Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2015

A Neural Network Approach to Fault Detection in Spacecraft
Attitude Determination and Control Systems

John N. Schreiner
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Cf Part of the Aerospace Engineering Commons

Recommended Citation

Schreiner, John N., "A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination
and Control Systems" (2015). All Graduate Theses and Dissertations. 4164.
https://digitalcommons.usu.edu/etd/4164

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and /[x\

Dissertations by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()Al UtahStateUniversity
contact digitalcommons@usu.edu. /'g;m MERRILL-CAZIER LIBRARY

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.usu.edu%2Fetd%2F4164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4164?utm_source=digitalcommons.usu.edu%2Fetd%2F4164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A NEURAL NETWORK APPROACH TO FAULT DETECTION IN
SPACECRAFT ATTITUDE DETERMINATION AND CONTROL SYSTEMS

by

John N. Schreiner

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Aerospace Engineering

Approved:

Dr. Rees Fullmer Dr. David Geller

Major Professor Committee Member

Dr. Charles Swenson Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2015

ii

Abstract

A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination and

Control Systems

by

John N. Schreiner, Master of Science

Utah State University, 2015

Major Professor: Dr. Rees Fullmer
Department: Mechanical and Aerospace Engineering

This thesis proposes a method of performing fault detection and isolation in spacecraft
attitude determination and control systems. The proposed method works by deploying a
trained neural network to analyze a set of residuals that are defined such that they encom-
pass the attitude control, guidance, and attitude determination subsystems. Eight neural
networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or
Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each
of the neural networks were analyzed to determine the accuracy of the networks with respect
to isolating the faulty component or faulty subsystem within the ADCS. The performance
of the proposed neural network-based fault detection and isolation method was compared
and contrasted with other ADCS FDI methods. The results obtained via simulation showed
that the best neural networks employing this method successfully detected the presence of
a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time

and the faulty components within the faulty subsystem were isolated 37% of the time.

(140 pages)

iii

Public Abstract

A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination and

Control Systems

by

John N. Schreiner, Master of Science

Utah State University, 2015

Major Professor: Dr. Rees Fullmer
Department: Mechanical and Aerospace Engineering

CubeSats are employed in a variety of missions as scientific platforms, low-cost tech-
nology demonstrators, and in the future, they will conduct service missions as part of larger
satellite constellations. CubeSat ADCS designers today are being tasked with designing to
ever increasing accuracy requirements. The ability to hold those requirements rests with
the attitude control system being robust enough and able to sufficiently respond to changes
in the control environment. The need for greater control autonomy is then evident in the
need for these systems to be able to react independently to changes in the system dynamics
and to identify and accommodate system faults. A key ability of a fault tolerant control
system then is the capability to successfully detect and isolate faults as it provides a method
for early detection and diagnosis of unforeseen faults, which in turn provides a spacecraft
with a greater degree of autonomy.

The focus of this thesis was to determine whether there is enough information coming
from a pattern of residuals defined by the attitude determination and control system to
allow a neural network to discern whether or not a fault has occurred. To do this, a set
of residuals was defined based on a comparison of a spacecraft’s ADCS telemetry to esti-

mated state values for both nominal and fault states. This set of residuals served as the

iv
training set for a series of neural networks that were trained using either the resilient back-
propagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization
training algorithms. After the networks were trained their outputs were calculated for both
reapplication of the training data as well as for novel data of which they had no a prior:
knowledge.

The performance of the neural networks in detecting faults with this scheme leaves
much to interpretation. Though all of the networks were trained from the same example
set, significant differences exist in the ability of the networks to positively detect and isolate
the faults with consistency. Where one network may excel in detecting the faults in a certain
components, it may fare poorly at another. In general, the networks were better able to
detect and isolate faults in the components of the attitude control and guidance subsystems,

and with few exceptions less able to isolate faults of the attitude determination sensors.

To my wife, Jessica, who never stopped believing in me.

Contents

Abstract
Public Abstract
List of Tables
List of Figures
1 Introduction e
1.1 Problem Statement
1.2 Previous Work
1.3 Thesis Statement
1.4 Problem Description L o
1.5 Approach to Fault Detection and Isolation

2 Literature Review
2.1 Failure Analysis
2.2 Fault-tolerant Control

3 Residual Definitions
3.1 Attitudeand Rate
3.2 Guidanceo e e
3.3 Actuators
3.4 Orbit Propagator and Time
3.5 Sensors e
3.5.1 Star Camera e e e e e e e

3.5.2 Rate Sensor

3.5.3 Magnetometer and Sun Sensor

4 Software Model Description.
4.1 Attitude Determination and Control System Overview
4.2 Attitude Control System
4.2.1 Guidance Trajectory Generator

4.2.2 Plant Dynamics

4.2.3 Controller Selection

4.2.4 Actuator Models

4.3 Attitude Determination System
4.3.1 Star Camera

4.3.2 Inertial Measurement Unit

4.3.3 Kalman Filter

4.3.4 Magnetometer and Sun Sensor Models

vi

W W N = = -

4.4 Truth Models 30
4.4.1 Orbital Dynamics L 30
4.4.2 Magnetic Field Model oo 31

4.5 Environmental Disturbance Models 31
4.5.1 Gravity Gradient L Lo 31
4.5.2 Magnetic Field oo 32
4.5.3 Aerodynamic Drag 32

5 Training the Neural Network. 34

5.1 What is a Neural Network? 34

5.2 Neural Network Training Set 34

5.3 Proofof Concept e 37

5.4 Generating the Training Data 39
5.4.1 Nominal Training Examples 40
5.4.2 Training for Reaction Wheel Faults 41
5.4.3 Training for the Magnetic Torque Rods 47
5.4.4 Training for Guidance Command Errors 49
5.4.5 Training for Clock and Propagator Errors 53
5.4.6 Training for Star Camera Errors 58
5.4.7 Training for Magnetometer and Sun Sensor Errors 61
5.4.8 Training for Rate Sensor Errors 62

5.5 Summary of Data Generation 65

5.6 Training Algorithms L 67

5.7 Network Training 69

6 Results. e 72

6.1 Calculating Neural Network Performance 72

6.2 Performance of the Neural Networks 72
6.2.1 Performance Relative to the Actuators 73
6.2.2 Performance Relative to Commanding 75
6.2.3 Performance Relative to the Propagator 76
6.2.4 Performance Relative to the Star Camera 80
6.2.5 Performance Relative to the Magnetometer 83
6.2.6 Performance Relative to the Sun Sensor 85
6.2.7 Performance Relative to the Rate Sensor 88
6.2.8 Performance in the Presence of Novel Data 91

6.3 Summary of Results 92

7 Discussion and Future Considerations 98

7.1 Discussion e e 98

7.2 Future Considerations 101

References. e 103

Appendices 105
A Summary of Fault Modeling L. 106

B Matlab Scriptso 112
B.1 Residual Training oL 112

B.2 Generate Target Vectoro 122

B.3 Determination of Faults 123

B.4 Create Fault Vector 125

B.5 Calculating Neural Network Accuracy 126

B.6 Determine Subsystem Fault Isolation Accuracy 127

B.7 Create Subsystem Fault Vector 129

Table

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Al

A2

A3

A4

A5

A6

ix

List of Tables

Page
Summary of the training data o L0 67
Summary of the neural network training 70
Tabulated network results for the actuators 74
Tabulated results for ADCS command errors 7
Tabulated results for detecting propagator errors 79

The detection accuracy of the neural networks for detecting star camera faults 82

The performance of the neural networks for detecting magnetometer faults. 84
The performance of the neural networks for detecting sun sensor faults . . . 86
The performance of the neural networks for detecting rate sensor faults . . 89
Summary of novel data cases oL 91
Performance summary of the novel data cases 93

Summary of highest and average detection accuracies and the neural networks

that produced them for each of the fault categories 95
The subsystems of the ADCS with their corresponding components 96
Description of the summary headings 106
Summary of simulated faults cases 1-24 107
Summary of simulated faults cases 25-52 108
Summary of simulated faults cases 53-84 109
Summary of simulated faults cases 85-110 110

Summary of simulated faults cases 111-121 111

Figure
1.1
2.1
2.2
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

5.14
5.15
5.16

5.17

List of Figures

Page
ADCS process map showing the main input categories 4
A traditional closed-loop feedback controller 9
A multiple models, switching and tuning (MMST) control scheme 10
Attitude, wheel speed, and wheel supply voltage training residuals 38
Fault detected at t =145s Lo 39
Neural network output for a nominal hold maneuver 41
The residuals for a nominal stationkeeping maneuver 42

The residual biases associated with a typical reaction wheel mechanical failure 44

Neural network output associated with a failure in a reaction wheel 45
Residuals typical of a wheel power failure 46
Desired neural network output for a power failure in reaction wheel 2. . . . 47
The residuals associated with reversed firing of a magnetic torque rod . . . 48
The desired output associated with a fault in the magnetic torque rods . . . 49
The residuals associated with ADCS command errors 51

Residual behavior indicative of improperly timed ADCS guidance commands 52

The output desired of the neural network for errors relative to the ADCS

guidance commands Lo Lol oL 53
The residuals for propagator related errors 54
The residuals associated with clock error 56
The output desired of the neural network for a propagator error 57

The output desired of the neural network given a clock error 57

5.18

5.20

5.21

5.22

5.23

5.24

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

xi

The neural network’s desired response to an error in the star camera solution 59

The residuals associated with an attitude error due to the star camera . . . 60
Neural network output typical for a magnetometer error 62
Residuals typical for a magnetometer error L. 63
The desired output of the neural network for a rate sensor error 65
Residuals biases due to rate sensor error 66
The variation associated with training a neural network 71
An example of network-to-network variation L L. 75
The accuracy of the neural networks in detecting actuator faults 75
The accuracy of the neural networks in detecting ADCS command faults . . 76
Neural net output for case 13 for networks LM30 (left) and BR20 (right). . 78
The accuracy of the neural networks for detecting propagator and clock faults 80

A typical output for star camera faults for the Levenberg-Marquardt networks

(left) and the resilient backpropagation networks (right) 81
The accuracy of the neural networks in detecting star camera errors 81
A magnetometer fault on the verge of being detected 83
The accuracy of the neural networks in detecting magnetometer faults . . . 85
Typical output for a low magnitude sun sensor fault 87
The accuracy of the neural networks in detecting sun sensor faults 87
Difference in network response 90

Poor generalization of the RPROP networks (left) and the LM/BR networks

(right) o 90
The accuracy of the neural networks in detecting rate sensor faults 91
The overall accuracy of each neural network 94

The performance of the neural networks in isolating faults to a particular
subsystem L e e e e 96

Chapter 1

Introduction

1.1 Problem Statement

It is well established that space-tolerant, off-the-shelf hardware is prone to failure [1].
In regards to a spacecraft’s attitude determination and control system (ADCS) a fault
in an actuator or failure of a sensor can lead to a loss of control authority, putting the
spacecraft at risk and potentially jeopardizing mission objectives. In the past, this problem
has been addressed by the addition of redundant actuators or sensors. But what if the ADCS
system is space-limited, such as on a CubeSat? In such instances hardware redundancies
to maintain control authority may simply not be an option and the need for fault detection
is critical.

CubeSats are employed in a variety of missions as scientific platforms, low-cost technol-
ogy demonstrators, and in the future, to conduct service missions as part of larger satellite
constellations [1]. CubeSat ADCS designers today are being tasked with designing to ever
increasing accuracy requirements. The ability to hold those requirements rests with the
attitude control system being robust enough and able to sufficiently respond to changes in
the control environment. The need for greater control autonomy is then evident in the need
for these systems to be able to react independently to changes in the system dynamics and
to identify and accommodate system faults [1,2]. A key ability of a fault tolerant control
system then is the capability to successfully detect and isolate faults as it can provide a
method for early detection and diagnosis of unforeseen faults, which in turn provides a

spacecraft with a greater degree of autonomy [3].

1.2 Previous Work

Much research has been done with respect to fault detection and isolation (FDI). Many

2

FDI methods methods work by defining a residual for a system and then thresholding
that residual to determine the presence of a fault. In general the residuals are defined as
the difference between a measured and state-estimated value. The environment in which
the fault detection and isolation takes place in large part determines the type of state
estimator employed. Kalman filters are employed as state estimators in noisy environments
[3], whereas in more deterministic settings Luenberger observers have been utilized with
success.

There are perhaps two main approaches to FDI: mechanical and analytical. Mechanical
approaches to FDI rely on physical redundancies in order to fully isolate and recover from
fault conditions. In many spacecraft applications, however, where extra mass in any system
comes at a premium, it is not always possible to add redundant sensors or actuators [3]. In
such cases analytical methods must be considered.

Analytical approaches to FDI can be further broken into two categories: observer-based
and learning-based. Observer-based FDI approaches employ either Luenberger observers in
deterministic environments, Kalman filters in noisy environments, or a combination of the
two and are used as state estimators [4]. The estimation is compared to the system output,
whether controller, actuator, or sensor, in order to generate a residual. During nominal
operation these residuals are small and should be equal to about zero. Faults are indicated
if the residuals experience a large swing away from the nominal value [3,4].

Learning-based FDI approaches employ neural networks, often in conjunction with
state estimators. These neural networks can be trained with knowledge of a spacecraft’s
operational states. They are able to “learn” the behavior of the plant dynamics and fault
states such that they are able to discern, via the state estimators, when and where a fault

has occurred [4].

1.3 Thesis Statement
Since attitude determination and control systems can be failure prone the need for
greater fault identification and accommodation is critical. Many methods exist today to

accomplish this. Offline techniques such at fault tree analysis and failure modes and effects

3

analysis give insight into ACS design by providing a priori knowledge of subsystem causal
relationships and potential failure modes. Online methods of fault accommodation, such
as fault tolerant control schemes, seek less to identify the root cause of a given failure and

more to handle the fault to allow continued stable operation.

1.4 Problem Description

The focus of this thesis is to determine whether there is enough information coming
from a pattern of residuals defined by the attitude determination and control system to
discern whether or not a fault has occurred. This will be accomplished by deploying a
neural network that will be trained to recognize nominal and non-standard behavior in
the ADCS residuals. A description of the neural network is given in section 5.1. Such a
learning-based approach to FDI will require the network to first be trained to differentiate
between normal and abnormal behavior patterns. To do this, a set of residuals will be
defined based on a comparison of a spacecraft’s ADCS telemetry to estimated state values.
These residuals will be generated for both nominal and fault states in order to generate a
suitable set of training data from which the network can learn what constitutes normal and

abnormal behavior.

1.5 Approach to Fault Detection and Isolation

As the attitude determination and control system is so closely coupled with the main
sources of error, it will be examined directly in order to determine the spacecraft’s fault
state. As shown in figure 1.1, the attitude determination and control system has four main
input categories. These are external inputs, sensor inputs, software inputs, and actuator

inputs.

Star

Catalog
y
Star Camera
True gw # Star Camera > 3 1
Processing
Reaction Wheel
Acceleration Attitude
e IMU # Determination [+
£ Kalman Filter \
True_ _Sun Sun Sensor Magnetometer,
Pasition
3
Orbit Reaction Wheel
GPs 4 » Attitude G d Attitude Control |———7—sf Ne2CHON TYRES
Propagator Commands Mag. Field
Mode _ Emergency
Transitions g| ETEECE | Handling r
1 Mgn;"t':m »| Magnetic Torguers
External ontro
Input
Sensor Mode
Controls
Software
Actuator

Fig. 1.1: ADCS process map showing the main input categories

External inputs originate externally to the ADCS. These could be “truth” quantities
such as the position of the sun or the earth’s magnetic field or they could be software
commands initiated from the ground, such as ADCS mode transitions. Sensor inputs are
the inputs to the ADCS as measured by its sensors, such as the measured position of the
sun or spacecraft angular rotation rate. Software inputs are those generated onboard the
ADCS, for example by the guidance flight software or the sensor noise filter. Lastly, the
actuator inputs are generated specifically by the ADCS control actuators, for example the
torque generated by a reaction wheel.

As the performance and output of the ADCS are so dependent on the operational state
of the spacecraft, it will be used as the residual generator to train the neural network. The
residuals themselves are generated based on the input categories of the ADCS. A detailed

description of how they are defined follows in chapter 3.

5

When taken as a whole the set of residuals defined by the ADCS paints a picture of
the spacecraft’s operational state at any given moment. During normal operation, such
as when the spacecraft is stationkeeping or maneuvering, the set of residuals will have a
certain pattern to them, each remaining in the vicinity of a nominal value. When a fault
has occurred, such as the failure of a control actuator, one or more of the residuals will
display either a positive or negative bias relative to the nominal. It is the nominal-biased
behavior of the residuals that differentiates between normal and abnormal states, and it is
this behavior that the neural network will be trained to recognize. Section 5.1 provides a
description of what a neural network is and how it will be used to recognize faults in the
spacecraft.

For the purpose of this thesis, a fault is defined as any time the ADCS fails to do what
it was commanded to do, or, having done what it was commanded to do, has failed to put
the spacecraft into the desired orientation. Faults can arise in the ADCS from any of the
input categories in figure 1.1. Faults pertaining to external inputs come in the form of user
error in the definition of the guidance commands sent from the ground to the spacecraft.
Sensor errors refer to malfunction of the onboard attitude determination and environmental
sensors. Software errors relate specifically to errors in the onboard orbit propagator, its
associated environmental models, as well as the reference time. Lastly, actuator errors can
relate to the polarity of an actuator, an actuator’s performance, or the amount of power
supplied to it.

The approach to fault detection and isolation in this thesis is as follows:

1. Estimate the state of the spacecraft

2. Observe the state of the spacecraft

3. Compare the observed state of the spacecraft to the estimated state of the spacecraft

4. Use a trained neural network to detect and isolate the fault based on the comparison

Chapter 2

Literature Review

2.1 Failure Analysis

A Fault Tolerant Control (FTC) system is a control system that is able to maintain
control authority in the presence of system faults or component failures. Such systems
make use of a combination of fault analysis during the design phase as well as intelligent
control schemes that are able to handle a variety of system faults. In such systems faults
are identified during the design phase and those that can accommodated by design are,
e.g. redundant sensors or actuators [1]. Faults that can occur online, such as reduced
actuation or failure of a boom to properly deploy, are handled by the controller and require
appropriate fault handling and control schemes [5].

In the past, faults have been handled in several ways, via redundancy in the control
system, failure analysis, or if-then rules applied to the controller [6-8]. Redundancy in the
controller provides for a backup system to be present in the instance that a component fails.
If a sensor or actuator fails there is another that is able to come online to take its place,
such as a second star tracker or a fourth reaction wheel in a 3-axis control system. Failure
analysis has proven itself to be an important tool in the design of space missions as it allows
the design engineer to identify and accommodate faults before the system is brought online.

Two popular methods of failure analysis are Failure Modes and Effects Analysis (FMEA)
and Fault Tree Analysis (FTA) [6]. These approaches differ somewhat in their scope and
methodology. FMEA is a bottom-up failure analysis method. For a given component in
a system, FMEA attempts to identify all the possible methods in which that component
can fail and what the consequences of each failure are. As a design tool FMEA allows the
designer to determine the severity of each individual failure mode such that it allows them

to focus their design efforts on those modes deemed the most severe [5].

7

The disadvantage of using FMEA as a failure analysis tool is the potential for it to
be exhaustive and to overwhelm the designer with the number of failure possibilities [6].
Fault Tree Analysis differs from FMEA in that rather than trying to determine all of the
ways a component can fail, it begins by looking at a system-level fault and drilling down
to determine the possible root causes. The major advantage of using this method over
FMEA is that it is able to demonstrate the relationship between the various systems and
subsystems and how they interact with each other [6].

An expansion of the fault tree analysis has been proposed by Barua, et al, in the
form of a diagnostic tree (DX-tree) [9]. The goal of the DX-tree approach is to be able to
determine faults and their causes by avoiding manual limit checking of telemetry data and
is intended to be a semi-autonomous method of fault detection and identification by serving
as a diagnostic tool for ACS system failure analysis. Although online applications of FDI
exist in the form of observers and filters in the controller, their main limitations are the
accuracy of the models, development costs, and an inability to determine the root cause
of the system fault. With the DX-tree approach math models are not required and faults
are identified via a combination of telemetry variables and expert operator knowledge. The
main benefit of this approach is that is introduces a scheme to raise the level of autonomy
in the decision making process.

A third method of fault handling is the application of if-then rules to the system
controller. Such systems typically require long and costly development cycles. Due to
the fixed nature of the rules, such systems demonstrate only a limited ability to handle
dynamic system faults, such as actuator or sensor failures, and can therefore offer only
limited assurances as to their robustness and stability [8].

These methods of fault handling provide the attitude control system designer a priori
knowledge of potential system faults, giving them the ability to compensate for those faults
during the design phase. On their own they provide the designer with valuable insight into
the potential failure modes of the system; however, once passed the design phase they do

little to compensate for unseen errors during online operation. A more complete approach

8

to the design of a fault tolerant system is given by Izadi-Zamanabadi and Larsen [5] where,
along with the fault analysis methods outlined previously, they propose the addition of an
online supervisory system. The purpose of this supervisory system is to act as a design
analysis tool as well as providing system monitoring and error diagnosis possibilities. In the
proposed supervisory system the individual components of the ADCS system are analyzed
for failures via a method such as FTA or FMEA. After the system’s failure modes are
identified the severity of each mode is assessed to determine which are most severe. Those
that found to be mission critical are simulated in software to determine the effects on the
spacecraft should they actually occur. With the most severe faults identified the next step
in developing the supervisory system is to determine, via a structural analysis [5, 10], the
redundant information in the plant. This information is used in the identification and
diagnosis of system faults. The next steps concern the accommodation and handling of
detected faults via hardware or, preferably, software redundancies. Finally, the last step is
to develop the decision logic of the system, which determines which control mode to use

based on mission objectives and spacecraft health.

2.2 Fault-tolerant Control

Fault tree and failure modes and effects analyses are excellent tools for accommodating
faults during the design phase of an ADCS system and a supervisory system provides online
monitoring and fault detection capabilities. The greatest limitation these tools has, however,
is that they are only capable of handling the faults that they are designed to handle, and in
a control environment that demands ever more stringent accuracy requirements, may not
provide adequate robustness in the face of all potential system faults. It is proposed by
Narendra [11] that rather than attempt to identify and accommodate all possible system
faults during the design phase, an adaptable control system should be introduced that is
able to monitor and reconfigure itself in the presence of unknown errors. Traditional control
design, shown in figure 2.1, is based on a single, fixed model of the system. Such control
assumes that systems are time-invariant where in reality they are often required to operate

in multiple environments. Narendra recommends the use of an intelligent controller that has

9

the ability to operate in multiple environments and to adapt itself to changing environments

via a method known as multiple models, switching, and tuning (MMST) [11].

Commanded Input

GC f-\

Controller

Plant

Desired Output
0

Fig. 2.1: A traditional closed-loop feedback controller

Feedback

In an MMST control system, shown in figure 2.2, multiple controllers are designed

for multiple operating environments. If one can determine which controller most closely

matches the given plant dynamics at any given time, that controller can be used to stabilize

the system. This is the aspect of “multiple models.” Since the performance of a controller

can only be measured after it is used, each controller also has an applicable system observer

that estimates the current system dynamics. The observers are used to calculate an error

function for each given controller and are able to switch to whichever controller currently

has the smallest value of that error function, and therefore, most closely matches the current

system dynamics. Immediately after the system has switched controllers it begins to adjust

the control parameters of the new controller to improve accuracy. This is what is meant by

“switching and tuning.”

Switching

Observery

10

Commanded Input

]

c

Observer,

Controller;

Plant

J en

€

Controllery

4

4

Desired Output
¢}

Fig. 2.2: A multiple models, switching and tuning (MMST) control scheme

11

Chapter 3

Residual Definitions

Before a neural network can be deployed for FDI relative to a spacecraft’s ADCS, a
set of training data must first be defined. This training data, or sample set, consists of two
parts: the inputs to the system and the desired outputs of the system. As stated previously,
the behavior of the residuals of the ADCS are indicative of the state of that system and
will therefore serve as the input vector to train the network. The residuals are defined for

scalar quantities as
Residual = ObservedV alue — ExpectedV alue
and for vector quantities as
Residual = ||ObservedV alue — ExpectedV aluel|

To generate the residuals, two software models are constructed. One model is meant
to represent the actual spacecraft. The model outputs are in effect simulated telemetry
from a spacecraft’s attitude determination and control system. This model will hereafter
be referred to as the Fault model. It’s purpose is to provide the observed telemetry needed
to form the residuals. The second model is the model of the spacecraft, or in this case,
the model of the modeled spacecraft. Referred to as the Reference model, its purpose is to
provide a basis for comparison to the Fault model. A detailed description of the software
models is presented in chapter 3.

One aspect of this thesis is that the fault detection scheme will not be limited to
detecting only faults in the actuators or sensors, but that it will be able to provide a general
sense as to whether the spacecraft is properly oriented, and if not, what the probable cause
of the misorientation is. In this thesis, “properly oriented” means that the spacecraft is in

the desired orientation, and not necessarily the commanded orientation. The state of the

12

spacecraft, therefore, is expanded beyond the actuators and sensors and includes attitude
data as well. To fully define the state of the spacecraft, the ADCS is subdivided into five
systems: Attitude and Rate, Guidance, Actuators, Orbit Propagator/Time, and Sensors.
A note on notation is required before proceeding. The attitude determination and
control system generally has two kinds of outputs: those that are measured, and those that
are estimated. Quantities that are estimated, such as the attitude quaternion from the
Kalman filter, are denoted as *. Quantities that are measured, such as the magnetic field

vector, are likewise denoted as ~.

3.1 Attitude and Rate

Observation of the spacecraft’s attitude and rate provide the first indications that a
fault has occurred. The attitude and rate residuals are defined as the difference between the
observed attitude, and rate and the expected attitude and rate. The spacecraft’s primary
attitude determination sensors provide the source of the observed attitude and rate. These
could be a star camera, a sun sensor, an IMU or rate gyro for example.

The attitude and rate as recorded by the Fault model, i.e. the spacecraft’s telemetry,
are compared against the attitude and rate of the Reference model. If the spacecraft is
doing what it should, then the attitude parameters should have a small residual and is
indicative of an “all is well” state.

The attitude and rate residuals, shown in equations (3.1) and (3.2), are defined as
the norm of the difference between the attitude and rate as reported by the Fault model’s

Kalman-filtered sensor outputs and the equivalent Reference model parameters.

Qres = H(jsc - qArefH (3.1)

Wres = stc - (-:)TefH (32)

13

3.2 Guidance

If the spacecraft is out of orientation, one possible source of error is the commands
received from the guidance system. Latch-up or single event errors could interrupt the
guidance commands as they are received by the spacecraft. Processor or clock malfunctions
could also cause the received guidance commands to either not execute on time or not
execute at all. Finally, if the spacecraft is receiving guidance commands directly from the
ground, there is always the possibility of user error that the commands were not defined
properly. By checking the echoed attitude and rate commands from the spacecraft versus
those estimated by the Reference model, one can determine that if the spacecraft is out of
orientation is it simply due to it receiving the wrong commands, e.g. by user error, or is
another source to blame, such as a clock reset.

The guidance command residuals defined the norm of the difference between the space-
craft’s echoed attitude and rate commands and those as relayed by the Reference model

as
Q:es = quc - Q:efH (33)

*

Wres = Hw:c - w:efH (34)

3.3 Actuators

The actuators are not checked against the Reference model. If the attitude and guid-
ance command residuals are small, then the actuator residuals will be small also. If the
attitude and guidance command residuals are biased, such as during a fault event, then
it goes without saying that the residuals of spacecraft actuators and Reference model ac-
tuators will be correspondingly large; however, this is not indicative of a fault in the ac-
tuators. For example, if the spacecraft is desired to have a final attitude quaternion of

T
q = [00 0 1] and due to user error the command uploaded to the spacecraft’s

14

guidance system was ¢ = [0100 }T, a residual defined based on the output of the
spacecraft’s actuators and the Reference model’s actuators would be quite 1arge,Tas the ref-
erence model was commanded to have a final orientation of ¢ = { 00 0 1] . Though
the residual is large, the actuation system is not experiencing a fault event. This would
cause confusion and lead to difficulties when training a neural network. For this reason the
actuator residuals are defined based on the commanded actuator output and the measured
actuator output as reported by the spacecraft.

As will be described in section 4.1 the spacecraft is assumed to be 3-axis controlled and
its ADCS consists of a reaction wheel assembly and magnetic torque rods for momentum
management. Each reaction wheel has measurable inputs of wheel speed and supply voltage.
The magnetic torque rods are assumed to be either “all on” or “all off” and as such their
polarity is used to define the basis of a residual.

The actuator residuals are defined as

wresi - w’b - w;k72 - 17 27 3 (35)
Uresi - 61 - U;k?/i - 17 27 3 (36)
Pros=P — P! i=1,2,3 (3.7)

where w;, v;, and P; refer to the measured wheel speed (RPM), wheel voltage (volts) and
magnetic torquer polarity for each of the three actuators and w;, v}, and P; refer to the
commanded wheel speeds, voltages and torquer polarities.

The measured wheel speeds and voltages are defined further as

w; = w; + T]wﬂ‘,i =1,2,3 (38)

15

V; = v; + 771)’1',2' = 1, 2, 3 (3.9)

The noise terms are defined as having zero mean and being normally distributed as

n~ N (0,0%) (3.10)

with the measurement of the wheel velocity being assumed known to within a 30 value of

5 RPM and the wheel supply voltage to within 0.1 volts 3o

5

Owheel = g (311)
1

oy, = % (3.12)

3.4 Orbit Propagator and Time

The purpose of the propagator checks is to determine whether or not the attitude is
out of place due to an error in the propagator. By comparing the propagator’s output to
the reference model the spacecraft’s position in space and time can be confirmed. If it is
determined that the propagator is out of sync with the reference model, it would be an
likely source of attitude error. Note that propagator errors can be due, for example, to a
system reset resulting in a clock or orbit ephemeris errors.

There are a total of four residuals defined based on the spacecraft’s orbit propagator.
The first residual is defined as the difference between the spacecraft’s onboard clock, kept as
the Julian date, and the Julian date as kept by the reference model. The time residual is use
as differences in the clocks could cause errors with command timing or could be indicative

of a reset and is defined formally as

JDyes = JDye — JDyes (3.13)

The second residual is the difference in the spacecraft’s orbital position as reported

16

by the propagator and the orbital position as estimated by the reference model as seen in

equation (3.14).

Tres = Hrsc - rrefH (314)

The position of the spacecraft as reported by the propagator is useful in a number of
ways. It is used to determine the nadir vector for spacecraft with nadir pointing payloads
that do not have other means of determining it, such as a horizon crossing indicator, or it
can also be used to model the location of the sun for solar pointing in lieu of a sun sensor.
The orbital velocity and orbital elements need not be considered as they so closely coupled
with the orbital position vector that if the position is incorrect, the velocity vector and,
correspondingly, the orbital elements will be similarly mismatched.

The third and fourth residuals, defined in equations (3.15) and (3.16), are the earth’s
magnetic field and the unit vector to the sun, both in inertial coordinates, and are used

similarly to the position residual as checks on the spacecraft’s orbit.

Bres = ||"'Bsc =" Brey| (3.15)

Sres = HISsc I SrefH (316)

3.5 Sensors

The purpose of checking the sensors is to ascertain if any of the sensors is off in some
way. Fach of the sensors, the star camera, IMU, magnetometer, and sun sensor, will be
checked and verified by comparing the sensor solution to a secondary solution obtained from
an alternate sensor. Comparing the two solutions by forming a residual determines whether

or not the sensor solution is faulty.

17

3.5.1 Star Camera

The star camera provides the primary attitude solution as a quaternion, .. A sec-
ondary solution is obtained by employing the TRIAD attitude determination algorithm,
which is described by Schuster in [12]. Using the measured solar and magnetic field unit
vectors in the body-fixed coordinate system, denoted as is and Bip, as well as the inertial
solar and magnetic field unit vectors as estimated by the onboard propagator, denoted as
£ is and ! iB, the “best” rotation matrix that transforms from one coordinate system to
another can be calculated by constructing orthonormal matrices as follows:

First, construct the orthonormal inertial matrix as

R= [ry rg rs] (3.17)
where
r; =ig (3.18)
Is Is
ry= 5 X B (3.19)
‘ Iig x Iig ’
rs =r1 XI9 (320)

Next, construct the orthonormal matrix out of the body-fixed vectors as

S = [s1 sy S3] (3.21)

where

s1 = Big (3.22)

18

B3 B
X
§g= 3~ B (3.23)
‘ Big x Big (
S3 = S1 X S9 (3.24)

The rotation matrix to transform from the inertial to the body-fixed coordinate system is

then simply

BA=SRT (3.25)

Finally, the attitude quaternion can be derived directly from the rotation matrix using Sidi

equation A.4.16 [13]:

q4 +0.5v/1 + a1y — a2 — ass

) q 0-25(a23+a32)/q4

ATRIAD = = (3.26)
q2 0.25(a31+a13)/q4
q3 0.25(a1z+a21)/q4

The residual that describes the validity of the star camera attitude solution is defined
as the difference of the TRIAD-derived attitude solution and the star camera’s attitude

solution:

qTRIAD,res = ||QrRIAD — Qscl| (3.27)

3.5.2 Rate Sensor

The rate sensor determines the angular rate of the spacecraft. As described by Sidi
in [13] it is possible to estimate a spacecraft’s angular body rates without the use of rate
sensors by using the star camera’s attitude quaternion solution. Noting the differentiation

of the quaternion elements, the body rates are estimated via the following relation:

19

R . R R R (jsc,l
p Qsc,4 qsc,3 —Qsc,2 —Qsc,1 s
qsc,2
Q = *(jsc,S (jscA (jsc,l *quc,2 5 (328)
. . . . ~ qsc,3
r (sc,2 —(sc,1 qsc,4 —(sc,3 s
L qsc,4

The residual defined to check the validity of the rate sensor is defined as the norm of
the difference between estimated rates from equation (3.28) and the measured body rates

from the rate sensor.

(3.29)

| — |
=
LN
=N

| I

S

T
IMUres:H[ﬁ q 1;:| -

3.5.3 Magnetometer and Sun Sensor

The magnetometer and sun sensor measure the earth’s magnetic field and the position
of the sun in the body-fixed coordinate system. The sensor measurements are compared to
the magnetic field unit vector and the unit vector to the sun as estimated by the propagator
model. Noting that the propagator-estimated vectors are first transformed from the inertial

to the body-fixed coordinate system, the residuals are defined as

Magnetometer,qs = HBiB _B iBH (3.30)

BiS

SunSensoryes = HBiS — ‘ (3.31)

20

Chapter 4

Software Model Description

4.1 Attitude Determination and Control System Overview

The functional basis of the attitude determination and control system examined in this
research is the Hyperangular Rainbow Polarimeter (HARP) mission conducted by the Uni-
versity of Maryland, Baltimore County, of which the Utah State University Space Dynamics
Laboratory is a subcontractor. HARP is a 3-axis stabilized, 3U CubeSat whose primary
mission is to keep its imaging platform pointed nadir during science maneuvers. The ADCS
consists of a reaction wheel assembly with magnetic torque rods for momentum manage-
ment, orbit propagator, star tracker, IMU, sun sensor, and magnetometer. The system
software model was built using MATLAB/Simulink. Its major components are the attitude
control system and spacecraft dynamics, sensor models, orbit propagator, environmental

truth models, and disturbance torque models.

4.2 Attitude Control System
The major components of the ACS are the guidance trajectory generator, controller,
actuator models, and spacecraft dynamics. Descriptions for each of these components is

provided in the following sections.

4.2.1 Guidance Trajectory Generator

The spacecraft’s attitude commands are generated via a a guidance trajectory gener-
ator based on the eigenaxis slew given in [13]. The purpose of the trajectory generator is
determine the time-varying attitude, and angular velocity and acceleration commands in

the body-fixed coordinate system.

21

The first step of the process is to determine the total rotation angle, o, and the eigenvec-
tor of rotation, e. The spacecraft is assumed to be in an initial orientation with quaternion
qo and it is desired to slew to a final orientation, qy, via a 3-2-1 Euler rotation sequence with
Fuler angles ¢,0, and . Since the rotation matrix can be expressed either in terms of the
Euler angles or the attitude quaternion, qy can be determined by taking advantage of this
equivalency. Abbreviating cos(—) as ¢ and sin(—) as s, the rotation matrix corresponding

to the Euler rotation sequence can be obtained as

cocy clsip —sb
Azl = | —chpsyp + spsbey copc) + spsbsy speh (4.1)
sQsy + copsfcyy —spep + cpslsyy cpch
The quaternion corresponding to the final desired orientation can then be found from
equation (3.26) using the elements of Asg; .
In order to determine the rotation angle and eigenvector of rotation for the desired

slew maneuver, the total attitude transformation must first be calculated as

Astew = A (qf) AT (qo) (4.2)
where A (q) is
G-G-d+4¢ 2(qe+ aa) 2 (q193 — q2q4)
A(q) = 2(qig2 — @3qn) —4i+ @ — @G+ a3 2(q2q3 + q1q4) (4.3)
2(q193 + q2q4) 2 (q2q93 — q194) —@ -G +E+ G

With the total attitude rotation calculated, the rotation angle can be found as a func-

tion of the trace of the attitude rotation matrix.

tr [Asiew) = 1+ 2 cos (a) (4.4)

Finally, since the eigenvector of rotation is a direct function of the total attitude rota-

tion, it can be calculated directly from (4.2) as

22

el (a23—a32)/2sin o
e= | e | = | (@1—a13)/26ina (4.5)
es (a12—a21)/2sin

The next step of the process is to generate a single degree of freedom trapezoidal
trajectory. The purpose of the trapezoidal trajectory is to determine the time-varying
rotation anglea (t), rotational velocityc (t), and rotational accelerationd (¢), such that the
time-varying quaternion can be computed as a function of the eigenvector of rotation, shown

in (4.6).

e1 sin («(t)/2)
eg sin («(t)/2)
eg sin ((t)/2)

cos (a(t)/2)

The attitude command, q*, is then generated as a function of the time-varying quaternion,q (t),

and the spacecraft’s initial quaternion, qg, as shown in equation (4.7)

where

qa 43 —q2 q1
—q3 Q4 q1 Q2

q2 —q1 q4 q3

—q1 —q2 —q3 Q4

Finally, the spacecraft’s rotational velocity and acceleration commands, w*and o™ re-

spectively, are computed as functions of & (t), & (t), and e as

w*=d(t)e (4.9)

23

oF =d(t)e (4.10)

4.2.2 Plant Dynamics
The basic equation of motion governing the vehicle’s dynamics is given by Euler’s

equation

T =h 4 wxh (4.11)

Here, h represents the vehicle’s total torques in the body frame and is defined as,h is the
vehicle’s total momentum in the body frame, including that imparted by the ACS, wis the
vehicle’s angular rate in the body frame, and T, the total external torques experienced by

the vehicle, can be written

T =T.+ Ty, (4.12)

where T, represents the vehicle’s attitude control torques and T, are the environmental
disturbing torques experienced by the vehicle. The spacecraft’s plant dynamics can be
represented as

T =10 (4.13)

where [is the spacecraft’s inertia tensor andwrefers to its rotational acceleration. Using
estimates for the disturbing torques, Euler’s equation can be solved to determine the angular

acceleration as

O=T1"1Ty—h—wg(w+h) (4.14)

Noting that wg is the cross product matrix of the angular rate vector and is defined as

24

0 —w, Wy
We = Wy 0 —wy (4.15)
—Wy Wy 0

(4.14) can then be numerically integrated to obtain the vehicle’s angular rate. As
described in [13] the attitude quaternion can be written as a differential equation in the
form of

d)

1
—4q=-0 4.16
dtq q 2 q ()

where q is the current attitude quaternion at a given time and

0 Wy Wy Wy
—w 0 w w
0= ? v (4.17)
Wy —Wg 0 w,
—Wgy —wy —w; 0

Integrating equation (4.16) yields the spacecraft’s current orientation, q ().

4.2.3 Controller Selection

The purpose of the controller is to stabilize the vehicle’s plant dynamics. It does this by
commanding the actuators to generate a control torque such that it zeros the acceleration of
the spacecraft caused by the disturbing torques. A proportional-integral-derivative (PID)
control law, shown in equation (4.18), was chosen for the HARP spacecraft due to its

robustness and the ability of the added integral mode to reduce the disturbance error.

Te = Kg (W* —w) + 2K,4cqe, + K / 2Qcqe,dt + Ia* + wg (Iw +h) + Ty (4.18)

25

The error, qe, is defined as

qe = Qqs (4.19)

where @ is the same as (4.8) and qs is

GC=| - —¢ -6 o (4.20)

The proportional, integral, and derivative gains, K,, K;, and Ky, respectively, were
chosen based on the deadbeat design of the system defined as
Is® + Kgs° + Kps + K; = 0 (4.21)

According to Dorf and Bishop in [14] this third order system can be represented as

§% 4+ 1.9wps? + 2.2w2s + w2 =0 (4.22)

where w,, refers to the natural frequency of the system. Isolating the highest order term of

(4.21) and equating with (4.22) yields

K K, K;
s+ Tds2 + Tps + TZ = 5% +1.9w,5% + 2.202s + w3 (4.23)

At this point the selection of the controller gains is dependent only upon the choice
of the natural frequency and the spacecraft’s inertia tensor. For a deadbeat design with

wp, = 1 the gains become

K, =221 (4.24)

Ki=1I (4.25)

26

Kq=19I (4.26)

4.2.4 Actuator Models

The model’s actuation system is based on HARP’s ADCS, which uses the off-the-shelf
XACT system developed by Blue Canyon Technologies. It consists of a trio of reaction
wheels mounted along each of the body axes as well as magnetic torque rods (MTR) for
momentum management. Per Blue Canyon Technologies’ specifications, the momentum
wheels have a maximum momentum capability of 18 Nms and torque generation of 0.6
mNm. They are modeled in the Laplace domain as

hwheel(s) _ 1 (427)

hwheelcmd(s) Tws + 1

HARP’s reaction wheels have a maximum wheel momentum of approximately 18 mNms.
This corresponds to a maximum wheel speed of 6,000 RPM at 12 volts. The commanded

wheel speed is estimated based on the wheel’s moment of inertia as

hwheelcmd (S)
_— 4.2
s (1.29)

Wwheelemd =

The actual measured wheel speed of the each of the reaction wheels is assumed to be

known only to within +5 RPM and is modeled as

h s
Wwheel = theel() + Nwheel (429)
w

where 7y peer 1S given in equation (3.11).

The voltage draw of the reaction wheels was estimated based on the quadratic function
shown in equation (4.30) to simulate increasing power requirements as they spun faster, up
to a maximum of 12 volts at 6,000 RPM. The measured voltage was assumed known to

within £0.1 volts.

27

Vi = 2.22F — Twyheet + 6.67TE — dwypheer + NV, (4.30)

with 7y, given in equation (3.12).

4.3 Attitude Determination System

The XACT attitude determination and control system used on HARP comes with a
suite of attitude determination sensors including a star tracker, inertial measurement unit,
magnetometer, and sun sensor, as well as a Kalman filter to process sensor noise. All sensors
have a sampling rate of 50 Hz with the exception of the star tracker, which is capable of a

5 Hz attitude solution.

4.3.1 Star Camera

A star camera is used as the primary means of attitude determination on HARP. The
spacecraft’s attitude quaternion can be determined via comparison of vectors measured in
the body-fixed coordinate system with known vectors in the inertial coordinate system. The

basic model is given as

b; = Ar; + v; (4.31)

where the unit vectors measured in the body-fixed coordinate system are given by b,
the known unit vectors in the inertial system given by r;, and the errors represented by
v;. The rotation between the inertial and body-fixed coordinate systems is given by the
matrix, A, and is determined by integrating equation (4.16) and applying the result to

equation (4.3). The noise is modeled as a random variable with variance

0? = 0.01 deg? (4.32)

28

4.3.2 Inertial Measurement Unit
The spacecraft’s angular rate is measured using an inertial measurement unit (IMU)

and is modeled as

O=w+B+nu+n (4.33)

where w denotes the measured angular rate, 3, 1, and 7, represent the sensor bias, bias

noise, and sensor noise respectively and have values of

B=0.19/nr (4.34)
Ny = V10E — 10 rad/s?2 (4.35)
n, = V10E — Trad//5 (4.36)

4.3.3 Kalman Filter

Since the measurements made by the star tracker and IMU are corrupted by noise
and bias, they must first be filtered in order to obtain estimates of the true attitude and
angular rate. This is accomplished via a discrete time extended Kalman filter (EKF) as
outlined in [15]. The discrete time EKF is the preferred filtering method as the discrete
time propagation of the state and covariance can accommodate the difference in sampling

rates between the star tracker (5 Hz) and IMU (50 Hz).

4.3.4 Magnetometer and Sun Sensor Models
The magnetometer and sun sensor models follow the same general format as (4.33),

but is modified as

M
Il

pux+B+n (4.37)

29

X represents the measured quantity, which is either the earth’s magnetic field vector
or the unit vector to the sun in the spacecraft’s body-fixed coordinate system. x is the
truth vector for either the magnetic field or the unit vector to the sun. pis an uncertainty
parameter. Since the environmental truth models of both the reference and spacecraft
models are identical, and the spacecraft model is meant to simulate actual telemetry, this
parameter is added in order to introduce the uncertainty that would exist between the

reference model and actual spacecraft telemetry. The uncertainty parameter is modeled as

COS 0Ny
B =1 cosony (4-38)

Ccos on,

where o is the assumed maximum uncertainty in the quantity being measured and n; is
a random number between zero and one. The maximum uncertainty of the magnetometer
was assumed to be 0 = 10°while the sun sensor was assumed to have maximum uncertainty
of o = 5°.

[represents the bias in the measurements. This is mainly a concern with the magne-
tometer. It is assumed that the spacecraft is not magnetically clean and that there exists
a residual magnetic field. In lieu of available estimates or measurements of the HARP

spacecraft, the residual magnetic field was assumed to be

100
=1 50 |nT (4.39)
75

n refers to the noise present in the measured unit vectors and is modeled as per equation

(3.10) with

Omag = 0.01 (4.40)

30

O sun = 0.0005 (4.41)

4.4 Truth Models

In order to accurately characterize the spacecraft’s operating environment, models sim-
ulating the orbital dynamics and earth’s magnetic field have been included. The earth’s
heliocentric planetary state vector is also calculated in order to determine when the space-

craft is in eclipse and is based on the method outlined in [16].

4.4.1 Orbital Dynamics
The spacecraft’s orbit mechanics include the effects of the earth’s oblateness and are
modeled according to Curtis in [16]. The basic equation of two-body motion is given in

(4.42). Note that @, refers to the spacecraft’s radial unit vector.

i=La, (4.42)
T

In order to adequately capture the earth’s oblateness effects, 4.42 is modified by adding

the disturbing acceleration due to the second zonal harmonic, J, as

i = %”ﬁr +p (4.43)

The disturbing acceleration can be written in terms of the spacecraft’s radial, traverse,

and normal unit vectos as

p = p0, +priy +pyh (4.44)

The components of p themselves are functions of the second zonal harmonic, Js, the
spacecraft’s radial position vector, r, the earth’s radius, R, as well as the argument of

perigee, w, the inclination, ¢, and true anomaly, 6, as shown below.

31

o= B3, (1 2[1—3sin2isin2(w+9)] (4.45)
" r227° \ r ‘

__ﬂ§J R 2sin2z'sin2(w+9) (4.46)
PL="135"%\ 7% .

= —ﬁg] R 2sin2isin (w+6) (4.47)
Ph="129% \ & ‘

Integrating 4.43 once yields the spacecraft’s velocity vector. Integrating once more

yields position.

4.4.2 Magnetic Field Model
The International Association of Geomagnetism and Aeronomy (IAGA) provides a
model of the earth’s magnetic field known as the International Geomagnetic Reference Field

(IGRF). The earth’s magnetic field can be modeled as a spherical harmonic expansion, the

coefficients of which are provided by the IAGA.

4.5 Environmental Disturbance Models

4.5.1 Gravity Gradient

The largest external disturbing torque experienced by the spacecraft is the gravitational
moment due to the gravity gradient. Within a magnetic field, an asymmetric body will tend
to align the axis with the smallest moment of inertia to the direction of the field [13]. As
such, for satellites in low earth orbit, this disturbance cannot be neglected. The torque due
to the gravity gradient for each of the spacecraft’s body axes is a function of the spacecraft’s

orbital radius, moments of inertias and Euler angles as

32

(L. — Iy) sin2¢ cos® 6
3
Tao = 7“3 (I, — Iyy)sin26 cos ¢ (4.48)
(I3 — Iyy)sin20sin ¢

where Ry is the orbital radius and ¢ and 6 refer to the roll and pitch angles respectively.

4.5.2 Magnetic Field

Due to the inability of spacecraft designers to design a spacecraft that is absolutely
magnetically neutral, there is usually a residual dipole moment that is created by the
spacecraft’s internal components. The interaction of this dipole moment with the earth’s

magnetic field imparts a torque on the spacecraft. This torque can be modeled as

T,, = DB (4.49)

where D is the spacecraft’s residual dipole moment in units of amps - turns - m?and B is

the earth’s magnetic field vector in Tesla [17].

4.5.3 Aerodynamic Drag
Due to HARP’s low orbital altitude of 600 km, the spacecraft will experience an external

torque due to atmospheric drag. The torque due to drag was modeled per [17] as

To = F (cpa — cg) (4.50)

The center of pressure and center of gravity are denoted as ¢, and ¢, respectively and

are estimated from CAD models. F' is the force term and is defined further as

B pCpAV?
N 2

F (4.51)

The atmospheric density, p, is estimated based on the MSISE-90 model of earth’s upper

atmosphere. The drag coefficient, Cp, was assumed to be 2.5. The spacecraft’s surface area,

33

A, was estimated based on CAD models. Finally, V refers to the spacecraft’s orbital velocity

and is found by integrating equation (4.43).

34

Chapter 5

Training the Neural Network

5.1 What is a Neural Network?

According to Haykin [18] a neural network can be described as “a massively parallel
distributed processor made up of simple processing units ['neurons’], which has a natural
propensity for storing experiential knowledge and making it available for use.” It is able
to gain knowledge by acquiring it through its environment via a learning process and able
to store that knowledge using synaptic weights. The synaptic weights are analogous to the
gains of a linear adaptive filter and are modified during the learning process, much as filter
gains are, until the network is able to achieve its desired performance.

One of the great advantages of using a neural network in FDI is its ability to perform
input-output mapping. Using input-output mapping a neural network is able to modify its
synaptic weights by applying training samples. The training samples consist of an input
signal and a desired response. During training the synaptic weights are modified in order to
minimize the error between the desired response and actual response of the network. The
input-output training samples act as a “teacher” for the neural network and they tell the

network how it should respond to a given example from the training set [18].

5.2 Neural Network Training Set

To remind the reader, the purpose of the residuals is to provide the learning space from
which a neural network can be trained to detect and isolate fault events. A neural network
is trained by being given examples from a training set of data, each example consisting of
a set of inputs with a corresponding desired output. It is desired that the residuals defined
by the attitude determination and control system form the input portion of the training

set, and therefore a vector of residuals is defined as

35

nputs = * *
X
Inp Qres Wres Qres Wres Wressx: Uressxi PT653><1 JDres Tres DBres
T
Sres QTRIADjyes IMUpes Magnetometeryes SunSensoryes (5.1)
21xn

The input vector has dimensions 21 x n, where n is the number of examples in the training
set. A Matlab script was used to generate this vector and is given in appendix B.1.

Similarly, a target vector must also be defined to complete the training set. The purpose
of the target vector is to tell the neural network how it should respond to a given input. As
the inputs are defined as the residuals of the attitude determination and control system, the
outputs correspond to the possible faults that could be present in the ADCS. Each element
of the target vector corresponds to a single source of error and has a default value of 0.
When a fault is detected by the neural network, it changes the element corresponding to
the fault to a 1.

The input categories of figure 1.1 are consulted once again to determine the sources
of error in the ADCS to define the target vector. The external inputs to the ADCS are
comprised of such quantities as the true position of the sun, the earth’s magnetic field, the
spacecraft’s true attitude and angular rate as well as guidance commands from the ground.
As the latter is the item that is most controllable, a fault state is defined that corresponds
to either improperly defined ADCS guidance commands, e.g. by user error, or guidance
commands that are received improperly due to another unknown source.

The ADCS sensors are responsible for taking the measurements that allow for accurate
attitude determination and are critical to its operations. Fault states are therefore defined
that correspond to each of the attitude determination sensors. Such sensors can include
star trackers and horizon crossing indicators. This thesis assumes an ADCS with four such
sensors: star tracker, IMU, magnetometer, and sun sensor with fault states reserved for
each.

Like the sensors the ADCS software is equally critical to the operation of the system.

36

The software is responsible for issuing attitude commands, reaction wheel commands, or
managing the momentum storage of the control system. It is also comprised of the or-
bit propagator, which is responsible for propagating the spacecraft’s orbital position and
estimating the position of the sun and earth’s magnetic field in lieu of GPS or sensor mea-
surements. As seen in figure 1.1 most of the software is situated downstream from two
main inputs: the orbit propagator and the guidance commands. A fault in either of these
two components would manifest itself, for instance, in the controller commands to the re-
action wheels, or other downstream component. As the guidance commanding is handled
elsewhere, an element in the fault vector is then reserved based on the performance of the
onboard propagator. Also, as the spacecraft’s position and targetting capabilities are also
time-dependent, a second fault corresponding to the spacecraft’s onboard clock in the form
of the Julian date, is reserved as well.

The final source of inputs in the control actuators: the reaction wheels and magnetic
torque rods. Each reaction wheel has two elements of the target vector. One element
corresponds to wheel speed, the other to the power being supplied to the wheel. The
reaction wheels have the separate elements defined to better differentiate the cause of error,
whether it is the wheel itself malfunctioning or if the cause is due to a lack of nominal
power. The magnetic torque rods each have a single element corresponding to an on/off
state and whether the polarity is correct.

Sixteen sources of error have been defined: 9 corresponding to the reaction wheels
and torquers, 2 corresponding to the propagator and clock, 1 corresponding to the com-
manding of the ADCS, and 4 for the attitude determination sensors. A 16 element vector

corresponding to each of these errors is defined as

Targets = | Speed — Whi; Power — Whil; Polarity — MTR; Cmds Clock

T
Speed — Whl; Power — Whi; Polarity — MTR; Cmds Clock (5.2)

16xn

with each element having a value of 0 for nominal state or 1 when a fault has been detected.

37

The target vector has dimensions 16 x n, where n is the number of examples in the training

set. A Matlab script was used to generate this vector and is given in appendix B.2.

5.3 Proof of Concept

Prior to training a neural network using the input and target vectors defined in equa-
tions (5.1) and (5.2), a reduced set of inputs and targets was defined in order to demonstrate
proof of concept. The purpose of performing a proof of concept exercise was to demonstrate
that a neural network could indeed discern a pattern within a set of residuals defined by
an ADCS and determine a fault. A simple reaction wheel-controlled, single degree of free-
dom spacecraft was considered. Residuals were defined to compare the spacecraft’s attitude
to that estimated by a reference model, and the measured wheel speed and voltage were
compared to the commanded wheel speed and voltage. Two possible sources of error were
assumed for the system —wheel speed, to check for mechanical failure, and wheel voltage to
assure nominal power was available. The associated input and target vectors used to train

the neural network are given in equations (5.3) and (5.4).

T
X = |: Ores Wres Ures :| (5.3)

T
Y = [W heelSpeed W heelV oltage] (5.4)

A pattern recognition neural network was constructed using the Matlab neural net
toolbox. Pattern recognition is described by Haykin as “the process whereby a received
pattern or signal is assigned to one of a prescribed number of classes” [18]. The length
of the target vector, Y, represents the number of classes that the input vector, X, will be
divided into, which in this instance is two. An example set was constructed by commanding
the spacecraft to perform a 180°slew maneuver at ¢ = 60 seconds. At t = 145 seconds
the output of the wheel was limited to 25% forl0 seconds in order to simulate a wheel
malfunction before being allowed to return to normal operation. During the maneuver the

residuals defined by (5.3) were monitored and are presented in figure 5.1. It was assumed

38

that the wheel speed was known to within three standard deviations of £5RPM. When
the measured wheel speed exceeded this threshold, the element of Y corresponding to the

speed of the reaction wheel was switched from 0 to 1 to indicate a fault state.

FroofofConcept Residuals

I:I':IE T T T T T
=
[k}
= 0 _
i
I
_I:II:I5 1 1 1 1 1
0 &0 100 150 200 260 300
5':":' T T T T T
Z -
= "
B -500F .
b=
_-‘IDDD | | | | |
0 a0 100 180 200 2a0 300
I:|2 1 1 1 1 1
w
=
= 0 i
o I Ay
LB
_Dz | | | | |
0 a0 100 150 200 240 300
Time (s)

Fig. 5.1: Attitude, wheel speed, and wheel supply voltage training residuals

As can be seen from the residuals, at 145 seconds there is a sudden bias in the wheel
speed as the wheel’s torque authority is limited. There is a small aberration in the attitude
residual as the wheel is unable to provide the necessary output during the fault event. The
bias in the attitude and wheel speed residuals persist until 155 seconds, at which time the
wheel returns to normal operation and the attitude is able to readjust. The reaction wheel
supply voltage residual remains unchanged from a nominal value during the fault event,
which indicates that the ADCS had no trouble supplying the power required by the wheel.

Applying this data to the neural network yields the results shown in figure 5.2. From

the figure it is easily seen that the neural network is reporting normal wheel operation

39
and nominal power available until ¢t = 145s at which point it successfully detects the fault
induced in the reaction wheel. It is worth noting that based on the results shown in figures
5.1 and 5.2 that although a fault was detected in the reaction wheel, the residuals and the
neural network output all returned to nominal values and is indicative of the spacecraft

successfully completing the desired maneuver.

Meural Met Test

1L _ —WWheel Speed ||
=
[
= 05¢ .
a
| | | | 1
a 50 100 1580 200 240
1L — Wheel Voltage (|
=
p18
= 05¢ .
a
| | | | 1
a 50 100 150 200 250

Time (5]

Fig. 5.2: Fault detected at t = 145s

5.4 Generating the Training Data

Based on the example given in section 5.3, a pattern recognition neural network is
shown to be able to discern a fault within a reduced set of residuals for the specific case of
a reaction wheel failure. To detect faults relative to the entire ADCS the training space is
expanded to include all of the residuals described in chapter 3 and is given by equation (5.1).

The target vector, which tells the neural network what pattern of residuals corresponds to

40
which failure, is given by equation (5.2).

For the neural network to be able to recognize failures in the ADCS it must first be
trained to recognize what patterns of residuals correspond to which component failures, and
what patterns of residuals correspond to normal behavior. As such the neural network will
require an extensive number of example sets that are comprised of residuals generated for
both fault and nominal operation scenarios that encompass the entire ADCS, that is, all
of the components of the target vector describe in equation (5.2). The training data were
generated in the following manner:

First, determine which component the fault will be injected into, for example, the
amount of power available to the reaction wheels. Next, determine a set of maneuvers
for the spacecraft to perform that will generate residuals over a wide range. The intent
of this is to attempt to bound the problem and provide the neural network with training
examples that cover as wide a range as possible. After defining the maneuvers, the next
step is to generate simulated telemetry using both the reference and fault software models
and to use that telemetry to form the residual vector. Note that the telemetry should
be sampled at an appropriate rate to mimic as closely as possible the data that would be
received from the spacecraft. In the case of HARP, a full attitude solution is available at
a rate of 5 Hz. Finally, the appropriate element of the residual vector is then thresholded
such that when the threshold is exceeded the corresponding element of the target vector
is incremented from 0 to 1. The values of the thresholds are determined -either
empirically or based on the known standard deviation of a measured quantity, such as
sensor noise. Following this general procedure, a library of training examples is generated

for the ADCS on a component-by-component basis.

5.4.1 Nominal Training Examples

A nominal training set of examples, corresponding to normal operation of the ADCS,
was generated for four maneuvers: a stationkeeping maneuver where the ADCS was com-
manded to keep the spacecraft nadir pointing, and 180° maneuvers for roll, pitch, and yaw.

Since no fault was present during any of these cases, no thresholding of the residuals was

41

required. The residuals for the nominal stationkeeping maneuver are shown in figure 5.4.

Quantities that would normally be thresholded are shown with their thresholds given as
hashed lines.

The target vector, which describes to the neural network the output desired for a given

input, is shown graphically in figure 5.3. Since no faults were defined for either the nominal

stationkeeping or the roll, pitch, or yaw maneuvers, the desired output of each component

is 0.

Wheel, State Wheel, Voltage MTH, Polarity ADCS Crds

1 1 1 1
0.5 0.5 0.5 0.4
a a a a

O 100 200 300 0O 100 200 300 O 100 200 300 0 100 200 300
Wheel, State Wheel, Yoltage MTR., Polarity Clock

1 1 1 1
0.5 0.5 0.5 0.4
a a o a

0 100 200 300 0O 100 200300 O 100200300 0O 100 200 300
Wheel, State Wheel, Voltage MTR; Polarity

FPropagator

1 1 1 1
0.5 0.5 0.5 0.4
a a a a
0 100200 300 0O 100200 300 0 100200 300 0O 100 200 300

Star Carn. Rate Sensor Magnetometer Sun Sensor

1 1 1 1
0.5 0& 0.a 0&
a a o a
0 100 200 300 0O 100 200 300 O 100 200 300 0 100 200 300
Time(s) Time(s) Time(s) Time(s)

Fig. 5.3: Neural network output for a nominal hold maneuver

5.4.2 Training for Reaction Wheel Faults

Training examples were generated for each of the reaction wheels that covered two
different faults: a sudden limitation of available torque authority and a limiting of the
available power. 180° maneuvers for roll, pitch, and yaw, as well as stationkeeping, were

defined in order to generate as large a residual as possible for each of the reaction wheels.

42

HW

1A

HlW—

00E 002 ool D_.
i
!
Auejod H1p
ong oz ook o
Al
i
zn
albieyos 133U
s oz ook 0
ol
i
ol
paads |aaya

104V

WdHv

IoAnouew Surdoayuorje)s [RUIMIOU ® I0] S[RNPISAI o], :F'G 81

ooz 0oz ool m_a
i p
QmU
F=
a
=
IIIIIIIIIIIIIIIIII 9
a
10sUas ung LObX
0oe 0oz ook Dﬁ.
S0
0 B
&0
3
plat4 Hepy sojeledog
0oe 0oz ook Dﬁ.
i
o2
0
L
uoisog Jejos
oos 0oz ook a
; ¥ a

Hy PEML

ooz ooz oot GG
o 5
=
]
FO0 &
goo
10sUag aled
0oE ooz ool a
o =
-
2
5=
3
IIIIIIIIIIIIIIIIII ol
uoisod Jojefedoid
0oE ooz ool a_..
50
o &
g0
L
puid aley Joy
0os 0oz ool aa
L
-1
[
4
aley ey HAbE

oog oog ool GD
Z0

F ¥0
=ln]

l1a1awolaulieg

0oE 00z ool 0
0

F G
oL

307 v.a_‘x

05z 002 0sk 00F 0% DT

u]

F l
IIIIIIIIIIIIIIIIII z
F £
¥

U Y 18 U

0os 00z ool DD
)

L

)

Wy Jed 0L X

arv

| b7

v

(bl

43

For each of the faults and maneuvers listed previously, the available torque authority or
power were limited to 75%, 50%, 25%, and 0% of that which was requested by the system.
In the case of limiting the torque authority, it was assumed that a mechanical malfunction
was to blame. As such, a ten second duration was assumed for each fault event, during
which an extra noise term with power equal to 1% of the total torque capability of the wheel
was added to the output. This extra noise was omitted during the simulated power failures.
The lack of available power was not assumed to be a singular event and therefore had no
fixed duration and was allowed to persist for the entirety of the simulated fault event. For
each failure mode it was assumed that the speed of the wheel was known to within three
standard deviations of 5 RPM and each wheel residual was thresholded at five standard
deviations. Figure 5.5 shows residuals that are typical for a mechanical failure of a reaction
wheel.

The maneuver associated with these residuals is a 180° maneuver about the pitch axis.
Between ¢ = 145 seconds and ¢ = 155 seconds the output of reaction wheel 2 was limited
to 25% of what was requested by the controller. During this time the residual of reaction
wheel 2 experiences a very large, sudden bias as it is no longer capable of providing the
desired torque commanded by the system. The reference attitude and reference angular
rate residuals also experience biases during this time. After ¢ = 155 seconds the wheel is
allowed to return to normal operation and the spacecraft is able to complete the maneuver
as is denoted by the residuals returning to nominal values. The residual of reaction wheel
2 was thresholded to generate the desired neural network output shown in figure 5.6.

Limiting the power available to the reaction wheels was conducted in a manner similar
to the mechanical malfunction described above, with the exception being that the noise
term associated with the mechanical malfunction was omitted and that once the fault was
injected it was allowed to persist indefinitely. Figures 5.7 and 5.8 show the residuals and

desired network response of a typical power failure event.

44

9IN[IRJ [BOTURTDAUI [907[M UOIIORAI [edIdA) ©)M PIIRIDOSSE SoSRIq [eNpIsal oY, :G'G "SI

ooe ooz ool
o ——
T
H1M
bl ——
hejod Q1M
oos 0oz ook
Eat
Eat
bhi
afieyop, 138U
0oz ook
Eai
Eat
b
paads |aaysn

=
10d¥v

[

0

00s-

=
WV

0o0s

0og 0oz 0ol
I0SUAS ung
0oE

00z 0ol

platd Bepy 1ojebedog

05 002 051 0oL 0%
uolisog 1eog
0sc 00 051 00l 05

Wy PENL

{Bep) Sov

0og 00z 0ok 0

losuas ajey

052 002

05 00l 0% 0

() sodv

unisod Jojebedoiy

0og 00z ool 0

puwiz sley 18y

One a0z ool a

aley Jay JOLX

[%

2

(s/fiap)

0oE 0oz ook 0
Jajawiojaubiepy
052 002 051 o0l 05 0
felulle] pab®
05z 002 056 o0l 05 0
LD Ny 18y GObE
0oE ooe ook]

Wy ey ?D (R

— O
Al

s

]

=+ m

arv

bl

Wheel, State Wheel, Voltage MTE, Folarity

ADCS Cmds
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Clack
1 1 1 1
0.5 ’I 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Propagatar
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 a 100 200 0 100 200
Star Cam. Rate Sensar Magnetometer Sun Sensor
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 a 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

Fig. 5.6: Neural network output associated with a failure in a reaction wheel

45

46

oog oog ook G_‘.
By ——
z I
H1M o2
b ——
I
Aejog H1W
oo ooz ool 0.
S0
Ea 0
Zh, B
" S0
l
afienos, @8y
ooz ool u]
c oos-
i > 5
N>> u] T
. =
Py
005
paads [aayss

amyrey omod [9oyMm © Jo [eoldA) srenprsey :)°G “SIq

ooe a0z ook DD
F N v
Q%D

F V m
o

=

r- 9

8

lgsuag ung ALK

oos ooz ook GT
L oo
L 0 W“_
r S0

L

piat4 “fepy Jojefedoq

0sc 002 051 0ol 05 DT
L o
-

F o

L

uniysod Jejog
052 00z

051

0ol 05 0
N H 0

Wy PENL

oS ooz ool DD oo ooc ool 0
- B
. W0 E
=
]
. Y00 5
00
losuag aley Jajawojauliepy
0se 00€ 05k ool 05 1] 0s2 002 051 ook 0s 1]
o =
el
2
F m w
|||||||||||||||||| al
uolsog Jojefedoig ¥ao|s pab
oo ooz ool 0 - 0sz ooz 051 ook 05 0
L 5o
. o B
F S0
I
PUID) BlEH By PWD WY 1R O
oo ooz ool D_u oo ooc ool 0
F Z
[
=2
F ¥
9
ajey Jay LOE* W by M

[

¥oo

900

=+ Moo

arv

| b|v

¥

b7

8y

47

Wheel, State Wheel, Voltage MTE, Folarity ADCES Crds

1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Clack
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Propagatar
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 a 100 200 0 100 200
Star Cam. Rate Sensar Magnetometer Sun Sensor
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 a 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

Fig. 5.8: Desired neural network output for a power failure in reaction wheel 2

5.4.3 Training for the Magnetic Torque Rods

Figures 5.9 and 5.10 give the residuals and output associated with the training of the
magnetic torque rods. Training examples for the magnetic torque rods were limited to
determining whether or not they fired as commanded with the proper polarity. For each of
the three magnetic torque rods 180° maneuvers for roll, pitch, and yaw were simulated. To
simulate constant desaturation of the reaction wheels the MTRs were commanded to fire
when the wheels reached 8% of their momentum storage capability. When the torque rods
were commanded to fire their polarity was reversed in order to generate the residual. Since
the residual of the MTRs is based only upon whether or not the polarity is correct, it was

thresholded such that any non-zero value would be indicative of a fault.

48

[= 11 E—

=N}

00z 0ok

]

HlN—

0oe

Aueing W1

00z ool

abejjo |38y

=
lod¥

[}

pasdg |aaus,

WYV

poa enbioy oreudewr

0og 0oz 0ol Da
L A
CmU
L Voo
o
=3
r m
8
Insuas ung AL ¥
0oe 00z 0ol D_‘.
L -
L ooE
r 50
b
plat4 ‘Bey Jojebedog
052 002 051 00l 05 0 -
L oo
0 &
r 50
b
msod 1ejog
05t 05l 00L 0% 0

Wy PENL

ooe 0oz 0oL Dm
r con W
=
2
. ¥O0 G
800
l0suas ajey
052 002 050 00l 05 0
0 =
jual
]
L 5
=
IIIIIIIIIIIIIIIIII ol
uoiysod Jojebedog
00z ooL D_‘.
L o
. 0 B
r 50
b
puwig aey ey
0oz ool 0
0
r I
. A
r £
¥
aley Jay MU

® JO SULIY POSIAI M PIJRIdOSS® S[eNpPISAI oY, :6°G "SI,

ooe 0oz ook a
Jajawniaubiepy
05 002 051 o0l 05 a
H20[0 v.m: *
05z 00z 0SL o0l 05 a
P WY 18y O
oo ooz ool i}

Wy 18y #Ob*

]

=+ m

arv

| b7

¥

49

Wheel, State Wheel, Voltage MTE, Folarity ADCES Crds

1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Clack
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Propagatar
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 a 100 200 0 100 200
Star Cam. Rate Sensar Magnetometer Sun Sensor
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 a 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

Fig. 5.10: The desired output associated with a fault in the magnetic torque rods

5.4.4 Training for Guidance Command Errors

A probable source of error when commanding a CubeSat to point towards a target is
that the commands are somehow received improperly by the ADCS. This error could take
one of several forms. For example, there is the possibility that the user working the ground
console has programmed the pointing commands improperly. This is especially true when
pointing towards a target of opportunity that has not been previously hard coded into the
ADCS flight software. Another form that this error could take would be either a command
parameter became corrupted during transmission, or there was an intermittent delay that
caused the commands to be processed sporadically [19].

Two tests were defined to train for this error. The first tests for guidance commands to
the ADCS that are either defined improperly or are otherwise corrupted prior to execution.

In this instance two sets of maneuvers were defined: a £180° pitch for the reference model

50

which represents the desired performance of the spacecraft, and a £180° roll for the fault
model which represents its actual performance. The assumption in this instance is that
either the user programming the ADCS commands was in error or some unknown software
glitch has garbled the original command. Figure 5.11 shows the residuals which are typical
for this error. Note that since the final attitude and rate residuals did not return to a
nominal value that this indicates that the spacecraft is not in the desired orientation.

When the guidance commands have been set improperly several biases present them-
selves in the residuals relative to the reference model. This is because the reference model
is meant to represent the desired response of the ADCS compared to the actual response
based on the spacecraft’s telemetry. In both cases the spacecraft was commanded to turn
through the same rotation angle with the same angular rate, but due to an unknown error,
whether user or otherwise, the commands that were executed were not those that were
intended.

The second test assumed a transient malfunction such that the guidance commands
were received intermittently either due to processor malfunction or other unknown error
source. These tests were defined such that the guidance commands were not received at
time = t, but rather at time = t+ At where At is an unknown delay and is defined formally

as

At = Ut + V¢ (55)

In equation (5.5) p is the mean delay time and is allowed to vary between zero and
10,000 ms. The mean delay time was also allowed to vary by an amount, v4, which is a

normally distributed parameter with standard deviation, o; defined as

_

Residuals typical of the second scenario are given in figure 5.12.

ol

SIOIIO PURTIWIOD STV YHM POJRIdDOSS® S[RNPISAI oY, (T1°G 81

0oe 0oz ook Dm_ 0oe ooz 0ol 1] 0og 0oz ool Dm_
I < 5 E 200
= [
"3 2 >
L g = & FOD
8 900
10SUAS ung LSO l0suas aley Jajalnjaulie)y
0oz ook 0 0oE 00z ook 1] I- 052 002 050 00l 05 1] 05 002 05 0oL 05 1]
[.
Friim —— 50 o B 0
[
zZ > b=
BN or 0 B 5 2 g O
b —— I El
z so] ¥ e ——————————————
IIIIIIIIIIIIIIIIII ol
| ol
Aelod 1R platd fep joebedog uoiysod Jojefedoy Han|o Hab#
0og 0oz ool DN.D. 052 002 051 00l 0% 1] I- 0oe 0oz 0oL Da 05 002 0% 0oL 0% 1]
3 F S0
h - o
Ean Z (R £
L .
¥oo
Ak . 50
Za .
| 300
afieyos, 93y uolyso4 Jejog puig aley Jay P e ey
ooz ool o 0sz 00 0SL 00l 0% i} ooe 0oz ool DD 0os ooz ool DD
£
o B o 50
g : : 2
b ¥0°0 L
paads |98 900 =t

Wy PNl ajey 48y Wy Jed

92

spuewod 9ouepnsd gy pouwn) Ajrodoidwir Jo oA1edIpUI J0IARYq [BNPISAY :gT1°C "SI

0oE oog ook GD oog aoog ook m_a oog 0oe ook m_a
F Z
5 : o 5 200
I vz =z _H_W.
I g & . Yoo 5 ¥00
8 0o 0o
losuag ung LK losuag aleyq Jalawolaufiey
ooz ook] ooe ooz ook 0 - 0sc 002 051 00l 0% 0 0sc 002 051 00k 0% 0
z
Byl —— i 50 " D
=
Tulw 0y L 0Bl g 2 B
L - F 5 °
HLA I - =
c
|||||||||||||||||| o
I al
Aelnd H1m pia14 Bepy sojefedoq uoiysod Jojefedoid H30[0) pab*
anE 00z ool o_. 052 002 051 0ol 05 0 ooe a0z ook 0 0% 002 051 00k 0% a__.
oo T T T T T 1- T T] T T T T T S00
BN t ENiy F [4
z = =3
A =z 0 5} P E
) =
h . 50 . 9 1o
] .
L g 510
sBe3ja 122U uoisng Jejos pwg aley Jay S WD WY J2Y
a0z a0k DD_\ 052 002 0S5l 0ol 05 0 0oE a0z ook DD anE 0oz a0k DD
m>> S00
. _Wu . r 50 Loo -
i 2 b0 £ =
b —— | o e 548 - - F ! Z00
pasds; 2o zo 5l €00

Wy peul aley 8y L Wy Jay

93

Figure 5.13 shows the response desired of the neural network for errors relative to the
guidance commands received by the ADCS. Since the command residual is defined as the
difference between the intended commands and those echoed by the spacecraft, the residual

threshold was set empirically so as to be a small value, 0.002.

Wheel,l otate WhEE|1 “oltage MTR1 Polarity ADCS Cmds

1 1 1 1
0.5 0.5 0.4 0.5 '
a a o a

a 100 200 g 100 200 0 100 200 g 100 200
Wheel, State Wheel, Voltage MTE., Folarity Clack
1 1 1 1
0.5 0.5 0.5 0.5
a a o a
a 100 200 0 100 200 0 100 200 g 100 200
Wheel, State Wheel, Voltage MTE., Folarity Propagator
1 1 1 1
0.5 0.5 0.4 0.5
a a o a
a 100 200 g 100 200 a 100 200 g 100 200
atar Cam. Hate Sensar Magnetometer Sun Sensar
1 1 1 1
0.5 0.5 0.5 0.5
a a o a
a 100 200 0 100 200 o 100 200 g 100 200
Tirmels) Time(s) Tirme(s) Time(s)

Fig. 5.13: The output desired of the neural network for errors relative to the ADCS guidance
commands

5.4.5 Training for Clock and Propagator Errors

Training for errors related to the orbit propagator and the onboard clock encompassed
whether or not the orbit propagator had drifted too far between updates and whether the
clock was adequately synchronized with the ground. For both errors stationkeeping and slew
maneuvers were defined for the ADCS. Figure 5.14 shows residuals typical of a propagator

error.

o4

104¥

OOE 00z ool O
-
B ——
Ty D
b ——
z
Aueing ¥1W
oE o 0Ol 0,
m>> -
“a
b,
¥
afielos [aau,
oE ol 0l 0
ol
Ea
T
b,

paads |aayan

oL

WdHY

SI10110 pojelar 1ojededord

0oE a0z ook DD
[
CmHv
F w m
2
=2
R, 9
g
Josuas ung ALE
ooz ooz ool 0.
Sy
L g wu
5G
paly ‘Bep ojebedoy 0L ¥
ooe a0z ook D_..
L 50
o
F 50
l
uolysad Jejog
ooe a0z ook 0
i H 0

Wy PEML

10§ STeNpIsor oY, F1°¢ “S1q

8y

oos ooz ool oo ooc ool DD
wo 5 z00
=
&
vo0 & 00
00 00
losuas ajey Jajawojauliepy
oog oog ook 1] oog 0oe ook 1]
|||||||||||||||||| - 0
el
] [l
3 7
ol
uosog Jojefedoig ¥ao|s pab
oo ooz ool 0 0sz oo o5k 00l 05 0
S0 .
[
E, - 5
¥
P sl Jay PWD WY 1Y LEE
oo ooz ool 0 oo ooc ool D_u
S0
& =
=
L
Sl

ajey 1oy v.a— #

Wy ¥ LOL¥

95

When the propagator is in error several of the residuals that are dependent upon prop-
agator inputs will experience a bias. The propagator position and magnetic field residuals,
and to a lesser extent, the solar position residual, will all experience a bias when the propa-
gator is in error. For the stationkeeping maneuver highlighted in figure 5.14 the propagator’s
orbit elements were allowed to drift from those that were assumed in the reference model
such that were was an error of approximately 50 km between the position as estimated
by the reference model and that reported by the onboard propagator. The propagator’s
magnetic field residual is also non-zero. These two non-zero residuals are excellent indica-
tions that the spacecraft may not necessarily be in the position it was assumed. It is worth
noting also that the although the solar position residual is very small in this instance, its
magnitude is dependent upon the size of the error in the propagator.

Training examples were also generated to allow the neural network to recognize when
the time as reported by the spacecraft differed from that of the reference model. The timing
of commands is critical to the spacecraft’s pointing accuracy, especially when pointing
towards the earth. To train for this error two example cases were considered. The first
assumed that the onboard clock had reset to 1 January, 2000 00:00:00.000 UTC and had
remained in this reset state prior to being updated either manually or by synchronizing
with a GPS. The second case assumed a relatively small difference in time of one minute.
Figure 5.15 shows the residuals typical for a clock error.

Upon inspection of the residuals when the onboard clock is not timed exactly with
the reference, biases appear in any system that has residuals defined based on either the
clock or the propagator. Note also the appearance of biases in the residuals of the reference
attitude and angular rate and their commands. The appearance of residuals here is due to
the fact that the ADCS was commanded to perform a maneuver at a specified time. As
the onboard clock was not properly keeping time the ADCS failed to execute the maneuver
as scheduled. Figures 5.16 and 5.17 show the desired network response to propagator and
clock errors. Note that the propagator and clock residuals were thresholded at 10 km and

1 Julian minute (6.9e-4) respectively to generate the desired outputs.

o6

oz ool
Bl
Zaiw
b ——
Aelod HLW
0oE ooz ool
Ea
a
b,
abeln, [aa
ooE o ool
Ea
i
b,

0

z0

pasdsg [@ayf,

lod¥

A

WdHV

I01I9 YOO [IIM POJRIIOSSE S[eNPISAI oY, :CT°C "SI

0og 00z 0ok D_u_
L 7
5P
F V =
o
=4
r__ m
2
Josuas ung LOLE
0og 00z 0ok 0.
: T 2l
F 8l
. el
r 8L
el
paty Bepy dopbedory JOLX
052 002 05L 00 05 0 -
L 50
L 0 &W
r =)
3
uoIs0d JEj0S
05 002 05L 00l 05 0

Wy pEML

0oe

00z

0ok

oo

{z/fap]|

losuag ajey

00

0z 00l

|||||||||||||||||| ol

{u) sodv

Sl

uoiusod Jojefedolg

a0z ool

0z

1o
oo |

£0n

puig aley ey

00z 0ok

00

100
oo g
Sy

3lEY a8y

¥0o

0oE 0ne ook DD
r 2o
[i X YN ¥0
F 90
a0

Jajawojaubiep

052 002 05L 00l 05 0 -
L oo

|||||||||||||||||| D
F S0

L

i felulle] m_u_ "

0sz 002 05k 00l 05 ma
r S0

L

PUD N ey

0oE a0z ook DD
F Sno

F L
Sl

Wy e

arv

Lk

WhEE|1 State

Wheel, “oltage

MTR, Folarity

ADCE Cmds

1
0.5
1]

1
0.4

0

\.:“\-’heel2 State

0 100 200 300 0

Wheel, “Yoltage

100 200 300

MTR,, Polarity

0 100 200 300 0 100 200 300

Clock

1
0.5
1]

1
0.5

0.5

1]

1]

0 100200300 O

Wheel3 State

Wheel, “oltage

MTR, Polarity

100 200 300 0O 100 200 300 0O 100 200 300

Fropagator

1
0.5
1]

1
0.5

1]

1
0.5
1]

Star Cam.

0 100 200300 O

Rate Sensor

100 200 300 0O 100 200 300 O 100 200 300

Magnetometer

Sun Sensor

0.4

1]

1
0.5
0

1
0.4

1
0.5

1]

1]

0 100 200 300 0

Time(s)

Fig. 5.16: The output desired of the neural network for a propagator error

‘\-“-fheel1 State

Time(s)

Wheel, “oltage

100 200 300

Time(s)

MTR, Polarity

0 100 200 300 0 100 200 300

Tirme(s)

ADCE Crmds
1 1 1 1
ns 05 ns 05
1] 1] 1] 1]
o 100 200 0o 100 200 0 100 200 o 100 200
Wheel, State Wheel, Voltage MTR,, Polarity Clock
1 1 1 1
ns 0.5 ns 0.5
1 1] 1 1]
o 100 200 O 100 200 0 100 200 o 100 200
Wheel, State Wheel, “oltage MTR Polarity Propagator
1 1 1 1
ns 0.5 ns 0.5
1 1] 1 1]
o 100 200 o 100 200 o 100 200 o 100 200
Star Cam. Rate Sensar Magnetometer Sun Sensar
1 1 1 1
ns 05 ns 05
1] 1] 1] 1]
0 100 200 0 100 200 0 100 200 0 100 200
Tirne(s) Time(s) Time(s) Time(s)

Fig. 5.17: The output desired of the neural network given a clock error

o7

o8

5.4.6 Training for Star Camera Errors

A star camera is often times the primary sensor used for attitude determination and
as such its attitude solution is checked against the TRIAD solution of section 3.5.1. If the
residual generated by these two solutions exceeds a nominal value, it could be that the star
camera is in error. Probably the greatest sources of error in the star camera attitude solution
is glint as well as field of view obstruction. Though many star camera manufacturers define
“keep out” zones relative to the earth, moon, and sun to minimize the possibility that
either of these could adversely effect the attitude solution, the possibility remains that the
star camera is not immune from this error. The most likely way in which glint or field of
view obstructions manifest themselves would be as an error in the attitude solution for one
or more of the spacecraft’s body axes. To model this error stationkeeping and 180° slew
maneuvers were defined to bound the problem. For each of the maneuvers, Euler angle
errors were introduced into the star camera attitude solution for each of the three body
axes ranging from 0° to 45° prior to the solution passing through the Kalman filter. The
residuals for a star camera attitude solution with a y-axis error due glint or field of view
obstruction of 45° are shown in figure 5.19.

The main residual in consideration for this error is the TRIAD attitude solution as
the purpose of the TRIAD solution is to act a check against the solution provided by the
star camera and Kalman filter. For the case presented in figure 5.19 an error of 45° was
introduced into the y-body axis of the star camera’s attitude solution prior to filtering at t =
145s. To simulate the transient nature of an error due to glint or field of view obstruction the
fault was defined to persist for 10 seconds before returning to normal operation. After the
error in the attitude solution has passed and the star camera returns to normal operation the
ADCS again perceives that is it out of orientation due to its previous correction maneuver.
In this instance the sudden shift in the attitude solution caused the ADCS to overreact
trying to correct for what it perceived to be a gross error in its desired attitude. It then
tries to reorient itself as quickly as it can by commanding its wheels to spin faster than their

capability, which ultimately puts the spacecraft into a tumble from which it was not able

99

to recover. The reader will note also the large bias in the rate sensor residual. Although
no fault was injected for the rate sensor in this scenario, the residuals for both the star
camera and rate sensor are defined based on the post-filtered sensor solutions. Both the
star camera attitude and rate sensor inputs are defined as states in the Kalman filter. Due
to the coupling of the solutions in the filter, it was found that if a fault was defined in either
the star camera or the rate sensor then the residuals for both the TRIAD attitude solution
and the rate sensor would become biased. The false biasing of the residuals will be seen
again during the discussion of the training for the rate sensor errors in section 5.4.8.
Based on empirical observation of the nominal TRIAD solution residuals, a threshold
value of 0.15 was used to determine the fault state. The neural network’s desired response

to a fault in the star camera is given below in figure 5.18.

Wheel, State Wheel, Voltage MTE, Folarity

ADCS Cmds
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Clack
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 0 100 200 0 100 200
Wheel, State Wheel, Voltage MTE., Folarity Propagatar
1 1 1 1
0.5 0.5 0.5 0.5
a a a a
a 100 200 0 100 200 a 100 200 0 100 200
Star Cam. Rate Sensar Magnetometer Sun Sensor
1 1 1 1
0.5 I 0.5 0.5 0.5
a a a a
a 100 2040 0 100 200 a 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

Fig. 5.18: The neural network’s desired response to an error in the star camera solution

60

vIgUIRY JBIS 9} O} anp JOLID

oz ol o
-
Bl ——
z =3
HL oz
b ——
z
fuelad H1M
OE 00z ool o
T
Ean
T 0z
b
zo
aBieljop, [Baup
£
" 5
w>> i)
L =
i

paadg |aayas,

00E 00z ool DD
L 7 e
O%U
L Voo
@
=
e g
g
10SUBg ung X
0oe 0oz 0oL DT
L o
L 0 W“_
r g0
L
platd fepy soebedog
052 002 051 001 05 0 I-
L oo
0 &
r 50
b
uolysod Jejos
0oE 00z ooL D_‘.

Wy PEUL

OpNJIIYe U YIIM POYRIDOSSE SBNPISAI OUT, :6T°C "S1

oo ooz ool DD ooe 0oz ool DD
. s & 0
=
<
r o & o
5l a0
l0suag aley 1a1awnlaufie
052 002 051 00F 05 Dm. 052 002 051 00b 05 1]
0 . Iy
F 5 &
= o
|||||||||||||||||| 0E
r Sl G
e -
uniysod Jojefedoy H20130 LOE*
0oE 00z ook 1] I- 052 002 051 00k 05 Dw.
r 50 il
: o 5 .
r S50
¥
|
pLIz aley Yy U WY 42y LT
0oe 0oz ool DD 0oe 0oz 0oL DD
g0
r 50
5 I
r |
Nt
5l 4

aley Jay

W ey

]

S

]

]

[bIw

61

5.4.7 Training for Magnetometer and Sun Sensor Errors

Errors related to the magnetometer and sun sensor can come from many sources, but
in many instances take the form of an unknown noise signal in the sensor measurements.
The origin of this noise could be interference generated while the spacecraft is transmitting
data or by a power brownout for example. The sensors themselves may also malfunction in
such a fashion as to cause the output to “stick,” for example if a magnetic torquer fires and
saturates the magnetometer. Based on these assumptions, two types of errors were defined
for both the magnetometer and sun sensor.

The first assumed either sensor was experiencing added noise of unknown magnitude.
Recall from equation (4.33) that the measured magnetic field and solar unit vectors were
modeled with noise components. To model a noise of unknown magnitude on either of the
sensors, the nominal noise on the measurement was increased by scalar multiples of 2.5, 5,
and 10 for spacecraft stationkeeping and 180° pitch maneuvers.

The second error defined for the magnetometer and sun sensor assumed that one of
the sensor outputs for an individual axis had become “stuck” and remained constant. The
magnetometer was assumed to saturate at +100,000nT. Training for this error consisted
of commanding the spacecraft to perform the same stationkeeping and pitch maneuvers as
before while holding each of the magnetometer’s outputs constant at the saturation limit,
as well as an intermediate value of +50,000nT to bound the problem. Training data for
the sun sensor was generated in a similar fashion. Since the output of the sun sensor is a
unit vector, upper and lower limits of 1, with an intermediate limit of 0.5, were applied to
each of the sun sensor’s measured vector components.

Residuals typical for errors relating to either the magnetometer or sun sensor are pre-
sented in figure 5.21. Specifically, the residuals of figure 5.21 were generated by increasing
the magnetometer’s noise by a factor of 10. Noise of this magnitude easily exceeds the
magnetometer’s threshold value of 0.05. The residual of the TRIAD attitude solution is
also experiencing a bias. As this residual is dependent upon the outputs of both the mag-

netometer and sun sensor, if either of these sensors is in error, the residual will be biased.

62

The neural network’s desired response for errors in the magnetometer is given in figure
5.20. Errors relating to the sun sensor have the corresponding element of the target vector

incremented as well.

Wheel, State Wheel, Yoltage MTR, Polarity ADCS Crds

1 1 1 1

0.5 0& 0.4 0.&
a a o a
0 100 200 300 O 100 200 300 0 100 200 300 0 100 200 300
Wheel, State Wheel, Yoltage MTR., Polarity Clock
1 1 1 1
0.5 0.5 0.4 0.5
a a o a

0 100200 300 0O 100200300 0 100200 300 0O 100 200 300

Wheel, State Wheel, Voltage MTR; Polarity Propagator
1 1 1 1
0.5 0.5 0.5 0.4
a a a a
0 100 200 300 0O 100 200 300 0O 100 200 300 0O 100 200 300
Star Cam. Rate Sensor hagnetometer Sun Sensor

1 1 1 1
0.5 0.5 0.5 0.4
a a a a

0 100 200 300 0O 100 200300 O 100200 300 0O 100 200 300
Time(s) Time(s) Time(s) Time(s)

Fig. 5.20: Neural network output typical for a magnetometer error

5.4.8 Training for Rate Sensor Errors

Much like a magnetometer or sun sensor, a rate sensor, such as MEMS IMU, is sus-
ceptible to the types of error described in section 5.4.7; however, one of the most important
characteristics of a rate sensor is drift in the bias [13]. This drift can be created in many
ways. When the rate sensor in turned on initially it can experience a thermal bias as the
electrical components heat up. Strain on the aluminum film of a MEMS IMU can create
hysteresis which can be seen in the measurement [20]. Therefore, in addition to generating
training data based on the errors described in section 5.4.7, the additional error of unknown

drifting of the sensor bias was also added.

63

0¥

WdHY

S T
-
Bl ——
TdLW i
L ——
z
Aueld HLW
ooE o ool 0
zo-
)
T
b,
z0
sBielo, [aay
OoE o0 ool 0
oL
i
T
b

paads |y

i3

JOLIo I9jowojougewt ® 10§ [edrdAy syenpisoy] :1g°G "S1q

0oz ooz oot GD
T e
o_mU
L Vo
=
=
R, g
2
10sUas ung LSO
0oE 00z ool D_.
L o
0 5
F 50
I
pla4 Bep dojefedoyq
0oE 00z ool D_..
L 50
o
F o

uosod Jej0g

Wy pel]

0oE oog ool GD
. wo §
=
Py
F ¥O0 &
o0
Iosuag aley
ooe 0oz ool Dm.
LIS
3 5 &
&
IIIIIIIIIIIIIIIIII ug M
F gl
0z
uoipsod Joiefedold
ooe 0oz ool D_..
L 50
o B
F o
L
puiy aley Jay
oos 0oz ool DD
F L
L z W
F £
¥

aley Jay w._u_ i

W 1ey TR

0og oog ook GD
20
L v EW.
F 90
20
Jalawolaubely
0oE 0oz ook 0
L o
05
F g
H}30[7) v.a_x
052 002 05k 001 0% Dm.
0
=
|||||||||||||||||| 7 S
F ¥
WD By 1Y gOHE
0oE 0oz ook DD
R
=
=
L
N

64

The rate sensor in the software model was assumed to have a nominal constant bias drift
of 0.1°/nr. As it is unlikely the bias would change very suddenly on its own, it was assumed
that changes in the bias would be due to changes in the thermal operating environment,
that is, the bias would increase or decrease as the temperature of the sensor increased or
decreased. As such changes in the rate sensor bias were modeled as a simplified form of

Gulmammadov [20] equation (2) as

8= At (5.7)

To model the fault, the bias, 5, was held at the nominal value until ¢ = 60s. At this
time it began to increase exponentially until it had reached the desired value 30 seconds
later. The constants, A and b, were determined by curve fitting an exponential function
to the initial and final values of the bias. Final bias values of 0.2, 1, 2, 5, and 3,600 °/nr
were modeled each for stationkeeping and 180°pitch maneuvers. The case of 3,600 °/hr was
included to ensure that training examples for an unrecoverable fault condition would be
generated.

The residuals generated for a rate sensor bias increase from f = 0.1°/hr to 8 = 1°/hr
are shown in figure 5.23 and are typical of errors from this source.

When the rate sensor experiences a large enough change in its bias, the reference
attitude and rate as well as the rate sensor residuals all be biased accordingly. After the
sensor bias has reached its final value, the attitude residual returns to an almost nominal
value, which is indicative of the spacecraft being able to complete its desired maneuver.
The reference rate residual, however, remains biased in this instance as the sensor is not in
a nominal operating state. Without correction this could eventually lead to the spacecraft
being out of orientation.

Note also the drift in the TRIAD attitude residual. This same residual behavior was
noted previously in section 5.4.6 with respect to training for errors with the star camera.
The drift seen here is not due to any error in the star camera or magnetometer or sun

sensor, but rather it is due to the coupled states of the Kalman filter.

65
The desired output of the neural network, shown in figure 5.22, was determined by
thresholding the rate sensor residual at a value 0.05. This value was determined qualitatively

by examining the behavior of the residual for nominal stationkeeping and slew maneuvers.

Wheel, State Wheel, Yoltage MTR, Polarity ADCS Crads

1 1 1 1
0.5 0.5 0.5 0.4
1] 1] a 1]

0 100 200 300 0O 100 200300 O 100 200 300 O 100 200 300
Wheel, State Wheel, Yoltage MTR., Polarity Clack

1 1 1 1
0.5 0.5 0.5 0.4
0 0 o 0

0 100 200 300 O 100 200300 O 100 200300 O 100 200 300
Wheel, State Wheel, Yoltage MTR,, Polarity

Fropagator
1 1 1 1
0.5 0.5 0.5 0.5
0 0 0 0
0 100 200 300 0O 100 200 300 O 100 200 300 O 100 200 300
Star Cam. Rate Sensor lagnetometer Sun Sensor

1 1 1 1
05 05 , a5 05

1] 1] 0 1]
0 100 200 300 O 100 200 300 O 100 200300 0O 100 200 300
Time(s) Time(s) Time(s) Time(s)

Fig. 5.22: The desired output of the neural network for a rate sensor error

5.5 Summary of Data Generation

A library of neural network training data was generated based on the examples of
section 5.4. Although a limited number of examples were presented, there were a total of
112 sets of training data generated for a total of 91,810 individual examples for each of
the 21 elements of the training vector (eq. (5.1)). Table 5.1 lists a summary of all of the
data generated to train the neural network. A full listing of all the training data that was

generated for this thesis is given in Appendix A.

66

mE o0z oL 0
By ——
SuLm
L ——
fueing 4L
oo 0o ool 0
Ean
an
b
sbieljo, aau
e 002 ool 0
Ea,
o,
b

[

0=

pasds |aaya

ol

|0V

WdHV

ooz 0oz oot GG
L p
ch
L .
=
=
R, 9
g
Jgsuas ung oL«
0oe ooz ool a_.
L 50
0 %
r g0
I
plai4 Bepy aojefedoig
0oe ooz ool a_..
L S0-
1P
r g0
L
uosog dejos
0os ooz ool a
. : [
L Lo
=
£

Wy PENL

IOII9 IOSUSS 9JBI O} ONP SOseIq S[enpIsoy :€7°C "1

oog oog ool GD 0oE oog ool GD
F]
= 700
F 70
Py
@ YO0
L cn = .
¥0 900
105Uas aley Jatawniaufiep
0og ooz ootk Dm. ooe ooz ook u]

u] .V_u r =
|||||||||||||||||| ok M =
F =1 F S

e -

uolysod Jojebedoig #3013 HOb*
0og ooz ootk u] - 052 002 050 00 05 DN.
: 50 0
[

I - ;=
F =31}

r ¥

I

puwig aley Jey PUD WY KeH P
0os ooz ootk DD oS ooz ook DD

I F I

g . 22

£ F £

¥ ¥

oL x oL x

aley jay

Wy ey

-

67

Table 5.1: Summary of the training data

Case Description
1-4 Seize Reaction Wheel 2
5 Wheel 2 Nominal Operation
6-9 Wheel 2 Power Loss
10-11 |Torquer 2 Reverse Polarity
12-13 |Wrong ADCS cmds uploaded
14-15 |Clock set incorrectly (JD is wrong)
16-19 |Seize Reaction Wheel 1
20-23 |Wheel 1 Power Loss
24-27 |Seize Reaction Wheel 3
28-31 |Wheel 3 Power Loss
32 Torquer 1 Reverse Polarity
33 Torquer 3 Reverse Polarity
34 Wheel 1 Nominal Operation
35 Wheel 3 Nominal Operation
36-37
104-108
38-45 |Rate sensor bias increase

Guidance command delay

46-57 |Glint on star camera (angle offsets)
58-68 |Rate sensor unknown noise: x,y or z axes
60 Rate sensor saturates all axes
69 Nominal stationkeeping maneuver
70-77 |Magnetometer unknown noise: x,y, or Z axes
73-74 |Magnetometer saturates all axes
78-85 |Sun sensor unknown noise: X,y, Or Z axes
86-94 |Sun sensor value is stuck: x,y, or z axes
95-103 |Magnetometer value is stuck: x,y, or z axes
109-112 |Propagator drift

The training data were generated for both stationkeeping and typical slew maneuvers
of the HARP spacecraft. The magnitudes of the injected faults were varied in an attempt
to bound the problem and generate as many different examples of abnormal residuals as
possible. It was shown during training that faults pertaining to the star camera and rate

sensor could give rise to false biasing of the TRIAD attitude residual.

5.6 Training Algorithms

When training a neural network two items must be taken into consideration. The

68

first is the method chosen to train the network. A common method used when training a
neural network is backpropagation. Backpropagation is a method by which the gradient of
an arbitrarily chosen error function, such as the mean squared error (MSE), is calculated
repeatedly through use of the chain rule of calculus with respect to the synaptic weights of
the neural network. Once the partial derivative of each weight is known a gradient descent
is performed, which then defines how the synaptic weights should be updated [18].

The second item is the number of neurons chosen for the network. The number of
neurons defined for a neural network is important and will vary depending on the size of
the network being created. If too few neurons on chosen there is a risk of having a network
that is too poorly generalized; too many and one risks the possibility of over-fitting the
data.

Steepest descent methods such as backpropagation have a large disadvantage in that
they can be very slow to converge. There are several backpropagation algorithms avail-
able that can speed up convergence. The resilient backpropagation (RPROP) algorithm
developed by Riedmiller and Braun in [21] addresses one of the key impediments to quick
convergence, that is, that convergence is dependent upon the size of the partial derivative of
the weights. In other schemes, the size of the weight update is dictated by the magnitude of
the partial derivative of the weight. The RPROP algorithm changes the size of the weight
update irrespective of the size of the partial derivative. It does this by calculating the sign
of each of the partial derivatives of the weights, and then incrementing the weight by a fixed
factor depending on the calculated sign. The RPROP algorithm has several advantages:
it is simple as it does not require calculation of a Hessian; it is computationally fast; and
the memory requirements are modest as there are no large matrices that are needed to be
stored. It also eliminates the problem of the solution stalling around a local minima where
if the calculated gradient has a very small magnitude the weight update will also be very
small even if it is very far away from being optimal [21].

Another popular method for training a neural network is the Levenberg-Marquardt

(LM) algorithm. First developed by Marquardt in [22], it was later implemented for use in

69

training neural networks by Hagan and Menhaj [23]. Whereas the RPROP algorithm is an
application of steepest descent, the LM algorithm is a modification of the Gauss-Newton
method that approximates the Hessian of a function by application of its Jacobian. The
main modification of the LM algorithm is the introduction of a tuning parameter into the
Gauss-Newton solution. This parameter, when small, causes the algorithm to be Gauss-
Newton; when large, the algorithm becomes steepest descent. The LM algorithm is, then,
a union of the Gauss-Newton and steepest descent optimization methods. The advantages
of this modification is that the solution is able to take large steps in the direction of the
gradient when it is small, and small steps when the gradient is large so as not to oscillate
about a minimum solution.

An extension of the Levenberg-Marquardt algorithm has been developed by Forsee and
Hagan [24] which aims at improving generalisation of a neural network. By constraining
the size of the network weights, the output of a neural network can be smoothed. This is
known as regularization. One of the main problems with regularizing a neural network is
choosing the appropriate regularization parameters as poor choice of parameters can either
lead to over-fitting of the data or poor generalization of the network. Forsee and Hagan’s
extention of the LM algorithm attempts to automatically regularize the training of a neural
network by application of Bayes’ rule to choose the regularization parameters and is known

as Bayesian Regularization (BR).

5.7 Network Training

How well a neural network can be trained is dependent on the size and complexity of
the problem being analyzed. It cannot be definitively stated that one training algorithm
will produce better results over another or that there is an optimal number of neurons to
include in the network. As such, several neural networks were trained using each of the
algorithms described in section 5.6 and comprising varying numbers of neurons to ensure
the best generalization of the problem.

Eight neural networks were trained: four using the resisilient backpropagation (RPROP)

algorithm; two using the Levenberg-Marquardt algorithm (LM); and two using Levenberg-

70

Marquardt with Bayesian regularization (BR). In order to produce the best generalized
neural network, the number of neurons assigned to each network was varied. The networks
trained using resilient backpropagation were defined with 20, 30, 40, and 60 neurons. Those
trained with Levenberg-Marquardt or Bayesian regularization were defined with either 20
or 30. Recall that both Levenberg-Marquardt and Levenberg-Marquardt with Bayesian
regularization require calculation and storage of the Jacobian of equation 5.1, which lim-
ited the number of neurons that could be prescribed to the neural networks trained with
these algorithms. The neural networks were trained until each of their mean squared errors

(MSE) was minimized. A summary of the trained networks is given in table 5.2.

Table 5.2: Summary of the neural network training

’ Algorithm ‘ # Neurons ‘ MSE ‘

RPROP 20 0.0075
RPROP 30 0.0069
RPROP 40 0.0072
RPROP 60 0.0063
LM 20 0.0048
LM 30 0.0050
BR 20 0.0102
BR 30 0.0132

The best trained networks were those trained with the Levenberg-Marquardt algorithm
and have an average performance of 0.005. The next best trained were those networks
trained with resilient backpropagation and had a similar average mean squared error of
0.007. The networks with the worst performance were trained using Levenberg-Marquardt
with Bayesian regularization and had an average mean squared error of 0.012. Retraining
of these networks did not result in an improved error function.

An important aspect of training a neural network that must also be mentioned is
the variability associated with the training. Prior to training, the weights and biases of a
neural network are initialized with random values. This has the effect that training a neural
network multiple times will produce different levels of performance. As an example, network

RP20 was assigned twenty neurons and trained a total of eleven times using the resilient

71

backpropagation training algorithm. Each time it was trained it achieved a different level
of performance. Figure 5.24 shows the distribution of the performance parameter for the
training of this network. Over 11 trainings this network achieved a best performance of
0.0072, worst performance of 0.0085, and a median mean squared error of 0.0077. It is
important to recognize that this variability exists and that the results presented in this
thesis will inherently have some error bound attached to them due to the variability in the

training.

w10 Yariation in MSE of RP20

8.2r

MSE

FR=15 -

TBF B

Fig. 5.24: The variation associated with training a neural network

72

Chapter 6

Results

6.1 Calculating Neural Network Performance

The output of each of the neural networks was calculated for each of the 112 training
cases. A threshold of 0.9 was applied to each of the outputs (1 being the maximum value
indicative of a fault detected). Each of the 16 x n outputs was thresholded such that if
the threshold was exceeded five continuous times a hard fault was recorded for the element
under examination. The HARP spacecraft is capable of a 5 Hz attitude solution. Five
continuous crossings was chosen to represent one continuous second of a fault state. This
was done to aid limiting the number false positive detections. After thresholding, the
number of positively and falsely identified faults was recorded. The performance of each
network, given by equation (6.1), was determined by ratioing the number of positively
identified faults by the number of total identified faults. Appendices B.3-B.5 provide the

Matlab scripts used to calculate neural network performance.

Number of Positively Identified Faults

100%
Number of Positively Identi fied Faults + Number of Falsely Identi fied Faults % 0

(6.1)

6.2 Performance of the Neural Networks

Performance of the neural networks will be presented for each case and divided into
seven categories: actuators, commmands, propagator, star camera, magnetometer, sun
sensor, and rate sensor. For each category, the number of positively and falsely identified

faults, as well as the overall accuracy of the neural networks will be given. The results

73

for each category are tabulated and color coded on a green (more accurate) to red (less

accurate) scale.

6.2.1 Performance Relative to the Actuators

Reaction wheel speed, reaction wheel power, and the magnetic torquer polarity were
grouped into the single category of actuators. The performance of the neural networks
relative to the actuators is shown in table 6.1.

The Levenberg-Marquardt and the Bayesian regulated Levenberg-Marquardt networks
have uniformly low detection accuracy for most all of the faults pertaining to the actuators.
The networks trained with resilient backpropagation perform all around better, with the ex-
ception that faults pertaining to seizures in reaction wheel 3 are not detected well. Network
performance in detecting actuator faults varies significantly not only network-to-network,
but fault-to-fault as well. This is illustrated in figure 6.1, which shows an example network
output set for a power loss in reaction wheel number two for two of the neural networks.

The set of outputs on the left of the figure were trained using the Levenberg-Marquardt
algorithm, those on the right with resilient backpropagation. Both networks were defined
with 30 neurons. In either instance the power failure in reaction wheel number 2 was
successfully detected; however, the number of falsely identified faults of the network shown
on the right of the figure makes it impossible to determine definitively where exactly the
fault has occurred. This network-to-network variation persists in the outputs for all of the
actuator faults, making it difficult to make a determination as to the efficacy of one network
over another.

The accuracy of the neural networks in detecting actuator faults is shown in figure 6.2.
Overall, those networks trained using resilient backpropagation had an average detection
accuracy of 72%. Particular difficulty in detecting the fault in reaction wheel 3 served to
significantly reduce this percentage. The four Levenberg-Marquardt trained networks had
considerable difficulty in correctly detecting any of the faults with consistency and had an
average accuracy of only 42%. It is worth noting also that the number of neurons used in

each of the networks has positive effect on the detection accuracy of the actuator faults.

74

as|ed# sod
1d23y 9s|eds SOdit [10d 93y Is|edy SOdi [10d 23y IS|ESE SOdE [13d DY IS|EIE SOd# (134 DY Bs[edy sOdi |Dd ooy esiedy sody |1d oy esiesy sod|1od Dy esieds

SI03eN)O€) 10 SYNSAI YIOMIdU Paje[nqe], :1°9 o[qe],

Muejod asianay ¢ Jenbiol ¢f
Auejod as1aaay T Janbiol 7g
S50743M0d £ [33UM TE
S50 43MOd £ [33UM 0E
S50743MOd £ [3BUYM, 62
SSO7423MO0d € [33UM 52
€ [93UM, UDIDESY 32185 /T
€ [93Yp, UDDeaY 32135 97
€ [32YM, UoDeaY 32135 ST
€ [33UM, UDIDESY 37185 §T
S50743M0d T [32UM €2
S5O0 43MO0d T [33UM 2T
5507 43MOd T [33UM T2
S5O 423M0d T [33UM 02
T [33Yp uoioeay 32135 6T
T 133Ypn, UoDE3Y 232135 8T
T [23Up, UDIDESY 32185 [T
T [23Up Uooeay 22135 9T
Muejod asianay g Jenbiol 1T
Auejod as1aaay g Janbiol oT
SS0743M0d 7 [92UM 6
SSOTJ3MOd 7 [93UM 8
5507 43MOd 7 [33YM £
SSO7423MOd Z [33YM 9
T [93UM, UDIDESY 32185 ¢
T |93YM UDIDBaY 37135 ¢
T [23YM UD1DBaY 32135 7
T [33UM UDIDESY 37185 T

uopdusaq # ase)

Wheel1 State Wheel1 Voltage MTR1 Polarity ADGS Cmds
1 1 1 1
0.5 0.5 0.5 0.5
0 0 r~—0 0 1 0
0 100 200 0 100 200 0 100 200 0 100 200
Wheel2 State Wheel2 Voltage MTR2 Polarity Clock
1 1 1 1
05 05 | 05 0.5
0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200
Wheel3 State Wheel3 Voltage MTR3 Polarity Propagator
1 1 1 1
05 05 0.5 0.5
0 L o]
0 100 200 0 100 200 0 100 200 0 100 200
Star Cam. Rate Sensor Magnetometer Sun Sensor
1 1 1 1
0.5 0.5 0.5 0.5
0 0 4] 0
0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

75

Wl'leel1 State Wneel1 Voltage MTR1 Polarity ADGCS Cmds
1 1 1
0.5 , 0.5 | 0.5
A 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200
Wheel2 State Wheel2 Voltage MTR2 Polarity Clock
1 1 1
0.5 05 | 0.5
L 0 0 o]
0 100 200 0 100 200 0 100 200 0 100 200
Wheela State Whe\el3 Voltage MTRa Polarity Propagator
1 1 1
!— 0.5 _'J_ 0.5 0.5 r
0 o] 0 2
0 100 200 0 100 200 0 100 200 0 100 200
Star Cam Rate Sensor Magnetometer Sun Sensor
1 1 1
0.5 05 | 0.5 '
[t} 0 0
0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s)

Fig. 6.1: An example of network-to-network variation

100% -

90% -

80% -

70% -

Percentage of Identified Actuator Faults Per Network

RP20 RP30

BR20

BR30

LM20

60% -
50% -
40% -
30% -
20% -
10% -
0% - T T T T T

RP40 RP60O

LM30

Fig. 6.2: The accuracy of the neural networks in detecting actuator faults

6.2.2 Performance Relative to Commanding

The performance of the neural networks relative to the ADCS’s guidance commands is

summarized in table 6.2.

The performance of the neural networks in detecting faults pertaining to the com-

manding of the ADCS displays the same network-to-network variation as for the actuators,

except this time it is the Levenberg-Marquardt networks that are better able to detect the

76

faults. The networks trained with resilient backpropagation generalize poorly when trying
to distinguish most of the errors of this type. Note that case 13 generalized poorly during
training with respect to all of the network with the exception of networks RP20 and LM30.

Figure 6.3 summarizes the overall accuracy of the neural networks when attempting to
identify faults in the commanding of the ADCS. The networks trained with RPROP had an
average detection accuracy of only 39%, compared to an average of 82% for the LM networks.
With the exception of network RP30, the rest of the resilient backpropagation networks
displayed similar accuracy irrespective of the number of neurons assigned to the networks.
This is true also of the four Levenberg-Marquardt networks. Whereas the actuators seemed
to benefit from the addition of extra neurons in the neural networks, the same conclusion

cannot be drawn definitively in this case.

Percentage of Identified Command Faults Per
Network
100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
111
0% -i T T T T T
RP20 RP30 RP40 RP60 BR20 BR30 LM20 LM30

Fig. 6.3: The accuracy of the neural networks in detecting ADCS command faults

6.2.3 Performance Relative to the Propagator
Table 6.3 summarizes the performance of the neural networks in detecting propagator
faults. Faults relating to the propagator relate to both the propagator specifically as well

as the spacecraft’s clock.

7

Aejap puewiwo) 530y 0T
Aejap puewwo) s3aY £0T
Ae|ap pUEWIWOT 520V 90T
Aejap puBLIWO) 530V SOT
Aej2p pUEWIWOY 520V #OT
Ae|2p PUBWIWOD 520V LE
Ae|ap puEWIWOY $OY 9E
papeojdn spwd Ay Suoipy €T
papeojdn spwd 3ay Suoipy ZT
uondiunsaq # ase)

SIOIIo pURMIWOd SO (Y 10] SHMSaI Pajenqr], :Z'9 9[qe],

78

All of the neural networks were able to generalize well with respect to almost all of the
faults in this category. Case 14 from the table was defined as a clock error where the clock
was reset to 1 Jan, 2000 00:00:00.000 UTC. Networks BR20 and LM30 both detected the
desired fault as well as a single false positive detection of either a propagator fault (network
LM30) or reaction wheel fault (BR20) as shown in figure 6.4. In this instance, neither of
these networks was sufficiently able to distinguish the clock error based on the residuals of

this case, which led to the false positive detection.

Whee\1 State

Wheel1 Voltage

MTR1 Polarity

Whee\1 State

Whee\1 Voltage

ADCS Cmds MTR, Polanty Apcs cmas
1 1 1 1 1 1 1 1
0.5 05 05 0.5 0.5 0.5 0.5 0.5
0 o] 0 0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\2 State Wheel2 Voltage MTR2 Polarity Clock Whee\2 State Whee\2 Voltage MTR2 Polarnty Clock
1 1 1 1 1 1 1 1
0.5 05 05 05 0.5 0.5 05 0.5
0 0 0 0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\3 State Wheel3 Voltage MTR3 Polarity Propagator Whee\3 State Whee\3 Voltage MTR3 Polarity Propagator
1 1 1 1 1 1 1 1
0.5 05 05 0.5 0.5 0.5 0.5 0.5
0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Star Cam Rate Sensor Magnetometer Sun Sensor Star Cam Rate Sensor Magnetometer Sun Sensor
1 1 1 1 1 1 1 1
0.5 05 05 05 0.5 05 05 0.5
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Fig. 6.4: Neural net output for case 13 for networks LM30 (left) and BR20 (right)

The resilient backpropagation networks managed to detect these faults with 100%
accuracy. The Levenberg-Marquardt algorithms have a similarly high average detection
accuracy of 94%. The overall detection accuracy of each of the neural networks for detecting

these faults is given in figure 6.5.

79

sio119 109egdedord Sur)oelep I0J SYMSSI paje[ngr], :¢ 9 9[qe],

19524 Jojededold ZTT
yup soiededold TTT
yup soiededold QTT
yup soiededold 60T

Appauoourias ypop) g
Ajpauoourias jao) 1
uopduasaq # ase)

80

Percentage of Identified Propagator Faults Per
Network
100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% - T T T T T
RP20 RP30 RP40 RP60 BR20 BR30 LM20 LM30

Fig. 6.5: The accuracy of the neural networks for detecting propagator and clock faults

6.2.4 Performance Relative to the Star Camera

The performance of the neural networks in detecting errors in the star camera is given
in table 6.4. The poor performance of the neural networks in detecting errors in the star
camera is not wholly surprising. Recall from section 5.4.6 that a false biasing of the rate
sensor residual occurred when errors were introduced into the star camera solution. Because
of this, the residuals for either the star camera or rate sensor faults are not sufficiently
distinguished from one another. As a result, the neural networks have a degree of difficulty
in determining whether the fault was due to either the star camera or rate sensor, as is the
case with the Levenberg-Marquardt trained networks (see the left side of figure 6.6), or in
detecting any fault at all, as with the resilient backpropagation networks (see the right side
of figure 6.6). Although either set of networks begins to detect an error in both the star
camera and rate sensor, the networks trained with RPROP fail to meet the thresholding
criteria described in section 6.1, and therefore do not register any fault at all.

On average the networks trained using resilient backpropagation successfully detected
the faults only 17% of the time. The Levenberg-Marquardt networks did not fair much bet-

ter, having an average detection accuracy of 27%. The detecting accuracy of each individual

81

network is shown in figure 6.7. With respect to the RPROP networks, with the exception
of network RP30, which did not detect any faults, either positive or negative, increasing
the number of neurons in the network aided generalization of the network and enabled at

least partial success in positively detecting the fault while minimizing the number of false

detections.
Whee\1 State Whee\1 Voltage MTR1 Polarity ADCS Cmds Whee\1 State Whee\1 Voltage MTR1 Polarity ADCS Cmds
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 05 05 05
0 0 0 0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\z State Whee\z Voltage MTRZ Polarty Clock Whee\2 State Whee\2 Voltage MTR2 Polarity Clock
1 1 1 1 1 1 1 1
0.5 0.5 05 05 0.5 05 05 05
0 0 0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\a State Wnee\a Voltage MTR3 Polarity Propagator Whee\3 State Whee\3 Voltage MTR3 Polarity Propagator
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 0.5 0.5
0 0 0 0 L
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Star Cam Rate Sensor Magnetometer Sun Sensor Star Cam Rate Sensor Magnetometer Sun Sensor
1 1 1 1 1 1 1 1
0.5 W 0.5 II 05 0.5 0.5 05 05 05
0 0 0 0). 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Fig. 6.6: A typical output for star camera faults for the Levenberg-Marquardt networks
(left) and the resilient backpropagation networks (right)

100% -

90% -

80% -

70% -

60% -

50% -

40% -

30% -

Percentage of Identified Star Camera Faults Per

Network

20% -
0% -

RP20

RP30

RP40

RP60 BR20 BR30

LM?20

LM30

Fig. 6.7: The accuracy of the neural networks in detecting star camera errors

82

BJ3WED JBJS U0 UI[D /S
EI3WED JBJS U0 JUIID §S
EJIWED JEYS U0 JUI[D S5
BJSWED JEYS U0 JUI[D S
EI3WED JBYS U0 JUIID €S
EJIWED JBS U0 JUIID 7S
BI3WED IBJS U0 JUIID TS
EJIWED JES U0 UIID 05

T
T
T
T
T
T
T
T
T

EJ3LIED JBYS UD JUIID) &iF
EJIWIED JE]S UO JUIID B
EJ3WED JBJS UD JUID L7

oA A o A

—

EJ3WED IE}S UD JUIID) Of
uonduosaq g ase)

OE 0zin

g

0zZyd 0944 Otdd 0Edd 07dy

SjINeJ eIoUIRD Ie)S SUI}DI9P I0J SHIOMIOU [BINSU I} JO ADBINDOR UOTII9I9P YT, 9 9[qR],

83
6.2.5 Performance Relative to the Magnetometer

Table 6.5 summarizes the performance of the neural networks in detecting faults with
the magnetometer.

With the exception of cases 72 and 77 the neural networks generalized errors pertaining
to the magnetometer very well, with near 100% detection accuracy. Cases 72 and 77 rep-
resent faults of low magnitude for stationkeeping and slew maneuvers. Examination of the
outputs of the neural networks (see figure 6.8) shows that the networks are in fact detecting
an error in the magnetometer; however, due to thresholding a hard fault is not detected.

Figure 6.9 shows the overall accuracy of the individual networks in detecting magne-
tometer faults. On average the resilient backpropagation and the Levenberg-Marquardt

networks were able to accurately detect the fault 90% and 95% of the time respectively.

Wheel, State Wheel, Yoltage MTR, Polarity ADCS Crads

1 1 1 1
0.5 0.5 a5 0.5

0 0] 0
0 100 200 300 0O 100 200 300 O 100 200 300 O 100 200 300
Wheel, State Wheel, Yoltage MTR,, Polarity Clock

1 1 1 1
0.5 0.5 0.5 0.4
1] 1] a 1]
0 100 200300 0O 100 200 300 O 100 200 300 O 100 200 300

Wheel, State Wheel, Yoltage MTR., Polarity Propagator
1 1 1 1
0.5 05 0.5 05
1] 1] b 0 1]
0 100 200 300 0O 100 200300 O 100 200 300 O 100 200 300
Star Cam. Rate Sensar hagnetometer Sun Sensar

1 1 1 1
0.4 04 05 0.4
0 0 e 0 0

0 100 200300 0O 100 200300 0O 100 200300 0O 100 200 300
Tirnel(s) Tirne(s) Tirne(s) Tirne(s)

Fig. 6.8: A magnetometer fault on the verge of being detected

84

1d 0y 2S|Edl SO4Y |12d 23y OS|EN4 SOdH |10d 0V 9S[Ed# SOd# |19d DY 3S[Edi SOd# (19d 0V 3S[B4f SOd# (12d0Y 2S|EdE SOd# (124 I2Y 3S|B4f SOL# |12d 0V 9S|B4f SOdi

33n1s 51 anjea J1awolauden goT
33N1s 51 3njea J31awolsude zoT
3anis 5] anjea J31awolauden TOT
33N1s 51 anjea J1awolaudew gOT
33N1s 51 anjea Jajawolaudey 55
3anis 51 anjea Jalawolauden g
33N1s 51 anjeA JelawolaudeN /g
3anis 5| anjea Jalawolauden 95
33Nn1s 51 anjea Jelawolaude 5
2510U UMOURUN Jalawolauden £
3510U UMOoUyUN JS1awolauden of
3510U UMOUYUN JB13Wwolaude ¢
peap sa0d J212wWol2use v
pesp saofd 1a1awolsulew £f
3510U UMOUYUN J313wolaude gz
3510U UMOoURUN JE1awolauden L
3510U UMOUYUN JS1awWwolaudeN L

uopdiosaq # ase)

S)NeJ 19jomojousew SUIPd19P I0J SYIOMIU [eINaU oY) Jo soueurIofrad o[, :G'9 o[qRT,

85

Percentage of Identified Magnetometer Faults Per
Network

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -

0% - T T T T T

RP20 RP30 RP40 RP60 BR20 BR30 LM20 LM30

Fig. 6.9: The accuracy of the neural networks in detecting magnetometer faults

6.2.6 Performance Relative to the Sun Sensor

The performance of the neural networks in detecting errors in the sun sensor is given
in table 6.6. With the exception of network BR30, which did not generalize well, all of the
networks performed very well with respect to detecting faults of the sun sensor. Cases 78
and 79 represent faults of low magnitude. Examination of the neural network outputs (see
figure 6.10) shows that the networks are detecting an error in the sun sensor, but in a similar
fashion as for the low magnitude magnetometer faults, thresholding prevents determination
of a hard fault.

The networks trained using resilient backpropagation had an average detection accuracy
of 88%. Those trained with Levenberg-Marquardt, excluding network BR30, had an average
accuracy of 90%. The individual network accuracies for detecting sun sensor errors are given

in figure 6.11.

86

1d 0y IS|Edy SO4Y |12d IV OS|EL4 SOMH |19d 0V 9S[EdE SO |19d DY 3S[EdE SOd# (19d DY IS[B4f SO4# |Pd DY 2S|EdE SOd# [PPd IV 9S|B44 SO4i |10d IV 3S|E4H SOdi

IN1S 5| SN|EA JOSUSS UNS 15
3DN1S 5| 3N|EA JOSUSS UNS £5
IN1S 5] 3N|EA JOSUAS UNS 76
IN1S 5| SN|EA JOSUAS UNS TG
3DN1S 5] 3N|BA JOSUAS UNS 5
IN1S 5| 3N|EA JOSUAS UNS 58
3N1S 5| 3N|EA JOSUSS UNS 88
2N1S 5] BN|EA JOSUAS UNS L8
3N1S 5| 3N|EA JOSUSS UNS 0F

35/0U UMOUYUN JOSUSS UNg S8

3510U UMOUUN JOSUSS UNg $8
3510U UMOUSUN JOSUSS UNg €8

35]0U UMOUNUN JOSUSS UNg 28

3510U UMOU3UN JOSUSS Ung T8

3510U UMOU3UN JOSU3S Ung 0

3510U UMOUYUN JOSUSS UNG 5/

3510U UMOUNUN JOSUSS UNg g/

uopdinsaq # ase)

S}1eJ I0Sues ulls wﬁﬂ.ﬂu@p@@ J10J SyI0mlau Tednou oy} Jo ®UQ©S.~OM.H®Q o T, ‘9’9 9[q%],

1
0.5
a

1
0.5
a

1
0.5
a

1
0.5
a

WhEE|1 State

Wheel, Voltage

MTR1 Folarity ADCS Crds
1 1 1
s 0.5 0.5
] 1]]

0 100 200 300

0 100 200 300

0 100 200 300

0o 100 200 300

WhEE|2 otate WhEE|2 “oltage MTR2 Folarity Clock
1 1 1
0.5 0.5 0.5
0 I d

0 100 200 300
WhEE|3 State

0 100 200 300
Wheel, Voltage

a 100 200 300

0 100 200 300

MTR, Polarity Propagatar
1 1 1
0.5 0.5 0.5
a o a

0 100 200 300
Star Cam.

0 100 200 300
Fate Sensor

0 100 200 300
Magnetometer

0 100 200 300
Sun Sensor

0.5

.

1
0.4
o

0.5
a

o

a 100 200 300
Time(s)

0 100 200 300
Time(s)

a 100 200 300
Time(s)

0 100 200 300
Time(s)

Fig. 6.10: Typical output for a low magnitude sun sensor fault

9

8

7

6

5

4

3

2|

1

100% -

Percentage of Identified Sun Sensor Faults Per

0%,

Network

RP20 RP30

RP40 RP60O

BR20 BR30

0% -
0% -
0% -
0% -
0% -
0% -
0% -
0% -
0% - T T T T

LM20

LM30

Fig. 6.11: The accuracy of the neural networks in detecting sun sensor faults

87

88

6.2.7 Performance Relative to the Rate Sensor

Table 6.7 summarizes the performance of the neural networks in detecting faults relating
to the rate sensor. The performance of the neural networks in detecting faults in the rate
sensors is generally low. Although the Levenberg-Marquardt networks perform better, there
is a large degree of network-to-network variation in detecting these faults. Figure 6.12
presents neural network output of case 66 (medium magnitude error) and is typical for
this error for both the resilient backpropagation networks (shown on the left of the figure)
and the Levenberg-Marquardt networks (shown on the right of the figure). The networks
trained using the Levenberg-Marquardt schemes produce a strong reaction in the presence
of these faults. Although in these instances they fail to meet the thresholding criteria, it is
still possible to make a positive fault determination based on examination of the behavior
of the output.

It must also be noted that some of the neural networks are able to better generalize more
than others. Figure 6.13 shows the outputs of case 67 (high magnitude error) for networks
RP30 (left of the figure) and LM30 (right of the figure). In this instance the output of the
networks is similar to that as for the star camera, where neither set of networks is able
to distinguish sufficiently well an error in the rate sensor from that of the star camera.
Although thresholding prevented detection of false positives, examination of the residuals
would make it difficult to make a positive fault identification.

The overall network accuracy for detecting errors in the rate sensor is given in figure
6.14. The resilient backpropagation networks have an average detection accuracy of 33%.
Increasing the number of neurons assigned to the networks did not appear to aid in fault
detection for these networks. Excluding network BR20, the Levenberg-Marquardt networks

have an average detection accuracy of 59%.

89

10y 3S[edi SOdif [1Pd Y BS|Bdi SOdH |19d 0V BS[BHH SO [13d 0V 3IS[Edi SOd# |19d DY 3S|Edl SOdit [19d IOV 3S[edi SOdi |1Pd Y 9S|Bdi SOdi |19d 2V BS[E4H SO

35/0U UMOUYUN JOSUSS 918Y 89
35/0U UMOUYUN J0SU3S 31Y /g
35|0U UMOURUN JOSUIS 918Y 99
35/0U UMOUYUN JOSUSS 81BY G
25/0U UMOUYUN JOSUDS 31BY 79
35/0U UMOUYUN JOSUSS 91BY £9
35/0U UMOU3UN J0SUSS B1BY 79
35|0U UMOUYUN JOSUIS 318Y T9
peap sa0d J0suas 318y 09
25|0U UMOUYUN JOSUIS 31BY 6S
35/0U UMOUYUN JOSUSS 818Y 8S
35SPaUDUI SBIG JOSUIS 31BY Cf
SSEUDUI SEIG JOSUSS 31BY i
3SBAUIDUI SBIG JOSUSS 31BY Ef
9SBUDU] SBIG JOSUDS 31BY T
35EEUDUI SBIQ JOSUSS 31BY T
35SBAUDUI SBIG JOSUSS 31BY O
DSEUDU| SBIG JOSUIS 31BY G
35RAUDUI SBIG JOSUSS 31BY B

uonduisaq 4 ase)

S)TIe] IOSULS djel SUI}09I9P 10] SYIOMIU [RINSU 91} Jo doueuriojrod oY, :2'9 d[qer,

Whee\1 State

Whee\1 Voltage

MTR1 Polarity

ADCS Cmds Wneel1 State Wnea\1 Voltage MTR1 Polanty ADCS Cmds
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 0.5 0.5
0 [} 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\2 State Whee\2 Voltage MTR2 Polarity Clock Wheel2 State Whee\2 Voltage MTR2 Polarity Clock
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 05 0.5
0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\3 State Whee\3 Voltage MTR3 Polarity Propagator Wheel3 State Whee\3 Voltage MTR3 Polanty Propagator
1 1 1 1 1 1 1 1
0.5 0.5 0.5 0.5 0.5 0.5 05 0.5
0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Star Cam Rate Sensor Magnetometer Sun Sensor Star Cam Rate Sensor Magnetometer Sun Sensor
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 05 0.5
0 0F -4 0 0 0 o] 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)
Fig. 6.12: Difference in network response
Whee\1 State Whee\1 Voltage MTR1 Polarty ADCS Cmds Whee\1 State Whee\1 Voltage MTR1 Polarity ADCS Cmds
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 05 0.5
0 0 0 o]
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\2 State Whee\2 Voltage MTR2 Polarity Clock Whee\2 State Whee\2 Voltage MTR2 Polarity Clock
1 1 1 1 1 1 1 1
0.5 0.5 0.5 0.5 0.5 0.5 05 05
0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Whee\a State Wnee\3 Voltage MTR3 Polarity Propagator Whee\a State Wnee\3 Voltage MTRa Polarity Propagator
1 1 1 1 1 1 1 1
0.5 0.5 05 0.5 0.5 0.5 05 0.5
N 0 0 lalas 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Star Cam Rate Sensor Magnetometer Sun Sensor Star Cam Rate Sensor Magnetometer Sun Sensor
1 1 1 1 1 1 1 1
OS_MOS 05 0.5 05 05 IPE: 05
0 0 0 0 0
0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Fig. 6.13: Poor generalization of the RPROP networks (left) and the LM/BR networks

(right)

91

100% -

90% -

80% -

70% -

60% -

50% -

40% -
30% -
20% -
10% -
0% - T T T T T

Percentage of Identified Rate Sensor Faults Per
Network

RP20 RP30 RP40 RP6O BR20 BR30 LM20 LM30

Fig. 6.14: The accuracy of the neural networks in detecting rate sensor faults

6.2.8 Performance in the Presence of Novel Data

In addition to calculating the network outputs for each of the 112 training cases, a

number of novel residual sets was also generated and used as inputs to the neural networks.

These novel residual sets represent data that the neural networks have no previous knowl-

edge of. The novel data set is comprised of not only individual faults, but also of multiple

simultaneous faults. Table 6.8 below summarizes the novel data.

Table 6.8: Summary of novel data cases

‘ Case # ‘ Description ‘
113 Seize reaction wheels 1 & 2
114 Sieze reaction wheels 2 & 3
115 Reaction wheel 2 power loss; wrong guidance command uploaded
116 Magnetometer dead; propagator reset
117 Clock is wrong; propagator reset
118 Reaction wheel 2 suffers 90% power loss
119 All reaction wheels suffer 90% power loss
120 Seize reaction wheel 2
121 Rate sensor has unknown noise

92

To generate truly novel data, random scalars were used wherever possible, for example
to scale the available torque authority or power to the reaction wheels. In all cases faults
were injected at random intervals such that they could occur before, during, or after a
maneuver. The performance of the neural networks in the presence of this novel data is
summarized in table 6.9.

Examining the data, in most instances the neural networks have difficulty in isolating
the multiple fault events, and instead report many false positive identifications. This result
is not surprising. It was shown in the previous sections that the neural networks at times
had difficulty distinguishing one fault from another if the faults produced similar patterns
of residuals.

Those cases with single fault events generally report positive identifications, with those
networks that positively identified certain faults previously doing so again, and those that
were unable to previously demonstrating that same inability. Overall the neural networks

positively identified the faulty components 37% of the time.

6.3 Summary of Results
Figure 6.15 presents the overall accuracies of the neural networks for both the validation
and novel data sets. Across all networks there is a 62.5% chance of successfully isolating a

faulty component based on the validation data and a 37% chance based on the novel data.

93

S9SED BJEP [9AOU 9} JO AIRUIINS 9OURMLIONSJ :6°9 9[RBT,

asiou

UMOUYUN JOSUDS 318Y TZT
4

|23yMm uoIIRa 32135 Q7T
550]

Jamod 5306 S|3aum || 6TT
550]

Jamod 7 [29ym %06 8TT
13531 101ededoad

pue Juoim 513012 LTT
jasal
Jojededoad peap

s1J3)awolaudely gTT
PUBWWIOY
5§20 Suoim

sso|Jamod 7 |33UM, STT
£3C

S|23YM UONIESI 3T315 $TT
3T

S|23YM UONIERI 32315 €TT

uondinsaq # ase)

94

Overall Percentage of Identified Faults Per Network

® 'Validation Data' ™ 'Novel Data’
100% -
90% |
80% -
70% -
60% -
50% -
40%
30% -

20% -

0% -

RP20 RP30 RP40 RP60 LM20 LM30 BR20 BR30

Fig. 6.15: The overall accuracy of each neural network

The networks trained with the resilient backpropagation algorithm all have similar
overall rates of fault detection with an average of 64% across all data. Those networks
trained with either the Levenberg-Marquardt algorithm or its Bayesian regulation extension
vary in accuracy between 53% (BR30) to 68% (LM20) across all data. Based on the results
of the validation and novel data sets it is difficult to say with certainty which, if either,
of the training algorithms is superior or what number of neurons to include in the neural
network is optimal. Each type of network displayed strengths and weaknesses with regard
to positively identifying the faults in the ADCS. A few observations can be made, however.

Resilient backpropagation with a high number of neurons was able to produce bet-
ter generalized networks with regard to positively identifying actuator faults. The best
performing Levenberg-Marquardt network in this series had 30 neurons, was unregulated,
and had a positive detection rate of 47%, compared to the equivalent network trained
with resilient backpropagation that had an accuracy of 71%. The highest performing net-
work in this category, RP60, was able to successfully identify 79% of the actuator faults.
The Levenberg-Marquardt networks demonstrated superior performance in identifying rate
sensor faults, having almost twice the successful detection rate, 66%, as the resilient back-

propagation networks, 34%. The LM networks again demonstrated high detection fidelity

95

with respect to ADCS commanding faults, with the exception that network RP30 was at
least on par with these.

In an overall sense neither of the Bayesian regulated Levenberg-Marquardt networks
generalized very well, having an average detection accuracy of only 56% based on the
validation data. Although many of the networks produced overall accuracies greater than
60% with the validation data, only one network came close to approaching even that with
the novel data, network LM20, also at 56%. Table 6.10 provides a final summary of the

highest and average detection accuracies for each fault, and the corresponding best network.

Table 6.10: Summary of highest and average detection accuracies and the neural networks
that produced them for each of the fault categories

’ Fault ‘ Best ‘ Avg ‘ Best Network
Actuators 79% | 57% RP60
ADCS Cmds 83% | 656% LM20, BR30
Propagator/Clock | 100% | 96% | RP20, RP30, RP40, RP60, BR30, LM30
Star Camera 2% | 2% BR20
Magnetometer 100% | 93% LM20, BR30
Sun Sensor 94% | 4% LM30
Rate Sensor 66% | 40% LM20, BR30

These results can be expanded upon further. Table 6.10 summarizes the performance
of each network relative to isolating a faulty component of an ADCS. These components can
each be grouped into subsystems of the ADCS: attitude control (AC), guidance, and attitude
determination (AD). Grouping the ADCS components into subsystems as per table 6.11
allows for further analysis of the performance of the neural networks by measuring how well
they were able to isolate the fault to the proper subsystem, if not to the proper component.
For example if a fault was injected into the star camera and the neural network identified the
fault as a problem with the rate sensor, even though it misidentified the faulty component,
in either instance it properly identified the fault as being in the attitude determination

subsystem.

96

Table 6.11: The subsystems of the ADCS with their corresponding components

| Attitude Control | Guidance | Attitude Determination
Reaction Wheels | Guidance Commands Star Camera
Magnetic Torquers Clock Rate Sensor
Propagator Magnetometer
Sun Sensor

The performance of the neural networks relative to isolating a fault to a particular
subsystem is summarized in figure 6.16. Those networks trained with resilient backpropa-
gation had a 75% success rate in isolating the faulty subsystem, compared to a 64% chance
in isolating a faulty component. The Levenberg-Marquardt networks had almost identical
success rates of 66% and 65% for identifying the faulty subsystem or component, whereas
the Bayesian regulated Levenberg-Marquardt networks had only a marginally higher chance
to isolate the faulty subsystem, 59%, than it did isolating a faulty component, 54%. Matlab

scripts for calculating subsystem fault identification accuracy are provided in appendices

B.6 and B.7
Average Percentage of Isolated Faults Per
Subsystem Per Network
mAC mGuidance mAD
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

RP20 RP30 RP40 RP60 BR20 BR30 LM20 LM30

Fig. 6.16: The performance of the neural networks in isolating faults to a particular sub-
system

97

From an overall standpoint (reference figure 6.15) it would be difficult to make a de-
termination as to which network was more successful in isolating faulty components. From
the standpoint of isolating a faulty subsystem, perhaps more of a generalization can be
made. From figure 6.16 it is easily seen that the resilient backpropagation networks ex-
cel in isolating attitude control and guidance subsystem faults, while their performance
in isolating attitude determination faults is no better than the other networks. The four
Levenberg-Marquardt networks have about the same positive isolation rate for the attitude
control and guidance subsystems, but the success rate in isolating attitude determination
faults varies between 56% (BR20) to 86% (LM20). This inconsistency in isolating attitude
determination faults, coupled with the generally low isolation rates for attitude control and
guidance faults, makes the case for use of the resilient backpropagation training algorithm

for isolating faults on both a component and subsystem basis.

98

Chapter 7

Discussion and Future Considerations

7.1 Discussion

This thesis has presented a method of fault detection and diagnosis in a spacecraft’s
attitude determination and control system. Using an offline model of a spacecraft’s ADCS,
dynamics, and environment as a state estimator and to act as a reference, a vector of resid-
uals was defined in conjunction with the telemetry from a modeled spacecraft’s ADCS. The
purpose of this vector is to act as the state of the spacecraft and provides an instantaneous
snapshot as to the status of the ADCS. The modeled spacecraft was then subjected to a bat-
tery of fault injection scenarios, where the residual vector from each scenario was recorded
at every timestep and saved in order to construct a library of example data. Using this
library, several neural networks were trained, and their outputs analyzed. The performance
of the neural networks in detecting faults with this scheme leaves much to interpretation.
Though all of the networks were trained from the same example set, significant differences
exist in the ability of the networks to positively detect and identify the faults with any
consistency. Where one network may excel in detecting a certain fault, it may fare poorly
at another, as evidenced by an average overall performance of 64% across all networks.

Certain discoveries made during the course of this research can perhaps shed light on
this. First, the definition of the residual space warrants examination. The residuals that
define the state of the spacecraft were chosen to be as broad as possible with respect to
the state of the spacecraft’s attitude, actuators, and sensors, and defined with redundancies
built in where possible. In theory, this would differentiate the state of the spacecraft as much
as possible so that one fault did not produce residuals that were not sufficiently dissimilar
from another. In practice, this introduced confusion into the residuals, making it more

difficult to distinguish the residuals between faults. The residuals were further muddled

99

by the fusion of the star camera and rate sensor within the Kalman filter, as the residuals
generated by either sensor would experience a bias when either sensor was in error.

Perhaps the most obfuscating factor, though, is the size and complexity of the problem
being examined. Employing this method to identify even a modest number of faults in a
modest number of target systems required well over 100 faults to be modeled, with almost
2,000,000 total training examples generated. Expansion of this method to include other
systems, or training for other faults, increases the complexity further, so much so that
consideration must be given not only to the capabilities of the computational hardware used
to train the neural networks, but also to the capability of a neural network to generalize
the larger problem. to determine the number of positively identified and falsely identified
faults for the set of training data, as well as new, novel data of which the networks had no
a priori knowledge.

The method of fault detection and diagnosis presented in this thesis encompasses an
entire attitude determination and control system. Other authors have also developed FDD
algorithms that are more compartmentalized and focus on only a single subsystem of an
ADCS. Pirmoradi et al, for example, have proposed a scheme for diagnosing faults in a space-
craft’s attitude determination system [3]. In the proposed scheme faults in a spacecraft’s
attitude determination sensors are detected by processing the sensor residuals through a
series of extended Kalman filters, and the source of the fault is isolated through statistical
analysis. Although the example cited in the paper used only a single rate sensor and single
vector sensor, it could be expanded to include a spacecraft’s full complement of attitude
determination sensors by increasing the number of Kalman filters employed during primary
isolation. The method proposed by Pirmoradi, et al, is limited to use in a noisy environment
by inclusion of the Kalman filters and would be constrained to fault detection in the attitude
determination sensors; however, since it is the statistical analysis of the residuals generated
by the Kalman filters that isolates the faults, it is not inconceivable that the Kalman filters
could be replaced by classical observers for use in isolating faults in components whose

residuals are more deterministic.

100

A method proposed by Li, et al, attempts to detect and isolate faults in a spacecraft’s
control actuators via use of a series of neural networks [4]. In this scheme, each of three
reaction wheels is assigned a neural network which is used to estimate the reaction torque.
During operation the torques commanded by the controller and the outputs of the wheels
act as the inputs to the neural networks. The difference between the estimated and actual
torques serves as the residual, which is then thresholded to determine whether or not a fault
has occurred. Since Li’s neural networks serve only to generate residuals, it is feasible that
this method could be employed in either a random or deterministic environment.

Although these three schemes are all proposed to detect faults in spacecraft attitude
determination systems, key differences exists between them. The method proposed in this
thesis attempts to detect and isolate faults in the entire ADCS, rather than only in the
attitude control system (Li) or the attitude determination system (Pirmoradi). It also
makes an attempt at determining when the instructions, i.e. the guidance commands, to
the ADCS are the source of error. The choice of state estimators between methods is also a
key difference. Pirmoradi and Li employ either Kalman filters or neural networks to serve as
residual generators. This thesis employs a ground-side reference model in combination with
the spacecraft’s guidance and control commands to serve as the residual generators. This
structure of residual generation would preclude use of this method onboard a spacecraft,
and, therefore, prohibit also the chance for real-time fault detection —a marked contrast to
either Pirmoradi’s or Li’s methods, which suffer no such constraint. Another key difference
is the function of the neural networks used in this thesis and by Li. Whereas Li uses neural
networks only as residual generators, this thesis uses neural networks as residual analyzers.
It is through analysis of a residual set by a neural network that a fault determination is
made, rather than by thresholding of a residual generated by a neural network.

The performance of the neural networks in detecting faults with this scheme leaves
much to interpretation. Though all of the networks were trained from the same example
set, significant differences exist in the ability of the networks to positively detect and identify

the faults with any consistency. Where one network may excel in detecting a certain fault,

101

it may fare poorly at another, as evidenced by an average overall performance of 64% across
all networks.

Certain discoveries made during the course of this research can perhaps shed light on
this. First, the definition of the residual space warrants examination. The residuals that
define the state of the spacecraft were chosen to be as broad as possible with respect to
the state of the spacecraft’s attitude, actuators, and sensors, and defined with redundancies
built in where possible. In theory, this would differentiate the state of the spacecraft as much
as possible so that one fault did not produce residuals that were not sufficiently dissimilar
from another. In practice, this introduced confusion into the residuals, making it more
difficult to distinguish the residuals between faults. The residuals were further muddled
by the fusion of the star camera and rate sensor within the Kalman filter, as the residuals
generated by either sensor would experience a bias when either sensor was in error.

Perhaps the most obfuscating factor, though, is the size and complexity of the problem
being examined. Employing this method to identify even a modest number of faults in a
modest number of target systems required well over 100 faults to be modeled, with almost
2,000,000 total training examples generated. Expansion of this method to include other
systems, or training for other faults, increases the complexity further, so much so that
consideration must be given not only to the capabilities of the computational hardware used
to train the neural networks, but also to the capability of a neural network to generalize

the larger problem.

7.2 Future Considerations

Several considerations could be made with regard to the future direction of this re-
search, especially with respect to the system residuals. Recall that the primary driver
behind the low component-level isolation rates was caused by “residual confusion,” where
the residuals of one fault sometimes closely resembled the residuals of another fault. This
confusion of the residuals impacts the ability of the neural networks to distinguish one fault
from another, leading to poor generalization. A future path of research then would be to

determine if there is a better way to distinguish between residuals. One proposed method

102

would be normalization, whereby all of the residuals could be placed onto a common scale.
Having a common scale for the residuals may allow for better generalization of the neural
networks and aid in pattern recognition.

Another factor relative to the residuals that warrants further attention is drift. The
residuals in this thesis are largely defined as functions of either sensors or software, the
outputs of which, over time, will experience a certain degree of drift. Drift over long
periods of time were not explicity considered as part of this research. As such, were data
collected over a long enough time period, it is entirely likely that the sensor and software
outputs could drift enough such that the residuals would begin to become biased not due to
the presence of a fault, but rather to the presence of drift instead. An important question
then that remains unanswered is how long could data be collected and analyzed before drfit
begins to bias the residuals and lead to false positive fault identification? How long could the
residuals be analyzed before the reference model would need to be resynchronized with the
telemetry in order to account for drift? The timescale over which the residuals are collected
and analyzed is then of the utmost importance, as too long a time scale would allow the

accumulation of drift, and too short a timescale would require constant resynchronization.

[1]

103

References

Ure, N., Kaya, Y., and Inalhan, G., “The Development of a Software and Hardware-
in-the-Loop Test System for ITU-PSAT II Nano Satellite ADCS,” IEEFE Aerospace
Conference, March 2011, pp. 1-15.

Boskovic, J. D., Li, S. M., and Mehra, R. K., “Intelligent Control of Spacecraft in the
Presence of Actuator Failures,” Proceedings of the 38th IEEE Conference on Decision
and Control, Vol. 5, IEEE, 1999, pp. 4472-4477.

Pirmoradi, F., Sassani, F., and De Silva, C., “Fault Detection and Diagnosis in a
Spacecraft Attitude Determination System,” Acta Astronautica, Vol. 65, No. 5, 2009,
pp. 710-729.

Li, Z., Ma, L., and Khorasani, K., “Fault Diagnosis of an Actuator in the Attitude Con-
trol Subsystem of a Satellite Using Neural Networks,” International Joint Conference
on Neural Network, IEEE, 2007, pp. 2658-2663.

Izadi-Zamanabadi, R. and Larsen, J. A., “A Fault Tolerant Control Supervisory System
Development Procedure for Small Satellites: The AAUSAT-II Case,” IFAC Symposium
on Automatic Control in Aerospace, 2007.

Bidner, F., “Fault Tree Analysis of the HERMES CubeSat,” University of Colorado at
Boulder, USA, 2010.

Brumbaugh, K. M. and Lightsey, E. G., “Application of Risk Management to University
CubeSat Missions,” Journal of Small Satellites, Vol. 2, No. 1, 2013, pp. 147-160.

Boskovic, J., Li, S. M., and Mehra, R. K., “Intelligent Spacecraft Control Using Multi-
ple Models, Switching, and Tuning,” Proceedings of the IEEFE International Symposium
on Intelligent Control/Intelligent Systems and Semiotics, IEEE, 1999, pp. 84-89.

Barua, A., Sinha, P., and Khorasani, K., “A Diagnostic Tree Approach for Fault Cause
Identification in the Attitude Control Subsystem of Satellites,” IFEE Transactions on
Aerospace and Electronic Systems, Vol. 45, No. 3, 2009, pp. 983-1002.

Izadi-Zamanabadi, R., “Structural Analysis Approach to Fault Diagnosis with Applica-
tion to Fixed-wing Aircraft Motion,” Proceedings of the American Control Conference,
Vol. 5, IEEE, 2002, pp. 3949-3954.

Narendra, K. S. and Balakrishnan, J., “Adaptive Control Using Multiple Models,”
IEEE Transactions on Automatic Control, Vol. 42, No. 2, 1997, pp. 171-187.

Shuster, M. D., “The TRIAD Algorithm as Maximum Likelihood Estimation,” The
Journal of the Astronautical Sciences, Vol. 54, No. 1, 2006, pp. 113-123.

Sidi, M., Spacecraft Dynamics and Control, Cambridge University Press, Cambridge,
UK, 1997.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

104

Dorf, R. C. and Bishop, R. H., Modern Control Systems, Pearson (Addison-Wesley),
Menlo Park, CA, 1998.

Crassidis, J. L. and Junkins, J. L., Optimal Estimation of Dynamic Systems, CRC
Press, Boca Raton, FL, 2011.

Curtis, H., Orbital Mechanics for Engineering Students, Butterworth-Heinemann,
Burlington, MA, 2013.

Larson, W. J. and Wertz, J. R., Space Mission Analysis and Design, Microcosm Press,
El Segundo, CA, 2nd ed., 1999.

Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey,
2nd ed., 1999.

Holick, A., “Analysis of Noncatastrophic Failures in Digital Guidance Systems,” IEEE
Transactions on Electronic Computers, Vol. EC-12, No. 4, 1963, pp. 365-371.

Gulmammadov, F., “Analysis, Modeling and Compensation of Bias Drift in MEMS
Inertial Sensors,” 4th International Conference on Recent Advances in Space Technolo-
gies, IEEE, 2009, pp. 591-596.

Riedmiller, M. and Braun, H., “A Direct Adaptive Method for Faster Backpropaga-
tion Learning: The RPROP Algorithm,” IEEFE International Conference on Neural
Networks, IEEE, 1993, pp. 586-591.

Marquardt, D. W., “An Algorithm for Least-squares Estimation of Nonlinear Param-
eters,” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2,
1963, pp. 431-441.

Hagan, M. T. and Menhaj, M. B., “Training Feedforward Networks with the Marquardt
Algorithm,” IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1994, pp. 989-993.

Foresee, F. D. and Hagan, M. T., “Gauss-Newton Approximation to Bayesian Learn-
ing,” Proceedings of the International Joint Conference on Neural Networks, Vol. 3,
IEEE, 1997, pp. 1930-1935.

105

Appendices

106

Appendix A
Summary of Fault Modeling

The purpose of this appendix is to provide a complete listing of the simulated faults,

summarized in the following tables. The headings of the summary tables are defined below:

Table A.1: Description of the summary headings

Heading Description
Case Case designation: 1-112
Tfault Time at which fault occurs

Duration Time, in seconds, that the fault persists

TrgScale Scaling parameter, e.g. how much to scale wheel torque
FaultNum Denotes the row element of the neural net target vector
Description Short description of the fault

phi/theta/psi The commanded euler angles for the maneuver
rate Commanded angular rate, deg/s
Threshold Value Value used to trip fault designation in target vector

Tables A.2 - A.6 list the cases that were simulated to provide the training data for the

neural networks.

Table A.2: Summary of simulated faults cases 1-24

Case Tfault Duration TrgScale FaultNum Description

10

11

12

13

14

15

16

17

13

19

20

21

22

23

24

145

145

145

145

145

145

145

[T s R e I s |

145

145

145

145

145

145

145

145

145

10

10

10

10

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

10

10

10

10

3000

3000

3000

3000

10

0.25

0.5

0.75

0.25

0.5

[S

0.25

0.5

0.75

0.25

0.5

0.75

10
10

11

11

Seize Reaction Wheel 2
Seize Reaction Wheel 2
Seize Reaction Wheel 2
Seize Reaction Wheel 2
Wheel 2 Nominal Operation
Wheel 2 Power Loss

Wheel 2 Power Loss

Wheel 2 Power Loss

Wheel 2 Power Loss
Torguer 2 Reverse Polarity
Torguer 2 Reverse Polarity
Wrong ADCS cmds uploaded
Wrong ADCS cmds uploaded
Clock set incorrectly (JD is wrong)
Clock set incorrectly (JD is wrong)
Seize Reaction Wheel 1
Seize Reaction Wheel 1
Seize Reaction Wheel 1
Seize Reaction Wheel 1
Wheel 1 Power Loss

Wheel 1 Power Loss

Wheel 1 Power Loss

Wheel 1 Power Loss

Seize Reaction Wheel 3

107

phi theta psi rate Threshold Value

180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

180

-180

180

180

o o o o O

180

LSS S R == == S

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

S RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

S RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma
=0

=0

0.002

0.002

6.9e-4 (1 minsin
Julian time)
6.9e-4 (1 minsin
Julian time)

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

S RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

S RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

Table A.3: Summary of simulated faults cases 25-52

Case Tfault Duration TrqScale FaultNum Description

26

27

28

29

30

31
32
33

34

35
36
37
38
39
a0
a1
a2

HEE

46

a7

ag

49

50

51

52

145

145

145

145

145

145

145

145
145
60
60
60
60
60
60
60
60

145

145

145

145

145

145

145

10

10

10

3000

3000

3000

3000

3000
3000

3000
3000
30
30
30
30
30
30
30
30

10

10

10

10

10

10

10

0.25

0.5

0.75

0.25

0.5

0.75

R N A e R e = =

10
10
16
16
16
16
16
16
16
16

13

13

13

13

13

13

13

Seize Reaction Wheel 3

Seize Reaction Wheel 3

Seize Reaction Wheel 3

Wheel 3 Power Loss

Wheel 3 Power Loss

Wheel 3 Power Loss

Wheel 3 Power Loss

Torguer 1Reverse Polarity
Torguer 3 Reverse Polarity
Wheel 1 Nominal Operation
Wheel 3 Nominal Operation
Guidance Command Delay
Guidance Command Delay

Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Rate sensor thermal bias increase
Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

phi theta psi rate

1380

180

o o o o o o o O O O O

180
180

o o o o O

180
180
180

180

180

180

180

180

180

180

180

180

180

180

180

180

o o o o o o o O O O

[ST ST T e R e B e B e S e B O R R

108

Table A.4: Summary of simulated faults cases 53-84

Case Tfault Duration TrgScale FaultNum Description

53

54

55

56

57
53
59
60
61
62
63

65
66
67
65
63
70
71
72
73
74
75
76
77

78

79

80

81

82

83

145

145

145

145

oo o o o o o o o o o o o o o

60

60

60

60

60
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000

3000

3000

3000

3000

3000

3000

3000

1000
500
1
250
10000
250
500
1000
10000
100000
100000
1
5
10
2.5

o o o o

1.5

2.5

10

2.5

13

13

13

13

16
16
16
16
16
16
16
16
16
16
16

14

14

14

14

14

14

14

14

15

15

15

15

15

15

15

Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

Glint on star camera

Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor goes dead

Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Rate sensor unknown noise
Mominal hold maneuver
Magnetometer unknown noise
Magnetometer unknown noise
Magnetometer unknown noise
Magnetometer goes dead
Magnetometer goes dead
Magnetometer unknown noise
Magnetometer unknown noise
Magnetometer unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

Sun sensor unknown noise

109

phi theta psi rate Threshold Value

oo o o o o o o o o o o o o o o o oo oo

180

180

180

180

180

o o o o o

180
180
180
180
180

o o o o o o o

180
180
180

180

180

oo o o o o o o o o o o o o o o o oo oo

oo o o o o o o o o o o o o o o o oo oo

TRIAD solution...
15

TRIAD solution...
15

TRIAD solution...
15

TRIAD solution...
15

TRIAD solution...
15

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

M/A

011

011

011

011

011

011

011

011

004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma
004 3 sigma...
used 5 sigma

Table A.5: Summary of simulated faults cases 85-110

Case Tfault Duration TrgScale FaultNum Description

85

86

87

88

89

90

91

92

93

54

95

96

97

95

93

100

101

102

103

104

105

106

107

108

109
110

0

145
145
145
145
145

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000
3000

10

e e S L e

15

15

15

15

15

15

15

15

15

15

14

14

14

14

14

14

14

14

14

10

10

10

10

10

12
12

Sun sensor unknown noise
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Sun sensor value isstuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Magnetometer value is stuck
Guidance Command Delay
Guidance Command Delay
Guidance Command Delay
Guidance Command Delay
Guidance Command Delay

Propagator drift
Propagator drift

110

phi theta psi rate Threshold Value

[U e Y e Y s R s Y s Y s Y

180
180
180
180
180

[U e Y e Y s R s Y s Y s Y

(=R == LS L L =

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

004 3 sigma...
used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

011 sigma..

used 5 sigma

0.002

0.002

0.002

0.002

0.002

10

10

Case

111
112

VALIDATION CASES START AT 113

113

114

115

116

117

118

118

120

121

Table A.6: Summary of simulated faults cases 111-121

Tfault Duration
0 3000
0 3000

100+10randn 10

100+10%randn 104+5%rand

100+10%randn 104+5%rand

0 3000

0 3000
100+10*randn 3000
100+10*randn 3000
100+10*randn 30%rand

0 3000

TrgScale

1
1

[.2+.1*randn
3+ 1%randn]

[rand rand]

rand

0.1

0.1

rand

100000*rand

FaultMum
12
12

[12]

[23]

1214

1112

456

16

Description phi

Propagator drift 0
Propagator reset 0

Sieze reaction

wheels 1 & 2 20
Sieze reaction

wheels 2 & 3 20
Wheel 2 power

loss, wrong ADCS 180

command
Magnetometer is
dead, propagator 0
reset

clock is wrong and
propagator reset

90% wheel 2

power loss

all wheels 90%

power loss 0
seize reaction 0

wheel 2
Rate sensor
unknown noise

theta psi rate

0 0
0 0
90 0 2
90 0 2

0 o o
0 oo
0 oo
0 oo
180 0 O
0 oo

111

Threshold
Value
10
10

5 RPM 3 sigma..
used 5 sigma
5 RPM 3 sigma..
used 5 sigma

5 RPM 3 sigma..
used 5 sigma

10, .01*5sigma

6.9e-4, 10

5RPM 3 sigma..
used 5 sigma
5RPM 3 sigma..
used 5 sigma
5RPM 3 sigma..
used 5 sigma

0.05

10

11

12

13

14

15

16

17

18

19

112

Appendix B

Matlab Scripts

Following are the scripts used to generate the residual training and target vectors used
to train the neural networks, as well as the scripts used for post processing the neural

network outputs.

B.1 Residual Training
This script (MakeNNDataVector.m) takes the output of the reference and fault model

simulations, calculates the residuals, and packages them.

% Configure data to train a neural network

3 In general the residuals are defined as "observed - expected"

o°

% Attitude Reference Checks

o°

Check the attitude as reported by spacecraft to those

o°

from the reference model. If the SC is doing what it should be doing then

o°

the attitude and guidance parameters should have a small residual, which

% 1s indicative of "all is well" and that the spacecraft is likely in its

o\

desired orientation.

$Kalman Filter estimated attitude from SC
ATTEstFLT = def.Fault.Sensor.EstimatedQuaternion(1:10:end, :);

AngEstFLT = 2%acos (ATTEsStFLT (:,4));

$Kalman Filter estimated attitude from SC

ATTEstREF = def.Observer.Sensor.EstimatedQuaternion(1:10:end, :);

AngEstREF = 2xacos (ATTEstREF (:,4));

ATTRes = ATTEstFLT - ATTEstREF; Squaternion residual

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

AngResREF = AngEstFLT - AngEstREF; %attitude residual

%$Kalman Filter estimated rate from SC

WEstFLT = def.Fault.Sensor.EstimatedAngularRate(1:10:end, :);

$Kalman Filter estimated rate from Reference

WEstREF = def.Observer.Sensor.EstimatedAngularRate(1:10:end, :);

n = length(def.Time(1:10:end));

RateEstREF= zeros(n,1);
RateEstFLT= zeros(n,1);
ATTresREF = zeros(n,1);

RateResREF = zeros(n,1);

for i=1:n

ATTresREF (i) = norm(ATTRes (i, :)); %use quaternion norm

RateEstREF (1)

norm (WEstREF (i, :)); %use norm of rate estimate

RateEstFLT (i) = norm(WEStFLT(i,:)); %use norm of rate estimate

RateResREF (1)

end

norm (WEstFLT (i, :) -WEStREF (i, :)); %rate residual

% RateResREF = RateEstFLT - RateEstREF; %rate residual

NeuralNet.Attitude.AngResREF
NeuralNet.Attitude.ATTresREF

NeuralNet.Attitude.RateResREF

AngResREF;
ATTresREF;

RateResREF;

clearvars RateResREF ATTresREF RateEstREF WEsStREF WEstFLT

AngEstREF ATTEstREF AngEstREF

%% Guidance Reference Checks

o°

o°

% spacecraft is out of orientation is it simply due to it receiving the

% wrong commands

By checking the echoed attitude/rate commands from the spacecraft versus

those estimated by the reference, one can determine that if the

$Attitude commands as echoed from SC

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

114

ATTcmdFLT = def.Fault.Guidance.AttitudeCmd(1:10:end, :);

AngCmdFLT = 2xacos (ATTcmdFLT (:,4));

$Attitude commands as echoed from SC

ATTcmdREF = def.Observer.Guidance.AttitudeCmd(1:10:end, :);

AngCmdREF 2+acos (ATTcmdREF (:,4));
AngCmdResREF = AngCmdFLT - AngCmdREF; %rotation angle command residual

ATTCmdRes = ATTcmdFLT - ATTcmdREF; S%$quaternion command residual

$Attitude commands as echoed from SC

WCmdFLT = def.Fault.Guidance.RateCmd(1:10:end, :);
$Attitude commands as echoed from reference

WCmdREF = def.Observer.Guidance.RateCmd(1:10:end, :);
RateCmdFLT = zeros(n,1);

RateCmdREF = zeros(n,1);

ATTCmdResREF = zeros(n,1);
RateCmdResREF = zeros(n,1l);

for i=1:n

ATTCmdResREF (1) = norm (ATTCmdRes (i, :));%use norm of attitude quaternion
% RateCmdFLT (i) = norm(WCmdFLT (i, :)); %use norm of rate command
% RateCmdREF (i) = norm (WCmdREF (i, :)); %use norm of rate command
RateCmdResREF (i) = norm (WCmdFLT (i, :) -WCmdREF (i, :)); %rate cmd residual

end

% RateCmdResREF = RateCmdFLT-RateCmdREF; %rate command residual
NeuralNet.Guidance.ATTCmdResREF = ATTCmdResREF;
NeuralNet.Guidance.AngCmdResREF = AngCmdResREF;

NeuralNet.Guidance.RateCmdResREF = RateCmdResREF;

clearvars WCmdFLT WCmdREF WEsStFLT WEstREF ATTcmdFLT AngCmdFLT ATTcmdREF

AngCmdREF ATTCmdResREF WCmdFLT WCmdREF RateCmdFLT RateCmdREF

RateCmdResREF ATTCmdResREF

%% Actuator Checks

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

> Do not compare actuator telemetry to reference model. If attitude/rate

¥ are ok, the actuators will be working correctly. If attitude or rate are

o°

off w.r.t. the reference model, then it goes without saying that the

o°

o°

in the actuators, for example if the desired orientation was [0 0O 0 1]

o

and the spacecraft went to [0 1 0 0] the actuators are working fine.

% Instead check the actuator outputs to their command inputs to determine

3 their operational state.

o°

Wheel speed commands and output

WheelSpdAct = def.Fault.Actuator.WheelSpdAct(1:10:end, :);
WheelSpdCmd = def.Fault.Actuator.WheelSpdCmd(1:10:end, :);
WheelSpdRes = WheelSpdAct-WheelSpdCmd;

% Wheel voltage commmands and output

WheelVoltageAct = def.Fault.Actuator.WheelVoltageAct (1:10:end, :);
WheelVoltageCmd = def.Fault.Actuator.WheelVoltageCmd(1:10:end, :);
WheelVoltageRes = WheelVoltageAct-WheelVoltageCmd;

)

% Mag torquer polarity

actuators will be off as well; however, this is not indicative of a fault

115

MagPolCmd = -sign(def.Fault.Actuator.MagTrgCmd(1:10:end, :)); %Note minus sign!

MagPolAct = sign(def.Fault.Actuator.MagTrgAct (1:10:end, :));

MagPolRes = MagPolAct-MagPolCmd;

NeuralNet.Actuator.WheelSpdRes = WheelSpdRes;
NeuralNet.Actuator.WheelVoltageRes = WheelVoltageRes;

NeuralNet.Actuator.MagPolRes = MagPolRes;

clearvars WheelSpdRes WheelVoltageRes MagPolRes WheelSpdAct WheelSpdCmd

WheelVoltageAct WheelVoltageCmd MagPolCmd MagPolAct

%% Propagator Checks

o

3 The purpose of the propagator checks is to determine whether or not the

)

% attitude is out of place due to an error in the propagator. By comparing

125

126

127

128

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

157

158

159

the propagator's output to the validated reference model the spacecraft's

o\

% position in space and time can be confirmed. If it is determined that the

o

propagator is out of synch with the reference model, it would be an

o°

extremely likely source of attitude error. Note that propagator errors

o°

can be due, for example, to clock errors, or orbit ephemeris updates.

$spacecraft echoed Julian date

JulianDateFLT = def.Fault.Propagator.JulianDate(1:10:end);

$expected JD from reference model
JulianDateREF = def.Observer.Propagator.JulianDate(1:10:end);

JulianDateRes = JulianDateFLT-JulianDateREF;

InertialPositionFLT = def.Fault.Propagator.InertialPosition;
InertialPositionREF = def.Observer.Propagator.InertialPosition;

PosVecRes = InertialPositionFLT-InertialPositionREF;

InertialMagFieldFLT = def.Fault.Propagator.InertialMagField(1:10:end, :);
InertialMagFieldTruthFLT = def.Fault.Orbit.InertialMagField(1:10:end, :);

InertialMagFieldREF = def.Observer.Propagator.InertialMagField(1:10:end, :);

InertialSolarVectorFLT = def.Fault.Propagator.InertialSolarVector;

InertialSolarVectorREF = def.Observer.Propagator.InertialSolarVector;

MagVecRes = zeros(n,1l);

PositionRes = zeros(n,1l);

MagFieldRes = zeros(n,1);

SolarPositionRes = zeros(n,1l);

SolVecRes = zeros(n,1);

% Calculate residual norms

for i=1:n
MagVecRes (i) = norm(InertialMagFieldFLT (i, :)-InertialMagFieldREF (i,:));
SolVec = real (acos (dot (InertialSolarVectorFLT (i, :), ...

InertialSolarVectorREF (i,:))));

116

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

184

185

186

187

188

189

190

191

192

193

194

117

SolVecRes (1) = mod(SolVec,2xpi)*180/pi;
PositionRes (i) = norm(PosVecRes (i, :));
MagFieldRes (i) = norm(MagVecRes (i, :));

SolarPositionRes (i) = norm(SolVecRes (i, :));

end

Ne

Ne

Ne

Ne

cl

%%
5o

o o\

o°

o°

oe

o\

o°

o
°

o

°

uralNet.Propagator.JulianDateRes = JulianDateRes;

uralNet.Propagator.PositionRes = PositionRes;
uralNet.Propagator.MagFieldRes = MagFieldRes;

uralNet.Propagator.SolarPositionRes = SolarPositionRes;

earvars JulianDateFLT JulianDateREF JulianDateRes InertialPositionFLT
InertialPositionREF PosVecRes PositionRes
MagVecRes MagFieldRes InertialSolarVectorFLT InertialSolarVectorREF

SolVecRes SolarPositionRes

Sensor Checks
Performing the sensor checks allows us to determine whether or not either
the sensors or the propagator are off in some way. The measured inertial
magnetic field will be compared to the propagator field (the propagator
magnetic field will be verified with a different test). The measured
angular rate will be compared to the body rate estimates derived from the
attitude quaternion and its time derivative. Finally the kalman filter
attitude estimate derived from the star camera input will be compared to
a TRIAD algorithm attitude based on the measured magnetic field and

propagator supplied nadir vector.

**xNote that if the propagator is in a fault state the TRIAD solution will

also be in error.x*=*

Compare measured magnetic field to

MagFieldMeasured = def.Fault.Sensor.SensedBodyMagField(1:10:end, :);

MagSensorRes = zeros(n,1);

MagFieldProp = zeros(n, 3);

SunSensorRes = zeros(n,1l);

195

196

197

198

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

Sun_I_measured = zeros(n,3);
% Compare measured body rates to estimated body rates (Sidi 7.2.20)

BodyRateEstimate = def.Fault.Sensor.BodyRateEstimate; %Sidi 7.2.20

$from kalman filter

BodyRateMeasured = def.Fault.Sensor.EstimatedAngularRate(1:10:end, :);

RateSensorRes = zeros(n,1l);

AttTriad = zeros(n,4);

AngTriad = zeros(n,1l);

AttTriadRes = zeros(n,1l);

Nadir_ ORF = [0;0;1];

nadir_check = zeros(n,1l);

% calc residual norms

ResidualMagField = def.init.sensors.mag.SC_Residual_ Mag.Field;
sigma_mag = .01;

% sigma-sun = .0005%1;
sigma_sun = 1x5; %degrees
P = zeros(n,3);

Radical = zeros(n,4);

for i=1:n

o

for 1=950:951

o\

1=949
R_.ORF_to.b = def.Fault.Orbit.Rotation.OrbRef2Body (:,:,1);
% R_.ORF_to_b = def.Observer.Orbit.Rotation.OrbRef2Body (:,:,1);

R_1_to_ORF = def.Fault.Propagator.Inertial20rbRefRotation(:,:,1);

o°

R_1i_to_ORF = def.Observer.Orbit.Rotation.Inertial20rbRef (:,:,1);
% USE THIS ROTATION INSTEAD
R_i_to_b= R_ORF_to_b*R_i_to_ORF;

MagNoise = sigma_magx [randn; randn; randn];

R_i_to_ ORF_truth = def.Observer.Orbit.Rotation.Inertial20rbRef (:,:,1);

R_i_to_b_truth = R.ORF_to_bxR_i_to_ORF_truth;

%uncertainty due to inaccurate mag field modeling

118

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

254

255

256

257

258

259

260

261

262

263

264

o°

o°

119

MagUncertainty = [cosd(l0xrand);cosd(l0*rand);cosd(l0xrand)];

MagFieldMeasured = R_i_to_b*InertialMagFieldTruthFLT (i, :)".*...

MagUncertainty+ResidualMagField;

%$normalized measured mag field

B_BFCS_Unit = MagFieldMeasured/norm(MagFieldMeasured)+MagNoise;

R_.ORF_to_.i = R_i_to_ORF';

MagFieldProp (i, :) = (R_-i_-to_-bx*(InertialMagFieldFLT(i,:)"'))";
MagFieldProp (i, :) = ((InertialMagFieldFLT(i,:)"))"';
MagSensorRes (i) = norm (B_BFCS_Unit'-MagFieldProp(i,:)/...

norm (MagFieldProp (i, :)));
RateRes = BodyRateEstimate (i, :) -BodyRateMeasured (i, :);
RateSensorRes (i) = norm(RateRes) *«180/pi;
% Setup Triad algorithm between ORF/BFCS solar and magnetic field

% vector

Sun_I = def.Fault.Propagator.InertialSolarVector (i, :);
Sun_I = def.Observer.Propagator.InertialSolarVector (i, :);
Sun_I = Sun_I/norm(Sun_I);

%$COMMENT OUT WHEN FINISHED!!!

Sun_I(3) = 1;
Sun.B = R_i_to_bxdef.Observer.Propagator.InertialSolarVector(i,:)"';
Sun_B =

[cosd(sigma_sunxrand) 0 0;0 cosd(sigma-sunxrand) 0; ...

0 0 cosd(sigma.sunxrand)]*Sun_B;

B_ECI_Unit = InertialMagFieldFLT (i, :)/norm(InertialMagFieldFLT (i, :));

)

% Calculate R.ORF2B from Triad algorithm; convert to quaternion

265

266

267

268

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

289

290

291

292

293

294

295

297

298

299

end

120

[Roi_to.b_4triad,Cov] = triad.with_covariance (Sun_I',B_ECI_Unit', ...
Sun_B,B_BFCS_Unit, sigma_sun, sigma-magqg) ;
P (i, :)=norm([sgrt (Cov(l,1)) sqgrt(Cov(2,2)) sqrt(Cov(3,3))]);

R_ORF_to_b_triad = R.i_to.b_4triad+R_ORF_to_i;

[AttTriad (i, :),Radical(i,:)] =
rotationmatrix_to_quaternion (R.ORF_to_b_triad);

AttTriadRes (i) = norm(ATTEstFLT (i, :)-AttTriad (i, :));

AngTriad (i) = 2xacos (AttTriad(i,4));

AngTriad (i) = acos((trace(R.ORF_to_b_triad)-1)/2);

%$rotate measured sun vector (B) to inertial coordinates to compare to
%$propagator inertial sun vector

Sun_I_measured = R_i_to_b_4triad'*Sun_B;

SunSensorRes (i) = norm(Sun_I'—-Sun_I_measured);

SunSensorRes (i) = norm(R_i_to_b_4triad+Sun_I'-Sun_B); %JUST A CHECK!

TriadRes = AttTriadRes;

NeuralNet.Sensor.Magnetometer = MagSensorRes;

NeuralNet.Sensor.SunSensor = SunSensorRes;

NeuralNet.Sensor.RateSensor = RateSensorRes;

NeuralNet.Sensor.Triad = TriadRes;

clearvars MagFieldMeasured InertialMagFieldFLT MagSensorRes MagRes

InertialMagFieldFLT R_i_to_b MagFieldProp MagSensorRes RateSensorRes
RateRes BodyRateMeasured BodyRateEstimate AngEstFLT AngTriad AttTriad
BodyRateEstimate BodyRateMeasured InertialMagFieldFLT InertialMagFieldREF
MagFieldMeasured MagFieldProp MagSensorRes R_ORF_to.b R_ORF_to_i

R_i_to.b R.i_to_b_4triad RateEstFLT RateRes RateSensorRes Sun_B Sun.I

Sun_I_measured TriadRes SunSensorRes

121

300
301 %% Now construct neural net training vector
302 NNtraining = zeros(21,n);

303 for i=l:n

304 x1 = NeuralNet.Attitude.ATTresREF (i);

305 x2 = NeuralNet.Attitude.RateResREF (1) ;

306 x3 = NeuralNet.Actuator.WheelSpdRes (i, 1);

307 x4 = NeuralNet.Actuator.WheelSpdRes (i,2);

308 x5 = NeuralNet.Actuator.WheelSpdRes (i, 3);

309 x6 = NeuralNet.Actuator.WheelVoltageRes (i, 1);
310 x7 = NeuralNet.Actuator.WheelVoltageRes (i, ?2);
311 x8 = NeuralNet.Actuator.WheelVoltageRes (i, 3);
312 x9 = NeuralNet.Actuator.MagPolRes(i,1);

313 x10 = NeuralNet.Actuator.MagPolRes (i,2);

314 x11 = NeuralNet.Actuator.MagPolRes (1i,3);

315 x12 = NeuralNet.Propagator.JulianDateRes (i) ;
316 x13 = NeuralNet.Propagator.PositionRes (1) ;
317 x14 = NeuralNet.Propagator.MagFieldRes (i) ;

318 x15 = NeuralNet.Propagator.SolarPositionRes (1) ;
319 x16 = NeuralNet.Sensor.Magnetometer (i) ;

320 x17 = NeuralNet.Sensor.SunSensor (i) ;

321 x18 = NeuralNet.Sensor.RateSensor (i);

322 x19 = NeuralNet.Sensor.Triad(i);

323 x20 = NeuralNet.Guidance.ATTCmdResREF (i) ;

324 % x21 = NeuralNet.Guidance.AngCmdResREF (i) ;
325 x22 = NeuralNet.Guidance.RateCmdResREF (i) ;

326

327 NNtraining(:,1i) =

328 [x1;x2;x20;x22;x3;x4;x5;x6;x7;x8;x9;x10;x11;x12;x13;x14;x15; ...
329 x16;x17;x18;x19];

330 end

331

332 NeuralNet.Training = NNtraining;
333 % NeuralNet.Target = NNtarget';

334

335

336

337

338

339

340

341

10

11

12

13

14

15

16

17

18

19

122

clearvars xl1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18
x19 NNtarget NNtraining x20 ATTCmdRes ATTEstFLT ATTRes AngCmdResREF
AngResRef B_BFCS_Unit B_ECI_Unit B_ECI_debug InertialMagFieldTruthFLT
Nadir_ORF R_ORF_to_b_triad R_i_to_ORF SolVec nadir_check sigma
sigma_-mag sigma.sun ResidualMagField MagUncertainty MagNoise AngResREF
AttTriadRes Cov P x20 x21 x22 R_i_to_ORF_truth R_i_to_b_truth Radical

i

B.2 Generate Target Vector

The script MakeTargetVector.m applies a user-defined threshold value to specified
residual quantity. When the threshold is exceeded, the appropriate element of the tar-
get vector is changed from zero to one, where the element of the vector is determined by

the parameter “FaultNum” (see table A.1).

ErrorRes = NeuralNet.Sensor.RateSensor; %Specify residual

n = length(ErrorRes);

NNtarget = zeros(l6,n);
sigma = .05/5; %Specify residual threshold
% Use this code for single faults
for i=1:n
if abs(ErrorRes (i, 1l))> 5xsigma %$&& i>Tfault/.2
NNtarget (FaultNum(l),1i)=1;
end
if abs(ErrorRes (i,2))> 5xsigma %$&& i>Tfault/.2
NNtarget (FaultNum(2),1i)=1;
end
if abs(ErrorRes (i, 3))> 5xsigma %$&& i>Tfault/.2
NNtarget (FaultNum(3),1i)=1;
end

end

20

21

22

23

24

25

26

27

28

29

30

10

11

12

13

123

o\

Use this code for multiple faults

o\

for i=1:n

o°

if abs(ErrorRes(i))> 5xsigma %&& i>Tfault/.2

o°

NNtarget (FaultNum, i)=1;

o°

end

% end

NeuralNet.Target = NNtarget;

figure;plot (0:.2:def.Time (end),NeuralNet.Target (FaultNum, :))

B.3 Determination of Faults

Script DetermineFaults.m loads each of the specified sets of residuals and then loads
the specified neural network. For each case, the script CreateFaultVector.m is called, which
generates a 1x16 element vector whose elements denote where the fault has occurred. Af-
ter each of the individual fault vectors is created, script CalcAccuracy.m is called, which

calculates the number of positively and falsely identified faults.

% This script performs the following operations:

% Loads the specified neural network

% Loads each case

% Calls the script CreateFaultVector.m which forms a 1x16 vector,

% corresponding to the number of fault categories and populates it with
% the detected faults

3 Calls script CalculateAccuracy which determines the number of positively

o\

identified and falsely identified faults

addpath (genpath (pwd))

clear all

strl = '"NeuralNet_case_';

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

str2 = ".mat';

load('BR_22neurons_Interleved.1'); %load neural net

Thresholds =

Thresholds (:,

zeros (16,2);

1) = .9;

%% Create Fault Vector

NumCrossings

SigmaLevel =

StartCase =

= 5; %num. of continuous threshold crossings before hard fault

5; %STUB, number of std for fault detection

1l; %First case to load

NumCases = 112; SNumber of case files to load

for i=StartCase:NumCases

if i<10
case_num = strcat ('0',num2str(i));
else
case_num = num2str(i);
end
CaseName = strcat (strl,case_num,str2);

load (CaseName)

output =

net (NeuralNet.Training(:,300:end-300));

FaultVector =

CreateFaultVector (output, Thresholds, SigmalLevel, NumCrossings) ;

FileName

= strcat ('Fault_Vector_Case_',case_num);

save (FileName, 'FaultVector');

clearvars def NeuralNet

end

CalcAccuracy

save ('Accuracy', 'A")

clearvars NumPos NumFalsePos NumCrossings PositiveFault SigmalLevel

Thresholds output i j m n net tr STDS def counter

124

10

11

12

13

14

15

16

17

18

19

125

B.4 Create Fault Vector

CreateFaultVector.m is a function which creates a 1x16 element vector corresponding
to the 16 defined fault states. The default vector elements are equal to zero. If a fault is
detected the element is changed to one. The function has four inputs: output, Thresholds,
SigmaLevel, and NumCrossings. Output refers to the calculated output of the neural net-
work; Thresholds is a 16x2 matrix where the first column contains the thresholds for each of
the elements of the neural network output, which was set at 0.9 for this thesis. The second
column is a switch to tell the thresholding algorithm the number of standard deviations
(SigmalLevel) above the threshold to determine a hard fault and is set to zero by default.
NumCrossings refers to the number of consecutive threshold crossings to consider before a

hard fault is determined (a value of 5 was used for this thesis to correspond to the 5 Hz

output of the HARP ADCS).

o\

This script creats a 1x16 element vector corresponding to the 16 defined

o\

fault states. The default vector elements are equal to zero. If fault is

o\

detected the element is changed to equal one.

function FaultVec = CreateFaultVector (output, Thresholds, SigmaLevel, ...
NumCrossings)

FaultVec = zeros(1l,16); %vector to track where faults are detected

counter = 0; %initialize number of continuous crossings

[m,n] = size (output);

for i=1:m
for j=1:n
if output (i, j) > Thresholds(i,1l) + SigmaLevelxThresholds (i, 2)
counter = counter+l1;
if counter >= NumCrossings
FaultVec (i) = 1;
end

else

20

21

22

23

10

11

12

13

14

15

16

17

18

19

126

counter = 0;
end
end

end

B.5 Calculating Neural Network Accuracy

The accuracy of the neural networks is calculated by script CalcAccuracy.m. It first
loads the file CaseFaults.mat, which is a 112x2 element matrix. Column one is numbered
1 through 112. Column two contains numbers between 1 and 16 and denotes which fault
is the positive fault for each of the cases. The output of this script is a 112x2 matrix, “A.”
Column one of the matrix contains the number of positively identified faults (always 1 is

positive detection is made). Column contains the number of false identified faults.

o\

This script is used to determine the accuracy of the trained neural nets.

% Accuracy = (# Positive Detections)/ (# Positive + # False Detections)

oe

clear all

load ('CaseFaults.mat') %load case numbers with corresponding fault numbers
strl = 'Fault_Vector_Case.';

str2 = '".mat';

A = zeros (NumCases—-StartCase+l,2);

$matrix format of A is [#Positive #FalsePositive], nx2

NumFalsePos = 0; %number of false positive fault detections

for i=StartCase:NumCases

if i<10

case_num = strcat ('0',num2str(i));
else

case_num = num2str(i);
end

CaseName = strcat (strl,case_num, str2);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

2

3

127

load (CaseName)

for j=1:16
if FaultVector(j) ~= 0 %$is there a fault present?
if j == CaseFaults(i,2) %Check which case is Positive Detection
A(i,1) = 1; %Mark as Positive Detection
else

NumFalsePos = NumFalsePos+1;

end
A(i,2) = NumFalsePos; %Mark as False Positive Detection
end
end
NumFalsePos = 0; % Reset counter

clearvars FaultVector

end

B.6 Determine Subsystem Fault Isolation Accuracy

Determining the faults on a subsystem level first requires the existing faults of Fault-
Vector.m to be bundled into one of three categories, one for each of the defined ADCS
subsystems. Script CalcSubSysAccuracy.m loads the specified neural network and each of
the fault vectors associated with that network. File SubSysFaults.mat is loaded, which
describes which fault belongs to which subsystem. The script then cycles through each of
the fault vectors and determines the number of positively and falsely isolated faults on a
subsystem level by calling script CreateSubSysFaultVector.m. This scripts creates a 1x3
vector called SubSystemFaultVector whose purpose is the same as the 1x16 FaultVector.
For each of the subsystem fault vectors a matrix, “B” is populated. The structure of “B”
is exactly the same as matrix “A” except the positively and falsely identified faults refer to

the subsystem level.

% This script is used to determine the accuracy of the trained neural nets.

% Accuracy = (# Positive Detections)/ (# Positive + # False Detections)

clear all

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

load('SubSysFaults.mat') %load case numbers with corresponding fault numbers

load('BR_22neurons_Interleved.1'); %load neural net

strl = 'Fault_Vector_Case.';
str2 = '.mat';
NumCases = 112;

StartCase = 1;

B = zeros (NumCases-StartCase+1,2);

$matrix format of B is [#Positive #FalsePositive], nx2

NumFalsePos = 0; %number of false positive fault detections

for i=StartCase:NumCases

if i<10
case_num = strcat ('0',num2str(i));
else
case_num = num2str(i);
end
CaseName = strcat (strl,case_num,str2);

load (CaseName)
SubSystemFaultVector = CreateSubSysFaultVector (FaultVector);
FileName = strcat('SubSys_Fault_ Vector_Case_',case_num);

save (FileName, 'SubSystemFaultVector') ;

for 3=1:3
if SubSystemFaultVector(j) ~= 0 %$is there a fault present?
if j == SubSysFaults(i,2) %Check which is Positive Detection
B(i,1) = 1; %Mark as Positive Detection
else
NumFalsePos = NumFalsePos+l;
end
B(i,2) = NumFalsePos; %Mark as False Positive Detection
end

end

128

39

40

41

42

43

10

11

12

13

14

15

16

17

18

129

o

NumFalsePos = 0; % Reset counter
clearvars FaultVector SubSystemFaultVector

end

save ('SubSysAccuracy', 'B'")

B.7 Create Subsystem Fault Vector
CreateSubSysFaultVector.m bundles the component-level faults of FaultVector.mat
into one of three categories that correspond to either the attitude control, guidance, or

attitude determination subsystems.

o°

This script creats a 1x3 element vector corresponding to the 3 defined

o°

subsystems. The default vector elements are equal to zero. If fault is

o

3 detected the element is changed to equal one.

function SubSystemFaultVector = CreateSubSysFaultVector (FaultVector)

SubSystemFaultVector = zeros(1l,3);

for j=1:16
if FaultVector(j) ~= 0 %$is there a fault present?
if j<=9

SubSystemFaultVector (1) = 1; %AC Fault
elseif J<=12
SubSystemFaultVector (2) = 1; %Guidance Fault
elseif j<=16
SubSystemFaultVector (3) = 1; %AD Fault
end
end
end

end

	A Neural Network Approach to Fault Detection in Spacecraft Attitude Determination and Control Systems
	Recommended Citation

	Abstract
	Public Abstract
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Previous Work
	Thesis Statement
	Problem Description
	Approach to Fault Detection and Isolation

	Literature Review
	Failure Analysis
	Fault-tolerant Control

	Residual Definitions
	Attitude and Rate
	Guidance
	Actuators
	Orbit Propagator and Time
	Sensors
	Star Camera
	Rate Sensor
	Magnetometer and Sun Sensor

	Software Model Description
	Attitude Determination and Control System Overview
	Attitude Control System
	Guidance Trajectory Generator
	Plant Dynamics
	Controller Selection
	Actuator Models

	Attitude Determination System
	Star Camera
	Inertial Measurement Unit
	Kalman Filter
	Magnetometer and Sun Sensor Models

	Truth Models
	Orbital Dynamics
	Magnetic Field Model

	Environmental Disturbance Models
	Gravity Gradient
	Magnetic Field
	Aerodynamic Drag

	Training the Neural Network
	What is a Neural Network?
	Neural Network Training Set
	Proof of Concept
	Generating the Training Data
	Nominal Training Examples
	Training for Reaction Wheel Faults
	Training for the Magnetic Torque Rods
	Training for Guidance Command Errors
	Training for Clock and Propagator Errors
	Training for Star Camera Errors
	Training for Magnetometer and Sun Sensor Errors
	Training for Rate Sensor Errors

	Summary of Data Generation
	Training Algorithms
	Network Training

	Results
	Calculating Neural Network Performance
	Performance of the Neural Networks
	Performance Relative to the Actuators
	Performance Relative to Commanding
	Performance Relative to the Propagator
	Performance Relative to the Star Camera
	Performance Relative to the Magnetometer
	Performance Relative to the Sun Sensor
	Performance Relative to the Rate Sensor
	Performance in the Presence of Novel Data

	Summary of Results

	Discussion and Future Considerations
	Discussion
	Future Considerations

	References
	Appendices
	A Summary of Fault Modeling
	B Matlab Scripts
	Residual Training
	Generate Target Vector
	Determination of Faults
	Create Fault Vector
	Calculating Neural Network Accuracy
	Determine Subsystem Fault Isolation Accuracy
	Create Subsystem Fault Vector

