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ABSTRACT 

Molecular Toxicology of Pyrrolizidine Alkaloids 

by 

Hea-Young Kim, Doctor of Philosophy 

Utah State University, 1994 

Major Professor: Dr. Roger A. Coulombe, Jr. 
Program: Toxicology 

ix 

Pyrrolizidine alkaloids are cytotoxic, carcinogenic, and anti-carcinogenic 

in vivo and in vitro, and they produce many hazardous effects in humans and 

animals. Pyrrolizidine alkaloids (PAs) also cross-link with DNA and/or protein. 

However, whether such cross-linking is important to the toxic action of PAs is not 

known. In addition, the exact mechanism underlying these DNA cross-links or 

cytotoxicity is also not clear. 

In three separate studies, I characterized the nature of PA-induced DNA 

cross-links and the relationships between PA structures and cross-linking 

potency. In the first study (Chapter II), I found that cross-linking potency of PA 

congeners coincided with their abilities to cause cytopathologic effects. 

Macrocyclic a,p-unsaturated diesters PAs and their pyrrolic metabolites were the 

most potent inhibitors of colony formation, and inducers of cytopathologic 

changes and megalocyte formation. The macrocyclic a,p-saturated diester PA 

and open diesters PAs slightly inhibited colony formation, and slightly changed 

cell morphology. Retronecine and indicine N-oxide were completely inactive. In 

the next study (Chapter Ill), I found that pyrrolic macrocyclic metabolites were 



X 

more potent DNA cross-linkers than their parent compounds as determined by 

alkaline elution. The pyrroles of the macrocyclic diester PAs were potent DNA­

DNA (inter- and/or intra) cross-linkers in Bst Ell-digested A.-phage DNA or 

pBR322 plasmid DNA but dehydroretronecine and indicine N-oxide were not. I 

also examined which DNA sequences were more susceptible to PA-induced 

cross-links by using a series of restriction endonucleases to determine sequence 

specificity. The most favorable cross-linking site for PAs appeared to be 5'­

d(GG) and 5'-d(GA) although other sites, 5'-d(CC) or 5'-d(CG), might be also 

preferable cross-linking targets. In the next study (Chapter IV), I characterized 

the nature of DNA-protein interactions induced by PAs, because I found in 

previous studies that PA-induced cross-links are largely protein associated. In 

PA or pyrrolic PA exposed cells, cross-linked proteins with molecular weights 40 

- 60 kD were detected. Two-dimensional electrophoretic analysis revealed that 

these proteins were probably acidic in nature. In an in vitro system utilizing 

pBR322 or Bst Ell-digested A.-phage DNA. dehydrosenecionine induced DNA­

protein cross-links with BSA, indicating that such interactions might be related to 

amino acid composition of protein. 

These results confirmed that PA-induced DNA cross-links (DNA-DNA, 

DNA-protein cross-links) are influenced by three structural features: the C1 ,2 

unsaturation of pyrrolizidine ring, a,p-unsaturation, and size of the macrocyclic 

diester ring. The ability to form cross-links was closely related to the known toxic 

potencies of these PAs. From this research, I also conclude that DNA cross­

linking is the most critical event leading to PA-related diseases and that cross­

linking is due to pyrrolic metabolites of PAs, not via a common metabolite as was 

once thought. 
(114 pages) 



Genotoxicity 

CHAPTER I 

INTRODUCTION 

DNA is a well-known intracellular target for genotoxic agents and some 

anti-neoplastic drugs. Some of these agents induce cross-links in DNA which 

may involve nuclear or non-nuclear proteins that have important roles in gene 

regulation (Ban jar et a/., 1984; Lemaire eta/. , 1991 ). The interaction of DNA and 

genotoxics can cause permanent or semi-permanent genomic changes. The 

damaged DNA can be fully or partially repaired, although incorrectly repaired 

DNA can induce genomic changes such as transition or transversion mutations. 

Pyrrolizidine alkaloids 

Pyrrolizidine alkaloids (PAs) are common natural plant alkaloids produced 

by genera such as Senecio, Crotalaria, Heliotropium, and Symphytum (Bull et 

a/., 1968; Smith and Culvenor, 1981 ). Pyrrolizidine alkaloids are cytotoxic, 

carcinogenic, and anti-carcinogenic (Culvenor, 1968; Svoboda and Reddy, 

1972; Newberne and Rogers, 1973; Schoental, 1975; Kuhara eta/., 1980; King 

eta/. , 1987). Humans and other animals may be exposed to PAs in food and 

feed. PAs or their toxic metabolites are secreted in the milk of lactating dairy 

cattle and rats, and especially young animals are susceptible to PA toxicity 

(Schoental and Magee, 1959; Dickinson eta/., 1976). Pyrrolizidine alkaloids are 

toxic to most animal species. Horses, rats, and chickens are very susceptible, 

while guinea pigs, sheep, and goats are resistant to PA toxicity (Schoental, 

1963; Bull eta/., 1968; White eta/., 1973; Chesney and Allen, 1973; Shull eta/., 

1976; Goeger eta/., 1982; Peterson and Jago, 1984). These species differences 
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of PA toxicity have been explained by the differences in the rate of metabolic 

conversion of PAs to toxic metabolites {pyrroles) in the different animal species. 

Pyrrolizidine alkaloid poisoning in humans is endemic in some 

geographical locations. In Afghanistan and West India, contamination of food 

crops or the ingestion of herbs for the treatment of certain ailments is associated 

with PA-related liver toxicities such as vena-occlusive disease (Tandon and 

Tandon, 1975; Mohabbat eta/. , 1976; Tandon eta/., 1976a; Tandon eta/. , 

1976b; Tandon eta/., 1977; Tandon eta/., 1978). Pyrrolizidine alkaloid-related 

hepatotoxicity may be a high risk factor for liver disease and a cause of mortality 

in a segment of the population, especially in developing countries where 

ingestion of PAs in food or herbal medicines is common (Tandon et at., 1975; 

Tandon eta/. , 1978; Stillman eta/., 1979; Huxtable, 1980). 

Other PA-related effects include gastrointestinal lesions, pulmonary 

hypertension, right ventricular hypertrophy, central nervous system disorders, 

and vena-occlusive disease of the liver in both animals and humans (Bras and 

Hill , 1956; Hill , 1960; Mclean, 1970; Bras, 1973). In animal experiments, a 

single exposure to PAs progresses relentlessly to advanced chronic liver 

disease and cirrhosis (Schoental and Magee, 1957, 1959; Nolan eta/. , 1966). 

Pyrrolizidine alkaloids have also been reported to be synergistic with aflatoxins 

in causing liver cirrhosis, hepatoma, or lung toxicity in primates and rats (Cook et 

a/., 1950; Lin eta/., 1974; Culvenor, 1983). 

The structures of some PAs and their metabolites are shown in Figure 1. 

Pyrrolizidine alkaloids can be divided into four major structural groups: the 

macrocyclic a,j3-unsaturated diesters (senecionine, seneciphylline, riddelliine, 

retrorsine), the macrocyclic saturated diester (monocrotaline), open diesters 

(heliosupine, latifoline), and necine base (retronecine). Mclean (1970) reported 



MACROCYCLIC DIESTERS 

SENECIPHYLLINE RETRORSINE RIDOELLIINE SENECIONINE MONOCROTALINE 

OPEN DIESTERS NECINE BASE 

HELIOSUPINE LATIFOLINE RIETRONECINE 

METABOLITES 

~" :yj' ,~' &SOH 

! 
OEHYOROSENECIONINE OEHYOROMONOCROT ALINE OEHYORORETRONECINE INOICINE N-<>XIOE 

Fig. 1-1 . Chemical stru::tures of pyrrolizidine alkaloids and their metabolites. 
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that essential structures for the biological toxicities of PAs include a C1 ,2-double 

bond in the pyrrolizidine ring and branched chain acids, and esterification with a 

9-hydroxyl and 7 -hydroxyl substituent. 

Pyrrolizidine alkaloids are not biologically toxic per se but must first be 

metabolized primarily by cytochrome P-450 mixed-function oxidase to either the 

dehydro form (pyrrole), which is highly toxic, or the N-oxide form, which is less 

toxic. The pyrrole is formed by allylic oxidation in pyrrolizidine ring followed by 

cytochrome P-450 mixed-function oxidase mediated dehydration (Mattocks, 

1968; Mattocks and White, 1971 ). The major metabolic routes of PAs are shown 

in Figure 2. The major metabolic routes of the macrocyclic diester PAs in 

animals are hydrolysis of the ester groups, N-oxidation, and dehydrogenation to 

the pyrrole (Mattocks, 1986). The pyrrole alkylates cellular nucleophiles at either 

or both ester linkages (Fig. 3). The relative animal toxicity of various PAs is 

highly correlated to its metabolic fate (hydrolysis, dehydrogenation, N-oxidation) 

which determines whether a larger or smaller proportion of the dose is converted 

into toxic metabolites (Mattocks, 1970). For example, horses can convert PAs to 

a larger proportion of pyrroles compared with sheep or goats, which produced a 

larger proportion of N-oxides (White eta/., 1973; Goeger eta/. , 1982). The 

hydrolysis rate of various PAs is inversely related to the presence of steric 

hindrance around the ester groups (Mattocks, 1982; Bull eta/., 1968). 

Interaction of PAs with DNA 

Various PAs are mutagenic, carcinogenic, or anti-carcinogenic. In animals 

and mammalian cells exposed to PAs, megalocyte formation is a common 

cytopathologic sequelae which is postulated to be a result of the anti-mitotic 

action of PAs (Bull and Dick, 1959; Tandon eta/., 1978; Mclean and Mattocks, 



METABOLISM OF PYRROLIZJDINE ALKALOIDS 

HO' (OH 

Rrv-.A(J::~·~•P450 =arR-,-,_,? ______ . CO 
~ Dehydroretronecine 

PA pyrrole ' ,, 
(Dehydroalkaloid) 

'' ..... ? 
Pyrrolizidine alkaloid 

Cytochrome P-450 

N-o xi de 

Retronecine 

: ? 
' + 

Alkylation of cellular 
macromolecules 

Fig. 1-2. Known and postulated metabolic pathways of pyrrolizidine alkaloids. 

c.n 



POSSIBLE MECHANISM OF CROSS-LINK FORMATION BY PAs 

via 5N1 Solvolysis 

For unsaturated esters, alkylation may also occur via Michael Ackflfion: 

Nu: Nu 

~-X 
H 

Fig. 1-3. Possible reaction mechanisms between macrocyclic 
unsaturated diester PAs with a nudeophilic atom (Nu). 
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1980; Kim et at., 1993). Lasiocarpine and its pyrrolic metabolite, 

dehydroheliotridine, have been shown to specifically inhibit the late S or early 

G2 phase of the cell cycle (Svoboda and Reddy, 1972; Samuel and Jago, 1975). 

Results from our laboratory showed that the macrocyclic a,I'J-unsaturated diester 

PAs (seneciphylline, riddelliine, retrorsine, and senecionine) induced the most 

potent cross-linking activity, and also the most potent inhibition of colony 

formation, suggesting that the DNA cross-links have a direct effect on mitosis 

(Hincks eta!., 1991 ; Kim eta/., 1993). 

Several PAs have also been reported to be genotoxic in the 

Salmonella/mammalian microsomal (Ames) assay (Yamanaka et at. , 1979) or in 

the unscheduled DNA synthesis assay (Green et at., 1981 ; Mirsalis et at., 1993). 

Mori et at. (1985) found that 13 of 15 PAs were inducers of unscheduled DNA 

synthesis in primary hepatocyte cultures. Petry et at. (1984) reported that 

monocrotaline and jacobine induced DNA-DNA cross-links but not single-strand 

breaks in freshly isolated rat hepatocytes. Seneciphylline and senecionine 

covalently bind to DNA and have a bifunctional alkylating capability in rat liver, 

lung, and kidney in vivo (Candrian et at. , 1985). 

Robertson (1982) showed that dehydromonocrotaline formed an adduct at 

the N2 position of deoxyguanosine in synthetic oligonucleotides. Similar PA­

induced cross-linking site specificity was also reported in synthetic DNA 

duplexes in vitro (Woo et at., 1993). Their results strongly indicated N2 of 

deoxyguanosine residues at the sequence 5'-d(CG) are the most common 

binding site for pyrrole-derived bifunctional electrophiles. However, the exact 

mechanisms of toxic, carcinogenic, or anti-carcinogenic actions of these 

compounds are not yet clear. 
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Pyrrolizidine alkaloid-induced cross-links 

Our laboratory investigated how PA structural features influenced DNA 

cross-links using the alkaline elution assay (Hincks eta/., 1991 ). With 8 PAs of 

differing stereochemistry and functional groups, potent DNA-DNA and DNA­

protein cross-linking abilities were found in cultured bovine kidney epithelial 

cells with an external metabolizing system. The ranking of the PA-induced DNA­

DNA cross-links and DNA-protein cross-links was the macrocyclic a,/3-

unsaturated diesters (seneciphylline > riddelliine > retrorsine > senecionine), 

open diester (heliosupine > latifoline), the macrocyclic saturated diester 

(monocrotaline), and the necine base (retronecine) (Reed eta/., 1988; Hincks et 

a/. , 1991 ). Two critical structural determinants for cross-linking activity were the 

presence of a macrocyclic necic acid ester, and a,/3-unsaturation in the 

macrocyclic diester. 

Experimental methods for the investigation 
of DNA cross-links 

There are several strategies for studying of DNA-DNA and/or DNA-protein 

cross-links. One of these is alkaline elution, which was developed by Kahn and 

Grimek-Ewig (1973). Alkaline elution is based on the discrimination of various 

lengths of [3H]-thymine labeled DNA by filter retention. Different filter systems 

can be used for detection of different types of DNA damage. Polycarbonate 

filters are used for detecting single strand breaks, and polyvinylcarbonate filters 

are used for detecting DNA-DNA and/or DNA-protein cross-links. 

Recently, more specific molecular biological approaches have been 

developed to characterize the sequence-specific interaction with DNA and 

genotoxics. The most important of these is the DNA mobility shift or "band-shift" 

assay (O'Connor and Fox, 1989; Banjar eta/., 1984; Oleinick eta/. , 1987), which 
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is based on the retarded mobil ity of DNA-DNA or DNA-protein complexes 

compared to untreated, non-cross-linked DNA during polyacrylamide or agarose 

gel electrophoresis. This method is very useful to study DNA-DNA or DNA­

protein cross-links, and DNA cross-linked sites and sequence specificity in 

plasmid DNA using restriction endonucleases. Cellular DNA cross-linked 

proteins can also be characterized by 2-D gel electrophoresis in which proteins 

can be separated on the basis of isoelectric point in the first dimension, followed 

by separation on the basis of molecular weight using SDS-PAGE (O'Farrell , 

1975; Ames and Nikaido, 1976; O'Farrell eta/., 1977). 

The purpose of this study was to determine the molecular mechanisms of 

PA toxicity and examine which PA structures are critical for their molecular and 

cytopathological effects using mammalian cells or target DNA systems. This 

study will contribute to a better understanding of how PAs exert their acute and 

chronic toxicity, carcinogenesis, and potential anti-carcinogenesis. 
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CHAPTER II 

STRUCTURAL INFLUENCES ON PYRROLIZIDINE ALKALOID­

INDUCED CYTOPATHOLOGY 

ABSTRACT 

15 

Pyrrolizidine alkaloids (PAs), which are common constituents of hundreds 

of plant species around the world, have been reported to have cytotoxic, 

carcinogenic, anti-neoplastic, or genotoxic activity in vivo and in vitro. The 

mechanisms of these biological toxicities are not yet clear. The ability of eight 

PA congeners to inhibit mitosis and induce megalocyte formation in cultured 

bovine kidney epithelial (MDBK) cells was studied to examine possible structural 

influences on these endpoints. Representatives of the three PA structural 

groups, the macrocycles (seneciphylline, senecionine, riddelli ine, retrorsine, 

monocrotaline), open diesters (heliosupine, latifoline), and a necine base 

(retronecine), were co-cultured for 2 hr with NADPH generating system using the 

rat liver S9. Macrocylic PAs with a,/3-unsaturation (seneciphylline, senecionine, 

riddelliine, retrorsine) showed a dose-dependent inhibition of colony formation at 

50, 100, and 300 I-'M and induction of megalocytosis at 500 I-'M. Colony growth 

resumed 3 weeks after removal of PAs at 50 and 100 I-'M, and normal cellular 

morphology returned 5 or 6 weeks after removal of PAs at 500 I-'M. The 

saturated macrocyclic (monocrotaline) and open diesters (heliosupine and 

latifoline) elicited only a slight inhibition of colony formation and had no effect on 

cellular morphology at 500 I-'M. The necine base (retronecine) had no effect on 

either colony formation or cell morphology. Pyrrolic PAs (dehydrosenecionine, 

dehydromonocrotaline, dehydroretronecine) were more active in inhibition of 

colony formation than their parent compounds and were potent inducers of 
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abnormal cellular morphology at 500 JLM. An N-oxide metabolite, 

indicine-N-oxide, was completely inactive. The results support previous studies 

showing that there are structural influences on PA-induced cytopathological 

effects. 

INTRODUCTION 

Pyrrolizidine alkaloids (PAs), which are common plant constituents, have 

been reported to have potent anti-mitotic, hepatotoxic, and genotoxic activity in 

vivo and in vitro (Petry et a/., 1984, 1986: Kuhara et a!., 1980; Mattocks, 1968; 

Mori et a/., 1985; Schoental, 1975). Pyrrolizidine alkaloids induce severe acute 

or chronic liver and lung toxicities (Bull and Dick, 1959; Mclean, 1970). 

Mattocks (1968) suggested that pyrroles are also potent anti-mitotic agents. 

Pyrrolizidine alkaloids require metabolic activation to exert their biological 

action. Activated PAs then interact with cellular constituents (Green eta/., 1981 ; 

Segall et a/. , 1985; Griffin and Segall , 1986). Pyrrolizidine alkaloids are 

metabolically converted by cytochrome P-450 mixed-function oxidase to two 

major products: highly reactive and toxic pyrrole and the less toxic N-oxide 

(Mattocks and White, 1971 ). Pyrrolizidine alkaloids are classified into four major 

groups: macrocyclic diesters, open diesters, monoester, and necine base. The 

biological toxicities of PAs are thought to be related to a,{3-unsaturation in the 

structure of the necic acid esters and C 1-C2 unsaturation of the necine base 

(Bull eta!. , 1968; Mattocks, 1986; Mclean, 1970; Hincks eta!., 1991) and size of 

the macrocyclic ring could also be important. We demonstrated (Hincks et a/., 

1991) that a group of 12-membered ring macrocyclic PAs bearing an a,{3-

unsaturated ester function in the macrocycle were more potent DNA cross­

linkers than was monocrotaline, which contains an 11-membered macrocycle 
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and lacks the a,J3-unsaturation. These PAs were also more potent than open 

diesters and a necine base, retronecine. 

Some PAs induce DNA-protein and/or DNA-DNA interstrand cross-links in 

several in vivo or in vitro systems (Petry eta!., 1984, 1986; Candrian eta!., 

1985; Black and Jago, 1970; Hincks eta!., 1991 ; Niwa eta!., 1991; Reed eta/., 

1988). Pyrrolizidine alkaloids have been studied as chemotherapeutic agents 

(Letendre eta/., 1981; King eta/. , 1987). For example, indicine N-oxide, derived 

from Heliotropium indicum, has been found to have anti-tumor activity against 

leukemia and solid tumors. Many PAs are also mutagenic in the Salmonella I 

mammalian microsomal assay (Yamanaka eta/., 1979) and are genotoxic in the 

unscheduled DNA synthesis assay (Green eta/., 1981; Mori eta/., 1985). 

In PAs-exposed animals, enlarged cells or "megalocytes" are a common 

pathologic sequela and are postulated to be a result of the anti-mitotic action of 

PAs (Bull and Dick, 1959; Tandon eta!., 1978; Mclean and Mattocks, 1980). 

Lasiocarpine (Svoboda and Reddy, 1972) and its pyrrolic metabolite, 

dehydroheliotridine, have been shown to specifically inhibit late S or early G2 

phase of the cell cycle (Samuel and Jago, 1975). 

We have recently identified structural features that appear to be important 

in the DNA cross-linking capabilities of PAs (Hincks eta!., 1991 ). The purpose of 

the present study was to determine whether there are similar structure-activity 

relationships with respect to the cytotoxic and anti-proliferative action of a similar 

group of PAs in vitro. 

MATERIALS AND METHODS 

Chemicals. Seneciphylline and senecionine were isolates from Senecio 

vulgaris (common groundsel) and Senecio triangularis and furnished by Segall 
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(1979 a; b). Retronecine was made by hydrolysis of riddelliine. Riddelliine was 

an isolate from Senecio riddellii furnished by Molyneux et a/. (1979). 

Monocrotaline was purchased from Aldrich Chemical Company, Inc. (Milwaukee, 

WI). Heliosupine was an isolate from Cynoglossum officinale (hounds-tongue) 

furnished by Knight et a/. (1984). Latifoline was isolated and identified from 

H. floribunda by Hagglund et a/. (1985). lndicine N-oxide was provided by 

Matthew Suffness of the National Cancer Institute. Dehydro PAs 

(dehydrosenecionine, dehydromonocrotaline, dehydroretronecine) were 

prepared from their parent compounds (senecionine, monocrotaline, retronecine) 

by the method of Mattocks eta/. (1989) and the purity of products was checked 

by 1 H NMR (Culvenor eta/., 1970). The chemical structures of PAs used in this 

study are shown in Figure 11-1 . 

Cell Culture and Treatment Conditions. The Madin Darby bovine kidney 

(MDBK) epithelial cell line, strain CCL 22, was obtained from American Type 

Culture Collection (Rockville, MD). The cells were grown in Eagle's minimum 

essential medium with nonessential amino acids, L-glutamine (Gibco, Grand 

Island, NY) and supplemented with 1 mM sodium pyruvate and 1 0% iron­

supplemented calf serum (Hyclone laboratories, Logan, UT) at 37 °C in an 

atmosphere of 97% air and 3% C02. Cells (passage 112-130) were seeded on 

60-mm culture dishes or on 1 0-mm cover slips 22 hr prior to treatment. The 

medium was replaced with fresh medium containing 50 - 500 I-'M of the PA with 

an external metabolizing system which consisted of a NADPH-generating system 

and rat liver S9 for the parent compounds or without external metabolizing 

system for the metabolites and incubated at 37 °C for 2 hr. Alkaloids were 

dissolved in dimethylsulfoxide (DMSO) and were added directly to the medium in 

a volume that did not exceed 1% of the total volume. For the parent PAs, an 
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external metabolizing system was used which consisted of a NADPH-generating 

system and rat liver S9 as described by Madle et at. (1986). The S9 was 

prepared from Aroclor 1254-induced male Sprague-Dawley rat's liver according 

to Maron and Ames (1983). These fractions (protein content ca. 45 mg/ml) were 

pooled, stored at -80 °C, and the same batch was used in all experiments. The 

components of the S9 mix were 0.67 mM NADP, 0.83 mM glucose-6-phosphate, 

1.33 mM MgCI2, 10 mM phosphate buffer, with 2% rat liver S9 (all as final 

concentration in the culture medium). 

Colony-Forming Efficiency and Microscopic Examination. Colony-forming 

efficiency was determined by seeding 100 cells on 60-mm culture dishes 22 hr 

prior to treatment with PAs. The examination of megalocy1e formation and 

morphological changes was determined by seeding 500 cells on 1 0-mm cover 

slips 22 hr prior to treatment with PAs. After exposure to the PA for 2 hr, the 

medium was replaced with fresh medium, which contained 40 pg/ml gentamicin 

and 2.5 pg/ml amphotericin B, and cells were incubated for 6 weeks with medium 

changed every third day. At selected intervals, cells were stained with 0.2% 

methylene blue. Colony-forming efficiency was calculated by counting the 

number of growing colonies in the treated group divided by the number of 

colonies in the control group. All experiments were performed in duplicate and 

repeated at least twice. A subset of cultures was established for morphological 

and microscopic examination. For examination of megalocy1e formation and 

morphological changes, the treated cells on the cover slips were fixed with 

methanol, stained with 0.2% methylene blue, and examined by light microscopy. 

Measurement of cell area was done with a Leitz microscope and computer­

assisted planimetry (JAVA, Jande! Scientific) at 160X. Four fields were randomly 

selected and digitized for measurement, resulting in nine to twenty areas per the 



21 

selected time interval. Cell areas were measured by tracing the perimeters of 

digitized images of whole cells followed by computer assisted calculation of cell 

profile area. 

Statistical Evaluations. Data were analyzed by one-way analysis of 

variance, and where appropriate, a post hoc Fischer's LSD was conducted to 

determine significance between groups. A level of p < 0.05 was chosen as 

significant. 

RESULTS 

Pyrrolizidine alkaloids were not cytocidal to the MDBK cell cultures 

because cells which were exposed to the highest pyrrolizidine alkaloid 

concentration, 500 f'M, were viable as determined by trypan blue dye exclusion 

(data not shown). The effect of various PAs on the colony-forming efficiency of 

MDBK cells is shown in Figures 11-2 and 11-4. Of those examined, the macrocyclic 

a,{J- unsaturated diesters (senecionine > seneciphylline > riddelliine > retrorsine) 

were the most potent in inhibiting colony formation. Cells resumed normal growth 

at 50 and 100 f'M, 2 or 3 weeks after removal of these PAs (senecionine, 

seneciphylline, retrorsine, riddelliine) from culture, respectively. The highest 

concentration of these PAs (300 I-'M) caused a complete cessation of cell 

growth for 6 weeks (Fig. 11-2). Cell growth was only slightly suppressed following 

exposure to 500 I-'M of monocrotaline, heliosupine, or latifoline, and normal 

growth resumed 2 weeks after removal of compound. The necine base 

retronecine and indicine N-oxide were inactive in our cell system. The pyrrolic 

metabolites, dehydrosenecionine, dehydromonocrotaline and 

dehydroretronecine, were more active in inhibiting colony formation than were 

their corresponding parent compounds at the same concentration (Fig. 11-3, 11-4). 
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Fig. 11-2. Colony-forming efficiency in the macrocyclic a,(i-unsaturated diester 
pyrrol izidine alkaloid-exposed cells. The results are presented as colony­
forming efficiency where 1.0 represents no inhibition of colony formation. Data 
are mean :t S.E. *Significant difference compared to the next highest 
concentration (P < 0.05) at the same time point. 
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The morphologic appearance of cells treated with selected PAs is 

presented in Figure 11-5. In cells exposed to 500 I-'M of the macrocyclic a,/3-

unsaturated diester PAs, enlarged cellular morphology appeared 3 days after 

removal of the PA (data not shown). In these cells, the cell area was increased 

nearly 1 0-fold compared to control cells, and the cytoplasm of the megalocytes 

was thin and stretched, and the nucleus appeared condensed (Fig. 11-5, 11-6). A 

return to normal cellular morphology occurred after 4 weeks, but some 

megalocytes persisted adjacent to normal cells up to 6 weeks after treatment. In 

monocrotaline-treated cultures, a few megalocytes appeared, but the cell size 

was only sightly increased and returned to normal within 2 weeks. Treatment 

with heliosupine or latifoline caused slight megalocytosis and the size of the 

cells returned to normal within 1 or 2 weeks after treatment. Treatment with 

retronecine, or indicine N-oxide, did not cause any detectable cytopathological 

changes. Compared to their parent compounds, the pyrrolic metabolites 

dehydrosenecionine, dehydromonocrotaline, or dehydroretronecine were more 

potent inhibitors of cell division (Fig. 11-4) and potent inducers of enlarged cells 

although persistent megalocytosis was seen only in cultures exposed to 

dehydromonocrotaline (Fig. 11-5, 11-6). 

DISCUSSION 

In a previous study from our laboratory, in which we examined the relative 

DNA cross-linking abilities of pyrrolizidine alkaloids in the same cell system, we 

found that PAs with the 11-membered macrocyclic a,{3-unsaturated ester group 

of PAs (senecionine, seneciphylline, retrorsine, riddelliine) were the most potent 

DNA cross-linkers (Hincks eta/., 1991 ). Several workers have also reported PA­

induced DNA-protein and/or DNA-DNA cross-links, and PA-induced cytotoxicity 
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necine base pyrrolizidine alkaloid-exposed cells. 
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Fig. 11-5. Phase-contrast photomicrographs of pyrrolizidine alkaloid-exposed 
cells. Cells were exposed to 500 ILM of pyrrolizidine alkaloids, washed, 
supplemented with fresh medium, and then cultured for 6 weeks. Cells were 
exposed to (a) DMSO, (b) seneciphylline (SP), (c) retrorsine (RR), (d) riddelliine 
(RD), (e) monocrotaline (MO), and (f) retronecine (RN). X400. 
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Fig. 11-6. Changes in cell area due to 500 !LM of pyrrolizidine alkaloid treatment. 
The exposed cells were washed, supplemented with fresh medium, and cultured 
for 6 weeks. The results are represented as cell areas (mm2) by computer­
assisted calculation of cell profile area. *Significant difference (P < 0.05) 
compared to control cells. 
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in vivo or in vitro systems (Black and Jago, 1970; Cardrian eta/., 1985; Griffin 

and Segall, 1986; Hayes eta/., 1984, Lieber eta/., 1981 ; Moore eta/., 1989; 

Petry eta/. , 1984, 1986; Pow is eta/. , 1979). The present data indicate that those 

PAs, which were shown in previous studies to be potent DNA cross-linkers, are 

also potent inducers of cytopathologic changes. Therefore, taken together with 

previous work, the present data support the hypothesis that DNA cross-linking 

activity is an important mechanism underlying PA bioactivity. Pyrrolizidine 

alkaloids with the macrocyclic a,/3-unsaturated diester were by far the most 

potent inducers of megalocytosis. Monocrotaline, the 12-membered macrocyclic 

that does not have an a,/3-unsaturated ester group, showed only weak effects as 

did the open diesters, heliosupine and latifoline. The necine base, retronecine, 

which is not a potent DNA cross-linker, was also inactive in the present study as 

was indicine N-oxide. 

A key to the structure-activity relationships was the discovery that pyrrolic 

PAs were more potent inhibitors of colony formation than their parent 

compounds. Recently, Muller et a/. (1992) demonstrated the importance of 

metabolic activation in the genotoxic activity of PAs. Particularly striking was the 

fact that dehydromonocrotaline was highly active, while the parent compound, 

which was activated by the external metabolizing system, had very low activity. 

This suggests that the structural features which distinguish monocrotaline from 

the other macrocyclic pyrrolizidine alkaloids are not important determinants of 

biological activity itself, but are related to proper formation of the pyrrolic 

metabolite. It is likely that the external metabolizing system converts 

monocrotaline more rapidly to the N-oxide than to the dehydro form, while the 

opposite is the case for seneciphylline, retrorsine, riddelliine, and senecionine. 

This is in line with the relative in vitro conversion by rat liver microsomal 
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enzymes of monocrotaline to N-oxide or pyrrole compared to retrorsine and 

senecionine (Mattocks and Bird, 1983). It is also possible that pyrrolic PAs are 

hydrolyzed in our system to dehydroretronecine (Mattocks, 1986). 

Those PAs which were most active in suppressing colony formation were 

also most active in inducing megalocytosis. Pyrrolizidine alkaloid-induced mitotic 

inhibition and formation of megalocytosis have been observed in vivo or in vitro 

(Armstrong et a/. , 1972; Bull and Dick, 1959; Mattocks, 1986; Mattocks and 

Legg, 1980; Schoental and Magee, 1957; 1959). A series of PAs were shown to 

induce megalocytosis that persisted for up to 2 weeks in cultured liver cells and 

that the time frame of cell enlargement coincided with that of mitotic inhibition 

(Mattocks and Legg, 1980). Megalocytes with large and abnormally shaped 

nuclei are frequently seen in livers of PA-exposed animals, which is consistent 

with an inhibition at the late S or G2 phase of the cell cycle, a condition in which 

synthesis occurs but not cell division (Samuel and Jago, 1975). 

The mechanism of PA-induced megalocytosis has long been presumed to 

involve mitotic inhibition. Jago (1969) suggested that megalocyte formation by 

pyrrolizidine alkaloids is due to the persistent inhibition of mitosis (Jago, 1969; 

Peterson, 1965). However, Armstrong et a/. (1972) found that lasiocarpine 

induced a partial inhibition of DNA synthesis in cultured human fetal liver and 

lung cells but the phenomenon was not directly related to mitotic inhibition. 

Megalocytes induced by lasiocarpine were able to synthesize DNA but failed to 

divide (Armstrong eta/., 1972). 

In my system, cells exposed to the most potent PAs regenerated 

approximately 6 weeks after treatment. Similarly, Schoental and Magee (1959) 

reported that megalocytes that persisted for up to 2 years appeared in the livers 

of PA-treated rats. Megalocytosis is also stimulated either by partial 
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hepatectomy, or following administration of thioacetamide or a necrogenic agent 

such as dimethylnitrosamine (Downing and Peterson, 1968; Samuel and Jago, 

1975; Mattocks, 1978). Culvenor eta/. (1976) reported that chronic treatment 

with dehydromonocrotaline or dehydrosenecionine caused severe liver damage 

in the rat, but there was no evidence of megalocy1e formation. My work 

demonstrated that dehydromonocrotaline was a more potent inducer of 

megalocy1es compared to monocrotaline that was activated with an external 

metabolic system. However, dehydrosenecionine or dehydroretronecine were 

only mildly active in inducing megalocytes. The explanation for this observation 

is not clear, but it is possible that these reactive pyrrolic (dehydro) PAs bind with 

nonnuclear constituents in the cell . 

One PA examined here, indicine N-oxide, has been investigated for its 

anti-tumor activity. Poster eta/. (1981) suggested that the anti-tumor activity of 

indicine N-oxide is mediated via an anti-mitotic effect. Letendre et a/. (1984) 

also studied anti-tumor activity of indicine N-oxide in human acute leukemia and 

reported myelo-suppression, hepatotoxicity, and anti-leukemic activity. My 

results would indicate, at least in the cell system employed, that indicine N-oxide 

is only modestly active in mitotic inhibition compared to other PAs. This would be 

expected because indicine N-oxide must first be reduced to indicine before it 

can be activated to the pyrrolic form of metabolite, which is responsible for 

toxicity (Powis eta/., 1979). It is also possible that in this cell system, indicine 

N-oxide does not enter the cell efficiently. 
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CHAPTER Ill 
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Pyrrolizidine alkaloids (PAs), which are common constituents of hundreds 

of plant species around the world, are potent cross-linkers with DNA and/or 

protein, and are also cytotoxic, carcinogenic, and anti-carcinogenic. In this 

study, I investigated PA-induced DNA-DNA cross-links induced by PAs as 

assessed by alkaline elution, electrophoretic band shifting, primer extension 

using PCR, and differential restriction endonuclease digestion. At 300 and 

500 f.!M, chemically activated PAs were potent DNA cross-linkers as assessed 

by alkaline elution with a potency order of dehydrosenecionine > 

dehydromonocrotaline > dehydroseneciphylline > dehydroriddelliine. At 500 f.!M, 

the DNA cross-linking activity of these metabolites exceeded that of their parent 

compounds. Dehydroretronecine and indicine N-oxide did not induce detectable 

DNA cross-links. Macrocyclic diester pyrroles also induced DNA-DNA cross­

links in Bst Ell-digested A.-phage DNA or Bam HI-digested pBR322 DNA in a 

dose-dependent manner. Dehydrosenecionine and dehydromonocrotaline were 

potent DNA-DNA interstrand cross-linkers but dehydroretronecine and indicine 

N-oxide were not. Because dehydrosenecionine showed a preference for cross­

linking at the Ava II, Fok I, or Taq I recognition site in pBR322 plasmid DNA, this 

appeared to cross-link 5'-d(GG) or 5'-d(GA) sequences most frequently. The 

macrocyclic diester pyrroles such as dehydrosenecionine, 

dehydroseneciphylline, dehydroriddelliine, and dehydromonocrotaline were the 

most potent inducers of DNA-DNA cross-links, indicating that the cross-linking 
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potency is inherent to the PA and that the cross-link formation does not proceed 

through a common reactive intermediate. 

INTRODUCTION 

Pyrrolizidine alkaloids, which are found in a variety of plants including 

Senecio, Crotalaria, and Heliotropium, are hepatotoxic, carcinogenic, mutagenic, 

or anti-carcinogenic in vivo and in vitro (1-7). Humans and other animals are 

susceptible to the toxic effects of PAs. Monocrotaline and jacobine induce DNA­

protein and DNA interstrand cross-links but not DNA strand breaks in rat liver in 

vivo (8, 9). Monocrotaline pyrrole induces DNA cross-links and inhibits cell 

proliferation as well as morphologic, hemodynamic, and biochemical changes in 

porcine pulmonary artery endothelial cells and rat lung (1 0, 11 ). 

Pyrrolizidine alkaloids are metabolized by the cytochrome P-450 mixed­

function oxidase, resulting in a highly reactive and toxic pyrrole, and N-oxide, 

which is less toxic (12-15). The PA-induced cytopathologic changes in vivo and 

in vitro are due to the anti-mitotic effects of PAs (16-19), which inhibit the late S 

or early G2 phase of the cell cycle (20, 21 ). 

Dehydroretronecine reacts with purine and pyrimidine nucleotides. The N-

2 site of guanosine, the N-6 site of adenosine, and the 0-2 site of uridine and 

deoxythymidine have been identified as targets (22-24). Dehydroretronecine 

also cross-links pBR322 plasmid DNA and M13 viral DNA (25). Our laboratory 

has shown that the macrocyclic a,(l-unsaturated diesters such as seneciphylline, 

riddelliine, retrorsine, and senecionine are potent DNA cross-linkers in cultured 

cells (26). These PAs were also potent inhibitors of colony formation and 

inducers of cytopathologic changes, an indication that PA-induced DNA cross­

linking activity is closely related to the inhibition of cell proliferation (19, 26). 
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The purpose of this study was to characterize the nature of PA-induced 

DNA cross-links and to determine if there are structural features that influence 

DNA-DNA cross-link formation by PAs. Several representative parent PAs and 

chemically activated pyrrolic PAs were used to determine possible structure­

activity relationships. 

MATERIALS AND METHODS 

Materials 

Chemicals. Senecionine, seneciphylline, retrorsine, and retronecine were 

isolates from Senecio vulgaris and Senecio triangularis and furnished by Segall 

(27, 28). Retronecine was made by hydrolysis of riddelliine. Riddelliine was an 

isolate from Senecio riddellii furnished by Molyneux et al. (29) and monocrotaline 

was purchased from Aldrich Chemical Company, Inc. (Milwaukee, WI). lndicine 

N-oxide was provided by Matthew Suffness of the National Cancer Institute. 

Pyrrolic metabolites (dehydrosenecionine, dehydroseneciphylline, 

dehydroriddelliine, dehydromonocrotaline, and dehydroretronecine) were 

prepared from their parent compounds (senecionine, seneciphylline, riddelliine, 

monocrotaline, and retronecine, respectively) by the method of Mattocks et a/. 

(30), and purity was confirmed by 1H NMR (31). Pyrrolic metabolites were 

dissolved in DMSO, and stored at -80 oc in capped amber vials filled with inert 

gas. The chemical structures of PAs used in this study are shown in Figure 1. 

Cis-dichlorodiammine platinum (II), mitomycin C, lysozyme (EC 3.2.1.17), 

RNAse I (EC 3.1.2.75), proteinase K (EC 3.4.21 .14), ampicillin, tetracycline, and 

ethidium bromide were obtained from Sigma Corporation (St. Louis, MO). 

Eagle's Minimum Essential Medium was purchased from Sigma Corporation (St. 
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Louis, MO) and iron supplemented calf serum was purchased from Hyclone 

Laboratories, Inc. (Logan, UT). Methyi-[3H]-thymidine was purchased from New 

England Nuclear (Boston, MA). Bst Ell-digested A.-phage DNA was obtained 

from New England BioLabs (Beverly, MA). Bacto-tryptone and bacto-yeast were 

purchased from Difco (Detroit, Ml). Restriction endonucleases (Ava II, Eco Rll , 

Fok I, Hint I, Mbo II, Taq I) were obtained from Promega Corporation (Madison, 

WI). Taq polymerase, dATP, dTIP, dCTP and dGTP were obtained from Perkin 

Elmer Cetus (Norwalk, CT). The primers used for the polymerase chain reaction 

(PCR) were synthesized by the Biotechnology Center (Utah State University, 

Logan, UT) via an oligonucleotide synthesizer (Applied Biosystem 380B DNA 

synthesizer). Swinex filter holders and polyvinylchloride filters were obtained 

from Millipore Corporation (San Francisco, CA). 

Methods 

Cell Culture and Treatment Conditions. Madin Darby bovine kidney 

(MDBK) epithelial cells, strain CCL 22 (American Type Culture Collection, 

Rockville, MD), were grown in Eagle's Minimum Essential Medium with 

nonessential amino acids, L-glutamine, 1 mM sodium pyruvate, and 10% iron 

supplemented calf serum at 37 °C in an atmosphere of 97% air and 3% C02. 

Cells (passage 112-130) were seeded in 60-mm diameter culture dishes for 

alkaline elution assay 24 hr prior to labeling with methyi-[3H]-thymidine. The 

medium was then replaced with fresh medium, and treated with 300 or 500 11M of 

PAs or pyrroles. Parent PAs were activated with an external metabolizing system 

consisting of a NADPH-generating system and rat liver S9 as described by 

Hincks et a/. (26). Pyrrolizidine alkaloids were added directly into the medium in 

a volume that did not exceed 1% of total volume. Cell viability for all treatment 
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groups exceeded 90% as determined by trypan blue dye exclusion (data not 

shown). 

Cellular DNA Cross-links by Alkaline Elution. The PA-treated cells were 

washed and the medium was replaced with cold PBS (0.12 M NaCI, 4 mM KCI, 

0.5 mM Na2HP04, 0.1 mM KH2P04, pH 7.4). The cells were then exposed to 

1000 rad of y-irradiation at 0 °C using a 137Cs irradiator at a dose rate of 171 

rad/min. The source was calibrated using the Fricke's ferrous sulfate dosimetry 

method (32). Alkaline elution was conducted as described previously (26). 

DNA-DNA Cross-/inks in A.-phage or pBR322 DNA. pBR322 plasmid DNA 

was amplified in bacterial E. coli host (strain RR1) by overnight culture at 37 °C 

in LB medium (1% bacto-tryptone, 0.5% bacto-yeast, and 0.89 M NaCI) 

containing 15 llg/ml tetracycline and 50 1-1g/ml ampicillin. pBR322 plasmid DNA 

was purified by the rapid alkaline method (33). Briefly, E. coli cells were 

harvested by centrifugation at 5000 rpm for 10 min at 4 °C and the pellet was 

lysed (25 mM NaCI, 10 mM EDTA, 15% sucrose, 2 mg/mllysozyme) for 20 min 

at 0 °C. The lysate was incubated in 0.04 M NaOH with 0.04% SDS for 10 min, 

and 0.075 M NaC2H302, pH 4.6 was added. The mixture was incubated for 20 

min at 0 °C followed by centrifugation at 10,000 rpm for 15 min. RNAse (1 

mg/ml) was added to the supernatant and the mixture was incubated for 20 min 

at 37 °C. The sample was purified by phenol : chloroform (1 :1, v/v) extraction 

and precipitated with ethanol. The DNA was dissolved in TE buffer (10 mM Tris­

HCI, 1 mM EDTA, pH 7.4), and repurified by adding 0.4 M NaCI and 6.5% (v/v) 

polyethylene glycol for 1 hr at 0 °C, then centrifuged at 10,000 rpm for 10 min. 

The plasmid was dissolved in TE buffer, pH 7.4 (10 mM Tris-HCI, 1 mM EDTA). 

Bam HI-digested (1 U/1-1g DNA for 1 hr at 37 °C) pBR322 plasmid DNA or Bst 

Ell-digested A.-phage DNA (NEB) was treated with the pyrrolic 
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(dehydrosenecionine, dehydromonocrotaline, dehydroretronecine) or N-oxide 

metabolite (indicine N-oxide) at DNA : PA (w:w) ratios of 1:0.5, 1.0, 2.0 for 2 hr 

at 0 °C. A similar treatment ratio of cis-dichlorodiammine platinum(ll) or 

mitomycin C was used as a positive cross-link control. After treatment, DNA 

samples were precipitated with ethanol to remove excess cross-linkers. The 

DNA-DNA cross-links were analyzed on 1% agarose gels stained with ethidium 

bromide (34). The observed DNA band shifting was photographed by a Polaroid 

MP-4 camera system using Polaroid Type 667 film. 

Pyrrolizidine Alkaloid-induced Interruption of Primer Extension by PCR. 

p8R322 plasmid DNA was incubated with pyrrolic metabolites 

(dehydrosenecionine, dehydroseneciphyll ine, dehydroriddelliine, 

dehydroretronecine), indicine N-oxide or known DNA cross-linkers (cis­

dichlorodiammine platinum(ll), mitomycin C) for 2 hr at 0 °C and precipitated 

with ethanol. The treatment ratios (DNA:PA, w:w) were 1 : 0.001 , 0.01 , 0.1, 0.25, 

0.5, 1.0, and 2.0. 

The treated pBR322 plasmid DNA was then used as a template for PCR. 

Two primers, one complementary to the forward sequences from the Pst I 

recognition site (5' GCT AGA GTA AGT AGT TCG CC 3'), and one 

complementary to the reverse sequences from the Bam HI recognition site (5' 

CAC GAT GCG TCC GGC GTA GA 3') were used. The reaction mixture (50 Ill), 

which consisted of 4 ng of template DNA, 1 00 11M of each primer, 1 mM of each 

dNTP (dATP, dCTP, dGTP, dTTP), Taq polymerase buffer, and 1.25 U of Taq 

polymerase, was cycled for 1 min 10 sec at 55 °C, 1 min 20 sec at 70 °C, and 1 

min 10 sec at 93 °C for 40 cycles in a DNA thermal cycler (EricComp, San 

Diego, CA). The PCR products were separated on 1% agarose gels and then 

stained with ethidium bromide. 
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Pyrrolizidine Alkaloid-induced Interruption of Restriction Endonuclease 

Digestion in pBR322 DNA. Circular or supercoiled double-stranded pBR322 

plasmid DNA and Bst Ell-digested A.-phage DNA, which contained 13 fragments 

of linear double-stranded DNA, were treated with PA for 2 hr at 0 °C, and 

precipitated with ethanol. The DNA : PA ratios used were 1:0.5 and 1:1 (w:w). 

The DNA was then digested by 3 U/Jlg DNA for 3 hr at 37 oc with Ava II, Fok I, 

Hinf I or Mbo II or for 3 hr at 63 oc with Eco Rll or Taq I. The digests were 

separated on 1% agarose gels stained with ethidium bromide (34 ). The 

recognition sites, size of fragments, number of cuts, and recognition sequences 

of restriction enzymes are shown in Table 111-1. Bst Ell-digested A.-phage DNA 

was treated with 1:1 ratio (w:w) of PA for 2 hr at 0 °C, precipitated with ethanol , 

and then digested by 3 U/Jlg DNA for 3 hr at 37 °C with Eco Rl. 

Statistical Evaluation. Data were analyzed by one-way analysis of 

variance, and where appropriate, a post-hoc Fisher's LSD was conducted to 

determine significance between groups. The significance level was P < 0.05. 

RESULTS 

Cellular DNA Cross-links by Alkaline Elution 

DNA cross-links induced by pyrrolic PAs and their parent PAs are shown 

in Tables 111-2 and 111-3. The pyrrolic metabolites such as dehydrosenecionine, 

dehydroseneciphyll ine, dehydroriddelliine, and dehydromonocrotaline potently 

induced potent DNA cross-links at 300 JlM and 500 JlM. The pyrroles were 

generally more potent DNA cross-linkers than their parent compounds. The 

potency of DNA cross-l inking activities induced by dehydroretronecine and 

indicine N-oxide were similar to their parent compounds, retronecine and 

indicine, respectively. The potency of DNA cross-linking activity induced by 
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Table 111-1. Recognition sites of restriction enzymes and fragment sizes of 
pBR 322 plasmid. 

ENZYME RECOGITION NO. LOCATION OF FRAGMENT SIZE 
SITE OF RECOGNITION SITES (BP) 

CUTS 

Ava II 5'GJ.GWCC3' 8 799 887 1136 1439 1744 1434 303 279 
1481 1760 3504 3726 249 222 88 42 

EcoRII 5'CC~WGG3' 6 130 1059 1442 2500 1857 1058 929 383 
2621 2634 121 13 

Fokl 5'GGATG(N)al3' 12 112 133 987 1032 1175 854 659 649 
1681 1770 1848 2007 287 182 181 141 
2148 3346 3527 3814 78 66 45 44 

Hinfl 5'G~NTC3' 10 632 852 1006 1304 1632 517 504 396 
1525 2029 2373 2448 344 298 221 220 
2844 3361 154 75 

Mboll 5'GAAGA(N)813' 11 464 738 1009 1601 792 755 751 592 
2352 3123 3214 3969 494 271 253 196 
4047 4156 4352 109 78 70 

Taq I 5'UCGA3' 7 24 339 652 1127 1444 1305 475 368 
1268 2573 4017 315 313 141 

W : A or T, and N : any base 
Arrows represent the cutting site 
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dehydromonocrotaline was similar to that of dehydroseneciphylline. 

Monocrotaline was only as potent as retronecine. About half of the total cross­

links induced by pyrrolic PAs were proteinase K-resistant or DNA-DNA cross­

links (Table 111-3). 

DNA-DNA Cross-links in A.-phage or 
pBR322DNA 

Band shifts induced by pyrrol ic PAs in Bst Ell-digested A.-phage DNA are 

presented in Figures 111-2 and 111-3. In this experiment, DNA-DNA cross-links 

caused an apparent increase in molecular weight of the target DNA evident as a 

band shifting toward the top of the gel. In this system, dehydrosenecionine 

induced the potent DNA-DNA cross-links, and did so in a dose-dependent 

manner (Fig . 111-2). Dehydromonocrotaline also cross-linked, but it was less 

potent than dehydrosenecionine which is evident as less band shifting toward 

the top of the gel. Dehydroretronecine and indicine N-oxide did not cause band 

shifting (Fig. 111-2). Cis-dichlorodiammine platinum (II), used as a positive control , 

induced band shifting at a potency similar to dehydromonocrotaline. Mitomycin 

C, which was also included as a standard, did not induce band shifting in this 

system (Fig. 111-2). Compared to pyrrolic metabolites, parent PA itself did not 

induce any DNA-DNA cross-linking at 500 J.!M (Fig. 111-3). Similarly, in Bam HI­

digested pBR322 DNA, dehydrosenecionine and dehydroseneciphylline were 

the most potent inducers of DNA-DNA cross-links (Fig. 111-4), especially at the 

high dose ratio. Dehydromonocrotaline also induced potent DNA-DNA cross­

links, but the potency was less than macrocyclic a , p-un saturated diester pyrroles 

(dehydrosenecionine, dehydroseneciphylline) and similar potency of 

dehydroriddell iine at a 1:2 (DNA:PA, w:w) dose ratio. Dehydroretronecine or 



Table 111-2. Pyrrolizidine alkaloid-induced total DNA cross-links1 .2.3.4 

ALKALOIDS METABOLITES PARENT PAs 
300 t' M 500 t' M 500 t' M 

Dehydrosenecionine 1.46 :t 0.14• 2 .13 :t 0.24• 1.16;t0.18• 

Dehydroseneciphyll ine 0.74 :t 0.17b,c 1.59 :t 0.18b 1.05 :t o.oga 

Dehydroriddelliine 0.68 :t 0.08b 1.35 :t 0.24b 1.00 :t 0.07• 

Dehydromonocrotaline 1.11 :t 0.18° 1.49 :t 0.22b 0.09 :t 0.05b 

Dehydroretronecine 0.18 :t 0.01 d 0.18 :t 0.02° 0.12 :t 0.03b 

lndicine N-oxide ND4 0 .03 :t 0.01C 0.05 :t 0.01 b 

1Treatments were for 2 hr at 37 °C. 
2Data presented as mean total DNA cross-link indices :t S.E. from at least 
three independent experiments. 
3Cross-link indices with different superscripts are significantly different (P 
< 0.05) by one-way ANOVA and F-test with in same concentration. 
4ND, not detectable. 
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Table 111-3. Pyrrolizidine alkaloid-induced proteinase K-resistant 
(DNA-DNA) cross-links1 

ALKALOIDS 300 fLM2'3 %4 

Dehydrosenecionine 0.67.:!: 0.09• 0.46.:!: 0.05 

Dehydroseneciphylline 0.25.:!: 0.04b 0.49.:!: 0.09 

Dehydroriddelliine o.36.:!: o.o5•.b 0.55.:!: 0.12 

Dehydromonocrotal ine 0.53.:!: 0.04•.b 0.51.:!:0.10 

Dehydroretronecine 0.08.:!: 0.04< 0.46.:!: 0.26 

lndicine N-oxide ND5 ND 

1As measured by alkaline elution. 

47 

2Data are presented as mean DNA proteinase K-resistant 
cross-link indices.:!: S.E. which we define as DNA-DNA 
cross-links. Data are from at least three independent experiments. 
3Values with different superscripts are significantly different 
(P< 0.05) by one-way ANOVA and F-test. 
4The fraction of DNA-DNA cross-links .:!: S.E. of total DNA cross­
links. 
SND, not detectable. 



DNA : Pyrrole Ratio 

1:0.5 1:1 1:2 
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Fig. 111-2. Band shifting analysis of PA-induced DNA-DNA cross-links in 
Bst Ell-digested !..-phage DNA at three dose ratios (DNA:pyrrole, w:w) 
visualized in ethidium bromide-stained 1% agarose gels. 
Dehydrosenecionine (lane 2) was the most potent inducer of DNA-DNA 
cross-links. Lane 1, DMSO. Lane 2, dehydrosenecionine. Lane 3, 
dehydromonocrotaline. Lane 4, dehydroretronecine. Lane 5, indicine N­
oxide. Lane 6, cis-dichlorodiammine platinum (II). Lane 7, mitomycin C. 
M, molecular weight markers (,...) 
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A. phage DNA 

1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 111-3. Band shifting analysis of DNA cross-links in Bst Ell-digested A.­
phage DNA by PA alone or pyrroles at 500 1-!M in ethidium bromide­
stained 1% agarose gel. Monocrotaline (lane 8) alone did not induce any 
DNA cross-links compare to dehydromonocrotaline (lane 9). Lane 1-2, A.­
phage Bst Ell-digested DNA alone. Lane 3, 4 mM of mitomycin C. Lane 4, 
1 mM of cis-dichlorodiammine platinum (II). Lane 5, DMSO. Lane 6, 
senecionine. Lane 7, dehydrosenecionine. Lane 8, monocrotaline. Lane 
9, dehydromonocrotaline. Lane 10, retronecine. Lane 11 , 
dehydroretronecine. Lane 12, indicine N-oxide. 
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indicine N-oxide did not induce DNA-DNA cross-links. Cis-dichlorodiammine 

platinum (II) induced mild DNA cross-links, and mitomycin C did not induce DNA­

DNA cross-links at the same dose. 

Pyrrolizidine Alkaloid-induced Interruption 
of Primer Extension by PCR 

The ability of various pyrroles to cross-link a 1.129 kb region of p8R322 

between the reverse direction of a Bam HI recognition site and the forward 

direction of a Pst I recognition site is presented in Figure 111-5. In th is experiment, 

the macrocyclic diesters, dehydrosenecionine and dehydromonocrotaline, 

interrupted the primer extension by PCR as evidenced by the disappearance of 

the 1.129 kb product. At the low dose ratios (1 :0.001, 0.01 , 0.1, 0.25; DNA:PA, 

w:w), these pyrroles did not induce any DNA interstrand cross-links (data not 

shown). However, at higher dose ratios (1 :0.5, 1:1, 1:2) (Fig. 111-5), 

dehydrosenecionine induced the most potent DNA interstrand cross-links. 

Dehydromonocrotaline also induced potent DNA interstrand cross-links but less 

than that of dehydrosenecionine. Dehydroretronecine and indicine N-oxide had 

no effect in this system. Cis-dichlorodiammine platinum(ll) and 

dehydrosenecionine induced DNA interstrand cross-links at the same potency. 

Pyrrolizidine Alkaloid-induced Interruption 
to Restriction Endonuclease Digestion 
of pBR322 DNA 

The ability of pyrrolic PAs-induced DNA-DNA cross-links within 

recognition sites of various restriction endonucleases to inhibit the enzymatic 

action was then studied to determine possible sequence preferences of pyrrolic 
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1 :1 1:2 

8Kb • 
8Kb • 

2Kb • 

2Kb • 

Fig. 111-4. Band shifting analysis of PA-induced DNA-DNA cross-links in Bam HI­
digested pBR322 plasmid DNA at the dose ratios 1:1, and 1:2 (DNA:pyrrole, 
w:w) in ethidium bromide-stained 1% agarose gels. DNA cross-linking can be 
seen as a shifting of DNA bands founds on top of the gel. Band shifting was 
most evident in DNA treated with dehydrosenecionine (DHSN) and 
dehydroseneciphylline (DHSP). DNA treated with cis-dichlorodiammine platinum 
(II) (CIS) and mitomycin C (MMC) are included for comparison. Lane 1, pBR322 
alone. Lane 2, Bam HI-digested pBR322. 
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Fig. 111-5. Effect of pyrrole-induced cross-links on PCR amplification of pBR322 
plasmid DNA. DNA products were separated on ethidium bromide-stained 1% 
agarose. Primers used and amplification conditions are outlined in Materials and 
Methods. Dehydrosenecionine was the most potent DNA interstrand cross-linker 
as evident by disappearance of the amplified 1.129 kb segment. The dose ratios 
of DNA : pyrrole were; 1:0.5 (lane 1), 1:1 (lane 2), and 1:2 (lane 3) (w:w). 
(Arrow head) DMSO. (M) molecular weight markers. 
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PA-induced DNA cross-links. The enzymatic action of Eco Rl was inhibited by 

treatment of Bst Ell-digested A.-phage DNA with dehydrosenecionine as 

evidenced by disappearance of the 0.9 kb DNA band. Dehydromonocrotaline, 

dehydroretronecine, or indicine N-oxide did not inhibit the enzymatic action of 

Eco Rl (Fig. 111-6). 

In pBR322 plasmid DNA, dehydrosenecionine significantly inhibited the 

endonuclease action of Ava II , Fok I, and Taq I at the high dose ratio 

(DNA: cross-linker, 1:1; w:w}, moderately inhibited that of Eco Rll (ca. 0.4 kb) and 

Mbo II (ca. 0.75, 0.6 kb}, and least inhibited with Hint I (ca. 0.2, 0.4, 0.75 kb) 

(Fig. 111-7) observed as missing DNA bands. Cis-dichlorodiammine platinum (II) 

induced cross-links within the recognition sites of all of these restriction 

endonucleases. Dehydromonocrotaline induced few cross-linking sites (around 

0.5 and 0.7 kb) with Mbo II. Dehydroretronecine, indicine N-oxide, or mitomycin 

C did not cross-link within the recognition sites of these restriction 

endonucleases, because the band patterns of these groups were the same as 

that of control. 

DISCUSSION 

The purpose of this study was to characterize the pyrrolic PA-induced 

DNA-DNA cross-links and to determine whether structural features on PAs can 

influence the pyrrolic PA-induced DNA-DNA cross-linking activity. From previous 

studies in our laboratory, macrocyclic a.,p-unsaturated diester PAs such as 

seneciphylline, riddelliine, retrorsine, and senecionine were the most potent 

DNA cross-linkers as determined by alkaline elution (26}, and had the most 

potent anti-mitotic and cytopathologic effects (19) in cell culture relative to other 

structural classes of PAs. In this study, I examined the types and degrees of PA-
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). phage DNA EcoR I 

Fig. 111-6. Evaluation of the ability of various pyrroles to cross-link DNA and their 
cross-linked sites in Bst Ell-digested A.-phage DNA. For the detection of the 
cross-linked site, Bst Ell-digested A.-phage DNA was cut with Eco Rl after 
treatment with pyrroles at the dose ratio, 1:1 (DNA:pyrrole, w:w) and analyzed in 
ethidium bromide-stained 1% agarose gel. Dehydrosenecionine (DHSN) and 
dehydromonocrotaline (DHMO) induced mild DNA cross-linking at Eco Rl 
recognition sites around 1 kb. DHRN, dehydroretronecine; INO, indicine N­
oxide; CIS, cis-dicholrodiammine platinum (II); MMC, mitomycin C; M, molecular 
marker. 
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1 :0.5 (DNA : cross-l inker, w:w) 

A 
Ava 11 EcoR II FOk I 

Mbo II Taq I 

Fig. 111-7. Effect of pyrrole-induced DNA cross-links on digestion pattern of 
pBR322 plasmid DNA by six restriction endonucleases. The DNA was treated 
with pyrroles or known cross-linkers as positive controls at 1:0.5 (DNA : cross­
linker, w:w; panel A, 8), and 1:1 (panel C, D) dose ratios using ethidium 
bromide-stained 1 % agarose gel. Dehydrosenecionine (lane 3) was the most 
potent DNA cross-linker and the cross-linked sites were at Ava II , Eco Rll , Fok I, 
Mbo II , and Taq I recognition sites. Lane 1, pBR322 plasmid DNA alone. Lane 
2, DMSO. Lane 3, dehydrosenecionine. Lane 4, dehydromonocrotaline. Lane 5, 
dehydroretronecine. Lane 6, indicine N-oxide. Lane 7, cis-dichlorodiammine 
platinum (II). Lane 8, mitomycin C. 
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induced DNA cross-links by alkaline elution, gel-shift analysis, PCR 

amplification, and interruption of restriction endonuclease digestion. 

My results showed that chemically activated pyrrolic PAs were more 

potent inducers of DNA cross-links in cells than their parent compounds that had 

been activated by an external metabolizing system. Parental PAs without an 

external metabolizing system did not induce any DNA cross-links in Bst Ell­

digested f.-phage DNA, confirming the hypothesis that the pyrrolic metabolites 

are the biologically active metabolites. 

As in our previous studies (19, 26), I found that the macrocyclic a,!3-

unsaturated diester pyrroles such as dehydrosenecionine, 

dehydroseneciphylline, and dehydroriddell iine, and a a,[3-saturated diester 

pyrrole dehydromonocrotaline were potent cellular DNA cross-linkers. also 

found the a,[3-unsaturated macrocyclic diester pyrroles such as 

dehydrosenecionine and dehydroseneciphylline were more potent DNA-DNA 

cross-linkers than the a,[3-saturated macrocyclic diester pyrrole 

dehydromonocrotaline in pBR322 plasmid DNA and Bst Ell-digested f.-phage 

DNA. The necine base pyrrole dehydroretronecine or indicine N-oxide did not 

induce DNA cross-links. Thus, structural features of pyrrolic PAs were reflected 

in their differential DNA cross-linking activities. 

My results suggested that the presence of both a,[3-unsaturation and a 

macrocyclic ring such as in dehydrosenecionine and dehydroseneciphylline 

might be the most important two structural features affecting pyrrole-induced 

DNA cross-linking activity. Because these pyrroles were more potent than the 

macrocyclic a,[3-saturated diester pyrrole dehydromonocrotaline, DNA cross­

links might be induced via the Michael addition reaction in addition to SN1 

solvolysis, a common reaction to most of pyrrolic PAs with cellular nucleophiles 
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(35, 36). In addition, the o.,P-unsaturated macrocyclic pyrroles 

(dehydrosenecionine, dehydroseneciphylline, and dehydroriddelliine) contain an 

11-membered macrocycle ring, whereas dehydromonocrotaline has a 12-

membered macrocycle ring which may also influence the differential cross­

linking potency. 

The differences in the relative cellular DNA cross-linking activities of 

parental PAs detected in this study suggested that PA structures influence their 

metabolites which are preferentially formed. For example, the macrocyclic o..P­

unsaturated diester PAs are more readily metabolized to pyrroles than are open 

diesters, such as heliosupine and latifoline (37, 38). Retronecine, which is more 

water soluble, forms relatively little pyrrole (37-39) . Thus, !he DNA cross-linking 

activity may depend on the ratio of the biologically active form (pyrrole) to the 

biologically less-active form such as necine or N-oxide (38, 40, 41 ). In this study, 

macrocyclic diester pyrroles also induced more DNA cross-links than did the 

necine base or N-oxides. 

Our laboratory (19, 26) also found that those groups of PAs differed in 

their DNA cross-linking potency and cytopathologic activity in cultured 

mammalian cells (19, 26), further indicating that DNA cross-linking formation is 

an important event leading to PA bioactivity. Those PAs that were the most 

potent cross-linkers are also more acutely toxic to animals in vivo. For example, 

senecionine was 3-6 times more acutely toxic than monocrotaline in the rats (40, 

42). Another study indicated similar potency differences with respect to the 

induction of unscheduled DNA repair in isolated hepatocytes (43). 

Moreover, the metabolic pathways of various PAs also affect the 

biological activities of PAs in different species (37-41, 44). Species of both farm 

and laboratory animals differ in their susceptibilities to PAs (45). Pyrrolizidine 
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alkaloids are toxic to most animal species such as chickens, horses, and rats, 

although some species such as guinea pigs, sheep and goats are relatively 

resistant (46-49). The differences in susceptibility are largely due to the 

metabolic pathway or conversion rate to nontoxic (necine, N-oxide) or toxic 

metabolites (pyrroles) in animal tissues (48). 

I further characterized the nature of pyrrolic PA-induced DNA-DNA cross­

links and structural influences by investigating pyrrolic PA-induced DNA-DNA 

cross-linking activity (inter- and/or intrastrand cross-links), and cross-linked site 

specificity using in vitro two target DNA systems: pBR322 plasmid DNA, which 

consists of supercoiled or circular double-stranded DNA, and Bst Ell-digested A.­

phage DNA, which consists of 13 fragments of double-stranded DNA In both 

systems, the a ,f3-unsaturated macrocyclic diester pyrroles were the most potent 

inducers of DNA-DNA cross-links. Dehydromonocrotaline formed more DNA 

cross-links than did dehydroretronecine, and indicine N-oxide was not active. 

Thus, it appeared the structural features that influenced DNA cross-linking 

activity in cell culture hold true in target DNAs. The differences of cross-linking 

potency between pBR322 plasmid DNA and Bst Ell-digested A.-phage DNA 

suggested that the conformation of target DNA also could influence DNA-DNA 

cross-linking activity induced by pyrrolic PAs. 

Pyrroles that were potent inducers of DNA cross-links also effectively 

inhibited PCR amplification of the 1.129 kb region of the pBR322 plasmid DNA 

In this experiment, dehydrosenecionine was the most potent inducer of DNA 

interstrand cross-links, somewhat more potent than was dehydromonocrotaline, 

because the onset dose ratio of dehydromonocrotaline was higher (1 : 1, w:w) 

than dehydrosenecionine (1 :0.5, w:w). Dehydroretronecine or indicine N-oxide 

had no effect. The potency of cis-dichlorodiammine platinum(ll) was similar to 
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that of dehydrosenecionine. These results suggested that pyrrol ic metabolites 

were primarily responsible for inducing interstrand DNA cross-links and that a ,(l­

unsaturation in or size of the macrocyclic diester ring influenced the formation of 

DNA interstrand cross-links by pyrrolic metabolites. 

Previous work (22, 50, 51) has shown that pyrrolic metabolites alkylated 

synthetic oligonucleotides containing a single 5'd(CG) sequence. I investigated 

the sequence specificity of PA-induced DNA-DNA cross-links in pBR322 using 

restriction endonuclease digestion. In this study, the recognition sites of Ava II 

(5'-GG(~)CC) , Eco Rll (5'-CC(~)GG) , Fok I (5'-GGATG), Mbo II (5'-GAAGA), 

and Taq I (5'-TCGA) were highly associated with cross-linking induced by 

dehydrosenecionine, but the recognition site of Hint I (5'-GANTC) was not. 

These data indicate that the pyrrolic PA-induced DNA-DNA cross-linking site 

was preferentially related to 5'-d(GG), 5'-d(CC) or 5'-d(GA) sequences, although 

other sequences might also be involved. These restriction endonucleases were 

seldom inhibited by dehydromonocrotaline. As before, a,(l-unsaturation in or size 

of the macrocyclic diester ring appears to be an important structural feature in 

pyrrole-induced DNA-DNA cross-links. 

I included two bifunctional alkylating anti-cancer agents to compare the 

relative potency of pyrrolic PAs. The known DNA cross-linker, cis­

dichlorodiammine platinum (II), also induced potent DNA-DNA cross-links in this 

study. This compound has been shown to produce potent DNA cross-links, 

including interstrand DNA cross-links in short duplex DNA, 5'-d(CG)s, and the 

preferred sequences might be 5'-d(CG) or 5'-d(GC) (24). However, mitomycin C, 

whose DNA cross-link action is dependent upon reductive activation (52), did not 

induce detectable DNA-DNA cross-links in this study. Other workers have found 

that activated mitomycin C, which possesses structural similarities to pyrrolic 
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PAs, appeared to preferentially cross-link with deoxyguanosine residues at the 

sequence 5'-d(CG) in duplex DNA (51 , 53-54). The similarity in DNA cross­

linking activity or structural features of pyrroles and those anti-cancer agents 

suggests that the mechanism by which pyrrolic PA induces DNA cross-links 

might be similar to that of those anti-cancer agents. 

I also investigated DNA cross-linking sequence specificity using Eco Rl 

cleavage of PA-treated Bst Ell-digested A.-phage DNA. Eco Rl (5'-GAATTC) can 

cut in Bst Ell-digested A.-phage DNA, but at low rates. The DNA cross-l inking 

potency differences between two target DNA systems, pBR322 plasmid DNA, 

which consisted of circular or supercoiled double-stranded DNA, and Bst Ell­

digested A.-phage DNA, which consisted of 13 fragments of linear double­

stranded DNA, suggested that DNA cross-linking activity is influenced by 

neighboring sequences and/or the native structure of the target DNA. 

In summary, the a.,f3-unsaturation of the macrocyclic diester ring and 

possibly its size, as well as the C1-C2 double bond, are structural features that 

appear to affect the DNA cross-linking potency of PAs. Because the cross­

linking potency among PAs roughly coincides with relative animal and cellular 

toxicity, PA-induced DNA cross-linking activity does not involve a common PA 

metabolite, dehydroretronecine. The significant portion of PA-induced cross­

links that are associated with protein may also contribute to the bioactivity of 

these natural compounds. This will be the subject of future studies in our 

laboratory. 
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Protein-associated DNA cross-links are implicated in the carcinogenic or 

anti-carcinogenic activity of many compounds. In this study, I investigated the 

DNA-protein cross-l inking activity of a group of natural pyrrolizidine alkaloids 

(PAs) in vitro. The DNA cross-linked proteins induced by PAs were also isolated 

and characterized in mammalian cells. At 300 J.!M, pyrrol ic metabolites such as 

dehydrosenecionine, dehydromonocrotaline, dehydroseneciphylline, and 

dehydroriddelliine induced DNA cross-links. Those that were protein-associated 

accounted for approximately 50% of the total cellular DNA cross-links. The 

simple necine base dehydroretronecine induced few DNA-protein cross-links 

and none were detected with indicine N-oxide. Macrocyclic PAs (senecionine, 

seneciphylline, riddelliine, retrorsine, monocrotaline) induced DNA-protein 

cross-links in cultured cells. The major proteins cross-linked to DNA from either 

PA-exposed cells or pyrrolic PA-exposed nuclei were in the molecular weight 40 

- 60 kD range as determined by SDS-PAGE. Two-dimensional electrophoresis 

revealed that the proteins involved in cross-links were primarily acidic in nature. 

The macrocyclic pyrrole, dehydrosenecionine induced DNA cross-links in Bst 

Ell-digested !..-phage DNA and pBR322 plasmid DNA with BSA as a protein 

target. The cross-linked proteins to DNA in patterns were similar to that induced 

by the anti-cancer agents, mitomycin C and cis-dichlorodiammine platinum(ll). 

My data indicated that pyrrolic PAs with a macrocyclic diester such as 

dehydrosenecionine, dehydroseneciphylline, dehydroriddelliine, and 
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dehydromonocrotaline were more potent cross-linkers than the simple necine 

base. Furthermore, because of the potency differences between pyrrolic 

metabolites, it is likely that DNA-protein cross-links do not occur via a common 

metabolite as previously proposed. Cross-linking potency of the PAs examined 

here coincides with known potency differences in animal toxicity and led me to 

conclude that DNA-protein cross-linking activity is probably involved in PA­

related diseases. 

INTRODUCTION 

Pyrrolizidine alkaloids are natural toxins found in a wide variety of plant 

species that pose significant health hazards to humans and other animals (1 ). 

Many PAs are toxic and carcinogenic (2-8) and are associated with chronic liver 

disease in humans and other animals (5, 9, 10). Dehydromonocrotaline and 

jacobine induced DNA-protein and DNA interstrand cross-links in rat liver in vivo 

(4, 5). Dehydromonocrotaline also induced DNA cross-links and caused anti­

mitotic and cytopathologic effects in porcine pulmonary artery endothelial cells 

and rat lung (11 -13). These DNA-protein cross-links are toxicologically important 

lesions and can also be induced by a variety of agents such as y- and UV­

irradiation, chromium, and formaldehyde (14-19). The proposed action of anti­

tumor agents such as nitrogen mustard, cisplatin, mitomycin C, or nitrosourea is 

thought to be related to their abilities to induce DNA cross-links (18, 20-23). In 

our laboratory, we demonstrated that cytopathologic changes and anti -mitotic 

activity of PAs were related to their ability to induce DNA-DNA or DNA-protein 

cross-links (24, 25). 

Pyrrolizidine alkaloids are bioactivated by the cytochrome P-450 mixed­

function oxidase to form the bifunctional electrophilic pyrroles, which then 
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alkylate cellular macromolecules such as DNA and protein (4, 5, 26, 27). The 

toxic effects of pyrrolic metabolites are apparently related to their DNA cross­

linking activity. 

A previous study from our laboratory has shown that PAs cross-link DNA 

with protein (24). In this chapter, I investigated the characteristics of PA-induced 

DNA-protein cross-links. I also characterized the nuclear proteins involved in 

these cross-links in a cellular system, and examined the ability of a variety of 

pyrrolic PAs to induce DNA-protein cross-links in target DNA. 

MATERIALS AND METHODS 

Materials 

Senecionine and seneciphylline were isolates from Senecio vulgaris and 

Senecio triangularis, and furnished by Segall (28, 29). Riddelliine was an isolate 

from Senecio riddellii, and furnished by Molyneux eta/. (30). Monocrotaline was 

purchased from Aldrich Chemical Company, Inc. (Milwaukee, WI). Retronecine 

was prepared by hydrolysis of riddelliine isolated from Senecio riddellii, and 

indicine N-oxide was provided by Matthew Suffness of the National Cancer 

Institute. Pyrrolic PA metabolites (dehydrosenecionine, dehydroseneciphylline, 

dehydroriddelliine, dehydromonocrotaline, dehydroretronecine) were prepared 

from their parent compounds (senecionine, seneciphylline, riddelliine, 

monocrotaline, retronecine, respectively) by the method of Mattocks eta/. (31) 

in our laboratory. The purity of these metabolites was checked and confirmed by 

1 H NMR (32). The chemical structures of PAs and other compounds used in this 

study are shown in Figure IV-1 . 
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Eagle's Minimum Essential Medium was obtained from Gibco BRL (Grand 

Island, NY) and iron-supplemented calf serum was obtained from Hyclone 

Laboratories (Logan, UT). Methyi-[3H]-thymidine was obtained from New 

England Nuclear (Boston, MA). Cis-dichlorodiammine platinum(ll), mitomycin C, 

actin, myosin, lysozyme (EC 3.2.1 .17), RNAse I (EC 3.1 .2. 75), proteinase K (EC 

3.4.21 .14), ampici ll in, tetracycline, and ethidium bromide were obtained from 

Sigma Corporation (St. Louis, MO). Ampholine was purchased from Pharmacia 

LKB Biotechnology (Piscataway, NJ), and bacto-tryptone and bacto-yeast were 

obtained from Difco (Detroit, Ml). Histone was purchased from Boehringer 

Mannheim Corporation (Indianapolis, IN). DNAse I and Bst Ell digested A.-phage 

DNA were obtained from New England Biolabs (Beverly, MA). Bovine serum 

albumin (BSA) was obtained from Promega Corporation (Madison, WI). Swinex 

filter holders and polyvinylchloride filters were purchased from Millipore 

Corporation (San Francisco, CA). 

Methods 

Cell Culture and Treatment Conditions. The Madin Darby bovine kidney 

(MDBK) epithelial cells, strain CCL 22, obtained from American Type Culture 

Collection (Rockville, MD), were grown in Eagle's Minimum Essential Medium 

containing nonessential amino acids, L-glutamine, 1 mM sodium pyruvate and 

10% iron-supplemented calf serum. Cells were cultured at 37 °C in an 

atmosphere of 97% air and 3% C02. Cells (passage 112-130) were seeded in 

60-mm diameter culture dishes 22 hr prior to labeling with methyi-[3H]-thymidine 

for alkaline elution assay or in 100-mm diameter culture dishes for the 

characterization of cellular DNA cross-linked proteins where parent PAs were 

used, and an external metabolizing system, which consisted of a NADPH-
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generating system and rat liver S9 fraction, was added (24). Pyrrolizidine 

alkaloids and their metabolites were dissolved in DMSO and added directly to 

the medium in a volume that did not exceed 1% of the total volume. Cell viability 

for all treatment groups exceeded 90% as determined by trypan blue dye 

exclusion (data not shown). 

Quantitation of Cellular DNA Cross-links by Alkaline Elution. Cells seeded 

in 60-mm diameter culture dishes were labeled with 0.1 11Ci/ml of methyi-[3H]­

thymidine (2 Ci/mmol) for 22 hr. The medium was changed before cells were 

treated with PAs or their metabolites. The cells were washed and replaced with 

cold PBS (0.12 M NaCI, 4 mM KCI, 0.5 mM Na2HP04, 0.1 mM KH2P04, pH 

7.4) after 2 hr incubation with PAs or metabolites. Cells were then exposed to 

1000 rad of y-irradiation at 0 °C using 137 Cs irradiator at the dose rate of 171 

rad/min. They-irradiation source was calibrated using the Fricke's ferrous sulfate 

dosimetry method (33). Alkaline elution was performed as described in a 

previous paper (24). 

Isolation and Characterization of DNA Cross-linked Proteins from Cells 

and Nuclei. Cells (80- 85% confluence) were treated with 1 mM of each PA for 4 

hr at 37 oc. Nuclei, which were isolated from cultured MDBK cells by lysing with 

0.3% Triton X-1 00 in 150 mM NaCI and 1 mM EDTA buffer and centrifugation at 

3000 rpm, were treated with 1 mM of pyrrolic PA for 4 hr at 37 oc. Cells or nuclei 

were also treated with 6 mM of cis-dichlorodiammine platinum(ll) or 400 11M of 

mitomycin C for 6 hr at 37 oc. The treated cells and nuclei were washed twice 

with ice-cold PBS containing 0.1 mM of phenylmethylsulfonyl fluoride. DNA 

cross-linked proteins were then isolated using a modification of the method of 

Banjar et a/. (34). Briefly, treated cells or nuclei were lysed in 2% (w/v) SDS, 
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50 mM Tris-HCI , 0.1 mM phenylmethylsulfonyl fluoride, pH 8.0, and stirred for 7 

hr on a rotatory stirrer. The cross-linked proteins were separated from non­

cross-linked proteins by ultracentrifugation (1 00,000 x g) for 17 hr at 19 °C. The 

DNA cross-linked proteins were then resuspended using Down's homogenizer in 

2 mM Tris-HCI, pH 7.0 including 0.1 mM phenlymethylsulfonyl fluoride, then 

sonicated 4 times for 20 sec at 0 °C (35). The sonicated sample was digested 

with DNAse I (40 llg/mg DNA) for 1 hr at 37 °C, dialyzed overnight against 

double distilled water, and freeze dried. 

Proteins, which were cross-linked to 40 llg of DNA isolated from the 

treated whole cells, were analyzed by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) as described by Laemmli (36). The running· gel consisted of 15% 

(samples from cells) or 11% (samples from nuclei) acrylamide, 0.4% N,N'­

methylenebisacrylamide in 0.375 M Tris-HCI, 0.1% (w/v) SDS, pH 8.8. The 

stacking gel consisted of 4.5% acrylamide, 0.12 % N,N'-methylenebisacrylamide 

in 0.125 M Tris-HCI, 0.1% (w/v) SDS, pH 6.8. The freeze-dried samples were 

dissolved in loading buffer (1% (w/v] SDS, 5% [v/v]2-mercaptoethanol, 10% [v/v] 

glycerol, 6.25 mM Tris-HCI, 0.05% [w/v] bromphenol blue, pH 6.8), and were 

electrophoresed at 50 V in reservoir buffer (0.192 M glycine, 25 mM Tris, 0.1 % 

[w/v] SDS, pH 8.3). The SDS-polyacrylamide gel was stained using a modified 

silver staining method (37, 38). 

The proteins, which were cross-linked to 100 llg of DNA isolated from the 

treated nuclei, were also separated by isoelectric focusing followed by SDS­

polyacrylamide gel (2-D) electrophoresis (39-41 ). The isoelectric focusing gel 

consisted of 9.5 M urea, 0.2% N,N'-methylenebisacrylamide, 3.4% acrylamide, 

2% NP-40, 2% ampholines (pH 5.0- 8.0, and 3.0- 10.0). The protein sample 

was dissolved in lysis buffer (9.5 M urea, 2% NP-40, 2% ampholines, 5% 13-
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mercaptoethanol). The gel ran for 14 hr at 400 V followed by 1 hr at 800 V, then 

equilibrated with sample buffer (62.5 mM Tris, 10% glycerol , 5% 13-

mercaptoethanol, 2.3% SDS) for 45 - 60 min at room temperature. 

The isoelectric focusing gel was then loaded on top of a SDS­

polyacrylamide slab gel and connected to the stacking gel using 0.4% agarose. 

The separating gel consisted of 12.15% acrylamide, 0.34% N,N'­

methylenebisacrylamide, 0.375 M Tris, and 0.1% SDS, pH 8.8, and the stacking 

gel consisted of 4.8% acrylamide, 0.13% N,N'-methylbisacrylamide, 0.12 M Tris, 

and 0.1% SDS, pH 6.7. The gel was run at 40 Vovernight and then stained with 

silver nitrate (37, 38). 

DNA-protein Cross-links in pBR322 Plasmid DNA or A.-phage DNA. 

pBR322 plasmid DNA was amplified in bacterial E.coli host (strain RRI) by 

overnight culture at 37 oc in LB medium (1% bacto-tryptone, 0.5% bacto-yeast, 

0.89 M NaCI) containing 15 J.!glml tetracycline and 50 11glml ampicillin. pBR322 

plasmid DNA was purified by the rapid alkaline method (42). Briefly, E.coli cells 

were harvested by centrifugation at 5000 rpm for 1 0 min at 4 °C and the 

bacterial cell pellet was lysed (25 mM NaCI, 10 mM EDTA, 15 % sucrose, 2 

mglml lysozyme) for 20 min at 4 °C. The lysate was incubated with 0.04 M 

NaOH and 0.04% SDS for 10 min and was then mixed with 0.075 M NaC2H302, 

pH 4.6. The mixture was incubated for 20 min at 0 °C followed by centrifugation 

at 10,000 rpm for 15 min. RNAse (1 mglml) was added to the supernatant which 

was incubated for 20 min at 37 °C. The sample was purified by phenol : 

chloroform (1 :1, vlv) extraction, and then precipitated with ethanol. The DNA was 

dissolved in TE buffer (10 mM Tris-HCI , 1 mM EDTA, pH 7.4) and incubated with 

0.4 M NaCI and 6.5% polyethylene glycol for 1 hr at 0 °C. This solution was 
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centrifuged at 10,000 rpm for 10 min. Plasmid DNA was dissolved in TE buffer 

pH 7.4 (10 mM Tris-HCI, 1 mM EDTA). 

In this experiment, two target DNA systems were used: pBR322, which 

consists of supercoiled or circular double-stranded DNA, and Bst Ell-digested A.­

phage DNA, which consists of 13 fragments of linear double-stranded DNA The 

DNA-protein cross-links were investigated in pBR322 plasmid DNA treated with 

dehydrosenecionine or dehydromonocrotaline, and co-incubated with BSA at the 

DNA : pyrrole : protein ratios of 1:1 :0.5, 1:1:1 or 1:1 :2 (w:w:w). The DNA-protein 

cross-links were also characterized in Bst Ell-digested A.-phage DNA The DNA 

was treated with dehydrosenecionine and simultaneously co-incubated with 

actin, BSA, histone, or myosin in TE buffer (10 mM Tris-HCI, 1 mM EDTA, pH 

7.4) at DNA : pyrrole : protein ratios of 1:1:0.5, 1:1:1 , or 1:1:2 (w:w:w) for 2 hr at 

0 °C . Dimethylsulfoxide (DMSO) was used as control. The cross-linked DNA­

protein was separated on ethidium bromide stained 1% agarose gels (43). The 

ethidium bromide-stained DNA was photographed by a Polaroid MP-4 camera 

system and Polaroid Type 667 film. 

Statistical Evaluations. Data were analyzed by one-way analysis of 

variance, and where appropriate, a post hoc Fisher's LSD was used to 

determine significance (P < 0.05) among groups. 

RESULTS 

Quantitation of DNA Cross-links 
by Alkaline Elution 

The extent of cellular DNA cross-links by various PAs and their pyrrole or 

N-oxide metabolites as determined by alkaline elution is shown in Table IV-1 . 

None of the compounds examined induced single-strand breaks (data not 
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shown). The pyrrolic metabolites were potent inducers of DNA-protein cross­

links. The order of potency was dehydrosenecionine > dehydromonocrotaline > 

dehydroriddelliine > dehydroretronecine > indicine N-oxide. About 50% of DNA 

cross-links induced by pyrroles involved proteins, as determined by proteinase K 

treatment (Table IV-1 ). 

Characterization of DNA Cross-linked 
Proteins from Cells and Nuclei 

Because the alkaline elution experiments showed that a significant 

proportion at PA-induced cross-links was protein associated, I then examined 

the type of proteins involved in the cross-links. All of the parent PAs examined, 

except retronecine, induced DNA-protein cross-links in cultures of whole cells 

(Fig. IV-2A). The proteins most often cross-linked with cellular DNA following 

treatment with PAs had molecular weights in the range of ca. 40 - 60 kD. 

Senecionine, retrorsine, and heliosupine also induced DNA-protein cross-links 

(data not shown). A similar pattern of DNA cross-linked proteins was seen in 

isolated nuclei treated with the pyrrolic metabolites such as dehydrosenecionine, 

dehydroseneciphylline, dehydroriddelliine, and dehydromonocrotaline (Fig . IV-

28). Dehydroretronecine did not induce DNA-protein cross-links. Cis­

dichlorodiammine platinum(ll) (cells and nuclei) and mitomycin C (cells) also 

induced similar patterns of DNA cross-linked proteins, which had molecular 

weights in the range of ca. 40 - 70 kD with cis-dichlorodiammine platinum( II) and 

ca. 35- 100 kD with mitomycin C. 

As evaluated by 2-D gel electrophoresis, DNA cross-linked proteins 

induced by macrocyclic a.,~-unsaturated diester pyrroles such as 

dehydroseneciphylline, dehydrosenecionine, and dehydroriddelliine were 
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Table IV-1 . Pyrrolizidine alkaloid-induced cellular DNA cross-links 1,2,3 

TOTAL DNA DNA-DNA DNA-PROTEIN 

ALKALOIDS CROSS- CROSS- CROSS- f S 
LINKS4 LINKS4 LINKS4 

Dehydrosenecionine 1.46 ± 0.13• 0.67 ± 0.09• 0.78±_0.11• 0.54 ± 0.08 

Dehydroseneciphylline 0.74±0.16b 0.25.!. 0.04b 0.49.!. 0.20• 0.51_±0.15 

Dehydroriddelliine 0.69 ± 0.10b 0.36 ± o.o5•.b 0.31 ± 0.10b 0.50 ± 0.13 

Dehydromonocrotaline 1.11_±0.17< 0.53.!. 0.04•·b 0.58.!. 0.19•·b 0.51.!. 0.17 

Dehydroretronecine 0.18 ± 0.01d 0.08.!. 0.04< 0.09.!. 0.04< 0.52 ± 0.26 

lndicine N-oxide ND5 ND ND ND 

1rreatments were 300 11M for 2 hr at 37 oc. 
2Values with different superscripts are significantly different (P < 0.05) by one­
way ANOVA and F-Iest within same type of cross-links. 
3As measured by alkaline elution. 
4Data presented as mean DNA cross-link indices ± S.E. from at least three 
independent experiments. 
5ND, not detectable. 
6rhe DNA-protein cross-linking fraction of total DNA cross-links± S.E. 
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Fig. IV-2. Electrophoretic separation of DNA-protein cross-links from whole cells 
(A) or nuclei (B) treated with PAs or pyrrolic PAs. DNA cross-linked proteins 
were separated on 15% (A) or 11% (B) SDS-PAGE staining with siver nitrate. All 
samples were standardized to 40 1-1g DNA. The most prominent cross-linked 
proteins were around the molecular weight range 40 - 60 kD. Residual DNAse I 
appears around 32 kD. These data indicate that the macrocyclic diester PAs 
induced the most potent DNA-protein cross-links. 
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Fig. IV-3. Two-dimensional (2-D) electrophoretic separation of PA-induced DNA 
cross-linked proteins from treated nuclei. The DNA cross-linked proteins were 
separated by isoelectric focusing and then separated by 12.5% SDS-PAGE. The 
proteins which were cross-linked with 100 Jlg of DNA were used for isoelectric 
focusing. The most prominent proteins are at the acidic side of 2-D gel. Panel A, 
DMSO. Panel B, dehydroseneciphylline. Panel C, dehydrosenecionine. Panel 
D, dehydroriddelliine. Panel E, dehydroretronecine. Panel F, cis­
dichlorodiammine platinum (II). 
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primarily in the acidic portion of the gels (Fig. IV-3A-C). The staining pattern of 

the DNA cross-linked proteins from dehydroretronecine-treated nuclei (Fig. IV-

3E) was identical to that of the control. The pattern of DNA-protein cross-links 

induced by cis-dichlorodiammine platinum (II) was similar to that induced by the 

macrocyclic o.,f3-unsaturated diester pyrroles (Fig. IV-3F). 

DNA-protein Cross-links in p8R322 Plasmid 
or ).-phage DNA 

It was of interest to determine whether pyrrolic PA-treated DNA can cross­

link with added protein such as BSA, histone, actin, or myosin in vitro. As can be 

seen in Figure IV-4, dehydrosenecionine and dehydromonocrotaline induced 

slight cross-links between pBR322 plasmid DNA and BSA as evidenced by the 

slight electrophoretic mobility change of DNA bands compared to that of the 

control. Cis-dichlorodiammine platinum(ll) also induced DNA-BSA cross-links in 

pBR322. Dehycrosenecionine-induced DNA-protein cross-linking was also 

investigated in Bst Ell-digested A.-phage DNA (Fig. IV-5). Dehydrosenecionine 

induced cross-links between A.-phage DNA and BSA, but did not cross-link with 

actin or myosin at the high dose ratio. Histone was completely cross-linked to 

DNA even at the lowest dose ratio (1 : 1 :0.5; DNA : dehydehydrosenecionine : 

histone, w:w:w), which was evidenced by a shifting of the DNA band to the top of 

the gel. 

DISCUSSION 

We have previously shown that PAs are potent bifunctional alkylators of 

cellular DNA, and that a significant portion of these lesions was protein 

associated (24). We also found that PA structure influenced the formation of 

PA-induced DNA-DNA cross-links. Therefore, in this study, I characterized PA-
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Fig. IV-4. Effect of BSA on the electrophoretic mobility of pyrrolic PAs cross­
linked in pBR322 plasmid DNA. The cross-linked samples were separated by 
ethidium bromide-stained 1% agarose gel electrophoresis. Dehydrosenecionine 
induced DNA-protein cross-links dose dependently as appearing by the 
electrophoretic mobil ity changing of samples compared to DMSO. The dose 
ratios (DNA : cross-linker : BSA, w:w:w) were 1:1 :0.5 (lane 1), 1:1:1 (lane 2), 
1:1 :2 (lane 3). 
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Fig. JV-5. Effect of addition of various proteins on dehydrosenecionine-induced 
DNA cross-links in Bst Ell-digested !..-phage DNA at treatment ratios of 1:1:0 
(Lane 1), 1:1:0.5 (lane 2), 1:1:1 (lane 3), 1:1:2 (Jane 4) (DNA : 
dehydrosenecionine : protein, w:w:w) on ethidium bromide-stained 1% agarose 
gel. Lane a, !..-phage BstE ll•digested DNA alone; Jane b, DMSO; lane c, 
dehydrosenecionine; lane d, cis-dichlorodiammine platinum (II) at dose ratio 1:1 
(DNA : cross-linker, w:w). 
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induced DNA cross-linked proteins in a mammalian cell system and in two target 

DNA systems, pBR322 plasmid DNA (supercoiled or circular double-stranded 

DNA) and Bst Ell-digested A.-phage DNA (linear double-stranded DNA). 

Similar to the formation of DNA-DNA cross-links, structural differences in 

the macrocyclic diester substituents of pyrrolic PAs apparently influence the 

formation of DNA-protein cross-links. For example, the most potent cross-linkers 

such as dehydrosenecionine, dehydroseneciphylline, and dehydroriddelliine all 

possess a ,(3-unsaturation in their 12-carbon macrocyclic diester moieties. 

Dehydromonocrotaline, which was less potent, contains an 11-atom saturated 

macrocyclic diester. Dehydroretronecine, a weak DNA cross-linker, has no 

diester substituents. Thus, the major structural features of pyrrolic metabolites 

which apparently influence the ability to form cross-links are the presence of 

both an a ,(3-unsaturated diester and a macrocyclic diester ring. The number of 

atoms in the macrocycle also appears to be an important factor of the DNA 

cross-links. These structural attributes also affect the DNA cross-linking potency 

and cytopathologic effect of the parent PAs (24, 25) and the ability to induce 

unscheduled DNA repair in hepatocytes (9). 

In this study, chemically activated pyrroles induced a smaller proportion 

(50%) of DNA-protein cross-links than in a previous study from our laboratory in 

which PAs were metabolically activated (over 80%) (24). PAs are activated by 

the cytochrome P-450 mixed-function oxidase to form pyrrolic metabolites, which 

are highly toxic, and N-oxides, which are less toxic. The bioactivation of PAs 

appears to be related to an unsaturated C-1 ,2 bond in the necine base and the 

type of necic acid esters (2, 7, 44). That dehydrosenecionine induced more 

potent DNA cross-links than that of dehydromonocrotaline in this study affirmed 

the previous hypothesis that the type of side groups and number of atoms in the 
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macrocyclic diester pyrroles influenced their DNA cross-linking potency. 

Moreover, the potency of the chemically activated monocrotaline pyrrole, 

dehydromonocrotaline, was similar to that of the macrocyclic u,J3-unsaturated 

diester pyrroles such as dehydrosenecionine, dehydroseneciphylline, and 

dehydroriddelliine, perhaps because larger proportions of other metabolites of 

monocrotaline such as the N-oxide form might be formed than the pyrrolic form 

by the cytochrome P-450 mixed-functionoxidase. The relative toxicity of various 

PAs in different animal species is also correlated to proportions of toxic 

metabolites (2, 6, 44-49). 

Using SDS-PAGE and 2-D gel electrophoresis, I found that metabolically 

activated PAs or pyrrolic PAs cross-linked DNA with proteins in the 40 - 60 kD 

range and that these proteins had a net acidic charge. Because actin (molecular 

weight 45 kD), which is associated with gene regulation (50-52), is often cross­

linked to DNA in cisplatin or chromate-treated CHO cells, as are other proteins 

in the molecular weight around 53 kD and 50 kD with isoelectric points of pi 5.4 -

9.0 (20), it is possible that one of the DNA cross-linked proteins might be actin. 

The necine base (retronecine, dehydroretronecine) and indicine N-oxide­

induced DNA cross-linked proteins were not detected. The results affirmed that 

DNA-protein cross-links may be a critical factor in PA-induced bioactivity (5, 27), 

and also suggested that the majority of DNA-protein cross-links are formed by 

pyrrolic metabolites. 

DNA cross-linked proteins in the molecular weights of 39 - 68 kD have 

been also identified in cis- or trans-dichlorodiammine platinum(ll) or chromium 

compound-treated cells (19, 20). The proteins cross-linked with DNA were 

identified as nuclear matrix proteins (53, 54). In this study, two standard 

bifunctional cross-linkers, cis-dichlorodiammine platinum(ll) and mitomycin C, 
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cross-linked proteins in range of 35 - 100 kD. Because activated mitomycin C 

has a molecular geometry similar to that of the macrocyclic pyrrolic PAs (55-57), 

PA-induced DNA cross-links may be similar to these induced by this standard 

cross-linker. 

DNA-protein cross-links are thought to be involved in carcinogenic or anti­

carcinogenic activity of many bifunctional alkylating agents such as nitrogen 

mustard and cisplatin (34, 58). Cis-platinum and trivalent chromium cross-link to 

the N 7 position of guanine (59, 60) and probably bind to cysteine (61 ). In this 

study, the interaction of pyrrolic PA and its cross-linking ability in vitro were also 

investigated using several proteins. Dehydrosenecionine and cis­

dichlorodiammine platinum(ll) induced DNA cross-links with BSA, which has a 

high proportion of cysteine (62). However, these compounds did not appear to 

form DNA cross-links with actin or myocin, each of which has a lower proportion 

of cysteine than BSA. Possibly I might not be able to detect these cross-links in 

my system. Thus, pyrrolic PA-induced DNA-protein cross-links in vitro appeared 

to be influenced by the amino acid composition of the protein. Histone was 

completely bound with target DNA in this study, which was probably due to the 

inherent affinity of this protein to DNA. 

The DNA-BSA cross-linking also occurs following treatment with 

chromium in vitro (63, 64). Lin eta/. (65) investigated metal-induced DNA cross­

links to histidine and cysteine in CHO cells and Salnikow eta/. (66) reported that 

more DNA complexes formed with tyrosine and cysteine in chromium-treated 

cells, and that histidine, methionine, or threonine were more susceptible than 

any other amino acid in vitro. 

In summary, DNA-protein cross-linking is likely an important event in PA­

associated toxicity, carcinogenicity, and anti-carcinogenicity. Because the major 
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molecular weights of PA-induced DNA cross-linked proteins were similar to 

those induced anti-cancer agents. the characteristics of PA-induced DNA-protein 

cross-links might be similar. The a. ~-unsaturation of the macrocyclic ring of 

pyrrolic PAs is a structural feature that appears to be important in PA-induced 

DNA-protein cross-links. Determination of the amino acid{s) involved in PA­

induced DNA-protein cross-links is the subject of studies currently under way. 
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Pyrrolizidine alkaloids (PAs) are natural toxins found in a wide variety of 

plant species that pose significant health hazards to humans and other animals. 

Many PAs are toxic and carcinogenic in vivo or in vitro. Pyrrolizidine alkaloids 

are bio-activated by the cytochrome P-450 mixed-function oxidase to form two 

major types of metabolites: the bifunctional electrophilic pyrroles that are highly 

reactive and can alkylate cellular macromolecules such as DNA and protein, and 

N-oxides that are least toxic. Pyrrolizidine alkaloid-induced potent DNA cross­

linking activity and the structural features of PAs that influenced DNA cross-links 

were examined in our laboratory. However, whether such cross-links are 

important to the toxic action of PAs is not clear. 

Thus, I examined some of the molecular mechanisms that may affect the 

ability of four major groups of PAs and their metabolites to induce cytopathologic 

effects and DNA cross-links. I conducted three studies concerning the PA­

induced DNA cross-l inks on (1) colony formation and cytopathologic changes, 

(2) DNA-DNA cross-links including interstrand cross-links and the cross-linking 

site specificity, and (3) DNA-protein cross-links in cellular and target DNA 

systems. 

In the first study, the ability of eight PA congeners to inhibit mitosis and to 

induce megalocyte formation in cultured bovine kidney epithelial (MDBK) cells 

was related to their structural features. The macrocyclic a,f3-unsaturated diester 

PAs (seneciphylline, senecionine, riddelliine, retrorsine) inhibited colony 

formation and induced megalocytosis in a dose-dependent manner. Colony 

growth resumed 3 weeks after these PAs were removed, and cell morphology 
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reverted to normal 5 or 6 weeks after these PAs were removed. At high 

concentrations (500 ~-tM) , the a,[3-saturated macrocyclic (monocrotaline) and 

open diesters (heliosupine) only slightly inhibited colony formation and did not 

affect cell morphology. The necine base (retronecine) did not affect either colony 

formation or cell morphology. The pyrrolic metabolites such as 

dehydrosenecionine, dehydromonocrotaline, and dehydroretronecine inhibited 

colony formation more than their parent compounds at 500 ~-tM and were potent 

inducers of abnormal cell morphology. An N-oxide metabolite, indicine-N-oxide, 

was completely inactive as expected. The results clearly indicated that the 

structure of PAs influenced their cytopathologic effects. 

In the next study, the DNA cross-linking activities of pyrrolic metabolites 

were compared to those of their parent PAs investigated in the cell system. 

Pyrrolic metabolites were more potent inducers of DNA cross-l inks than were 

their parent compounds. The most potent compounds were the macrocyclic a,[3-

unsaturated diester pyrroles such as 

dehydromonocrotaline, dehydroseneciphylline, and 

dehydrosenecionine, 

dehydroriddelliine, which 

induced both DNA-protein and DNA-DNA cross-links. The necine base pyrrole 

dehydroretronecine and the N-oxide metabolite indicine N-oxide induced 

relatively few DNA cross-links. lndicine N-oxide was about as potent as indicine. 

Thus, PA-induced DNA cross-linking activity was highly correlated with structural 

features and the metabolic pathways of PAs. For example, monocrotaline, which 

had little effect on either mitosis and megalocytosis or on the formation of cross­

links, is metabolized by cytochrome P-450 mixed-function oxidase system to a 

relatively high proportion of N-oxide. 

The comparative potency of a variety of PAs to induce DNA-DNA cross­

links in Bst Ell-digested A.-phage DNA and Bam HI-digested pBR322 plasmid 
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DNA was also studied. As in t:he cell system, the macrocyclic a, ~-unsaturated 

diester pyrroles such as dlehydrosenecionine, dehydroseneciphylline, or 

dehydroriddelliine induced sign ificantly potent DNA-DNA cross-l inks in Bst Ell­

digested A.-phage DNA and pBR322 plasmid DNA, and the potency of DNA 

cross-links increased in a dose-dependent manner. The macrocyclic a..~­

saturated diester pyrrole such, as dehydromonocrotaline also induced potent 

DNA-DNA cross-l inks. However, the necine base pyrrole such as 

dehydroretronecine, and the N-oxide form of metabolites such as indicine N­

oxide induce no DNA-DNA cross-links. 

In pBR322 plasmid DNA, the macrocyclic a.,~-unsaturated diester pyrrole 

such as dehydrosenecionine was also the most potent in inhibiting the PCR 

amplification of a 1.129kb region of p8R322. The rnacrocyclic a. , ~-saturated 

diester pyrrole such as dehydromonocrotaline was slightly less potent than was 

dehydrosenecionine. The necine base pyrrole, dehydroretronecine, and indicine 

N-oxide did not induce any interstrand DNA cross-l inks. The results clearly 

indicated that the macrocyclic a.,~-unsaturated diester pyrrole 

(dehydrosenecionine) was the most potent inducer of DNA-DNA interstrand 

cross-links, and also the structure of PAs influenced thoeir DNA-DNA interstrand 

cross-links. 

I also determined which nucleotide sequences were likely to be involved 

in cross-linking in pyrrole-treated p8R322 plasmid DNA with restriction 

endonucleases. In DNA treated with dehydrosenecion1ine, which is one of the 

macrocyclic a., ~-unsaturated diester pyrroles, the recog1nition site of Ava II, Fok 

I, and Taq I was mostly cross-linked, the recognition si1te of Eco Rll and Mbo II 

was moderately cross-linked, and the recognition site of Hinf I was least cross­

linked. pBR322 plasmid DNA treated with cis-dichlorodiammine platinum(ll) 
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completely blocked the action of these restriction endonucleases. There was 

only a mild blocking effect in the macrocyclic a,~-saturated diester pyrrole, 

dehydromonocrotaline-treated DNA with Mbo II. In DNA treated with the necine 

base pyrrole, dehydroretronecine, or indicine N-oxide, there was no inhibition of 

these restriction endonucleases. From the differential inhibition of restriction 

endonucleases, there appeared to be no discernible rules regarding sequence 

specificity, but the most favorable cross-linking sites for PAs appeared to be 5'­

d(GG) or 5'-d(GA) sequences, although other sequences such as 5'-d(CG) or 5'­

d(CC) may be involved. 

The nature of DNA-protein interactions induced by PAs was also 

investigated because the large portion of PA-induced cross-links was protein 

associated in our previous study. The cellular DNA-protein cross-l inking activity 

of the pyrrol ic metabolites was as follows: dehydrosenecionine > 

dehydromonocrotaline > dehydroseneciphylline > dehydroriddelliine > 

dehydroretronecine and those that were protein-associated accounted for 

approximately 50% of the total cellular DNA cross-links. However, 

dehydroretronecine induced few DNA-protein cross-! nKs, and none were 

detected following treatment with indicine N-oxide. Thus, the macrocyclic diester 

pyrroles were potent cellular DNA-protein cross-links. 

Because a major portion of PA-induced cellular DNA cross-links involved 

proteins, we characterized DNA cross-linked proteins in cell cultures by isolating 

and separating the cross-linked proteins using SDS-PAGE and 2-D gel 

electrophoresis. In cells treated with the macrocyclic a~-unsaturated diesters 

(senecionine, seneciphylline, riddelliine, retrorsine), thJe macrocyclic a, ~­

saturated diester (monocrotaline) and open diester (helios1upine;, the molecular 

weight of the proteins cross-linked with DNA ranged 'rom 40 - 60 kD. The 
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chemically activated pyrroles (dehydrosenecionine, dehydroseneciphyll ine, 

dehydroretrorsine, dehydromonocrotaline) also induced a high degree of DNA 

cross-linked proteins in nuclei , but dehydroretronecine or indicine N-oxide did 

not induce DNA cross-linked proteins. Nonhistone nuclear proteins were 

possibly involved the PA-induced DNA-protein cross-links, and the proteins 

induced by macrocyclic diester pyrrole were also detected on the acidic site of 2-

D gels. The cross-linked proteins to DNA in patterns were similar to that 

induced by the anti-cancer agents, mitomycin C, and cis-dichlorodiammine 

platinum (II). These results indicated that the macrocyclic diester PAs or pyrroles 

were more potent DNA-protein cross-linkers than the simple necine base. 

The pyrrole-induced DNA-protein cross-links were also investigated by 

co-incubating actin, BSA, histone, or myosin with dehydrosenecionine in 

pBR322 plasmid DNA or Bst Ell-digested A-phage DNA. The DNA-protein cross­

links were formed when dehydrosenecionine was incubated with BSA in pBR322 

plasmid DNA and Bst Ell-digested A-phage DNA. 

Taken together, these experiments indicated that DNA cross-linking 

activity is probably the most cri tical event leading to PA bio-activity. The 

inhibition of colony formation, cytopathologic effects, and DNA cross-linking 

activities of PAs are largely due to the action of pyrrolic metabolites rather than 

via a common pyrrolic intermediate as was once thought. These results also 

cinfirmed that PA-induced DNA cross-l inks are influenced by three structural 

features: the C1 ,2 unsaturation of the pyrrolizidine ring, a,J3-unsaturation, and 

the size of the macrocyclic diester ring. Furthermore, because PAs cross-link in 

a manner similar to known anti-tumor agents, this work indicates that some PAs 

might have anti-carcinogenic activity. 
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