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ABSTRACT 

Estimation of Cost and Benefit 

of Instream Flow 

by 

Parvaneh Amirfathi, Doctor of Philosophy 

Utah State University, 1984 

Major Professor: Rangesan Narayanan 
Department: Economics 

Water flowing in streams has value for various types of recre-

ix 

ationists and is essential for fish and wildlife. Since water demands 

for offstream uses in the arid west have been steadily increasing, 

increasing instream flows to enhance the recreational experience might 

be in conflict with established withdrawals for uses such as agricul-

ture, industries, and households. 

It is the intent of this study to contribute to an economic 

assessment of the tradeoff between maintaining instream flow for river 

recreation use and offstream uses; that is, to develop and apply 

method to measure costs and benefits of water used for recreation on 

a river. 

Since market prices are not observable for instream flows, the 

estimation economic value of instream flow would present well known 

difficulties. The household production function theory was used to 

build the theoretical model to measure economic value of instream 

n~. 



It was assumed that r e creationists were applying the same tech­

nology to produce a recreational commodity and other commodities. 

In order t o e s timate economic value of water used in the river, it 

was assumed that individuals were combining goods, services, and time 

as input to produce recreational services. Based on this procedure, 

empirical estimates of multisite demands were derived. A represen­

tative sample of 500 recreationists at three river sites were inter­

viewed during the summer of 1982, to estimate empirical demand equa­

tion for recreational activities. Moreover, the corresponding compen­

sated variation of consumer, from alteration of instream flow, were 

quantified. 

X 

To compute the cost of maintaining instream flow, a general 

stochastic mathematical programming model was developed. Using a 

mathematical programming model, three specific strategies for maintain­

ing instream flows under two conditions of water rights transferability 

were compared. The first strategy was a deterministic model of expect­

ed instream flow. The second is a minimum-flow strategy and the third 

is a critical flow strategy. All three strategies are examined to 

decide the least cost in terms of expected agricultural output foregone 

to maintain the desired level of expected instream flow. 

Policy implication are discussed with emphasis on application of 

the information to water management decisions. 

(148 pages) 



INTRODUCTION 

There has been a greatly increased interest in the measurement of 

the value of outdoor recreation, especially stream related recreation 

in recent years. One of the major uses of the nation's natural re-

sources is outdoor recreation. Clawson and Knetsch (1966, p. 43) in 

the book 11 Economics of Outdoor Recreation11 point out that 

visits to the national parks increased all through World 
War I; the Great Depression of the 1930's did hardly more 
than slow down growth in visits to the national park system 
and to the national forests. Minor variations in rates of 
growth occur in other years for some kinds of area, but the 
whole record is one of surprising uniformity in the persis­
tence of the growth rate. The only major interruption was 
during World War II, when travel and other restrictions 
exist. 

During the post-war years, the annual rate of participation in outdoor 

recreation in the United States has grown by an overall average of 10 

percent (U.S. Department of the Interior 1971). Also all available 

evidences indicate that the demand for outdoor recreation will con-

tinue to increase over the next 20 years. The demand for recreation 

use of water resources is projected to grow 25 percent greater than 

other recreation activities to the year 2000 (Walsh 1980) . The major 

factors behind the steady and rapid rise in use of outdoor recreation 

are: 1) increased disposable income, 2) increased leisur e time, 3) 

increased mobility of recreationists, and 4) a general desire for a 

physical outdoor activity such as outdoor recreation. As Wennergren 

and Fullerton (1972) argued, demand for this form of recreation is 

expected to almost double by the year 2000 even if individual partici-

pation does not increase above present leve l. 



The number of participants in freshwat e r fishing increased by an 

average of 3 percent from 21.7 million in 1960 to 29.4 million in 1970 

(Walsh 1980). According to the U.S. Department of Commerce, Bureau of 

the Census (1982-1983), fishing license sales have increased from 23.3 

million in 1960 to 35.2 million in 1980 and hunting license sales have 

increased from 18.4 million in 1960 to 27.0 million in 1980, and visits 

to national parks from 79.2 million in 1960 to 329.7 million in 1981. 

Also according to a home telephone survey, from June 1976 to June 1977, 

53 percent of population, persons 12 years old and over, were fishing, 

48 percent boating and 72 percent were picnicking (U.S. Department of 

Commerce, Bureau of the Census 1982-1983). As recreational use of 

outdoor resources continues to increase, it becomes more acute that 

recreation must be accurately considered in decision process of allo­

cating resources to various uses. 

Competition Between Instream and 

Offstream Flows 

As the demand for offstream water uses increase, the competition 

for water between instream and offstream uses for available supplies 

intensifies through the political process. The quantity and quality of 

water left in streams might decrease if recreational values are not 

adequately incorporated in the resource allocation. Therefore, par­

ticularly where water is relatively scarce such as in the western 

states, this could result in a great damage to the recreational and 

aesthetic uses of the streams (U.S. Department of the Interior 1980). 

At the same time more and more people are discovering and seeking 

recreational opportunities offere d in and a l ong rivers. Thus, it is 



not saf e to a s sume that left over water will be adequate to serve 

r ecreati onal demands. The amount of streamflow that is 11 necessary" to 

11maintain instream values" is referred to as the instream flow require­

ment in the literature (Narayanan et al . 1983). 

Activities for which instream flows are valuable include outdoor 

recreation, hydropower, navigation, waste transport and assimilation, 

fish and wildlife maintenance and preservation of riverine ecosystems. 

The legal framework to govern the use of water in the western states is 

the prior appropriation doctrine (Hutchins 1971). According to prior 

appropriation doctrines, a water right could be granted to a person for 

"beneficial uses" of unused water. Priorities for use, then, are on a 

"first-in-time is first-in-right" basis. The doctrine's evolution, 

however, has not been hospitable to instream values with the exception 

of hydroe lectricity generation (the actual required flow to drive the 

turbines). Appropriation doctrine made it virtually impossible to 

preserve instream values in most western states. 

Historically, the lack of institutional provision of rights for 

instr eam uses could be the result of relatively abundant instream flows 

compared to the demand for water for offstream activities. However, 

with the cumulative effects of offstream development, continued avail­

ability of this abundant flow for instream values cannot be taken for 

grant ed . Furthe rmore, realizing benefits of instream flows make it a 

legitimate use of the resource. But there are two main obstacles in 

integrating instream uses within the appropriative system. The first 

one i s the difficulti e s of satisfying the appropriation requirements 



which are : 1) a notice of intent to appropriate, 2) an actual diver­

sion, and 3) an application to a beneficial use (Tarlock 1978). 

However, there is evidence that this obstacle can be overcome. Many 

states have statutory provisions which protect instream flow : Colorado, 

Montana, Oregon, and Washington (Bagley et al. 1983). Although this 

has achieved some desired results in protecting instream uses, it is 

still difficult to secure instream flows on heavily appropriated 

streams and it does not provide a balanced view of the resources, as it 

does not integrate instream with offstream uses. A typical provision 

was enacted by Montana in 1973, authorizing the Board of Natural 

Resources and Conservation to reserve minimum streamflow (U.S. Depart­

ment of the Interior 1971). 

The second problem is the method for determining instream flow 

needs which have not been tied to the economic viewpoint that permeates 

the appropriative system, making more difficult the allocation of water 

between instream and offstream uses according to relative values. The 

management of water resources has always been a complicated problem and 

instream flows add more complexity. The National Conference on Water 

held in Washington, D.C., in 1975 recommended that state water law 

should recognize a water right for maintenance of the stream for fish 

and wildlife, recreation uses and scenic beauty (U . S. Water Resources 

Council 1978). The State of Utah also has a statute which requires 

that an application for unappropriated water be rejected whe n it would 

unreasonably affect public recreation or the natural stream environment 

(Utah Code Ann. §73-3-8). Thus, a decision maker needs information and 



data about instream flow and its value before approving or denying the 

new application for unappropriated water. 

After some recognition was give n to instream flows 1 scientists 

sought a r eliable and practical method to determine stream flow require­

ments for aquatic environments. An easy and quick method, known as the 

"Montana Meth od 1
11 was developed for both warm water and co ld wat e r 

streams. The Montana Method assures consistency from stream to stream 

or state to state. This method recommends an instream flow equal to 

at least 10 percent of the average flow with an appropriate temperature 

and quality for protecting aquatic environment. 

James A. Morris (1976) argued that a flow which is sufficient to 

support fish life may not be adequate for recreation. He further 

points out that water requirements will differ considerably for each 

activity. For example, more water is required to give a satisfying 

experience to a white water boater than for fish within the same river 

segment. Therefore, instream us e allocations must be integrated with 

al l ocation of offstream uses. Whether instream values are exclusively 

protected by the state, or s tate protection and private appropriation 

are combined, rational allocation decisions require information on the 

relative benefits of instream flows and the costs of various proposed 

methods for obtaining needed flows. 

Cost and Benefit 

For historical reasons as well as l egal mechanisms for regulating 

wat er use in the western states, the supply of instream flows on the 

average have been decreasing over time. The competition for water 

resources for all major uses is increasing. Since the volume of water 



is essentially fixed on the average, the measurement of the economic or 

monetary gain and costs of each use of water becomes important. 

Recently, recreation has begun to be legally recognized as a legal 

competing use of water. Therefore, it is essential to develop an 

acceptable procedure for evaluating the benefits of instream flows for 

recreation. Allocation of water between instream and offstream uses 

requires estimation of cost and benefit to enhance maximizing overall 

social benefits of available water resources. Instream uses and the 

benefits obtained for instream flows must be compared to the oppor­

tunity cost of maintaining the flow of water in terms of foregone 

offstream benefits. 

Economic analysis is largely a study of human reaction and choices. 

Economic comparisons deal with physical and other characteristics of 

goods and services only to the extent that these affect human decisions. 

The most important and productive tool of economic analysis is the 

notion of demand (Stigler 1966). The growing demand for recreation is 

the cause of increasing value of the natural resources. Therefore, 

these changes will call for continuing adjustments in resource alloca­

tions to better satisfy wants and preferences of consumers. Land and 

water resources are constantly being reevaluated for their services. 

These results could be us ed, e.g., in justification of establishment of 

national recreation areas and in questions of justification, location, 

and operation of water development projects. 

An economic value of water for outdoor re c reation could provide a 

means for compa ring the importance of instream flows with that of other 

uses. This value would provide a ceiling to any fees that might be 

charged for stream-related recreation use. Therefore, estimation of 



benefit and cost provides a means of making efficient decisions about 

allocation of water for outdoor recreation. For a project to be econom­

ically worthwhile, its total benefit must exceed the cost. In the 

literature of benefit-cost analysis, the ratio test has been frequently 

mentioned. This is another means of expressing benefits must exceed 

cost, as the ratio of value of benefits to the value of the cost must 

be greater than one. Thus, to determine which investment or project 

should be undertaken, information on benefits and costs is necessary. 

In almost all the literature about economic value of water in 

stream recreation, benefit is measured under assumption of perfect 

certainty. Under this deterministic assumption, the appropriate 

measure of benefit for a publicly provided good or service is the 

aggregate willingness to pay. By ignoring supply uncertainty, the 

measured economic value of water may either overstate or understate 

the true value or benefit. This study will take the uncertain nature 

of streamflow into account in estimating both the cost and recreation 

value of instream flow. This analysis includes a consideration of 

seniority of water right according to the prior appropriation doctrine . 

In order to provide the needed information for determining the 

level of instream flow, methodologies are needed for evaluating bene­

fits of both instream flows and offstream wate r uses. In the first 

part of this study, a methodology is developed to estimate the poten­

tial foregone benefits to offstream uses as a result of increasing 

instream flow level taking into account the randomness in streamflow. 

In the second part, instream flow benefits are derived to provide 

recommendations for the supply of instream flows. 
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ECONOMIC APPROACH 

Instream flow, in economic terms, has a public good character­

istic. This implies that for a given level of instream flow, different 

instream uses can take place without competing or without any one use 

excluding other uses. But there is a direct competition between 

instream uses and offstream uses, on the other hand, for the total 

available water supply. Aggregate demand for instream flow uses can be 

derived by vertical summation of the derived demands for each user, 

since it is considered as a public good. However, aggregate demand for 

all available water supply is the horizontal sum of demands for off­

stream uses and instream uses, since the same water cannot satisfy both 

uses. 

In Figure la, the curves X1 and X2 are the demand curves for two 

instream uses. The aggregate demand curve Xo for instream uses is the 

vertical summation of X1 and x2 . In Figure lb, X represents the demand 

for offstream uses of water supply. The horizontal sum of Xo and X is 

the total demand X for water. The supply curve S which represents 

the minimum cost of providing various quantities of water, intersects 

the demand curve X at E. This intersection E represents the benefit 

maximizing allocation at Ge level of instream flow. The optimal 

level of instream flOW is Gl = qz as shown in Figures la and lc. The 

optimal offstream water use qo is shown in Figure lb. In Figure lc, 

another way of approaching this allocation is shown. The optimal 

instream flows at Eo can be determined by the intersection of the 

demand curve Xo and S' which expresses the marginal opportunity cost 

of water take n from offs tream uses. The marginal opportunity cost 



Xargind 
Instream 
B~net its 
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Figure l. Optimal allocation of water. 
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curve, S', is obtained from horizontal differences between S and X. 

Therefore, the benefit maximizi ng condition is satisfied when the sum 

of marginal benefits for instr eam uses is equal to the marginal benef it 

of each offstream use, which in turn is equal to the marginal cost of 

water . 

Another way of determining the flow level at any point on a stream 

is by considering and evaluating marginal trade-offs between upstream 

and downstream uses. The marginal benefits of downstream uses for 

various amounts of water are shown by Xd (from 0 to the right in 

Figure 2). The total quantity of water available is fixed (00'), and 

Xu indicates the marginal benefits for upstream uses (from point O' 

to the left). The intersection of these two curves at Fo (Figure 2) 

Downstream 
Marginal 
Benefits 

Water Available 

Figure 2. Optimal instream flow determination. 
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represents the benefit maximizing point, if water rights are freely 

transferable. Otherwise, intersection of combined marginal benefits of 

instream and downstream, Xo + Xd = Xp, and upstream marginal benefits 

at F will represent the benefit maximizing point. Therefore OF is the 

optimal instream flow, and it should be increased by FoF to maximize 

the benefits to society. In practice, determining an optimal level of 

instream flow, OF or OFo is difficult. For several reasons, such as 

introductio n of uncertainty in cost and benefit analysis due to vari­

ation in the availability of water from year to year, or theoretical 

controversies and computational difficulty of estimating instream flow 

demands and benefits. The high cost and difficulty of obtaining site 

specific data are barriers to estimating the demand function. Besides, 

there is no accepted empirical framework in estimating benefits. Even 

though, the consideration of stochastic nature of water availability in 

cost and benefit estimation is very important, without quantitative 

information on instream flow benefits it cannot be incorporated satis­

factorily within a cost-benefit framework. 

In the deterministic case, if the st reamflow is constant every 

year, the marginal cost of maintaining a base level instream flow is 

the opportunity cost of that water in the offstream use. Moreover, 

there is no need to dist i nquish between junior and senior rights. 

However, when the streamflow is considered as a random variable, there 

should be a distinction made between junior and senior rights. In 

addition, the 11 instr eam flow requi rement 11 criterion used in the deter­

ministic approach must be replaced. In this study, the desired level 

of " expected instream flow requirement" is proposed to be substituted 
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for a desir ed level of "instream flow requirement." The expected 

instream flow is the statistica l average of instream flows over a long 

period. Information on the expected cost of offs tre am benefits fore­

go ne to meet various desired expected instream flows could be us eful 

for planning purposes. Therefore, in this study a general stochastic 

linear programming model was developed to estimate the expected costs 

of alternative methods to maintain instream flows from foregone value 

of agricultural products . In this estimation a direct conflict between 

offstream agricu ltural u se and the maintenance of instream flows is 

assumed, which could be expanded to include conflicts with other water 

uses as well. 

Demand function for outdoor recreation is used to make inferences 

about the consumer's surplus (Anderson 1981 , Burt and Bremer 1971, 

Cicchetti and Freman 1971) , and implicitly about the social welfare 

derived from particular sites. The best estimate of recreation bene­

fits, or the total worth of increased supply of recreation services, 

may be measured directly from the demand curves, since it indicates 

What consumers would pay for the various units of recreation output, 

rather than go without them. Total area under demand curves measures 

the total economic worth to society of the provided recreation ser­

vices. Therefo re, to estimate instream flow benefits, the estimated 

demand function is need ed. 

The basic demand equation may be derived by maximizing the quasi­

concave utility function for a give n outlay or available income. The 

solution to this problem is a set of Marshallian demand functions . 

Alternatively, a dual approach may be used to derive the demand func­

tion . In this app roach t otal cost or outlay necessary to reach utility 



U is minimize d. The solution is a set of new cost-minimizing demand 

functions, whi ch is known as Hicksian or compensa ted demand functions. 

Proper ways of measuring the bene fit is discussed by Bishop 

(1982), Russell and Vaughan ( 1982), Schmalensee (1972), and Schulze et 

al. (1981). A preferred measure of welfare change or recreation 

benefit is the compensating variation CV, (Houthakfer 1952). This CV 

ca n be simply defined as how much compensation is needed to make the 

consumer as well off as before (i.e., to hold utility at uo). 

Obviously, it is an amount equal to the change in the cost of securing 

uo: i.e., 

cv C(fg'' pO, uo) - C(fgO> po, uo) 

J
f g (at any min level) 

~ (fl, po, UO)dfl 

fg (100% level) 

Therefore, the compensated demand curve and CV are directly linked. 

As discussed before, instream flows have a public good charac ter-

istic . Given the absence of markets in public goods, nonmarket 

approaches for benefit estimation are needed. One of the easiest 

approaches is to ask individuals their willingness to pay for stated 

level of a public good (Walsh et al. 1980b, Walsh 1980, Walsh et 

al. 1981, Walsh et al. l980a, and Vaughan and Russell 1982). In this 

study, for example, questions about recreationists 1 willingness to pay 

to avert a defined reduction in streamflow are appropriate. This 

method ranging from simple interviews to sophisticated multiple 

13 
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questionnaires is used to de t e rmin e an individual's willingness to pay 

(Daubert a nd Young 19 79, Daubert and Young 1981 ). Th e serious prob lem 

with this approac h li es in the response of the individual, since 

individual consume r s have st rong incent i ves not to show their true 

preferences (Maler 19 74) . Recentl y , there has been an effort to 

overcome this prob lem by s tructuring complicated surve y method to get 

th e true individual pr efe rences based on the assumption of individual's 

rati onali ty and per fe ct information. But s till there is some doubt 

about the result. 

The second im port ant method to mention is the travel cost method 

(Clawso n 1959 , Clawson and Knetsch 1966, and Cesario and Knetsch 1976) . 

This method whic h is called the Clawson-Knetch travel cost method is 

one of the trad itional techniques for measuring the benefits of a 

recreation faci lity . Freeman (1979) argued that there are difficulties 

in extending this tec hnique t o the analysis of demand, such a s analysis 

of d emand wi th changing quality. 

The third a pproach is the Household Produc tion Function method. 

In thi s me thod the demand for recrea tion at seve ral sites can be 

estimated by using cross-s ec tional household data. Unexplained differ­

ences in estimated demand among sites could be explained by site 

quality differe nces, e.g. , differe nces in ins tream flow or water 

quality (Saxonhouse 1977) . The hou sehold produc tion function method 

ha s been a useful approach part ic ularly when the purpo se is to evaluate 

benefit accruing from a change i n the natural environment (Barnett 

1977 , Po ll ak and Wachter 19 75, Pollak and Wachter 1977) . In this 

study, the third approach is used to estimate the multiple-site demands 

for inst r eam flow recreatio n a t three s ite s . 
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A General Model of Household Behavior 

The household production framework was first developed by Becker 

(1965), and has been expanded in a variety of ways in the r ecent 

literature (Huffman and Lange 1982, Becker and Lewiss 1973). Valuing a 

resource whose services contribute to the production of a final good on 

the basis of the value of the good is not new to economics. What is 

new is the application of this approach to the final good or service 

which is not produced or exchanged in the market (Pajooyan 1978, 

Bockstael and McConnell 1981, Deyak 1978). In this approach, consump­

tion activities are viewed as the outcome of individual or household 

production process, combining market goods and time. 

According to conventional consumer theory, households maximize 

utility function subject to resource constraints: 

n 
s. t. WTw + N 

i=l 

lor.'here 

Xi goods purchased on the market at price Pi 

money income 

Tw time spent wrking 

WTw earnings 

N other income 

Household production approaches assume that the household purchases 

goods on the market and combines them with time in a household produc­

tion function to produce commodities which are consumed. Goods and 

services purchased by consumer are not final products and will not be 
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consumed directly. In other words market goods and time are not 

desired for thei r own sake, but onl y as inputs into the production of 

consumption commodities. As Becker (1965) mentioned, the advantage of 

thi s approach i s the systematic incorporation of nonworking time. The 

cons umption commodities, rather than goods, are the arguments of the 

household utility function . For thi s study, it is sufficient to 

consider a rather simple variant of this mod e l. Al so we shall assume 

the househ o ld maximizes a utility function expressed i n terms of final 

service flows: 

Max U = U(Zl, Zz, ... Zn) 

n 
S. t. E PiXi 

i=l 
wr,. + N 

~ere 

Zi zi <xi, til 

u utility 

Xi goods and se rvices 

Pi marke t price of X 

w wage rate 

Zi consumption commodities 

ti time spent to produce Zi 

N nonwage income 

money income 

r,. working time 

T total time available to the individual 

and 
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This approach is easily adopted to the study of nonmarket commodities. 

The anal ysis focuses on demand for consumption commodities as a function 

of 11 commodity prices" which, in turn, depend on prices of goods, wage 

rate, and the household's technology. 

In this study the household production function theory is used 

to obtain demand function for instream flow's recreation. In this 

fonnulation households are both producing units and utility maximizers. 

Household is assumed to combine time and market goods to produce 

commodities that directly enter their utility function. These commodi-

ties will be called zij and written as 

( 1) 

Where xik is a vector of market goods and Ti a vector of time inputs 

used in producing the commodities . 

The most direct approach is to maximize the utility function 

subject to separate constraints on the expenditures on market goods, 

time, and the production functions. Since time can be converted into 

market goods by using less time at consumption and more at work, we 

could have a single constraint as: 

(2) 

k 

'iohere 

ful l income 



tji is a vector givi ng the input of time per unit of zij 

akji is a vector giving the input of k market goods per unit of 

Zi j 

By using the above definitions, Equation can be written as 

with 

E E Pk akji zij + W 
k 

full price of Zi 

full income I = N + WTw 
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(3) 

(4) 

The full price of a unit of commodity is the sum of the price of 

the time and goods used per unit of commodity. In other words the 

full price is the sum of direct and indirect prices. As Becker (1965) 

pointed out, since these direct and indirect prices are symmetrical 

determinants of total price, there is no analytical reason to stress 

one rather than the other. Therefore, the utility function can be 

maximized subject to full income constraint (Equation 3). In this 

study, it is assumed that the recreationist maximizes his total utility 

and has perfect knowl edge . It is further assumed that the recreation 

experience generates a total utility function which at some point 

encounters diminishing marg ina l utility (i.e., is concave). 
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DATA COLLECTION PROCEDURES 

A specific problem area, appropriate sample selection, suitable 

survey formul ation, and proper statistical models are essential and 

necessary for any kind of econometric study, especially for estimating 

a direct consumer surplus. Even though th e study area chosen may be 

too small to permit generalization of the results to the rivers in the 

eastern parts of the country, but it is an ideal location to illustrate 

western water allocation problems. The recreation possibilities 

in the Blacksmith Fork, Little Bear and Logan Rivers could create 

economic allocation problems, such as diverting river waters by water 

right holders without considering instream flow needs. Therefore, to 

overcome the existing problems a correct economic theory plus a well 

constructed sample survey is necessary. 

The Study Area 

The study area includes the Blacksmith Fork and Little Bear River 

drainages located in the southwest portion of Cache County in northern 

Utah plus Logan River which is located in northern Utah and southern 

Idaho (Figure 3). The Little Bear, draining an area of 339 square 

miles, flows roughly south to northwest to its confluence with the Bear 

River. The Blacksmith Fork, draining 268 square miles, flows roughly 

east to west to joint the Logan River which later flows into the Bear 

River. The Logan River drains an area of about 223 square miles (Haws 

1965), flows roughly northeast to southwest to join the Bear River. 

The headwaters of all three, Blacksmith, Logan, and Little Bear Rivers, 

originate in the Wasatch Mountains . Streamflows of the Little Bear, 
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Figure 3. Map of the study area. 



Blacksmith Fork and Logan Rivers with the canyon areas are primarily 

governed by runoff from the winter snowpack as the air temperatures 

increase from mid-April to mid-July. 

The Logan River in the northern part of the drainage area which 

opens into a wide valley with gently undulating hills is not deeply 

entrenched. But the river near the center of the drainage basin as 
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the valley converges into a narrow steep canyon is deeply entrenched. 

This canyon which is unquestionably beautiful (and some of it is 

privately owned) continues until the stream emerges from the mountains 

onto the level floor of Cache Valley. The Logan River meanders across 

Cache Valley, is joined by the Blacksmith Fork River and the Little 

Bear River and finally joins Bear River, which is the major stream 

flowing through Cache Valley and into the Great Salt Lake. About 

15 percent of the Little Bear drainage and 63 percent of the Black­

smith Fork drainage are in the Cache National Forest or state lands. 

Approximately 32,000 acres in the Little Bear drainage, and 2,000 acres 

in the Blacksmith Fork drainage, are irrigated. The Logan River 

drainage has approximately 15,000 irrigated acres in the downstream 

reaches. Irrigation, especially on the Blacksmith Fork and Little Bear 

Rivers, constitutes by far the heaviest use made of the water. Other 

uses include municipal, culinary, and hydroelectric water. 

Farmers in the area have diverted all three rivers' streamflows 

for irrigation for over 50 years to irrigate corn, peas, potatoes, 

sugar beets, silage, hay, small grains, pasture, and orchards by the 

Logan River irrigation system and alfalfa full, alfalfa partial, 

barley, corn grain, beets, nurse crop by the Blacksmith and Little 

Bear Rivers irrigation systems. The principa l fish that exists in 
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the Blacksmith Fork, Little Bear and Logan Rivers are the brown trout 

and mountain whitefish. In addition, cutthroat trout, r ainbow trout, 

and speckl ed dace are found in the Logan and Bl acksmi th Fork Rivers 

(Fish and Wildlife Service, U.S. Depar tment of the Int e ri or 1980). Th e 

Logan River canyon, the Blacksmith River canyon, and the Little Bear 

River canyon are popul ar rec reation areas, used for fishing, camping, 

kayaking, etc. Th e Loga n River, the Blacksmith Fork River and canyons, 

with high, wooded mountains, form a pictures que mountain setting. In 

fact, ma ny visitors come to thes e areas to enjoy the scenery at one 

of the camp o r picnic g rounds . 

The Logan River between second dam and Bridger Campground is 

usually d ewatered during late s ummer, even in higher than normal f low 

ye ars. In 1983, an ag reement was reac hed be tween the Utah Fi sh and 

Wildlife Service and Logan City to let some minimum wat e r fl ow in this 

stretch of river, whic h is an important area fo r recreationists. 

Instead , the lower part of the river will be dewatered. The Blacksmith 

Fork is also dewatered over part of i t s lower reaches during the middle 

and lat e summe r in years with below normal flows. Such dewa tering 

occurred in the s ummer of 19 8 1, res ulting in l oss of a l arge number of 

fish. A proposal by the City of Hyrum to rehabilitate its power plant 

on th e Blacksmith could dewater another s tr e tch above the canyon mouth 

by diverting the flow into a pipe for conveyance to the downst ream 

generation site . For thi s s tud y to de riv e flow data the Loga n River 

has been div ided into five homogeneous reaches and the Blacksmith Fork 

River has bee n divided into three uniform river reaches. These divi­

sions we re determined by conside ring points Where the amount or time 



distribution of streamflow changes significantly The division points 

for the Logan River are: 
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Reach 1, between 1st dam and Smithfield Canal diversion or Logan-

Hyde Park 

Reach 2, between Smithfield Canal diversion and 2nd dam 

Reach 3, between 2nd and 3rd dams 

Reach 4, between 3rd darn and Right Fork tributary 

Reach 5, the rest of Logan River study area which lies between 

Right Fork tributary upstream and end of the study area 

at Woodcamp Campground 

Blacksmith Fork River, as mentioned above, is divided into 3 reaches . 

These r eaches are: 

Reach l, from the mouth of the canyon to the existing reservoir 

structure 

Reach 2, betwe en reservoir structure point and the mouth of the 

left hand fork tributary 

Reach 3, located from the left hand fork tributary to the end of 

the study area at Hardware Ranch 

East Fork River or Littl e Bear River has only one single uniform river 

reach which is the whole Little Bear study area. 

Streamside Recreation Sampl ing Procedure 

To have a complete measure of instrearn flow value, ideally all 

individuals who participate in instream recreation activities should be 

interviewed. Interviewing all participants is an expensive and time 

consuming task. Therefore, randomly selected recreationists are 
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interviewe d and inferences are made about all recreationists from that 

sample (Earl 1982). 

The interviews were conducted for streamside recreation survey in 

the summer of 1982 in thr ee river sites. A group of six well qualified 

and trained students and faculty with field interview background helped 

with the interviewing. Interviews were made at recreation sites. 

Although, it was a labor-intensive procedure and increased the survey 

cost, it increased the r esponse rate and, therefore, reduced the 

possibility of bias. Usually very few people refused to respond when 

confronted in person. In this study, only 2 percent of the people 

refused to fill out the survey forms. A copy of the survey question­

naire is shown in Appendix A. The questions we re first tested by staff 

members at Utah State University for timing and ease of understanding 

of the question. Then, the questionnaire was tested among a couple 

of ordinary recreationists in each site. The shortcomings of the 

questionnaire were corrected before the actual survey began. 

Any hou sehold visiting the Logan, Blacksmith, and Little Bear 

Rivers during the summer of 1982 was a potential member of the recre­

ation sample population. In thi s study the actual sample for all three 

sites included 500 households who participated in fishing, camping or 

any shoreline and white water activities such as swimming, hiking, 

tubing, etc. To achieve randomness, such that each household would 

have the same chance of being selected, a random numb e r of days were 

selected to interview ove r a period of six weeks, beginning in August. 

The interview period was chosen to ensure variatio ns in st reamflow 

would be observed. The higher than normal flows of 1982 required a 

later s tarting date than would hav e been the case in an average yea r . 
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Interviews were made at recreation sites on four weeke nds and four 

weekdays. Sampling sites for the survey wh ich were defined by s tr eams 

were divided into five reaches (Figure 3). Logan River had two r eaches. 

From the First Dam to Second Dam wa s called Logan 2 and from Second Dam 

to Woodcamp Campg rou nd was called Logan 1. Blacksmith Fork River also 

was divided in two reaches. Blacksmith 1 extend ed from the mouth of 

Blacksmith Fork Canyon ups tream t o Hyrum City park and Blacksmith 

extended from the park to Rock Creek below Hardware Ranch. The las t 

site was East Fork or Lit tl e Bear River, below Porcupine Re servo ir. 

The interview process, o n any given sample day , attempted to 

eliminate time, se l ec t io n, or l oca tio n bias. The interviewers were 

divided into four gr oups o f two fo r a lmost each site. All fo ur groups 

started interviewing, a t the same time at each given day, given a 

number of randomly selec t ed households. The sampling procedure con­

sis t ed of se tting a quo t a for sites for each day of interviewing. Th e 

quo t a for each site and fo r eac h day was determined acco rding t o 

es timate d site capaci t y , weekend or weekday, and wh e ther it was earli e r 

or l ater in the season . Relatively higher quotas were assigned for 

weekends, as recreation use i s higher and there is more time for 

interviewing on weekends. As recrea t ion use comparative l y declined 

later in t he seaso n, r e latively lower quotas were assigned. Inter­

viewers for each s it e were given the quota for each day, and were 

instructed to determine the sampling uniform rule by first counting all 

cars and campers in the site, dividing the number of vehicle s by th e 

given quota for that day, and the n in t ervi ewi ng at every nth vehicle. 

One samp l ing bias may occur . Individuals fish i ng on s tream will 

frequently walk too far from their cars to be accessible for interviews, 
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so that the sample might undercount sma ll parties who come primarily t o 

fish. So the si te interview procedure has one inherent bias, which is 

those who stay longer and are mo r e available and hav e higher probabi lity 

of being chosen for the interview. 

The average interview lasted between 20 and 35 minutes and a few 

lasted over 35 minutes. The rat e of acceptance was ove r 95 percent. 

Shoreline participants had the highest response rate and fishermen were 

also very receptive to the survey, as they had the mo s t to gain from 

instream fl ow management. The study es peciall y focused on recreation­

ists evaluation of particular str eams as flows varied. This dictated 

that the questionnaires be administered at the recreation sites, rather 

than by phone, mail, or at res idences. As the household was the basic 

sample unit, the interviewer was advised to make sure th a t the spokes­

man gave answers that represented the famil y. 

The most difficult sample construction decision was to choose 

an appropriat e sample size considering time, cost, and all other 

constraints. It is known that an increase in sample size will increase 

the probability that sample estimates accurately repr esent the true 

population parameters. But the researcher must tradeof f between 

increase in statistical accuracy with collection costs. In this study 

some var iabl es such as number of sites, number of income groups, and 

the number of travel distance zones plus costs of information collection 

were consid ered to set the sample size. Therefore, the decided sample 

size was 500 interviews and it was hoped to be enough observation for 3 

sites in 4 distance zones, and 3 income groups. Tabl e 1 shows the 

distribution of sample sizes. 



Table 1. Distribution of sample sizes. 

Logan 1 Logan 2 

Zo ne 1 
Dj 11 16 10 24 9 4 
D2 2 5 1 6 3 3 

Zone 
D] 6 7 5 2 3 3 
D2 2 2 0 3 0 1 

Zo ne 

Dj 2 8 4 2 2 8 
D2 2 4 4 1 2 1 

Zone 4 
D1 2 5 6 3 4 3 
D2 2 4 2 1 1 4 

Above 365 23 25 
miles 

To t al 135 118 

D1 indicates weekend 
D2 indicates weekday 

Site 
Bl acksmith 1 
I ncome Groups 

1 2 3 

7 10 1 
1 2 0 

2 13 3 
2 7 1 

2 12 9 
0 5 1 

1 8 4 
0 1 0 

3 

95 

Bl acksmith 2 

8 7 4 
5 2 1 

8 10 5 
2 0 1 

0 3 2 
2 1 0 

2 0 4 
1 0 2 

4 

73 

Little Bear 

0 1 0 
0 1 0 

5 2 
3 2 

2 3 0 
0 0 2 

5 4 
2 5 

45 

N .._, 
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Survey Results 

The survey questionnaire is the most important factor determining 

the success or failure of attempt to estimate objective of survey. The 

length of survey and the number of questions in each sectio n of survey 

is important to get accurate answers . In particular, questions should 

not ask the individual to respond to alternatives beyond the range of 

his experience. In this study, the questionnaire requested information 

on three general topic s with enough number of questions in each group 

to get as accurate answers as possible without making the respondents 

tired. These three categories were: 1) socio-economic, 2) recreation 

activities, and 3) site evaluations. 

Socio-economic 

Respond e nts were asked about composition of party, education 

completed , household income, and residence (Appendix A). Average sizes 

of groups were almost similar in 5 reaches and particularly betwe en the 

3 sites. They were 4.00 for both Logan River and Blacksmith Fork River 

and 3 . 9 for Little Bear River (Table A-1, Appendix A). Group size 

distribution did not follow a uniform pattern, however, a group of size 

2 had the highest frequency. Table A-2 indicates that there were more 

male recreationists than female. This conclusion is not true in every 

age group . The largest portion of the rec r ea t ion population is under 

30 years of age. At over 49 years the differences in number between 

mal e and female recreationists decrease. 

Table A- 3 indicates that the median educational attainment of 

respondents was high school completion. The number of rec reationi s ts 

with co lleg e l evel of education in Logan I, Logan 2, and Blacksmith 2 
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was higher than with high school lev e l of education. Al so, on the 

average, recreationists in Logan 1, Logan 2, and Blacksmith 2 reaches 

have higher level of education than Little Bear and Blacksmith 1 

reaches . This noticeably higher level of education in those three 

samples could be explained by the relatively shorter distance of the 

sites to the university community centered in Logan, as higher level of 

education will indicate higher opportunity cost for recreationists. 

There is a weak relationship between education level and household 

annual income (Table A-4). The high number of college students as 

recreationists in our sample did affect the relationship between 

education and income. Since these students do not earn as much as they 

would if they were in the work market, the expected result, which is a 

relative increase in income earned as education level increases, is not 

shown in Table A-4. Distribution of household income (Table A-5 and 

Figure 4) is not significantly different in Logan and Blacksmith sites. 

The median income for the Logan and Blacksmith sites is in the 20,000-

24,999 range, and for Little Bear it is in the 10,000-14,999 range. If 

ranges above 20,000 are considered upper brackets, then almost 60 

percent of the sample from Logan and Blacksmith sites are in the upper 

brackets and for Little Bear, the upper bracket percentage is 40. 

Distance traveled from home is classified in 13 groups from less 

than 2 miles to almost 1000 miles (Table A-6). According to our samples 

two groups of people mostly ended up in Logan, those living within 40 

miles especially within less than 10 miles and those pas s ing through 

Utah. But for Blacksmith and Little Bear the opposite is true. Al­

though, one would generally expect that most of the visitors to a site 

would liv e in the nearest zone, as in Logan site, the surve y sampl e for 
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the latt er two sites departs from this patt e rn . This could partly be 

explained by distribution pattern of population around th e s ites, as 

very few people live within 10 miles of the Little Bear and Blacksmith 

sites especially Blacksmith 1. Other factors suc h as proximity of the 

site to major highways and distance between home and the nearest 

alternative site offering a simi lar recreation experience , could be 

mentioned to justify the r esults in Table A-6. By adjusting the number 

of visits from distance zo nes by the differences in population part of 

the above problem may b e overcome and a pattern closer to the expected 

one could be produced. 

Recreation activi tie s 

Table A-7 presents the mean or average length of stay for each 

site . Logan has lowest mean because of prox imity of this site to the 

largest city in northern Utah, and average length of stay for Logan 1, 

Blacksmith 1, and Blacksmith 2 are exactly th e same. Also Table 2 

shows that the length of visit was kind of shorter for shorter travel 

distance. Tables 3 and 4 give us a general idea of average cost of 

food, r ec r eation equipment cost and cost of durable recreation equip­

ment for each site. 

Table 5 could help us to rank the different kinds of activities 

for each site . As it was expected, fishing was the dominant recreation 

activity for all five sites. For Logan si te water play has second 

rank, but for Blacksmith a nd Little Bear sleeping has s econd place. 

The r esult of this table might be used in deriving demand function for 

each recreation activity from overall recreation demand. 



Table 2. Length of visi t by t r avel distance. 

Distance Hours at Site 
Trave l ed < 1 1- 4 5 8 9 15 16 30 31-55 56 or more Total 

0-1 0 0 59 16 5 7 9 6 102 
l l - 20 0 15 12 l 6 8 7 49 
21-30 0 14 6 0 4 6 7 37 
31-40 0 9 8 3 12 18 17 67 
41- 50 0 l 3 2 0 6 2 14 
51- 60 0 5 l3 4 12 12 26 72 
61-70 0 0 l 0 12 6 5 24 
71-80 0 2 l l 2 3 3 12 
81-90 l 2 2 0 l 4 2 12 
91-1 00 0 0 l l l 3 l 7 

101-1 30 0 2 0 l 4 8 l 16 
131- 365 0 2 0 0 3 2 2 9 
365 or more 0 16 5 5 ll 9 10 56 

Total l 127 68 23 75 94 89 477 

Table 3. Ave rage expendi t ur e by si t e. 

Average Si t e All 
Expe nditur e Logan l Logan 2 Blacksmith l Blacksmi t h 2 Little Bear Sites 

Food $30. 21 $24 . 31 $29.61 $24.85 $32.53 $141.51 
Equipment 8.50 8 . 69 13.86 5.01 19.93 49.99 
Total $ 38 . 7l 33 . 00 42.47 29 . 86 46.46 190.50 

w 
N 



Table 4. Average cost of durable recreation equipment by site. 

Equipment Site 
Type Logan 1 Logan 2 Blacksmith 1 Bl acksmi th 2 

($) ($) ($) ($) 

RV, camper, trailer 3,539.22 2,715.68 1,790 1,044 
Tents and awnings 178.16 155.86 50 169 
Sleeping bags, e tc. 114.22 85 .42 51 70 
Food preparation 

and amenities 154.48 162 .78 38 76 
Fishing equipment 75.18 60.02 63 64 
Licenses 15.00 19.80 16 10 
Other 104.50 206.67 0 9 

Average Total 4,180. 76 3,406.23 2,009 1,442 

Little Bear 
($) 

1' 923 
44 
67 

92 
88 
16 
35 

2,266 

All 
Sites 

w 
w 
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Tabl e 5. Average percentage of time allocated to di fferent 
activities . 

Site 
Activity Logan Blacksmith Little Bear 

Fishing 28.2 26.45 21.2 
Eating 7 . 6 8.6 11.0 
Sleeping 10. 8 9.05 14.2 
Water play 12.3 4.55 5.4 
Hiking 8.4 3.05 2.6 
Games 1.9 2. 1 2.2 
Other 4.4 4.0 6.5 

Site evalua tion 

Recreationists were asked to rate their recreation site on a scale 

of 1 to 10 over several site characteristics; where a rating of 10 

would indicate an ideal site and a rating of 1 would indicate a l east 

desirable site (Table 6). This table shows that 3 reaches, Logan 1, 

Lo ga n 2 and Blacksmith 2, are close alternative sites, according to the 

composi te site characteristic evaluation of about 7.2. The two remain-

ing reaches have an evaluation of about 6.5 

The survey year , 1982, had an unusually high instream flow . As 

the survey was conducted in that year (Table A-8), the present l eve l of 

instream flow in the summer of 1982 was rated as an accep ted flow level 

in all three sites . Table 6 shows that site characteristic evaluations 

by recreationists are above average for all five reaches. Nev e rthe less, 

th e reaction of recreationists to no water situations is unacceptably 

low (Table A-8). Furthermore, Tabl e ind ica te s that the mean lev e ls 

of minimum acceptable flow in all five reaches are above 55 pe rc en t 

of cur rent flow eve n in summer of 1982. The amount recreationi s t 



Table 6. Site characte ri stics evaluation by site (10 
1 =extremely poor) . 

perfec t, 

Chacteristic 

Distance 
Privacy 
Facilities 
Landscape 
Inspects 
Wat er 
Fishing Suitability 

Composite 

Logan 
1 

7.73 
7.43 
6.97 
8.37 
4 . 58 
8.78 
6. 71 

7.22 

Logan 
2 

7. 91 
7.04 
6.74 
8.67 
6.03 
8.33 
6 . 54 

7.32 

Site 
Blacksmith 

1 

7. 7 
7.9 
4.2 
8.5 
4.0 
8.7 
5.8 

6.7 

Blacksmith 
2 

8.1 
7.3 
5.9 
8.3 
5.5 
8.1 
6.9 

7.2 

35 

Little 
Bear 

7 .3 
7.5 
3.0 
7.3 
4.9 
8.4 
6.8 

6.5 

Tab l e 7. Minimum acceptable flow as a percent of current flow, by 
site. 

Site 
Flow Leve l Logan Logan Blacksmith Blacksmith Little All 

1 2 1 2 Bear Sites 

10 1 5 3 10 
25 19 1 4 30 
33 15 5 11 9 41 
50 45 27 30 19 17 138 
67 10 19 29 10 6 74 
75 17 38 11 12 14 92 
99 24 18 16 7 72 

Mean l evel 57 66 58 62 67 62 
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are willing to pay to maintain acceptable flow level s is shown in 

Table 8. These result s are a strong indication of importance of 

required flow level for recreationists. 

Tables A-9 and A-10 present the results of respondents answers 

about question of maximum number of other recreationists who would be 

acceptable at the site before it became too crowded (respondents were 

asked to use their own definition of site boundaries). Most recreation-

ists we re satisfied with the number of others at the site (shown in 

Table A-9). In summary the result of site evaluation part of the 

surv ey was as expected, that is, a high weight is given to the flow 

l evel. 

Table 8. Willingness to pay to maintain acceptable f l ow levels, by 
site. 

Dollars Site 
Willing Logan Logan Blacksmith Blacksmith Little All 
to Pay 1 2 1 2 Bear Sites 

0 32 33 15 21 5 106 
1-2 40 44 60 22 22 188 
3-4 35 18 14 19 11 97 
5-6 17 9 2 7 3 38 
7-10 9 9 3 3 3 27 

11-19 2 0 1 0 4 
>20 0 1 0 1 3 
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The economic cost of any activity could be interpreted as the 

alternative opportunities foregone. Since in this s tudy th e assumption 

is only a direct conflict between maintenance of instream flow and 

offstream agricultural use, the foregone value of agricultural products 

is considered as the expected cost of desired expected instream flow. 

Since farmers in semi-arid environments are unable to depend on 

rainfall, they recognize that their production possibilities would 

substantially increase by diverting water away from the natural stream 

channel.. Although diverted water is used in production of goods and 

services, the belief is that instream water uses for recreation and 

environmental quality have an economic value large enough to warrant 

instream flow management strategies. Therefore, a stochastic linear 

programming model (Wagner 1975, Hadley 1963) was developed to estimate 

the expected costs of alternative methods to maintain instream flows; 

thus providing additional necessary information for society to make 

proper judgments on resource allocation. For application of the model 

developed in this chapter, the Blacksmith Fork and Little Bear Rivers 

are the study area. Since the selected study area is already experi­

encing conflicts between water use for irrigated-agriculture and 

instream flow for fish habitat, this p~esents a good situation for 

demonstrating model application in this chapter. 

Model Application 

Cost of maintaining desired expected instream flow is defined as 

foregone value of agricultural products. The model developed in this 



chapter assumes a direct conflict only between agricultural use and 

the requi red instream flow. This assumption can be relaxed easily, 

and the source of water for instream flow which generates the smallest 

marginal benefit would be the appropriate cost measure. 

To analyze alternative instream flow strategies in this model, 
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the stochastic nature of streamflow is considered. Therefore, annual 

water availability is assumed to be a discrete random variable that can 

take any one of eight independent levels. These eight levels are 

assumed to be an independent event with an associated probability, 

Under the assumption of perfect correlation between monthly flows and 

seasonal total flow, the monthly flows are calculated as fixed portions 

of the annual total. For this calculation, the ratio of the sum of 

monthly gaged flows for all sample points (34 years) to the sum of the 

total for all months over the same 34 year period is calculated. Then 

a histogram of sample points is constructed to determine a discrete 

density for the 5 months (May-September) flow period . Eight flow 

events beginning with 10,000 acre feet up to 170,000 acre feet at an 

interval of 20,000 acre feet are used and the respective probabilities 

are estimated (Table 9). 

The alternative instream flow strategies for which costs are 

determined in this study include three basic strategies under two 

conditions of water rights transferability: 

1. The expected instream flow strategy (ElF) which determines 

the combination of junior and senior water rights needed to maintain 

the desired level of expected instream flow at least cost in terms of 

expected agricultural products foregone. 



Table 9. Streamflow volumes at different probabilities of occurrence in acre feet. 

Probability 
State of Months (t) 

k Occurrence May June July August September 

0.029 9,000 4,200 2,600 2,200 2,000 
2 0. 1176 18,000 8,400 5,200 4,400 4,000 
3 0. 1764 2 7' 000 12,600 7,800 6,600 6,000 
4 0.3235 36,000 16,800 10,400 8,800 8,000 
5 0.1470 45,000 21,000 13,000 11,000 10,000 
6 0 .1470 54,000 25,200 15 '600 13' 200 12,000 
7 0.029 63,000 29,400 18,200 15,400 14,000 
8 0.029 72,000 33,600 20,800 17,600 16,000 

Seasonal 
Total 

20,000 
40,000 
60,000 
80,000 

100,000 
120,000 
140,000 
160,000 

w .., 
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2 . The minimum flow strategy (IF) which meets the de sired level 

of expected flows by reserving the required amount of the most senior 

rights. 

3. The critical flow strategy (CF). The CF combines the previous 

two basic strategies, using IF to guarantee a base flow to prevent any 

irreversible damages (attain maximum protection up to a critical flow 

level), and ElF to obtain the remainder of the desired expected instream 

flow . 

All three basic strategies defined above are evaluated under two 

water rights conditions. Under condition 1, transfers from agriculture 

to instream uses are restricted to permanent conversions, but under 

condition 2, temporary or short term transfers are fr ee ly permitted. 

This transferability is not applicable to IF. Therefore, three methods 

and two conditions would combine into five alternatives (ElF 1, ElF 2, 

IF, CF 1 , CF 2 ) . 

In formulating the model, let Pjr represent the net per acre 

revenue for jth crop produced on the rth class of land . This irrigated 

land on the basis of productivity levels is classified into r or three 

classes. Zjrk is the number of acres of rth class of land devoted to 

growing jth crop when water availability K occurs with an associated 

probability rrk. Table 10 shows the value of Pjr for six major crops. 

The expected returns to irrigated agriculture are; 

E E Pjr rrk Zjrk (5) 
k j r 

Therefore, the problem is to maximize thes e expec ted returns to irri-

gated agriculture subject to the following constraints: 



Table 10 . Net revenues per acre for different crops and land c l asses (Pjr>· 

Crop 
Land Class Alfalfa Full Alfalfa Part ial Barley Corn Grain Beets Nurse Crop 

Class l 107.49 82.13 106.68 156.63 72.44 64.21 

Class 2 86 .83 68.29 89.75 120. 22 48 . 47 50.98 

Cl ass 3 67.81 62.38 74.96 77.32 43.85 39.98 
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a. The amount of irrigated land (EZjrk) is restricted to be less 

than the available acres Lr * in each land class for every event k. 

r = 1, 2, 

k 1. 2. . .. 8 (6) 

b. The Atk which is total water requirements in month t and 

probability state k for irrigation is defined by the equation : 

0 t=l,2, ... 5 (7) 

'~.here Wjt represents the consumptive use requirement for crop in 

month (Table 11) . 

c. A general representation of crop rotational constraints used 

in the model (Keith et al. 1978) is given by: 

1, 2, . .. 6 (8) 

where the Vjri represents the portions of various crop acreages re-

quired for good crop rotation. 

d. The quantity of water available in month t and in kth state 

(Qtk) should be equal to the sum of the amounts of water used in irri-

gated agriculture in month t and state k, Atk and the corresponding 

instream flow (Itk). 

(g) 

Table 1 shows the distribution of value of Qtk for five months (May-

September), and eight flow events. 

e . The expected instream flow requirements constraint is: 

t=l,2, ... 5 (10) 
k 



Table 11. Water requirement for crops per acre in acre-inch (Wjt) . 

Crop 
l"onth Al falfa Full Alfalfa Partial Barley Corn Grain 

May 3.828 3.190 1. 772 l. 311 
June 5. 727 4. 713 7.805 3.801 
July 7 .597 6.228 7.665 7. 392 
August 6.416 5.508 l. 513 6.235 
September 3.644 3.197 0.930 2.417 

Total 27.212 22.836 19 .685 21.156 

Beets 

1 . 240 
3.345 
7.528 
7.566 
4 . 239 

23.918 

Nurse Crop 

1 . 772 
7.805 
7 . 665 
l. 513 
0 . 930 

19.685 

... 
w 
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where It* is the desired expected instream flow level (Table 12). The 

value of desired expected instream flow examined in this analysis 

corresponds to 40 percent, 50 percent, 60 percent, and 70 percent of 

ave rag e flows (Table 12, first column). 

f. Following constraints w>ere restricted water right transfers 

between irrigation and instream flows. 

Atk+l - Atk 2_ 0 

ltk+l - ltk 2. 0 

k 1' 2' 

t = 1' 2, (11) 

where Atk+l is the irrigation water use corresponding to event Gtk+l, 

Water rights are grouped into eight levels of seniority , corresponding 

to eight flow events Qtk selected for analysis. Therefore, the differ­

ences between Atk+l and Atk can be interpreted as the water right of 

(k+l)th seniority. The assumption in these constraints is that water 

right s of different seniorities are maintained as nonnegative. There­

fore, in the absence of Equat ion 11, Atk+l - Atk could be nega tive. 

This means that if qtk+l is observed to be the streamflow, then Atk+l 

is the optimally required agricultural water use. Thi s will require 

selling some water rights, since Atl is the amount of the most senior 

water right and At8 - At7 represents the most junior water right in the 

stream. Thus, without constraint (11), sale or purchase of water 

rights would be required on an annual basis. 

The model is solved with and without imposing constraint (11) for 

various levels of expected instream flow requirements. In this case, 

the model with constraint (11) results in strategy ElF 1. The model does 

not allow transfer of water rights between irrigated agriculture and 

instream flow, because the constraint fixes the allocation between them 

for any flow event . The variables in constraint (11) could be regarded 
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Tabl e 12 . Minimum instr e am flow r e quirement s in acre feet (It*). 

Expected Instre am 
Flow Time 

(Percent of Average) May June July August September 

40% 4,667 4,681 4,729 4' 790 4,852 
(4 ,667) 

50% 5,834 5,882 6,034 6' 158 6,283 
(5,834) 

60% 7,000 7,084 7,401 7 '773 8,003 
(7 '000) 

70% 8' 167 8,285 9,029 10,127 12,851 
(8,167) 

as first stage decision variables in a two stage stochastic linear 

programming model with the cropping pattern regarded as the second 

stage decision variable. ~toreover, the model without constraint (11) 

results in strategy ElF 2 where water rights can be transferred between 

agriculture and instream flows after observing the event Qtk· 

g. Minimum flow requirements are imposed by stipulating 

t = 1' 2, 

k 1' 2' ( 12) 

Constraints (12) are used in two ways: 

1. Implicitly to find ltk such that the expected value of Min 

(Qtk, !tk) =It*, the minimum instream flow reservation consistent with 

the expected instream flow requirements can be determined. Table 12, 

columns 2-6, shows these minimum requirements by month. Therefore, by 

imposing constraint (12), Itk ~Min (Qtk, ltk). This will result in a 

decrease in the objective function which corresponds to minimum in-

stream flow strategy (IF). 
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2. Critic al flow is required to prevent irreversible damages, 

s ince s impl e ElF requirements could allow zero flows . In this study 

critical flows rtc were set at 20 percent of average flows (Montana 

Method) by stipulating in Equation 12. Therefore, in this case ltk ~ 

Min (Qtk, ltC). Critical flow strategy with constraints ll (CF l) and 

without constraints ll (CF 2) is used (Appendix D). 

In the model, the net revenue per acre for jth crop produced on 

rth class of land, Pjr is calculated as : 

Where 

Pjr = (Rjr · Pojl - Cjr 

Rjr productivity per acre for jth crop produced on rth class 

of land 

Poj price in dollars per acre of jth crop. 

Cjr cost of cultivation of jth crop produced on rth class of 

land in dollars per acre 

The data neces sary for this calculation are obtained from Keith et al. 

(1978). Also data needed for crop rotational constraints (8) are 

collected from the same publication. 

In areas for which no measurements of consumptive use are avail­

able, the Blaney-Criddle method with some modification can be used to 

estimate consumptive use of crops from climatological data. Blaney 

and Criddle found that the consumptive use of crops closely correlated 

with mean monthly temperatures and daylight hours. Temperature and 

precipitation records are more readily available than most other 

climatic data. Records of actual sunshine are not generally available, 

but the effect of sunshine can be estimated by using the length of days 
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during the crop-growing season at various l atitudes. Therefore in thi s 

study the Wjr are estimated usi ng the Blaney-Criddle equation which is: 

T • p 
ET 25.4 (Kc Kr) 7oo (13) 

wher e 

ET consumptive use of crop; millimet er s for a given month 

T8 mean temperature during the period in degrees Fahrenheit 

(State Climatologist) 

P percentage of daytime hours of the year, occurring during 

the period (USDA SCS TR21) 

Kc monthly crop coefficient (USDA SCS TR21) 

Kt a climatic coefficient calculated by : 

Kt = 0.0173 Ta- 0.314 

Analysis of Results 

The models described before are used to obtain net benefit maxi-

mizing solutions for the five strategies for providing instream flows 

equal to 40 percent, 50 percent, 60 percent, and 70 percent of the 

average flows. Besides, a base solution with deleting constraints 11 

and 12 and r/ 0 (no required instream flows) is obtained. This base 

solution is used for comparison purposes and also the result indicates 

how the available water could be allocated among various agricultural 

activities to obtain maximum value of agricultural ret urns. Therefore, 

the cost of instream flow maintenance for the five strategies can be 

calculated by subtracting the value of the objective function of each 

strategy (Table 13) from the base solution value. These costs are 

shown in Table 14. Tables 15 to 19 show th e corresponding water 

allocations at each s trat egy. 



48 

Table 13. Maximum farmer's income with res pect to instream flow manage-
ment (in dollars). 

Expected Instream Flow 
St rategies 40% 50% 60% 70% 

ElF 886' 183 725,077 550,978 92,038 

ElF 886' 188 725,081 550,981 92 '040 

IF 864,665 660,588 385,870 65,420 

CF 884,486 723,379 549' 281 92 '038 

CF 884,491 723,383 549' 283 92,040 

Table 14 . Expec t ed costs of instream flow maintenance (in dollars). 

Expect ed Instre am Flow 
Strategies 40% 50% 60% 70% 

ElF 603,653 764,760 938,858 1,397,799 

ElF 603 '648 764,755 938,856 1,397 '796 

IF 625,171 829,248 1,103,966 1,424,417 

CF 605,351 766,458 940,556 1,397,799 

CF 605 '346 766,454 940,553 1,397,796 



Table 15. Water allocations for expected instream flow (ElF I). 

Expected Flow 
Re quirement 40% Flow 50% Flow 60% Flow 70% Flow 

Proba- Instream Agricul- In stream Agricul Instream Agricul Inst ream Agricul-
State bility Flow ture Flow ture Flow ture Flow ture 

0.029 11551 8448 11837 8163 11837 8162 20000 0 
2 0.1176 27252 12747 31695 8304 31837 8162 37573 2426 
3 0.1764 38804 21195 43255 16744 47871 12128 57573 2426 
4 0.3235 58804 21195 62616 17383 67864 12134 77573 2426 
5 0 . 1470 78791 21208 82603 17396 87857 12142 97573 2426 
6 0.1470 98789 21210 102601 17398 107855 12144 117573 2426 
7 0.029 118789 21210 122601 17398 12785 5 12144 137573 2426 
8 0 . 029 138789 21210 142601 17398 147855 12144 157573 2426 

Table 16. Water allocations for expected instream flow (EIF IIAF). 

Expected Flow 
Requirement 40% Flow 50% Flow 60% Flow 70% Flow 

Proba- Instream Agricul- Instream Agricul- Inst ream Agricul In stream Agricul-
State bility Flow ture Flow ture Flow ture Flow tur e 

I 0.029 14211 5788 11837 8162 11837 8162 20000 0 
2 0.1176 34211 5788 34211 5788 34211 5788 35380 4619 
3 0.1764 34655 25344 48501 11498 36756 23243 58217 1782 
4 0.3235 46207 33792 46207 33792 66146 13853 75380 4619 
5 0. 14 70 94213 5786 94213 5786 94213 5786 100000 0 
6 0. 14 70 103891 16108 114211 5788 114211 5788 120000 0 

0.029 134211 5788 134211 5788 134211 5788 140000 0 
0 . 029 154211 5788 154211 5788 154211 5788 160000 0 

./>-

"' 



Table 17. Water allocation for minimum flow (IF) in acre-feet. 

Expected Flow 
Requirement 40% Flow 50% Flow 60% Flow 70% Flow 

Proba- In st ream Ag ricul Inst ream Ag ricul- Inst ream Agricul- Inst ream Agricul-
State bility Flow ture Flow ture Flow ture Flow ture 

1 0.029 20000 0 20000 0 20000 0 20000 0 
2 0.1176 40000 0 40000 0 40000 0 40000 0 
3 0. 17 64 50441 95 58 60000 0 60000 0 60000 0 
4 0.3235 61572 18427 66303 13696 80000 0 80000 0 
5 0.14 70 73126 26873 77367 22632 82689 17310 100000 0 
6 0.14 70 84676 35323 88917 31082 93550 26449 120000 0 

0.029 96216 43783 100466 39533 104911 35088 116518 23481 
0.029 I 077 52 52247 112001 47998 116451 43548 126498 33501 

Table 18. Water allocation for expected flow with cri tical flow (CFI) in acre-feet. 

Expected Flow 
Requirement 40% Flow 50% Flow 60% Flow 70% Flow 

Prob a- Instream Agricul- Instream Ag ricul- Instream Agricul- Inst ream Agricul 
State bility Flow ture Flow ture Flow ture Flow ture 

0.029 20000 0 20000 0 20000 0 20000 0 
2 0.1176 31551 8448 31837 8162 34211 5788 37573 2426 
3 0.1764 43103 16896 43472 1652 7 47304 12695 57573 2426 
4 0.3235 56570 23429 62184 17815 67249 12750 77573 2426 
5 0. 14 70 76557 23442 82171 17828 87241 12758 97573 2426 
6 0.14 70 96555 23444 102169 17830 107239 12760 117 5 73 2426 
7 0.029 116555 23444 122169 17830 127239 12760 137573 2426 
8 0.029 136555 23444 142169 17830 147239 12760 157573 2426 

l..n 
0 



Table 19. Water allocation for expected flow with critical flow (CF II) in acre-feet. 

Expected Flow 
Requirement 40% Flow 50% Flow 60% Flow 70% Flow 

Proba- Inst ream Agricul- Instream Agricul- Inst ream Agricu1- In stream Agricul-
State bility Flow ture Flow ture Flow ture Flow ture 

0.029 20000 0 20000 0 20000 0 20000 0 
2 0. 1176 34211 5758 34211 5788 34211 5788 35380 4619 
3 0.1764 34655 25344 47159 12840 36756 23243 58217 1782 
4 0.3235 46207 33792 50382 29617 65414 14585 75380 4619 
5 0.1470 82 751 17248 94213 5786 94213 5786 100000 0 
6 0. 14 70 114241 5758 114211 5788 114211 5788 120000 0 
7 0.029 134241 5758 134211 5788 134211 5788 140000 0 
8 0.029 154241 5758 154211 5788 154211 5788 160000 0 
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With application of the five strategies discussed previously, the 

following results were obtained in the study area. The differences 

in cost with (ElF 1 and CF 1) and without (EIF 2 and CF 2) the trans­

ferability constraint (11) are negligible (Table 14). However, Tables 

15 and 19 show that the patterns of water allocation for the correspond-

ing two conditions (EIF and CF 2) are quite different. However, the 

objective function values between expected instream flow strategies 

and the critical flow strategies are not significantly different. 

Moreover, the cost of minimum strategy is substantially higher than 

other strategies. Therefore, this implies that the instantaneous 

selected critical flow can be provided with minimum impacts on agricul­

ture. As instream flow requirements are increased from 40 percent to 

70 percent of the average flow, the costs increase in an increasing 

rate because more water is withheld from irrigation use and more senior 

rights are held for instream flows. Therefore, the minimum flow 

strategy and the expected flow strategies tend to become similar at 

higher expected instream flow requirements. 

The areas of farm land under irrigation are shown in Figure 5. 

These areas correspond to the levels of water availability under each 

of the three alternative strategies for maintaining instream flows at 

40 percent, 50 percent, and 60 percent of their average flow levels. 

Over a wide range of flow levels, EIF and CF strategies give almost 

flat curves, which indicate a stable situation for maintaining irri­

gated acreages. On the contrary, minimum flow strategy gives sloping 

upward curves which shows more land is irrigated at higher streamflows. 

This is because at lower streamflows a relatively more certain water 
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is re se rved for instream purposes and more un cer tain water i s avai l able 

a t highe r flows for irrigation pur poses . 

Figur e 6 shows instr eam flows under eac h of the three a lterna­

tive st r ategies (ElF 1, CF 1, IF) for 80 percent and 30 pe rcent of 

the average flow for the irrigation season. The curve of minimum flow 

st r a t egy, positioned comparative ly at a highe r level, indicates that 

this approach requires a larger amoun t of senior water rights. There­

fore, under this assumption much less water is available for agricul­

ture especially during critical periods. 

The r es ult of the stochastic linear programming model is that 

ElF strategy produces a consistently l owe r cost compared to IF s trat­

egy, al though this difference in cost narrows at higher l evel of 

expected inst r eam flow requirements. However, the ElF strategy has one 

disadvantage over the CF strategy. Expected instream flow strategy can 

result in zero instream flows during certain water short periods, 

Which can be prevented by stipulating a crtical instantaneous flow of 

20 percent of average flows . This modification causes no appreciable 

change in the cost of maintaining expected instream flows. Besides, in 

both strategies (E lF, CF) the irrigated acre age is found to be fairly 

stable over most ranges of wat e r ava il ability. Therefore, the above 

discussed results indicate that th e cri tic al flow strategy appears to 

be a promising criterion for providing instream flow. 

The decision of selecting the desired leve l of expected instream 

flow should be made for any study area after determining the cos t of 

alternative expec ted instream f l ow requirement levels. This decision 

could be more efficiently made if an es timate of expected instr eam flow 

benefits is also determined. In the following chapters, a methodo l ogy 

fo r evaluating demand and benefi t f unct i o n for instream flow recreation 

is developed . 
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ESTIMATION OF INSTREAM FLOW BENEFITS 

FOR RECREATIONISTS 

56 

Several benefit components, such as benefits from stream side and 

instream recreation, power generation, navigation, waste transport, 

aesthetics, and the aquatic ecosystem are associated with instream 

flow. Some of these benefits are extremely difficult to estimate. For 

instance, to estimate the benefits accruing to nonusers who might be 

willing to pay to maintain a specific level of streamflow or to esti­

mate aesthetic benefits of those driving along a stream is very diffi­

cult. This study attempts to measure the instream flow benefits 

from recreators data obtained from a streamside survey. Recreation 

activities of the Logan River, the Blacksmith Fork River, and the 

Little Bear River are mainly camping, hiking, picnicking, and fishing. 

According to the stream evaluation map of Utah-1978, these three rivers 

are considered as high-valued fishery resources. 

The area under the appropriate Hicks-compensated demand curve is 

used to measure the compensated variation, CV, or equivalent variation, 

EV, definition of benefits of a price change (Layard and Walters 1978). 

But in practice the area under an ordinary demand curve can be used 

to approximate these benefits (Cicchetti et al. 1976). In general, the 

ordinary demand curve can be more easily generated for public or 

nonmarket goods such as recreation. The demand for water of each 

instream use can be obtained as a derived demand for each activity. 

Similarly, the aggregate demand will be the vertical summation of 

derived demand for instrearn uses. 
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Demand Mod e l and Data Compilation 

Clawson and Knet sc h (1966) def ine demand for recreation activities 

as total attendance or use made of the faci lities, which refers to the 

qu antiti es taken at the pr eva iling recre ation opportunity conditions. 

They also mentioned that raw attendance figures refl ec t demand, to be 

sure, but also refl ect opportunity or supp l y as well. In practice, 

people use ou t door recreation opportunities to the extent to which they 

beli eve their satisfactions are exactly equa l to the total costs 

involved. As it was mentioned be fore , recreationists are assumed to 

maximize their utility function subject to conventional linea r budget 

constraint : 

Maximize U = V(q) 

S.t . p·q =I 

The solution to utility maximization is the set of Marshallian demands: 

q; = fi (P, I) 

This solution can be substituted back into utility function to get 

maximum attainable utility. The func tion is known as the indirect 

utility func tion. Since the expenditure and indirect util ity functions 

are inverse, the cost or expenditure function can be solved. There­

fore, the derivative of the expendi tur e function with respect to any 

price giv es the Hicks-compens a ted demand function for that good (Deaton 

and Muellhauer 1982). 

In muc h of the r ecent s tudy, the star ting point on system of 

demand equation has been the s pecificatio n of a function which is 

general e nough to be a second-order approximatio n to any arbi trary 

indir ect utilit y o r a cost function. Alternatively, in Rotterdam mode l 



58 

a first -ord er approximation to the demand functions themselves are 

used. Deaton and Muellhauer (1980) also followed these approaches 

in terms of generality, but they didn't start from. an arbitrary 

preference ordering. They start their system of demand equation from 

specific class of preferences which can have an exact aggregation over 

consumers. These preferences , known as the PIGLOG class, are repre-

sented in a cost or expenditure function. The cost function defines 

the minimum expenditure necessary to have a specific utility level at 

. . * a g1ven pr1ce Therefore, it is a function of utility and price 

vector as: 

Log C (U,P) aO + E ak log Pk + 1/2 E E Ykj* log Pk log Pj 
k k j 

sk 
+ usa 11 k Pk (14) 

Where ai, Bi and Yij* are parameters. 

In th is study the Almost Ideal Demand System (AIDS) is chosen to 

derive the demand equation. The demand function can be derived direct-

l y from Equation 14 which is called AIDS cost function. As mentioned 

above, the price derivatives of the cost function will be the quanti-

ties demanded: 

(15) 

or 

Wi f(U, P) 

*For more detail see Appendix of Deaton and Muell hauer (1980). 
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where 

After substituting U into Equation 15 by its value, the budget shares 

Wi will be as a function of price and expenditure: 

Yij log Pj + Bi log (I/P*) + • i (16) 

where p* is a price index defined as : 

log p* a 0 + a k log Pk + 1/2 
k 

Ykj log Pk log Pj 
k 

£i = disturbance term related to the dema nd function 

(17) 

Equation 16 is the AIDS demand function in budget share form. Price, 

Pj, is defined and calculated like the full price definition, and 

expenditure, I, is the same as the full income defin{tion in Equation 

4. The parameter, 8, determines whether goods are lux uries or necessi-

ties. With Bi > 0, Wi will increase as I does, so that good i is 

luxury. Similarly, if Bi < 0, good i is a nec ess ity . Parameter Yij 

measures the change in the ith budget share following a l proportional 

change in Pj with (I/P*) constant. 

To obtain necessary data for statistical es timation of demand 

equation, a direct interview of households is about the only feasible 

way. Before a demand schedul e can be constructed an expression is 

needed of pric e or money outlay per unit of recreation consumed. Th e 

cost of the wh o le recreation experience can be used for this purpos e. 

These costs will be made up o f many it ems, such as cost of transporta-

tion, food for that recreation experience, en tranc e fees, r ec r ea tion 

equipment, and recreationists opportunity cost. These are the added 
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expenditures which the individua l or family must make in order to take 

part in the whole recreation expe rience. These are the prices per 

unit of recreation experience. 

The site interviews conducted in three instream recreation sites 

provided the following information required for estimating demand 

eq uati on (see Appendix A for the sample questionnaire): 

1. Number of days the household spent at recreation site 

(part I questions #2 and #3). 

2. Expenditure or the cost of recreation experience incurred 

that we re specific to that trip (parts III and IV). 

3. Family income (part V questions #2 and #3). 

4. Mileage driven for that specific trip (part question #1). 

Item 1 forms the basis of quantity measures for estimating the 

demand equation. Data obtained from these items are used to calculate 

budget share of good (Wi) in the demand equation (Table 20): 

where 

I, 2, 3 (site) 

I, 2, ... , 12 (group) 

Pij money outlay per unit of recreation consumed which is 

I . . 
lJ 

X·. 
lJ 

* 

24 hours or a day of recrea tion in this study 

family full income of group j at site i 

* Xij DL = estimated total number of days recreationists of 

group j spent at site i per capita (Table 21) 

Xij number of days recreat ionists spent at site i 
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Table 20. Calculated budget sha r e of good for eac h g r oup by si te. 

Site 
Group Logan, W1 Blacksmith, w2 Littl e Bear, W] 

wll 0.000242 W21 0. 000080 W31 0 
2 W12 0.000128 W22 0.000052 WJ2 0 . 000010 
3 W13 0. 000026 w23 0.000009 WJJ 0.000001 
4 w14 0.000007 w24 0.000001 W34 0.000001 
5 w15 0 . 00012 w25 0.000029 w35 0.000005 
6 W16 0.000096 w26 0.000062 W36 0.000007 
7 wn 0.000032 w27 0.000017 W37 0.000011 
8 W18 0.000005 W28 0. 000001 W38 0.000002 
9 W19 0.000069 w29 0.00001 W39 0 

10 wllo 0.000038 w210 0.000051 W310 = 0.000007 
11 W111 0.000037 w2u 0.000009 W311 0 . 000007 
12 W112 = 0.000014 W212 0.000007 W312 = 0.0000003 

[ (IL + IL )/2] 
01 02 

(~L + ~L )C(PBL + PBL )/ZJ 
1 2 1 2 

[(IBL + 1BL )/ 2] 
1 2 

Lo
1 

= Logan 1 

Lo
2 

Logan 2 

BL 1 Blacksmith 

BL
2 Blacksmith 

LB Little Bear 

Lo 1, Lo
2 

Site as i 

BL
1

, BL2 Site as 

LB Site as 



Table 21. 

Group 

l 
2 
3 
4 
5 
6 

9 
10 
11 
12 

x2 
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Number of days of recreation per capita by sites. 

Site 
Logan, X1 Blacksmith, x2 Littl e Bear, X3 

xu 0.043 x21 0.0092 
Xl2 0.033 x22 0.0123 
xu 0 .0042 x23 o. 0022 
X14 0.0008 X24 0 .00008 
X15 0 . 0326 X25 0.0095 
Xl6 0 . 0323 X26 0.0215 
xl7 0.0122 xn 0.0042 
X18 0.0015 X2s 0.0002 
X[9 0.029 x29 0.00204 
xuo 0.015 x210 0.0169 
X111 0.015 x211 0.0039 
X112 0 .005 1 x212 0.00029 

Lo 1 + Lo 2 

BL[ + BL2 

LB 

(Glj) (total number of weekends of season) 

total number of weekends of survey 

(G2j) (total number of weekdays of season) 

number of weekdays of survey 

CD SD 
ij 

SD 
1 

total number of cars in weekend in each site 

tot al number of cars in weekday in each site 

X)[ 0 
X32 0.003 
X33 0.0003 
X34 0.0002 
X3s 0.0017 
X35 0.0037 
X37 0.0037 
X38 0.0006 
X39 0 
X310 0.0038 
X311 0.0030 
X312 0.00009 



63 

skij total number of surveys in weeke nd in each site for each 

group 

soij total number of surveys in weekday in each site for eac h 

group 

ski total number of survey in weekend in each site 

soi total numb er of survey in weekday in each si te* 

The next step is to calculate full pric e for each site using data 

obtained from items 2, 3, and 4. The full price as defined before 

is (Table 22) 

(PA + Wt)ij (18) 

where 

R03 monthly household salary 

Uz Vz - hours of nighttime at recreation site 

Vz number of hours at recreation site 

PA = PD + [ (Vl 2)/W06] (1.20) 

vl distance from home to site in miles 

W06 vehicle gas consumption (miles per gallon) 

12 
PD [WOS + (W07)(0.3)] + ( l: (PEe/te)) (l/V6) + (W09)(F) 

e=l 

was cost of recreation equipment for that trip (dollars) 

W07 cost of food in dollars 

PEe cost of durable equipment used in dollars 

*For all of the data explained in this part refer to Appendix B. 
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Table 22. Full price of each group per day by site. 

Site 
Logan Blacksmith Fork Little Bear 

Group pl ln pl p2 ln P2 p3 ln P3 

42.7 
2 44.4 
3 55.3 
4 70.7 
5 80.2 
6 57.9 
7 57.3 
8 75.0 
9 91.5 

10 93 .o 
11 89.9 
12 103.1 

pl (PLot + PLo2)/2 

p2 (PBLt + PBL2)/2 

PJ PLB 

3.75 
3.79 
4.01 
4.26 
4.39 
4.06 
4.05 
4.32 
4.52 
4.53 
4.50 
4.64 

51 . 5 3.94 0 
42.0 3.74 37.0 
30.2 3.41 38.4 
76.5 4.34 62.4 
64.9 4.17 71.8 
65.7 4.19 39.8 
83.8 4.43 55.9 
81.4 4.40 72.3 

190.7 5.25 0 
104.6 4.65 80.5 
89.1 4.49 91.8 
98.2 4. 59 113.4 

te life span of equipment e (data were obtained from 

Outdoor Recreation Center of Utah State University) 

W09 fee for use of that site per day in dollars 

F number of days at recreation si te 

v6 number of times the trip wa s taken 

Based on this information, the full price was calculated for each 

0 
3.81 
3.65 
4.14 
4.27 
3.68 
4.02 
4.28 
0 
4.39 
4.52 
4. 73 

sample and it was averaged for the group from each zone. The la s t 

variable to calculate is full income which wa s defined as I = N + WTw 

and necessary data for this calculation for each site were obtained by 

item 3 (Table 23). 

There are two issues over the role of time cost in estimation of 

recreation benefit. Th e first one is, how much of th e time involved 
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Table 23. Full income of each group by site. 

Site 
Group Logan, I I Blacksmith Fork, I2 Little Bear, I3 

I 7,574.32 9,399.04 0 
2 11,406.25 10,000.0 10,625.0 
3 8,854.17 7,524.75 10,000.0 
4 8,131.25 8, 750.0 11 '666 0 6 7 
5 22,648.81 21,388.89 22,500.0 
6 19,444.45 22,625.0 20,833.33 
7 22,083.33 20,274.51 19,166.67 
8 23,833.33 20,833.33 23,611.11 
9 38,538.96 39,000.0 0 

10 36,250.0 35,000.0 43,333.33 
11 36 '770. 83 40,000.0 40,000.0 
12 38,080.36 36,937.50 39,166.67 

I 1 (ILol + ILoz)/2 

r2 (IBL1 + IBL2)/2 

!3 1LB 

is costly and should be included in calculation of full price, and 

second issue is, what is the appropriate value of time spent in the 

recreation site. Witman (1980) and Becker (1965) pointed out that the 

total time spent in an activity is costly and the appropriate value of 

this time is its opportunity cost; in other words the value of time in 

its best alternative use. Cesario (1976), after reviewing several 

studies, concludes that the appropriate value of recreation time is 

approximately one-third the average wage rate. 

As McConnell (1975) mentioned in his discussion of the value of 

time, understanding and selecting appropriate opportunity cost of 

total time is important for accurate measurement of the economic value 

of outdoor recreation . In this study, after carefully considering all 

all possible recommendations, the value of recreation time or its 

opportunity cost was decided to be approximately one-third of the 



average wage rate for the recreationist, and only day time hours of 

each day was considered as recreation time. 
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Demand curve derivation o r specifica lly full price estimation 

requires determination of the fraction of the total travel distance 

from home to the recreation site . For the visitor living nearby (less 

than 120 miles), this fraction of total travel distance is actually 

equal to total distance between home and recreation site. For the 

visitor living severa l hundred miles away (above 120 miles) only small 

fraction of total travel distance was considered in calculation. 

A large number of people, unlike a single individual, will have 

a predictable and mea surable r eac tion to an outdoor recreation oppor­

tunit y. If we can measure the demand curve for a large group of 

people, then it is probable that another large group, chosen with more 

or l ess similar characteris tics to the first group, will respond in a 

similar fashion to costs and other characteristics of the recreation 

experience. This assumption is basic to demand curve analysis in this 

st udy. Since one single individual cannot be observed at the same time 

in different sites , therefore, a group of r ecreationists with similar 

characteris tic s were interviewed at different sites, at the same time 

in estimating multisite demand function. The data used in this evalu­

ation were gathered by the survey which was conducted on site for 12 

days in summer of 1982. These 12 days included four weekdays and eight 

weekend days. The total recreation season was estimated to be 93 days 

of which 67 days were weekdays and 26 days were weekends. The number 

of groups surveyed on the four weekdays and on the eight weekends for 

each reach were recorded (Table B-2, Appendix B). This information 

plus number of cars at eac h site were used to estimate total visits for 
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the s e aso n adjus t ed f o r weekd ay s , we eke nds and unsampl ed vi s itors o n 

survey days (Tables B-3, B-4, B-5, and B-6, Appendix B). The sampl es 

were grouped using four zones and three income clas s ifications . The 

four zones class ification based on average distances of 20, 40, 60 and 

over 60 miles from the site were defined in such a way that population 

could be estima ted using census district maps. A statistical computer 

packag e (SPSS) was used to analyze the data obtained from survey for 

developing a recreation multi-site demand function. The demand esti­

mation procedure is discussed in the next section. 

Econometric Estimation and Model Results 

In this section recreationists demand equation which was developed 

before is estimated. The objective is to estimate the structural 

demand for thr ee recreation sites (Morey 1981) from the cross-sectional 

household data. The next step will be to estimate consumer surplus 

corresponding to various leve ls of instream flow. The AIDS cost 

function is used to derive a demand function which is in the semilog 

form. Selection of an appropriate functional form is very important. 

As Ziemer et al . (1980) pointed out that, different functional form can 

produce dramatically different consumer surplus estimates. He also 

carefully tested the specification problem involving the selection of 

an appropriate functional form. He compared three kinds of functional 

forms namely, linear, quadratic, and semilog. The conclusion was that 

semilog specification is the appropriate functional form for warm- water 

fishing in Georgia. Even though this conclusion might be different for 

Utah rec reat i on sites, the semilog form was considere d as an appropr i ­

ate fun c tional form in this study too . Deaton and Muellhauer (1982) 
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discussed different models of demand function and their speci fi cations 

in a whole chapter of their "Economics and Consumer Behavior" book. 

They identified a new model of demand as Almost Ideal Demand System 

(AIDS) which preserves the generali t y of both Rotterdam and Translog 

models. Also, they added that an important feature of this function 

from an econometric viewpoint is that it is close to being linear. 

These models can be estimated equation by equation using ordinary least 

squares, since p* is defined as a linearly homogeneous function of 

the individual prices. Thus p* would be approximately proportional 

to appropriately defined price index, such as the one used by Stone, 

the logarithm of which is given byE Wk log Pk (Deaton and Muellhauer 
k 

1980). This index was calculated directly before estimation, so that 

Equation 16 becomes straightforward to estimate. Estimation procedure 

started by applying ordi nary least square (OLS) to eac h equation of the 

form: 

Yij log Pj + ~i l og M + 'i (19) 

where 

M I/P* (Table 24) and 'i are disturbances with usual properties. 

Applying OLS method to estimate multiple-side demand parameter (Equa-

tion 19) might encounter some econometric problems since assumptions of 

nonautocorrelation might be violated. To avoid these econometric 

problems, the three demand equations were estimated using Generalized 

Least Square (GLS) method. Since variance-covariance matrix of dis-

turbances are not known, the estimation is done in a two-stage procedure 

based on Zel lner's SUR technique. 
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Tabl e 24. Estimated Mi for eac h group by si t e. 

Site 
Group Loga n, M1 Blacksmith Fork, M2 Little Bear, M3 

2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 

M· = 1 Ii/P* 

7,565 
11,397 
8,852 
8,130 

22,633 
19.431 
22,077 
23 ,832 
38,524 
36,234 
36,762 
38,077 

9. 387 
9,992 
7,523 
8,749 

21,374 
22,609 
20,269 
20,832 
38,985 
34,984 
39,990 
36,934 

0 
10,617 
9, 998 

11,666 
22,484 
20,819 
19,161 
23,610 

0 
43,314 
39,990 
39. 163 

First stage: In order to define the variance-cova riance matrix of 

disturbances, estimated value of the disturbance terms were obtained by 

applying OLS on Equation 16. The estimated form of this equation is : 

~ i + E Yij log Pj + Bi log M (20) 

where 

= 1, 2, 3 

The empirical form of above equations are: 

w1 38.83- 9.13 log P1 - 6.57 log P2 - 2 . 85 log P3 + 4 . 52 log M1 

(1.32) (0.82) (0.90) (2.12)* ( 0. 91) 

R2 = 0.639 

F-statistic 3.10 

*Indicates that the estimated parameters are significant at 10 
percent lev e l of significance . 

(21) 
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W2 12.18 - 8.08 log P1 - 2.23 l og P2- 0.47 log P3 + 3.64 log M2 

(22) 

(0.93) (1 .66)* (0.67) (0.81) (1.62)* 

R2 = 0.55 

F-statistic 2.16 

W3 1.59- 1.22 log P1 - 0.75 log P2- 0.61 log P3 + 0.35 l og M3 

(0.99) (1.96)* 

R2 = 0 . 703 

F-statistic 4.14** 

(2.21)* 

(23) 

(1. 20) ( 1.69)* 

The numbers inside the parentheses indicate t-statistic for the r elevant 

parameters. 

The residuals can be estimated for each observation group 

u: 

A Fortran program was developed for estimating the contemporaneous 

variance-covariance matrix of the disturbance terms across equations 

based on Ze llner's SUR technique. 

Stage two: The next step is to apply ordinary least-squares on 

Equation 24 with premultiplied observation matrix. Equation 16 in 

matrix notation with transformed observation would be written as: 

*Indicates that the estimated parameters are significant at 10 
percent l ev e l of significance. 

**Indicates that th e estimated vector of the paramet e rs are 
s igni ficant at 5 percent l eve l of significance. 
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PWi P X B + P£ (24) 

where 

X = [1 log P log M] 

The three estima ted demand equations with GLS estimators are : 

W1 = 1.62- 21.17 log P1- 2.41 log P2- 0.92 log P3 + 10.89 log M 

(25) 

(0.81) (3.86)* (0.79) (1. 31) (3 .85)* 

R2 = 0.87 

F-statistic = 11.31** 

W2 0.73- 12.92 log P1- 3.93 log P2- 0.38 log P3 + 7.56 log M 

(0.81) (6. 72)* 

R2 = 0.91 

F-statistic = 18.42** 

(2.58)* 

(26) 

(1.12) (6.95)* 

W3 0.12- 0.54 log P1- 0.45 l og P2- 0.75 log P3 + 0.38 log M3 

(1.26) (3.9)* 

R2 = 0.93 

F-statistic = 24.27** 

(3.82)* (6.42)* (7.86)* 

The numbers in parentheses indicate t-statistic for the relevant 

(27) 

parameters. The resulting vector of estimated parameters from three 

different econometric methods of demand estimation is shown in Table 

25. Column 2 in this table sho ws the value of parameters when OLS is 

*Indicates that the estimated parame ters are significant at 10 
percent level of significance. 

**Indicates that the estimated vector of the parameters are 
significant at 5 percent leve l of significance. 
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Tab l e 25 . Comparison of the estimated parameters using different 
es timati on methods. 

Estimated Es timat ed 
Estimated Parame t e rs Parameters 
Paramet e rs Us ing GLS Using GLS 

Parameters Using OLS Unres tricted Restricted 

(l l 38.83 1. 62 1. 54 

(l2 12. 18 0. 73 0.22 

(l3 1. 59 0 . 12 0.62 

Yu -9.13 -21. 17* -21.93* 

Y12 -6 .57 -2 .4 1 -4.06* 

Y13 -2. 85* -0 . 92 -0.96* 

Y21 -8.o8* -12.92* -4.06* 

Y22 -2 .23 -3.93* -0 .52 

Y23 -0 . 47 -0.38 0 .62* 

y31 -1 .22* -0.54* -0 . 96* 

y32 0 .75* 0 . 45* 0.62* 

YJJ -0 .6 1 -o. 7 5* -0. 62 

al 4 . 53 10 .89* 11. 97* 

82 3 . 64* 7 .56* 1. 52* 

83 0 . 35* 0.38* 0.42* 

*Indicates that the estimated parameters are significant at 10 pe rcent 
l eve l of significance . 
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applied . The result of using Zel ln er ' s procedure without restric­

tion on seemingly unrelated regression equations is shown in column 

and the 4th column shows the parameters when Zellner's SUR technique 

with imposing symmetric condition was used. In the case of applying 

Zellner's SUR technique with imposing symmetric condition the value of 

R2 = 0.83 and F-statistic = 9.95. 

As it was discussed before if Si 0 good i is a luxury good. 

Since in all three methods S1 > 0, S2 0, S3 > 0 the implication is 

that recreation is a luxury good. Since Yl2 < 0 and Y13 < 0 in all 

three methods of estimation (Table 25), sites 2 and 3 (Blacksmith 

Fork and Little Bear) are not good alternate sites for Logan or site 

1. On the contrary, Blacksmith Fork and Little Bear (sites 2 and 3) 

are good alternate sites for each other, because Y32 > 0 and in the 

third method of estimation Y23 is also positive. 

To check differences in estimated demand due to site quality or 

characteristic such as water quality, which are not explained by the 

model or by the estimators, Table 26 was arranged using the data 

obtained from the survey. According to Table 26, site characteristic 

evaluations are not significantly diffe rent in three sites in this 

study area. Composite of site characteristics (Table 26) range from 

6.5 to 7.28, and the only item in the table which makes this small 

difference is the evaluation of facilities. The site characteristics 

on demand function can be balanced by considering the entrance fee paid 

by users. In other words, the argument is that as Little Bear has 

lower evaluation score for facilities than Logan site, it has lower fee 

or no fee to use the site. Therefore, in summary, higher fee with 

higher evaluation of facilities score is as attractive as lower fee 
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Tabl e 26 . Site c haracteristic evaluation . 

Site 
Charact e ristic Loga n Blacksmith Fo rk Little Bear 

Distance 
Privacy 
Facilities 
Landscape 
In sects 
Water 
Fishing Sui tab i lit y 
Composite 

10 perfect 

poor 

7. 82 
7.24 
6.86 
8.52 
5 .3 1 
8. 56 
6.63 
7.28 

7.90 7 .3 
7.60 7.5 
5.05 3 . 0 
8.40 7.3 
4 . 75 4.9 
8.40 8.4 
6.35 6.8 
6. 92 6.5 

with lower evalua tion score . Thus, except for flow level (in summer 

1982, higher flow level makes no difference in flow level) there was no 

significan t s it e characteristic differences between the three sites in 

the study area. 

Theoreti c al and Empirical Estimates of 

Recreation-Instream Fl ow Benefits 

In the previous section, the demand function for recreatio n 

activi ty at current flow l ev e ls in three sites was estimated. Any 

change i n flow level affects visitation rate and consequently the 

demand function (Sutherl and 1982) . Tabl e 7 indicates the change of 

visitation as a functio n o f flow level variation. For instance, this 

t able shows the numbe r of r ec reationists who will not visit the sites 

when the flow levels drop t o le ss than 50 percent of flows i n the 

summer of 1982. Thi s information was used t o derive the modified 
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estimat ed dema nd functions at each f low l eve l, b y qualit y parameter 

fi, as a function of flow and, th e refore , incorporating th e effect of 

site quality changes in terms of flow levels. 

An improvement in water quality or quantity produces an outward 

shift in the demand curve or visa-versa (Vaughan et al. 1982). Th e 

area between the initial and new curve represents the benefits of 

improved water quantity or quality. Therefore, it is essential to 

derive the demand curve to measure the benefit of improved instream 

flow quantity. One way to derive the new modified demand curve qi* 

is to introduce quality parameters fi directly into the utility 

function : 

U = v( fiqi) (28) 

where fi depends upon the observed specifications of the goods. 

Corresponding to utility function (Equation 28) is a cost function; 

X= C(U, Pf) (29) 

This implies that the demand function qi* = fiqi (X, P) which corre-

sponds to the utility func tion U = v(fiqi). 

In this study, quality parameter fi is a function of the specifi-

cation variable, flow level (Fg). The cost function wou ld be modified 

as : 

wh e re 

log c*(U,P) ao + E ak* log Pk + 1/2 E E Ykj* log Pk log Pj 
k k j 

Bk 
+ Bo Urrk Pk 

Yk/ fk fj Ykj 

Bk * = fk Bk 

* 
(30) 
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Accordingly, the modified compensated demand and Marshallian demand 

function, to include the effect of instream flow change as a quality 

measure of recreation, would be; 

By substituting indirect utility function in compensated demand 

function (Equation 31), the modified ordinary or Marshallian demand is: 

(32) 

"*'ere 

The compensated variation or benefit obtained by recreationists 

from changing i nstream flow level can be defined as: 

Bs = c*Cu, p*) - C(U, P) 

To be able to define Bs the following steps are taken . Define cost 

functions as; 

log c ao + yl 

log c* ao + Y2 

"*'ere 

log c cost function at 1982 flow level 

log c* modified cost function 

then 

lnc* - lnC = ao + Y2 - ao - Y1 

ln(c*/c) = Y2 - Yt (33) 

taking antilog on both sides: 

(34) 
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From Equation 34 Bs can be defin ed a s 

(35) 

This equation measures the obtained benefit from changing instream 

flow level. 

Instream Flow Effects on Visitation 

In order to measure Bs the quality parameter fi has to be defined 

and be estimated. In the process, some specific classification has 

been made to estimate the instream flow effects on visitation. Define 

v k 
_g_ 
v k 

8 

(36) 

where f(Fg)k is between 0 and 1. Therefore, the function f(Fg) reduces 

the visitation rate as Fg becomes smaller. Moreover, f( Fg) = 1, as Fg 

corresponds to 100 percent of 1982 flow for which data were collected. 

For F1, the instream flow is zero, and f(Fl) = 0 which implies no 

visitation. In the survey for demand estimation, the visitors were 

asked to indicate the percent of current flow below which they would 

not visit the site. These data are used to obtain hypothetical visit-

ation at various Fg's which were compiled for two zones in each site. 

The plot of these data indicates that the visitation rate increased 

from Fg = 0 at an increasing rate up to about 50 percent of 1982 flows 

and it increased at an almost decreasing rate from 50 percent and up. 

Therefore, a logistic function, Equation 36 appeared to provide the 

best fit. 
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The c l assific ati on of vis itation rate at va rious flow levels 

specified two zones based on average dist ances of 40 and over 40 

miles from the site . Thi s c lassification was used to estimate the 

effect of hypothetical changes in instream flow on visitation rates. 

In the question of indic a ting the pe rc entage of current flow below 

Which the visito rs would not visit the site, the percentages given as 

op tions were 0, 10, 25, 33, 50, 67, 75, and 100 . Since 1982 had a much 

higher flow level than ave rage flows (Table 27), the maximum flow was 

limit ed t o the present fl ow level (100 percent). Table 28 shows the 

es timated number of visitation days for various flow lev e ls as a 

percentage of the number of visitation days at 100 percent of the flow 

for the two defined zones . 

To estimate the logistic function defined in Equation 36, data 

from Tables 27, 28, and 29 were used. Moreove r, for estimating pur-

poses, this function wa s rewritten in stochastic form as: 

f(Fg) 
l og l HFg) i; + pFg + 

where th e stochas tic disturbance, is assumed to be random normal 

with zero mean and constant va riance . 

E '" N(O, 2) 

The three est imat e d e quations for each site are, 

log 
1 

f l (Fg) 
- 2.96 + 0.03 Fg 

- f l (Fg) 
(9.56) (11.16) 

R2 0.899 F = 124.5 

(37) 

( 38) 



Table 27. Streamflow volumes at different probabilities of occurrence in acre-feet. 

Site 
Logan Blacksmith 

Probability Seasonal Probability Seasonal 
State of Occurrence Total of Occurrence Total 

1 0.037 100,000 0.037 50,000 
2 0.259 150,000 0.259 80,000 
3 0.074 170,000 0.222 100,000 
4 0.296 190,000 0.259 120,000 
5 0.074 210,000 0.074 140,000 
6 0.185 250,000 0.037 160,000 
7 0.074 300,000 0.074 180,000 

Table 28. Data for estimating f(Fg) function. 

Site 
Logan Blacksmith 

Fg Zone 1 Zone 2 Zone 1 Zone 2 
(40 miles) (over 40 miles) (40 miles) (over 40 miles) 
f(Fg)xlOO f(Fg)xlOO f(Fg)x100 f(Fg)x100 

4.62 0.90 3.06 o. 064 
10 14.43 5.80 6.63 3 .07 
25 35.83 14.4 9.66 8.64 
33 55.98 28.9 21. 14 16.79 
50 69.86 61.4 65.55 58 . 41 
67 82.78 76.5 80.2 75.91 
75 87.98 81 . 7 82.90 80.35 

100 100.0 100.0 100.0 100.0 

Little Bear 
Probability 

of Occurrence 

0.074 
0.148 
0.148 
0.111 
0.333 
0.111 
0.074 

Seasonal 
Total 

20,000 
30,000 
40,000 
50,000 
70,000 
90,000 

100,000 

Little Bear 
Zone 1 Zone 

(40 miles) (over 40 mil es) 
f(Fg)xlOO f(Fg)xlOO 

0 0 
0.05 0 
0.05 0 

40.71 7.09 
60.87 65.2 
78.0 84.2 
84.6 89.9 

100.0 100.0 

" "' 
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Table 29. Seaso nal average flows in cfs (Fg). 

Site 
Percent of Logan Blacksmith Little Bear 
1982 Flows F* F F* F F* F 

0 (l) 0 0 0 0 0 0 
10 23.06 22 .0 2 13 . 0 12.67 9. 75 8.08 
25 57.65 55.05 32.5 31.68 24 . 38 20.20 
33 76. 1 72.67 42 . 9 41.82 32.18 26.66 
50 115.3 110 . 10 65.0 63.36 48 . 76 40 . 40 
67 149 .8 9 147 . 53 87. 1 84.90 65.33 54 . 14 
75 172.95 165 . 15 97 . 5 95.04 7 3 . 13 60.6 

100 (8) 230.6 220.2 130 . 0 126.72 97.51 80.8 

F* = Flow data for water year o f 1982 (from State Engineer's 
Office). 

F = Flow data for 3 month s of summer 1982. 

log 1 

f 2 (Fg) 
- 4.19 + 0.06 Fg 

- f
2

(Fg) 
(9 .21 (9.05) 

(39) 

R2 0.86 F = 81.9 

l og 1 

f
3 

(Fg) 
- 2.91 + 0.06 Fg 

- f 2 (Fg) 
(2. 7) (3.07) 

(40) 

R2 = 0.40 F = 9.45 

The values in parentheses are the corresponding t values. The F ratio 

and the R2 for Equations 38, 39, and 40 are written under each equation. 

Estimating Benefits and 

Analysis of Results 

The benefi t equation (Equation 35) was used to compute compen-

sa ting variat ion, CV, for eac h site und e r different conditions. Th e 



81 

quality parameters fi which depends upon the observed specification 

(flow level) were estimated by Equations 38 to 40. These parameters 

~reused to modify the cost function and the demand functions. The 

results obtained from estimating multiple-site demand functions we r e 

used in Equation 35. The benefit equation was estimated for various 

instream flows expressed as percentage of 1982 flows, using data from 

Table 29, and for expected instream flow l eve l with the probability of 

occurrence from Table 27. The results are shown in Table 30 for 

different percent of each f low level. In both cases the total benefit 

of recreationists for 50 percent of flow level were so small that it 

w.as virtually equa l to zero. Comparison of expected instream flow and 

current flow for 25 and 20 percent of flow levels, in Table 30, indicate 

that the higher flow l evel in 1982 drastically changed the response of 

visitors. Therefore, the fi gures under current flow might not be a 

true indication of the recreationist 1 s benefit. 

B5 was also estimated for 10 and 20 percent of expected instream 

flow, since th ese two percentages, especially 20 percent, are usually 

considered as the critical flow level. The result for each individua l 

site is shown in Table 31. This table shows CV values for 10 a nd 20 

percent of instream flow, assuming the reduction of flow occurs only 

in one site. Since the survey was done o nly during afternoons and 

evenings visitors in the morning and night hours and visitors not 

present during the survey hours were not accounted for in the vehic l e 

count. Moreover, the CV values were estima t ed for each site, at 

different flow levels, using limited raw data collected from the survey 

conducted only in a short period of summer 1982. Therefore, the value 

of Bs might be underestimated. 
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Table 30. Estimated total benefits of instream flow at different flow 
levels (dollars). 

Site 

Logan 

Blacksmith 
Fork 

Little 
Bear 

50 percent 
Expected 
In st ream 

Flow 

0 

0 

0 

Current 
Flow 

0 

0 

0 

Reduced Flow Level 
25 percent 

Expected 
In stream 

Flow 

869,715 

868,402 

773,637 

Current 
Flow 

39,395 

41,242 

36,506 

20 percen t or less 
Expected 
In stream 

Flow 

1,903,884 

1,899,608 

1,538,451 

Current 
Flow 

151,472 

151,138 

134,819 

Table 31. Estimated Bs by site at expected instream flow (dollars). 

Site 

Logan 

Blacksmith 
Fork 

Little 
Bear 

Lo 

399,952 

Reduced Flow Level at Each Site 
20 percent 10 percent 

BL LB Lo BL LB 

875,496 

196,699 857,061 

123,283 826,806 
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In order to do the cost-benefit ana lysi s or to provide information 

for policy-making with respect to instr eam f lows, benefits of all 

instream uses as a function of flow are ne eded . In this study on l y 

the benefits resulting from recreation are quantified (Table 32). If 

information on total benefits could be computed, then the quantit a tive 

information for policy-making would be improved. Some of the missing 

information could be li sted as: 

l) Changes in the relativ e land and home values adjacent to the 

river, as a function of flows. 

2) Benefits of preventing irreversible damages to the aqua tic 

ecosystem (Gosse and Helm 1979, Smith 1979) . 

3) The demand growth for instream flow as a result of increased 

population and income. 

4) Extreme values. 

The items listed above do not comprise a comprehensive li st . However, 

the above informa tion plus es timated benefit through the benefit 

equa ti on are needed for cost-benefit analysis. 
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Table 32. Total benefit s of inst r eam flows . 

Strategy 

4 

Strategy 
Strategy 

Strategy 3 

Strategy 4 
St rategy 5 

Strategy 6 

Strategy 

Strategy 8 

St rategy 9 

Logan 

2,806 
(0 .29) 

128, 802 
(12 .9) 

805,414 
(69. 27) 

Site 
Blacksmith 

36 '772 
(6 .97) 

97,412 
(11.5) 

487 , 614 
(74) 

Llttle Bear 

106,059 
(8 .9) 

152,747 
(15.98) 

242,416 
(30 . 96) 

35 percent flow for Logan and 50 percent fl ow for others. 
35 percent flow for Blacksmith Rive r and abou t 50 percent 
flow for others. 
35 percent flow f o r Littl e Bear, 35 percent fo r Logan, and 
50 pe rc ent for Blacksmith River. 
30 percent flow for Logan and 50 percent flow for others . 
30 percent flow for Blacksmith River and the r es t as 
above. 
30 pe rc ent flow for Little Bear River and the r es t as 
above. 
25 percent flow for Logan River and almost 50 percent flow 
for other s . 
25 percent flow for Blacksmith River and the rest as 
above. 
25 percent fl ow for Littl e Bear River and the rest as 
above. 

Values in pa rentheses ar e corresponding marginal benefits . 



COST-BENEFIT ANALYSIS 

This study provides a methodology for cost-benefit analysis, by 

es timating cos t and on l y recreationists' benefits from the maintained 

instream flow. In the first section, the five strategies were evalu-
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ated for minimum cost decision rule. Using the benefit function for 

instream flow B5 , developed in t he previous section, the expec ted benefi ts 

can be calculated for any one of the five strategies corresponding to 

different expected instream flow level s for the purpose of cost-benefit 

analysis. Th e expected benefits would be summation of a ll components 

of instream flow benefits obtained at different instream flow levels 

multiplied by corresponding probabilities. Fur thermore, the methodo l -

ogy developed in this study can be us ed to compute the tot a l expected 

benefits (agricultural benefits and instream flow benefits) for each 

expected instream flow l eve l and each strategy. Subsequently, the 

strategy with maximum t o tal expected benefits s hould be selec ted as a 

preferred strategy and the corresponding decision rul e suc h as the one 

in Tables 15-19 be followed. 

In any se lected procedure f o r cost-benefit analysis or for maxi­

mizing social benefi t of water a llocation, all components of costs and 

benefits as a function of flow are needed. In this study only the 

foregone value of agricultural out put is considered as an expected cost 

of maintaining instream flow and the foregone value of other water uses 

such as hydro power and municipal are not included. As some of the 

missing i n formation list ed before indicates, the estimated recreation 

benefit as a measure of total benefits from alteration of instream flow 

is underes timated. Collection of all data and information necessary 
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for proper measurement of total costs and benefits, although not 

impossible i n some cas es , is prohibitly costly and difficult. However, 

the methodo l ogy developed in this study is capable of computing all the 

compone nt s of benefits and cos ts of maintaining instream flow . 

The social benefits can be maximized by efficient allocation of 

available water . This is possible when the sum of marginal benefits 

for instream uses is equal to the marginal benefits of offstream uses. 

Considering the above discussions, an attempt is made to determine the 

optimum lev e l of instream flow for Blacksmith Fork River. Table 33 

shows the value of marginal benefit for agriculture as the only off­

stream use and marginal benefit for recreationists (instream uses) at 

different percents of flow level for both sectors. To measure marginal 

benefit for the agriculture sector, the information on maximum farmer's 

income for ElF strategy with expected flow level is used (Table 13) . 

Marginal benefi t for instream use is quantified under two different 

assumptions . First, the change of instream flow in Blacksmith Fork 

River is considered with the ass umption of only 50 percent of expected 

flow level in Logan Riv e r and Little Bear River (column 2, Table 33). 

The value of marginal be nefit at different instream flows in Blacksmith 

Fork is measured when Logan River and Little Bear River carry only 50 

percent of their expected instream flow. Second, marginal benefit at 

different instream flow levels in Blacksmith Fork is calculated with 

the assumption of average ins tream flow condition on two other sites 

(column 3, Table 33). The change in average flow level is used in all 

three marginal benefit estimations. The optimum flow level determina­

tion is illustrated in Figure 7. The marginal benefits of agricultural 

uses (on the right verticial axis) for various percentages of available 
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Table 33 . Marginal benefit by flow level (in dollars). 

Percent of 
Flow Level Instream Flow 2) Agriculture 

10 
20 
25 
30 
35 
40 
50 
60 
70 

74 
11. 5 

6.97 
1.2 
0 
0 
0 

92.7 
67.9 
18.4 
4. 73 

0.6 
0 
0 
0 

55.43 

21.03 
19.46 
17.6 
15.25* 

(1) Indicates strategy one where marginal benefit of alteration i n­
stream flow for Blacksmith Fork River is measured by assuming 50 
percent of average flow for sites l and 3 (FLl). 

(2) Indicates strategy two where marginal benefit of alteration in­
stream flow for Blacksmith Fork River is measured by assuming 
average flow for other sites (FL2) . 

*An estimated value. 

water (measured from W to the left) are shown by Ag. The tota l qua ntity 

of available water is fixed and represented by WW'. FL1 and FL2 

indicate the corresponding marginal benefits for instream uses (on the 

left vertical axis) of various percentages of wate r use (measured from 

W' to the right). The intersect ion of Ag and FL1 at about 28 percen t 

of instream flow r epresents the benefit maximizing point. This optimtm1 

point is determined when only 50 percent of average flow is assumed fo r 

two other sites. However, if this assumption is relaxed (FL2), the 

optimum point dictates lower instream flow. As intersection of Ag and 

FL2 shows, the benefit maximizing point is at about 24 percent of 

instream flow which is lower than 28 percent. Bio l ogical determination 



(Montana method) requires the critical flow level at least to be 

maintained at 20 percent of flow (Gosse and Helm 1979) . Therefore, 

the biological constraint and the optimum flow level under the second 

assumption require maintaining the instream flow between 20 to 25 

percent at Blacksmith Fork. But under the first assumption, almost 

30 percent of flow is recommended. It appears that since the first 

assumption is more realistic, instream flow for Blacksmith Fork River 

should be maintained at 30 percent of expected flow level to maximize 

social benefits. 
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SUMMARY AND CONCLUSIONS 

Major economic conflicts are arising between withdrawal and 

instream flow water use . Until recently, most western government 

agencies encouraged water diversions and related development projects 

as a source of new income and economic growth. However, recently 

increased attention has focused on studies to include instream flow 
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in the water allocation policy. Increases in mobility, leisure time, 

income and population cause water recreation to assume a greater 

importance to the general population's welfare. Therefore, properly 

co ntrolled instream flow can provide direct utility to recreationists, 

resulting in higher efficiency in economy's productivity and indirect 

income support to tourist industry and growth of economy. Therefore, 

water management agencies are interested in estimation of cost and 

benefits from recreation use of instream flow. 

In this study, the expected cost of maintaining a desired level 

of instream flow for recreation activities and all other instream uses 

is considered as foregone value of agricultural products. Irrigation, 

municipal, and recreation activities compete for the existing fixed 

flows. Water input decisions in each sector influence economic decision 

making process in other sectors. 

In this study a stochastic linear programming model was developed 

(Appendix D) to estimate the expected costs of alternative strategies 

to maintain instream flow. The conflict between instream flow uses and 

water use in agriculture was considered in the model. All other water 

uses can also be added to the model. The quantity of required water 

can be determined at least cost to the sectors from which water is 



is withdra wn to meet instr e am flow needs. To analyze alternative 

instream flow strategies, stochastic natur e of streamflow with esti­

mated probability of occurre nce was considered . The three basic 

strategies under two conditions of water rights transferability are: 

1. The expected instream flow strategy (ElF) which determines 

the combination of junior and senior water rights needed to maintain 

the desired level of expected instream flow at least cost in terms of 

expected agricultural products foregone . 

2. The minimum flow stra tegy (IF) which meets the desired level 

of expected flows by reserving the required amount of the most senior 

rights. 

3. The critical flow strategy (CF), which combines the previous 

t~ basic strategies, using IF to guarantee a base flow to prevent 

any irreversible damages, and ElF to obtain the remainder of the 

desired expected instream flow. 

These models are used to obtain net benefit maximizing solution for 

agricultural activities under given water availability. Moreover, 

by subtracting these values from base so l ution value, the expected 
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cost of maintaining instream flow can be calculated. The base solution 

value is maximum agricultural returns with no required instream flow. 

Therefore, these st rat egies can be used in two ways. First, to deter­

mine minimum cost strategy for maint aining required instream flow. 

Second, to estimate maximum agricultural return under specific instream 

flow required. If the economic value of instream flow uses for differ­

ent flow levels is available, the result of this model will help the 

decision maker to decide on water allocatio n on the basis of maximum 



92 

total benefit of water because water resources are allocated efficient­

ly wh e n the net benefits resulting from all uses are maximized . These 

models also provide a decision rule for both sectors. For instance, in 

the case of agriculture, how much of what crop with avai lable water 

will produce maximum agricultural return. However, application of the 

stochastic linear programming model in the study areas indicates that 

the critical flow strategy appears to be a promising criterion for 

maintaining instream f l ow. The CF s trategy, while guaranteeing 20 

percent of average flows, does not involve an appreciably greater cost 

than ElF strategy which has a lower cost than IF. This method of 

strategy d etermi nation , in some cases, can be considered as cost a nd 

benefit evaluation. In each specific site, according to the variety of 

aquatic and wildlife in the site, a specific predetermined desired 

expected instream flow level might be required by law. Federal legis­

lation in some sta t es requires that fish and wildlife values be con­

sidered in advance of any water proj ec t construction. Therefore, 

the minimum cost determination method would guide the authority to make 

a correct decision for maximizing social benefit of water allocation. 

The allocation decision toda y may change future consumption 

benefits. For example, changes in river flow may shift the level 

of future demand, since it might affec t the aquatic life s uch as fish. 

But in agriculture sector, water for irrigation use in one period 

does not d eple t e the future service flow, nor can the farmer transfer 

service flows into another period. Therefore, when a desired expected 

instream flow level for sus taining aquatic life is required, this 

methodology will provide valuable information. However, the minimum 

cost strategy of maintaining instream flow would be more beneficial 



if the economic value of recreati on activit ies in that specific sit e 

is also given. 

Economists usually rely on the privat e market syst em to reve al 

approp r iate economic values. However, most water allocation would 

occur outside the market place. Therefore, in the absence of market 

prices, conventional economic observation of consumer behavior can-

not be used for instream flow value estimation. The theoretical model 

developed in this study to estimate recreationists demand function is 

based on Becker's (1965) new approach to the consumer behavior, since 

it is the best method to estimate multiple site demand system. In 
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this approach, which is known as the household production function 

theory, un like the conve ntional consumer theory, consumption activities 

are viewed as the outcome of individual or household production process, 

combining market goods and time . The most important and productive 

tool of economic analysis is the notion of demand. Therefore, deriving 

proper demand function is not only important, it is essential in 

quantifying economic value. The Almost Ideal Demand System (AIDS) 

was chosen to derive the multi-site demand equations. The AIDS will 

lead to a semilog form of demand function which has been shown to be 

an appropriate functional form for economic evaluation of warm-water 

recreation activities (Ziemer et al. 1980). The dat a used in this 

evaluation were gathe r ed by a survey conduct ed on 3 sites, Logan River, 

Blacksmith Fork River, and Little Bear River, during the summer of 

1982. The full price and fu ll income are defined and calculated 

according to household production theo r y. 

The structural demand for three recreation sites are estimated 

using Zellner's SUR technique. Applying Ordinary Least Square (OLS) 
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method to e stimate multiple-site demand parameters might encounter some 

econometric problems because the assumption of homoskedasticity and 

nonautocorrelation of random disturbances in OLS may not be met in 

multiple-site demand estimation. The estimated demand function for all 

three sites and the results of Table 26 indicate that there is not a 

significant site characteristic effect on demand functions. The 

positive sign of coefficients, , leads to the conclusion that recre­

ation is a luxury good. Since 12 < 0 and 13 < 0, sites 2 and 3 are 

not good alternative sites for site 1, but 23 > 0 means sites 2 and 

3 are relatively good alternative sites for each other. According 

to Table 26, site characteristic evaluations are not significantly 

different in the three sites in the study area, because composite of 

site characteristics range from 6.5 (Little Bear) to 7.28 (Logan) in 

the scale of 1 (poor) to 10 (excellent). This information indicates 

that, at a given flow level, each of these recreation sites is as 

attractive as any other. But, the flow level has an important weight 

on attractiveness of the sites as can be concluded from Table 7. This 

table indicates how drastically the visitation rate will reduce as flow 

level decreases. 

To test the instream flow effect on visitation rate and esti­

mating compensated variation, CV, of altering instream flow level, 

the quality parameter fi (a function of flow) was defined and esti­

mated on the basis of observed values. The necessary data for this 

estimation were obtained through conducted survey in summer 1982. This 

quality parameter was used to modify the ordinary demand function and 

the corresponding cost function. Then, the CV was measured by differ­

ences between original cost function and modified cost function at 
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different instream flow l evels. Th e resul ts for 20 percent of average 

flow in Table 31 indicate that the largest potential rec reation bene­

fits exist near the population c enters (Logan= 399,952). In contrast, 

improving instream flow l eve l in sparsely populated agricultural areas 

will probably not stimulate a substantial increase in recreation demand 

(Little Bear= 123,283). Strategies 4, 5, and 6 in Table 32, which are 

considered reasonable strategies in this study, show marg~nal benefits 

ranging from 11.5 to 15.98 dollars. According to Tables 30 and 32, the 

benefit obtained from altering instream flow above 25 or 30 percent of 

average flow is negligible. On the contrary, reduction of instream 

flow below 10 or 20 percent of average will cause irreparable damages 

and loss of benefits to society. This information plus the expec ted 

net agricultural return would be beneficial for decision making in 

allocation of water. This was demonstrated for Blacksmith Fork River. 

The following conclusions are drawn from this study: 

1. The strategies for maintaining ins tr eam f l ows were compared 

under 40, 50, 60, and 70 percent of the average annual flow. 

The result of this comparison indicates that CF is a promising 

criterion. 

2. The obtained result indicates no significant site characteris­

t ic effect on demand function. 

3 . Alteration of flow has a drastic effect on visitation rate. 

4. Recreation is a luxury good. 

5. Blacksmith Fork and Little Bear Rivers are not good alterna-

t ive sites for Logan River recreation site . Howev er, Black-

smith Fork and Little Bear Rivers are good alternatives for 

each other . 



6. Increasing instream flow level above 25 or 30 percent of 

average flow will not singificantly add to economic value of 

recreation. 

7. Reduction of instream flow level below 10 percent of average 

flow will cause irreparable damages to potential recreation 

benefits. 
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8. Thirty percent of average flow is recommended for maintaining 

instream flow in Logan River and Blacksmith Fork River. For 

Little Bear, 20 percent (CF) of average flow is recommended. 
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NUMBER: 
DATE: -----
SITE: 
INTER'""V;-;I"""E'"'W"'E""'R-: --

--------------
Introduction 

The Utah Water Research Laboratory at Utah State University is 
conducting a study on the value of water for recreation. In order to 
determine these values, we need to get some information from people who 
come to enjoy the streamside recreation opportunities in this area. We 
would appreciate your helping us to get this information by taking 15 
to 20 minutes to answer some questions. In general, the purpose of the 
questions is to help us estimate the value of the recreation opportuni­
ties from the actual expenses that recreationists incur to enjoy 
those opportunities. You need not answer any questions you would 
prefer not to, and of course, your answers will be kept confid e ntial. 

I. The first 12 questions are designed to give us some background and 
description of your visit to this site. 

1. Where do you live? (Locate on map on last page if home is in 
map area. Otherwise give place name.) 

2. How long have you been at this site? (Locate site on map on 
last page.) 

3. How much longer do you plan to stay? 

4. How many people did you come with? (Total in vehicle and 
group.) 

5. What is the age and sex of those in your party? (Place "M" or 
"F" beside the appropriate age group.) 

0 to 9 yrs. 
10 to 19 yrs. 
20 to 29 yrs. 
30 to 39 yrs. 

40 to 49 yrs. 
50 to 59 yrs. 
60 to 69 yrs. 
70 yrs or more _________ __ 

6. Circle t he highest year of education you have completed. 

Elementary 1 2 3 4 5 6 Secondary 7 8 9 10 11 12 College 13 

14 15 16+ 



105 

7. How do you plan to spend your time here? Give approximate 
time spent in each activity below. (Includes respondent only, 
not all members in party.) 

eating games 

fishing sleeping 

hiking other (specify)---------------

water play 

8. How often do you go on this kind of recreation outing? 

1-2 times/yr. 
1-2 times/mo. 

!/wk . 
more than !/wk . 

9. Where do you usually go on such outings? (Indicate percentage 
of visits at each site. Refer to map on last page.) 

Smithfield % 
Logan 1 % 
Logan 2 % 
Blacksmith 1 % -------

Blacksmith 2 % ______ _ 
Little Bear % 
Other % (specify) 

10 . Compared to your idea of a perfect recreation site, how would 
you evaluate this site on the characteristics below? (For 
each characteristic use a scale of 1 to 10, where a "10" means 
the site is perfect, and a 11 1 11 means the site is extremely 
poor.) 

distanc e 
privacy/ unc ro..J ed 
facilities 
vegetation/ 1 andscape --------­
insects/pests 
water 

fishing suitability 
and probable success. ________ _ 

other important site 
characteristics 

(specify-------------------

11. For you r recreation purposes, would you say the number of 
other recreationists you have seen in the area has been 

a. more than you would prefer? 
b. fewer than you prefer? 
c. about the right number? 

12. What is the maximum number of other individuals or parties at 
thi s site that you would tolerate before deciding it was too 
crowded to stay? 

1-2 
3-4 
5-6 

7-8 
9-10 
more than 10 (give 
number range) 



II. Now we would like you to imagine what the stream would b e like 
at different fl ow levels, and i ndic ate how these changes would 
affec t you r evaluation of thi s site for rec rea tion. 

1. For each of the alternative s tream conditions below indicate 
the r espo nse you feel to be most appropriate . 
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So high I 
would look 
for an­
o ther 

Higher than 
ideal but 
acceptable 

About right 
(or indif­
ferent) 

Lower than So l o w I 
ideal but >.Uuld look 
accept- for an-
able other 

site site 

a. Present 
l evel 

b. Twice 
the 
pres-
ent 
l eve l 

c. 1 1/2 
times 
the 
pres-
ent 
level 

d . Half 
the 
pres-
ent 
l eve l 

e. No 
wa t e r 

(Answer only f o r "so l ow' ' responses.) 

2. As a percent of the pres e nt flow, approximately what is the 
minimum amount of water acceptable for your purposes? 

0 10 25 33 so 67 75 100 

One effect of some water resource developments is to de plete stream 
fl ow ove r certain stretches of a river. The next question asks how you 
might react if a development were proposed that would deplete the flow 
in th is portion of the river. 

3 . If the flow at thi s site went below your minimum acceptable 
l eve l, where would you probably go as an alternative? 
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4. If the only practical way to preserve the fl ow was to estab­
lish a system of user fees to cover the costs of keeping water 
in the river, how much would you be willing to pay per visit 
to maintain the flow level you desire? 

0 $2 $4 $6 $8 $10 $12 $14 $16 $18 $20 

5. If you answered "0, 11 was it because 

a. r educed flow levels, or a dry stream, would not adversely 
affect your use of this site? 

b. user fees on this site are already as high or higher than 
they should be? (Applicable only on developed sites.) 

c. you think stream flows should be maintained, but do not 
believe recreation users should have to pay to maintain 
them? 

III. The next four questions concern your expenses for this visit. 

1. What mileage does the vehicle you came in get? (Specify 
vehicle type and mileage whether vehicle belongs to respondent 
or to another in party.) 

2. About how much did you spend for food for this visit? 

3. About how much did you spend for recreation equipment (fishing, 
swimming, etc.) for this visit 

4. Did you pay a fee for use of this site? How much? 

IV. This g r oup of questions concerns the value of the equipment you 
are using. The l ist bel ow is intended as a fairly comprehensive 
checklist of the kinds of things you might have brought with you. 
We have three questions we would like you to answer concerning the 
items on the li st . First, we would like you to tell us the cost 
of those items you have with you. Second, we would like to know 
how old those items a r e . Finally, we would like you to tell us 
how much you plan to spend on new equipment. 

Equipment category 

RV, camper, tra iler 
Tents, awnings 
Sleeping bags, pads 
Stoves, gri lls, heaters 

l. Cost 

Cooking utensils ------------
Furniture 
lc e chests 
Fishing rods & reels 
Other fishing equip. 
Special apparel 
Licenses 
Other (specify) 

2. Age 3. New 
purchases 
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V. The final set of questions has to do with your occupation and 
income. 

1. What is your occupation? 

2. In what interval does your total annual household income 
fall? 

less than $5,000 $20,000 to $24,999 
$5,000 to $9,999 $25,000 to $29,999 
$10,000 to $14,999 $30,000 to $34,999 
$15,000 to $19,999 $35,000 to $44,999 

$45,000 or more 

3. In what interval does your monthly household salary or wage 
income fall? 

less than $500 
$500 to $999 
$1,000 to $1,499 
$1,500 to $1,999 

$2,000 to $2,499 
$2,500 to $2,999 
$3,000 or more 
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Table A-1. Group size by recreation site. 

Site 
Number in Logan logan Blacksmith Blacksmith Little Bear All 

Group 1 2 1 2 Sites 

11 10 7 9 5 42 

37 43 23 18 10 131 

16 22 22 12 8 80 

4 22 18 22 11 7 80 

5-6 28 11 5 12 10 66 

7-10 16 8 11 10 4 49 

More than 10 5 6 5 1 1 18 

Total 135 118 95 73 45 468 

Average 
group 4.2 3.8 4.1 3.9 3.9 4.0 
size 

0 



Tab l e A-2. Age and sex dis tr ib utio n by site. 

Sit e 
Logan 1 Lo~an 2 Bl acksmith 1 Blacksmith 2 Li t t l e Bear Total All 

Age Male Female Ma l e Female Male Fema l e Male Female Ma l e Fema l e Ma l e Female Sites 

0-9 50 60 30 40 54 34 44 28 25 20 203 182 385 
10- 19 39 48 48 22 28 27 21 17 13 17 149 131 280 
20-29 47 48 69 38 30 36 43 38 24 13 213 173 386 
30-39 55 45 33 21 45 32 24 11 16 13 173 122 295 
40- 49 26 20 24 15 23 22 17 12 4 2 94 71 165 
50-59 18 20 18 18 16 15 7 8 7 3 66 64 130 
60- 69 36 34 18 16 14 10 11 7 8 5 87 72 159 
)69 12 9 6 13 4 5 2 0 4 4 28 31 59 

Total 283 284 246 183 214 18 1 169 121 101 77 1013 846 1859 

Table A- 3. Education l eve l of respondent by site. 

Site 
Educa t io n Loga n 1 Logan 2 Bl acksmi th 1 Blacksmi t h 2 Li t t le Bear Total 

Leve l II % II % II % II % II % II % 

High school 51 10. 7 43 9 . 0 63 13 . 2 33 6 .9 27 5.7 220 46.2 
Some co ll ege 45 9.5 39 8 . 2 22 4.6 18 3.8 11 2. 3 137 28 .8 
Bache l or s o r more 39 8.2 36 7 . 6 10 2. 1 21 4 .4 7 1.5 11 9 25 . 0 

To tal 135 28.4 118 24 . 8 95 20.0 72 15. 1 45 9.5 476 100 . 0 



Table A-4 . Annual household income by educa tion. 

Education 
Annual Income High School Some College Bachelors or more Total 

iF % # % iF % if % 

Less than 5,000 12 2.6 10 2.1 9 1.9 31 6.6 
$ 5,000- 9,999 25 5.0 18 3.9 7 1.4 50 10 .3 
$10,000-14,999 38 8.2 13 2.6 13 2.6 64 13.4 
$15,000-19,999 34 7.3 17 3.7 8 1.7 59 12.7 
$20,000-24,999 44 9.3 22 4.5 18 3.7 84 17.5 
$25,000-29,999 26 5.6 17 3.7 13 2.8 56 12.1 
$30,000-34,999 19 4.1 9 1.9 23 5.0 51 11.0 
$35,000-44,999 17 3.5 23 4.8 19 3.9 59 12.1 
$4 5, 000 or more 5 0.9 8 1.7 9 1.7 22 4 . 3 

Total 220 46.4 137 28.9 119 24.6 476 100 . 0 

TableA-5. Annual household income by site. 

Site 
Annual Income Logan 1 Logan 2 Blacksmith 1 Blacksmith 2 Little Bear Total 

Less than 5,000 9 12 3 5 0 31 
$ 5,000- 9,999 10 19 5 9 6 50 
$10,000-14,999 12 16 9 13 12 64 
$15,000-19' 999 16 12 12 13 5 59 
$2 0, 000-24' 999 25 13 27 8 8 84 
$25,000-29,999 18 10 19 4 4 56 
$30,000-34,999 17 12 12 6 2 51 
$35,000-44,999 18 17 7 11 5 59 
$45,000 or more 9 7 1 3 3 22 

Total 135 118 95 72 45 476 

N 



Table A- 6. Travel distances by sampling site. 

Site All Sites 
Logan 1 Logan 2 Blacksmith 1 Blacksmith 2 Little Bear Total 

Distance* # % IJ % il % il % II % II % 

0- 10 36 7. 5 46 9.6 1 0 . 2 13 2 . 7 2 0.4 102 21.4 
ll-20 9 1. 9 3 0.6 20 4.2 15 3. 1 0 0.0 49 10.3 
21-30 3 0.6 4 0.8 5 1.0 18 3 . 8 7 1.5 37 7.8 
31 - 40 20 4.2 7 1.5 24 5 . 0 8 1.7 7 1.5 67 14.0 
41-50 0 0.0 2 0.4 5 1.0 4 0 . 8 3 0.6 14 2 . 9 
51-60 26 5.5 13 2. 7 25 5.2 3 0 . 6 5 1.0 72 15 . I 
61-70 6 1.3 0 0.0 4 0.8 2 0.4 11 2.3 24 5.0 
71-80 4 0.8 3 0.6 I 0.2 2 0 . 4 2 0.4 12 2.5 
81-90 2 0.4 6 1.3 2 0.4 0 0.0 2 0.4 12 2.5 
91-1 00 3 0 . 6 1 0 . 2 0 o.o 2 0 .4 0 o.o 7 1.5 

101- 130 1 0 . 2 4 0.8 7 1.5 1 0.2 3 0.6 16 3.4 
131-365 5 1.0 2 0.4 0 o.o 1 0. 2 1 0.2 9 1.9 
365-999 20 4.2 27 5.7 1 0.2 4 0.8 2 0.4 56 11. 7 

Total 476 100.0 

*Distanc e f r om home in mi l es . 



Table A-7. Length of visit by si t e. 

Hours at 
Site Logan 1 Logan 2 

(1 0 1 

1-4 24 56 

5- 8 16 12 

9-15 6 6 

16-30 25 11 

31-55 30 13 

56 or more 34 19 

Average visi t 34.21 21.36 

Tot a 1 135 118 

Site 
Blacksmith 1 Blacksmith 2 

0 0 

11 25 

22 14 

7 1 

14 9 

25 13 

16 11 

34 34 

95 72 

Little Bear 

9 

3 

2 

15 

10 

6 

30 

45 

Tot a l 

125 

67 

22 

74 

91 

86 

30.71 

466 

..... ,. 
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Table A-8 . Av e r age st r e amflow evaluati ons , b y s ite ( 5 unac ce ptabl y 
l ow, 1 =unac ceptably high) . 

Sit e 
Fl ow Leve 1 Logan Logan Blacksmith Blacksmith Littl e All 

1 2 1 2 Be ar Sites 

2 . 0 x present 
l eve l 1. 63 1. 89 1.6 1.6 1.8 1. 70 

l. 5 x pres ent 
l eve l 2.02 2.32 1.9 2.0 2 . 0 2 . 05 

Pr e s e nt lev e l 3 . 11 3.43 3. 1 3 . 1 3.13 3. 17 

0.5 x present 
level 4.18 4.63 4.2 4.3 4 . 4 4.34 

No water 4.95 5 . 00 4.95 5 . 0 5 . 0 4.98 

Table A-9 . Pe rce ived conge s tion, by crowd i ng threshold. 

Numb e r of Crowd in~ Toleranc e 
Others Se en 1 2 3-4 5-6 7 8 10 >1 0 

Fewe r than pr ef e rred 12 4 11 

About right 60 46 57 30 40 80 

More than pr ef erred 36 12 16 11 10 21 

Table A-10. Crowding tolerance by group size. 

Crowding Tolerance 
Numb e r in Group 1 2 3-4 5-6 7 8 9-10 >1 0 

10 11 1 12 
2 30 20 21 13 15 29 
3 27 12 13 4 7 18 
4 19 12 15 12 7 16 

5-6 10 6 13 8 13 17 
7-10 9 6 8 5 9 15 
>10 4 0 4 2 3 7 
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Appendix B 

Survey Data Used for Derivation of Demand 
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Tabl e B-1. Numb e r of surveys f or each site and group. 

Site 
Group Lo1 Lo2 BL1 BL2 LB 

l 13 30 0 8 0 
2 8 4 8 13 6 
3 4 3 5 4 3 
4 5 10 2 3 7 
5 21 12 3 4 0 
6 9 3 15 11 4 
7 12 3 16 6 4 
8 17 16 24 3 9 
9 11 7 0 3 0 

10 5 4 1 8 0 
11 8 9 7 1 5 
12 16 15 12 5 

Total 129 116 93 71 43 

This table does not show transi t rec reationist s (recreationists 
who are passing through and stop fo r a short period of time) . 

Table B-2 . Numb e r of surveys for each site, group, and days. 

Sit e 
Lo 1 Lo2 BL1 BL2 LB 

Group Dj* o2** Dl D2 Dl D2 D) D2 Dl D2 

1 11 2 24 6 8 0 0 
2 6 2 1 3 8 5 3 
3 2 2 2 l 0 2 0 
4 2 2 3 1 l 0 1 1 5 1 
5 16 5 9 3 10 2 7 2 1 1 
6 7 2 3 0 13 7 10 0 2 1 
7 8 4 2 1 12 5 3 0 3 0 
8 5 4 4 1 8 1 0 0 4 5 
9 10 1 4 3 1 0 4 1 0 0 

10 5 0 3 1 3 1 5 1 
11 4 4 8 1 9 1 2 0 0 2 
12 6 2 3 4 4 0 4 1 2 1 

Tot a l 82 30 66 25 72 20 52 15 26 15 

This tabl es does not show transit recreationists (recreationists 
who ar e coming from above 365 miles to sites). 

*D indic at e s weekend 
** 1 Dz indicates weekdays 
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Table B-3. Number of cars in each site. 

Da s 
Site Weekend Weekday Total 

Lo 1 507 115 622 
Lo2 371 100 471 
BL1 90 26 116 
BL2 101 29 130 
LB 48 19 67 

Total l '117 289 1,406 

Table B-4 . Estimated G1 and G2 for each group. 

Site 
Lo1 Lo2 BL! BL2 LB 

Group Gl G2 Gl G2 G1 G2 Gl G2 Gl G2 

1 67.19 5 . 0 109.93 17.14 8.63 1.30 14 . 96 8.53 0 0 
2 36.65 5.0 4 . 58 8.57 2 . 47 2.60 14.96 3 . 41 8 . 57 3 . 80 
3 12.22 5 . 0 9.16 2.86 2 . 47 0 0 3.41 3 . 43 0 
4 12.22 5.0 13.74 2.86 l. 23 0 1.87 1.71 8 . 57 1.27 
5 97.73 12 . 50 41.22 8 .57 12.33 2.60 13 . 09 3.41 1.71 1.27 
6 42 . 76 5.0 13.74 0 16.03 9.10 18 .70 0 3.43 1.27 
7 48.87 10 . 0 9.16 2 .86 14.79 6.50 5.61 0 5.14 0 
8 30.54 10.0 18.32 2.86 9.86 1.30 0 0 6.86 6.33 
9 61.08 2.50 18.32 8.57 l. 23 0 7 .48 1. 71 0 0 

10 30.54 0 13 . 74 2.86 3. 70 1.30 9.35 1.71 3.43 1.27 
11 24.43 10.0 36.64 2 . 86 11.10 1.30 3 . 74 0 0 2 . 53 
12 36.65 5.0 13.74 11.43 '•.93 0 7.48 1.71 3 . 43 1. 27 

Lo1 Upper Logan Riv e r 
Lo2 Lower Logan Riv e r 
BL1 Upper Blacksmith Fork Riv e r 
BL2 Lowe r Bl acksmith Fork Rive r 
LB Little Bea r River 



Table B-5 . Estimated X1 and X2 for each group. 

Site 

Lo 1 Loz BL! BL2 LB 

Gr oup xl xz X1 xz Xl xz X1 xz Xl xz 

218.37 83 .75 357.27 28 7 .10 28 . 05 21 . 78 48.62 142 . 88 0 0 
2 119. 11 83 .75 14.89 143 0 55 8 . 03 43.55 48 . 62 57.12 27.85 63.65 
3 3Y . 72 83 .7 5 29 . 77 47 0 91 8 . 03 0 0 57 . 12 11.15 0 
4 39.72 83 .7 5 44 . 66 47 . 91 4 . 0 0 6.08 28 . 64 27 . 85 21 0 2 7 
5 317.62 209.38 133 . 97 143 . 55 40.07 43.55 42 . 54 57.12 5.56 21.27 
6 138.9 7 83.75 44 . 66 0 52.10 152 . 43 60.78 0 12.58 31 0 2 7 
7 158 . 83 167 . 5 29 0 77 47 . 91 48.07 108 . 88 93 . 97 0 86.10 0 
8 99 . 26 167. 5 59.54 47 . 91 32 . 05 21. 78 0 0 114.91 106 .03 
9 198 . 51 41. 88 59.54 143 . 55 4.0 0 24.31 28.64 0 0 

10 99.26 0 103 . 43 77 0 91 12.03 21. 78 30.39 28.64 11.15 21.27 
11 79.40 167.5 119.08 47.91 36.08 21 .78 12.16 0 0 42.38 
12 119 0 11 83 . 75 44.66 191.45 16.02 0 24.31 28.64 11.15 21.27 

~ 1 indicates weekends 
Xz ind i ca t es weekdays 

:<; 



Table B-6. Estimated D for each group. 

Group Lor Lo2 

l Dll = 302.12 021 = 644.37 
2 Dr2 = 202.86 022 = rs8.44 
3 or3 = r23.47 D2J = 77.68 
4 0 r4 = r23.47 0 24 = 92.57 

0 rs = 527.00 025 = 277.52 
0 r6 = 222 . 72 0 26 = 44.66 

7 017 = 326.33 027 = 77.68 
8 Drs = 266 .76 028 = ro7.45 
9 or9 = 240.39 029 = 203.09 

ro 0 llo = 99.26 0210 = 18r. 34 
r1 Or1r = 246.90 021r = r66 .99 
12 Orr2 = 202.86 02r2 = 236.rr 

Site 
BLr 

D3r = 49.83 
032 = 51.58 
033 = 8.03 
034 = 4.0 
o3s = 83.62 
036 = 204.53 
037 = rs6.95 
o3s = 53.83 
039 = 4 . 0 
03rO = 33.81 
D31r = 57.86 
03r2 = r6. 02 

BL2 

04r = r91.50 
042 =105.74 
043 = 57.r2 
044 = 34.72 
045 = 99.66 
046 = 60.78 
047 = 93.97 
048 = 0 
049 = 52.95 
04ro = 59.03 
04r1 = r2 .r6 
0412 = 52.95 

LB 

Dsr = 0 
Ds2 = 91.50 
os3 = rr. rs 
0s4 = 49.12 
0ss = 26.83 
os6 = 43.85 
057 = 86 .ro 
D5s = 220.92 
o59 = 0 
0sro = 32.42 
05ll = 42.38 
05r2 = 32 . 42 

"' 0 
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Table B-7. Dis tr i bution o f income in Utah. 

In c ome fl of Families Total Percentage 

0- 2,499 7,731 
2,500- 4,999 11,415 
5,000- 7,499 19,063 
7,500- 9,999 22,584 

10,000-12,499 28,656 
12,500-14,999 27,228 

116,677.0 32.94 

15,000-17,499 31,330 
17,500-19,999 28 '774 
20,000-22,499 32,492 
22,500-24,999 25' 198 
25,000-27,499 23,935 
27,500-29,999 17,257 

158,986.0 44.89 

30,000-34,999 28,626 
35,000-39,999 17 '118 
40,000-49,999 17,563 
50,000-74,999 10,952 
75,000 4,253 

78,512.0 22.17 

354 , 175.0 100.00 

Table B-8. Population by zone . 

Zone Population 1* Population 2** 

1 46,895 42,864 
2 50,225 45,815 
3 243,462 156,638 
4 1,052,924 1,199,464 

*Population for Logan site. 
**Population for Blacksmith Fork and Little Bear sites. 



Table B-9. Population in each income group and each zone. 

Income Group One Income Group Two Incom e Group Thr e e 
Site Zone 32.94% 44.89% 22.17% 

Logan 1 15,447.54 21,051.61 10,396 . 84 
2 16,544.12 22,546.00 11,134.88 
3 80,196.38 109,290.09 53,975.53 
4 346,833.17 472,657.58 233,433 . 25 

B1 acksmi th 1 14,119 . 40 19,241.65 9,502.95 
Fork and 2 15,091.46 20,566.35 10,157.19 
Little Bear 3 51,596 . 56 70,314.80 34,726 . 64 

4 395,103 . 44 538,439.39 265,921.17 

~ 



Table B-10. Variables for each grouE 1 Logan. 

Site Group Vari~bles 
X PA WT 

Lo1 1 xu = 1.6 PAll = 25.0 WTll = 28.2 Ill = 7,315.31 
Lo2 x21 = 0.3 PA21 = 6.42 WT2l = 9.41 121 = 7,833.3 

Lo1 2 x12 = 2.031 PA12 = 39.0 WT12 = 41.5 112 = 10,312.5 
Lo2 x22 = 1. 31 PA22 = 24.2 WT22 = 40.4 122 = 12,500.0 

Lo1 3 X13 = 2.31 PA13 = 22.53 WT13 = 53.6 113 = 9,375.0 
Lo2 X23 = 0.2 PA23 = 7.80 WT23 = 7.85 123 = 8,333.3 

LOj 4 Xl4 = 1.42 PA14 = 37.1 WT14 = 46.1 ll4 = 8,137.5 
Lo2 X24 = 1.31 PA24 = 48.2 WT24 = 59.7 124 = 8,125.0 

LOj 5 Xl5 = 1.2 PAlS = 30.0 WT15 = 47.5 115 = 23,214.3 
Lo2 X25 = 0.195 PA25 = 7.49 WT25 = 11.31 125 = 22,083.3 

Lo1 6 Xl6 = 3.3 PA16 = 49.5 WT16 = 74.9 116 = 19,722.0 
Lo2 X26 = 1.2 PA26 = 16.6 WT26 = 72.1 126 = 19' 166. 7 

LOj 7 X17 = 3.1 PA17 = 73.3 WT17 = 131.2 117 = 23,333.3 
Lo2 X27 = 3.1 PA27 = 48.8 WT27 = 101.2 127 = 20,833 .3 

Lo1 8 Xl8 = 1. 92 PAlS = 51.7 WT!S = 87.5 118 = 24' 166.7 
Lo2 x2s = 2.24 PA2s = 80.1 WT28 = 94.2 128 = 23,500.0 

Lo 1 9 Xl9 = 0.7 PA19 = 23.98 WT19 = 52.8 119 = 38,863.6 
Lo2 X29 = 0.5 PA29 = 16.7 WT29 = 16.3 129 = 38,214.3 

Lo1 10 xuo = 1. 35 PAllO = 34.38 wrup = 82.1 1110 = 35,000.0 
Lo2 x210 = o.31 PA210 = 10.61 wr210 = 20.0 1210 = 37,500.0 

Lo1 11 Xlll = 1.61 PAUl = 33.1 WT!ll = 106.2 1111 = 36,875.0 
Lo2 x211 = 2. 8 PA211 = 82.79 WT2ll = 178.92 1211 = 36,666.7 

Lo1 12 X112 = 1. 72 PA112 = 43.3 WT112 = 111.9 1112 = 36,875 . 0 
Lo2 X212 = 4.1 PA212 = 87.0 WT212 = 384.6 1212 = 39,285.7 

;::; 
'""' 



Tab l e B-ll. Variables for each grou2, Blacksmith Fork. 

Site Group Variables 
X PA WT 

BL1 1 X31 = 0.33 PA31 = 6 . 39 WT31 = 8.7 131 = 9,375.0 
BL2 X41 = 0.59 PA41 = 18 . 4 WT41 = 15.6 141 = 9,423 . 1 

BL1 2 X32 = 2.42 PA32 = 29.19 WT32 = 53 . 1 132 = 11,250.0 
BL2 X42 = 0.650 PA42 = 16.26 WT42 = 16 . 1 142 = 8,750.0 

BL1 3 XJ3 = 1. 5 PA33 = 20.8 WT)) = 26. 79 133 = 8,750.0 
BL2 X43 = 1.9 PA43 = 26.91 WT43 = 26 . 79 143 = 6,299.50 

BL1 4 X34 = 3.0 PA34 = 35 . 77 WT34 = 53.57 134 = 7 '500 .0 
BL2 X44 = 0 . 61 PA44 = 54.86 WT44 = 19.59 144 = 10,000.0 

BL1 5 X35 = 0.81 PA35 = 19.4 WT35 = 28.42 135 = 22,500.0 
BL2 X45 = 1.083 PA45 = 37 .52 WT45 = 38.64 145 = 20,277.8 

BL 1 6 X36 = 1.82 PA36 = 49.1 WT36 = 64.77 136 = 24,250.0 
BL2 X46 = 1.1 7 PA46 = 36 . 31 WT46 = 44.29 146 = 21,000.0 

BL1 7 X37 = 0.998 PA37 = 56.738 WT37 = 44.26 137 = 23,382.4 
BL2 X47 = 1. 5 PA47 = 32 . 1 WT47 = 67.46 147 = 19' 166.7 

BL1 8 X38 = 1. 74 PA38 = 71.04 WT38 = 70.41 138 = 20,833.3 
BL2 X48 = - PA48 = - WT48 = - 148 

BL1 9 X39 = 0.104 PA39 = 4.07 WT39 = 13.64 139 = 40,000.0 
BL2 X49 = 0.321 PA49 = 39.96 WT49 = 27.78 149 = 38,000.0 

BL1 10 X310 = 0 . 885 PA310 = 59.88 WT310 = 55 . 93 1310 = 32,500.0 
BL2 X410 = 2.44 PA410 = 49.9 WT410 = 141.12 1410 = 37,500.0 

BL1 11 X311 = 1.996 PA311 = 45.63 WT311 = 126.74 1311 = 37,500.0 
BL2 X411 = 1. 56 PA411 = 36.62 WT411 = 107.14 1411 = 42,500.0 

BL1 12 X312 = 1.44 PA312 = 59.73 WT312 = 55.31 131 2 = 34,3 75.0 
BL2 X412 = 1.008 PA412 = 39.92 WT4 12 = 77.28 1412 = 39,500.0 

N ,. 
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Tabl e B-l2o Variables for each group, Littl e Be ar. 

Group Variabl es 
X PA WT 

Xst PA51 WT51 151 

x52 1.817 PA52 5lo04 WT52 l6ol8 152 10,62500 

X 53 1.21 PA53 22o09 WT53 24o3l 153 lO,OOOoO 

4 x54 1.33 PA54 54 o025 WT54 29ol 154 11,6660 7 

Xss 1. 25 PAss 21.24 WT55 68o45 155 22,50000 

xs6 1. 74 PA56 39o47 WT56 29o52 156 20,833o3 

x57 3o06 PA57 81.54 WT57 89o29 157 19,166 o7 

xs8 1.41 PA58 = 42 0 38 WT58 59o3 158 23,611.1 

X 59 PA59 WT59 159 

10 Xs1o l ol94 PA510 l6o66 WT510 79o37 1510 43,333o3 

11 xs11 2o5 PA511 23o95 WT511 205o36 1511 40,000o0 

12 X512 Oo896 PA5 12 38 0 77 WT512 62o75 1512 39,166o67 

Table B-130 Number of total days of recreation for season. 

Site 
Group Lo1 Lo2 BLl BL2 LB 

1 495 ol7 192o667 l6o593 112 0 985 0 
2 4l2o0l 208o032 124o669 66o781 50o508 
3 285o59 l5o6l4 12.045 107 olO l3o469 
4 174o96 120o804 l2o0 20o971 65o477 
5 684 ol6 54 oll6 67o230 107o932 33o538 
6 733 ol9 50o868 373o063 71.173 76 ol2 

1,006o08 241.662 156o636 140o955 263 ol2 
513o780 240o903 93o557 0 310o863 

9 165o629 93o624 Oo416 l6o997 0 
10 134 oOOl 55o67 29o922 143o9l5 38o709 
11 398o003 498o240 ll5o489 l9o006 1050950 
12 349ol22 960o023 23o037 53o374 290048 
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Table B-14. Number of days of recreation per capita. 

Site 
Group Lo1 Lo 2 BL1 BL2 LB 

0.03 0.013 0.0012 0.008 0 
2 0.02 0.013 0.0083 0.004 0.003 
3 0.004 0.0002 0.0002 0.002 0.0003 
4 0.0005 0.0003 0.00003 0.00005 0.0002 
5 0.03 0.0026 0.0035 0.006 0. 0017 
6 0.03 0.0023 0.018 0.0035 0.0037 
7 0.01 0. 002 2 0.0022 0.002 0.0037 
8 0.001 0.0005 0.0002 0 0.0006 
9 0.02 0.009 0.00004 0.002 0 

10 0.01 0.005 0.0029 0.014 0.0038 
11 o. 007 0.008 0.0033 0.0006 0.0030 
12 o. 001 0.0041 0. 00009 0.0002 0.00009 

Table B-15. Full . * pr1ce of each group per day** by si te . 

Site 
Group Lo1 Lo2 BL1 BL2 LB 

32 . 5 52.8 45.4 57.6 0 
2 39.6 49.2 34.1 49.8 36.984 
3 32.9 77.6 31.7 28.6 38.4 
4 58.7 82.7 29.8 123.3 62.4 
5 64.0 96.4 59.5 70.3 71.8 
6 37 . 8 77.9 62.5 68.8 39.8 
7 66.4 48.2 101.2 66.4 55.9 
8 72.3 77.7 81.4 0 72.3 
9 111.5 71 . 6 170.2 211.2 0 

10 86.3 99.7 130.8 78.3 80.5 
11 86.4 93.3 86.3 91.9 91.8 
12 90.2 116 . 0 79.97 116. 3 113 .4 

*Full price = PA + WT = P 
**Full price per day = P/X 



127 

Tabl e B- 16 . Ca lcul a t ed bud ge t share * o f good fo r eac h gr oup by si te . 

Sit e 
Group Lo1 Loz BL1 BL2 LB 

0 . 00013 0.000088 0.000006 0 . 000049 0 
2 0.00008 0.000051 0 . 000025 0.000023 0.00001 
3 0.000014 0.000002 0.000001 0.000009 0 . 000001 
4 0.000004 0.000003 0 . 0000001 0 . 000001 0 . 000001 
5 0.000083 0 . 000011 0. 000009 0 . 000021 0. 000005 
6 0.000057 0.000009 0.000046 0.000011 0 . 000007 
7 0.000028 0 . 000005 0. 00001 0.000007 0. 000011 
8 0 . 000003 0.000002 0 . 000001 0 0 . 000002 
9 0.00005 7 0.000017 0 . 000002 0.000011 0 

10 0.000025 0.000013 0.000012 0.000029 0.000007 
11 0.000016 0.000020 0.000008 0. 000001 0.000007 
12 0.000002 0.000012 0.0000002 0. 000001 0.0000003 



Appendix C 

Derivation of AIDS Demand Function 

from the PIGLOG Class of Preferences 
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These preferences are represe nt ed via the cost or expend iture 

function : 

Log C(U, P) = (1-U) l og{a(P)} + U l og{b(P ) } ( C-1) 

where a(P) and b(P) a r e linea r homoge neo us concave functions, and 

defined as: 

Log a(P) a o + E ak log Pk + 1/2 E E Ykj* log Pk log Pj 
k k j 

(C-2) 

and 

Log b(P) 

So 

Lo g b(P) 

(C-3) 

Substituting for l og a(P) and l og b(P) in Equation C-1 will give us the 

AIDS flexible cost function. 

Log C(U,P) = (1-U)(ao + E a k log Pk + 1/2 E E Ykj* log Pk l og Pj) 
k k j 

+ (U)( a 0 + E a k l og Pk + 1/2 
k k 

Ykj * log Pk log Pj 

+ So " k pk 
sk 

ao + E ak log pk + 1/2 E Ykj * log Pk log Pj 
k k j 

- ua0 - u a k l og Pk - 1/2 u E Ykj * log Pk l og Pj 
k k j 

+ Ua o + U E ak log Pk + 1/2 U Ykj* log Pk log Pj 
k k 

+ s o u " k Pk 
8k 
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Then 

log C (U, P) a0 + I a k log Pk + l/2 I I Ykj* log Pk l og Pj + 
k k j 

(C-4) 

C cost or expenditure 

price 

U utility 

Hicks-compensated demand function can be derived directly from 

expenditure function. The price derivatives of cost function will be 

the quantities demanded : 

accu ,P) 
~=qi 

Multiply both sides of Equation C-5 by Pi/C(U,P): 

aC(U,P) 

~ 
Equation C-6 can be written as: 

log C(U,P) qi Pi 
a log Pi = C(U,P) = wi 

(C-5) 

(C-6) 

where Wi = the budget share of good io Therefore, logarithmic differ-

entiation of Equation C-4 will give us Wi as a function of price 

and utility o 

~ere 

log C(U,P) 
a log Pi 

y o 0 

lJ 

(C-7) 

(C-8) 
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For a utility maximizing co nsume r, t ota l expend iture X i s equa l 

to cos t fun c tion. This eq uality can be inverted to get indirec t utility 

function as a function of price and expenditure as: 

log C (U,P) = log I = a o + E ak log Pk + l / 2 E E Yk j* l og Pk log Pj 
k k j 

+ So u nk 

then 

u E a k l og Pk - 1/2 E E Ykj* log Pk log Pj + log I)/ 
k k j 

(C-9) 

Substituting Equation C-9 in Equation C-7: 

E a k log Pk - 1/2 E E 
k k j 

(C-10) 

Then we have budget sha res as a function of price and X. 

'*>ere 

Wi = a i + E Yij l og Pj + Si l og{ I/P*} 
j 

p* is price index which is defined by: 

log P = ao + E ak log Pk + 1/2 E E Yk j l og Pk log Pj 
k k j 

(C-11) 

(C-12) 
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The five models used to estimate minimum cost of maintaining in-

s tream f low are described in this appendix . 

EIF 1: 

Max 
k y 

Subjec t t o: 

z. k 
JY 

ElF 2: 

Max 

W Z, k- A k 
j t JY t 

y 

I k+l 
t 

I k 
t 

E 7fk I k - I 
k t t 

E E E (P. nk) Z k 
k j y JY jy 

Subject to: 

y 

z k 
j y 

< L 
- y 

= 0 

0 

~0 

* 

Q k 
t 

0 

- * > I 
- t 

~0 

< L 
- y 

0 
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vjy z. 
JY 

k 
0 

I k +A k 
t t 

Q k 
t 

l: 
k 

I 
k 

- I 0 7f 
k 

t t 

I - * > I 
t - t 

IF: 

Max (P. 7fk) 
zjy 

k 

k y JY 

Subj ec t to: 

zjy 
k 

< L - y 

wjt z. 
k - A k 0 

JY t 
y 

V. zjy 
k 

0 
JY 

I k +A k * 
t t Qt 

l: 
k 

I 
k 

It 0 7f 
k 

t 

I - * > I 
t - t 

A k+l - A k ~0 
t t 

I k > B 
t 

where 

B Nin 
k 

(Qt ' 
I k) 

t 
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CF 1: 

Hax (P jy 
nk) z. 

k 
E 
k y JY 

Subjec t t o: 

k * Z. < L 
JY y 

k A k 0 wjt z. 
JY t 

y 

V. 
JY z j y 

k 0 

I 
k+l - I k ~ 0 

t t 

I k +A k 
t t 

Q k 
t 

E 
k 

I 
k - I 0 n 

k 
t t 

I - * > I 
t - t 

A k+l - A k ~0 t t 

I k ~c t 

where 

c Hin 
k 

(Qt ' I/) 

CF 2: 

Hax E (Pjy nk) 
zjy 

k 

k y 

Subjec t t o: 

z. 
k 

< L 
JY - y 
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wj t Z. - A k 0 
J Y t 

y 

v. zjy 
k 

0 
JY 

I k +A k 
t t 

Q k 
t 

k 
I 

k - i 0 7f 

k 
t t 

i - * > I 
t - t 

I k ~c 
t 

where 

c Min 
k 

(Qt ' It c) 
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