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ABSTRACT 
 
 

Climate Forcings on Groundwater 

Variations in Utah and the Great Basin 

 
by 
 
 

Kirsti Hakala, Master of Science 

Utah State University, 2014 
 
 

Major Professor: Shih-Yu Wang 
Department: Plants, Soils, and Climate 

 
 

 Within Utah, the second driest state in the U.S., the declining trend of 

groundwater levels exacerbated by rapid growth of urban population and associated water 

withdrawal is already a concern for water managers and users. Human-induced depletion 

of groundwater resources is complicated by natural climate variability, which affects both 

the amount and form of precipitation. Previous research has identified a close 

link between the Great Basin hydroclimate and sea surface temperature anomalies 

(SSTA) of the Pacific Ocean. Based on this link, groundwater simulations produced by 

the Community Earth System Model version 1 (CESM1) are utilized for both historical 

simulation and future projection of groundwater in Utah, as well as the attribution study 

for climate change impact. The CESM1 projects a further reduction in groundwater levels 

due to changes in climate forcing. The implication is that groundwater resources in Utah 

may decline further in the future regardless of additional human withdrawal.  

 (41 pages) 
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PUBLIC ABSTRACT 
 

Climate Forcings on Groundwater 
Variations in Utah and the Great Basin 

 
 

 Groundwater levels over northern Utah have undergone a declining trend since 

the 1960’s. This trend has made apparent the need to understand the relationship between 

climate and groundwater resources. Such necessary information is already in dire need in 

places such as California. At the close of 2013, California had experienced its driest year 

in recorded history, with severe drought continuing for the foreseeable future.  Utah is the 

second driest state in the U.S., and therefore has been paying close attention to 

California’s current water crises. Water resource projections may prove to be one of the 

most vital pieces of information toward securing adequate water for those who are 

currently enduring such water shortages. 

 In order to accomplish the initial research necessary for developing a fundable 

proposal, we requested support from the Utah State University Research Catalyst Grant 

to (a) evaluate a state-of-the-art climate model (its ability to assess groundwater) against 

statewide groundwater wells and operational groundwater models, (b) reduce climate 

model uncertainties, (c) conduct a study in the form of observational well site 

evaluations, and (d) develop strategies to effectively disseminate information on Utah’s 

future groundwater budget to water managers and policy makers. This research is now 

fully funded externally by the Bureau of Reclamation. 

Kirsti	  Hakala	  
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CHAPTER 1   
 

GENERAL INTRODUCTION 
 
 

1.1 Introduction 
 
 Globally, groundwater is the source of one third of all freshwater withdrawals. 

Despite the vital contributions to human welfare, there are a limited number of studies on 

the relationship between climate and groundwater [Treyens, 2005]. In the past half-

century, the role of groundwater has increased dramatically. So much so, that in places 

such as in California [Wang et al., 2014], groundwater reserves have been depleted to the 

extent that well yields have decreased, pumping costs have risen, and water quality has 

deteriorated [Smith, 2014]. The Intergovernmental Panel on Climate Change (IPCC) has 

provided limited assessments on interactions between groundwater and climate change 

within both its third and fourth assessment report. Groundwater is also not an output from 

the Coupled Model Intercomparison Project (CMIP5). However, by applying global-scale 

modeling, as well as observational and satellite monitoring, all of which are employed 

herein, we may considerably enhance our understanding of interactions between 

groundwater and climate. 

Semi-arid valleys in northern Utah, home to the majority of the state’s population, 

are heavily dependent on the springtime melt of snowpack [Gillies et al., 2012]. In 

addition, Utah’s valleys are undergoing rapid population growth, which have already 

surpassed 2 million people according to the recent figures contained in the 2010 census 

[U.S. Census Bureau, 2011]. Such population growth correlates with a substantive 

increase in groundwater withdrawal, which is expected to continue well into the future 

[Burden et al., 2013]. Measurements taken from groundwater reservoirs in northern Utah 
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since the 1960’s show that levels have been declining [Burden et al., 2013]; these 

declining trends are understandably of concern to water managers throughout the state. 

The magnitude of groundwater depletion was further realized when, in 2012, drought 

conditions lead to depleted groundwater reserves in Toole County (located in 

northwestern Utah) and well yields were reduced substantively. In fact, the U.S. 

Department of Agriculture had to handle more than the normal number of rancher 

requests statewide for disaster assistance [Fahys, 2012].  

 In Utah, groundwater is the source of 58 percent of the public water supply. 

Groundwater is vital for irrigation when surface water resources are depleted late in the 

growing season; this becomes particularly important during the onset of drought. Three 

factors are now in play when it comes to water supplies in Utah: (1) population increase, 

(2) a variable water supply that arises due to natural climate variability, and (3) long-term 

trends due to global warming. As to point (1), noted earlier was its correlation with 

groundwater withdrawal. Point (2) is a result of natural climate oscillations, examples of 

which are the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation 

(PDO) [e.g. Wang et al., 2010; Wang et al., 2012], while point (3) is linked to the longer-

term climate change cause by a combination of natural variation and greenhouse gases 

[Gillies et al., 2012]. Therefore, appreciating and understanding the climate factors that 

modulate hydroclimate variability (seasonal to decadal timescales) and extremes (e.g. 

drought) will inevitably assist water managers in their decision and planning practices 

regarding the maintenance, allocation and development of future water resources. 
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1.2 Background Review of Groundwater and Hydroclimate over Northern Utah 
 

Groundwater is vastly surveyed in northern Utah – in both the past and the 

present. The first groundwater investigations over Utah were conducted in the early 

1900’s [Richardson, 1906]. Published data became more plentiful in the 1940’s and 50’s, 

as was exemplified by Taylor and Leggette [1949], who investigated groundwater 

recharge and chemical quality. Lofgren [1952] examined Salt Lake Valley’s groundwater 

development as of 1951. Later, Hely et al. [1967, 1968, and 1969] compiled a series of 

hydrological and climatological data and produced a summary of Salt Lake Valley’s 

groundwater hydrology [i.e., Hely et al., 1971]. Further work by Arnow and Mattick 

[1968] studied groundwater discharge toward Great Salt Lake in basin-fill deposits. In the 

1980’s, on the subject of the effects of increased groundwater withdrawal, Waddell et al. 

[1987a] predicted the effects of increased withdrawals from wells in the Salt Lake Valley. 

In the 90’s Anderson et al. [1994] and Anderson and Susong [1995] mapped groundwater 

recharge and discharge areas for the principal aquifers along the Wasatch Front: At this 

time, computer models were being designed for various monitoring purposes, for 

example, Lambert [1995a] produced a three-dimensional, finite-difference numerical 

groundwater flow model for the basin-fill aquifer; such models were subsequently used to 

simulate capture zones for selected public supply wells [Lambert, 1995b]. 

However, the relationship between groundwater and climate forcing in Utah is 

somewhat new: Sandow et al. [2010] were instrumental in connecting groundwater to 

drought in the Salt Lake Valley when they assessed the effects on groundwater levels of 

different pumping rates and precipitation rates. More recently, Wang et al. [2010] and 

Gillies et al. [2011] identified a link between northern Utah’s hydroclimate with Pacific 
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Ocean sea surface temperature anomalies (SSTA) at a unique timescale of 10-15 years, 

referred to as the Pacific Quasi-Decadal Oscillation (QDO), the signal of which is 

recorded in the lake level change of the Great Salt Lake. The QDO is described and 

referenced in a number of articles that focused on low-frequency variability in the Pacific 

SST [Allan, 2000; Tourre et al., 2001; White and Tourre, 2003; White and Liu, 2008; 

Wang et al., 2011]. The Pacific QDO alternates between warm and cool temperature in 

the central equatorial Pacific defined as the NINO4 region (160°E-150°W, 5°S-5°N) and 

features distinctive phases of atmospheric circulation perturbations that induces a 

teleconnection that modulates the intermountain West precipitation [Wang et al., 2009, 

2010, 2011].  

Given the fact that various climate oscillations control the magnitude of Northern 

Utah’s precipitation [Gillies et al., 2012], it is crucial to investigate their linkage with 

groundwater reservoirs. The potential interference caused by anthropogenic climate 

change is likely to pose a great challenge. Yet, managing water resources in response to 

climate oscillations provides a practical guide for future risk management practices. 

Therefore, we undertook a scientific study of Utah’s groundwater reserves not only to 

establish the hydroclimate connections but correspondingly to gauge the prospects of 

future groundwater levels in Utah’s changing climate. 
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CHAPTER 2 
 

DATA SOURCES AND METHODOLOGY 
 
 

2.1 Data and Methods 
 
 Groundwater level records in Utah became consistent after 1960. We used 400 

active wells over northern Utah, obtained from the U.S. Geological Survey (USGS) 

Active Groundwater Level Network (http://groundwaterwatch.usgs.gov/default.asp). 

Well locations and groundwater dependence for public supply use per county are plotted 

in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1. Utah’s dependence on groundwater for public supply for 2005 with darker 

shades showing greater dependence and lighter shades showing less 
dependence. Groundwater levels over northern Utah were recorded by 400 
active wells. Well locations are shown by red circles. 
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Springtime groundwater levels were standardized prior to averaging among the 400 

wells. Other datasets utilized include: (a) the station-derived monthly Global 

Precipitation Climatology Centre (GPCC) grid at a 1° horizontal resolution [Schneider et 

al., 2013], (b) monthly tropospheric winds acquired from the NCEP Reanalysis at a 

resolution of 2.5° long. x 2.5° lat., (c) monthly National Climatic Data Center (NCDC) 

reconstructed sea surface temperature (ERSST) at a resolution of 2° long. x 2° lat. [Smith 

et al., 2014] , and (d) the Great Salt Lake (GSL) surface elevation 

(http://waterdata.usgs.gov/nwis). GHCN (Global Historical Climate Network) rainfall 

and, maximum and minimum daily air temperatures were downloaded from the Utah 

Climate Center’s website (http://climate.usu.edu). Reference evapotranspiration (ETo) 

was calculated using maximum and minimum daily temperatures according to 

Hargreaves et al. [2003]. 

 
2.2 CESM1 and CLM4 

The Community Earth System Model version 1 (CESM1) is a powerful 

compilation of computer models, which were designed for meeting the intellectual 

challenge of understanding the climate and the Earth system, and they are the only 

scientific tool capable of integrating the myriad physical, chemical, and biological 

processes that determine past, present, and future climate. The CESM1 is an essential tool 

for testing and confirming understanding for making predictions that can be beneficial to 

society and policy makers. Changes in climate, whether anthropogenic or natural, involve 

a complex interplay of physical, chemical, and biological processes of the atmosphere, 

ocean, and land surface.  Output from the CESM1 were generated by the Pacific 

Northwest National Laboratory (PNNL) at a resolution of 2.5° long. x 1.875° lat. 
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Changes in climate, whether anthropogenic or natural, involve a complex 

interplay of physical, chemical, and biological processes of the atmosphere, ocean, and 

land surface.  This work focuses on the specific output of groundwater from CESM1. 

More specifically, groundwater is a direct output from the CESM1’s Community Land 

Model (CLM) [Hurrell et al., 2013]. The CLM version 4 (CLM4) represents several 

aspects of the land surface and consists of soil hydrology components such as: surface 

runoff, infiltration, redistribution of water within the column, subsurface drainage, and 

groundwater. These processes are configured within the model through simulated canopy 

drip, snow accumulation and melt, water transfer between snow layers, infiltration, 

evaporation, surface runoff, sub-surface drainage, redistribution within the soil column, 

and groundwater discharge and recharge to simulate changes in canopy water ∆Wcan, 

surface water ∆𝑊sfc, snow water ∆Wsno, soil water ∆𝑊liq,i, soil ice ∆𝑊ice, i, and water in 

the unconfined aquifer ∆Wa. The total water balance of the system is 

∆𝑊𝑐𝑎𝑛  +   ∆𝑊𝑠𝑓𝑐  +   ∆𝑊𝑠𝑛𝑜  +   Σ  (∆𝑤𝑙𝑖𝑞, 𝑖  +   ∆𝑊𝑖𝑐𝑒, 𝑖)   +   ∆𝑊𝑎   =

  (𝑞𝑟𝑎𝑖𝑛  +   𝑞𝑠𝑛𝑜  − 𝐸𝑣  −   𝐸𝑔  – 𝑞𝑜𝑣𝑒𝑟 −   𝑞ℎ2𝑜𝑠𝑓𝑐  −   𝑞𝑑𝑟𝑎𝑖  −   𝑞𝑟𝑔𝑤𝑙  −

  𝑞𝑠𝑛𝑤𝑐𝑝, 𝑖𝑐𝑒)  ∆𝑡.        (2.1) 

where qrain is the liquid part of precipitation, qsno is the solid part of precipitation, Ev is ET 

from vegetation, Eg is ground evaporation, qover is surface runoff, qh2osfc is runoff from 

surface water storage, qdrai is sub-surface drainage, qrgwl and qsnwcp,ice are liquid and solid 

runoff from glaciers, wetlands, and lakes, and runoff from other surface types due to 

snow capping, Nlevsoi is the number of soil layers and ∆t is the time step (s) [Oleson et al., 

2010].  



	  

	  
	  

8	  

 The CESM1 was chosen not just because it produces groundwater directly but 

also because it depicts the El Niño Southern Oscillation (ENSO) evolution well along 

with associated teleconnections and precipitation impacts over western North America 

[Wang et al., 2014]. The CESM1 simulations employed Historical Experiments that were 

initialized at 1850 (i.e. under pre-industrial conditions) with the following external 

forcings: (i) Natural (NAT) – consisting of volcanic eruptions and solar cycle; (ii) 

Anthropogenic aerosols (AERO); (iii) Greenhouse gases (GHG); and, (iv) All forcings 

(ALL) that include (i), (ii), and (iii) plus land use change and ozone. Each CESM1 

ensemble is comprised of two members with the exception of the ALL ensemble; which 

is comprised of four members. Additionally, we utilized CESM1 representative 

concentration pathways (RCP) [Meinshausen et al., 2011] simulations to depict 

groundwater outcomes. The RCP simulations were conducted for the period 2006 to 

2100. 

 
2.2.1 Groundwater in the CLM4 
 

Within the CLM4, the determination of water table depth z⋁ is based on the work 

of Niu et al. [2007]. In this approach, a groundwater component is added in the form of 

an unconfined aquifer lying below the soil column. The groundwater solution is 

dependent on whether the water table is within or below the soil column. Two water 

stores are used to account for these solutions. The first, Wa, is the water stored in the 

unconfined aquifer (mm) and is proportional to the change in water table depth when the 

water table is below the lower boundary of the hydrologically-active soil column. The 

second, Wt, is the actual groundwater, which can include water within the soil column. 

When the water table is below the soil column Wt= Wa. When the water table is within 
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the soil column, Wa is constant because there is no water exchange between the soil 

column and underlying aquifer, while Wt varies with soil moisture conditions [Oleson et 

al., 2010].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. CLM4’s hydrologic processes. An unconfined aquifer is added to the bottom of 

the soil column. Changes in aquifer water content are controlled by the balance 
between drainage from the aquifer water and the aquifer recharge rate. 

 

2.2.2 Groundwater Projections 

The CESM1 is able to simulate the temporal evolution of CO2 sources, which are 

manifested in the representative concentration pathways (RCP) experiments: RCP4.5, 

RCP6.5, and RCP8.5. We specifically utilized CESM1’s RCP4.5 and RCP8.5 

simulations to depict the outcome of groundwater behavior. The RCP simulations begin 

in year 2006 and projections are carried out to year 2100. RCP4.5 represents a specific 

concentration of CO2 in the atmosphere defined as stabilization without overshoot 
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pathway to 4.5 W/m2 (~650 ppm CO2), reaching stabilization after year 2100. RCP8.5 

represents a higher concentration of CO2, defined as rising radiative forcing pathway 

leading to 8.5 W/m2 (~130 ppm CO2) by year 2100.   
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CHAPTER 3 

CESM1 GROUNDWATER – CLIMATE RELATIONSHIP 
 
 

3.1 Observation Data 

To understand the hydrological forcing that leads to the variation of groundwater 

levels, the monthly time series of ΔSST(Niño-4), the precipitation averaged over the Great 

Basin, and the GSL elevation are displayed in Figure 3a, originally from Wang et al. [2010], 

which were all filtered with a 10–15-yr frequency band. The major phases of a Pacific QDO 

revolution are evident in all three elements, comprising of the warm, cool, rising, and falling 

transition, where precipitation specifically follows the transition of the QDO. Expanding 

upon previous studies [Wang et al., 2009, 2010, 2011], we plotted observed precipitation 

over northern Utah (Figure 3b) alongside the tendency of the GSL level (Figure 3c), and 

the tendency of groundwater level over northern Utah (Figure 3d). Tendency here was 

defined as the derivative of the original field. The tendency was plotted here, rather than 

using the original groundwater and GSL level signal, in order to align the phase 

relationship between the three variables following the hydrologic equation: climate 

forcing, precipitation forcing, and GSL level/groundwater response. Fluctuations in 

precipitation are in good agreement with the tendency of GSL level and groundwater. 

Moreover, Figure 3 shows clearly a pronounced quasi-decadal frequency within these 

variables (10-15 year time period). This 10-15 year variability in precipitation, reflected 

by the alternating dry and wet spells, is particularly pronounced after the 1960s [Wang et 

al., 2009]. This documented quasi-decadal variability will be used as a metric to evaluate 

CESM1 output, which is next. 
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Figure 3. (a) Monthly SST (Nino-4), plotted alongside precipitation, and GSL elevation – 

filtered with a 10-15 frequency band (figure provided by Wang et al. [2010]). 
The major phases of the QDO can be seen in all three elements. A 3-year phase 
relationship exists between each variable with a total phase lag of 6-8 years 
between Nino-4 and GSL. (b) Observed precipitation plotted on top, oscillates 
in tandem with (c) GSL level (tendency) and (d) northern Utah groundwater 
(tendency). Dashed lines were provided to highlight the consistency in 
oscillations. 
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3.2 Evaluation of CESM1’s Historical Simulation 

First, the seasonal cycle of groundwater was evaluated in CESM1’s historical 

simulation (Figure 4a). The domain chosen for this analysis is focused over northern Utah 

(114°W-111°W, 40°N-42°N as outlined in Figure 1). Individual members of CESM1 

groundwater outputs from the GHG, AERO, NAT, and ALL experiments were plotted 

observational groundwater from two counties: Box Elder and Cache County (depicted with 

white dots in Figure 1). Figure 4a shows that groundwater levels increase from spring into 

summer and subside into fall and winter, following the typical revolution from snowmelt 

(recharge) to summer evaporation and withdrawal. Groundwater depth simulated by 

CESM1 shows a similar pattern (i.e. seasonal timing) with a steady increase in groundwater 

depth from January to May and a decrease from June to December. This correspondence 

indicates that CESM1 can capture the region’s seasonal groundwater recharge and discharge 

cycle. 

Because all CESM1 simulations are fully coupled experiments, in which the model 

years cannot be directly compared to observational years, the power spectrum of simulated 

groundwater level is compared with that of observational data. Figure 4b shows that a 

spectal peak around the 10-16 years of frequency is revealed in the observational GSL and 

groundwater depth as well as CESM1 simulated precipitation and groundwater depth. Such 

coherence between CESM1 output and observational data alludes to the model’s capability 

to recreate the predominant decade-scale climate oscillations in the region, and this result 

adds confidence in using the model.  

 The Pacific QDO affects northern Utah’s precipitation with a 3-year lag owing to a 

unique teleconnection induced in the transition phase from the western Pacific [Wang et al., 
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2010, 2011]. To evaluate whether CESM1 can simulate such a lagged relation, the 3-year 

lag correlation between annual (water year) SSTA and precipitation over northern Utah  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Observational groundwater is plotted alongside CESM1 modeled groundwater 

for long-term seasonality. (b) Power spectrum analysis was performed on 
modeled versus observational data: modeled groundwater depth and modeled 
precipitation are compared here to observational GSL elevation and observed 
groundwater depth. Across the board, both modeled and observational data 
contain a peak 10-15 years, which is reminiscent of the QDO’s behavior. (c) 
Wang et al. [2010] performed a 3-year lag correlation between observed SST and 
observed precipitation over the Great Basin for 108 years of data. The CESM1 is 
able to recreate the 3-year lag correlation between modeled SST and modeled 
precipitation over northern Utah for 156 years of data. 
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was computed. The data was smoothed by taking a 7-year running mean to eliminate 

interannual signals. Figure 4c shows, on the left, a correlation map of modeled SSTA with 

modeled precipitation for a 156-year period with the precipitating lagging 3 years. To the 

right, observed data depicted an equivalent 3-year lag correlation map for a 108-year period 

obtained from Wang et al. [2010]. Their consistent geographical distribution of the SST 

patterns that form during the transition phases of the Pacific QDO lends confidence in the 

model’s performance; this feature about the relationship between the Pacific QDO and the 

Great Basin precipitation is also shown in  [Smith et al., 2014]. In summary, the CESM1 

robustly simulates the seasonal cycle of groundwater level. More pronouncedly, its 

historical simulation captures the QDO related changes and lagged relationship between 

SSTA and precipitation over northern Utah.  

 
3.3 Impact of Greenhouse Gases on Utah’s Groundwater Resources 
 

Figure 5a depicts CESM1 ensembles for groundwater depth for the time period of 

1850 to 2005. Results show that groundwater depth produced from all forcings is highly 

oscillatory, and without discernable long-term trends prior to 1970. After 1970, 

groundwater simulated only by GHG undergoes a declining trend. This is consistent with 

a general concept that the vast majority of the increase in GHG within the atmosphere has 

occurred since 1960 [IPCC, 2013], thus these simulations suggest that a rampant and 

sudden increase in GHG can have a noticeable effect on groundwater in Utah after the 

1970’s. It is also noteworthy that ALL forcing runs do not show clear decreasing trends, 

which is likely due to cancellation by each model member’s random internal climate 

variability.  
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To examine the robustness of the decrease in groundwater depth from the GHG 

simulations, Figure 5b shows individual members for GHG (hereafter referred to as 

GHG1 and GHG2) for the time period of 1960-2005. Both members reveal a steady 

decrease in groundwater depth beginning around 1980, and both are significant at p<0.05 

per t-test (the null hypothesis was set with the mean of 1980 and later to be different than 

the previous increments). Specifically, the mean of GHG1 after 1980 is significantly 

lower than all of the other time periods at the 95% significance level. The decreasing 

trend in GHG2 is significant against 1880-1904 and 1905-1929 at the 95% significance 

level. Also worth noting is that none of the other single-forcing model members revealed 

any significant decline in groundwater depth after 1980 (not shown), further suggesting 

the role of GHG in reducing groundwater in Utah. 

To examine the robustness of the decrease in groundwater depth from the GHG 

simulations, Figure 5b shows individual members for GHG (hereafter referred to as 

GHG1 and GHG2) for the time period of 1960-2005. Both members reveal a steady 

decrease in groundwater depth beginning around 1980, and both are significant at p<0.05 

per t-test (the null hypothesis was set with the mean of 1980 and later to be different than 

the previous increments). Specifically, the mean of GHG1 after 1980 is significantly 

lower than all of the other time periods at the 95% significance level. The decreasing 

trend in GHG2 is significant against 1880-1904 and 1905-1929 at the 95% significance 

level. Also worth noting is that none of the other single-forcing model members revealed 

any significant decline in groundwater depth after 1980 (not shown), further suggesting 

the role of GHG in reducing groundwater in Utah. 
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Figure 5. (a) CESM1 modeled groundwater ensembles for all experiments: GHG, NAT, 
ALL, and AERO. All forcings are highly oscillatory and relatively flat prior to 
1970. After 1970, the GHG experiment diverges downward from the other 
experiments as GHG in the atmosphere causes groundwater to undergo a 
drying trend. (b) Individual GHG members are plotted alongside each other to 
reveal a significant decrease in groundwater beginning around 1980. 
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This result fueled the question as to what processes led the GHG forcing in the 

atmosphere to influence the hydrological cycle and eventually reduce groundwater. To 

understand this question, we selected two periods with the same declining slopes in 

annual precipitation from the GHG and NAT ensemble simulations and analyzed their 

difference in hydrological processes (with and without GHG). The same declining trend 

in annual precipitation occurs in the time period of 1870 – 1920 for the NAT and 1955 – 

2005 for the GHG, based on the ensemble means (Figure 6a). Next, the trends of the 

following hydrologic variables were analyzed for the same periods: precipitation, 

groundwater, water in the unconfined aquifer, total water in storage, evaporation, snow, 

temperature, soil liquid, and soil ice – all of which comprise of the total water balance 

within the model. Figure 6b shows the trends (slopes) for the annual mean hydrologic 

variables derived from the GHG experiment. In comparison, Figure 6c shows the same 

variables with the NAT experiment. One can see that groundwater is reduced to a greater 

degree within the GHG simulation, but not as much in NAT, even though both 

experiments feature the same precipitation declines. Temperature change within the GHG 

simulation is much higher than in the NAT simulation, as expected, but evaporation is 

lower in the GHG simulation. This means that the analysis of annual changes alone may 

not be adequate to attribute the cause of groundwater depletion.  

To examine further, the slopes of values were computed for each individual 

month for the same variables and results are shown in Figure 7. The monthly dissection 

of precipitation in NAT (Figure 7a) shows that change in precipitation each month 

throughout the year is highly variable and seemingly random. In contrast, the GHG 

simulation shows rather persistent precipitation declines in every month with the 
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Figure 6. (a) CESM1 modeled precipitation from 1850 to 2005, with GHG trend: 1870-
1920 and NAT precipitation trend: 1955-2005. These trends were selected to 
isolate the same declining pattern in both experiments (~-2.2e-06). (b) GHG 
experiment: trends of the hydrologic variables within the water balance were 
analyzed for the same time periods as indicated by the trends within part a. (c) 
Same analysis was performed as in part b, with NAT experiment. 
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exception of October and December. Although the 50-year trend of annual precipitation 

was held constant for this analysis, these monthly dissections demonstrate how 

greenhouse gases and natural variability could cause precipitation to change differently 

throughout the year. Also, GHG induced year-round temperature increases (Figure 7b) 

while NAT in this case show increased temperatures primarily for January and slight 

increases for June, August, and September. However, decreasing temperature for all other 

months offsets these increasing trends.  

We note in Figure 7c that evaporation change under the GHG forcing increases in 

the colder months of January through May and October through December. Evaporation 

then decreases throughout the warmer months of June through September. These monthly 

dissections of evaporation show that, within the GHG simulation, evaporation increases 

during critically colder and rainier months, resulting in less soil liquid (Figure 7d) to be 

evaporated in the warmer months, leading to no overall annual trend for evaporation. Soil 

liquid was plotted to include only the top three modeled soil layers (~ top 2 inches of 

soil). Thus we note that once soil liquid within the topsoil is reduced, less water is 

available to percolate through soil layers and become groundwater. To this extent, these 

experiments show that within the GHG experiment, groundwater level (Figure 7e) is 

reduced to a greater degree than in the NAT experiment, despite undergoing the same 

reduction in annual precipitation. 
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Figure 7. The slope of monthly long-term averages for each variable are analyzed here 
for the same time periods as in Figure 6 (GHG trend: 1870 to 1920; NAT 
trend: 1955 to 2005). A comparison of NAT experiment to GHG experiment 
shows that groundwater depletion within the GHG experiment stems from 
extended months of low (a) precipitation (NAT experiment offers intermittent 
dry/ wet months), (b) higher temperatures, and (c) greater evaporation in the 
historically cooler months. These effects trickle down the system and 
eventually impact (d) soil liquid and cause (e) groundwater level to decrease. 
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 Next we analyzed SST, wind fields, and precipitation trends over a larger region 

including the entirety of the Great Basin and western U.S. in order to examine the role of 

large-scale, climatic forcings in the changing precipitation over northern Utah under the 

GHG forcing. Figure 8a depicts the observed changes of precipitation over land, SST and 

associated 850 mb winds for the January-March season over the 1975-2005 period (to be 

consistent with CESM1 which only goes until 2005). The result illustrates the decadal 

variability in the North Pacific Ocean and its vicinity, accompanied by an anticyclonic 

anomaly in the central North Pacific and a weak cyclonic anomaly off the coast of the 

western U.S.; this circulation setting led to an overall increase in precipitation along the 

West Coast accompanied by slight drying in the intermountain West [e.g., Gultzler et al., 

2002]. By comparison, the CESM1 GHG and NAT simulations reveal a drastic difference in 

SST between the two simulations: while GHG simulations produce a much warmer SST, 

NAT simulations produce mostly cooler SST patterns (Figures 8b and 8c). However, the 

change in 850-mb winds depicts anticyclonic anomalies in the central North Pacific by both 

NAT and GHG experiments, though cyclonic activity is evident near the western U.S. by 

the NAT, which is closer to the observed Pacific Decadal Oscillation influence [Brown, 

2011]. In the GHG simulations, the anticyclonic flow is situated further east and covers the 

western U.S. These distinctions between the two simulations translate into vastly different 

hydrologic regimes over Utah and the Great Basin. As a result, precipitation simulated by 

the NAT (as well as groundwater in Figure 5a) shows a discernibly wetter climate for the 

same region. The GHG experiment shows a stark contrasting condition, in which much of 

the western U.S. north of the Gulf of Mexico experiences a much drier climate. The 

geographical extent of historical groundwater decline is shown in Figures 10a for NAT and 
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10b for GHG over 1975-2005. The NAT experiment shows increased groundwater levels 

for this time period, whereas GHG shows an overarching decreasing tendency; this is 

consistent with Figure 5a. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. (a) A comparison of observational precipitation over land with sea surface 

temperature (850 mb) for a long-term trend analysis of the January-March 
seasonal mean for 1975-2010. (b) 1960-2005. (c) CESM1 NAT and GHG 
experiments are compared using their respective modeled precipitation over 
land and modeled sea surface temperature for a long-term trend analysis of the 
January-March seasonal mean for 1975-2005. 



	  

	  
	  

24	  

3.4 Projection of groundwater resources in Utah 

 Regarding future projections, the RCP-driven CESM1 simulations indicate a 

robust reduction in groundwater over Utah (Figure 9) compared to the historical 

simulations; this future reduction of groundwater is present in both scenario of RCP4.5 

and RCP8.5. It appears that the higher levels of CO2 in RCP8.5 cause a greater decrease 

in groundwater level over time, resulting in an approximate 1.5-meter drop in 

groundwater level by year 2100 for northern Utah.  

 
Figure 9. CESM1 – The historical ensemble of GHG forcing on groundwater level over 

northern Utah (shown in red square over map) is plotted on top (black) with 
ensemble 4.5 (blue) and RCP ensemble 8.5 (red). The RCP ensembles show 
the projections of groundwater out to 2100. Each ensemble is the average of 
two members.  
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The geographical extent of such groundwater decline in the future is shown in 

Figures 10a and 10b, which reveal historical groundwater trends from the NAT and GHG 

experiments for the time period of 1975-2005. The NAT experiments shows increasing 

 

Figure 10. CESM1’s historical simulation of groundwater is shown for the time period of 
1975-2005. The NAT experiment is compared to the GHG experiment, 
showing stark differences. The NAT experiment is shown to have intermittent 
wet/ dry periods; GHG shows an overarching drying effect. Projections of 
groundwater are depicted by RCP4.5 and RCP8.5 trend maps for the time 
period 2015-2065. Trends for both RCP4.5 and RCP8.5 show greater trends 
decrease drastically over Utah and the Great Basin with a greater decrease of 
groundwater experienced in RCP8.5 ensemble. 
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groundwater levels for this time period, whereas GHG shows an overarching decreasing 

tendency. Projections of groundwater in RCP4.5 and RCP8.5 for the time period of 2015-

2065 (Figures 10c and 10d) reveal groundwater trends that indicate a drastic decrease in 

Utah and the Great Basin, with a greater decrease in groundwater for RCP8.5. Both the 

historical and projected declines in groundwater are coincident with a recent study 

[Castle et al., 2014] that indicated similar declining trends in groundwater storage over 

the Colorado River Basin using the Gravity Recovery and Climate Experiment (GRACE) 

data. 
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CHAPTER 4 

GENERAL CONCLUSIONS 
 
 

4.1 Implications for Groundwater and Policy  

Within Utah, total precipitation is projected to increase; yet the form of 

precipitation is expected to shift from snow to rain [Gillies et al., 2012]. This will 

dramatically affect agriculture and irrigation water supply since the majority of the state 

heavily relies upon a slow spring runoff brought on by the melting of snowpack during 

spring season. With continually less snow in the future, the state will have to consider 

how to capture adequate rainwater and a much faster runoff that is already occurring two 

to three weeks ahead of historical average [Gillies et al., 2012]. Such a change in the 

climate regime can influence growing seasons, water rights, field rotation, and etc. 

Higher summer temperatures speed up the drying of the soil through evaporation and 

plant transpiration. As groundwater levels drop, wells could go dry, as has already been 

reported statewide [e.g. Fahys, 2012; Higley, 2014]. As people deepen their wells, 

pumping costs go up. Demands for senior water rights and new water rights could 

escalate. These issues can also be expected to manifest themselves in industry.  

Utah is the second driest state in the U.S., yet water consumption per capita is the 

highest. Irrigated landscapes account for 60 percent of Utah’s culinary water use, much 

of which is due to over-irrigation [Kjelgren et al., 2000]. However, the U.S. bases its 

traditional gardening aesthetic on the English gardening style of landscaping that was 

imported by European settlers and does not translate to the arid climate of Utah. Thus, a 

further implication of these results may be illustrated further in Figure 11, which was 

provided by Kjelgren et al. [2000]. Figure 11 shows a comparison of rain, reference 
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evaporation (ET), and air temperature between Salt Lake City and South East England. 

South East England lies within a maritime climate characterized by lush, green vegetation 

that thrives on high summer rainfall, high humidity, mild temperatures, and infrequent 

drought (Figure 11a). On the other hand, Salt Lake City lies within a climatic zone with 

comparatively much lower rainfall and humidity and higher summer temperatures (Figure 

11b). As a result, ET is higher in Salt Lake City than in England. ET determines the 

baseline for water withdrawals for outdoor systems [Kjelgren et al., 2000]; from this 

baseline 20-30 percent greater withdrawal is expected due to inefficiencies in water 

usage. As discussed within this paper, CESM1 groundwater projections show a declining 

trend for groundwater when subjected to increased amounts of GHG in the atmosphere 

(increasing levels of ET). This result highlights the apparent vulnerability of groundwater 

in Utah.  

Several meetings (3/19/2013, 8/20/2013, 3/5/2014) with water managers from 

Salt Lake Public Utilities and Jordan River Valley Conservancy District have shown an 

expressed need for groundwater and surface water projections. As discussed within this 

paper, CESM1 groundwater projections show a declining trend for groundwater when 

subjected to increased amounts of greenhouse gases in the atmosphere. These 

groundwater projections in conjunction with the reconstruction of historical surface water 

using tree ring data can be used to decipher the past and future behavior of water 

resources in Utah. Current projects are underway, which will make available these 

projections to water management agencies in the Salt Lake City area. 
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Figure 11. A comparison of rain, evapotranspiration, and air temperatures for Salt Lake 

City and South East England. Utah is the second driest state in the country, yet 
their water consumption per capita is the highest in the nation. The U.S. bases 
its traditional gardening aesthetic on the English gardening style of 
landscaping. Figure provided by Kjelgren et al., [2000]. 
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4.2 Concluding Remarks 
 

As shown earlier, groundwater resources in Utah and the Great Basin are already 

susceptible to depletion under the changing climate regimes of precipitation and 

temperature and subsequent ET. This issue is then exacerbated by the increasing trend in 

water withdrawal for irrigational and public-supply purposes. The realization of such 

implications to groundwater resources have already come to fruition during California’s 

ongoing (2014) drought [Wang et al., 2014], which has spawned a well drilling boom due 

to the scarcity of irrigation water. For instance, in some regions of California, such as 

Tulare County, the number of permits to drill for groundwater has tripled. Prices for this 

dwindling resource have skyrocketed, which can currently cost a farmer in California 

anywhere between $50,000 to $500,000 to drill a well, prior to installing pumps [Smith, 

2014]. Utah may be two states away, but the current crises experienced in California may 

be taken as an early warning and an analogy to Utahans regarding groundwater resources.  

Due to these concerns, research on the predictive nature of groundwater resources 

is increasingly important given the present evidence that the increase of GHG in the 

atmosphere can have a direct influence on this drought-prone region. Our study has a 

potential limit due to relatively small number of ensembles. However, the findings in this 

study, such as the GHG driven groundwater reduction, are robust. This research hopes to 

pave the way for the utilization of coupled global climate modeling for the prediction of 

groundwater and strives to inspire the need for better water management in light of the 

changing climate. 
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