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Abstract

Exploiting Sparsity and Dictionary Learning to Efficiently Classify Materials in

Hyperspectral Imagery

by

Andrew E. Pound, Master of Science

Utah State University, 2014

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

Hyperspectral imaging (HSI) produces spatial images with pixels that, instead of con-

sisting of three colors, consist of hundreds of spectral measurements. The dimensionality of

the data collected is extremely high, thus making analysis difficult. Frequently, dimension

reduction techniques are incorporated in the HSI signal processing chain as a preprocessing

step in order to reduce the dimensionality of the data. This reduction and change of basis

can occlude the physics of the system.

This research explores the utility of representing the high-dimensional HSI data in a

learned dictionary basis for the express purpose of material identification and classification.

Multiclass classification is performed on the transformed data using the RandomForests

algorithm. Performance results are reported.

In addition to classification, single material detection is considered also. Commonly

used detection algorithm performance is demonstrated on both raw radiance pixels and

HSI represented in dictionary-learned bases. Comparison results are shown which indicate

that detection on dictionary-learned sparse representations perform as well as detection on



iv

radiance. In addition, a different method of performing detection, capitalizing on dictio-

nary learning is established and performance comparisons are reported, showing gains over

traditional detection methods.

(121 pages)
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Public Abstract

Exploiting Sparsity and Dictionary Learning to Efficiently Classify Materials in

Hyperspectral Imagery

by

Andrew E. Pound, Master of Science

Utah State University, 2014

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

Hyperspectral imaging (HSI) produces spatial images with pixels that, instead of con-

sisting of three colors, consist of hundreds of spectral measurements. Because there are

so many measurements for each pixel, analysis of HSI is difficult. Frequently, standard

techniques are used to help make analysis more tractable by representing the HSI data in

a different manner.

This research explores the utility of representing the HSI data in a learned dictio-

nary basis for the express purpose of material identification and classification. Multiclass

classification is performed on the transformed data using the RandomForests algorithm.

Performance results are reported.

In addition to classification, single material detection is considered also. Commonly

used detection algorithm performance is demonstrated on both raw radiance pixels and

HSI represented in dictionary-learned bases. Comparison results are shown which indicate

that detection on dictionary-learned sparse representations perform as well as detection on

radiance. In addition, a different method of performing detection, capitalizing on dictio-

nary learning is established and performance comparisons are reported, showing gains over

traditional detection methods.
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Chapter 1

Hyperspectral Imaging

1.1 Introduction

A standard color image captured by a common camera is a spatially oriented image

recording light using three bands, one each centered in the colors, red, green, and blue.

Multispectral imaging extends this approach, capturing images using more bands and in-

corporating more information that can be used for interesting applications, such as historical

document restoration. Hyperspectral imaging (HSI) further extends this to the capture of

spatial images using hundreds of spectral bands. Often the bands are narrow and close

enough together to warrant calling the samples in the wavelength dimension a spectrum.

The data collected from these images is in the form of a cube, with the first two dimen-

sions representing the spatial dimensions captured, and the third dimension comprising of

the wavelength information. An example of a datacube, as they are called, can be seen in

fig. 1.1. The objective of using HSI is to take advantage of the high spectral resolution to

Fig. 1.1: An example of a datacube. The first two dimensions represent the spatial dimen-
sions and the third provides the wavelength, or spectral, content.
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aid in the identification and differentiation of materials in a scene of interest.

HSI is used in many different fields, including geological surveys, medicine, forestry

[2–4], and defense efforts [5–7]. Each of these fields utilizes the spectrum obtained to

aid in image segmentation and analysis, providing more accurate and reliable information

than that which can be gained from image processing on standard monochrome or tri-color

images.

Much of the early research in HSI was based in geological remote sensing. It is fre-

quently used for detecting mines and geological exploration [8, 9]. Of particular interest to

the geological researchers is the identification and mapping of minerals [10, 11]. A number

of papers have been published that provide a good overview of these subjects [12,13].

There has been significant interest in utilizing HSI in a wide variety of applications in

the medical field. Researchers have applied HSI to help in diagnoses [14], in the character-

ization of kidney stones [15] and tumors [16, 17], and even in the study of cancer [18, 19].

Many different areas of the medical field are finding use in spectral characterization of

tissues and samples. More references and results are reported in the review papers [20–22].

1.2 Physics of HSI

Hyperspectral Imaging is a passive remote sensing technique. That is, a hyperspectral

system does not illuminate the scene in order to take a measurement, as do active sensing

systems (RADAR, SEM, STM, etc.). A hyperspectral system measures the amount of

radiation emitted or reflected by the objects in the scene.

The measurement that the sensor actually receives is a measurement of radiance for

each spectral wavelength bin. This is a conglomeration of many different terms and in-

fluences. The radiance incident on the sensor comes from many different sources. Solar

radiance is scattered off of the atmosphere, the targets in the scene, and also of of nearby

objects outside of the scene, before it is collected by the camera. At times, radiance can be

reflected by multiple surfaces before being scattered into the sensor field of view. Each of

these reflections is called a bounce. The more bounces experienced, the more atmosphere

the radiance had traveled through, attenuating the radiance more than radiance that is
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directly scattered into the sensor. Neglecting multi-bounce terms of more than one bounce

gives a radiance that depends on eight different terms that are then cascaded with the sen-

sor effects. This equation is developed and derived in detail by Schott [1]. The governing

equation, what Schott refers to as the “big equation” is

L = LA + LD + LB + LE + LG + LH + LC + LF

=


LA︷ ︸︸ ︷

Esλcos(σ)τ1(λ)
r(λ)

π
+

LD︷ ︸︸ ︷
ε(λ)LTλ +

LB︷ ︸︸ ︷
F (Edsλ +

LE︷ ︸︸ ︷
Edελ)

rd(λ)

π

+ (1− F ) (Lbsλ︸ ︷︷ ︸
LG

+ Lbελ) rd(λ)︸ ︷︷ ︸
LH

 τ2(λ) + Lusλ︸︷︷︸
LC

+Luελ︸︷︷︸
LF

.

(1.1)

The terms are identified with labels which correspond to the paths illustrated in fig. 1.2,

demonstrating how it reaches the sensor. A deeper understanding can be obtained by

reading Schott’s excellent book [1], particularly focusing on Chapters 3 and 4.

The data used in this study use long-wave infrared (LWIR) measurements. Because

self emission dominates in the LWIR region, many of the terms of the “big equation” drop

out or are negligible. Thus, a LWIR pixel measurement at wavelength λ comprised of a

single material is generally described by

L(λ) = [εLe(T ) + (1− ε) (FLd + (1− F )Lb)] τ + Lu. (1.2)

Each term is dependent on λ, but this is dropped for easier notation. Also note, subscripts

are different, allowing for easier identification as detailed hereafter. The material emissivity

is denoted ε, and the reflectance is represented by (1 − ε). The radiance emitted from the

material is incorporated in the εLe term and is generally a blackbody curve modulated by

the emissivity. The strong dependence on temperature is indicated. τ is the atmospheric

transmissivity from the target to the sensor. The terms Ld and Lu refer to the downwelling

and upwelling radiances, respectively. Downwelling is the effect of radiation originating
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Fig. 1.2: Radiance paths reaching a sensor. Each path corresponds to a term in eq. (1.1).
(This figure is based on one in Schott’s book [1].)

from (or reflected off of) the atmosphere and then subsequently reflected off the target

in the scene. Upwelling is a similar effect that accounts for radiation that is emitted or

scattered off the atmosphere between the target and the sensor. These down- and upwelling

radiance terms encompass the energy originating from the atmosphere before and after being

reflected off the target. Lb is the background radiance, collecting any nearby radiating source

that reflects off the target and is then scattered into the sensor. Each of these radiances

are possibly dependent on many factors including, but not limited to, temperature and

atmospheric conditions. If there is little radiance incident on the target from any strongly

emitting nearby sources, or the target is unobstructed and not reflecting such radiance, the

Lb background term can, and often is, dropped, leaving the simpler equation

L(λ) = [εLe(T ) + (1− ε)Ld] τ + Lu. (1.3)

Stacking these up gives us the radiance vector of a single HSI pixel l, where each element

corresponds to a single wavelength λ. This is shown with the explicit dependence on wave-

length in the equation

l =

[
lλ1 lλ2 . . . lλN

]T
, where lλ = [ελLeλ(T ) + (1− ελ)Ldλ] τλ + Luλ. (1.4)
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In the above equations, the material specific parameter is the emissivity. The emissiv-

ity is an intrinsic property of each material and provides the information to determine the

type of material that the pixel is a measurement of. The process of extracting the emissiv-

ities from the radiances involves separating the atmosphere and temperature dependencies

from the emissivities in some way. This is a difficult problem and is an active area of re-

search. Many of the currently used methods perform significant and costly pre-processing

to mitigate atmospheric, downwelling, and upwelling effects.

One of the goals for this research is explore the possibility of extracting identifying in-

formation from the radiances, instead of requiring emissivities in order to provide reasonable

results.

1.2.1 Brightness-Temperature

Industry and national lab experiments are often performed on emissivities, because

emissivity is an intrinsic characteristic of each material. Our data is in radiance units

(microflicks), so it is a difficult problem to separate the temperature, emissivity, and atmo-

spheric components even in the simplified regime of this experiment.

In order to use something similar to emissivities, we have done a portion of this work

on brightness temperature profiles produced from the radiance pixels.

The method to calculate the BT of a radiance pixel is by inverting Planck’s law

Eλ =
2hc2

λ5
1

e
hc

λkBT − 1
, (1.5)

to get

T =
ch

kBλ

1

ln
(

c2h
λ5Eλ

+ 1
) . (1.6)

This does have some adverse effects on the data. Because we have not compensated for

any atmospheric effects, they are still seen in the data. These can mask the true emissivities,

although the data will “look” more like emissivities.
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The measurements are now considered a temperature in Kelvin (K), so we often re-

move the mean, to put each measurement around the same temperature. This is analogous

to removing the blackbody from the radiance data. Figure 1.3 shows a comparison be-

tween radiance pixels and BT pixels. A histogram of an entire cube is shown in fig. 1.4,

demonstrating that many of the pixels in a cube lie on the blackbody curve at a specific

temperature. The transformation to brightness temperature effectively removes the curve

from the pixels.

1.2.2 Multiple Materials

Often HSI pixels cannot be assumed to be pure. That is, the target resolution is not

sufficient to assume that a pixel is comprised of a singular material, but is instead a mixture

of materials. For example, imaging a patch of grass would collect the spectral content of

the grass, but some portion of the underlying dirt or rock would also likely be captured.

This mixing of materials in a single pixel is often modeled in a simple linear mixing model.

Given the radiance measures li of each the k separate materials, the pixel is often given as

r = Lα, L =

[
l1, l2 . . . lk

]
, (1.7)

where α is a vector of abundance values indicating the proportion of the pixel that each

material occupies or comprises. The li vectors represent spectrally pure or representative

class spectra. Often, constraints are placed on the elements of α such as
∑

i αi = 1 and

αi ≥ 0, ∀ i. This mixing model is decent if the materials mixed in a single pixel do not have

too much interaction, that is, the spectral features are not dependent upon each other or

reflected off of each other.

1.3 Current Methods for Hyperspectral Image Unmixing

Significant research has been done on methods to be able to unmix hyperspectral pixels.

Many of these popular techniques require or assume that pixels exist in the scene that are

purely one material or class, and that every material in the scene is represented in this way.
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Fig. 1.4: A heatmap showing the distribution of the (a) radiance and (b) brightness-
temperature (BT) log10 histograms of all pixels in an HSI cube. It can be seen that a
large amount of the pixels fall on a blackbody curve, and that the BT removes it.
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Many algorithms exist which focus on the segmentation of the image into constituent

materials. Two main goals divide the algorithms into two classes: those which look to

identify anomalies/targets, and those which work to assign to each pixel a class, identifying

it as a certain material (or a group of classes, identifying it as those materials). Each class

of algorithms works to achieve its objective with minimal misclassification error. Many of

the algorithms are based on the idea that the data lie on a low-dimensional manifold that is

embedded within the higher-dimensional dataspace. For this reason, there has been a large

amount of research in the field of dimension reduction and manifold embedding/unfolding

as applied to HSI data. Some of these algorithms that look for a lower dimensional repre-

sentation are NFINDR [23], ISOMAP [24], and Locally Linear Embedding [25].

Many of the methods developed to aid in hyperspectral unmixing or segmentation are

focused on what are known as endmembers. Endmembers are pixels from the data which

form a linear basis for which the other pixels in the scene can be represented. Often it is

assumed that there exists at least one pure pixel of each material present in a given scene,

and that these are identified as endmembers.

N-FINDR

In 1999, Winter proposed identifying the “pure” elements of the scene, referring to these

as endmembers, and representing the rest as combinations of these [23]. His algorithm

is a main stay in the HSI community and is called N-FINDR. The manner in which he

proposed to find these endmembers was to randomly select a data vector to be a part of

the endmember set E, and compute the volume of the simplex formed using the candidate

endmembers as vertices using

V (E) =
1

(M − 1)!
abs (|E|) , (1.8)

and

E =

 1 1 . . . 1

e1 e2 . . . eN

 . (1.9)
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V (E) is the calculated volume encompassed by the N candidate endmembers ei. Then

each candidate endmember is replaced with every other pixel available in the dataset. If

the volume increases, then it stays in the candidate set. Each pixel is substituted into each

endmember position to find the largest volume possible.

When the largest volume simplex is found, then other pixels are represented as linear

combinations of the identified endmembers. The coefficients found in the unmixing are the

abundance of each of the endmembers. Winter suggests utilizing either a least squares or a

non-negatively constrained least squares method to perform the unmixing [23].

This algorithm requires a foreknowledge of the number of expected endmembers N ,

and can only return that number of them. It also requires preprocessing in order to reduce

the dimension of the hyperspectral pixels down to N−1. This is needed in order to calculate

the determinant of E, which must be a square matrix. In addition to these limitations it

returns pixels from the scene as the endmembers, explicitly assuming that there exist pure

pixels of each material or endmember in the scene and that the other pixels are mixtures

of the extracted endmembers.

ISOMAP

Isometric Feature Mapping (ISOMAP) is actually not specifically designed for hyper-

spectral information but for any very high dimension data that lies upon a low-dimension

manifold embedded in a much higher dimensional space [24]. The method is similar to

Multi-Dimensional Scaling (MDS) in that it calculates a distance between each point and

calculates an embedding that preserves as much as possible these inter-point distances. But

where ISOMAP differs is in the calculation of the inter-point distances. It uses a pseudo-

geodesic distance defined by nearest neighbors on the graph which represents the embedded

manifold.

One criticism of this method for dimensionality reduction is that measurement noise

may push points sufficiently far from the embedded surface manifold, that the algorithm

will not return meaningful results.
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Independent and Principal Component Analysis

When no information is given as to the materials present in the pixels, then some form

of blind unmixing is needed. Independent Component Analysis (ICA) is a blind unmixing

algorithm that works to decompose the given data into statistically independent sources.

Usually this separation into statistically int dependent sources is done by maximizing some

measure of non-gaussianity or a minimization of mutual information. It has been investi-

gated as a means of unmixing HSI data, see for example [26]. Stites [27] offers a good review

of a number of papers that strive to perform spectral unmixing with ICA. Stites develops

two algorithms to deal with the scale ambiguity that is inherently a part of ICA. He then

demonstrates the suitability of using ICA as an unmixing algorithm for hyperspectral data.

Principal Components Analysis (PCA) is a dimension reduction method that strives

to represent a data set along dimensions which capture the most variance [28]. Often PCA

is used as a method to remove noise from measurements, by projecting the data onto the

space spanned by the first k principal components. This implicitly assumes that the other

dimensions are nuisance dimension, or noise in the data. A danger in doing this is that it

may remove more than just noise. PCA has been utilized to improve HSI classification. See

for example Radarmel and Shan’s paper [29] and the cited works therein.

NMF

Non-negative matrix factorization (NMF) has been used to identify endmembers or

materials and to segment an image into its constituents. NMF is the factorization of the data

matrix into two matrices which are defined to be nonnegative, that is have all components

or elements that are nonnegative.

Esser et al. use Non-negative Matrix Factorization to formulate the endmember type

problem into a tractable algorithm. They use Alternating Direction Method of Multipliers

for the numerical optimization (ADMM) [30]. Li et al. utilize a kernel NMF to unmix HSI

data under an assumption of a nonlinear mixing model [21]. They also demonstrate the

ability of two other constraints to improve performance. They test their algorithm on both

synthetic and real hyperspectral datasets. Wang et al. [31] propose a new constraint on the
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NMF problem that measure the dissimilarity between endmember spectra by calculating the

difference of the gradients between the candidate endmembers. They provide experiments

presenting the superiority of this compared to other NMF-based unmixing methods.

1.4 Goals of This Work

The main goal of this research is to investigate the ability of sparse representations

to parallel the physics of hyperspectral data and provide new information to classification

and detection algorithms. Specifically, this thesis will evaluate the ability of the Random-

Forests classifier to distinguish between classes of materials based on their sparse signatures

represented by dictionary learning.

1.5 Motivations for This Work

As has been discussed, many techniques exist that project HSI data into another basis

or form to be able to more tractably process. Whether that is by dimension reduction

using PCA or manifold unfolding utilizing ISOMAP, these techniques do not mirror, and

sometimes occlude the physics of the initial system. It is hoped that the bases learned

from dictionary learning algorithms and the sparse representations obtained will mimic the

physical properties of the imaging system, providing improved insight and information.

1.6 Contributions of the Thesis

The main contributions of this research are first, the charaterization of the performance

of RandomForests on abundance vectors for hyperspectral classification. Second, various

matched filters were evaluated for their performance in material detection utilizing sparse

representations based on dictionaries learned on hyperspectral pixels. Also, a novel sparsity

based detection algorithm is described and evaluated with respect others surveyed. These

characterizations demonstrate the efficacy in performing dictionary learning on hyperspec-

tral information to form a sparse representation.

The remainder of the thesis is organized in the following manner. The next chapter de-

tails the Denali Material Survey dataset, the particular hyperspectral dataset that this thesis



12

uses for its testing. Chapter 3 describes classification and describes the RandomForests clas-

sification algorithm, along with reporting results of the RandomForests algorithm on the

Denali hyperspectral data. Chapter 4 introduces dictionary learning and describes some

common learning algorithms. This is followed by Chapter 5, where we investigate the idea

of pairing the sparse representations and dictionary learning algorithms of the previous

chapter with the RandomForests classifier. Results are presented which describe the perfor-

mance of classifying on the sparse representations. Next, in Chapter 6, the methodology of

detection as a method for identification of a material is explained and a novel approach to

detection is presented that utilizes dictionary learning and sparse representations. Results

are presented demonstrating the performance of the detector along with common detectors

applied to hyperspectral data. Finally, Chapter 7 formalizes our conclusions and lays out

future directions of research.



13

Chapter 2

Denali Dataset

2.1 Hyperspectral Dataset

The research that we have done is based on hyperspectral data. Much of the tests

and trials that have been performed are in relation to an HSI dataset that was provided by

Lawrence Livermore National Laboratory (LLNL). The dataset was collected by a Long-

wave Infrared (LWIR) Hyperspectral imaging device called Denali. The collection of cubes

generated by the device was a long-term experiment executed for the purpose of examin-

ing the spectral characteristics of various materials over time. In this chapter, the Denali

instrument will be described, the dataset will be explained, and some difficulties of the

dataset will be demonstrated along with any techniques used to mitigate effects of these

problems that were manifested in the data.

2.2 The Denali Instrument

The Denali instrument collects data in the LWIR region of the electromagnetic (EM)

spectrum, ranging from 7.34µm to 13.34µm. It is a dispersive hyperspectral instrument,

which means that it collects its measurements utilizing some sort of a diffraction lens or

grating. It measures 258 bands, producing band centers that have roughly 23nm of center

separation [32].

2.3 Material Survey Experiment

The dataset that we are working with was provided to us by Lawrence Livermore Na-

tional Laboratory. The experiment from which we have data (often called the Material

Survey) was investigating changes in spectra of materials over time. The instrument was
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positioned in a mechanical room on the sixth floor of a building, and collected a hyperspec-

tral image of a board with various materials on it located approximately 270 meters away.

It had an approximate field of view (FOV) of 1.5 degrees in the horizontal direction. Denali

was set up to take an image approximately every 10-11 minutes. The images were collected

over a period of about one and a half months with a few more days a few months later [32].

2.3.1 Distribution of the Cubes

The data cubes were taken over 53 days from December 13, 2007 to March 20, 2008

in two runs. The first run spanned the time from December 13, 2007 through February 2,

2008. The second, shorter run took place from March 19, 2008 to March 20, 2008.There are

5743 data cubes total. The cubes are not quite all uniformly distributed across the days

of the project. Figure 2.1 shows this distribution over the period of the experiment. In

fig. 2.2, the distribution of the cubes over the hours of the day are given.

2.3.2 Hyperspectral Model Setup for Denali Material Survey

From eq. (1.4), the model can be simplified somewhat because of the particulars of

our dataset. First, the upwelling term may be neglected (Lu ≈ 0, because the sensor was

positioned in such close proximity to the target, that there is assumed to be negligible

contributions to the radiance. Likewise, the transmissivity of the that same atmosphere is

assumed to be unity for the same reasons (τ ≈ 1). Making these assumptions allows us to

use the radiance model given by equation

l =



lλ1

lλ2
...

lλN


, where lλ = ελLeλ(T ) + (1− ελ)Ldλ. (2.1)

This expression only accounts for pure pixel images. In order to use this for mixed

pixel applications, we need to employ the Linear Mixing Model (LMM). In the LMM, we
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Fig. 2.1: The distribution of the datacubes collected across time. The two separate runs
can be seen. On the days for which there were measurements, they are not always uniform;
some days have a much larger number of measurements than others.

adjust the radiance from each material with the proportion with which it covers the pixel.

As from eq. (1.7), we can model a full pixel as a linear combination of its constituent parts.

That is

r = Lα, L =

[
l1 l2 . . . lk

]
, α < 0,

∑
i

αi = 1. (2.2)

2.3.3 Brightness-Temperature as an Analogue to Emissivity

Much of the research surrounding HSI uses the emissivity of the material as the true

material-specific signature. In the material survey validation paper, Lawson et al. per-

form their analysis on what they consider a psuedo-emissivity. They performed their usual

calibrations to the raw data, and converted the radiance values to brightness-temperature

measurements. Then a vegetated, green region of the scene was chosen to use as a flat

field measurement over the central portion of the spectrum measured. This produced an

emissivity of sorts: an emissivity with respect to the gray body of the vegetation, instead of

with respect to a true blackbody. They demonstrated that many of the materials exhibited

similar features to emissivity spectra measured in a laboratory setting [32].
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Fig. 2.2: The distribution of the datacubes as a function of time of day. They are approxi-
mately evenly distributed.

2.3.4 The Materials

The subject of the study was a board upon which were affixed a number of different

samples of various materials. There were 27 materials laid out, and a couple of other “targets

of opportunity” were also present. The materials were affixed to a piece of plywood/particle

board that had been painted white. The materials were pieces 12 inches square.

The materials fell into roughly three main categories: natural minerals, metals, and

man-made materials. The man-made materials included plastics, fabrics, and concrete/construction

materials. A listing of the materials mounted on the board is given in Table 2.1.

Any numbering of the materials that appears in our research can be identified by

numbering in Table 2.2 and in fig. 2.3. A color image is shown next to the diagram to

provide a reference for the materials.

2.3.5 Spectra of the Materials

The measurements of the materials that we are working with is all in the LWIR region.

Because of this, our measurements are dominated by emission as opposed to reflectance.

This leads to most of the data having a very definite blackbody appearance. This is demon-
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Table 2.1: Classification of the materials into the general categories represented. (*) indi-
cates a material not numbered in fig. 2.3.

Rocks/Minerals Metals Plastics Wood Concrete/Asphalt/Clay Fabrics

Slate Painted Steel PVC Pine Concrete Camo Net
Marble Bare Steel HDPE Painted Pine* Cinderblock Carbon Fabric
Granite Brushed Aluminum ABS Asphalt Shingle

Travertine Polished Aluminum Tyvex Terra Cotta
Alabaster Blue Tarp Aggregrate
Aggregate

Calcite
Limestone
Quarzite

Soapstone
Sand

Table 2.2: Enumeration of the materials on the board.

First Row Second Row Third Row Fourth Row

Painted Steel 1 Cinderblock 2 Marble 3 Granite 4
Steel 5 Concrete 6 Trap 7 Travertine 8
Asphalt 9 Slate 10 Terra Cotta 11 Alabaster 12
PVC 13 HPDE 14 ABS 15 Aggregate 16
Tyvek 17 Pine 18 Aluminum 19 Calcite 20
Camo Net 21 Carbon 22 Polished Aluminum 23 Limestone 24

Soapstone 25 Quartzite 26
Sand 27

strated when looking at a histogram of the spectra of an entire cube together such as in

fig. 2.4.

Each material also has spectral features that distinguish it. Examples of some materials

are presented in fig. 2.5.

2.4 Difficulties of the Dataset

There are issues with registration from cube to cube. Each cube is completely indepen-

dent and even within the dataset, there are issues that make registration difficult. At some

points in the dataset, the camera is zoomed in or out so that the panel with the materials

occupies more or less of the entire image. This means that each material is comprised of

a different number of pixels from cube to cube. It also means that a straight index-based

registration is not sufficient. A morphing or warping would be necessary to co-register the
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Fig. 2.3: The panel and the materials measured in the Material Survey Experiment. The
left is a diagram specifying the numbering used throughout this research. The right is an
optical photograph of the board.

entire dataset.

2.4.1 Translation

There are a number of times during the course of the study in which the Denali in-

strument was moved and even zoomed in or out. Consider the images in fig. 2.6. This

inconsistency in the dataset makes registration across the entire dataset more difficult. This

type of registration could be compensated for using state of the art registration algorithms,

but they were beyond the scope of this study.

In order to be able to use multiple cubes, a time period was found consisting of slightly

more than a week in which the Field of View (FOV) did not change significantly, thus

enabling a coarse registration from cube to cube.

2.4.2 Warping

Another issue that complicated the co-registration of the Denali Material Survey cubes

was an occasional warping of the panel materials’ size. In fig. 2.7, the non-uniformity of

the size of the material pieces on the panel (especially on the left side) can clearly be seen.

The cubes shown are in consecutive order.
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Fig. 2.4: Histogram of the spectral content of an entire hyperspectral cube. The underlying
blackbody curve is very evident.

2.4.3 Striping

Hyperspectral data often have artifacts that manifest as stripes and bad pixels. Many

different methods are proposed to correct or minimize the effects of these bad pixels and

other artifacts (see for example, Leathers and Downes [33], Manolakis et al. [34], Fischer

et al. [35], and Kieffer [36]). In the Denali dataset, often a whole row can be seen that is

significantly different than those around it. See, for example, fig. 2.8. In order to mitigate

some of the effects of these stripes, when choosing the data from a material, a median filter

was used to be able to avoid being influenced too much by erroneous and spurious data.

Figure 2.9 shows an example of utilizing the median filter to correct for a “striped” row.

2.4.4 Edge Feathering

The Material Survey dataset that was provided had a interesting phenomena in that

the columns of the image did not always line up together correctly. This produced an

irregular boundary for each of the materials in the scene and distorted horizontal lines in

the images. An example of this “edge feathering” can be seen in fig. 2.10.
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Fig. 2.6: Example of translation and zooming variations across the dataset.
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Fig. 2.7: Example of the amount of warping that is present in various portions of the
Material Survey dataset.
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Fig. 2.10: In this pseudo-broadband image of the panel, the edge feather errors can be seen
especially well in the darker materials.

Some work was done to correct this with a few different possible methods. Figure 2.11

shows some results. The algorithms proved to not be quite reliable enough to apply across

the dataset as a whole, so the solution to this problem that was incorporated into most of

the experiments was to sample from the middle, inner portion of the materials, i.e. staying

away from the edges.

Lawrence Livermore have informed us that this is no longer an issue with new data

obtained from this sensor.

2.5 The 9-Days Dataset

In order to address some of the issues of registration, a subset of the data was identified

in which the zoom was approximately the same. This comprised approximately 9 days from

December 18, 2007 to December 26, 2007.

The panels were extracted from the full cubes by doing a simple cross correlation

registration. These panels were then saved as Matlab .mat files.

Extra Registration

When extracting the materials from the panels, an extra registration was employed to

ensure that the material of interest was as pure as possible. An area was defined around

the predetermined most likely center for each material. This area was then shifted around

with a distance penalty to find a local registration that maximizes the purity of the patch.
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Fig. 2.11: Examples of methods to mitigate the edge feathering errors. The top left shows
the original image and the lower left a zoomed in area. The middle shows the results of
a correlation alignment calculated line by line with the line above it. The right does a
correlation above and below line by line and also incorporates a median filtering process.
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Even Smaller Dataset

There appeared to be too much variation, when running tests on this smaller subset of

the data, and thus a smaller hand-picked set of material spectra were chosen to provide a

more cohesive and consistent dataset on which to do the tests. The manner in which this

set was built was that the material spectra were extracted from all of the 9-days dataset

and then plotted on top of each other in histogram fashion, quantizing, and binning in the

radiance direction. Then a representative spectrum was chosen and the N closest spectra to

this example were ranked accordingly. This was done independently for each material, and

thus the spectra were chosen from many different cubes, but there was guaranteed some

self consistency in each material. The cubes with the highest ranking were chosen as the

new dataset.

Artificial Datasets

Sometimes a ground truth set is extremely helpful. For some experiments, a dataset

was created which is built upon the Linear Mixing Model (LMM). Given a pool of data as

a library, a pixel can be produced as a linear combination of pixels from the library. In our

tests, we used the median filtered material spectra from the 9 days and used them to create

a dataset. This was used to test for a material of interest. It allowed for specification of

abundance and scene coverage along with a few other parameters. This artificial data was

used in testing the matched filter detections derived.

The median filtered data from the small, 9 day dataset was used as a dictionary to

build hyperspectral pixels from. The data were labeled by material. Each dataset built in

this fashion features a particular material of interest. This allows for testing for detection

of this material in varying abundance percentages and in varying scene coverage amounts.
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Chapter 3

Classification

3.1 Classifiers

Classification is the “systematic arrangement in groups or categories according to es-

tablished criteria” [37]. In the manner referred to in this study, it encompasses both the

act of determining the criteria by which the classification should happen and also the act

of assigning data into classes utilizing the criteria found. The set of criteria which divide

the data in the different classes, along with any mechanism needed to do the classifying, is

termed the classifier. In the statistical machine learning literature the type of classification

that is treated in this thesis is commonly referred to as supervised learning, because it

incorporates a “training” set with which to develop the classifier. Commonly a “test” set is

then used to evaluate the effectiveness of the classifier on new data. Both the training and

the test sets usually have known labels/classes associated with them, in order to facilitate

the determination of the error of the classifier.

3.2 Types of Classifiers

3.2.1 Binary and Multiclass Classifiers

A classical binary classification problem is a two-class problem. There are only two

outcomes possible. They may be labeled as 0 or 1, or 1 and −1, or 1 and 2, and sometimes

the label has to do with the classification algorithm. The binary problem has been studied

extensively and is well understood. Multiclass classifiers are classifiers which distinguish

between more than two different classes. Some multiclass classifiers are generalizations of

binary classifiers (i.e. support vector machines [38]). Some methods have also been proposed

to utilize binary classifiers in a coded fashion to create a multiclass classifier [39,40].
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3.2.2 Linear Classifiers

Linear classifiers try to determine some linear boundary that divides the data into the

separate classes with some minimum measure of error. These methods include Logistic Re-

gression, Linear Discriminant Analysis (LDA), and perceptrons. Support Vector Machines

are frequently listed as linear classifiers also, although they can be made to learn a nonlinear

decision boundary using various different kernels [28].

Quadratic Discriminant Analysis (QDA) isn’t technically a linear classifier, but is a

direct extension of the ideas of LDA.

3.2.3 Probabilistic Models

There exist many different types of probabilistic classifiers that have different ap-

proaches to modeling the data and finding a classification. The methods range from nearest

neighbor methods and naive Bayes models to maximum likelihood and modern Bayesian

methods. Probabilistic models can be fit to the data, possibly incorporating any prior infor-

mation to assist in the classification. Although these methods have found great success in

the machine learning community, we focus on tree-based methods in this research because

this does not make assumptions about an underlying model.

3.2.4 Tree-Based Methods

Tree-based classification methods are essentially a subspace partitioning scheme. A

tree will define a split at each branching and assign a direction to each datum arriving at

that split. At the leaves or ends of the branches, some prediction is formed based on the

data that arrived at the terminal node. Candidates for the prediction could be a majority

voting scheme or a histogram approximation of a probability function.

3.3 RandomForests

RandomForests is an ensemble machine learning algorithm first proposed by Leo Breiman

in 1996 [41]. It is a decision tree-based algorithm which builds a collection, or forest, of

trees and then aggregates the results of the individual trees into a full prediction. It natively
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and seamlessly can accommodate multiclass classification problems. It builds its classifying

space from the subspace partitioning of the underlying classifiers (the decision trees that

form the forest).

3.3.1 Tree Concepts

Background

A classification tree is an acyclic graph that is organized in a hierarchical manner. As

such it is composed of nodes and edges. Edges are the connections between the nodes in the

graph. Most common classification trees use a binary tree structure, that is, each node in

the tree can only have 0 or 2 children. A node that has no children is called a “leaf” node.

Any other node in a decision or classifying tree is considered a “splitting” node, because a

decision or split is made at these points.

In decision trees there are two main modes of operation, a “training” phase and a

“testing” phase. During the training phase, the tree structure is built to perform the

classification according to the configuration setup of the forest and the training set given.

During the testing phase, new data are entered into the tree and the projected response or

classification is given as an output from the tree [42].

Building a Decision Tree

The framework for building a tree is that all of the training data are passed down the

tree and split apart at each node, with portions of the the data going down each child branch

to be split at the next nodes. The splitting is done according to some set criteria. Examples

of these criteria could be minimization of a classification or regression error, maximization of

a purity measure, or maximization of entropy. As the data filters down the tree, the error

continues to become better, until some stopping criterion is met, such as a class purity

threshold or a set error threshold, or a depth restriction.

It has been shown that tree-based models can overfit on the training data, losing the

ability to predict the outcome or response from new test data. Many methods have been



29

proposed to reduce overfitting including pruning and refactoring [28]. Another method to

reduce or eliminate overfitting is to use an ensemble approach.

Ensemble Methods

An ensemble is a group of classifiers which are aggregated together to produce a result

that is often more accurate than any of the single classifiers by themselves. Frequently a

simple, fast classifier is used as the basis for the ensemble. Examples are logistic regression

models, or classification/decision trees. Sometimes different and varied classifiers are put

together, but it is more common to only include a single type of classifier with some varia-

tion. These variations can be obtained using techniques such as bagging, which introduces

variation in the datasets or randomization inside the classifiers themselves.

3.3.2 The RF Algorithm

Breiman proposed RandomForests as an ensemble tree-based method that was able

to be efficiently grown, yet also outperforms single decision tree-based classifiers. The

algorithm is presented below.

Making RF Random

In order to produce a number of trees that are different, random sampling is incor-

porated in two important places in the building of the trees. The first place is bootstrap

aggregating, commonly called bagging. For each tree that needs to be built, a uniform

random sampling with replacement of the training set is generated and this becomes the

dataset with which the tree is built. Breiman states that on average about one third of the

samples are left out of each tree [41].

Another way in which RandomForests randomness is in a random selection of the

candidate split variables. RF searches over a randomly chosen subset of the variables to

find the best split. This subset is chosen independently at each split node. The number of

variables to randomly choose is the parameter mtry.
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Final Prediction

RandomForests produces its final prediction by aggregating the results from each in-

dividual tree and doing a majority vote. The class with the largest group of trees that

predicted it, is the prediction that is given from the forest as a whole. This is not the

only method of forming a prediction from a forest, but this is the default behavior and the

method used in this paper.

3.4 Classification of HSI Pixels

3.4.1 Previous Work

Applying classifiers to hyperspectral data pixels and cubes is a broad and open area of

research. A number of papers evaluated and published their findings of applying numerous

signal processing techniques and various classifiers to hyperspectral pixels.

Many varied and different techniques have been applied to hyperspectral pixel classifi-

cation. Bidhendi et al. uses fuzzy clustering to classify pixels [43], and Kuo et al. evaluate

the usefulness of both a K-nearest neighbors and a Gaussian classifier approach [44]. An-

other interesting approach is the application of Kalman filtering on a single HSI pixel to

classify it. Wang et al. develop a couple different Kalman Filter-based methods and compare

their performance with other Kalman filtering based techniques [45].

Du and Chakrarvarty [46] introduces an unsupervised classifier based on the idea of

a blind source separation problem. They used a mutual information and orthogonality

encouraging cost function and incorporated a Neyman-Pearson step to estimate the number

of classes, thereby reducing the complexity of the algorithm. They showed preliminary

results images demonstrating the feasibility of the method.

Support Vector Machines

A number of people have applied Support Vector Machines (SVMs) to the hyperspectral

classification problem. SVMs are essentially a margin maximization classifier; they try to
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maximize a measure of the margin between two classes. Through use of the “kernel trick”

it can be used to find nonlinear boundaries between the classes.

Melgani and Bruzzone [47] compare using an SVM for classification of hyperspectral

pixels against both a K-nearest neighbors and a radial basis function neural network classi-

fier. The SVM performs favorably in classifying the AVIRIS data. They also report multi-

class SVM performance in a 1 versus 1 and a 1 versus all framework along with hierarchical

frameworks.

Lennon et al. uses an SVM to do classification and compares its performance to a

spectral angle mapping classifier and a Gaussian maximum likelihood classifier [48]. It is

shown that a prefiltering of the data with a Maximum Noise Fraction transform and an

anisotropic filter dramatically improves results in homogeneous areas.

Tarabalka et al. [49] use a 1-vs-1 SVM strategy, along with a Markov Random Field

(MRF) for incorporating spatial information, to classify hyperspectral pixels. They showed

favorable results in the few variations that they tested on AVIRIS and ROSIS data. They

attribute their gains to the use of neighboring pixels’ class information. Fauvel et al. [50]

also incorporates spatial information using a self-complementary area filter and a derived

two-kernel SVM strategy. They demonstrated gains above that of using the SVM on spectral

information only.

Demir and Ertürk propose using Relevance Vector Machines (RVMs) in the place of

SVMs for classification of hyperspectral pixels [51]. They demonstrate that RVMs offer

approximately the same classifying power as the SVMs with a significant drop in the number

of significant vectors (relevance and support vectors). This allows for testing times to be

dramatically faster.

RandomForests

Both Ham et al. [52] and Joelsson et al. [53] use RF to perform classification on hyper-

spectral pixels. Ham et al. performs his experiments using data collected from the AVIRIS

visual and near infrared sensor, whereas Joelsson et al. uses data from the ROSIS instru-

ment, a mid-wavelength infrared hyperspectral camera. They both present a comparison
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between a couple of different RF implementations. They evaluate the general CART frame-

work, which is close to what we use, and also a RF that uses Binary Hierarchical Classifier

(BHC) as the underlying tree structure. Joelsson et al. discusses the classification error

based on the ROSIS data, with both ensembles demonstrating classification accuracies gen-

erally within the 90% range. They do not show any comparison with any other classifiers or

data. Ham et al. does the same comparison and in addition compares against a best-basis

BHC and a random subspace BHC. In both cases, RF CART performs favorably, although

the BHC RF performs even better in certain circumstances. Joelsson et al. concludes that

the RF BHC implementation is a good classifier and performs very well on certain problems,

where as the CART implementation is a good classifier for any general problem and shines

when the problem does not lend itself to using the BHC implementation.

3.4.2 Classifying on Denali Data

In order to have a base line to which we can compare, RF was run on the original

pixels. The results are shown in Table 3.1.

Method of Choosing Data

The Denali dataset covers a significant time period and numerous variations of envi-

ronmental factors. We use a method to select some cubes from the full set that have the

most consistent representation across all materials and with respect to the average of the

dataset.

In order to identify the most consistent cubes, a histogram of all the cubes was con-

structed for each material, using all nine spatial samples available. Then the maximum

radiance bins were identified and the distance from this “best” sample was taken for each

cube. The cubes with the smallest distance were used as the dataset for this experiment.

Half were set aside as test cubes, and half as the training set.

RF Test

From each selected cube, the materials were loaded and selected from the set center of
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the material and the eight adjoining pixels. This gave nine sample spectra for each material

from each of the cubes for 90 samples of each of the 27 materials overall. The total size of

the training set was 2430. The test set was the same size as training set.

RandomForests was run on both the radiance and brightness-temperature data. Also

taken into consideration is the scaling of the data. In order for the SPAMS libraries to take

advantage of the data, scaling is often required. To accurately portray the effect of this on

the RF output, RF output error from a few variants of this scaling are included.

Radiance Data Variations

For the radiance data, RandomForests was run on the radiance data itself, with no pre-

scaling. Then a few different methods of scaling the data were considered. The first variation

considered was the pixel-wise mean-removed radiance. Each pixel mean was calculated and

this mean was removed from the pixel, producing a zero mean pixel. The second is where

the training set and the test set are normalized independently by the Frobenius norm of

each dataset divided by the size of that set. This gives an approximate unit norm for each

pixel with respect to the dataset to which it belongs. The third is where the test set is

scaled by the normalizing constant of the training set, where the normalizing constant is

calculated as in the second method.

Brightness-Temperature Variations

In addition to testing with radiance, we also tried testing with brightness temperature

converted pixels. We tested with the full brightness temperature, and also with mean

removed brightness temperature pixels. In addition to these we also tried the normalizations

as done with the radiance data, in that we tested on BT pixels with each set (training and

testing) being normalized to average unit norm. And finally, we also tested with both sets

being normalized by the training set normalization factor.

Error Results

The results were averaged over twenty runs for each variation of the data described
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above. RandomForests on the raw radiance data produced an average error of 4.4% for just

about every method except for the two which had a zero mean. For the two tests which

were zero mean, the average error was between 3% and 4%. Interestingly, the out-of-bag

estimates of the error for each of these were significantly less than the other test sets. The

results can be seen in the fig. 3.1 and tabulated in Table 3.1.

From these results we see that scaling the datasets independently produces datasets

that are significantly different. We can also see that even when using the best scaling, the

results of using the scaling does not significantly improve the error over the raw radiance

vectors.

3.4.3 Confusion Matrices

The confusion matrix for the RandomForests algorithm on the original raw hyper-

spectral data is shown in fig. 3.2. The confusion matrices are a method to determine the

performance of a classifier. The columns correspond to each true class. They are stochastic,

that is, they sum to unity. The rows correspond to the classification assigned to each data

vector by the RandomForests classifier. Thus, cell ci,j of the confustion matrix specifies the

percentage of class j that was classified as class i.

The diagonal down the middle of the confusion matrix are the correct classifications.

The total error can be found by counting the number of test vecotrs that are off the diagonal.
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Table 3.1: The tabulated results of running RandomForests on a training set of 2430 samples
and a test set of 2430 samples. See text for descriptions of each of the datasets.

OOB Test

Data Min Error Mean Error Max Error Min Error Mean Error Max Error

Raw 3.0453 3.3642 3.7037 3.9918 4.4033 4.7325
Raw samp-wise 0-mean 1.0700 1.2613 1.4403 2.7984 3.1379 3.4568

Independent Norm 3.0453 3.3868 3.6626 4.2387 4.4753 4.9383
Scaled ”Norm” 3.0041 3.3395 3.6214 4.0741 4.4362 4.8148

B-T of raw 3.1276 3.3868 3.7037 4.1564 4.4486 4.6914
B-T samp-wise 0-mean 1.5226 1.8004 2.0576 3.6214 3.9794 4.3210
B-T less Train Mean 3.0041 3.3601 3.6626 3.9506 4.3601 4.6091
B-T less Test Mean 3.0041 3.3601 3.6626 3.9506 4.3909 4.7325
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Fig. 3.1: This shows the results of running RF twenty times on each of the following data:
R0) the Raw HSI pixels, R1) Raw sample-wise 0-mean, R2) Independent Norm, R3) Scaled
“norm”, BT0) BT of the raw, BT1) BT with a sample-wise 0-mean, BT2) BT with the
Training set mean removed, BT3) BT with the Test set Mean removed.
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Fig. 3.2: Confusion matrices of a few of the testing and training sets described in the text.
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Chapter 4

Dictionary Learning

Many signal processing algorithms focus on representing data in a different basis. That

is, projecting a data vector into another dataspace that may be more informative. Examples

of this are Fourier representations, wavelet transformations, Graham-Schmidt orthoganal-

ization, and principle components analysis. Each of these processes project signals onto (or

creates) a basis which represents the data in a different fashion. These alternate bases can

provide a valuable way to look at the data and new insights can be made. Some data can be

represented as a mixture of a small set of causes. Of numerous different possibilities, each

datum is only a combination of very few sources. This situation is what sparked interest

in Dictionary Learning. Dictionary Learning (DL) strives to represent data in a different

basis that admits a small number of nonzero coefficients. That is, the coefficient vectors are

sparse, which follows the model better that other common methods of decomposition that

use all or most of the available sources or basis vectors.

4.1 Origins

Dictionary learning is the learning of a basis for which the given data can be represented

with low error and that produces sparse coefficient vectors. The sparsity constraint enforces

the idea that only a few basis elements contribute in representing any one datum.

This technique is often posed in the form of an optimization problem. Frequently, it is

presented as

[
D̂, {αi}

]
= arg min

D, {αi}

∑
i

‖αi‖0 subject to ‖xi −Dαi‖22 < λ ∀ i, (4.1)

or some variation of this. Essentially, this finds the basis or “dictionary” D̂ that minimizes

the number of components in each coefficient vector αi, subject to a bound on the rep-
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resentation error. The use of the 0-pseudo-norm in the problem makes this NP-hard [54].

To attempt to solve this, numerous methods have been proposed that will find an approx-

imation to the solution. Greedy methods, relaxations, matrix factorizations, and gradient

descent methods are just a few of the types of algorithms that have been developed by

the community. Most of these break the problem into a 2-step iterative process: fixing the

dictionary and solving for the abundance coefficients, and then fixing the coefficients and

solving for the dictionary by an update that converges to a viable solution.

The general DL problem is often relaxed to use a 1-norm instead of the 0-norm, because

the 1-norm is the convex hull of the 0-norm [54]. From this, an alternating algorithm can

be used by fixing each of the dictionary and the abundances in turn while optimizing the

other.

4.2 Methods of Doing the Learning

In this section a few different algorithms for performing dictionary learning are in-

troduced. Each performs the dictionary learning differently than the others and seeks to

improve on the others in distinctive ways.

4.2.1 Olshausen and Field

Olshausen was one of the first to really explore this field. His method was drawn from

a Bayesian framework, in that he proposed the problem in such a way that it became an

issue of drawing from a difficult distribution [55].

In this framework, it was shown that by maximizing the average log-likelihood of a

draw from this distribution, using a sparse and statistically independent prior, a set of basis

functions is found that can be used to sparsely reconstruct the given images. They worked

to solve

φ∗ = arg min
φ

〈
min
a
E (I, a|φ)

〉
, (4.2)
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where E(I, a|φ), is the log-likelihood re-cast into an energy framework. The definition of E

is given as

E (I, a|φ) = − logP (I|a, φ)P (a)

=
∑
x

[
I (x)−

∑
i

aiφi (x)

]2
+ λ

∑
i

S (ai) .

(4.3)

Olshausen and Field then describe the solving of this by first holding the basis functions φi

fixed and solving for the ai’s by finding the equilibrium solution to the differential equation

ȧ =
∑
x

φi (x) r (x)− λS′ (ai) , (4.4)

where r (x) denotes the residual image. Then the basis is solved for while holding the

abundance coefficients fixed. Olshausen and Field implement this algorithm in a neural

network, using Hebbian updates of the φi, and using the network structure to calculate the

ai.

4.2.2 K-SVD by Aharon et al.

K-SVD, a popular DL algorithm, was proposed by Aharon et al. [56]. It is a gener-

alization of the K-means algorithm. It works by updating the dictionary by dropping out

the atom being adjusted and using the rest of the dictionary to calculate an update for the

current atom.

The K-SVD is a generalization of the K-means algorithm. Where the K-means al-

gorithm limited the columns of the abundance matrix to being from the trivial basis (i.e.,

ai = ek), the K-SVD algorithm allows for more than one element to be non-zero. Essentially

looking for the solution to the optimization problem

min
D,X

{
‖Y −DX‖2F

}
subject to ∀i, ‖xi‖0 ≤ T0, (4.5)
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where T0 is some limit imposed on the number of non-zero elements allowed in each abun-

dance vector xi. The K-SVD algorithm solves the optimization problem by first assuming

the dictionary D is set and performing a sparse coding step to update the abundances X.

Specifically, any pursuit algorithm can be chosen to solve for this portion, such as matching

pursuit (MP), orthogonal matching pursuit (OMP), basis pursuit (BP), or the focal under-

determined system solver (FOCUSS). Then for a fixed abundance matrix, the dictionary is

updated by decomposing the product into a summation of rank-one matrices,

‖Y −DX‖2F = ‖Y −
K∑
j=1

djx
j
T ‖

2
F . (4.6)

xjT denotes the kth row of X, that is the kth column of D is multiplied by the kth row of X,

forming a rank-1 matrix. This decomposition allows for defining an error matrix E that is

a summation of all but one of the columns of D,

Ek = Y −
∑
j 6=k

djx
j
T , (4.7)

leaving us to minimize the problem of

‖Ek − dkx
k
T ‖. (4.8)

Now by using the singular value decomposition (SVD) the closest rank-1 matrix can be

computed, but some careful selection of the portions of Ek and xkT are necessary to enforce

the sparsity constraint over the support of xkT . This careful handling allows for updating

of both the dictionary atom (column) and the abundance vector simultaneously. This

update is performed for each dictionary atom and then the process is repeated, starting

with another sparse coding step. Even though the K-SVD updates both the dictionary and

the abundances, the sparse coding step is still necessary to allow for the support to change

after the dictionary is updated.
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4.2.3 Online DL by Mairal et al.

Mairal et al. propose an online dictionary learning algorithm that can efficiently work

with very large (possibly infinite) datasets, capitalizing on a treatment of a training set

as stochastic draws [57]. They also use an alternating algorithm to solve the dictionary

learning problem. The dictionary update portion ends up solving the following problem,

Dt = arg min
D∈C

1

t

t∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
= arg min

D∈C

1

t

(
1

2
Tr
(
DTDAt

)
− Tr

(
DTBt

))
,

(4.9)

where

At = At−1 + αtα
T
t

Bt = Bt−1 + xtα
T
t .

(4.10)

This algorithm specifically works to update the dictionary in an “online” manner. That is, it

works to update the dictionary sequentially on new training data at each iteration, treating

each new datum as a draw from a probability distribution. Mairal et al. demonstrate

that this online method is very effective with very large training sets, as in image and

video processing applications. They also suggest a mini-batch improvement that increases

convergence speed.

The algorithm of Mairal et al. is the basis for the libraries that we used in the majority

of our experiments. More of this particular set of libraries is described in section 4.4.

4.3 DL on HSI

A number of researchers have applied sparsity inducing decompositions to HSI data

and have had varied success. One of the powerful ideas of applying these techniques to HSI

is that it follows the actual physical situation of the imaging system while also providing

a dimension reduction of sorts. The following are highlights of various papers that applied

dictionary learning techniques to HSI and a brief synopsis of their results.
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Charles et al. [58] look at a gradient descent algorithm and focus on how well a sparse

dictionary does at representing hyperspectral content. In a follow-on journal paper [59],

they also consider the possibility of reconstructing HSI from multispectral measurements.

They show that dictionaries are well suited for representing HSI data.

Gillis and Plemmons add in a sparsity-inducing term into the nonnegative matrix

underapproximations minimization problem [60]. They show that the use of this term con-

tributes to increased performance with respect to identifying and separating endmembers.

Möller et al. first present the problem as X ∈ Rm,d, d is the number of pixels, m is the

number of spectral bands, and look for a solution that is of the form

X ≈ AS,

where A is the endmember dictionary, and S captures the abundance information [61]. In

order to make the results more physically meaningful, the endmember dictionary is chosen

out of the data itself, similar to the endmember idea used in the hyperspectral community.

They use a combination of clustering and nonnegative matrix factorization techniques to

solve

min
A≥0,S≥0
‖Aj−Ãj‖2<rg

1

2
‖AS −X‖2F + < Rwσ, S >,

and column normalization of A after each iteration. rg is the radius (or diameter) around

the jth cluster around Ãj , and the last term is used to induce sparsity into the S matrix.

Iordache et al. illustrate the usefulness of using a sparse representation and a dictio-

nary to represent hyperspectral data [62]. They use a known spectral library from the U.S.

Geological Survey (USGS) as the dictionary and perform sparse coding to identify which

materials are selected from the library. They specifically call attention to some shortcom-

ings, such as the (likely) possibility that the lab-measured library and the field-measured

data could be very different. They explored using these techniques on both simulated and

real data. The real data that they used was previously atmospherically corrected, but still

needed some calibration on their part in order to use in their experiments. They report
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encouraging results, but are cautious to express that many aspects are still to be explored.

Xing et al. use dictionary learning for the purpose of hyperspectral cube reconstruction

[63]. This is essentially the compressive sensing problem. They show very good results for

reconstruction and demonstrate the efficacy of using dictionary learning for this purpose.

They are not concerned with the discrimination of the pixels or with extracting endmembers

from the hyperspectral data.

4.4 SPAMS (SPArse Modeling Software)

The code that we use to perform the dictionary learning is the Sparse Modeling Soft-

ware (SPAMS). SPAMS is an open source set of C libraries that implement the online

learning techniques outlined in Mairal’s paper on online dictionary learning [64]. The li-

brary is interfaced to Matlab through mex, allowing for easy access and analysis of the

data returned. We chose this library because it incorporated both the dictionary learning,

and also has an efficient implementation of the Least Absolute Shrinkage and Selection

Operator (LASSO), to use for the sparse coding step. In addition to these steps, the open

nature of the license allows us to modify the code as needed.

SPAMS has several different modes of operation for the dictionary learning task. After

trying a few of the available modes, we ended up using a mode that finds the dictionary by

solving

min
D∈C

1

n

n∑
i=1

||αi||1 s.t. ||xi −Dαi||22 ≤ λ. (4.11)

The set C is the convex set of matrices that conform to the requirements of being a dictionary.

We obtained the best results by preprocessing the cubes to make each pixel in the cube

have unit energy on average. That is,

xi =
pi

||P ||F /n
=

pi
PF

, (4.12)

where pi is a pixel of the cube, P ∈ Rm×n is a matrix formed of all the pixels stacked

column-wise, and PF = ||P ||F /n. Additional constraints enforced on the dictionary were
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that of less than or equal to unit energy dictionary atoms, and positivity of the components

of the αi’s.

Other modes investigated were minimizing the 2-norm error while bounding the 1-norm

of the the abundances, and these same methods with the mean removed and the positivity

constraints relaxed. These other modes were experimented with, but did not yield such

easy and intuitive explanations as to the interpretability of the parameters.

4.4.1 Solving Over the Support Returned by mexLasso

The Lasso results from the function mexLasso are the results of a greedy algorithm.

One way of interpreting the result from Lasso is that it returns the support over which the

“true” solution can be found. When there exist constraints such as nonnegativity, the least

squares problem solved over the lasso support must also be constrained.

In general, we found that the results obtained from this extra least-squares step were

more accurate and fit the data better than the raw lasso results. Figure 4.1 shows this

in detail. The optimization problem that is solved in the mexLasso is the sparse coding

problem

α̂ = arg min
α
‖α‖1 subject to ‖x−Dα‖2 ≤ λ, (4.13)

but it only pushes the solution just inside the constraint of λ. Figure 4.1 shows a histogram

of a full cube that has been reconstructed and the residual error calculated. That is,

ri = xi −Dα̂i, (4.14)

is the residual error vector of the representation by the dictionary D and the abundance

vector αi. The histogram shows the log base 10 of the 2-norm error (log10 [‖ri‖2]) of each

pixel reconstructed. The x-axis bins the pixels according to the sparsity of the abundance

vector αi. The bin color demonstrated the number of pixels that fall within that error-

sparsity bin as a fraction of the total cube. The colorbar is expressed in percentage (i.e.,

.1 = 10%).
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In the diagram to the left in fig. 4.1, the tight clustering of the vectors at the algorithm

bound of the 2-norm representation error of λ = 0.01 can be seen. When least squares

is applied over the support of the abundance vectors (the nonzero components), the error

can be reduced —sometimes even by an order of magnitude. This is shown in the right

portion of fig. 4.1, where the tight clustering has been smeared out down into the lower

error region beyond the λ bound. Because of this better representation we always perform

this additional step when reconstructing the data from the sparse representation.

4.4.2 Results of Dictionary Learning

The dictionary learning procedures are doing what we expect, in that they are able

to represent the data in a sparse manner with low error. The constraints that we employ

give us a natural interpretation of the error as a bound on the two-norm difference from

the original data vector. Solving for the support first, and then resolving over the support

produces even better error results. In our tests the sparsity was very low (i.e., on the order

of ten or fewer atoms active out of more than one hundred atoms). In the next chapter, we

discuss the results of representing the HSI data in the dictionary learned basis specifically

for classifying by material.
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Chapter 5

DL+Classification

Dictionary Learning initially was devised for representational purposes. The sparser an

abundance or feature vector could be, the greater the compression rate that was achieved

in the new basis. DL holds importance in signal compression, storage, and transmission as

long as the dictionary is able to still represent the signal with the same fidelity as before.

As the technology matured, the focus shifted from finding efficient learning algorithms to

being able to take advantage of the sparsity for tasks such as classification.

The main point of this thesis is the marriage of DL with a classifier to be able to detect

and classify materials in a hyperspectral scene. The idea behind this is that DL imposes

constraints on the data that reflect the physics of the problem, and can also affect some

noise suppression, and ultimately enhancing the performance of the classifier.

5.1 Previous Work

In the DL literature there have been some attempts to classify on abundances and

also to incorporate the classification into the DL process to provide a more discriminative

dictionary.

5.1.1 Classifying on Sparse Representations

Wright et al. [65] utilize the idea that a certain number of classes and corresponding

training samples are given. Thus, what we would call a dictionary can be formed from the

samples for each of the classes,

Ai =

[
vi,1, vi,1, · · · , vi,1

]
∈ Rm×ni . (5.1)
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and the full dictionary is comprised of each individual dictionary

A =

[
A1, A2, . . . Ak

]
. (5.2)

Their algorithm then consists of utilizing sparse coding to solve the classical sparse coding

representation problem

y = Ax. (5.3)

Ideally, they hoped that x would be of the form

x =

[
0, . . . , 0, αi,1, αi,2, . . . αi,ni , 0, . . . , 0

]T
, (5.4)

where all the entries are zero except the αi,j that pertain to the ith class’s portion of A.

They lay out the interpretation and consider small dense noise in the data, and provide

an algorithm which they call Sparse Representation Classification (SRC) which selects the

class for which the residual 2-norm error of the sparse representation is smallest.

The application of this classifier was tested on face recognition on a few different

databases. They compare their results with a variety of other classifiers, including Near-

est Neighbors (NN) and Nearest Subspace (NS) paired with different data preprocess-

ing/dimension reduction routines (for example, Principle Components Analysis (PCA) and

Independent Component Analysis (ICA)). They report marked gains over the other tech-

niques.

In an extension of this main work they investigate their method with regard to occlusion

and corruption in the face recognition. They exhibit a very strong robustness to these types

of data issues, with the SRC being able to successfully classify even with very large portions

of the data removed or corrupted.

They also define a measure they call the sparsity concentration index (SCI). This gives

a measure of how well the test abundance vector is represented by any one class dictionary.

If the vector is not able to be successfully represented in a single one of the subspaces of

the class dictionaries, it is likely that the test vector is of a class not included in those in
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the dictionaries and is thus rejected as an outlier.

The dictionaries used in this effort were not actually learned dictionaries, but sample

vectors of the different classes. It is assumed that the samples in each dictionary Ai span (or

at least get close) the space that that particular class occupies. Although Wright et al. [65]

do not explicitly do any dictionary learning in their algorithm, it can be directly extended

to include dictionary learning.

5.1.2 Incorporation of Class Information into DL Algorithms

Supervised and Task-Driven Dictionary Learning

Mairal et al. [64, 66] incorporate classification into the DL framework by solving the

following problem

min
D∈D,W∈W

Ey,x {ls (y,W,α? (x,D))} , (5.5)

where Ey,x denotes expectation over the joint distribution of y and x, and α? (x,D) is the

solution of the elastic-net problem

α? (x,D)
4
= arg min

α

1

2
‖x−Dα‖22 + λ1‖α‖+

λ2
2
‖α‖22, with α ∈ Rp. (5.6)

The formulation allows for an analysis of the differentiability of the loss function, even

though it depends on α? which is not differentiable, because it is uniformly Lipshitz con-

tinuous and differentiable almost everywhere. The only exception is where the support of

α? changes. The author refers the reader to the proofs in the paper appendices for a better

treatment and increased understanding. Because of the assumptions and differentiability

propositions, gradient update formulas can be derived and used to update both the dictio-

nary D and the classification parameters W, allowing for an efficient algorithm to build

both. They show that these better tools perform favorably compared to their heuristics

approach in their previous paper [67].
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Discriminative K-SVD

Zhang and Li incorporate the discrimination and classification information into the

dataspace, effectively expanding the dimensionality of the data [68]. The usual K-SVD

algorithm [56] solves

{D,α} = arg min
D,α
‖Y −Dα‖2 subject to ‖α‖0 ≤ T (5.7)

in a greedy fashion. Y is the data that is to be represented using the dictionary D and

the sparse abundance vector α. Zhang and Li add to each data vector yi a label vector

hi = [0, 0, · · · , 1, · · · , 0]T , such that the 1 indicates the class or label of the corresponding

data vector. They consider a linear classifier such that

H = Wα, (5.8)

where W are the classifier parameters. Putting this together with the dictionary learning,

they propose the following joint dictionary learning and classifier learning optimization

problem

{D,W,α} = arg min
D,W,α

∥∥∥∥∥∥∥
 Y

√
γ H

−
 D

√
γ W

α

∥∥∥∥∥∥∥
2

subject to ‖α‖0 ≤ T. (5.9)

In this algorithm, γ provides a weighting factor to tune or trade-off the importance between

the DL and classification training. This classification training plus dictionary learning

problem still fits within the K-SVD algorithm framework and utilizes the K-SVD to learn

the stacked matrix of D and
√
γ W .

The classification is performed in a post processing step. It requires a renormalization

of the D and W , such that

D′ =

[
d1
‖d1‖2 ,

d2
‖d2‖2 , · · · ,

dk
‖dk‖2 ,

]
and W ′ =

[
w1
‖d1‖2 ,

w2
‖d2‖2 , · · · ,

wk
‖dk‖2 ,

]
.

(5.10)
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Then a sparse coding step to solve for the representative abundance is employed to give

{α′} = arg min
α
‖y −D′α‖2 + σ‖α′‖0. (5.11)

This sparse approximation can be solved in any number of ways such as those discussed

previously in the Dictionary Learning chapter. When the sparse abundance α′ vector is

known, then the final classification is made by forming the label vector

l = W ′α′. (5.12)

The largest of all the elements of this label vector indicates the classification assigned by

the linear classifier.

Zhang and Li test this discriminative learning on face recognition. They report consis-

tent improvement over classification applied after KSVD dictionary learning and over the

sparse representation classifier of Wright et al. [65].

5.1.3 Applications to HSI

Nonnegative Matrix Underapproximation Incorporating Sparsity

Gillis and Plemmons [60] improve upon the nonnegative matrix factorization (NMF)

technique used to factor HSI data into two nonnegative matrices recursively. The general

NMF problem is

min
U≥0,V≥0

‖X − UV T ‖2F . (5.13)

The underapproximation algorithm seeks to solve the above using a recursive method,

extracting a single column of U and a single column of V at a time, for example, solving

min
u≥0,v≥0

‖X − uvT ‖2F subject to uvT ≤M. (5.14)
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Their contribution involves incorporating a sparsity inducing term in the optimization prob-

lem. By forcing the u vector to be sparse, then Sparse Nonnegative Underapproximations

(sNMU) could overcome difficulties in separating endmembers when blurring, limited res-

olution or other data artifacts obscure or corrupt the HSI pixels. They report increased

performance as compared to NMF and regular NMU in identifying the four main endmem-

bers in a HYDICE hyperspectral image.

Variation on Euclidean Distance Classifier

Castrodad et al. [69] use Dictionary Learning as a variation on an Euclidean Distance

Classifier by building a dictionary of each class and classifying a pixel as the material that

corresponds to the dictionary that represents the pixel with the least amount of error.

They incorporate subpixel classification by performing an extra sparse coding step

over all of the material dictionaries. One of the main focuses of this paper is the accurate

reconstruction of a cube based upon a small number of the pixels (i.e., the compressed

sensing problem). They show that using extreme sub-sampling, and reconstruction based

on the dictionary learning, classification is still possible. They show that the mixed pixel

variation of their classifier produces clearer and more regular boundaries.

5.2 Novel Approach

To pair a classifier and DL, it requires first, a learned dictionary, then representing the

pixels in this dictionary to produce abundance vectors. Lastly, the classifier is run on these

abundance vectors to produce a prediction of the materials’ class.

5.2.1 Classification Using RandomForests on Abundance Vectors

Selection of Datasets

The dataset that we used for this experiment is obtained from the 9 days of stable

FOV, allowing for much easier extraction of the data to train and test on. The materials

of each cube in the 9-days set (approximately 1100) were extracted and were plotted in
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a histogram to determine which cubes had the most correlation between materials. The

true candidate spectra for each material was identified as the maximum ridge across the

histogram space. Then each material was scored on how well its own materials matched

with the candidate spectrum. The cubes with the highest score were the ones chosen for

the test. Ten cubes were selected for training and ten were selected for testing.

Training the Dictionary

The panel for each of the training cubes were concatenated together to provide a

training set of 60,000 examples of HSI pixels to learn a dictionary of 140 elements. Of

those 140 elements, approximately 20-30 provide information on the materials on the panel.

Figure 5.1 shows the covered of the 20 to 30 atoms that contribute to the materials on the

board. Figures 5.2 to 5.8 show the abundance maps of each dictionary element of an 140

element dictionary as reconstructed from a separate panel image. Numerous of the atoms

target one or more material, and it is hoped can be used to discriminate it from the rest.

The materials on the board preferentially utilize different dictionary elements. The

amount of usage of the dictionary elements can be seen in fig. 5.9.

Running RF on the Data

The testing consisted of forming the dataset as detailed, using raw radiance data. A

20 40 60 80 100 120 140
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20

30

40

Fig. 5.1: An agglomeration of the abundance maps of approximately 30 atoms of from a
learned dictionary of 140 atoms. These atoms are showing most of the materials on the
board.
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Fig. 5.2: The abundance maps pertaining to atoms 1-20 of a trained dictionary of 140
atoms.
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Fig. 5.3: The abundance maps pertaining to atoms 21-40 of a trained dictionary of 140
atoms.
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Fig. 5.4: The abundance maps pertaining to atoms 41-60 of a trained dictionary of 140
atoms.
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Fig. 5.5: The abundance maps pertaining to atoms 61-80 of a trained dictionary of 140
atoms.
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Fig. 5.6: The abundance maps pertaining to atoms 81-100 of a trained dictionary of 140
atoms.
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Fig. 5.7: The abundance maps pertaining to atoms 101-120 of a trained dictionary of 140
atoms.



57

121

20 40 60 80 100 120 140

10

20

30

40

122

20 40 60 80 100 120 140

10

20

30

40

123

20 40 60 80 100 120 140

10

20

30

40

124

20 40 60 80 100 120 140

10

20

30

40

125

20 40 60 80 100 120 140

10

20

30

40

126

20 40 60 80 100 120 140

10

20

30

40

127

20 40 60 80 100 120 140

10

20

30

40

128

20 40 60 80 100 120 140

10

20

30

40

129

20 40 60 80 100 120 140

10

20

30

40

130

20 40 60 80 100 120 140

10

20

30

40

131

20 40 60 80 100 120 140

10

20

30

40

132

20 40 60 80 100 120 140

10

20

30

40

133

20 40 60 80 100 120 140

10

20

30

40

134

20 40 60 80 100 120 140

10

20

30

40

135

20 40 60 80 100 120 140

10

20

30

40

136

20 40 60 80 100 120 140

10

20

30

40

137

20 40 60 80 100 120 140

10

20

30

40

138

20 40 60 80 100 120 140

10

20

30

40

139

20 40 60 80 100 120 140

10

20

30

40

140

20 40 60 80 100 120 140

10

20

30

40

Fig. 5.8: The abundance maps pertaining to atoms 121-140 of a trained dictionary of 140
atoms.
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Fig. 5.9: This shows the average usage of each vector in each class. The y-axis is a listing of
each of the 27 materials and the x-axis is the dictionary atoms. It can be seen that different
materials preferentially utilize different atoms of the dictionary.
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zero-mean version is used also, in order to compare with the results in the previous chapter

of using RF on just the data. Then a dictionary is learned for each type of data that will

be tested. The data is represented in terms of those dictionaries to produce abundance

vectors. Subsequently, forests were trained using both the raw data and the abundances

from the training portions of the datasets. Then the test data was sent down the forest and

a prediction was given. The results are detailed in the next section.

5.2.2 Results

When classifying on the abundance vectors, the accuracy hoped for was not attained.

The RF classifier had decent performance by itself on the raw radiance data. As can be seen

in Table 5.1, RandomForests on the raw hyperspectral pixels had an error of approximately

4%, whereas when classifying on the abundance vectors obtained from sparse coding with

the learned dictionary only achieved about 14% error. As a check, the original pixels that

were tested were reconstructed from the dictionary using

x̂i = Dαi ∀ i, (5.15)

for the dictionary D and abundance vectors αi. Because of the DL algorithm, the re-

constructed 2-norm error is less than approximately 1% per pixel on average. This was

verified. Then these reconstructed pixels were put through the same process as the raw

data, building a classifier and testing. The results at approximately 8% error were better

than classifying on just the abundance vectors, but still did not improve over classifying on

the raw hyperspectral pixels. The confusion matrices of the tests preformed are shown

in fig. 5.10. Confusion matrices were explained in detail in section 3.4.3. We hoped to see

Table 5.1: Error results for RF with DL.

Raw DL Abundances Reconstructed

Radiance 0.0370 0.1399 0.0823
0-mean Radiance 0.0370 0.107 0.0740
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Fig. 5.10: Confusion matrices for each of the tests performed.
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confusion between similar types of materials, but that does not seem to be the case in any

of the tests performed. The closest that we see is the confusion between Sand and Asphalt

Shingle in the 0-mean raw radiance test.

Thus, DL is not producing abundances that are useful for RF classifying. In order

to test this a bit further, the residual of the reconstruction are then used to classify. The

residuals are calculated using the x̂ from equation eq. (5.15) as

xr = x− x̂. (5.16)

Then we follow the same procedure as the other tests. The error obtained from Random-

Forests with regards to residuals is shown in Table 5.2. The residuals had an error rate

around 8.6%, which definitely is better than the RandomForests on the abundances by

themselves (although not as good as the raw HSI pixels). So from this we can conclude

that some of the information RandomForests is using for the classification is lost in that

1% reconstruction error from the Sparse coding using the learned dictionary.

Additional tests were performed making use of the residual vectors. We concatenated

the abundances with the residuals to see whether RandomForests is able to regain any of

the information lost. We also concatenated the reconstructed vectors with the residuals

to test whether that would also provide any gains. The results of each of these test are

shown in Table 5.2, also. Each of them obtained better error rates than DL abundances

by themselves and the reconstructed pixels but neither regained enough to overtake using

RandomForests on the raw HSI pixels. The abundance vectors with the residuals had an

error rate of approximately 4.1% and the reconstructed pixels with the residuals obtained

5.4%. Figure 5.11 shows the confusion matrices for the tests involving the residual vector.

Table 5.2: Error results obtained from utilizing the residual vectors xr.

Test data type Error rate

Residual only 0.086
Abundances and Residuals 0.041
Reconstructed and Residuals 0.054
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Fig. 5.11: The confusion matrices for the test involving the residuals.

It was considered whether these results were because of the particular dictionary learn-

ing algorithm that was chosen. In order to test this, the same test was performed using the

K-SVD package by Rubenstein et al. [70]. The results were consistent with those reported

using the SPAMS package.

5.3 Conclusion

The RandomForests classifier did not perform as well as expected in distinguishing

between materials when utilizing the sparse representations. The RandomForests classifier

on the raw data outperformed the classifier on the sparse data significantly. The cause

was found to be that the residual information that was lost in the sparse representation

contained a portion of that information that was needed by the RandomForests algorithm
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to realize the matrial classification. This loss of valuable information shows that the pure

reconstructive dictionary learning algorithms, such as those tested, lacked the possibility to

identify which portions of the hyperspectral information was necessary for the classification.

This maybe should not be much of a surprise, because these algorithms do not include any

explicit classifying information into their optimization cost functions. It is possible that

some of the proposed algorithms that incorporate the classifying information into their cost

functions may provide the type of sparse representations that RandomForests would then

be able to use to improve the classification error.
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Chapter 6

Detection

6.1 Detection of Materials of Interest

Detection is a binary classification problem. Instead of considering all of the materials

in a particular scene, the objective is to determine where, if at all, a certain material is

located. This is different from the other classification tests that we have studied, because

the focus is on one material at a time, neglecting the others, or aggregating them into the

background.

In our studies, we look at detection of each of the 27 materials of the Denali dataset

using similar detection algorithms to those used commonly on hyperspectral images.

6.1.1 General Target Detection

Target detection, referred as just detection from henceforth, is generally posed in the

framework of hypothesis testing. Neyman-Pearson detection is performed using a likelihood

ratio test and utilizes two hypotheses. The first hypothesis, often called the null hypothesis,

is denoted H0, and generally indicates that the signal of interest or the target is not present.

The alternative hypothesis, H1, is where the target is modeled as being present. Often these

are specified as

H0 : target/material not present,

H1 : target/material present.

(6.1)

Frequently, some distributions are assumed with some (possibly unknown) parameters in

order to facilitate prediction. Let l0(x|θ0) represent the likelihood of the distribution for

the null hypothesis and l1(x|θ1) be the likelihood for the distribution for when the target
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is present, then we can form the ratio

D(x) =
l1(x|θ1)

l1(x|θ0)
. (6.2)

This is called the Likelihood Ratio Test (LRT). This ratio of likelihoods then becomes our

detector. If this is low, then it is much more likely that the null hypothesis is correct and

vice versus for a high value of the GLRT. This detection criteria and framework is often

called the Neyman-Pearson criteria. Then for a given detector D, the test becomes

D(x)
H1

≷
H0

η, (6.3)

where η is some significance threshold which governs the trade-off between the probability

of detection PD and the probability of false alarm PFA.

In our experiments we compare the performance of two well known, well used matched

filters: the adaptive matched filter and the adaptive coherence estimator. Both are used

frequently as detection algorithms, and both have broad applications across many different

signal processing fields, and both are used in hyperspectral detection [71,72]. Both of these

algorithms are described along with various others by Theiler and Foy [73].

6.1.2 Adaptive Matched Filter

The adaptive matched filter can be developed using the hypothesis that the mean of

the distribution that is being looked at has changed when the target is present. That is, we

work under the hypotheses

H0 : x = µb + n ∼ N (µb,Σb)

H1 : x = aµt + n ∼ N (aµt,Σb) .

(6.4)

By forming the likelihood ratio between these hypothesis, we obtain the detector

DAMF (x) =
(µt − µb)

T Σ−1b (x− µb)√
(µt − µb)

T Σ−1b (µt − µb)

H1

≷
H0

ηAMF . (6.5)
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6.1.3 Adaptive Coherence Estimator

The adaptive coherence estimator (ACE) deals with separating the subspaces of the

background and the target. This allows a richer model for the target, and does not restrict it

to a single mean vector, but allows it to vary over a subspace denoted by S. The hypotheses

assumed for this detector are

H0 : x = µb + n ∼ N (µb,Σb)

H1 : x = Sa + βn ∼ N
(
Sa, β2Σb

)
.

(6.6)

This gives rise to the detector

DACE(x) =
(x− µb)

T Σ−1b S
(
STΣ−1b S

)−1
STΣ−1b (x− µb)

(x− µb)
T Σ−1b (x− µb)

H1

≷
H0

ηACE . (6.7)

If the subspace S is one-dimensional, that is, S = s a vector, then the detector can be

simplified to

DACE−1(x) =

(
sTΣ−1b (x− µb)

)2(
sTΣ−1b s

) (
(x− µb)

TΣ−1b (x− µb)
)2 H1

≷
H0

ηACE . (6.8)

6.1.4 Receiver Operator Characteristic Curves

Each detection algorithm has a performance for a given set of parameters and a thresh-

old. The threshold can be swept over and a performance curve can be made, comparing

the probability of detection Pd with the probability of false alarm Pfa. These performance

curves are called receiver operator characteristic (ROC) curves. As the detection rate goes

up, the false alarm rate increases also. Often, then a determination of the allowable amount

of false alarms are set, which determines the level of detection possible. The ROC curves

allow for a detection scheme-agnostic statistic that enables comparison between any two

detection algorithms. The algorithm which has higher Pd at the set or allowable Pfa is the

better algorithm to use.

Another method to judge the appropriateness of an algorithm is by using the area under

the ROC curve (AUC) as a measure of effectiveness. A test which performs extremely well,
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will be in the upper left corner of the ROC curve “box.” The upper limit for the AUC is one,

for a perfect detector at a zero false alarm rate. Everything else will have an AUC value

less than one. The ROC curve itself provides more information, because there exists an

ambiguity in the AUC, because there may be different ROC curves that produce the same

AUC, but as a whole, the AUC provides a convenient quick look at detector performance.

6.1.5 Sparse Representations = Fast Filtering

An advantage of representing the data in a sparse representation is that the filtering

can be implemented and optimized to be very efficient. Most of the calculations of the

the filter output can avoided by only calculating the nonzero products in the filtering step.

Depending on the the sparsity of the representation, this could produce dramatic speed up

over filtering the data in the raw, dense representation.

6.2 Detection in HSI

Manolakis et al. [72] investigate numerous different proposed detection algorithms for

HSI. They first consider various models of hyperspectral data, including probabilistic and

physics-based models. Of the probabilistic models, they consider a few different distribu-

tions, namely the multivariate normal, the multivariate t-distribution and the elliptically

contoured family of distributions.

They then give an overview of detection basics and introduces the concepts involv-

ing generalized likelihood ratio tests. Expanding on this, they introduce a few notable

algorithms including the quadratic detector, the target covariance shrinkage detector, the

matched and adaptive matched filter detectors, and the anomaly detector, all based on

and assuming Gaussian data. Manolakis et al. then give an introduction to other types of

detectors that utilize additive signal models, replacement signal models, additive subspace

methods, and other non-Gaussian distributions.

Manolakis et al. conclude stating that it is difficult to compare all of the detection

algorithms to each other, and postulate that (in the spirit of Occam’s Razor) the well

understood algorithms with good theoretical properties provide good performance. The
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small performance gains from more sophisticated methods are often offset by difficulties in

assessing the limitations and uncertainties of how the algorithm performs in a particular

setting.

Nasrabadi takes a similar route in his survey paper [71]. He first explores the common

anomaly detectors, such as the RX anomaly detector, and also variants of it. Then he

summarizes a kernel RX detector, and expounds upon the merits of the support vector

data description detector. He gives results showing the performance of each of these on

some HYDICE hyperspectral data.

Next, Nasrabadi considers subspace and matched filtering detection strategies. He also

details some of the challenges that these target detectors face, describing the difficulties in

detecting by comparison, if the target signature is significantly different in the field than

that in the spectral library.

Lastly, Nasrabadi describes a method of applying the sparse representation classifier

(SRC) of Wright et al. [65] to hyperspectral data and adapted for detection. The detection

algorithm is based on the residual from the reconstruction of the hyperspectral data from the

dictionary and the abundance vectors. Nasrabadi then ends by outlining several directions

of future research, including the development of a dictionary that has the desired qualities.

Chen et al. use sparse coding on a composite 2-class dictionary to perform detection

[74]. They form the dictionary from

D =

[
Ab At

]
, (6.9)

where Ab is a “dictionary” formed of background pixels, and At is a subspace formed from

pixels designated as targets. They use a double windowing method to form the adaptive

localized background dictionary. This captures and allows for local variations in the back-

ground subspace.

They use the large dictionary and calculate a sparse abundance vector γ by

γ̂ = arg min‖γ‖0 subject to Aγ = x. (6.10)
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This abundance vector is partitioned according to the two class dictionaries

γ =

α̂
β̂

 . (6.11)

A residual measure is then formed from these sparse abundance vectors and their respective

dictionaries

rb(x) = ‖x−Abα̂‖2 ans rt(x) = ‖x−Atβ̂‖2. (6.12)

Their detection or classification method is based on a ratio of the size of the residuals,

yielding

D(x) =
rb(x)

rt(x)
≷ δ. (6.13)

A large value of D(x) indicates a target pixel. They report detection performance that

exceeds that of both spectral matched filters and matched subspace detectors in both qual-

itative and quantitative measures.

6.3 Testing Procedures

For the tests performed, a synthetic dataset was manufactured in the following manner.

A material to be tested is selected from the 27 available materials. A certain amount of

the dataset is set aside to include the material of interest. This amount is the set coverage

amount and can range anywhere from 0-100%. The pixels set aside to contain the material

of interest are then filled with an abundance fraction of a sample drawn uniformly from

the material of interest median filtered data. In the tests abundances from 15% up to 35%

were used. Then the rest of the pixel was filled with pixel spectra drawn randomly from the

other material types. The rest of the dataset not containing the material of interest was

uniformly drawn and mixed from the remaining materials.

6.4 A Sparse Representation-Based Detector

In addition to evaluating the most commonly used matched filters specified above, this
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paper details another method that is loosely based on the concepts of self-taught learning.

Self-taught learning was introduced by Raina et al. [75] in 2007. Self-taught learning strives

to use a large amount of unlabeled data to find a useful description of the data as a whole.

Then the (possibly a small limited number of) labeled data are then represented in this

data descriptive format. Then use these new representations to perform classification, or in

our case, detection.

This approach allows for use of a large amount of data to find a suitable decomposition,

for example a learned dictionary, and then still uses really only a small number of labeled

components, as is common in a hyperspectral library.

6.4.1 Learning the General Dictionary

In order to build a dictionary that incorporated a good amount of hyperspectral con-

tent, a dictionary was built from a large number of hyperspectral pixels, some of which may

be the material for which you have designated as the material of interest. In our exper-

iments, we constructed it with smaller dictionaries built around different classes that we

were interested. With 27 different material on the Denali panel, we used all the materials

on the panel over a large time interval for building the dictionaries.

6.4.2 Representing the Labeled Data

Then the reference library spectra are represented using sparse coding and the dic-

tionary built from the unlabeled data. In this particular method, each library spectra li

that is available is represented in the dictionary representation, yielding a “new” library

L ∈ RNs×NL , where Ns is the dimension of the hyperspectral data and NL is the number

of spectra in the library. This library is now in the basis of the dictionary that was learned

based on the large number of unlabeled data.

The data to be tested is also represented in the dictionary basis, in addition to the

library. That is, sparse coding is perform on the data to produce a dataset of abundance
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vectors

A = arg min
A
‖X −DA‖, where A =

[
α1, α2, . . . , αM

]
, (6.14)

and each αi is an abundance vector for the ith data vector xi. Thus A is a sparse matrix

made up of abundances.

6.4.3 Class-Wise Concentration-Based Detection

The method developed here utilized the same ideas as the matched filter, but instead of

only filtering on the spectra in the library of the material of interest, the data to be tested

A is filtered with the entire library. Thus we receive back a vector for each data-vector

filtered

ri = MF (αi, L) =



MF (αi, L1)

MF (αi, L2)

...

MF (αi, LNL)


. (6.15)

Instead of the usual thresholding or finding the element that produces the maximum in

each ri, more post processing is performed to determine whether the xi is of the material of

interest. The detection algorithm detailed is based on the idea that if a material is “close”

to a certain class in the library, then it will score higher in the matched filters of that class

than the others.

Given a vector ri, produce the normalized vector r̂i = ri/‖ri‖. Then partition the

vector into the portions which correspond to the library spectra of the material of interest.

That is, let the vector r̂i be decomposed as (without the i subscript for easier notation)

r̂ = r̂t + r̂t̃, (6.16)
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where

r̂t =

[
[0, . . . , 0, r̂k, . . . , r̂k+j , 0, . . . , 0

]T
r̂t̃ =

[
[r̂1, . . . , r̂k−1, 0, . . . 0, r̂k+j+1, . . . , r̂NL

]T
.

(6.17)

The j terms begining at the kth term correspond to the material of interest from the

library. Thus, the vector r̂t has the elements that provide the matched filter outputs from

the material of interest and the vector r̂t̃ has the other materials’ matched filter output.

Then a detection is performed by considering the ratio test

DE(r̂) =
‖r̂t‖2
‖r̂t̃‖2

H1

≷
H0

ηE . (6.18)

This compares the concentration of the MF outputs in the material of interests’ portion of

the library versus the rest of the library. If a test vector is higher in the material of interest’s

portion and lower in the rest of the library’s MF outputs, then the vector is considered as

the material of interest. Because of this utilization of the class-wise concentration, we refer

to this algorithm as Class-wise Concentration Match Filter (CCMF).

The matched filter outputs can be either of the described filters or even other scoring

algorithms. The tests performed for this research utilized both the AMF and the ACE

filters.

6.5 Comparison of MFs

6.5.1 Metals

I will discuss and explain the results shown in fig. 6.1. Results are fairly typical for all

the materials presented. In all of these diagrams, a curve closer to the upper left corner

indicates higher performance. The upper left figure shows the results of using the Class-

wise Concentration Match Filter (CCMF) decribed previously. As can be seen, the DL

CCMF provides some performance gain over using the CCMF on the raw data as evidenced
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by the curves being “above” the others. For most materials, this is the case, although

nor all. The upper right ROC curve demonstrates the Adaptive Matched Filter (AMF) on

both raw radiance and DL abundance inputs. It can be seen that the dictionary-learned

AMF performance is a bit better than that of the AMF on the raw data. The lower ROC

curves show the performance of the Adaptive Cosine Estimator (ACE) filter when used

on both raw radiances and DL abundances as inputs. The lower left is the usual ACE

filter utilizing the true covariance of the data, whereas the right neglects any covariance

measurements, substituting the identity matrix in for the covariance in the ACE filtering

calculation. Both demonstrate that dictionary learning can have a positive effect on the

detection algorthms, because the algorithms performed on the dictionary learned sparse

datahave better performance (i.e., are above the other curves). Overall, the CCMF on DL

abundances seems to give the best performance over the AMF and ACE filters.
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Fig. 6.1: Material 1: Painted Steel.
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The other metals are shown in figs. 6.2 to 6.4. They detail the performance on bare steel

(fig. 6.2), brushed aluminum (fig. 6.3), and polished aluminum (fig. 6.4). The interpretation

is similar to that of painted steel above.
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Fig. 6.2: Material 5: Bare Steel.
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Fig. 6.3: Material 19: Brushed Aluminum.
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Fig. 6.4: Material 23: Polished Aluminum.
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6.5.2 Rocks/Minerals

The natural rocks and minerals are shown in figs. 6.5 to 6.14. They detail the perfor-

mance on marble (fig. 6.5), granite (fig. 6.6), travertine (fig. 6.7), slate (fig. 6.8), alabaster

(fig. 6.9), calcite (fig. 6.10), limestone (fig. 6.11), soapstone (fig. 6.12), quartzite (fig. 6.13),

sand (fig. 6.14). The interpretation is similar to that of painted steel above.
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Material 3: Marble
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Fig. 6.5: Material 3: Marble.
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Material 4: Granite
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Fig. 6.6: Material 4: Granite.
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Material 8: Travertine
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Fig. 6.7: Material 8: Travertine.
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Material 10: Slate
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Fig. 6.8: Material 10: Slate.
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Material 12: Alabaster
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Fig. 6.9: Material 12: Alabaster.
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Material 20: Calcite
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Fig. 6.10: Material 20: Calcite.
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Material 24: Limestone
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Fig. 6.11: Material 24: Limestone.
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Material 25: Soapstone
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Fig. 6.12: Material 25: Soapstone.



84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Material 26: Quarzite
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Fig. 6.13: Material 26: Quartzite.
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Material 27: Sand
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Fig. 6.14: Material 27: Sand.
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6.5.3 Concrete/Asphalt/Clay

The man-made construction material types are shown in figs. 6.15 to 6.19. They detail

the performance on cinder block (fig. 6.15), concrete (fig. 6.16), asphalt shingle (fig. 6.17),

terra cotta (fig. 6.18), and aggregate (fig. 6.19). The interpretation is similar to that of

painted steel above.
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Material 2: Cinderblock
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Fig. 6.15: Material 2: Cinderblock.
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Material 6: Concrete
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Fig. 6.16: Material 6: Concrete.



88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Material 9: Asphalt Shingle
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Fig. 6.17: Material 9: Asphalt Shingle.
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Material 11: Terra Cotta
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Fig. 6.18: Material 11: Terra Cotta.
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Material 16: Aggregate
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Fig. 6.19: Material 16: Aggregate.
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6.5.4 Plastics

The man-made plastics material performance are shown in figs. 6.20 to 6.24. They de-

tail the performance of PVC (fig. 6.20), HDPE (fig. 6.21), ABS (fig. 6.22), Tyvek (fig. 6.23),

and blue tarp (fig. 6.24). The interpretation is similar to that of painted steel above.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Material 13: PVC

 

 

Raw MF w/I
Raw MF w/ C
B−T MF w/ I
B−T MF w/ C
DL Raw MF w/ I
DL Raw MF w/ C
DL B−T MF w/ I
DL B−T MF w/C
DL Raw Energy
DL Raw Active

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw AMF
B−T AMF
DL Raw AMF
DL B−T MF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw ACE
B−T ACE
DL Raw ACE
DL B−T ACE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw ACE
I

B−T ACE
I

DL Raw ACE
I

DL B−T ACE
I

Fig. 6.20: Material 13: PVC.
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Fig. 6.21: Material 14: HDPE.
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Fig. 6.22: Material 15: ABS.
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Fig. 6.23: Material 17: Tyvek.
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Fig. 6.24: Material 7: Blue Tarp.
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6.5.5 Wood

The natural pine performance is shown in fig. 6.25. The interpretation is similar to

that of painted steel above.
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Fig. 6.25: Material 18: Pine.
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6.5.6 Fabrics

The performance of the man-made fabrics is shown in figs. 6.26 to 6.27. Figure 6.26

shows the performance with camo net, whereas fig. 6.27 details performance of carbon

fabric. The interpretation is similar to that of painted steel above.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Material 21: Camo Net

 

 

Raw MF w/I
Raw MF w/ C
B−T MF w/ I
B−T MF w/ C
DL Raw MF w/ I
DL Raw MF w/ C
DL B−T MF w/ I
DL B−T MF w/C
DL Raw Energy
DL Raw Active

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw AMF
B−T AMF
DL Raw AMF
DL B−T MF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw ACE
B−T ACE
DL Raw ACE
DL B−T ACE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

Raw ACE
I

B−T ACE
I

DL Raw ACE
I

DL B−T ACE
I

Fig. 6.26: Material 21: Camo Net.
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Fig. 6.27: Material 22: Carbon Fabric.
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Chapter 7

Conclusions and Future Work

7.1 Discussion of Results

7.1.1 DL+Classification Results

The inability of the dictionary learning algorithm to provide RandomForests with the

information necessary for the classification was an unforeseen result. The expectation that

the dictionary learning could be useful because it closely paralleled the underlying physics

of the hyperspectral model was definitely proved optimistic in the cases tried. Many pos-

sible things may be the cause of this. When analyzing these results the dictionaries and

abundance maps show that the dictionaries tend to represent noise in the majority of the

atoms. The atoms also tended to model well some of the imperfections in the data, such as

the streaks and spikes that indicate bad pixels. It remains to be seen if these results would

be the same if working on “cleaner” data with these imperfections.

7.1.2 Sparse Detection Results

While the classification results were disheartening, the sparse detection results were

encouraging. The ability of the dictionary learning and self-taught learning framework to

provide a basis for detection in hyperspectral data is very much a success. In addition, it

fits into the realities of hyperspectral sensing, in that there exists a lot of unlabeled data,

and few labeled examples of each class. Yet, by taking advantage of sparse representations

and matched filtering, good performance gains were realized.

7.2 Future Directions

With the dictionary learning not adding any classification power to RandomForests, it
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raises the question: “Why not?” And a portion of that is definitely captured in the learning

algorithms’ rejection of important information, i.e., leaving classifying information in the

residuals, but there may be other problems that impair RandomForests from being able to

utilize the abundances provided. One possibility is that the RandomForests implementation

used is the stock Fortran code available from Breiman [76] and his colleague Adele Cutler.

This code does not take into account that the data is very sparse, and because of this, it is

very likely splitting nodes on variables that are all 0s. This may or may not affect the trees

or forests, but maybe a sparsity aware version of RandomForests may be able to avoid this

issue altogether.

In addition, the dictionaries could include class information in a number of different

manners. As referred to previously, there exist dictionary learning algorithms that also

incorporate a discrimination in the optimization problem. This seems to be the direction

in which future research may be warranted. It may be that the newer, discriminating

dictionary learning algorithms provide much better abundances that improve upon using

just the raw radiances.

As for detection, different methods of building the dictionary can still be explored.

A deeper investigation into how the properties (i.e., the number of atoms, the learning

algorithm, non-negativity, etc.) of the dictionary affect the performance of the detection

algorithm is still a future topic of research. Also, a comparison could be made between this

algorithm and that proposed by Nasrabadi [71] and the algorithm by Chen et al. [74].

7.3 Final Conclusion

Dictionary learning and sparse representations have many uses and have proven to be

an effective tool for representing hyperspectral data. We have seen, though, that it is not al-

ways useful in all data processing chains. In particular, it is important to investigate whether

the dictionary is representing HSI data in a manner that is useful for post-processing steps,

especially where classification is the end product. Dictionary learning can provide a very

useful representation for detection, when detection is the desired deliverable. This represen-

tation can lead to improved performance using classical matched filtering techniques, but
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really performs well when used in a self-taught learning framework.
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