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Abstract

A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination and

Control Systems

by

John N. Schreiner, Master of Science

Utah State University, 2015

Major Professor: Dr. Rees Fullmer
Department: Mechanical and Aerospace Engineering

This thesis proposes a method of performing fault detection and isolation in spacecraft

attitude determination and control systems. The proposed method works by deploying a

trained neural network to analyze a set of residuals that are defined such that they encom-

pass the attitude control, guidance, and attitude determination subsystems. Eight neural

networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or

Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each

of the neural networks were analyzed to determine the accuracy of the networks with respect

to isolating the faulty component or faulty subsystem within the ADCS. The performance

of the proposed neural network-based fault detection and isolation method was compared

and contrasted with other ADCS FDI methods. The results obtained via simulation showed

that the best neural networks employing this method successfully detected the presence of

a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time

and the faulty components within the faulty subsystem were isolated 37% of the time.

(140 pages)
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Public Abstract

A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination and

Control Systems

by

John N. Schreiner, Master of Science

Utah State University, 2015

Major Professor: Dr. Rees Fullmer
Department: Mechanical and Aerospace Engineering

CubeSats are employed in a variety of missions as scientific platforms, low-cost tech-

nology demonstrators, and in the future, they will conduct service missions as part of larger

satellite constellations. CubeSat ADCS designers today are being tasked with designing to

ever increasing accuracy requirements. The ability to hold those requirements rests with

the attitude control system being robust enough and able to sufficiently respond to changes

in the control environment. The need for greater control autonomy is then evident in the

need for these systems to be able to react independently to changes in the system dynamics

and to identify and accommodate system faults. A key ability of a fault tolerant control

system then is the capability to successfully detect and isolate faults as it provides a method

for early detection and diagnosis of unforeseen faults, which in turn provides a spacecraft

with a greater degree of autonomy.

The focus of this thesis was to determine whether there is enough information coming

from a pattern of residuals defined by the attitude determination and control system to

allow a neural network to discern whether or not a fault has occurred. To do this, a set

of residuals was defined based on a comparison of a spacecraft’s ADCS telemetry to esti-

mated state values for both nominal and fault states. This set of residuals served as the
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training set for a series of neural networks that were trained using either the resilient back-

propagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization

training algorithms. After the networks were trained their outputs were calculated for both

reapplication of the training data as well as for novel data of which they had no a priori

knowledge.

The performance of the neural networks in detecting faults with this scheme leaves

much to interpretation. Though all of the networks were trained from the same example

set, significant differences exist in the ability of the networks to positively detect and isolate

the faults with consistency. Where one network may excel in detecting the faults in a certain

components, it may fare poorly at another. In general, the networks were better able to

detect and isolate faults in the components of the attitude control and guidance subsystems,

and with few exceptions less able to isolate faults of the attitude determination sensors.
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Chapter 1

Introduction

1.1 Problem Statement

It is well established that space-tolerant, off-the-shelf hardware is prone to failure [1].

In regards to a spacecraft’s attitude determination and control system (ADCS) a fault

in an actuator or failure of a sensor can lead to a loss of control authority, putting the

spacecraft at risk and potentially jeopardizing mission objectives. In the past, this problem

has been addressed by the addition of redundant actuators or sensors. But what if the ADCS

system is space-limited, such as on a CubeSat? In such instances hardware redundancies

to maintain control authority may simply not be an option and the need for fault detection

is critical.

CubeSats are employed in a variety of missions as scientific platforms, low-cost technol-

ogy demonstrators, and in the future, to conduct service missions as part of larger satellite

constellations [1]. CubeSat ADCS designers today are being tasked with designing to ever

increasing accuracy requirements. The ability to hold those requirements rests with the

attitude control system being robust enough and able to sufficiently respond to changes in

the control environment. The need for greater control autonomy is then evident in the need

for these systems to be able to react independently to changes in the system dynamics and

to identify and accommodate system faults [1, 2]. A key ability of a fault tolerant control

system then is the capability to successfully detect and isolate faults as it can provide a

method for early detection and diagnosis of unforeseen faults, which in turn provides a

spacecraft with a greater degree of autonomy [3].

1.2 Previous Work

Much research has been done with respect to fault detection and isolation (FDI). Many
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FDI methods methods work by defining a residual for a system and then thresholding

that residual to determine the presence of a fault. In general the residuals are defined as

the difference between a measured and state-estimated value. The environment in which

the fault detection and isolation takes place in large part determines the type of state

estimator employed. Kalman filters are employed as state estimators in noisy environments

[3], whereas in more deterministic settings Luenberger observers have been utilized with

success.

There are perhaps two main approaches to FDI: mechanical and analytical. Mechanical

approaches to FDI rely on physical redundancies in order to fully isolate and recover from

fault conditions. In many spacecraft applications, however, where extra mass in any system

comes at a premium, it is not always possible to add redundant sensors or actuators [3]. In

such cases analytical methods must be considered.

Analytical approaches to FDI can be further broken into two categories: observer-based

and learning-based. Observer-based FDI approaches employ either Luenberger observers in

deterministic environments, Kalman filters in noisy environments, or a combination of the

two and are used as state estimators [4]. The estimation is compared to the system output,

whether controller, actuator, or sensor, in order to generate a residual. During nominal

operation these residuals are small and should be equal to about zero. Faults are indicated

if the residuals experience a large swing away from the nominal value [3, 4].

Learning-based FDI approaches employ neural networks, often in conjunction with

state estimators. These neural networks can be trained with knowledge of a spacecraft’s

operational states. They are able to “learn” the behavior of the plant dynamics and fault

states such that they are able to discern, via the state estimators, when and where a fault

has occurred [4].

1.3 Thesis Statement

Since attitude determination and control systems can be failure prone the need for

greater fault identification and accommodation is critical. Many methods exist today to

accomplish this. Offline techniques such at fault tree analysis and failure modes and effects
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analysis give insight into ACS design by providing a priori knowledge of subsystem causal

relationships and potential failure modes. Online methods of fault accommodation, such

as fault tolerant control schemes, seek less to identify the root cause of a given failure and

more to handle the fault to allow continued stable operation.

1.4 Problem Description

The focus of this thesis is to determine whether there is enough information coming

from a pattern of residuals defined by the attitude determination and control system to

discern whether or not a fault has occurred. This will be accomplished by deploying a

neural network that will be trained to recognize nominal and non-standard behavior in

the ADCS residuals. A description of the neural network is given in section 5.1. Such a

learning-based approach to FDI will require the network to first be trained to differentiate

between normal and abnormal behavior patterns. To do this, a set of residuals will be

defined based on a comparison of a spacecraft’s ADCS telemetry to estimated state values.

These residuals will be generated for both nominal and fault states in order to generate a

suitable set of training data from which the network can learn what constitutes normal and

abnormal behavior.

1.5 Approach to Fault Detection and Isolation

As the attitude determination and control system is so closely coupled with the main

sources of error, it will be examined directly in order to determine the spacecraft’s fault

state. As shown in figure 1.1, the attitude determination and control system has four main

input categories. These are external inputs, sensor inputs, software inputs, and actuator

inputs.
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Fig. 1.1: ADCS process map showing the main input categories

External inputs originate externally to the ADCS. These could be “truth” quantities

such as the position of the sun or the earth’s magnetic field or they could be software

commands initiated from the ground, such as ADCS mode transitions. Sensor inputs are

the inputs to the ADCS as measured by its sensors, such as the measured position of the

sun or spacecraft angular rotation rate. Software inputs are those generated onboard the

ADCS, for example by the guidance flight software or the sensor noise filter. Lastly, the

actuator inputs are generated specifically by the ADCS control actuators, for example the

torque generated by a reaction wheel.

As the performance and output of the ADCS are so dependent on the operational state

of the spacecraft, it will be used as the residual generator to train the neural network. The

residuals themselves are generated based on the input categories of the ADCS. A detailed

description of how they are defined follows in chapter 3.
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When taken as a whole the set of residuals defined by the ADCS paints a picture of

the spacecraft’s operational state at any given moment. During normal operation, such

as when the spacecraft is stationkeeping or maneuvering, the set of residuals will have a

certain pattern to them, each remaining in the vicinity of a nominal value. When a fault

has occurred, such as the failure of a control actuator, one or more of the residuals will

display either a positive or negative bias relative to the nominal. It is the nominal-biased

behavior of the residuals that differentiates between normal and abnormal states, and it is

this behavior that the neural network will be trained to recognize. Section 5.1 provides a

description of what a neural network is and how it will be used to recognize faults in the

spacecraft.

For the purpose of this thesis, a fault is defined as any time the ADCS fails to do what

it was commanded to do, or, having done what it was commanded to do, has failed to put

the spacecraft into the desired orientation. Faults can arise in the ADCS from any of the

input categories in figure 1.1. Faults pertaining to external inputs come in the form of user

error in the definition of the guidance commands sent from the ground to the spacecraft.

Sensor errors refer to malfunction of the onboard attitude determination and environmental

sensors. Software errors relate specifically to errors in the onboard orbit propagator, its

associated environmental models, as well as the reference time. Lastly, actuator errors can

relate to the polarity of an actuator, an actuator’s performance, or the amount of power

supplied to it.

The approach to fault detection and isolation in this thesis is as follows:

1. Estimate the state of the spacecraft

2. Observe the state of the spacecraft

3. Compare the observed state of the spacecraft to the estimated state of the spacecraft

4. Use a trained neural network to detect and isolate the fault based on the comparison
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Chapter 2

Literature Review

2.1 Failure Analysis

A Fault Tolerant Control (FTC) system is a control system that is able to maintain

control authority in the presence of system faults or component failures. Such systems

make use of a combination of fault analysis during the design phase as well as intelligent

control schemes that are able to handle a variety of system faults. In such systems faults

are identified during the design phase and those that can accommodated by design are,

e.g. redundant sensors or actuators [1]. Faults that can occur online, such as reduced

actuation or failure of a boom to properly deploy, are handled by the controller and require

appropriate fault handling and control schemes [5].

In the past, faults have been handled in several ways, via redundancy in the control

system, failure analysis, or if-then rules applied to the controller [6–8]. Redundancy in the

controller provides for a backup system to be present in the instance that a component fails.

If a sensor or actuator fails there is another that is able to come online to take its place,

such as a second star tracker or a fourth reaction wheel in a 3-axis control system. Failure

analysis has proven itself to be an important tool in the design of space missions as it allows

the design engineer to identify and accommodate faults before the system is brought online.

Two popular methods of failure analysis are Failure Modes and Effects Analysis (FMEA)

and Fault Tree Analysis (FTA) [6]. These approaches differ somewhat in their scope and

methodology. FMEA is a bottom-up failure analysis method. For a given component in

a system, FMEA attempts to identify all the possible methods in which that component

can fail and what the consequences of each failure are. As a design tool FMEA allows the

designer to determine the severity of each individual failure mode such that it allows them

to focus their design efforts on those modes deemed the most severe [5].
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The disadvantage of using FMEA as a failure analysis tool is the potential for it to

be exhaustive and to overwhelm the designer with the number of failure possibilities [6].

Fault Tree Analysis differs from FMEA in that rather than trying to determine all of the

ways a component can fail, it begins by looking at a system-level fault and drilling down

to determine the possible root causes. The major advantage of using this method over

FMEA is that it is able to demonstrate the relationship between the various systems and

subsystems and how they interact with each other [6].

An expansion of the fault tree analysis has been proposed by Barua, et al, in the

form of a diagnostic tree (DX-tree) [9]. The goal of the DX-tree approach is to be able to

determine faults and their causes by avoiding manual limit checking of telemetry data and

is intended to be a semi-autonomous method of fault detection and identification by serving

as a diagnostic tool for ACS system failure analysis. Although online applications of FDI

exist in the form of observers and filters in the controller, their main limitations are the

accuracy of the models, development costs, and an inability to determine the root cause

of the system fault. With the DX-tree approach math models are not required and faults

are identified via a combination of telemetry variables and expert operator knowledge. The

main benefit of this approach is that is introduces a scheme to raise the level of autonomy

in the decision making process.

A third method of fault handling is the application of if-then rules to the system

controller. Such systems typically require long and costly development cycles. Due to

the fixed nature of the rules, such systems demonstrate only a limited ability to handle

dynamic system faults, such as actuator or sensor failures, and can therefore offer only

limited assurances as to their robustness and stability [8].

These methods of fault handling provide the attitude control system designer a priori

knowledge of potential system faults, giving them the ability to compensate for those faults

during the design phase. On their own they provide the designer with valuable insight into

the potential failure modes of the system; however, once passed the design phase they do

little to compensate for unseen errors during online operation. A more complete approach



8

to the design of a fault tolerant system is given by Izadi-Zamanabadi and Larsen [5] where,

along with the fault analysis methods outlined previously, they propose the addition of an

online supervisory system. The purpose of this supervisory system is to act as a design

analysis tool as well as providing system monitoring and error diagnosis possibilities. In the

proposed supervisory system the individual components of the ADCS system are analyzed

for failures via a method such as FTA or FMEA. After the system’s failure modes are

identified the severity of each mode is assessed to determine which are most severe. Those

that found to be mission critical are simulated in software to determine the effects on the

spacecraft should they actually occur. With the most severe faults identified the next step

in developing the supervisory system is to determine, via a structural analysis [5, 10], the

redundant information in the plant. This information is used in the identification and

diagnosis of system faults. The next steps concern the accommodation and handling of

detected faults via hardware or, preferably, software redundancies. Finally, the last step is

to develop the decision logic of the system, which determines which control mode to use

based on mission objectives and spacecraft health.

2.2 Fault-tolerant Control

Fault tree and failure modes and effects analyses are excellent tools for accommodating

faults during the design phase of an ADCS system and a supervisory system provides online

monitoring and fault detection capabilities. The greatest limitation these tools has, however,

is that they are only capable of handling the faults that they are designed to handle, and in

a control environment that demands ever more stringent accuracy requirements, may not

provide adequate robustness in the face of all potential system faults. It is proposed by

Narendra [11] that rather than attempt to identify and accommodate all possible system

faults during the design phase, an adaptable control system should be introduced that is

able to monitor and reconfigure itself in the presence of unknown errors. Traditional control

design, shown in figure 2.1, is based on a single, fixed model of the system. Such control

assumes that systems are time-invariant where in reality they are often required to operate

in multiple environments. Narendra recommends the use of an intelligent controller that has
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the ability to operate in multiple environments and to adapt itself to changing environments

via a method known as multiple models, switching, and tuning (MMST) [11].

Fig. 2.1: A traditional closed-loop feedback controller

In an MMST control system, shown in figure 2.2, multiple controllers are designed

for multiple operating environments. If one can determine which controller most closely

matches the given plant dynamics at any given time, that controller can be used to stabilize

the system. This is the aspect of “multiple models.” Since the performance of a controller

can only be measured after it is used, each controller also has an applicable system observer

that estimates the current system dynamics. The observers are used to calculate an error

function for each given controller and are able to switch to whichever controller currently

has the smallest value of that error function, and therefore, most closely matches the current

system dynamics. Immediately after the system has switched controllers it begins to adjust

the control parameters of the new controller to improve accuracy. This is what is meant by

“switching and tuning.”
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Fig. 2.2: A multiple models, switching and tuning (MMST) control scheme
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Chapter 3

Residual Definitions

Before a neural network can be deployed for FDI relative to a spacecraft’s ADCS, a

set of training data must first be defined. This training data, or sample set, consists of two

parts: the inputs to the system and the desired outputs of the system. As stated previously,

the behavior of the residuals of the ADCS are indicative of the state of that system and

will therefore serve as the input vector to train the network. The residuals are defined for

scalar quantities as

Residual = ObservedV alue− ExpectedV alue

and for vector quantities as

Residual = ||ObservedV alue− ExpectedV alue||

To generate the residuals, two software models are constructed. One model is meant

to represent the actual spacecraft. The model outputs are in effect simulated telemetry

from a spacecraft’s attitude determination and control system. This model will hereafter

be referred to as the Fault model. It’s purpose is to provide the observed telemetry needed

to form the residuals. The second model is the model of the spacecraft, or in this case,

the model of the modeled spacecraft. Referred to as the Reference model, its purpose is to

provide a basis for comparison to the Fault model. A detailed description of the software

models is presented in chapter 3.

One aspect of this thesis is that the fault detection scheme will not be limited to

detecting only faults in the actuators or sensors, but that it will be able to provide a general

sense as to whether the spacecraft is properly oriented, and if not, what the probable cause

of the misorientation is. In this thesis, “properly oriented” means that the spacecraft is in

the desired orientation, and not necessarily the commanded orientation. The state of the
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spacecraft, therefore, is expanded beyond the actuators and sensors and includes attitude

data as well. To fully define the state of the spacecraft, the ADCS is subdivided into five

systems: Attitude and Rate, Guidance, Actuators, Orbit Propagator/Time, and Sensors.

A note on notation is required before proceeding. The attitude determination and

control system generally has two kinds of outputs: those that are measured, and those that

are estimated. Quantities that are estimated, such as the attitude quaternion from the

Kalman filter, are denoted as ·̂. Quantities that are measured, such as the magnetic field

vector, are likewise denoted as ·̃.

3.1 Attitude and Rate

Observation of the spacecraft’s attitude and rate provide the first indications that a

fault has occurred. The attitude and rate residuals are defined as the difference between the

observed attitude, and rate and the expected attitude and rate. The spacecraft’s primary

attitude determination sensors provide the source of the observed attitude and rate. These

could be a star camera, a sun sensor, an IMU or rate gyro for example.

The attitude and rate as recorded by the Fault model, i.e. the spacecraft’s telemetry,

are compared against the attitude and rate of the Reference model. If the spacecraft is

doing what it should, then the attitude parameters should have a small residual and is

indicative of an “all is well” state.

The attitude and rate residuals, shown in equations (3.1) and (3.2), are defined as

the norm of the difference between the attitude and rate as reported by the Fault model’s

Kalman-filtered sensor outputs and the equivalent Reference model parameters.

qres = ‖q̂sc − q̂ref‖ (3.1)

ωres = ‖ω̂sc − ω̂ref‖ (3.2)
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3.2 Guidance

If the spacecraft is out of orientation, one possible source of error is the commands

received from the guidance system. Latch-up or single event errors could interrupt the

guidance commands as they are received by the spacecraft. Processor or clock malfunctions

could also cause the received guidance commands to either not execute on time or not

execute at all. Finally, if the spacecraft is receiving guidance commands directly from the

ground, there is always the possibility of user error that the commands were not defined

properly. By checking the echoed attitude and rate commands from the spacecraft versus

those estimated by the Reference model, one can determine that if the spacecraft is out of

orientation is it simply due to it receiving the wrong commands, e.g. by user error, or is

another source to blame, such as a clock reset.

The guidance command residuals defined the norm of the difference between the space-

craft’s echoed attitude and rate commands and those as relayed by the Reference model

as

q∗res =
∥∥q∗sc − q∗ref∥∥ (3.3)

ω∗res =
∥∥ω∗sc − ω∗ref∥∥ (3.4)

3.3 Actuators

The actuators are not checked against the Reference model. If the attitude and guid-

ance command residuals are small, then the actuator residuals will be small also. If the

attitude and guidance command residuals are biased, such as during a fault event, then

it goes without saying that the residuals of spacecraft actuators and Reference model ac-

tuators will be correspondingly large; however, this is not indicative of a fault in the ac-

tuators. For example, if the spacecraft is desired to have a final attitude quaternion of

q =

[
0 0 0 1

]T
and due to user error the command uploaded to the spacecraft’s
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guidance system was q =

[
0 1 0 0

]T
, a residual defined based on the output of the

spacecraft’s actuators and the Reference model’s actuators would be quite large, as the ref-

erence model was commanded to have a final orientation of q =

[
0 0 0 1

]T
. Though

the residual is large, the actuation system is not experiencing a fault event. This would

cause confusion and lead to difficulties when training a neural network. For this reason the

actuator residuals are defined based on the commanded actuator output and the measured

actuator output as reported by the spacecraft.

As will be described in section 4.1 the spacecraft is assumed to be 3-axis controlled and

its ADCS consists of a reaction wheel assembly and magnetic torque rods for momentum

management. Each reaction wheel has measurable inputs of wheel speed and supply voltage.

The magnetic torque rods are assumed to be either “all on” or “all off” and as such their

polarity is used to define the basis of a residual.

The actuator residuals are defined as

wresi = w̃i − w∗i , i = 1, 2, 3 (3.5)

vresi = ṽi − v∗i , i = 1, 2, 3 (3.6)

Pres = Pi − P ∗i , i = 1, 2, 3 (3.7)

where w̃i, ṽi, and Pi refer to the measured wheel speed (RPM), wheel voltage (volts) and

magnetic torquer polarity for each of the three actuators and w∗i , v
∗
i , and P ∗i refer to the

commanded wheel speeds, voltages and torquer polarities.

The measured wheel speeds and voltages are defined further as

w̃i = wi + ηw,i, i = 1, 2, 3 (3.8)
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ṽi = vi + ηv,i, i = 1, 2, 3 (3.9)

The noise terms are defined as having zero mean and being normally distributed as

η ∼ N
(
0, σ2

)
(3.10)

with the measurement of the wheel velocity being assumed known to within a 3σ value of

5 RPM and the wheel supply voltage to within 0.1 volts 3σ:

σwheel =
5

3
(3.11)

σVω =
0.1

3
(3.12)

3.4 Orbit Propagator and Time

The purpose of the propagator checks is to determine whether or not the attitude is

out of place due to an error in the propagator. By comparing the propagator’s output to

the reference model the spacecraft’s position in space and time can be confirmed. If it is

determined that the propagator is out of sync with the reference model, it would be an

likely source of attitude error. Note that propagator errors can be due, for example, to a

system reset resulting in a clock or orbit ephemeris errors.

There are a total of four residuals defined based on the spacecraft’s orbit propagator.

The first residual is defined as the difference between the spacecraft’s onboard clock, kept as

the Julian date, and the Julian date as kept by the reference model. The time residual is use

as differences in the clocks could cause errors with command timing or could be indicative

of a reset and is defined formally as

JDres = JDsc − JDref (3.13)

The second residual is the difference in the spacecraft’s orbital position as reported
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by the propagator and the orbital position as estimated by the reference model as seen in

equation (3.14).

rres = ‖rsc − rref‖ (3.14)

The position of the spacecraft as reported by the propagator is useful in a number of

ways. It is used to determine the nadir vector for spacecraft with nadir pointing payloads

that do not have other means of determining it, such as a horizon crossing indicator, or it

can also be used to model the location of the sun for solar pointing in lieu of a sun sensor.

The orbital velocity and orbital elements need not be considered as they so closely coupled

with the orbital position vector that if the position is incorrect, the velocity vector and,

correspondingly, the orbital elements will be similarly mismatched.

The third and fourth residuals, defined in equations (3.15) and (3.16), are the earth’s

magnetic field and the unit vector to the sun, both in inertial coordinates, and are used

similarly to the position residual as checks on the spacecraft’s orbit.

Bres =
∥∥IBsc −I Bref

∥∥ (3.15)

Sres =
∥∥ISsc −I Sref

∥∥ (3.16)

3.5 Sensors

The purpose of checking the sensors is to ascertain if any of the sensors is off in some

way. Each of the sensors, the star camera, IMU, magnetometer, and sun sensor, will be

checked and verified by comparing the sensor solution to a secondary solution obtained from

an alternate sensor. Comparing the two solutions by forming a residual determines whether

or not the sensor solution is faulty.



17

3.5.1 Star Camera

The star camera provides the primary attitude solution as a quaternion, q̂sc. A sec-

ondary solution is obtained by employing the TRIAD attitude determination algorithm,

which is described by Schuster in [12]. Using the measured solar and magnetic field unit

vectors in the body-fixed coordinate system, denoted as B îS and B îB, as well as the inertial

solar and magnetic field unit vectors as estimated by the onboard propagator, denoted as

I îS and I îB, the “best” rotation matrix that transforms from one coordinate system to

another can be calculated by constructing orthonormal matrices as follows:

First, construct the orthonormal inertial matrix as

R =

[
r1 r2 r3

]
(3.17)

where

r1 = I îS (3.18)

r2 =
I îS × I îB∥∥∥I îS × I îB

∥∥∥ (3.19)

r3 = r1 × r2 (3.20)

Next, construct the orthonormal matrix out of the body-fixed vectors as

S =

[
s1 s2 s3

]
(3.21)

where

s1 = B îS (3.22)
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s2 =
B îS × B îB∥∥∥B îS × B îB

∥∥∥ (3.23)

s3 = s1 × s2 (3.24)

The rotation matrix to transform from the inertial to the body-fixed coordinate system is

then simply

B
I A = SRT (3.25)

Finally, the attitude quaternion can be derived directly from the rotation matrix using Sidi

equation A.4.16 [13]:

q̂TRIAD =



q4

q1

q2

q3


=



±0.5
√

1 + a11 − a22 − a33
0.25(a23+a32)/q4

0.25(a31+a13)/q4

0.25(a12+a21)/q4


(3.26)

The residual that describes the validity of the star camera attitude solution is defined

as the difference of the TRIAD-derived attitude solution and the star camera’s attitude

solution:

qTRIAD,res = ‖q̂TRIAD − q̂sc‖ (3.27)

3.5.2 Rate Sensor

The rate sensor determines the angular rate of the spacecraft. As described by Sidi

in [13] it is possible to estimate a spacecraft’s angular body rates without the use of rate

sensors by using the star camera’s attitude quaternion solution. Noting the differentiation

of the quaternion elements, the body rates are estimated via the following relation:
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p̂

q̂

r̂

 =


q̂sc,4 q̂sc,3 −q̂sc,2 −q̂sc,1

−q̂sc,3 q̂sc,4 q̂sc,1 −q̂sc,2

q̂sc,2 −q̂sc,1 q̂sc,4 −q̂sc,3





˙̂qsc,1

˙̂qsc,2

˙̂qsc,3

˙̂qsc,4


(3.28)

The residual defined to check the validity of the rate sensor is defined as the norm of

the difference between estimated rates from equation (3.28) and the measured body rates

from the rate sensor.

IMUres =

∥∥∥∥∥
[
p̂ q̂ r̂

]T
−
[
p̃ q̃ r̃

]T∥∥∥∥∥ (3.29)

3.5.3 Magnetometer and Sun Sensor

The magnetometer and sun sensor measure the earth’s magnetic field and the position

of the sun in the body-fixed coordinate system. The sensor measurements are compared to

the magnetic field unit vector and the unit vector to the sun as estimated by the propagator

model. Noting that the propagator-estimated vectors are first transformed from the inertial

to the body-fixed coordinate system, the residuals are defined as

Magnetometerres =
∥∥∥B ĩB −B îB

∥∥∥ (3.30)

SunSensorres =
∥∥∥B ĩS −B îS

∥∥∥ (3.31)
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Chapter 4

Software Model Description

4.1 Attitude Determination and Control System Overview

The functional basis of the attitude determination and control system examined in this

research is the Hyperangular Rainbow Polarimeter (HARP) mission conducted by the Uni-

versity of Maryland, Baltimore County, of which the Utah State University Space Dynamics

Laboratory is a subcontractor. HARP is a 3-axis stabilized, 3U CubeSat whose primary

mission is to keep its imaging platform pointed nadir during science maneuvers. The ADCS

consists of a reaction wheel assembly with magnetic torque rods for momentum manage-

ment, orbit propagator, star tracker, IMU, sun sensor, and magnetometer. The system

software model was built using MATLAB/Simulink. Its major components are the attitude

control system and spacecraft dynamics, sensor models, orbit propagator, environmental

truth models, and disturbance torque models.

4.2 Attitude Control System

The major components of the ACS are the guidance trajectory generator, controller,

actuator models, and spacecraft dynamics. Descriptions for each of these components is

provided in the following sections.

4.2.1 Guidance Trajectory Generator

The spacecraft’s attitude commands are generated via a a guidance trajectory gener-

ator based on the eigenaxis slew given in [13]. The purpose of the trajectory generator is

determine the time-varying attitude, and angular velocity and acceleration commands in

the body-fixed coordinate system.
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The first step of the process is to determine the total rotation angle, α, and the eigenvec-

tor of rotation, e. The spacecraft is assumed to be in an initial orientation with quaternion

q0 and it is desired to slew to a final orientation, qf , via a 3-2-1 Euler rotation sequence with

Euler angles φ,θ, and ψ. Since the rotation matrix can be expressed either in terms of the

Euler angles or the attitude quaternion, qf can be determined by taking advantage of this

equivalency. Abbreviating cos(−) as c and sin(−) as s, the rotation matrix corresponding

to the Euler rotation sequence can be obtained as

A321 =


cφcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sψcψ + cφsθsψ cφcθ

 (4.1)

The quaternion corresponding to the final desired orientation can then be found from

equation (3.26) using the elements of A321 .

In order to determine the rotation angle and eigenvector of rotation for the desired

slew maneuver, the total attitude transformation must first be calculated as

Aslew = A (qf )AT (q0) (4.2)

where A (q) is

A (q) =


q21 − q22 − q23 + q24 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q1q2 − q3q4) −q21 + q22 − q23 + q24 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q21 − q22 + q23 + q24

 (4.3)

With the total attitude rotation calculated, the rotation angle can be found as a func-

tion of the trace of the attitude rotation matrix.

tr [Aslew] = 1 + 2 cos (α) (4.4)

Finally, since the eigenvector of rotation is a direct function of the total attitude rota-

tion, it can be calculated directly from (4.2) as
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e =


e1

e2

e3

 =


(a23−a32)/2 sinα

(a31−a13)/2 sinα

(a12−a21)/2 sinα

 (4.5)

The next step of the process is to generate a single degree of freedom trapezoidal

trajectory. The purpose of the trapezoidal trajectory is to determine the time-varying

rotation angleα (t), rotational velocityα̇ (t), and rotational accelerationα̈ (t), such that the

time-varying quaternion can be computed as a function of the eigenvector of rotation, shown

in (4.6).

q (t) =



e1 sin (α(t)/2)

e2 sin (α(t)/2)

e3 sin (α(t)/2)

cos (α(t)/2)


(4.6)

The attitude command, q∗, is then generated as a function of the time-varying quaternion,q (t),

and the spacecraft’s initial quaternion, q0, as shown in equation (4.7)

q∗ = Qq (t) (4.7)

where

Q =



q4 q3 −q2 q1

−q3 q4 q1 q2

q2 −q1 q4 q3

−q1 −q2 −q3 q4


(4.8)

Finally, the spacecraft’s rotational velocity and acceleration commands, ω∗and α∗ re-

spectively, are computed as functions of α̇ (t), α̈ (t), and e as

ω∗ = α̇ (t)e (4.9)
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α∗ = α̈ (t) e (4.10)

4.2.2 Plant Dynamics

The basic equation of motion governing the vehicle’s dynamics is given by Euler’s

equation

T =ḣ + ω×h (4.11)

Here, ḣ represents the vehicle’s total torques in the body frame and is defined as,h is the

vehicle’s total momentum in the body frame, including that imparted by the ACS, ωis the

vehicle’s angular rate in the body frame, and T, the total external torques experienced by

the vehicle, can be written

T =Tc + Td (4.12)

where Tc represents the vehicle’s attitude control torques and Td are the environmental

disturbing torques experienced by the vehicle. The spacecraft’s plant dynamics can be

represented as

T = Iω̇ (4.13)

where I is the spacecraft’s inertia tensor andω̇refers to its rotational acceleration. Using

estimates for the disturbing torques, Euler’s equation can be solved to determine the angular

acceleration as

ω̇ = I−1
[
Td − ḣ− ω⊗ (Iω + h)

]
(4.14)

Noting that ω⊗ is the cross product matrix of the angular rate vector and is defined as
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ω⊗ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (4.15)

(4.14) can then be numerically integrated to obtain the vehicle’s angular rate. As

described in [13] the attitude quaternion can be written as a differential equation in the

form of

d

dt
q = q̇ =

1

2
Ωq (4.16)

where q is the current attitude quaternion at a given time and

Ω =



0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


(4.17)

Integrating equation (4.16) yields the spacecraft’s current orientation, q (t).

4.2.3 Controller Selection

The purpose of the controller is to stabilize the vehicle’s plant dynamics. It does this by

commanding the actuators to generate a control torque such that it zeros the acceleration of

the spacecraft caused by the disturbing torques. A proportional-integral-derivative (PID)

control law, shown in equation (4.18), was chosen for the HARP spacecraft due to its

robustness and the ability of the added integral mode to reduce the disturbance error.

Tc = Kd (ω∗ − ω) + 2Kpqeqe4 +Ki

∫
2qeqe4dt+ Iα∗ + ω⊗ (Iω + h) + Td (4.18)
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The error, qe, is defined as

qe = Qqs (4.19)

where Q is the same as (4.8) and qs is

qs =

[
−q1 −q2 −q3 q4

]T
(4.20)

The proportional, integral, and derivative gains, Kp, Ki, and Kd, respectively, were

chosen based on the deadbeat design of the system defined as

Is3 +Kds
2 +Kps+Ki = 0 (4.21)

According to Dorf and Bishop in [14] this third order system can be represented as

s3 + 1.9ωns
2 + 2.2ω2

ns+ ω3
n = 0 (4.22)

where ωn refers to the natural frequency of the system. Isolating the highest order term of

(4.21) and equating with (4.22) yields

s+
Kd

I
s2 +

Kp

I
s+

Ki

I
= s3 + 1.9ωns

2 + 2.2ω2
ns+ ω3

n (4.23)

At this point the selection of the controller gains is dependent only upon the choice

of the natural frequency and the spacecraft’s inertia tensor. For a deadbeat design with

ωn = 1 the gains become

Kp = 2.2I (4.24)

Ki = I (4.25)
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Kd = 1.9I (4.26)

4.2.4 Actuator Models

The model’s actuation system is based on HARP’s ADCS, which uses the off-the-shelf

XACT system developed by Blue Canyon Technologies. It consists of a trio of reaction

wheels mounted along each of the body axes as well as magnetic torque rods (MTR) for

momentum management. Per Blue Canyon Technologies’ specifications, the momentum

wheels have a maximum momentum capability of 18 Nms and torque generation of 0.6

mNm. They are modeled in the Laplace domain as

hwheel(s)

hwheelcmd(s)
=

1

τws+ 1
(4.27)

HARP’s reaction wheels have a maximum wheel momentum of approximately 18 mNms.

This corresponds to a maximum wheel speed of 6,000 RPM at 12 volts. The commanded

wheel speed is estimated based on the wheel’s moment of inertia as

ωwheelcmd =
hwheelcmd(s)

Iw
(4.28)

The actual measured wheel speed of the each of the reaction wheels is assumed to be

known only to within ±5 RPM and is modeled as

ωwheel =
hwheel(s)

Iw
+ ηwheel (4.29)

where ηwheel is given in equation (3.11).

The voltage draw of the reaction wheels was estimated based on the quadratic function

shown in equation (4.30) to simulate increasing power requirements as they spun faster, up

to a maximum of 12 volts at 6,000 RPM. The measured voltage was assumed known to

within ±0.1 volts.
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Vω = 2.22E − 7ωwheel + 6.67E − 4ωwheel + ηVω (4.30)

with ηVω given in equation (3.12).

4.3 Attitude Determination System

The XACT attitude determination and control system used on HARP comes with a

suite of attitude determination sensors including a star tracker, inertial measurement unit,

magnetometer, and sun sensor, as well as a Kalman filter to process sensor noise. All sensors

have a sampling rate of 50 Hz with the exception of the star tracker, which is capable of a

5 Hz attitude solution.

4.3.1 Star Camera

A star camera is used as the primary means of attitude determination on HARP. The

spacecraft’s attitude quaternion can be determined via comparison of vectors measured in

the body-fixed coordinate system with known vectors in the inertial coordinate system. The

basic model is given as

b̃i = Ari + νi (4.31)

where the unit vectors measured in the body-fixed coordinate system are given by b̃i,

the known unit vectors in the inertial system given by ri, and the errors represented by

νi. The rotation between the inertial and body-fixed coordinate systems is given by the

matrix, A, and is determined by integrating equation (4.16) and applying the result to

equation (4.3). The noise is modeled as a random variable with variance

σ2 = 0.01 deg2 (4.32)



28

4.3.2 Inertial Measurement Unit

The spacecraft’s angular rate is measured using an inertial measurement unit (IMU)

and is modeled as

ω̃ = ω + β + ηu + ην (4.33)

where ω̃ denotes the measured angular rate, β, ηu and ην represent the sensor bias, bias

noise, and sensor noise respectively and have values of

β = 0.1 ◦/hr (4.34)

ηu =
√

10E − 10 rad/s3/2 (4.35)

ην =
√

10E − 7 rad/
√
s (4.36)

4.3.3 Kalman Filter

Since the measurements made by the star tracker and IMU are corrupted by noise

and bias, they must first be filtered in order to obtain estimates of the true attitude and

angular rate. This is accomplished via a discrete time extended Kalman filter (EKF) as

outlined in [15]. The discrete time EKF is the preferred filtering method as the discrete

time propagation of the state and covariance can accommodate the difference in sampling

rates between the star tracker (5 Hz) and IMU (50 Hz).

4.3.4 Magnetometer and Sun Sensor Models

The magnetometer and sun sensor models follow the same general format as (4.33),

but is modified as

x̃ = µx + β + η (4.37)
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x̃ represents the measured quantity, which is either the earth’s magnetic field vector

or the unit vector to the sun in the spacecraft’s body-fixed coordinate system. x is the

truth vector for either the magnetic field or the unit vector to the sun. µis an uncertainty

parameter. Since the environmental truth models of both the reference and spacecraft

models are identical, and the spacecraft model is meant to simulate actual telemetry, this

parameter is added in order to introduce the uncertainty that would exist between the

reference model and actual spacecraft telemetry. The uncertainty parameter is modeled as

µ =


cosσnx

cosσny

cosσnz

 (4.38)

where σ is the assumed maximum uncertainty in the quantity being measured and ni is

a random number between zero and one. The maximum uncertainty of the magnetometer

was assumed to be σ = 10◦while the sun sensor was assumed to have maximum uncertainty

of σ = 5◦.

β represents the bias in the measurements. This is mainly a concern with the magne-

tometer. It is assumed that the spacecraft is not magnetically clean and that there exists

a residual magnetic field. In lieu of available estimates or measurements of the HARP

spacecraft, the residual magnetic field was assumed to be

β =


100

50

75

nT (4.39)

η refers to the noise present in the measured unit vectors and is modeled as per equation

(3.10) with

σmag = 0.01 (4.40)
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σsun = 0.0005 (4.41)

4.4 Truth Models

In order to accurately characterize the spacecraft’s operating environment, models sim-

ulating the orbital dynamics and earth’s magnetic field have been included. The earth’s

heliocentric planetary state vector is also calculated in order to determine when the space-

craft is in eclipse and is based on the method outlined in [16].

4.4.1 Orbital Dynamics

The spacecraft’s orbit mechanics include the effects of the earth’s oblateness and are

modeled according to Curtis in [16]. The basic equation of two-body motion is given in

(4.42). Note that ûr refers to the spacecraft’s radial unit vector.

r̈ =
−µ
r2

ûr (4.42)

In order to adequately capture the earth’s oblateness effects, 4.42 is modified by adding

the disturbing acceleration due to the second zonal harmonic, J2, as

r̈ =
−µ
r2

ûr + p (4.43)

The disturbing acceleration can be written in terms of the spacecraft’s radial, traverse,

and normal unit vectos as

p = prûr + p⊥û⊥ + phĥ (4.44)

The components of p themselves are functions of the second zonal harmonic, J2, the

spacecraft’s radial position vector, r, the earth’s radius, R, as well as the argument of

perigee, ω, the inclination, i, and true anomaly, θ, as shown below.
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pr = − µ
r2

3

2
Js

(
R

r

)2 [
1− 3 sin2 i sin2 (ω + θ)

]
(4.45)

p⊥ = − µ
r2

3

2
Js

(
R

r

)2

sin2 i sin 2 (ω + θ) (4.46)

ph = − µ
r2

3

2
Js

(
R

r

)2

sin 2i sin (ω + θ) (4.47)

Integrating 4.43 once yields the spacecraft’s velocity vector. Integrating once more

yields position.

4.4.2 Magnetic Field Model

The International Association of Geomagnetism and Aeronomy (IAGA) provides a

model of the earth’s magnetic field known as the International Geomagnetic Reference Field

(IGRF). The earth’s magnetic field can be modeled as a spherical harmonic expansion, the

coefficients of which are provided by the IAGA.

4.5 Environmental Disturbance Models

4.5.1 Gravity Gradient

The largest external disturbing torque experienced by the spacecraft is the gravitational

moment due to the gravity gradient. Within a magnetic field, an asymmetric body will tend

to align the axis with the smallest moment of inertia to the direction of the field [13]. As

such, for satellites in low earth orbit, this disturbance cannot be neglected. The torque due

to the gravity gradient for each of the spacecraft’s body axes is a function of the spacecraft’s

orbital radius, moments of inertias and Euler angles as
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TGG =
3µ

2R3
0


(Izz − Iyy) sin 2φ cos2 θ

(Izz − Ixx) sin 2θ cosφ

(Ixx − Iyy) sin 2θ sinφ

 (4.48)

where R0 is the orbital radius and φ and θ refer to the roll and pitch angles respectively.

4.5.2 Magnetic Field

Due to the inability of spacecraft designers to design a spacecraft that is absolutely

magnetically neutral, there is usually a residual dipole moment that is created by the

spacecraft’s internal components. The interaction of this dipole moment with the earth’s

magnetic field imparts a torque on the spacecraft. This torque can be modeled as

Tm = DB (4.49)

where D is the spacecraft’s residual dipole moment in units of amps · turns ·m2and B is

the earth’s magnetic field vector in Tesla [17].

4.5.3 Aerodynamic Drag

Due to HARP’s low orbital altitude of 600 km, the spacecraft will experience an external

torque due to atmospheric drag. The torque due to drag was modeled per [17] as

Ta = F (cpa − cg) (4.50)

The center of pressure and center of gravity are denoted as cpa and cg respectively and

are estimated from CAD models. F is the force term and is defined further as

F =
ρCDAV

2

2
(4.51)

The atmospheric density, ρ, is estimated based on the MSISE-90 model of earth’s upper

atmosphere. The drag coefficient, CD, was assumed to be 2.5. The spacecraft’s surface area,



33

A, was estimated based on CAD models. Finally, V refers to the spacecraft’s orbital velocity

and is found by integrating equation (4.43).
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Chapter 5

Training the Neural Network

5.1 What is a Neural Network?

According to Haykin [18] a neural network can be described as “a massively parallel

distributed processor made up of simple processing units [’neurons’], which has a natural

propensity for storing experiential knowledge and making it available for use.” It is able

to gain knowledge by acquiring it through its environment via a learning process and able

to store that knowledge using synaptic weights. The synaptic weights are analogous to the

gains of a linear adaptive filter and are modified during the learning process, much as filter

gains are, until the network is able to achieve its desired performance.

One of the great advantages of using a neural network in FDI is its ability to perform

input-output mapping. Using input-output mapping a neural network is able to modify its

synaptic weights by applying training samples. The training samples consist of an input

signal and a desired response. During training the synaptic weights are modified in order to

minimize the error between the desired response and actual response of the network. The

input-output training samples act as a “teacher” for the neural network and they tell the

network how it should respond to a given example from the training set [18].

5.2 Neural Network Training Set

To remind the reader, the purpose of the residuals is to provide the learning space from

which a neural network can be trained to detect and isolate fault events. A neural network

is trained by being given examples from a training set of data, each example consisting of

a set of inputs with a corresponding desired output. It is desired that the residuals defined

by the attitude determination and control system form the input portion of the training

set, and therefore a vector of residuals is defined as
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Inputs =

[
qres ωres q∗res ω∗res wres3×1 vres3×1 Pres3×1 JDres rres Bres

Sres qTRIAD,res IMUres Magnetometerres SunSensorres

]T
21×n

(5.1)

The input vector has dimensions 21 x n, where n is the number of examples in the training

set. A Matlab script was used to generate this vector and is given in appendix B.1.

Similarly, a target vector must also be defined to complete the training set. The purpose

of the target vector is to tell the neural network how it should respond to a given input. As

the inputs are defined as the residuals of the attitude determination and control system, the

outputs correspond to the possible faults that could be present in the ADCS. Each element

of the target vector corresponds to a single source of error and has a default value of 0.

When a fault is detected by the neural network, it changes the element corresponding to

the fault to a 1.

The input categories of figure 1.1 are consulted once again to determine the sources

of error in the ADCS to define the target vector. The external inputs to the ADCS are

comprised of such quantities as the true position of the sun, the earth’s magnetic field, the

spacecraft’s true attitude and angular rate as well as guidance commands from the ground.

As the latter is the item that is most controllable, a fault state is defined that corresponds

to either improperly defined ADCS guidance commands, e.g. by user error, or guidance

commands that are received improperly due to another unknown source.

The ADCS sensors are responsible for taking the measurements that allow for accurate

attitude determination and are critical to its operations. Fault states are therefore defined

that correspond to each of the attitude determination sensors. Such sensors can include

star trackers and horizon crossing indicators. This thesis assumes an ADCS with four such

sensors: star tracker, IMU, magnetometer, and sun sensor with fault states reserved for

each.

Like the sensors the ADCS software is equally critical to the operation of the system.
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The software is responsible for issuing attitude commands, reaction wheel commands, or

managing the momentum storage of the control system. It is also comprised of the or-

bit propagator, which is responsible for propagating the spacecraft’s orbital position and

estimating the position of the sun and earth’s magnetic field in lieu of GPS or sensor mea-

surements. As seen in figure 1.1 most of the software is situated downstream from two

main inputs: the orbit propagator and the guidance commands. A fault in either of these

two components would manifest itself, for instance, in the controller commands to the re-

action wheels, or other downstream component. As the guidance commanding is handled

elsewhere, an element in the fault vector is then reserved based on the performance of the

onboard propagator. Also, as the spacecraft’s position and targetting capabilities are also

time-dependent, a second fault corresponding to the spacecraft’s onboard clock in the form

of the Julian date, is reserved as well.

The final source of inputs in the control actuators: the reaction wheels and magnetic

torque rods. Each reaction wheel has two elements of the target vector. One element

corresponds to wheel speed, the other to the power being supplied to the wheel. The

reaction wheels have the separate elements defined to better differentiate the cause of error,

whether it is the wheel itself malfunctioning or if the cause is due to a lack of nominal

power. The magnetic torque rods each have a single element corresponding to an on/off

state and whether the polarity is correct.

Sixteen sources of error have been defined: 9 corresponding to the reaction wheels

and torquers, 2 corresponding to the propagator and clock, 1 corresponding to the com-

manding of the ADCS, and 4 for the attitude determination sensors. A 16 element vector

corresponding to each of these errors is defined as

Targets =

[
Speed−Whli Power −Whli Polarity −MTRi Cmds Clock

Speed−Whli Power −Whli Polarity −MTRi Cmds Clock

]T
16×n

(5.2)

with each element having a value of 0 for nominal state or 1 when a fault has been detected.



37

The target vector has dimensions 16 x n, where n is the number of examples in the training

set. A Matlab script was used to generate this vector and is given in appendix B.2.

5.3 Proof of Concept

Prior to training a neural network using the input and target vectors defined in equa-

tions (5.1) and (5.2), a reduced set of inputs and targets was defined in order to demonstrate

proof of concept. The purpose of performing a proof of concept exercise was to demonstrate

that a neural network could indeed discern a pattern within a set of residuals defined by

an ADCS and determine a fault. A simple reaction wheel-controlled, single degree of free-

dom spacecraft was considered. Residuals were defined to compare the spacecraft’s attitude

to that estimated by a reference model, and the measured wheel speed and voltage were

compared to the commanded wheel speed and voltage. Two possible sources of error were

assumed for the system –wheel speed, to check for mechanical failure, and wheel voltage to

assure nominal power was available. The associated input and target vectors used to train

the neural network are given in equations (5.3) and (5.4).

X =

[
θres wres vres

]T
(5.3)

Y =

[
WheelSpeed WheelV oltage

]T
(5.4)

A pattern recognition neural network was constructed using the Matlab neural net

toolbox. Pattern recognition is described by Haykin as “the process whereby a received

pattern or signal is assigned to one of a prescribed number of classes” [18]. The length

of the target vector, Y, represents the number of classes that the input vector, X, will be

divided into, which in this instance is two. An example set was constructed by commanding

the spacecraft to perform a 180◦slew maneuver at t = 60 seconds. At t = 145 seconds

the output of the wheel was limited to 25% for10 seconds in order to simulate a wheel

malfunction before being allowed to return to normal operation. During the maneuver the

residuals defined by (5.3) were monitored and are presented in figure 5.1. It was assumed
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that the wheel speed was known to within three standard deviations of ±5RPM . When

the measured wheel speed exceeded this threshold, the element of Y corresponding to the

speed of the reaction wheel was switched from 0 to 1 to indicate a fault state.

Fig. 5.1: Attitude, wheel speed, and wheel supply voltage training residuals

As can be seen from the residuals, at 145 seconds there is a sudden bias in the wheel

speed as the wheel’s torque authority is limited. There is a small aberration in the attitude

residual as the wheel is unable to provide the necessary output during the fault event. The

bias in the attitude and wheel speed residuals persist until 155 seconds, at which time the

wheel returns to normal operation and the attitude is able to readjust. The reaction wheel

supply voltage residual remains unchanged from a nominal value during the fault event,

which indicates that the ADCS had no trouble supplying the power required by the wheel.

Applying this data to the neural network yields the results shown in figure 5.2. From

the figure it is easily seen that the neural network is reporting normal wheel operation
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and nominal power available until t = 145s at which point it successfully detects the fault

induced in the reaction wheel. It is worth noting that based on the results shown in figures

5.1 and 5.2 that although a fault was detected in the reaction wheel, the residuals and the

neural network output all returned to nominal values and is indicative of the spacecraft

successfully completing the desired maneuver.

Fig. 5.2: Fault detected at t = 145s

5.4 Generating the Training Data

Based on the example given in section 5.3, a pattern recognition neural network is

shown to be able to discern a fault within a reduced set of residuals for the specific case of

a reaction wheel failure. To detect faults relative to the entire ADCS the training space is

expanded to include all of the residuals described in chapter 3 and is given by equation (5.1).

The target vector, which tells the neural network what pattern of residuals corresponds to
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which failure, is given by equation (5.2).

For the neural network to be able to recognize failures in the ADCS it must first be

trained to recognize what patterns of residuals correspond to which component failures, and

what patterns of residuals correspond to normal behavior. As such the neural network will

require an extensive number of example sets that are comprised of residuals generated for

both fault and nominal operation scenarios that encompass the entire ADCS, that is, all

of the components of the target vector describe in equation (5.2). The training data were

generated in the following manner:

First, determine which component the fault will be injected into, for example, the 

amount of power available to the reaction wheels. Next, determine a set of maneuvers 

for the spacecraft to perform that will generate residuals over a wide range. The intent 

of this is to attempt to bound the problem and provide the neural network with training 

examples that cover as wide a range as possible. After defining the maneuvers, the next 

step is to generate simulated telemetry using both the reference and fault software models 

and to use that telemetry to form the residual vector. Note that the telemetry should 

be sampled at an appropriate rate to mimic as closely as possible the data that would be 

received from the spacecraft. In the case of HARP, a full attitude solution is available at 

a rate of 5 Hz. Finally, the appropriate element of the residual vector is then thresholded 

such that when the threshold is exceeded the corresponding element of the target vector 

is incremented from 0 to 1. The values of the thresholds are determined either 

empirically or based on the known standard deviation of a measured quantity, such as 

sensor noise. Following this general procedure, a library of training examples is generated 

for the ADCS on a component-by-component basis.

5.4.1 Nominal Training Examples

A nominal training set of examples, corresponding to normal operation of the ADCS,

was generated for four maneuvers: a stationkeeping maneuver where the ADCS was com-

manded to keep the spacecraft nadir pointing, and 180◦ maneuvers for roll, pitch, and yaw.

Since no fault was present during any of these cases, no thresholding of the residuals was
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required. The residuals for the nominal stationkeeping maneuver are shown in figure 5.4.

Quantities that would normally be thresholded are shown with their thresholds given as

hashed lines.

The target vector, which describes to the neural network the output desired for a given

input, is shown graphically in figure 5.3. Since no faults were defined for either the nominal

stationkeeping or the roll, pitch, or yaw maneuvers, the desired output of each component

is 0.

Fig. 5.3: Neural network output for a nominal hold maneuver

5.4.2 Training for Reaction Wheel Faults

Training examples were generated for each of the reaction wheels that covered two

different faults: a sudden limitation of available torque authority and a limiting of the

available power. 180◦ maneuvers for roll, pitch, and yaw, as well as stationkeeping, were

defined in order to generate as large a residual as possible for each of the reaction wheels.
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For each of the faults and maneuvers listed previously, the available torque authority or

power were limited to 75%, 50%, 25%, and 0% of that which was requested by the system.

In the case of limiting the torque authority, it was assumed that a mechanical malfunction

was to blame. As such, a ten second duration was assumed for each fault event, during

which an extra noise term with power equal to 1% of the total torque capability of the wheel

was added to the output. This extra noise was omitted during the simulated power failures.

The lack of available power was not assumed to be a singular event and therefore had no

fixed duration and was allowed to persist for the entirety of the simulated fault event. For

each failure mode it was assumed that the speed of the wheel was known to within three

standard deviations of 5 RPM and each wheel residual was thresholded at five standard

deviations. Figure 5.5 shows residuals that are typical for a mechanical failure of a reaction

wheel.

The maneuver associated with these residuals is a 180◦ maneuver about the pitch axis.

Between t = 145 seconds and t = 155 seconds the output of reaction wheel 2 was limited

to 25% of what was requested by the controller. During this time the residual of reaction

wheel 2 experiences a very large, sudden bias as it is no longer capable of providing the

desired torque commanded by the system. The reference attitude and reference angular

rate residuals also experience biases during this time. After t = 155 seconds the wheel is

allowed to return to normal operation and the spacecraft is able to complete the maneuver

as is denoted by the residuals returning to nominal values. The residual of reaction wheel

2 was thresholded to generate the desired neural network output shown in figure 5.6.

Limiting the power available to the reaction wheels was conducted in a manner similar

to the mechanical malfunction described above, with the exception being that the noise

term associated with the mechanical malfunction was omitted and that once the fault was

injected it was allowed to persist indefinitely. Figures 5.7 and 5.8 show the residuals and

desired network response of a typical power failure event.
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Fig. 5.6: Neural network output associated with a failure in a reaction wheel
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Fig. 5.8: Desired neural network output for a power failure in reaction wheel 2

5.4.3 Training for the Magnetic Torque Rods

Figures 5.9 and 5.10 give the residuals and output associated with the training of the

magnetic torque rods. Training examples for the magnetic torque rods were limited to

determining whether or not they fired as commanded with the proper polarity. For each of

the three magnetic torque rods 180◦ maneuvers for roll, pitch, and yaw were simulated. To

simulate constant desaturation of the reaction wheels the MTRs were commanded to fire

when the wheels reached 8% of their momentum storage capability. When the torque rods

were commanded to fire their polarity was reversed in order to generate the residual. Since

the residual of the MTRs is based only upon whether or not the polarity is correct, it was

thresholded such that any non-zero value would be indicative of a fault.
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Fig. 5.10: The desired output associated with a fault in the magnetic torque rods

5.4.4 Training for Guidance Command Errors

A probable source of error when commanding a CubeSat to point towards a target is

that the commands are somehow received improperly by the ADCS. This error could take

one of several forms. For example, there is the possibility that the user working the ground

console has programmed the pointing commands improperly. This is especially true when

pointing towards a target of opportunity that has not been previously hard coded into the

ADCS flight software. Another form that this error could take would be either a command

parameter became corrupted during transmission, or there was an intermittent delay that

caused the commands to be processed sporadically [19].

Two tests were defined to train for this error. The first tests for guidance commands to

the ADCS that are either defined improperly or are otherwise corrupted prior to execution.

In this instance two sets of maneuvers were defined: a ±180◦ pitch for the reference model
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which represents the desired performance of the spacecraft, and a ±180◦ roll for the fault

model which represents its actual performance. The assumption in this instance is that

either the user programming the ADCS commands was in error or some unknown software

glitch has garbled the original command. Figure 5.11 shows the residuals which are typical

for this error. Note that since the final attitude and rate residuals did not return to a

nominal value that this indicates that the spacecraft is not in the desired orientation.

When the guidance commands have been set improperly several biases present them-

selves in the residuals relative to the reference model. This is because the reference model

is meant to represent the desired response of the ADCS compared to the actual response

based on the spacecraft’s telemetry. In both cases the spacecraft was commanded to turn

through the same rotation angle with the same angular rate, but due to an unknown error,

whether user or otherwise, the commands that were executed were not those that were

intended.

The second test assumed a transient malfunction such that the guidance commands

were received intermittently either due to processor malfunction or other unknown error

source. These tests were defined such that the guidance commands were not received at

time = t, but rather at time = t+∆t where ∆t is an unknown delay and is defined formally

as

∆t = µt + νt (5.5)

In equation (5.5) µt is the mean delay time and is allowed to vary between zero and

10, 000 ms. The mean delay time was also allowed to vary by an amount, νt, which is a

normally distributed parameter with standard deviation, σt defined as

σt =
µt
10

(5.6)

Residuals typical of the second scenario are given in figure 5.12.
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Figure 5.13 shows the response desired of the neural network for errors relative to the

guidance commands received by the ADCS. Since the command residual is defined as the

difference between the intended commands and those echoed by the spacecraft, the residual

threshold was set empirically so as to be a small value, 0.002.

Fig. 5.13: The output desired of the neural network for errors relative to the ADCS guidance
commands

5.4.5 Training for Clock and Propagator Errors

Training for errors related to the orbit propagator and the onboard clock encompassed

whether or not the orbit propagator had drifted too far between updates and whether the

clock was adequately synchronized with the ground. For both errors stationkeeping and slew

maneuvers were defined for the ADCS. Figure 5.14 shows residuals typical of a propagator

error.
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When the propagator is in error several of the residuals that are dependent upon prop-

agator inputs will experience a bias. The propagator position and magnetic field residuals,

and to a lesser extent, the solar position residual, will all experience a bias when the propa-

gator is in error. For the stationkeeping maneuver highlighted in figure 5.14 the propagator’s

orbit elements were allowed to drift from those that were assumed in the reference model

such that were was an error of approximately 50 km between the position as estimated

by the reference model and that reported by the onboard propagator. The propagator’s

magnetic field residual is also non-zero. These two non-zero residuals are excellent indica-

tions that the spacecraft may not necessarily be in the position it was assumed. It is worth

noting also that the although the solar position residual is very small in this instance, its

magnitude is dependent upon the size of the error in the propagator.

Training examples were also generated to allow the neural network to recognize when

the time as reported by the spacecraft differed from that of the reference model. The timing

of commands is critical to the spacecraft’s pointing accuracy, especially when pointing

towards the earth. To train for this error two example cases were considered. The first

assumed that the onboard clock had reset to 1 January, 2000 00:00:00.000 UTC and had

remained in this reset state prior to being updated either manually or by synchronizing

with a GPS. The second case assumed a relatively small difference in time of one minute.

Figure 5.15 shows the residuals typical for a clock error.

Upon inspection of the residuals when the onboard clock is not timed exactly with

the reference, biases appear in any system that has residuals defined based on either the

clock or the propagator. Note also the appearance of biases in the residuals of the reference

attitude and angular rate and their commands. The appearance of residuals here is due to

the fact that the ADCS was commanded to perform a maneuver at a specified time. As

the onboard clock was not properly keeping time the ADCS failed to execute the maneuver

as scheduled. Figures 5.16 and 5.17 show the desired network response to propagator and

clock errors. Note that the propagator and clock residuals were thresholded at 10 km and

1 Julian minute (6.9e-4) respectively to generate the desired outputs.
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Fig. 5.16: The output desired of the neural network for a propagator error

Fig. 5.17: The output desired of the neural network given a clock error
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5.4.6 Training for Star Camera Errors

A star camera is often times the primary sensor used for attitude determination and

as such its attitude solution is checked against the TRIAD solution of section 3.5.1. If the

residual generated by these two solutions exceeds a nominal value, it could be that the star

camera is in error. Probably the greatest sources of error in the star camera attitude solution

is glint as well as field of view obstruction. Though many star camera manufacturers define

“keep out” zones relative to the earth, moon, and sun to minimize the possibility that

either of these could adversely effect the attitude solution, the possibility remains that the

star camera is not immune from this error. The most likely way in which glint or field of

view obstructions manifest themselves would be as an error in the attitude solution for one

or more of the spacecraft’s body axes. To model this error stationkeeping and 180◦ slew

maneuvers were defined to bound the problem. For each of the maneuvers, Euler angle

errors were introduced into the star camera attitude solution for each of the three body

axes ranging from 0◦ to 45◦ prior to the solution passing through the Kalman filter. The

residuals for a star camera attitude solution with a y-axis error due glint or field of view

obstruction of 45◦ are shown in figure 5.19.

The main residual in consideration for this error is the TRIAD attitude solution as

the purpose of the TRIAD solution is to act a check against the solution provided by the

star camera and Kalman filter. For the case presented in figure 5.19 an error of 45◦ was

introduced into the y-body axis of the star camera’s attitude solution prior to filtering at t =

145 s. To simulate the transient nature of an error due to glint or field of view obstruction the

fault was defined to persist for 10 seconds before returning to normal operation. After the

error in the attitude solution has passed and the star camera returns to normal operation the

ADCS again perceives that is it out of orientation due to its previous correction maneuver.

In this instance the sudden shift in the attitude solution caused the ADCS to overreact

trying to correct for what it perceived to be a gross error in its desired attitude. It then

tries to reorient itself as quickly as it can by commanding its wheels to spin faster than their

capability, which ultimately puts the spacecraft into a tumble from which it was not able
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to recover. The reader will note also the large bias in the rate sensor residual. Although

no fault was injected for the rate sensor in this scenario, the residuals for both the star

camera and rate sensor are defined based on the post-filtered sensor solutions. Both the

star camera attitude and rate sensor inputs are defined as states in the Kalman filter. Due

to the coupling of the solutions in the filter, it was found that if a fault was defined in either

the star camera or the rate sensor then the residuals for both the TRIAD attitude solution

and the rate sensor would become biased. The false biasing of the residuals will be seen

again during the discussion of the training for the rate sensor errors in section 5.4.8.

Based on empirical observation of the nominal TRIAD solution residuals, a threshold

value of 0.15 was used to determine the fault state. The neural network’s desired response

to a fault in the star camera is given below in figure 5.18.

Fig. 5.18: The neural network’s desired response to an error in the star camera solution
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5.4.7 Training for Magnetometer and Sun Sensor Errors

Errors related to the magnetometer and sun sensor can come from many sources, but

in many instances take the form of an unknown noise signal in the sensor measurements.

The origin of this noise could be interference generated while the spacecraft is transmitting

data or by a power brownout for example. The sensors themselves may also malfunction in

such a fashion as to cause the output to “stick,” for example if a magnetic torquer fires and

saturates the magnetometer. Based on these assumptions, two types of errors were defined

for both the magnetometer and sun sensor.

The first assumed either sensor was experiencing added noise of unknown magnitude.

Recall from equation (4.33) that the measured magnetic field and solar unit vectors were

modeled with noise components. To model a noise of unknown magnitude on either of the

sensors, the nominal noise on the measurement was increased by scalar multiples of 2.5, 5,

and 10 for spacecraft stationkeeping and 180◦ pitch maneuvers.

The second error defined for the magnetometer and sun sensor assumed that one of

the sensor outputs for an individual axis had become “stuck” and remained constant. The

magnetometer was assumed to saturate at ±100, 000 nT. Training for this error consisted

of commanding the spacecraft to perform the same stationkeeping and pitch maneuvers as

before while holding each of the magnetometer’s outputs constant at the saturation limit,

as well as an intermediate value of ±50, 000 nT to bound the problem. Training data for

the sun sensor was generated in a similar fashion. Since the output of the sun sensor is a

unit vector, upper and lower limits of 1, with an intermediate limit of 0.5, were applied to

each of the sun sensor’s measured vector components.

Residuals typical for errors relating to either the magnetometer or sun sensor are pre-

sented in figure 5.21. Specifically, the residuals of figure 5.21 were generated by increasing

the magnetometer’s noise by a factor of 10. Noise of this magnitude easily exceeds the

magnetometer’s threshold value of 0.05. The residual of the TRIAD attitude solution is

also experiencing a bias. As this residual is dependent upon the outputs of both the mag-

netometer and sun sensor, if either of these sensors is in error, the residual will be biased.
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The neural network’s desired response for errors in the magnetometer is given in figure

5.20. Errors relating to the sun sensor have the corresponding element of the target vector

incremented as well.

Fig. 5.20: Neural network output typical for a magnetometer error

5.4.8 Training for Rate Sensor Errors

Much like a magnetometer or sun sensor, a rate sensor, such as MEMS IMU, is sus-

ceptible to the types of error described in section 5.4.7; however, one of the most important

characteristics of a rate sensor is drift in the bias [13]. This drift can be created in many

ways. When the rate sensor in turned on initially it can experience a thermal bias as the

electrical components heat up. Strain on the aluminum film of a MEMS IMU can create

hysteresis which can be seen in the measurement [20]. Therefore, in addition to generating

training data based on the errors described in section 5.4.7, the additional error of unknown

drifting of the sensor bias was also added.
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The rate sensor in the software model was assumed to have a nominal constant bias drift

of 0.1 ◦/hr. As it is unlikely the bias would change very suddenly on its own, it was assumed

that changes in the bias would be due to changes in the thermal operating environment,

that is, the bias would increase or decrease as the temperature of the sensor increased or

decreased. As such changes in the rate sensor bias were modeled as a simplified form of

Gulmammadov [20] equation (2) as

β = Aebt (5.7)

To model the fault, the bias, β, was held at the nominal value until t = 60 s. At this

time it began to increase exponentially until it had reached the desired value 30 seconds

later. The constants, A and b, were determined by curve fitting an exponential function

to the initial and final values of the bias. Final bias values of 0.2, 1, 2, 5, and 3, 600 ◦/hr

were modeled each for stationkeeping and 180◦pitch maneuvers. The case of 3, 600 ◦/hr was

included to ensure that training examples for an unrecoverable fault condition would be

generated.

The residuals generated for a rate sensor bias increase from β = 0.1 ◦/hr to β = 1 ◦/hr

are shown in figure 5.23 and are typical of errors from this source.

When the rate sensor experiences a large enough change in its bias, the reference

attitude and rate as well as the rate sensor residuals all be biased accordingly. After the

sensor bias has reached its final value, the attitude residual returns to an almost nominal

value, which is indicative of the spacecraft being able to complete its desired maneuver.

The reference rate residual, however, remains biased in this instance as the sensor is not in

a nominal operating state. Without correction this could eventually lead to the spacecraft

being out of orientation.

Note also the drift in the TRIAD attitude residual. This same residual behavior was

noted previously in section 5.4.6 with respect to training for errors with the star camera.

The drift seen here is not due to any error in the star camera or magnetometer or sun

sensor, but rather it is due to the coupled states of the Kalman filter.
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The desired output of the neural network, shown in figure 5.22, was determined by

thresholding the rate sensor residual at a value 0.05. This value was determined qualitatively

by examining the behavior of the residual for nominal stationkeeping and slew maneuvers.

Fig. 5.22: The desired output of the neural network for a rate sensor error

5.5 Summary of Data Generation

A library of neural network training data was generated based on the examples of

section 5.4. Although a limited number of examples were presented, there were a total of

112 sets of training data generated for a total of 91,810 individual examples for each of

the 21 elements of the training vector (eq. (5.1)). Table 5.1 lists a summary of all of the

data generated to train the neural network. A full listing of all the training data that was

generated for this thesis is given in Appendix A.
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Table 5.1: Summary of the training data

The training data were generated for both stationkeeping and typical slew maneuvers

of the HARP spacecraft. The magnitudes of the injected faults were varied in an attempt

to bound the problem and generate as many different examples of abnormal residuals as

possible. It was shown during training that faults pertaining to the star camera and rate

sensor could give rise to false biasing of the TRIAD attitude residual.

5.6 Training Algorithms

When training a neural network two items must be taken into consideration. The
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first is the method chosen to train the network. A common method used when training a

neural network is backpropagation. Backpropagation is a method by which the gradient of

an arbitrarily chosen error function, such as the mean squared error (MSE), is calculated

repeatedly through use of the chain rule of calculus with respect to the synaptic weights of

the neural network. Once the partial derivative of each weight is known a gradient descent

is performed, which then defines how the synaptic weights should be updated [18].

The second item is the number of neurons chosen for the network. The number of

neurons defined for a neural network is important and will vary depending on the size of

the network being created. If too few neurons on chosen there is a risk of having a network

that is too poorly generalized; too many and one risks the possibility of over-fitting the

data.

Steepest descent methods such as backpropagation have a large disadvantage in that

they can be very slow to converge. There are several backpropagation algorithms avail-

able that can speed up convergence. The resilient backpropagation (RPROP) algorithm

developed by Riedmiller and Braun in [21] addresses one of the key impediments to quick

convergence, that is, that convergence is dependent upon the size of the partial derivative of

the weights. In other schemes, the size of the weight update is dictated by the magnitude of

the partial derivative of the weight. The RPROP algorithm changes the size of the weight

update irrespective of the size of the partial derivative. It does this by calculating the sign

of each of the partial derivatives of the weights, and then incrementing the weight by a fixed

factor depending on the calculated sign. The RPROP algorithm has several advantages:

it is simple as it does not require calculation of a Hessian; it is computationally fast; and

the memory requirements are modest as there are no large matrices that are needed to be

stored. It also eliminates the problem of the solution stalling around a local minima where

if the calculated gradient has a very small magnitude the weight update will also be very

small even if it is very far away from being optimal [21].

Another popular method for training a neural network is the Levenberg-Marquardt

(LM) algorithm. First developed by Marquardt in [22], it was later implemented for use in
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training neural networks by Hagan and Menhaj [23]. Whereas the RPROP algorithm is an

application of steepest descent, the LM algorithm is a modification of the Gauss-Newton

method that approximates the Hessian of a function by application of its Jacobian. The

main modification of the LM algorithm is the introduction of a tuning parameter into the

Gauss-Newton solution. This parameter, when small, causes the algorithm to be Gauss-

Newton; when large, the algorithm becomes steepest descent. The LM algorithm is, then,

a union of the Gauss-Newton and steepest descent optimization methods. The advantages

of this modification is that the solution is able to take large steps in the direction of the

gradient when it is small, and small steps when the gradient is large so as not to oscillate

about a minimum solution.

An extension of the Levenberg-Marquardt algorithm has been developed by Forsee and

Hagan [24] which aims at improving generalisation of a neural network. By constraining

the size of the network weights, the output of a neural network can be smoothed. This is

known as regularization. One of the main problems with regularizing a neural network is

choosing the appropriate regularization parameters as poor choice of parameters can either

lead to over-fitting of the data or poor generalization of the network. Forsee and Hagan’s

extention of the LM algorithm attempts to automatically regularize the training of a neural

network by application of Bayes’ rule to choose the regularization parameters and is known

as Bayesian Regularization (BR).

5.7 Network Training

How well a neural network can be trained is dependent on the size and complexity of

the problem being analyzed. It cannot be definitively stated that one training algorithm

will produce better results over another or that there is an optimal number of neurons to

include in the network. As such, several neural networks were trained using each of the

algorithms described in section 5.6 and comprising varying numbers of neurons to ensure

the best generalization of the problem.

Eight neural networks were trained: four using the resisilient backpropagation (RPROP)

algorithm; two using the Levenberg-Marquardt algorithm (LM); and two using Levenberg-
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Marquardt with Bayesian regularization (BR). In order to produce the best generalized

neural network, the number of neurons assigned to each network was varied. The networks

trained using resilient backpropagation were defined with 20, 30, 40, and 60 neurons. Those

trained with Levenberg-Marquardt or Bayesian regularization were defined with either 20

or 30. Recall that both Levenberg-Marquardt and Levenberg-Marquardt with Bayesian

regularization require calculation and storage of the Jacobian of equation 5.1, which lim-

ited the number of neurons that could be prescribed to the neural networks trained with

these algorithms. The neural networks were trained until each of their mean squared errors

(MSE) was minimized. A summary of the trained networks is given in table 5.2.

Table 5.2: Summary of the neural network training

Algorithm # Neurons MSE

RPROP 20 0.0075

RPROP 30 0.0069

RPROP 40 0.0072

RPROP 60 0.0063

LM 20 0.0048

LM 30 0.0050

BR 20 0.0102

BR 30 0.0132

The best trained networks were those trained with the Levenberg-Marquardt algorithm

and have an average performance of 0.005. The next best trained were those networks

trained with resilient backpropagation and had a similar average mean squared error of

0.007. The networks with the worst performance were trained using Levenberg-Marquardt

with Bayesian regularization and had an average mean squared error of 0.012. Retraining

of these networks did not result in an improved error function.

An important aspect of training a neural network that must also be mentioned is

the variability associated with the training. Prior to training, the weights and biases of a

neural network are initialized with random values. This has the effect that training a neural

network multiple times will produce different levels of performance. As an example, network

RP20 was assigned twenty neurons and trained a total of eleven times using the resilient
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backpropagation training algorithm. Each time it was trained it achieved a different level

of performance. Figure 5.24 shows the distribution of the performance parameter for the

training of this network. Over 11 trainings this network achieved a best performance of

0.0072, worst performance of 0.0085, and a median mean squared error of 0.0077. It is

important to recognize that this variability exists and that the results presented in this

thesis will inherently have some error bound attached to them due to the variability in the

training.

Fig. 5.24: The variation associated with training a neural network
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Chapter 6

Results

6.1 Calculating Neural Network Performance

The output of each of the neural networks was calculated for each of the 112 training

cases. A threshold of 0.9 was applied to each of the outputs (1 being the maximum value

indicative of a fault detected). Each of the 16 × n outputs was thresholded such that if

the threshold was exceeded five continuous times a hard fault was recorded for the element

under examination. The HARP spacecraft is capable of a 5 Hz attitude solution. Five

continuous crossings was chosen to represent one continuous second of a fault state. This

was done to aid limiting the number false positive detections. After thresholding, the

number of positively and falsely identified faults was recorded. The performance of each

network, given by equation (6.1), was determined by ratioing the number of positively

identified faults by the number of total identified faults. Appendices B.3-B.5 provide the

Matlab scripts used to calculate neural network performance.

Number of Positively IdentifiedFaults

Number of Positively IdentifiedFaults+Number of Falsely IdentifiedFaults
× 100%

(6.1)

6.2 Performance of the Neural Networks

Performance of the neural networks will be presented for each case and divided into

seven categories: actuators, commmands, propagator, star camera, magnetometer, sun

sensor, and rate sensor. For each category, the number of positively and falsely identified

faults, as well as the overall accuracy of the neural networks will be given. The results
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for each category are tabulated and color coded on a green (more accurate) to red (less

accurate) scale.

6.2.1 Performance Relative to the Actuators

Reaction wheel speed, reaction wheel power, and the magnetic torquer polarity were

grouped into the single category of actuators. The performance of the neural networks

relative to the actuators is shown in table 6.1.

The Levenberg-Marquardt and the Bayesian regulated Levenberg-Marquardt networks

have uniformly low detection accuracy for most all of the faults pertaining to the actuators.

The networks trained with resilient backpropagation perform all around better, with the ex-

ception that faults pertaining to seizures in reaction wheel 3 are not detected well. Network

performance in detecting actuator faults varies significantly not only network-to-network,

but fault-to-fault as well. This is illustrated in figure 6.1, which shows an example network

output set for a power loss in reaction wheel number two for two of the neural networks.

The set of outputs on the left of the figure were trained using the Levenberg-Marquardt

algorithm, those on the right with resilient backpropagation. Both networks were defined

with 30 neurons. In either instance the power failure in reaction wheel number 2 was

successfully detected; however, the number of falsely identified faults of the network shown

on the right of the figure makes it impossible to determine definitively where exactly the

fault has occurred. This network-to-network variation persists in the outputs for all of the

actuator faults, making it difficult to make a determination as to the efficacy of one network

over another.

The accuracy of the neural networks in detecting actuator faults is shown in figure 6.2.

Overall, those networks trained using resilient backpropagation had an average detection

accuracy of 72%. Particular difficulty in detecting the fault in reaction wheel 3 served to

significantly reduce this percentage. The four Levenberg-Marquardt trained networks had

considerable difficulty in correctly detecting any of the faults with consistency and had an

average accuracy of only 42%. It is worth noting also that the number of neurons used in

each of the networks has positive effect on the detection accuracy of the actuator faults.
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Fig. 6.1: An example of network-to-network variation

Fig. 6.2: The accuracy of the neural networks in detecting actuator faults

6.2.2 Performance Relative to Commanding

The performance of the neural networks relative to the ADCS’s guidance commands is

summarized in table 6.2.

The performance of the neural networks in detecting faults pertaining to the com-

manding of the ADCS displays the same network-to-network variation as for the actuators,

except this time it is the Levenberg-Marquardt networks that are better able to detect the
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faults. The networks trained with resilient backpropagation generalize poorly when trying

to distinguish most of the errors of this type. Note that case 13 generalized poorly during

training with respect to all of the network with the exception of networks RP20 and LM30.

Figure 6.3 summarizes the overall accuracy of the neural networks when attempting to

identify faults in the commanding of the ADCS. The networks trained with RPROP had an

average detection accuracy of only 39%, compared to an average of 82% for the LM networks.

With the exception of network RP30, the rest of the resilient backpropagation networks

displayed similar accuracy irrespective of the number of neurons assigned to the networks.

This is true also of the four Levenberg-Marquardt networks. Whereas the actuators seemed

to benefit from the addition of extra neurons in the neural networks, the same conclusion

cannot be drawn definitively in this case.

Fig. 6.3: The accuracy of the neural networks in detecting ADCS command faults

6.2.3 Performance Relative to the Propagator

Table 6.3 summarizes the performance of the neural networks in detecting propagator

faults. Faults relating to the propagator relate to both the propagator specifically as well

as the spacecraft’s clock.



77

T
ab

le
6.

2:
T

ab
u

la
te

d
re

su
lt

s
fo

r
A

D
C

S
co

m
m

an
d

er
ro

rs



78

All of the neural networks were able to generalize well with respect to almost all of the

faults in this category. Case 14 from the table was defined as a clock error where the clock

was reset to 1 Jan, 2000 00:00:00.000 UTC. Networks BR20 and LM30 both detected the

desired fault as well as a single false positive detection of either a propagator fault (network

LM30) or reaction wheel fault (BR20) as shown in figure 6.4. In this instance, neither of

these networks was sufficiently able to distinguish the clock error based on the residuals of

this case, which led to the false positive detection.

Fig. 6.4: Neural net output for case 13 for networks LM30 (left) and BR20 (right)

The resilient backpropagation networks managed to detect these faults with 100%

accuracy. The Levenberg-Marquardt algorithms have a similarly high average detection

accuracy of 94%. The overall detection accuracy of each of the neural networks for detecting

these faults is given in figure 6.5.
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Fig. 6.5: The accuracy of the neural networks for detecting propagator and clock faults

6.2.4 Performance Relative to the Star Camera

The performance of the neural networks in detecting errors in the star camera is given

in table 6.4. The poor performance of the neural networks in detecting errors in the star

camera is not wholly surprising. Recall from section 5.4.6 that a false biasing of the rate

sensor residual occurred when errors were introduced into the star camera solution. Because

of this, the residuals for either the star camera or rate sensor faults are not sufficiently

distinguished from one another. As a result, the neural networks have a degree of difficulty

in determining whether the fault was due to either the star camera or rate sensor, as is the

case with the Levenberg-Marquardt trained networks (see the left side of figure 6.6), or in

detecting any fault at all, as with the resilient backpropagation networks (see the right side

of figure 6.6). Although either set of networks begins to detect an error in both the star

camera and rate sensor, the networks trained with RPROP fail to meet the thresholding

criteria described in section 6.1, and therefore do not register any fault at all.

On average the networks trained using resilient backpropagation successfully detected

the faults only 17% of the time. The Levenberg-Marquardt networks did not fair much bet-

ter, having an average detection accuracy of 27%. The detecting accuracy of each individual
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network is shown in figure 6.7. With respect to the RPROP networks, with the exception

of network RP30, which did not detect any faults, either positive or negative, increasing

the number of neurons in the network aided generalization of the network and enabled at

least partial success in positively detecting the fault while minimizing the number of false

detections.

Fig. 6.6: A typical output for star camera faults for the Levenberg-Marquardt networks
(left) and the resilient backpropagation networks (right)

Fig. 6.7: The accuracy of the neural networks in detecting star camera errors
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6.2.5 Performance Relative to the Magnetometer

Table 6.5 summarizes the performance of the neural networks in detecting faults with

the magnetometer.

With the exception of cases 72 and 77 the neural networks generalized errors pertaining

to the magnetometer very well, with near 100% detection accuracy. Cases 72 and 77 rep-

resent faults of low magnitude for stationkeeping and slew maneuvers. Examination of the

outputs of the neural networks (see figure 6.8) shows that the networks are in fact detecting

an error in the magnetometer; however, due to thresholding a hard fault is not detected.

Figure 6.9 shows the overall accuracy of the individual networks in detecting magne-

tometer faults. On average the resilient backpropagation and the Levenberg-Marquardt

networks were able to accurately detect the fault 90% and 95% of the time respectively.

Fig. 6.8: A magnetometer fault on the verge of being detected
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Fig. 6.9: The accuracy of the neural networks in detecting magnetometer faults

6.2.6 Performance Relative to the Sun Sensor

The performance of the neural networks in detecting errors in the sun sensor is given

in table 6.6. With the exception of network BR30, which did not generalize well, all of the

networks performed very well with respect to detecting faults of the sun sensor. Cases 78

and 79 represent faults of low magnitude. Examination of the neural network outputs (see

figure 6.10) shows that the networks are detecting an error in the sun sensor, but in a similar

fashion as for the low magnitude magnetometer faults, thresholding prevents determination

of a hard fault.

The networks trained using resilient backpropagation had an average detection accuracy

of 88%. Those trained with Levenberg-Marquardt, excluding network BR30, had an average

accuracy of 90%. The individual network accuracies for detecting sun sensor errors are given

in figure 6.11.
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Fig. 6.10: Typical output for a low magnitude sun sensor fault

Fig. 6.11: The accuracy of the neural networks in detecting sun sensor faults
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6.2.7 Performance Relative to the Rate Sensor

Table 6.7 summarizes the performance of the neural networks in detecting faults relating

to the rate sensor. The performance of the neural networks in detecting faults in the rate

sensors is generally low. Although the Levenberg-Marquardt networks perform better, there

is a large degree of network-to-network variation in detecting these faults. Figure 6.12

presents neural network output of case 66 (medium magnitude error) and is typical for

this error for both the resilient backpropagation networks (shown on the left of the figure)

and the Levenberg-Marquardt networks (shown on the right of the figure). The networks

trained using the Levenberg-Marquardt schemes produce a strong reaction in the presence

of these faults. Although in these instances they fail to meet the thresholding criteria, it is

still possible to make a positive fault determination based on examination of the behavior

of the output.

It must also be noted that some of the neural networks are able to better generalize more

than others. Figure 6.13 shows the outputs of case 67 (high magnitude error) for networks

RP30 (left of the figure) and LM30 (right of the figure). In this instance the output of the

networks is similar to that as for the star camera, where neither set of networks is able

to distinguish sufficiently well an error in the rate sensor from that of the star camera.

Although thresholding prevented detection of false positives, examination of the residuals

would make it difficult to make a positive fault identification.

The overall network accuracy for detecting errors in the rate sensor is given in figure

6.14. The resilient backpropagation networks have an average detection accuracy of 33%.

Increasing the number of neurons assigned to the networks did not appear to aid in fault

detection for these networks. Excluding network BR20, the Levenberg-Marquardt networks

have an average detection accuracy of 59%.
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Fig. 6.12: Difference in network response

Fig. 6.13: Poor generalization of the RPROP networks (left) and the LM/BR networks
(right)
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Fig. 6.14: The accuracy of the neural networks in detecting rate sensor faults

6.2.8 Performance in the Presence of Novel Data

In addition to calculating the network outputs for each of the 112 training cases, a

number of novel residual sets was also generated and used as inputs to the neural networks.

These novel residual sets represent data that the neural networks have no previous knowl-

edge of. The novel data set is comprised of not only individual faults, but also of multiple

simultaneous faults. Table 6.8 below summarizes the novel data.

Table 6.8: Summary of novel data cases

Case # Description

113 Seize reaction wheels 1 & 2

114 Sieze reaction wheels 2 & 3

115 Reaction wheel 2 power loss; wrong guidance command uploaded

116 Magnetometer dead; propagator reset

117 Clock is wrong; propagator reset

118 Reaction wheel 2 suffers 90% power loss

119 All reaction wheels suffer 90% power loss

120 Seize reaction wheel 2

121 Rate sensor has unknown noise
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To generate truly novel data, random scalars were used wherever possible, for example

to scale the available torque authority or power to the reaction wheels. In all cases faults

were injected at random intervals such that they could occur before, during, or after a

maneuver. The performance of the neural networks in the presence of this novel data is

summarized in table 6.9.

Examining the data, in most instances the neural networks have difficulty in isolating

the multiple fault events, and instead report many false positive identifications. This result

is not surprising. It was shown in the previous sections that the neural networks at times

had difficulty distinguishing one fault from another if the faults produced similar patterns

of residuals.

Those cases with single fault events generally report positive identifications, with those

networks that positively identified certain faults previously doing so again, and those that

were unable to previously demonstrating that same inability. Overall the neural networks

positively identified the faulty components 37% of the time.

6.3 Summary of Results

Figure 6.15 presents the overall accuracies of the neural networks for both the validation

and novel data sets. Across all networks there is a 62.5% chance of successfully isolating a

faulty component based on the validation data and a 37% chance based on the novel data.
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Fig. 6.15: The overall accuracy of each neural network

The networks trained with the resilient backpropagation algorithm all have similar

overall rates of fault detection with an average of 64% across all data. Those networks

trained with either the Levenberg-Marquardt algorithm or its Bayesian regulation extension

vary in accuracy between 53% (BR30) to 68% (LM20) across all data. Based on the results

of the validation and novel data sets it is difficult to say with certainty which, if either,

of the training algorithms is superior or what number of neurons to include in the neural

network is optimal. Each type of network displayed strengths and weaknesses with regard

to positively identifying the faults in the ADCS. A few observations can be made, however.

Resilient backpropagation with a high number of neurons was able to produce bet-

ter generalized networks with regard to positively identifying actuator faults. The best

performing Levenberg-Marquardt network in this series had 30 neurons, was unregulated,

and had a positive detection rate of 47%, compared to the equivalent network trained

with resilient backpropagation that had an accuracy of 71%. The highest performing net-

work in this category, RP60, was able to successfully identify 79% of the actuator faults.

The Levenberg-Marquardt networks demonstrated superior performance in identifying rate

sensor faults, having almost twice the successful detection rate, 66%, as the resilient back-

propagation networks, 34%. The LM networks again demonstrated high detection fidelity
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with respect to ADCS commanding faults, with the exception that network RP30 was at

least on par with these.

In an overall sense neither of the Bayesian regulated Levenberg-Marquardt networks

generalized very well, having an average detection accuracy of only 56% based on the

validation data. Although many of the networks produced overall accuracies greater than

60% with the validation data, only one network came close to approaching even that with

the novel data, network LM20, also at 56%. Table 6.10 provides a final summary of the

highest and average detection accuracies for each fault, and the corresponding best network.

Table 6.10: Summary of highest and average detection accuracies and the neural networks
that produced them for each of the fault categories

Fault Best Avg Best Network

Actuators 79% 57% RP60

ADCS Cmds 83% 65% LM20, BR30

Propagator/Clock 100% 96% RP20, RP30, RP40, RP60, BR30, LM30

Star Camera 42% 27% BR20

Magnetometer 100% 93% LM20, BR30

Sun Sensor 94% 74% LM30

Rate Sensor 66% 40% LM20, BR30

These results can be expanded upon further. Table 6.10 summarizes the performance

of each network relative to isolating a faulty component of an ADCS. These components can

each be grouped into subsystems of the ADCS: attitude control (AC), guidance, and attitude

determination (AD). Grouping the ADCS components into subsystems as per table 6.11

allows for further analysis of the performance of the neural networks by measuring how well

they were able to isolate the fault to the proper subsystem, if not to the proper component.

For example if a fault was injected into the star camera and the neural network identified the

fault as a problem with the rate sensor, even though it misidentified the faulty component,

in either instance it properly identified the fault as being in the attitude determination

subsystem.
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Table 6.11: The subsystems of the ADCS with their corresponding components

Attitude Control Guidance Attitude Determination

Reaction Wheels Guidance Commands Star Camera

Magnetic Torquers Clock Rate Sensor

Propagator Magnetometer

Sun Sensor

The performance of the neural networks relative to isolating a fault to a particular

subsystem is summarized in figure 6.16. Those networks trained with resilient backpropa-

gation had a 75% success rate in isolating the faulty subsystem, compared to a 64% chance

in isolating a faulty component. The Levenberg-Marquardt networks had almost identical

success rates of 66% and 65% for identifying the faulty subsystem or component, whereas

the Bayesian regulated Levenberg-Marquardt networks had only a marginally higher chance

to isolate the faulty subsystem, 59%, than it did isolating a faulty component, 54%. Matlab

scripts for calculating subsystem fault identification accuracy are provided in appendices

B.6 and B.7

Fig. 6.16: The performance of the neural networks in isolating faults to a particular sub-
system
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From an overall standpoint (reference figure 6.15) it would be difficult to make a de-

termination as to which network was more successful in isolating faulty components. From

the standpoint of isolating a faulty subsystem, perhaps more of a generalization can be

made. From figure 6.16 it is easily seen that the resilient backpropagation networks ex-

cel in isolating attitude control and guidance subsystem faults, while their performance

in isolating attitude determination faults is no better than the other networks. The four

Levenberg-Marquardt networks have about the same positive isolation rate for the attitude

control and guidance subsystems, but the success rate in isolating attitude determination

faults varies between 56% (BR20) to 86% (LM20). This inconsistency in isolating attitude

determination faults, coupled with the generally low isolation rates for attitude control and

guidance faults, makes the case for use of the resilient backpropagation training algorithm

for isolating faults on both a component and subsystem basis.
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Chapter 7

Discussion and Future Considerations

7.1 Discussion

This thesis has presented a method of fault detection and diagnosis in a spacecraft’s

attitude determination and control system. Using an offline model of a spacecraft’s ADCS,

dynamics, and environment as a state estimator and to act as a reference, a vector of resid-

uals was defined in conjunction with the telemetry from a modeled spacecraft’s ADCS. The

purpose of this vector is to act as the state of the spacecraft and provides an instantaneous

snapshot as to the status of the ADCS. The modeled spacecraft was then subjected to a bat-

tery of fault injection scenarios, where the residual vector from each scenario was recorded

at every timestep and saved in order to construct a library of example data. Using this

library, several neural networks were trained, and their outputs analyzed. The performance

of the neural networks in detecting faults with this scheme leaves much to interpretation.

Though all of the networks were trained from the same example set, significant differences

exist in the ability of the networks to positively detect and identify the faults with any

consistency. Where one network may excel in detecting a certain fault, it may fare poorly

at another, as evidenced by an average overall performance of 64% across all networks.

Certain discoveries made during the course of this research can perhaps shed light on

this. First, the definition of the residual space warrants examination. The residuals that

define the state of the spacecraft were chosen to be as broad as possible with respect to

the state of the spacecraft’s attitude, actuators, and sensors, and defined with redundancies

built in where possible. In theory, this would differentiate the state of the spacecraft as much

as possible so that one fault did not produce residuals that were not sufficiently dissimilar

from another. In practice, this introduced confusion into the residuals, making it more

difficult to distinguish the residuals between faults. The residuals were further muddled
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by the fusion of the star camera and rate sensor within the Kalman filter, as the residuals

generated by either sensor would experience a bias when either sensor was in error.

Perhaps the most obfuscating factor, though, is the size and complexity of the problem

being examined. Employing this method to identify even a modest number of faults in a

modest number of target systems required well over 100 faults to be modeled, with almost

2,000,000 total training examples generated. Expansion of this method to include other

systems, or training for other faults, increases the complexity further, so much so that

consideration must be given not only to the capabilities of the computational hardware used

to train the neural networks, but also to the capability of a neural network to generalize

the larger problem. to determine the number of positively identified and falsely identified

faults for the set of training data, as well as new, novel data of which the networks had no

a priori knowledge.

The method of fault detection and diagnosis presented in this thesis encompasses an

entire attitude determination and control system. Other authors have also developed FDD

algorithms that are more compartmentalized and focus on only a single subsystem of an

ADCS. Pirmoradi et al, for example, have proposed a scheme for diagnosing faults in a space-

craft’s attitude determination system [3]. In the proposed scheme faults in a spacecraft’s

attitude determination sensors are detected by processing the sensor residuals through a

series of extended Kalman filters, and the source of the fault is isolated through statistical

analysis. Although the example cited in the paper used only a single rate sensor and single

vector sensor, it could be expanded to include a spacecraft’s full complement of attitude

determination sensors by increasing the number of Kalman filters employed during primary

isolation. The method proposed by Pirmoradi, et al, is limited to use in a noisy environment

by inclusion of the Kalman filters and would be constrained to fault detection in the attitude

determination sensors; however, since it is the statistical analysis of the residuals generated

by the Kalman filters that isolates the faults, it is not inconceivable that the Kalman filters

could be replaced by classical observers for use in isolating faults in components whose

residuals are more deterministic.
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A method proposed by Li, et al, attempts to detect and isolate faults in a spacecraft’s

control actuators via use of a series of neural networks [4]. In this scheme, each of three

reaction wheels is assigned a neural network which is used to estimate the reaction torque.

During operation the torques commanded by the controller and the outputs of the wheels

act as the inputs to the neural networks. The difference between the estimated and actual

torques serves as the residual, which is then thresholded to determine whether or not a fault

has occurred. Since Li’s neural networks serve only to generate residuals, it is feasible that

this method could be employed in either a random or deterministic environment.

Although these three schemes are all proposed to detect faults in spacecraft attitude

determination systems, key differences exists between them. The method proposed in this

thesis attempts to detect and isolate faults in the entire ADCS, rather than only in the

attitude control system (Li) or the attitude determination system (Pirmoradi). It also

makes an attempt at determining when the instructions, i.e. the guidance commands, to

the ADCS are the source of error. The choice of state estimators between methods is also a

key difference. Pirmoradi and Li employ either Kalman filters or neural networks to serve as

residual generators. This thesis employs a ground-side reference model in combination with

the spacecraft’s guidance and control commands to serve as the residual generators. This

structure of residual generation would preclude use of this method onboard a spacecraft,

and, therefore, prohibit also the chance for real-time fault detection –a marked contrast to

either Pirmoradi’s or Li’s methods, which suffer no such constraint. Another key difference

is the function of the neural networks used in this thesis and by Li. Whereas Li uses neural

networks only as residual generators, this thesis uses neural networks as residual analyzers.

It is through analysis of a residual set by a neural network that a fault determination is

made, rather than by thresholding of a residual generated by a neural network.

The performance of the neural networks in detecting faults with this scheme leaves

much to interpretation. Though all of the networks were trained from the same example

set, significant differences exist in the ability of the networks to positively detect and identify

the faults with any consistency. Where one network may excel in detecting a certain fault,
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it may fare poorly at another, as evidenced by an average overall performance of 64% across

all networks.

Certain discoveries made during the course of this research can perhaps shed light on

this. First, the definition of the residual space warrants examination. The residuals that

define the state of the spacecraft were chosen to be as broad as possible with respect to

the state of the spacecraft’s attitude, actuators, and sensors, and defined with redundancies

built in where possible. In theory, this would differentiate the state of the spacecraft as much

as possible so that one fault did not produce residuals that were not sufficiently dissimilar

from another. In practice, this introduced confusion into the residuals, making it more

difficult to distinguish the residuals between faults. The residuals were further muddled

by the fusion of the star camera and rate sensor within the Kalman filter, as the residuals

generated by either sensor would experience a bias when either sensor was in error.

Perhaps the most obfuscating factor, though, is the size and complexity of the problem

being examined. Employing this method to identify even a modest number of faults in a

modest number of target systems required well over 100 faults to be modeled, with almost

2,000,000 total training examples generated. Expansion of this method to include other

systems, or training for other faults, increases the complexity further, so much so that

consideration must be given not only to the capabilities of the computational hardware used

to train the neural networks, but also to the capability of a neural network to generalize

the larger problem.

7.2 Future Considerations

Several considerations could be made with regard to the future direction of this re-

search, especially with respect to the system residuals. Recall that the primary driver

behind the low component-level isolation rates was caused by “residual confusion,” where

the residuals of one fault sometimes closely resembled the residuals of another fault. This

confusion of the residuals impacts the ability of the neural networks to distinguish one fault

from another, leading to poor generalization. A future path of research then would be to

determine if there is a better way to distinguish between residuals. One proposed method
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would be normalization, whereby all of the residuals could be placed onto a common scale.

Having a common scale for the residuals may allow for better generalization of the neural

networks and aid in pattern recognition.

Another factor relative to the residuals that warrants further attention is drift. The

residuals in this thesis are largely defined as functions of either sensors or software, the

outputs of which, over time, will experience a certain degree of drift. Drift over long

periods of time were not explicity considered as part of this research. As such, were data

collected over a long enough time period, it is entirely likely that the sensor and software

outputs could drift enough such that the residuals would begin to become biased not due to

the presence of a fault, but rather to the presence of drift instead. An important question

then that remains unanswered is how long could data be collected and analyzed before drfit

begins to bias the residuals and lead to false positive fault identification? How long could the

residuals be analyzed before the reference model would need to be resynchronized with the

telemetry in order to account for drift? The timescale over which the residuals are collected

and analyzed is then of the utmost importance, as too long a time scale would allow the

accumulation of drift, and too short a timescale would require constant resynchronization.
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Appendix A

Summary of Fault Modeling

The purpose of this appendix is to provide a complete listing of the simulated faults,

summarized in the following tables. The headings of the summary tables are defined below:

Table A.1: Description of the summary headings

Heading Description

Case Case designation: 1-112

Tfault Time at which fault occurs

Duration Time, in seconds, that the fault persists

TrqScale Scaling parameter, e.g. how much to scale wheel torque

FaultNum Denotes the row element of the neural net target vector

Description Short description of the fault

phi/theta/psi The commanded euler angles for the maneuver

rate Commanded angular rate, deg/s

Threshold Value Value used to trip fault designation in target vector

Tables A.2 - A.6 list the cases that were simulated to provide the training data for the

neural networks.
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Table A.2: Summary of simulated faults cases 1-24
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Table A.3: Summary of simulated faults cases 25-52
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Table A.4: Summary of simulated faults cases 53-84
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Table A.5: Summary of simulated faults cases 85-110
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Table A.6: Summary of simulated faults cases 111-121
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Appendix B

Matlab Scripts

Following are the scripts used to generate the residual training and target vectors used

to train the neural networks, as well as the scripts used for post processing the neural

network outputs.

B.1 Residual Training

This script (MakeNNDataVector.m) takes the output of the reference and fault model

simulations, calculates the residuals, and packages them.

1 % Configure data to train a neural network

2 % In general the residuals are defined as "observed - expected"

3

4 %% Attitude Reference Checks

5 % Check the attitude as reported by spacecraft to those

6 % from the reference model. If the SC is doing what it should be doing then

7 % the attitude and guidance parameters should have a small residual, which

8 % is indicative of "all is well" and that the spacecraft is likely in its

9 % desired orientation.

10

11 %Kalman Filter estimated attitude from SC

12 ATTEstFLT = def.Fault.Sensor.EstimatedQuaternion(1:10:end,:);

13 AngEstFLT = 2*acos(ATTEstFLT(:,4));

14

15 %Kalman Filter estimated attitude from SC

16 ATTEstREF = def.Observer.Sensor.EstimatedQuaternion(1:10:end,:);

17 AngEstREF = 2*acos(ATTEstREF(:,4));

18

19 ATTRes = ATTEstFLT - ATTEstREF; %quaternion residual
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20 AngResREF = AngEstFLT - AngEstREF; %attitude residual

21

22 %Kalman Filter estimated rate from SC

23 WEstFLT = def.Fault.Sensor.EstimatedAngularRate(1:10:end,:);

24

25 %Kalman Filter estimated rate from Reference

26 WEstREF = def.Observer.Sensor.EstimatedAngularRate(1:10:end,:);

27 n = length(def.Time(1:10:end));

28

29 RateEstREF= zeros(n,1);

30 RateEstFLT= zeros(n,1);

31 ATTresREF = zeros(n,1);

32 RateResREF = zeros(n,1);

33

34 for i=1:n

35 ATTresREF(i) = norm(ATTRes(i,:)); %use quaternion norm

36 RateEstREF(i) = norm(WEstREF(i,:)); %use norm of rate estimate

37 RateEstFLT(i) = norm(WEstFLT(i,:)); %use norm of rate estimate

38 RateResREF(i) = norm(WEstFLT(i,:)-WEstREF(i,:)); %rate residual

39 end

40

41 % RateResREF = RateEstFLT - RateEstREF; %rate residual

42 NeuralNet.Attitude.AngResREF = AngResREF;

43 NeuralNet.Attitude.ATTresREF = ATTresREF;

44 NeuralNet.Attitude.RateResREF = RateResREF;

45

46 clearvars RateResREF ATTresREF RateEstREF WEstREF WEstFLT ...

47 AngEstREF ATTEstREF AngEstREF

48 %% Guidance Reference Checks

49 % By checking the echoed attitude/rate commands from the spacecraft versus

50 % those estimated by the reference, one can determine that if the

51 % spacecraft is out of orientation is it simply due to it receiving the

52 % wrong commands

53

54 %Attitude commands as echoed from SC
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55 ATTcmdFLT = def.Fault.Guidance.AttitudeCmd(1:10:end,:);

56 AngCmdFLT = 2*acos(ATTcmdFLT(:,4));

57

58 %Attitude commands as echoed from SC

59 ATTcmdREF = def.Observer.Guidance.AttitudeCmd(1:10:end,:);

60 AngCmdREF = 2*acos(ATTcmdREF(:,4));

61

62 AngCmdResREF = AngCmdFLT - AngCmdREF; %rotation angle command residual

63 ATTCmdRes = ATTcmdFLT - ATTcmdREF; %quaternion command residual

64

65 %Attitude commands as echoed from SC

66 WCmdFLT = def.Fault.Guidance.RateCmd(1:10:end,:);

67 %Attitude commands as echoed from reference

68 WCmdREF = def.Observer.Guidance.RateCmd(1:10:end,:);

69 RateCmdFLT = zeros(n,1);

70 RateCmdREF = zeros(n,1);

71 ATTCmdResREF = zeros(n,1);

72 RateCmdResREF = zeros(n,1);

73 for i=1:n

74 ATTCmdResREF(i) = norm(ATTCmdRes(i,:));%use norm of attitude quaternion

75 % RateCmdFLT(i) = norm(WCmdFLT(i,:)); %use norm of rate command

76 % RateCmdREF(i) = norm(WCmdREF(i,:)); %use norm of rate command

77 RateCmdResREF(i) = norm(WCmdFLT(i,:)-WCmdREF(i,:)); %rate cmd residual

78 end

79

80 % RateCmdResREF = RateCmdFLT-RateCmdREF; %rate command residual

81 NeuralNet.Guidance.ATTCmdResREF = ATTCmdResREF;

82 NeuralNet.Guidance.AngCmdResREF = AngCmdResREF;

83 NeuralNet.Guidance.RateCmdResREF = RateCmdResREF;

84

85 clearvars WCmdFLT WCmdREF WEstFLT WEstREF ATTcmdFLT AngCmdFLT ATTcmdREF ...

86 AngCmdREF ATTCmdResREF WCmdFLT WCmdREF RateCmdFLT RateCmdREF ...

87 RateCmdResREF ATTCmdResREF

88

89 %% Actuator Checks
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90 % Do not compare actuator telemetry to reference model. If attitude/rate

91 % are ok, the actuators will be working correctly. If attitude or rate are

92 % off w.r.t. the reference model, then it goes without saying that the

93 % actuators will be off as well; however, this is not indicative of a fault

94 % in the actuators, for example if the desired orientation was [0 0 0 1]

95 % and the spacecraft went to [0 1 0 0] the actuators are working fine.

96 %

97 % Instead check the actuator outputs to their command inputs to determine

98 % their operational state.

99

100 % Wheel speed commands and output

101 WheelSpdAct = def.Fault.Actuator.WheelSpdAct(1:10:end,:);

102 WheelSpdCmd = def.Fault.Actuator.WheelSpdCmd(1:10:end,:);

103 WheelSpdRes = WheelSpdAct-WheelSpdCmd;

104

105 % Wheel voltage commmands and output

106 WheelVoltageAct = def.Fault.Actuator.WheelVoltageAct(1:10:end,:);

107 WheelVoltageCmd = def.Fault.Actuator.WheelVoltageCmd(1:10:end,:);

108 WheelVoltageRes = WheelVoltageAct-WheelVoltageCmd;

109

110 % Mag torquer polarity

111 MagPolCmd = -sign(def.Fault.Actuator.MagTrqCmd(1:10:end,:)); %Note minus sign!

112 MagPolAct = sign(def.Fault.Actuator.MagTrqAct(1:10:end,:));

113 MagPolRes = MagPolAct-MagPolCmd;

114

115 NeuralNet.Actuator.WheelSpdRes = WheelSpdRes;

116 NeuralNet.Actuator.WheelVoltageRes = WheelVoltageRes;

117 NeuralNet.Actuator.MagPolRes = MagPolRes;

118

119 clearvars WheelSpdRes WheelVoltageRes MagPolRes WheelSpdAct WheelSpdCmd ...

120 WheelVoltageAct WheelVoltageCmd MagPolCmd MagPolAct

121

122 %% Propagator Checks

123 % The purpose of the propagator checks is to determine whether or not the

124 % attitude is out of place due to an error in the propagator. By comparing
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125 % the propagator's output to the validated reference model the spacecraft's

126 % position in space and time can be confirmed. If it is determined that the

127 % propagator is out of synch with the reference model, it would be an

128 % extremely likely source of attitude error. Note that propagator errors

129 % can be due, for example, to clock errors, or orbit ephemeris updates.

130

131 %spacecraft echoed Julian date

132 JulianDateFLT = def.Fault.Propagator.JulianDate(1:10:end);

133

134 %expected JD from reference model

135 JulianDateREF = def.Observer.Propagator.JulianDate(1:10:end);

136 JulianDateRes = JulianDateFLT-JulianDateREF;

137

138 InertialPositionFLT = def.Fault.Propagator.InertialPosition;

139 InertialPositionREF = def.Observer.Propagator.InertialPosition;

140 PosVecRes = InertialPositionFLT-InertialPositionREF;

141

142 InertialMagFieldFLT = def.Fault.Propagator.InertialMagField(1:10:end,:);

143 InertialMagFieldTruthFLT = def.Fault.Orbit.InertialMagField(1:10:end,:);

144 InertialMagFieldREF = def.Observer.Propagator.InertialMagField(1:10:end,:);

145

146

147 InertialSolarVectorFLT = def.Fault.Propagator.InertialSolarVector;

148 InertialSolarVectorREF = def.Observer.Propagator.InertialSolarVector;

149 MagVecRes = zeros(n,1);

150 PositionRes = zeros(n,1);

151 MagFieldRes = zeros(n,1);

152 SolarPositionRes = zeros(n,1);

153 SolVecRes = zeros(n,1);

154

155 % Calculate residual norms

156 for i=1:n

157 MagVecRes(i) = norm(InertialMagFieldFLT(i,:)-InertialMagFieldREF(i,:));

158 SolVec = real(acos(dot(InertialSolarVectorFLT(i,:),...

159 InertialSolarVectorREF(i,:))));
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160 SolVecRes(i) = mod(SolVec,2*pi)*180/pi;

161 PositionRes(i) = norm(PosVecRes(i,:));

162 MagFieldRes(i) = norm(MagVecRes(i,:));

163 SolarPositionRes(i) = norm(SolVecRes(i,:));

164 end

165

166 NeuralNet.Propagator.JulianDateRes = JulianDateRes;

167 NeuralNet.Propagator.PositionRes = PositionRes;

168 NeuralNet.Propagator.MagFieldRes = MagFieldRes;

169 NeuralNet.Propagator.SolarPositionRes = SolarPositionRes;

170

171 clearvars JulianDateFLT JulianDateREF JulianDateRes InertialPositionFLT ...

172 InertialPositionREF PosVecRes PositionRes ...

173 MagVecRes MagFieldRes InertialSolarVectorFLT InertialSolarVectorREF ...

174 SolVecRes SolarPositionRes

175

176 %% Sensor Checks

177 % Performing the sensor checks allows us to determine whether or not either

178 % the sensors or the propagator are off in some way. The measured inertial

179 % magnetic field will be compared to the propagator field (the propagator

180 % magnetic field will be verified with a different test). The measured

181 % angular rate will be compared to the body rate estimates derived from the

182 % attitude quaternion and its time derivative. Finally the kalman filter

183 % attitude estimate derived from the star camera input will be compared to

184 % a TRIAD algorithm attitude based on the measured magnetic field and

185 % propagator supplied nadir vector.

186 %

187 % **Note that if the propagator is in a fault state the TRIAD solution will

188 % also be in error.**

189

190 % Compare measured magnetic field to

191 % MagFieldMeasured = def.Fault.Sensor.SensedBodyMagField(1:10:end,:);

192 MagSensorRes = zeros(n,1);

193 MagFieldProp = zeros(n,3);

194 SunSensorRes = zeros(n,1);
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195 Sun I measured = zeros(n,3);

196

197 % Compare measured body rates to estimated body rates (Sidi 7.2.20)

198 BodyRateEstimate = def.Fault.Sensor.BodyRateEstimate; %Sidi 7.2.20

199

200 %from kalman filter

201 BodyRateMeasured = def.Fault.Sensor.EstimatedAngularRate(1:10:end,:);

202

203 RateSensorRes = zeros(n,1);

204 AttTriad = zeros(n,4);

205 AngTriad = zeros(n,1);

206 AttTriadRes = zeros(n,1);

207 Nadir ORF = [0;0;1];

208 nadir check = zeros(n,1);

209 % calc residual norms

210 ResidualMagField = def.init.sensors.mag.SC Residual Mag Field;

211 sigma mag = .01;

212 % sigma sun = .0005*1;

213 sigma sun = 1*5; %degrees

214 P = zeros(n,3);

215 Radical = zeros(n,4);

216 for i=1:n

217 % for i=950:951

218 % i=949

219 R ORF to b = def.Fault.Orbit.Rotation.OrbRef2Body(:,:,i);

220 % R ORF to b = def.Observer.Orbit.Rotation.OrbRef2Body(:,:,i);

221 R i to ORF = def.Fault.Propagator.Inertial2OrbRefRotation(:,:,i);

222 % R i to ORF = def.Observer.Orbit.Rotation.Inertial2OrbRef(:,:,i);

223 % USE THIS ROTATION INSTEAD

224 R i to b= R ORF to b*R i to ORF;

225 MagNoise = sigma mag*[randn;randn;randn];

226 R i to ORF truth = def.Observer.Orbit.Rotation.Inertial2OrbRef(:,:,i);

227 R i to b truth = R ORF to b*R i to ORF truth;

228

229 %uncertainty due to inaccurate mag field modeling
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230 MagUncertainty = [cosd(10*rand);cosd(10*rand);cosd(10*rand)];

231

232 MagFieldMeasured = R i to b*InertialMagFieldTruthFLT(i,:)'.*...

233 MagUncertainty+ResidualMagField;

234

235 %normalized measured mag field

236 B BFCS Unit = MagFieldMeasured/norm(MagFieldMeasured)+MagNoise;

237

238 R ORF to i = R i to ORF';

239

240

241 MagFieldProp(i,:) = (R i to b*(InertialMagFieldFLT(i,:)'))';

242 % MagFieldProp(i,:) = ((InertialMagFieldFLT(i,:)'))';

243 MagSensorRes(i) = norm(B BFCS Unit'-MagFieldProp(i,:)/...

244 norm(MagFieldProp(i,:)));

245 RateRes = BodyRateEstimate(i,:)-BodyRateMeasured(i,:);

246 RateSensorRes(i) = norm(RateRes)*180/pi;

247

248 % Setup Triad algorithm between ORF/BFCS solar and magnetic field

249 % vector

250 Sun I = def.Fault.Propagator.InertialSolarVector(i,:);

251 % Sun I = def.Observer.Propagator.InertialSolarVector(i,:);

252 Sun I = Sun I/norm(Sun I);

253

254 %COMMENT OUT WHEN FINISHED!!!

255 % Sun I(3) = 1;

256

257 Sun B = R i to b*def.Observer.Propagator.InertialSolarVector(i,:)';

258 Sun B = ...

259 [cosd(sigma sun*rand) 0 0;0 cosd(sigma sun*rand) 0;...

260 0 0 cosd(sigma sun*rand)]*Sun B;

261

262 B ECI Unit = InertialMagFieldFLT(i,:)/norm(InertialMagFieldFLT(i,:));

263

264 % Calculate R ORF2B from Triad algorithm; convert to quaternion
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265

266 [R i to b 4triad,Cov] = triad with covariance(Sun I',B ECI Unit',...

267 Sun B,B BFCS Unit,sigma sun,sigma mag);

268 P(i,:)=norm([sqrt(Cov(1,1)) sqrt(Cov(2,2)) sqrt(Cov(3,3))]);

269 R ORF to b triad = R i to b 4triad*R ORF to i;

270

271 [AttTriad(i,:),Radical(i,:)] = ...

272 rotation matrix to quaternion(R ORF to b triad);

273 AttTriadRes(i) = norm(ATTEstFLT(i,:)-AttTriad(i,:));

274

275

276 % AngTriad(i) = 2*acos(AttTriad(i,4));

277 AngTriad(i) = acos((trace(R ORF to b triad)-1)/2);

278

279 %rotate measured sun vector (B) to inertial coordinates to compare to

280 %propagator inertial sun vector

281 Sun I measured = R i to b 4triad'*Sun B;

282 SunSensorRes(i) = norm(Sun I'-Sun I measured);

283 SunSensorRes(i) = norm(R i to b 4triad*Sun I'-Sun B); %JUST A CHECK!

284 end

285

286 TriadRes = AttTriadRes;

287

288 NeuralNet.Sensor.Magnetometer = MagSensorRes;

289 NeuralNet.Sensor.SunSensor = SunSensorRes;

290 NeuralNet.Sensor.RateSensor = RateSensorRes;

291 NeuralNet.Sensor.Triad = TriadRes;

292

293 clearvars MagFieldMeasured InertialMagFieldFLT MagSensorRes MagRes ...

294 InertialMagFieldFLT R i to b MagFieldProp MagSensorRes RateSensorRes ...

295 RateRes BodyRateMeasured BodyRateEstimate AngEstFLT AngTriad AttTriad ...

296 BodyRateEstimate BodyRateMeasured InertialMagFieldFLT InertialMagFieldREF ...

297 MagFieldMeasured MagFieldProp MagSensorRes R ORF to b R ORF to i ...

298 R i to b R i to b 4triad RateEstFLT RateRes RateSensorRes Sun B Sun I ...

299 Sun I measured TriadRes SunSensorRes
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300

301 %% Now construct neural net training vector

302 NNtraining = zeros(21,n);

303 for i=1:n

304 x1 = NeuralNet.Attitude.ATTresREF(i);

305 x2 = NeuralNet.Attitude.RateResREF(i);

306 x3 = NeuralNet.Actuator.WheelSpdRes(i,1);

307 x4 = NeuralNet.Actuator.WheelSpdRes(i,2);

308 x5 = NeuralNet.Actuator.WheelSpdRes(i,3);

309 x6 = NeuralNet.Actuator.WheelVoltageRes(i,1);

310 x7 = NeuralNet.Actuator.WheelVoltageRes(i,2);

311 x8 = NeuralNet.Actuator.WheelVoltageRes(i,3);

312 x9 = NeuralNet.Actuator.MagPolRes(i,1);

313 x10 = NeuralNet.Actuator.MagPolRes(i,2);

314 x11 = NeuralNet.Actuator.MagPolRes(i,3);

315 x12 = NeuralNet.Propagator.JulianDateRes(i);

316 x13 = NeuralNet.Propagator.PositionRes(i);

317 x14 = NeuralNet.Propagator.MagFieldRes(i);

318 x15 = NeuralNet.Propagator.SolarPositionRes(i);

319 x16 = NeuralNet.Sensor.Magnetometer(i);

320 x17 = NeuralNet.Sensor.SunSensor(i);

321 x18 = NeuralNet.Sensor.RateSensor(i);

322 x19 = NeuralNet.Sensor.Triad(i);

323 x20 = NeuralNet.Guidance.ATTCmdResREF(i);

324 % x21 = NeuralNet.Guidance.AngCmdResREF(i);

325 x22 = NeuralNet.Guidance.RateCmdResREF(i);

326

327 NNtraining(:,i) = ...

328 [x1;x2;x20;x22;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14;x15;...

329 x16;x17;x18;x19];

330 end

331

332 NeuralNet.Training = NNtraining;

333 % NeuralNet.Target = NNtarget';

334
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335 clearvars x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 ...

336 x19 NNtarget NNtraining x20 ATTCmdRes ATTEstFLT ATTRes AngCmdResREF ...

337 AngResRef B BFCS Unit B ECI Unit B ECI debug InertialMagFieldTruthFLT ...

338 Nadir ORF R ORF to b triad R i to ORF SolVec nadir check sigma ...

339 sigma mag sigma sun ResidualMagField MagUncertainty MagNoise AngResREF ...

340 AttTriadRes Cov P x20 x21 x22 R i to ORF truth R i to b truth Radical ...

341 i

B.2 Generate Target Vector

The script MakeTargetVector.m applies a user-defined threshold value to specified

residual quantity. When the threshold is exceeded, the appropriate element of the tar-

get vector is changed from zero to one, where the element of the vector is determined by

the parameter “FaultNum” (see table A.1).

1 ErrorRes = NeuralNet.Sensor.RateSensor; %Specify residual

2

3 n = length(ErrorRes);

4

5 NNtarget = zeros(16,n);

6 sigma = .05/5; %Specify residual threshold

7

8 % Use this code for single faults

9 for i=1:n

10 if abs(ErrorRes(i,1))> 5*sigma %&& i>Tfault/.2

11 NNtarget(FaultNum(1),i)=1;

12 end

13 if abs(ErrorRes(i,2))> 5*sigma %&& i>Tfault/.2

14 NNtarget(FaultNum(2),i)=1;

15 end

16 if abs(ErrorRes(i,3))> 5*sigma %&& i>Tfault/.2

17 NNtarget(FaultNum(3),i)=1;

18 end

19 end
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20

21 % Use this code for multiple faults

22 % for i=1:n

23 % if abs(ErrorRes(i))> 5*sigma %&& i>Tfault/.2

24 % NNtarget(FaultNum,i)=1;

25 % end

26 % end

27

28 NeuralNet.Target = NNtarget;

29

30 figure;plot(0:.2:def.Time(end),NeuralNet.Target(FaultNum,:))

B.3 Determination of Faults

Script DetermineFaults.m loads each of the specified sets of residuals and then loads

the specified neural network. For each case, the script CreateFaultVector.m is called, which

generates a 1x16 element vector whose elements denote where the fault has occurred. Af-

ter each of the individual fault vectors is created, script CalcAccuracy.m is called, which

calculates the number of positively and falsely identified faults.

1 % This script performs the following operations:

2 % Loads the specified neural network

3 % Loads each case

4 % Calls the script CreateFaultVector.m which forms a 1x16 vector,

5 % corresponding to the number of fault categories and populates it with

6 % the detected faults

7 % Calls script CalculateAccuracy which determines the number of positively

8 % identified and falsely identified faults

9

10 addpath(genpath(pwd))

11 clear all

12

13 str1 = 'NeuralNet case ';
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14 str2 = '.mat';

15

16 load('BR 22neurons Interleved 1'); %load neural net

17 Thresholds = zeros(16,2);

18 Thresholds(:,1) = .9;

19

20 %% Create Fault Vector

21

22 NumCrossings = 5; %num. of continuous threshold crossings before hard fault

23 SigmaLevel = 5; %STUB, number of std for fault detection

24

25 StartCase = 1; %First case to load

26 NumCases = 112; %Number of case files to load

27 for i=StartCase:NumCases

28 if i<10

29 case num = strcat('0',num2str(i));

30 else

31 case num = num2str(i);

32 end

33 CaseName = strcat(str1,case num,str2);

34 load(CaseName)

35 output = net(NeuralNet.Training(:,300:end-300));

36 FaultVector = ...

37 CreateFaultVector(output,Thresholds,SigmaLevel,NumCrossings);

38 FileName = strcat('Fault Vector Case ',case num);

39 save(FileName,'FaultVector');

40 clearvars def NeuralNet

41 end

42

43 CalcAccuracy

44 save('Accuracy','A')

45

46 clearvars NumPos NumFalsePos NumCrossings PositiveFault SigmaLevel ...

47 Thresholds output i j m n net tr STDS def counter



125

B.4 Create Fault Vector

CreateFaultVector.m is a function which creates a 1x16 element vector corresponding

to the 16 defined fault states. The default vector elements are equal to zero. If a fault is

detected the element is changed to one. The function has four inputs: output, Thresholds,

SigmaLevel, and NumCrossings. Output refers to the calculated output of the neural net-

work; Thresholds is a 16x2 matrix where the first column contains the thresholds for each of

the elements of the neural network output, which was set at 0.9 for this thesis. The second

column is a switch to tell the thresholding algorithm the number of standard deviations

(SigmaLevel) above the threshold to determine a hard fault and is set to zero by default.

NumCrossings refers to the number of consecutive threshold crossings to consider before a

hard fault is determined (a value of 5 was used for this thesis to correspond to the 5 Hz

output of the HARP ADCS).

1 % This script creats a 1x16 element vector corresponding to the 16 defined

2 % fault states. The default vector elements are equal to zero. If fault is

3 % detected the element is changed to equal one.

4

5 function FaultVec = CreateFaultVector(output,Thresholds,SigmaLevel,...

6 NumCrossings)

7

8 FaultVec = zeros(1,16); %vector to track where faults are detected

9 counter = 0; %initialize number of continuous crossings

10 [m,n] = size(output);

11

12 for i=1:m

13 for j=1:n

14 if output(i,j) > Thresholds(i,1) + SigmaLevel*Thresholds(i,2)

15 counter = counter+1;

16 if counter >= NumCrossings

17 FaultVec(i) = 1;

18 end

19 else
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20 counter = 0;

21 end

22 end

23 end

B.5 Calculating Neural Network Accuracy

The accuracy of the neural networks is calculated by script CalcAccuracy.m. It first

loads the file CaseFaults.mat, which is a 112x2 element matrix. Column one is numbered

1 through 112. Column two contains numbers between 1 and 16 and denotes which fault

is the positive fault for each of the cases. The output of this script is a 112x2 matrix, “A.”

Column one of the matrix contains the number of positively identified faults (always 1 is

positive detection is made). Column contains the number of false identified faults.

1 % This script is used to determine the accuracy of the trained neural nets.

2 % Accuracy = (# Positive Detections)/(# Positive + # False Detections)

3 % clear all

4 load('CaseFaults.mat') %load case numbers with corresponding fault numbers

5

6 str1 = 'Fault Vector Case ';

7 str2 = '.mat';

8

9 A = zeros(NumCases-StartCase+1,2);

10 %matrix format of A is [#Positive #FalsePositive], nx2

11 NumFalsePos = 0; %number of false positive fault detections

12

13 for i=StartCase:NumCases

14 if i<10

15 case num = strcat('0',num2str(i));

16 else

17 case num = num2str(i);

18 end

19 CaseName = strcat(str1,case num,str2);
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20 load(CaseName)

21 for j=1:16

22 if FaultVector(j) ~= 0 %is there a fault present?

23 if j == CaseFaults(i,2) %Check which case is Positive Detection

24 A(i,1) = 1; %Mark as Positive Detection

25 else

26 NumFalsePos = NumFalsePos+1;

27 end

28 A(i,2) = NumFalsePos; %Mark as False Positive Detection

29 end

30 end

31 NumFalsePos = 0; % Reset counter

32 clearvars FaultVector

33 end

B.6 Determine Subsystem Fault Isolation Accuracy

Determining the faults on a subsystem level first requires the existing faults of Fault-

Vector.m to be bundled into one of three categories, one for each of the defined ADCS

subsystems. Script CalcSubSysAccuracy.m loads the specified neural network and each of

the fault vectors associated with that network. File SubSysFaults.mat is loaded, which

describes which fault belongs to which subsystem. The script then cycles through each of

the fault vectors and determines the number of positively and falsely isolated faults on a

subsystem level by calling script CreateSubSysFaultVector.m. This scripts creates a 1x3

vector called SubSystemFaultVector whose purpose is the same as the 1x16 FaultVector.

For each of the subsystem fault vectors a matrix, “B” is populated. The structure of “B”

is exactly the same as matrix “A” except the positively and falsely identified faults refer to

the subsystem level.

1 % This script is used to determine the accuracy of the trained neural nets.

2 % Accuracy = (# Positive Detections)/(# Positive + # False Detections)

3 clear all
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4

5 load('SubSysFaults.mat') %load case numbers with corresponding fault numbers

6 load('BR 22neurons Interleved 1'); %load neural net

7

8 str1 = 'Fault Vector Case ';

9 str2 = '.mat';

10

11 NumCases = 112;

12 StartCase = 1;

13

14 B = zeros(NumCases-StartCase+1,2);

15 %matrix format of B is [#Positive #FalsePositive], nx2

16 NumFalsePos = 0; %number of false positive fault detections

17

18 for i=StartCase:NumCases

19 if i<10

20 case num = strcat('0',num2str(i));

21 else

22 case num = num2str(i);

23 end

24 CaseName = strcat(str1,case num,str2);

25 load(CaseName)

26 SubSystemFaultVector = CreateSubSysFaultVector(FaultVector);

27 FileName = strcat('SubSys Fault Vector Case ',case num);

28 save(FileName,'SubSystemFaultVector');

29 for j=1:3

30 if SubSystemFaultVector(j) ~= 0 %is there a fault present?

31 if j == SubSysFaults(i,2) %Check which is Positive Detection

32 B(i,1) = 1; %Mark as Positive Detection

33 else

34 NumFalsePos = NumFalsePos+1;

35 end

36 B(i,2) = NumFalsePos; %Mark as False Positive Detection

37 end

38 end
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39 NumFalsePos = 0; % Reset counter

40 clearvars FaultVector SubSystemFaultVector

41 end

42

43 save('SubSysAccuracy','B')

B.7 Create Subsystem Fault Vector

CreateSubSysFaultVector.m bundles the component-level faults of FaultVector.mat

into one of three categories that correspond to either the attitude control, guidance, or

attitude determination subsystems.

1 % This script creats a 1x3 element vector corresponding to the 3 defined

2 % subsystems. The default vector elements are equal to zero. If fault is

3 % detected the element is changed to equal one.

4 function SubSystemFaultVector = CreateSubSysFaultVector(FaultVector)

5

6 SubSystemFaultVector = zeros(1,3);

7 for j=1:16

8 if FaultVector(j) ~= 0 %is there a fault present?

9 if j<=9

10 SubSystemFaultVector(1) = 1; %AC Fault

11 elseif j<=12

12 SubSystemFaultVector(2) = 1; %Guidance Fault

13 elseif j<=16

14 SubSystemFaultVector(3) = 1; %AD Fault

15 end

16 end

17 end

18 end
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