in the Intermountain West .  The goals of our study 

were to: (1) map the current distribution of Phragmites around GSL, (2) determine 

factors associated with Phragmites presence in GSL and compare these factors with what 

is known about Phragmites invasion in other regions, and (3) identify areas around GSL 

that might be vulnerable to future invasion. 
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Figure 1. Map of the Great Salt Lake, UT, study region 
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CHAPTER 2 

 

METHODS 

 

 

We used Utah State University’s (USU) airborne multispectral digital imagery 

system to acquire one-meter resolution imagery in all major wetland areas around GSL, a 

total of 1874.5 km
2
.  Interference bands to capture green (0.545–0.555 μm), red (0.665–

0.675 μm), and near infrared (NIR) (0.790–0.810 μm) wavelengths.  Image acquisition 

flights were flown during May and June 2011 under clear sky conditions.  At the time of 

the flights in May and June, some but not all vegetation had emerged.  This time of year 

can be  an ideal time to distinguish Phragmites using remote sensing since species are at 

different growth stages and therefore spectral differentiation between vegetation types is 

possible (Maheu-Giroux and Blois 2005, Neale et al. 2007).  One-meter LiDAR (Light 

Detection and Ranging) imagery for fine scale digital elevation models (DEM) for the 

same wetland areas was collected in September 2011.   

We identified and took GPS points of plant species at known locations to use as 

training points for image classification.  We visited major wetland complexes captured by 

the imagery in fall 2011 and spring 2012 to acquire sample points (n=1,236 ground 

training points).  We sampled at randomly selected locations at 12 different wetland sites.  

We sampled at a minimum of 10 locations for each vegetation type at each site.  We 

sampled in areas that were larger than the minimum mapping unit of the aerial imagery 

(1m), were dense monocultures of the vegetation type, and were well distributed across 

the field site.   
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We orthorectified, mosaicked, and calibrated the images using ERDAS Imagine 

2010 before performing supervised classification of the imagery.  Supervised 

classification is performed by using training pixels for each vegetation class based on 

known vegetation determined from field collected data.  The computer then assigns the 

remaining pixels to the class that most closely matches the training pixels (Figure 2).  We 

analyzed the training pixel signatures for spectral overlap with the Transformed 

Divergence method.  If the training pixel signatures were too spectrally similar to each 

other we kept only one of the two training pixels (see methods in Neale et al. 2007).  We 

classified vegetation into nine groups of major vegetation (Table 1).  Where necessary, 

we manually recoded a small portion of pixels based on field data that were misclassified. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of the 1-m multispectral aerial imagery (left) and resulting classified 

raster (right) from Farmington Bay Wildlife Management Area produced as part of our 

vegetation classification efforts in Great Salt Lake wetlands.   Multispectral imagery on 

the left consists of red, green, and NIR bands.  
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Following classification, we conducted an accuracy assessment to validate the 

imagery using about half of the field data points.  We calculated user’s accuracy, 

producer’s accuracy, overall accuracy, errors of commission, and errors of omission.  

User’s accuracy is calculated by dividing the number of correctly classified pixels in a 

class by the total number of pixels in that class, and is used as a measure of the reliability 

of a classification accuracy (Jones and Vaughn 2010).  Errors of commission are 

calculated by subtracting 1 – the user’s accuracy.  Producer’s accuracy is calculated by 

dividing the number of ground truthing data points that were correctly classified by the 

total number of ground truthing field points.  Errors of omission are calculated by 

subtracting 1 minus the producer’s accuracy (Jones and Vaughn 2010).  After the raster 

data were classified, we calculated area of each vegetation class, percent of total area 

occupied by each class, and area of Phragmites in each of seven of the major managed 

wetland areas around GSL.  

Table 1. Great Salt Lake wetland vegetation area derived from vegetation classification 

of remote sensing imagery. 

 Class Name  Area (km
2
) Percent 

 Open water 635.22 33.9 %  

 Phragmites australis (common reed) 
93.29 

5.0 %   

 Playa wetlands  382.22 20.4 % 

 Salicornia spp. (pickleweed) wetlands 50.72 2.7 % 

Distichlis spicata (saltgrass) 77.11 4.1 % 

Typha spp. (cattail species) 114.72 6.1 % 

Schoenoplectus acutus (hardstem bulrush) 30.63 1.6 % 

Other emergent wetland vegetation 126.30 6.7 % 

Upland 363.91 19.4 % 
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Model predictor variables  

We selected candidate model predictor variables that we expected to be important 

to Phragmites establishment and spread.  We assessed correlations between the variables 

with Pearson correlations, and eliminated any variables that were highly correlated using 

0.6 as a threshold.  We assembled spatially explicit predictor variables in ArcMap 10.1.  

We chose predictor variables that would describe environmental characteristics (such as 

nutrient levels, hydrology, and salinity) and disturbance characteristics (such as land use, 

wetland impoundment, and road density) that may influence Phragmites distribution in 

GSL.  Salinity in GSL wetlands varies with location, and is driven largely by inputs from 

freshwater streams and lake level (Hoven and Miller 2009, Sumner et al. 2010).  GSL 

wetlands are often impounded to give managers increased control of water levels so they 

can maximize water levels for waterfowl and shorebird habitat, resulting in highly 

modified hydrology (Downward et al. 2013) .  Additionally, GSL wetlands receive 

nutrient inputs from treated wastewater effluent discharges and other point sources of 

pollution (Carling et al. 2013). 

We used LiDAR data points to create a 1m Digital Elevation Model (DEM), from 

which we derived site elevation, slope, and aspect.  We extracted data on soil texture, soil 

drainage class, and soil hydrologic group from the Soil Survey Geographic Database 

(SSURGO) database (NRCS 2010).  We used land cover data from the USGS National 

Land Cover Database (NLCD) to determine percent of agricultural land and percent of 

developed land (urban and surburban) within a 500m buffer surrounding the Phragmites 



10 

 

patch.  We selected the 500 m buffer distance based on literature review and wetland 

manger expert opinion (DeLuca et al. 2004, King et al. 2007).   

We used distance to point sources of pollution as a measure of likely relative 

differences in nutrient inputs.  Locations of major point sources of pollution were 

extracted from the National Pollutant Discharge Elimination System (NPDES) dataset 

from the EPA Enforcement and Compliance History (ECHO) database (EPA 2013).  

NPDES permits regulate point sources where pollutants are discharged into US 

waterways, and generally include pesticide discharges, combined sewer overflows, 

sanitary sewer overflows, treated wastewater effluent, stormwater discharges, and 

discharges from concentrated animal feeding operations (EPA 2013).  Permitted 

discharges into GSL include discharges from municipal wastewater treatment facilities, 

stormwater, mineral extraction facilities, and other industrial facilities (Utah Department 

of Natural Resources 2011).   We used distance from the nearest freshwater input, derived 

from the Utah Major Rivers and Streams layers from the Utah AGRC website, as a 

measure of relative salinity.  Salinity differences in the GSL are heavily influenced by 

freshwater inflow coming from the Bear, Weber, and Jordan River drainages, as well as 

minor side streams (Arnow and Stephens 1990), making distance from freshwater input a 

reasonable measure of GSL salinity differences.  We used the Near function to calculate 

distances in ArcGIS.  Distance to the nearest road, from the Utah AGRC, was used as an 

index of disturbance. We used 2012 aerial imagery collected by that State of Utah (Utah 

AGRC) to manually digitize gravel roads and dikes that were missing from the most 

recent road dataset.  
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Model development and evaluation 

We used Random Forests (RF) to model species distributions.  RF is a 

nonparametric modeling technique that aggregates many different classification and 

regression tree models that are produced from bootstrapped resampling (Breiman 2001).  

RF models use a non-parametric classification tree algorithm to sequentially split data 

into groups that have similar values based on the response variable (Cutler et al. 2007).  

RF models have been increasingly popular in ecological research because they can handle 

a large number of predictor variables with complex interactions, are highly accurate, and 

are relatively easy to interpret (Cutler et al. 2007).  We developed our RF models using 

the randomForest package in R 3.0.1 (Liaw and Wiener 2002, R Core Team 2013).  We 

used the final classified imagery to generate presence (n=1000) and absence (n=1000; 

i.e., areas where Phragmites did not occur which were stratified between the remaining 

non-Phragmites vegetation classes) points for Phragmites species distribution modeling.  

To minimize spatial autocorrelation we set a minimum distance of 30m between sample 

points.  We created our initial model with all predictor variables, and chose variables for 

the final model that maximized model performance, reduced redundancy, and were 

ecologically interpretable.  To determine the optimal set of predictor variables we 

followed guidelines from Genuer et al. 2010 and Hill et al. 2013, and removed variables 

with small importance, and then used a stepwise variable selection procedure.  We 

developed the final model by iteratively adding in predictor variables until the addition of 

predictors no longer improved model performance.  Once we selected the optimal set of 

predictor variables, we ran the model for all raster cells across the entire study area.  Our 
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final model included 10 of the original 15 candidate predictor variables (Table 2).  We 

also used the final model to predict the probability (0 to 1) that each raster cell was 

suitable habitat for Phragmites.  We used a threshold of 0.65 as determined by the true 

skill statistic (TSS) to represent Phragmites presence.  The TSS is calculated by summing 

the sensitivity and specificity, and then subtracting one, and has been shown to be a 

reliable presence threshold statistic for use in SDM (Allouche et al. 2006).   The resulting 

raster layer allowed us to calculate suitable Phragmites habitat that is currently 

unoccupied by Phragmites. 

To test the accuracy of our model we used “out of bag” predictions.  We 

calculated percent correctly classified (PCC), sensitivity, specificity, and area under the 

curve (AUC).  Percent correctly classified is the overall measure of correctly classified 

pixels in the raster.  Sensitivity is a measure of the actual presences that are correctly 

predicted, and specificity is the proportion of actual absences that are correctly predicted.  

AUC is true positives (sensitivity) plotted over the false positives (specificity), and 

evaluates how well a model is discriminating between presence sites and absence sites.  

The AUC can range from 0 to 1, and is a measure of model accuracy, with 1 being 

perfect discrimination between presence and absence sites, and 0.5 being no better than 

random (Fielding and Bell 1997).   

We used variable importance plots to evaluate the contribution of each predictor 

variable to the performance of the model. RF assesses relationships between predictor 

variables and response variables with variable importance.  Variable importance is a 

comparison of classification accuracy with the variable of interest compared to the 
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Table 2. Candidate random forest model predictor variables used to create Phragmites 

habitat suitability model. Parenthesis after categorical specifies the number of categories 

for that variable.  

 

  

Description Range or potential values Units 

Wetland impoundment status Yes / no Categorical (2) 

Level 8 watershed  Categorical (6) 

Percent of landcover that is agricultural 

within 500 m buffer 

0 – 99 % 

Percent of landcover that is urban and 

suburban within 500 m buffer 

0 – 82 % 

Dominant landcover within 500 m buffer  Categorical (8) 

Elevation based on 1m DEM from LiDAR  1280-1725 m 

Distance to nearest water control structure  12-6140 m 

Distance to nearest road  0 - 6,450 m 

Aspect based on 1m DEM from LiDAR 0 - 360 Degrees 

Distance from point source pollution 5 – 21,939 m 

Distance from freshwater inflow into GSL 

(as a measure of differences in salinity) 

1-27,600 m 

Distance to open water  0 – 2,267 m 

Soil Drainage Class  Categorical (5) 

Soil Hydrologic Group  Categorical (5) 

GSL “arm” – north or south  North / South Categorical (2) 
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classification accuracy if that variable is randomly permuted (Cutler et al. 2007).  Higher 

variable importance values mean the variable is more important in determining 

classification accuracy in the model.  We used partial dependence plots to examine the 

relationship between each variable and Phragmites presence.  Partial dependence plots 

graphically display the relationship between the probability of presence or absence and 

the predictor variable (Cutler et al 2007).  We used bivariate partial dependence plots to 

check for interactions between predictor variables.  These data are not shown because 

none of the plots showed strong interactions.  
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CHAPTER 3 

 

RESULTS 

 

 

Remote sensing results 

 

From our classification of the high resolution multispectral imagery, we 

determined Phragmites occupies over 93 km
2
 (10% of the wetland area) in GSL wetlands 

(Table 1; Figure 3).  Although Phragmites is widespread along the eastern shore of GSL, 

it is particularly prolific in many of the state wildlife management areas and private lands 

around the east-central portion of GSL (Table 3). 

The overall accuracy for the remote sensing classification was 81.1 % (Table 4).  

Of the classes, open water had the highest user’s accuracy, followed by playa wetlands. 

 

Table 3. Square kilometers of Phragmites in major Great Salt Lake managed wetland 

areas, and percent of land occupied by Phragmites for each managed land area. 

Wetland Area Landowner 
Phragmites 

area (km
2
) 

Percent of land 

occupied by 

Phragmites 

Great Salt Lake Shorelands 

Preserve 

The Nature 

Conservancy 2.69 14.9% 

Inland Sea Shorebird Reserve 
Kennecott Utah 

Copper 0.73 4.5% 

Harold Crane Wildlife 

Management Area 

State of UT 

 3.89 9.3% 

Farmington Bay Wildlife 

Management Area 

State of UT 
6.49 7.3% 

Howard Slough Wildlife 

Management Area 

State of UT 
1.42 14.8% 

Ogden Bay Wildlife 

Management Area 

State of UT 
9.74 14.5% 

Bear River Migratory Bird 

Refuge 

US Fish & Wildlife 

Service 
18.23 4.4% 
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Table 4. Classification accuracy measures for remote sensing data. User’s accuracy is a 

measure of the probability a pixel truly being what it is classified as. Producer’s accuracy 

is a measure of the probability of a certain point being correctly classified.  

Class Name User’s accuracy Producer’s accuracy 

Open water 95.0% 71.7% 

Phragmites australis (common reed) 82.5% 80.1% 

Playa wetlands  92.5% 76.3% 

Salicornia spp. (pickleweed) wetlands 70.0% 86.2% 

Distichlis spicata (saltgrass) 75.0% 92.3% 

Schoenoplectus acutus (hardstem bulrush) 71.3% 85.1% 

Typha spp. (cattail species)  76.3% 83.6% 

Other emergent wetland vegetation 78.8% 86.4% 

Upland 88.8% 78.1% 

Overall accuracy 81.1% 82.20% 

 

 

Phragmites had a user’s accuracy of 82.5% and a producer’s accuracy of 80.1% (Table  

4).  Phragmites was most commonly confused with the playa wetlands class and less 

frequently with the Typha spp. class and the Schoenoplectus acutus class. 

 

Species distribution model results 

 

We used the partial dependence plots to create a variable relationship table that 

showed the direction of each variable on determining Phragmites presence.  Predictors 

with high variable importance values for predicting Phragmites presence were distance to 

open water, elevation, distance to point source of pollution, and distance to freshwater 

input (Figure 4; Table 5).  Distance to open water was by far the most important 

predictor.  The other three variables were less important but still contributed strongly to 

predicting Phragmites occurrence.  The model predicted Phragmites with an AUC of 

0.86, a PCC of 81.3%, specificity of 77.8%, and a sensitivity of 86.43%. 
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Figure 3. Wetland vegetation distribution around Great Salt Lake wetlands based on 

classified 1-m multispectral imagery.  
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We determined that there were 9.55 km
2
 of habitat that were identified as suitable 

for Phragmites but not yet invaded (Figure 5).  Unoccupied but suitable areas were 

predominately centered on two regions: (1) around the central portion of GSL, relatively 

close to where the Salt Lake and Davis County sewer inflows are located and (2) south of 

Willard Bay, which is near another wastewater treatment plant (Figure 6, 7).  Several of 

the larger wetland complexes, such as the federal Bear River Migratory Bird Refuge 

(Figure 8), did not contain much suitable but currently unoccupied Phragmites habitat. 

 

 
Figure 4. Variable importance plot for variables selected for final model. Variable 

importance plots show a  comparison of classification accuracy with the variable of 

interest compared to the classification accuracy if that variable is randomly permuted 

(Cutler et al. 2007).  Higher variable importance values mean the variable is more 

important in determining classification accuracy in the model.   
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Table 5. Predictor variable relationships with direction of effect and associated 

mechanisms for final Phragmites habitat suitability model.  Direction of effect is 

illustrated by partial dependence plots, which show the marginal effect of a predictor 

variable on the response variable probability. Variables are listed in order of importance. 

Predictor Variable Direction of effect Interpretation 

Distance to open water 

(m) 

 

Phragmites is a facultative wetland 

plant and grows best in moist soil 

conditions (USDA Plants), so areas 

closer to open water are better 

habitat.   

Elevation (m) 

 

Lower elevation wetland areas hold 

water for longer, and therefore are 

more hospitable for Phragmites. 

Hoffman et al 2008 also found 

elevation to be an important 

predictor for Phragmites 

distribution.  

Distance to point 

sources of pollution (m) 

 

Distance from point source discharges 

such as stormwater and treated 

wastewater. Point sources 

contribute additional nutrients to 

wetlands. Elevated nitrogen often 

correlates with Phragmites 

presence and abundance (King et al 

2007).  

Distance to freshwater 

inflow (m) 

 

Measure of relative salinity around 

GSL wetlands. Areas closer to 

freshwater inflows are less saline. 

Phragmites is more likely to be 

found closer to freshwater inflows 

in less saline water. These findings 

are consistent with Vasquez et al. 

2005, 2006, Medeiros et al. 2013.   

Distance to nearest road 

(m) 

 

Measure of disturbance.  Roads have 

been correlated with invasive 

species presence and abundance in 

other studies (e.g., Menuz et al 

2013), but this variable was not a 

strong predictor in our model.  
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Distance to water 

control structure (m) 

 

Measure of hydrologic alteration, as 

water control structure indicates 

areas that have modified hydrology 

due to levees and diking.  

Aspect 

 

Low on the list of variable importance, 

and no clear relationship.  

Dominant Land Cover 

Type within buffer 

 

Developed and agricultural land have 

been associated with Phragmites in 

other studies (King et al 2007, 

Chambers et al 2008). Low on the 

list of variable importance. 

Level 8 watershed 

 

Lower Weber watershed most 

associated with Phragmites 

presence. The Lower Weber 

watershed contains large areas of 

rangeland.  

Slope 

 

Very low on the list of variable 

importance. Areas with less slope 

may hold water for longer, creating 

more hospitable wetland conditions 

for Phragmites although this 

relationship does not appear to be 

strong in our study sites.  
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Figure 5. Predicted Phragmites habitat suitability based on random forest model. Areas 

shaded in reddish orange (probability of presence closer to 1) indicate more suitable 

habitat for Phragmites; areas shaded with greener colors (probability or presence closer 

to 0) are less suitable habitat for Phragmites. 
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We determined that there were 9.55 km
2
 of habitat that were identified as suitable 

for Phragmites but not yet invaded (Figure 5).  Unoccupied but suitable areas were 

predominately centered on two regions: (1) around the central portion of GSL, relatively 

close to where the Salt Lake and Davis County sewer inflows are located and (2) south of 

Willard Bay, which is near another wastewater treatment plant (Figure 6, 7).  Several of 

the larger wetland complexes, such as the federal Bear River Migratory Bird Refuge 

(Figure 8), did not contain much suitable but currently unoccupied Phragmites habitat. 
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CHAPTER 4 

 

DISCUSSION 

 

 

Improved management of widespread invasions in wetlands requires an approach 

that integrates: (1) distribution mapping to describe the scale of the problem; (2) efforts to 

understand the drivers of the invasion, which can focus future management; and (3) 

predictions on where the species may spread to guide early detection and rapid response 

of new invasions.  We applied this framework to the widespread invasion of Phragmites 

in wetlands along the largest saline lake in North America, the Great Salt Lake.  We 

demonstrate that high resolution remote sensing proved to be an effective tool for 

mapping wetland vegetation.  Phragmites occupies large areas (more than 93.1 km
2
) and 

impacts virtually all of the wetland areas around GSL.  By using SDM to identify 

environmental factors that correspond with Phragmites distribution we are able to 

highlight areas vulnerable to future invasion.  This framework can be applied to other 

regions in North America, particularly in the Intermountain West, where this species has 

been largely unstudied and management needs are great.  

The factors that were associated with Phragmites distribution around GSL do, in 

some cases, mirror results from Phragmites studies in other regions of North America. 

For example, hydrology and salinity are often closely linked with Phragmites 

distribution, which was reflected in our results as well.  However, key differences 

between our findings and those of other regions exist. For example, Phragmites presence 

has often been correlated with land use such as in highly developed or agricultural 

watersheds (Silliman and Bertness 2004, King et al. 2007, Chambers et al. 2008).  
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However, we found distance from point sources of pollution to be a stronger predictor of 

Phragmites presence than surrounding land use.  These differences underscore the need 

for regional wetland invader research to understand continental-scale invasions 

(Kettenring et al. 2012). 

 

Hydrology   

 

The two most important factors for explaining Phragmites presence were related 

to hydrology; distance to open water was by far the most important.  Phragmites was 

more likely to be found closer to open water, which is not surprising as Phragmites is a 

facultative wetland plant (USDA 2014), and its ideal habitat is anywhere with moist soil 

conditions.  Elevation was also an important hydrologic variable that correlated with 

Phragmites presence.  Phragmites was more likely to be found in lower elevations 

around GSL. Elevation is often associated with or used as a proxy for hydrology in 

wetland studies because it correlates with differences in water levels and flooding 

frequency (Welch et al. 2006, Hoffman et al 2008, Andrew and Ustin 2009).  Due to the 

arid environment of Utah, GSL wetlands dry up substantially during the summer months 

(Carling et al. 2013), such that lower elevations are the only remaining hospitable habitat 

for wetland vegetation, and therefore provide more favorable moisture conditions for 

Phragmites.   

 

Salinity   

 

Salinity levels vary greatly in wetlands around GSL (1-28%) largely due to 

anthropogenic physical barriers that prevent water flow such as the Southern Pacific 
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Railroad and Antelope Island causeways, and inputs from freshwater rivers and streams 

feeding GSL wetlands (Bear, Weber, and Jordan Rivers) that result in lower salinities 

near inflows (Gwynn 1980,  Belovsky et al. 2011) (Figure 1).  We found there was a 

greater likelihood of Phragmites presence in areas closer to freshwater inputs, meaning 

areas that are less saline.  These findings are consistent with other studies that have 

shown that while Phragmites can tolerate a range of salinity conditions, it is often found 

to have higher biomass and survival at low to medium salinity levels (0-5%) (Chambers 

et al. 2003, Vasquez et al. 2005, 2006, Medeiros et al. 2013).  When salinity is too high 

(>20%), Phragmites can have decreased germination, survival, and growth, and is not as 

competitive when compared with true halophytic plants (Chambers et al. 2003, Brisson et 

al. 2010).   

We used distance to freshwater inputs as a proxy for differences in salinity around 

the lake, as this was the best available measure of salinity given the scale and resolution 

of our project.  Current GSL salinity models show how river inflows and evaporation 

change the salinity levels in each arm of the lake (north vs. south), but these models do 

not show changes in relative salinity on a finer scale (Mohammed and Tarboton 2012, 

White et al. 2014).  More precise salinity measurements on a lake-wide scale could 

improve the model and further clarify the effects of salinity on Phragmites in brackish 

wetlands.  

 

Nutrient levels   

 

Phragmites invasion has often been correlated with elevated nutrient levels in 

other regions of North America (Silliman and Bertness 2004, King et al. 2007, Chambers 
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et al. 2008, Brisson et al. 2010).  Phragmites is a high-nutrient specialist and has 

increased abundance, reproduction, growth, and biomass production with elevated 

nutrient levels than native Phragmites or other native wetland plants (Saltonstall and 

Stevenson 2007, King et al. 2007, Chambers et al. 2008, Mozdzer and Zieman 2010, 

Kettenring et al. 2011).  For example, King et al 2007 found that in watersheds with 

higher anthropogenic development, nitrogen levels were higher in the water and 

Phragmites was more abundant and had elevated foliar nitrogen levels than in less-

developed watersheds.  They also concluded that direct sources of nutrients such as point 

source discharges had a greater influence on Phragmites abundance than areas with non-

point sources of pollution such as agricultural lands (King et al. 2007).  Similarly, we 

found that Phragmites was more common closer to point sources of pollution around 

GSL.  Previous research found that Phragmites cover in Farmington Bay of GSL was 

positively correlated with several water quality metrics, including total phosphorous, pH, 

and dissolved oxygen (Madon 2005) .  GSL wetlands receive nutrient inputs from a 

number of point sources, such as treated wastewater effluent from sewage treatment 

plants, discharge of water from industrial uses, and stormwater discharge points (Utah 

Division of Water Quality 2012).  Treated wastewater effluent often still contains high 

levels of nitrogen and phosphorous (Utah Department of Natural Resources 2011).  

Stormwater runoff and treated wastewater effluent is projected to increase with growing 

development and urbanization in GSL watershed (projected 2% between 2005 and 2020; 

Sumner et al. 2010, Carling et al. 2013).  Based on the results of our study, we expect 

these changes to further benefit Phragmites invasion in GSL wetlands.   
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While distance to point sources of pollution was found to be important to 

explaining Phragmites distribution, agricultural land or percent of developed land within 

a 500 m buffer were less important for predicting Phragmites presence around GSL.  

Consistent with our results, previous water quality monitoring in Farmington Bay of the 

GSL found wetlands with higher nutrient content often dominated by Phragmites (CH2M 

Hill 2005).  However, our findings contrast with previous work on the Atlantic coast that 

shows that the amount of agricultural land and suburban and urban development within a 

buffer were associated with higher Phragmites presence and abundance (Silliman and 

Bertness 2004, King et al. 2007, Chambers et al. 2008).  In our work, percent of 

agriculture within a buffer was minimally important for Phragmites presence, and percent 

of development within a buffer was not important at all.  However, levels of development 

and land cover do not vary as much around GSL compared with other Phragmites 

research done at larger spatial scales.  Additionally, much of the heavily developed or 

agricultural areas are further upstream in GSL watershed than our buffer distance, 

therefore allowing capture and integration of nutrients across multiple land use types 

before discharging into GSL wetlands as point sources.  In GSL wetlands point sources 

of pollution discharge may carry a greater amount of nutrients than is captured by the 

amount of agricultural or developed land within a buffer, which could explain why we 

saw differences in nutrient variable importance in our study and differing results from 

previous Phragmites research. Given the scale and resolution of our study, distance to 

point sources where nutrient loads are discharging into the GSL was the best available 

relative nutrient input measure. Relatively little research has been done on GSL nutrient 
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dynamics (Belovsky et al. 2011), and additional research on influence of nutrient inputs 

and Phragmites presence around the GSL would be beneficial (Downard et al. 2013).   

 

Disturbance and propagule dispersal pathways   

 

Proximity to or density of roads are often used as a measure of disturbance and 

propagule sources in SDM because roads can serve as introduction pathways or corridors 

for invasive species (e.g., Menuz and Kettenring 2012).  However, we did not find roads 

to be a strong predictor of Phragmites presence even though proximity to roads has been 

an important predictor of Phragmites distribution in other studies (Brisson et al. 2010).  

Roads were one of the factors that facilitated the spread of Phragmites along the St. 

Lawrence River in Quebec (LeBlanc et al. 2010).  In GSL, many wetland areas are 

accessible by roads or gravel dikes, and in general, there is little variation in distance to 

roads around the lake, which could be why road proximity had lower importance values 

than initially expected.   

Disturbances such as shoreline alteration and dredging and diking of wetlands 

have been suggested as factors that could potentially facilitate spread and growth of 

Phragmites by opening up additional habitat (Chambers et al. 1999, 2003 Hudon et al. 

2005, Welch et al. 2006) and have been associated with the presence of other invasive 

species such as reed canary grass, Phalaris arundinacea (Kercher and Zedler 2004).  

Many GSL wetlands are impounded, and we expected that areas with these hydrologic 

modifications might be more likely to have Phragmites as the dikes could have served as 

invasion pathways.  However, impoundment status and distance to water control structure 

(our measures of hydrologic disturbance) were very low on the list of important variables 
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for Phragmites presence.  Many of these hydrologic modifications have been in place for 

decades, and their role as invasion pathways may be less important currently than other 

environmental conditions such as moisture and salinity.  

While our model provided useful information on factors associated with 

Phragmites, it is important to note that SDMs are a purely correlative technique.  

Distributions of invasive species are also influenced by factors such as propagule 

pressure and residence time (Wilson and Richardson 2007, Broennimann and Guisan 

2008), which we were not able to account for in our model.  We used the best predictor 

variables that were available to us, and we believe they described the environmental 

conditions around GSL fairly well.  For variables such as salinity and distance to point 

sources of pollution, we used the best available data for the scale of study, but finer scale 

environmental monitoring data could provide a more detailed and nuanced picture of 

factors driving Phragmites invasion.  Environmental and disturbance data of this quality 

at the large scale of our study are rarely available, so there is a tradeoff between spatial 

extent of the study and resolution of data sets of predictor variables.   
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CHAPTER 5 

 

CONCLUSIONS 

 

 

To effectively manage invasive species in wetlands it is important to map, 

monitor, and understand factors driving invasion, particularly at the landscape scale.  

While, a number of other studies have used remote sensing to map invasive Phragmites 

distribution (Maheu-Giroux and Blois 2005, Pengra et al. 2007, Ghioca-Robrecht et al. 

2008, Laba et al. 2008, Torbick et al. 2010, Bourgeau-Chavez et al. 2012), previous 

mapping was often done at lower resolutions (such as with Landsat imagery).  Our high 

resolution imagery allowed us to map Phragmites and other wetland vegetation to the 

species level, and capture smaller stands of Phragmites that may be newer invasions and 

require immediate management attention.  Making such data available to relevant 

stakeholders is essential to improving management.  In our case, we created an 

interactive online website that displays the classified imagery and allows managers to 

further evaluate Phragmites on their management areas 

(http://maps.gis.usu.edu/gslw/index.html).  

By using SDM to identify factors that correlate with Phragmites presence, we 

were able to pinpoint some of the potential root causes that may be facilitating 

Phragmites expansion, and identify areas that may be vulnerable to Phragmites invasion.  

When managing Phragmites, it will be necessary to also address factors that promote 

Phragmites expansion such as elevated nutrient levels.  In particular, around GSL 

wetlands, this might mean reducing the amount of pollution that is being discharged into 

GSL from point sources by more widespread use of best management practices for 

http://maps.gis.usu.edu/gslw/index.html
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stormwater and wastewater effluent (Utah Division of Water Quality 2012).  Areas that 

are not currently occupied by Phragmites, but were identified as suitable habitat will be 

important areas to monitor for Phragmites expansion and subsequent EDRR efforts.  

More specifically, areas with elevated nutrient levels, lower elevations with prolonged 

inundation, and moderate salinities are prime habitat for Phragmites and should be 

monitored closely for expansion.  

SDM can be useful to management of invasive species, and could be incorporated 

more commonly into invasive species management planning by wetland scientists and 

managers.  While SDMs have become more popular in ecology in recent years, often the 

results from models are not used to make management decisions (Addison et al. 2013).  

There is a clear need to take the general recommendations provided by SDM results and 

translate these recommendations into more specific management actions for how to best 

prevent new invasions and prioritize management of invasive species (Papeş et al. 2011).  

Results from our model can be used to prioritize areas for Phragmites control, 

restoration, and monitoring across our study region.  Additionally, our integrated remote 

sensing and SDM approaches, combined with the interactive website, provide an example 

for others to emulate for management of wetland invaders in other regions. 
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APPENDIX 

Site specific Phragmites habitat suitability maps 
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Figure 6. Predicted Phragmites habitat suitability for Farmington Bay Waterfowl 

Management Area in Farmington, UT. 



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Predicted Phragmites habitat suitability for The Nature Conservancy’s Great 

Salt Lake Shorelands Preserve. 
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Figure 8. Predicted Phragmites habitat suitability for Bear River Migratory Bird Refuge, 

a U.S. Fish and Wildlife Service refuge located on the north end of the Great Salt Lake.  
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