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ABSTRACT 

 

 

 

Bio-inspired materials and micro/nanostructures enabled by peptides and proteins 

 

 

 

by 

 

 

 

Swathi Swaminathan, Doctor of Philosophy 

Utah State University, 2015 

             Major Professor: Dr. Yue Cui  

             Department: Biological Engineering 

 

 

 

 The development of a general approach for non-destructive chemical and biological 

functionalization of materials could expand opportunities for both fundamental studies and 

creating various device platforms. Phage display has emerged as a powerful method for 

selecting peptides that possess enhanced selectivity and binding affinity toward a variety 

of targets. In this study, a powerful yet benign approach for identifying binding motifs to 
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materials like (Poly) dimethylsiloxane, epoxy, and (Poly) ethylenetetraphthalate and 

peptide nanotubes has been demonstrated via comprehensively screened phage-displayed 

peptides. Further, along with the development of microstructures, micropatterns and micro-

molecular self-assembly, recognition with phage-displayed peptides can be specifically 

localized in these microstructures.  

 

 

 In addition, the development of a facile approach for fabricating a library of 

precisely positioned nanostructures and microfluidic systems based on mammalian hair 

offers exciting opportunities in fundamental research and practical applications. The 

current top-down and bottom-up nanofabrication methods have been restricted in 

accessibility in standard labs due to their high cost and complexity. Novel fabrication 

methods utilizing biomimetic materials and natural proteins for large-scale nanopatterning 

with hierarchical assembly of functional materials  have been reported. It is anticipated that 

these results could open up exciting opportunities in the use of peptide-recognized 

materials in fundamental biochemical recognition studies, as well as in applications 

ranging from analytical storage devices, hybrid materials, sensors, surface and interface, to 

cell biology. 

                                                                                                                       (175 pages)                                
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PUBLIC ABSTRACT 

 

 

 

Bio-Inspired materials and micro/nanostructures enabled by peptides and proteins 

 

 

 

 Bio-nanotechnology refers to the field of science that intersects nanotechnology 

with biology. The study involves in the creation of bio-mimetic devices that emulate 

elements and systems of nature finding use in various applications. Nanotechnology 

involves the characterization of nanomaterials along with the study of molecular self-

assembly and nanoelectronics. Controlled binding and assembly of proteins onto 

nanomaterials is at the core of biological materials science and engineering with wide-

ranging applications. This hybrid technology opens up several avenues in the field of 

sensors, pharmaceuticals, artificial implants and so on. 

 

 

 In this work, different biomaterials and polymers were characterized for phage 

displayed peptide recognition moieties, followed by designing bifunctional entities of these 

peptides to construct devices of biological or electrical importance. Further, the instability 

of these nanomaterials was exploited to create nano/micropatterns, which could also be 

transferred to other substrates or subjected to self-assembly, creating bottom-up or top 
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down fabrication systems. Finally, cumulating the techniques of microfluidics and 

immunoassay, a biosensor was designed to enable the detection of cardiac markers.                                                                                   

 

Swathi Swaminathan                                                                                                                                                           
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I.1. Introduction [1] 

 

 

 Oligopeptides are robust biorecognition molecules, displaying broad chemical 

diversity (acidity, hydrophobicity, etc.), and can be chemically engineered to bind specific 

targets [2]. Further, peptides can form complex, self-assembled hybrid conjugates with a 

variety of materials or assemble specific materials on patterned or microstructured 

surfaces, with their ability to be linked into multifunctional networks [3].  

 

 

 Phage display has emerged as a powerful method for identifying peptide motifs 

with enhanced binding affinities toward specific targets. In phage display, a library of 

approximately a billion (109) peptide variants is displayed on the phage as a fusion with 

the surface coat protein of the bacteriophage, which allows for rapid, combinatorial 

screening of sequences displaying high affinities toward specific targets. Phage display has 

been investigated to identify specific binding peptides for a wide range of target analytes, 

including metals [4, 5], semiconductors [6-8], polymers [9, 10], small molecules [11], 

graphene [12] and small molecule ink [13]. 
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I.2. Experimental [1] 

 

 

 An aliquot of the phage display library was incubated with an epoxy slab (non- 

oxidized)/PDMS slab (oxidized/ non-oxidised)/ PET film / Peptide Nanotubes grown on a 

glass slide in Tris buffered saline containing 0.1-0.5% Tween-20 (TBST) for 1 h at room 

temperature. The slab was then washed several times with TBST buffer. The phages were 

eluted from the epoxy by addition of glycine-HCl (pH 2.2) for 15 min, neutralized with 

Tris-HCl, pH 9.1, amplified, and subjected to additional pannings. Eluted phages were then 

amplified in E. coli, and the panning was repeated for up to three rounds. This was 

conducted under increasingly stringent conditions, to obtain phage clones expressing 

peptides with the highest binding affinities to the samples. After the final round of panning, 

DNA sequence analysis of the isolated phage clones yielded heptameric epoxy-binding 

peptides. 

 

 

 

 

 

 

                                             Fig.1. Schematic of the Phage display technique. 

 Bind 

Elute Amplify 
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CHAPTER 1 

 

 

RECOGNITION AND NON-LITHOGRAPHIC PATTERNING OF (POLY) 

DIMETHYLSILOXANE USING PHAGE-DISPLAYED PEPTIDES [1, 14] 

 

 

 

1.1. Abstract  

 

 

 A powerful yet benign approach for identification of binding motifs to poly 

(dimethylsiloxane) (PDMS) via comprehensively screened phage displayed peptides is 

demonstrated for the first time. These results show that PDMS can be selectively 

recognized with peptide-displaying phages and bifunctional peptides. Further, along with 

the development of PDMS-based microstructures, recognition of PDMS with phage 

displayed peptides can be specifically localized in these microstructures. In addition, the 

development of controlled patterning of phage (viruses) could expand opportunities for 

both fundamental studies and creating various materials platforms. Inducing the 

elastomeric instability of PDMS film provides a non-lithographic, tunable, controlled 

method for generating micro/nanoscale wrinkle patterns. Phage display has emerged as a 

powerful method for selecting peptides that possess enhanced selectivity and binding 

affinity toward a variety of targets. The non-lithographic patterning of phage-displayed 
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peptides with wrinkled elastomers is also represented in this study. The results show that 

the phage-displayed peptides can be patterned on specific locations in controlled and 

tuneable ways, be transferred to other substrates and induce the self-assembly of hybrid 

materials. It is anticipated that these results could open up exciting opportunities in 

fundamental studies and in applications ranging from sensors, hybrid materials, self-

assembly, surface and interface, to micro/nanoelectronics. 

 

 

 

1.2. Introduction  

 

 

 Poly(dimethylsiloxane) (PDMS) is a silicon-based elastomer, which has been 

widely used for a variety of in vitro and in vivo applications, including microfluidic devices 

[1, 15], micro-nanostructures [16], surface and interface [17], construction of hybrid 

materials [18], and cell biology [19]. PDMS has shown excellent thermal stability, optical, 

electrical, mechanical, and biocompatible properties [19-21]. A variety of surface 

functionalization and recognition of PDMS has been studied for its biological [22], 

chemical [22], mechanical [23], and electrical applications [24]. 

 

 

  To date, the developed surface modification methods are based on either 

physical non-covalent or chemical covalent modification with silanes or plasma treatment 
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[25]. Physical modifications mainly depend on the surface functionalization either via 

hydrophobic, hydrophilic or electrostatic interactions and polymer/copolymer coatings 

[26]. This has proven to facilitate a much simpler and efficient means of molecular 

separation studies to avoid nonspecific interactions in comparison to the covalent 

modifications. Also, no issues of solvent based swelling of PDMS encountered during 

silanization or other covalent methods, is observed with non-covalent functionalization 

[27]. A general method for chemical and biological functionalization of PDMS with 

specific binding motifs is thus highly desired [1]. 

 

 

 The development of controlled patterning of phage (viruses) could expand 

opportunities for both fundamental studies and creating various materials platforms. 

Inducing the elastomeric instability of PDMS film provides a non-lithographic, tunable, 

controlled method for generating micro/nanoscale wrinkle patterns. The spatial control of 

phage-displayed peptides has attracted great interest, which can open up new opportunities 

in self-assembly, selective sensors, and nano- and microelectronic devices. 

Photolithography [28] and e-beam lithography [29] are widely used for generating 

microscale and nanoscale patterns. Having already aimed at patterning of phage-displayed 

peptides on specific locations with photolithography and soft lithography [30], it is thus 

desired to pattern these peptides on specific locations of a wrinkled elastomer [14]. 
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 Spontaneous formations of textured surface patterns [31-33] via inducing the 

surface instability of elastomer have attracted great attention and have been investigated 

under a variety of methodologies. Due to the elastomeric property, the geometry of wrinkle 

patterns can be changed with a stretching strain producing a resolution of 50nm up to 

several micrometers, which opens up opportunities for developing tunable hybrid 

materials. Recently, we have also demonstrated a flame oxidation method for the 

generation of tunable wrinkle patterns [34]. 

 

 

 

1.3. Experimental  

  

 

 The PDMS prepolymer and its curing agent (Sylgard 184 silicone elastomer kit) 

were thoroughly mixed in a ratio of 10:1, followed by degassing in vacuum for 30 min. 

The mixture was then poured over a petri dish and microstructured masters, and cured at 

80 °C for 2 h, followed by peeling off to obtain a flat PDMS surface, PDMS microdots and 

PDMS microchannels. The PDMS slabs were then used for incubation with phages or 

treated by plasma oxidation. The masters for PDMS microdots are TEM grids. The masters 

for PDMS microchannels were prepared according to a reported procedure [35], and 

briefly, the channel structures were printed on shrink-dink plastics by a laser printer, and 

after curing and drilling holes, the PDMS microchannels with an inlet and an outlet were 
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sealed to a glass slide as shown in Fig.1. The solutions were delivered into the microfluidic 

channels with a syringe pump through Teflon tubing. Plasma oxidation (15 W, 30 s) was 

performed with a plasma etcher for changing the PDMS surface from being hydrophobic 

to hydrophilic, and for bonding the PDMS slab with microchannels to a glass substrate. 

 

 

 Generation of wrinkles: PDMS prepolymer and curing agent (Sylgard 184) were 

thoroughly mixed at a weight ratio of 10:1, followed by degassing and curing at 80 °C for 

2 h. A PDMS film (0.5 mm thick) was stretched by 25% with a uniaxial stretching strain, 

followed by exposure to oxygen plasma at 80 w for 10-30 min to generate consistent one- 

 

 

                                                

Fig. 2. Schematic of a microfluidic channel. Scale bar: 0.5cm [1] 
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directional wrinkles, proportional to the direction of the strain with different sizes based on 

the duration of etching as shown in Fig. 2. By using a 20% biaxial stretching strain with 

plasma oxidation at 80 w for 20 min, herringbone-structured PDMS wrinkles could be 

generated. 

 

  

 Printing of phage-displayed peptides: A wrinkled PDMS slab was brought into 

contact with the glass surface coated by PDMS-binding phage-displayed peptide. Then the 

phage-displayed peptides with PDMS binding motif were bound to the PDMS surface, 

followed by washing and characterization. Similarly, a PDMS stamp with SiO2-binding 

peptide (HKKPSKS) was brought into contact a SiO2 surface,as shown in Fig. 4.,  followed 

by washing and characterization. 

                                 

       

Fig. 3. Schematic of the production of wrinkled elastomer [14] 
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 Fluorescent characterization: Fluorescent characterization of the binding of phage-

displayed peptides was accomplished by incubating the substrates sequentially with (i) the 

phage-displayed peptides (5.6x10^10 phage molecules ml-1), (ii) blocking buffer 0.1 M 

NaHCO3, 1% BSA, (iii) biotin-conjugated antibody M13 anti-phage antibody (1 mg ml-1) 

and (iv) avidin-FITC (2 unit ml-1), with TBS buffer washing steps in between to remove 

non-specific binding. Fluorescent characterization for the binding of bifunctional peptides 

(Peptide 2.0 Inc., VA, USA) was accomplished by incubating the substrates sequentially in 

(i) the bifunctional peptide (0.5 mg ml-1 TBS), (ii) blocking buffer 0.1 M NaHCO3, 1% 

BSA and (iii) streptavidin-FITC (1 mg ml-1), with TBS buffer washing steps in between to 

remove non-specific binding. The color intensity of the surface was observed through an 

Olympus IX71 inverted fluorescence microscope equipped with an Olympus DP30BW 

CCD camera (emission and excitation wavelengths of FITC being 495 and 519 nm, 

respectively). 

 

 

                        

Fig. 4. Schematic of printing the phage displayed peptide on the surface of the     

wrinkles [14]. 
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 Peptide in-situ synthesis of nanoparticles: A bifunctional peptide was designed and 

synthesied with a binding motif for PDMS, a GGGG spacer, and a motif for synthesis of 

silver nanoparticles (NPSSLFRYLPSD). First, solutions of the bifunctional peptide (0.5 

µg ml-1) and silver nitrate solution (pH 7, 30 mM) were mixed and incubated with PDMS 

wrinkles and kept in the dark for three days [36], resulting in the growth of nanoparticles 

on the entire PDMS wrinkled surface. Second, the bifunctional peptides were printed on 

PDMS wrinkles, followed by incubating with silver nitrate solution to result in the growth 

of nanoparticles on the wrinkled PDMS surface as shown in the Fig. 5. 

 

 

 

                

Fig. 5. Schematic of the synthesis of silver nanoparticles after incubation with bifuntional 

peptide in silver nitrate solution [14]. 
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1.4. Results and Discussion  

 

 

  

                        

Fig. 6. (a) Schematic of the phage displayed peptide technique. (b) Table showing phage 

displayed peptides for PDMS, (c) Analysis of the amino acid frequencies in the phage 

displayed peptides in comparison to the NEB observed library frequency [1]. 
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 As shown in Fig. 6a, after performing biocombinatorial screening from a phage 

display library, specific peptides binding to PDMS can be identified. Fig. 6b shows the 

characteristics of the peptide sequences screened from three rounds of biopanning, and 

LSNNNLR appears to show the highest frequency from the biopanning process with a 

frequency of 19/20. A comparative analysis of the observed frequency of the amino acids 

binding to PDMS and the recorded frequency in the NEB library has also been recorded in 

Fig. 6c. A plot analysis of these peptide sequences shows that asparagine and leucine are 

frequently the binding amino acid residues. The dominant phage displayed peptide 

(LSNNNLR) was also isolated as a single colony and selected for further investigation. 

  

 

 First, the fluorescent characterization for the binding of LSNNNLR to a flat PDMS 

surface was investigated, as shown in Fig. 7a. This was accomplished by incubating the 

substrates sequentially with (1) the phage displayed peptides or M13 phages with the same 

concentrations, (2) blocking buffer 0.1 M NaHCO3, 1% BSA, (3) biotin conjugated anti-

M13 antibody (1 mg ml-1), and (4) avidin- FITC (1 mg ml-1), with TBS buffer washing 

steps in between to remove non-specific binding. Significantly, the PDMS surface with 

peptide-displaying phages (LSNNNLR) shows much higher fluorescent intensity relative 

to the PDMS incubated with M13 phages (without phage displayed peptides on the coat; 

isolated from the phage display library).  
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 The absence of phage displayed peptide on the coat of M13 phage can be correlated 

with the absence of fluorescence on the surface of PDMS. Thus, the phage displayed 

peptide is essential for binding to PDMS. In addition, by using a plasma-oxidized PDMS 

slab (15 w, 30 s) which shows hydrophilic surface behavior, the fluorescent 

characterization exhibits similar behavior as the non-oxidized hydrophobic PDMS. 

Similarly, the low frequency peptide (LQPRANF) can also bind to both non-oxidized and 

slightly oxidized PDMS slabs. The results suggest that the phage displayed peptides can 

bind to PDMS with different surface behaviors. 

 

 

 Recent studies showed that the PDMS surface did not suffer from considerable 

chemical modifications with a mild plasma oxidation, and the chemical groups on the 

PDMS surface remained largely unaltered [27–31]. Thus, the PDMS-binding phage 

displayed peptides can bind to both non-oxidized PDMS and slightly oxidized PDMS. 

While for PDMS that has suffered from a strong plasma oxidation, the chemical groups on 

the PDMS surface were changed significantly, and the fluorescent characterization showed 

that the phage displayed peptides did not bind to the strongly oxidized PDMS. The water 

contact angles of PDMS before and after incubation with peptide-displaying phages were 

also investigated using a goniometer (Sindatek Model 100 SB, Sindatek Instruments Co, 

Ltd, Taipei City, Taiwan). As shown in Fig. 7b, the water contact angle for a plain PDMS 

(without plasma oxidation) was found to be hydrophobic with a contact angle of100̊, while 

that of the PDMS with the peptide-displaying phages showed a hydrophilic contact angle 
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of 17̊. The results suggest that the change in the surface behavior of PDMS is due to the 

strong binding of phage displayed peptides to PDMS. 

 

 

                             

Fig. 7. (a) Fluorescence characterization of phage displayed peptide (LSNNNLR) on 

PDMS (L) and control (M13 phage with no displayed peptide (R)). (b) Goniometer study 

of the PDMS without (L) and with (R) phage displayed peptide (LSNNNLR). (c) 

Bifunctional peptide (LSNNNLRGGGGHPQ) analysis on PDMS (L) and control with no 

bifunctional peptide (R). Scale bar: 50 µm [1]. 
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 We explored a synthetic peptide for binding to the PDMS. A synthetic bifunctional 

peptide (LSNNNLRGGGGHPQ) (Peptide 2.0, Chantilly, VA) was designed and 

synthesized, with a PDMS binding motif LSNNNLR, a linker GGGG, and a streptavidin 

binding motif HPQ.32 Here, we use streptavidin-FITC as the analyte, which is expected to 

be bound to the PDMS surface via the HPQ binding motif. The fluorescent characterization 

of the binding of bifunctional peptides was accomplished by incubating the substrates 

sequentially with (1) the bifunctional peptide (50 mg ml-1 TBS), (2) blocking buffer 0.1 M 

NaHCO3, 1% BSA, and (3) streptavidin-FITC (1 mg ml-1), with TBS buffer washing steps 

in between to remove non-specific binding. The control experiment for the PDMS slab 

without the bifunctional peptide was accomplished by incubating the substrates 

sequentially to (1) blocking buffer 0.1 M NaHCO3, 1% BSA, and (2) streptavidin-FITC (1 

mg ml-1), with TBS buffer washing steps in between. The fluorescent intensity due to 

FITC, is a measure of the bifunctional peptide bound to PDMS. As shown in Fig. 7c left 

image, the PDMS slab incubated with the bifunctional peptides shows much higher 

fluorescent intensity compared to the PDMS slab without the bifunctional peptide (Fig. 7c 

right image), indicating the strong binding of the bifunctional peptide to both PDMS and 

streptavidin- FITC. In this work, we used HPQ to perform the initial study. Further, via 

design of bifunctional peptides for PDMS and other materials, a variety of materials can 

be explored for binding to the PDMS surface to form hybrid materials, such as Au 

nanoparticles on PDMS, carbon nanotubes on PDMS, etc. Further, we investigated the 

localized binding of phage displayed peptide (LSNNNLR) to microstructured PDMS, 

including that of peptide-displaying phages and bifunctional peptides to PDMS 

microfluidic channels and micropatterns, as shown in Fig. 8. Fig. 8a shows the binding of 
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the peptide-displaying phages and the bifunctional peptides to PDMS microfluidic 

channels. 

 

 

                     

Fig. 8. (a) LSNNNLR phage displayed peptide binding to PDMS based microfluidic 

channels and microstructures (b). Scale bar: 50 µm [1]. 

 

 

  The microfluidic channels exhibit strong fluorescent signals with the binding of 

both peptide-displaying phages (Fig. 8a middle) and bifunctional peptides (Fig. 8a right). 

Next, we investigated the binding of phage displayed peptides to PDMS micropatterned 

stamp, as shown in Fig. 8b. The fluorescent characterization shows that the peptide-

displaying phages (Fig. 8b middle image) and bifunctional peptides (Fig. 8b right image) 

bind to the micropatterned PDMS effectively, and both of them show strong patterned 

fluorescent signals. Blank experiments with M13 phages binding to microfluidic channels 
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and micropatterns were investigated for fluorescent characterization, and no fluorescent 

signal was observed. This result clearly indicates that microstructures, including 

microfluidic channels and micropatterns, can map the binding of phage displayed peptides 

to PDMS. 

 

 

 The patterning of phage-displayed peptides with uniaxial wrinkle patterns was 

studied. As shown in Fig. 3a, a PDMS film was stretched with a uniaxial stretching strain 

and subjected to plasma oxidation to generate a hard silica layer on its surface (Fig. 3a, 

step 1), followed by releasing the strain form wrinkle patterns (Fig. 3a, step 2). Bringing 

the wrinkled PDMS surface into contact with a glass substrate coated with PDMS-binding 

phage-displayed peptides resulted in the patterning of phage-displayed peptides on the 

crests of the wrinkles (Fig. 3a, step 3). We investigated the fluorescent characterization of 

the binding of these PDMS-binding phage-displayed peptides to PDMS wrinkles. As 

shown in Fig. 9a, the crests of the wrinkle patterns showed much higher fluorescence 

intensity than the other part of the PDMS, owing to the binding of the phage displayed 

peptides or bifunctional peptide. The enhanced binding is attributed to the height of the 

wrinkles on the surface of the elastomer. This fluorescent differential was much larger than 

control experiments where we incubated PDMS-binding phage-displayed peptides on the 

entire surface of the PDMS wrinkles. In addition, a bifunctional peptide 

(LSNNNLRGGGGHPQ) with a PDMS-binding motif (LSNNNLR) and a streptavidin 

binding motif (HPQ) [16] was designed. Similarly, the bifunctional peptides were printed 

on the crests of the wrinkles. As shown in Fig. 9b, the bifunctional peptides bind to the 
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wrinkle crests effectively and generate clear fluorescent signals. The results suggest that 

phage-displayed peptides and the derived bifunctional peptides can be patterned non-

lithographically via inducing elastomeric instability.  

 

 

                             

Fig. 9. Florescence characterization on wrinkled elastomer using (a) LSNNNLR and 

bifunctional peptide with HPQ (b). Scale bar: 10 µm [14]. 

 

 

 Wrinkle patterns are generated by compressing the hard surface layer that is formed 

on the stretched PDMS film by plasma oxidation. By tuning the stretching strains imposed 

on PDMS wrinkles, the geometry of the patterned phage displayed peptides, which were 

bound to the crests of the wrinkles, can be tuned accordingly. We first studied the tuning 

of the patterned phage-displayed peptides on wrinkles with a 908 stretching strain to the 

direction of wrinkle lines. The amount and direction of the stretching strain are the same 

as those of the initial stretching strain. With the stretching strain, the PDMS wrinkles in 

sinusoidal wave disappeared and the surface became smooth, as shown in the optical image 

(Fig. 10a (i)). The phage displayed peptides were patterned on the wrinkle crests before 
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stretching. With the stretching strain, the phage-displayed peptides remained on the PDMS 

surface, confirmed by fluorescent characterization (Fig. 10a (ii)). The pitches of the 

fluorescent lines, which were bound with phage-displayed peptides, increased by 

approximately 25% compared with that of the initial wrinkles. Similarly, with a 0̊ stretching 

strain to the wrinkle lines, the width of the wrinkles and the pitch of the fluorescent lines 

decreased by approximately 18%, as shown in Fig. 10b.  

 

 

 Further, by using biaxial stretching strains on a stretched PDMS film, followed by 

plasma oxidation and releasing the strain, tuned wrinkles could be generated, and the 

phage-displayed peptide patterns could be tuned in accordance with the patterns of the 

wrinkles, as shown in Fig. 10c. These results indicate that tuning the geometry of the 

PDMS-wrinkled surface with external stretching strains could change the location of the 

phage-displayed peptides, and phage-displayed peptides can be patterned tunable on 

wrinkled elastomers. 

 

 

 Next, we studied the transfer-printing of phage-displayed peptides with wrinkled 

elastomers. The phage-displayed peptides for SiO2were identified, and phage-displayed 

peptide (HKKPSKS) was chosen for further study. The SiO2-binding peptides did not bind 

to PDMS and can bind to SiO2 specifically. 
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Fig. 10. Fluorescent characterization of phage displayed peptide on tunable wrinkled 

elastomer surfaces. Scale bar: 10 µm [14]. 

 

  

 The SiO2-binding peptides were brought into contact with PDMS wrinkles, and 

owing to the height difference of the wrinkles, the SiO2-binding peptides stayed on the 

crests of the PDMS wrinkles. The peptide-immobilized PDMS wrinkles were further 

brought into contact with the SiO2 surface, and the SiO2-binding peptides on the crests of 

the PDMS wrinkles were in contact with and bound to the SiO2 surface. Uniaxial PDMS 

and biaxial PDMS wrinkles were used as stamps for printing SiO2-binding phage-displayed 
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peptides onto SiO2. As shown in Fig. 11, the fluorescence characterization showed that the 

patterning of SiO2-binding phage-displayed peptides on SiO2 was in accordance with the 

structure of the PDMS wrinkles.  

 

 

                         

Fig. 11. Fluorescent characterization of phage displayed peptide printing (a) uniaxial and 

(b) biaxial on SiO2 surface. Scale bar: 10 µm [14]. 

 

  

 The results indicate that by using the elastomeric wrinkle patterns, phage-displayed 

peptides can be transferred from PDMS wrinkles to another substrate and the location of 

phage-displayed peptides are in accordance with the geometry of the PDMS wrinkle 

patterns. 

 

 

 Further, we studied the self-assembly of nanoparticles via specific peptides on 

spatially regulated wrinkled surfaces to develop multi-functional materials, as shown in 

Fig. 5. A bifunctional peptide, with a PDMS-binding motif (LSNNNLR) and a silver 
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synthesis motif (NPSSLFRYLPSD), was designed and synthesized. Incubating the PDMS-

wrinkled surface with bifunctional peptide and silver nitrate resulted in the growth of silver 

nanoparticles on the entire PDMS-wrinkled surface in an uncontrolled way (Fig. 12 (i)), 

which showed an average diameter of 75.0+11.9 nm. Printing bifunctional peptides on the 

wrinkled surface with microcontact printing, followed by incubating with silver nitrate 

solution, enabled the formation of uniformly sized silver nanoparticles on the wrinkled 

surface (Fig. 12(ii)), which showed an average diameter of 64.8+11.8 nm.  

 

 

                          

Fig. 12. SEM characterization of silver nanoparticles grown in-situ using bifunctional 

peptides (i) grown everywhere and (ii) by printing on the PDMS wrinkle surface. Scale 

bar:1 µm [14]. 

 

       

 Contact angle analyses of PDMS surfaces were performed, as shown in Fig. 13. It 

can be seen that the bifunctional peptide-immobilized PDMS-wrinkled surface showed a 

hydrophilic water contact angle of 45̊. After the self-assembly of nanoparticles, the PDMS 
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wrinkles containing both the bound bifunctional peptide and the synthesized nanoparticles 

show a hydrophobic water contact angle of 115̊. This indicates that the presence of 

nanoparticles resulted in the change of hydrophobicity. The results suggest that phage-

displayed peptides on elastomeric wrinkles can be used for the development of new hybrid 

materials. 

 

 

               

Fig. 13. Goniometer analysis of before (i) and (ii) after bifunctional silver peptide 

incubation on the wrinkled elastomer surface [14]. 

 

 

 

1.5. Conclusion 

 

 

 In summary, we have demonstrated for the first time the recognition of PDMS with 

specific peptides identified from a combinatorial phage display library. We have also 

demonstrated non-lithographic patterning of phage-displayed peptides via inducing 
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elastomeric instability, which does not involve standard photolithography or e-beam 

lithography process. The method can result in controlled and tunable patterning of phage-

displayed peptides on specific locations of wrinkled elastomer and other substrates (e.g. 

SiO2), and the development of hybrid materials via peptide enabled self-assembly 

nanomaterials on wrinkles. The approach we describe here may open new avenues for a 

variety of PDMS-based fundamental studies and practical applications, including 

biological analytical devices, self-assembly of PDMS-based hybrid materials, surface and 

interface, cell biology, etc. Although these results are promising, further studies are needed 

to help elucidate the mechanism of the peptides in recognizing PDMS, the properties of 

the peptide functionalized PDMS,  effect of selectivity and strength of phage-displayed 

peptides on non-lithographic patterning and self-assembly. 
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CHAPTER 2 

 

 

RECOGNITION OF EPOXY USING PHAGE DISPLAYED PEPTIDES [26] 

 

 

 

2.1. Abstract 

 

 

 The development of a general approach for non-destructive chemical and biological 

functionalization of epoxy could expand opportunities for both fundamental studies and 

creating various device platforms. Epoxy shows unique electrical, mechanical, chemical 

and biological compatibility and has been widely used for fabricating a variety of devices. 

Phage display has emerged as a powerful method for selecting peptides that possess 

enhanced selectivity and binding affinity toward a variety of targets. In this letter, we 

demonstrate for the first time a powerful yet benign approach for identifying binding motifs 

to epoxy via comprehensively screened phage displayed peptides. Our results show that 

the epoxy can be selectively recognized with peptide-displaying phages. Further, along 

with the development of epoxy-based microstructures; recognition of the epoxy with phage 

displayed peptides can be specifically localized in these microstructures. We anticipate that 
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these results could open up exciting opportunities in the use of peptide-recognized epoxy 

in fundamental biochemical recognition studies, as well as in applications ranging from 

analytical devices, hybrid materials, surface and interface, to cell biology. 

 

 

 

2.2. Introduction:  

 

 

 Epoxies are advanced thermosetting polymers, which exhibit excellent electrical 

[37], mechanical [38], and chemical [39] properties for a wide variety of applications as 

adhesives [40], protective coatings [41], electrical encapsulates [42] , pharmaceuticals [39, 

43], etc. Recently, microstructured epoxies have attracted great interest in developing 

multi-analyte nanoarray sensors[44] and studying surface properties for designing 

biomimetic analogs [45]. To date, various surface functionalization methods for epoxy 

have been studied, such as silanization [46], and anchoring colloidal iron oxide 

nanocrystals [47]. This brings up the need for a benign approach for identifying binding 

motifs to epoxy via comprehensively screened phage displayed peptides along with the 

development of epoxy-based microstructures and recognition of the epoxy with phage 

displayed peptides can be specifically localized in these microstructures. 
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2.3. Experimental  

 

 

 Preparation of epoxy resin and epoxy based micropatterns: Epoxy (Epoxies, 

Cranston, RI)  consisting of urethane isocyanate and urethane polyol, mixed with a weight 

ratio of 1:1.6 and cured at 120 °C for 30 min, was used for the biopanning process. Then 

the epoxy solution was diluted with acetone with a weight ratio of 1:5 and deposited on a 

glass slide (18 mm x 18 mm) with a spin coating at 7500 rpm for 2 min, followed by curing. 

The epoxy-coated glass was covered with stencil masks (TEM grids) and subjected to 

plasma etching at 100 W, 15 min to generate micropatterned epoxy [26]. 

  

 

 Fluorescent characterization: Fluorescent characterization was accomplished by 

incubating the substrates sequentially with (1) the phage displayed peptides or M13 phages, 

(2) blocking buffer 0.1 M NaHCO3, 1% BSA, (3) anti-M13 phage coat protein monoclonal 

antibody, biotin conjugate E1 (for pIII coat protein of the M13 phage) (1 mg ml−1), and (4) 

avidin–FITC (2 unit ml−1), with TBS buffer washing steps in between to remove non-

specific binding. The color intensity of the surface was observed through a fluorescence 

microscope. 

   

 

 Water contact angle measurement: An epoxy coated glass slide, and an epoxy 

coated glass slide bounded with phage displayed peptides, were each placed on the leveled 



29 

 

stage of the Goniometer to obtain the water contact angles. The contact angles were 

determined by fitting a Young–Laplace curve around the drop (Goniometer Sindatek 

Model 100 SB, Sindatek Instruments Co, Ltd, Taipei City, Taiwan). 

 

 

 

2.4. Results and Discussion 

 

 

 After performing the combinatorial screening from a phage display library, specific 

peptides binding to epoxy were identified, as shown in Fig. 14a. Fig. 14b shows the peptide 

sequences screened from three rounds of biopanning. TLHPAAD appears as a dominant 

peptide from the biopanning process, with a frequency of 7/20. Interestingly, the results 

show that phage displayed peptide sequences exhibit high hydrophobicity, with low ratios 

of hydrophilic to total number of residues. A comparative analysis of the observed 

frequency of amino acids binding to epoxy and the frequency in NEB was also recorded in 

Fig.14c. In the phage display system, the peptides interact with the target surface either by 

hydrophobic or electrostatic interaction. Hydrophobic interactions occur at very high ionic 

concentrations while electrostatic interactions occur at low ionic strengths. Since our 

biopanning experiment was conducted at a moderate ionic strength (0.05 M Tris–HCl, pH 

7.5, 0.15 M NaCl), a combined electrostatic and hydrophobic interactions contribute to the 

binding of phage displayed peptides to epoxy.  

 



30 

 

   

 

Fig. 14. (a) Schematic of the phage displayed analysis on epoxy surface. (b) Table showing 

the phage displayed peptides specific to epoxy surface, (c) plot analysis of the amino acids 

in the phage displayed peptide in comparison to the NEB library observed frequency [26].  

 

 

 In addition, the location of amino acids (charged, hydrophobic and polar) in the 

peptide sequence also plays an important role in the binding kinetics. The amino acids with 

hydrophobic groups (e.g. alanine and leucine) and amino acids with hydroxyl groups (e.g. 

serine, threonine and tyrosine) contribute to hydrophobic/hydrogen bonding interactions. 
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The presence of charged amino acids (e.g. aspartic acid, histidine, arginine and glutamic 

acid) contributes to the ionic interactions. 

 

 

 The dominant phage displayed peptide was also isolated as a single colony and 

selected for further investigation. First, the fluorescent characterization for the binding of 

TLHPAAD to a flat epoxy surface was investigated, as shown in Fig. 15a. Significantly, 

the surface with peptide-displaying phages shows much higher fluorescent intensity 

relative to the one incubated with M13 phages (without phage displayed peptides on the 

coat). The absence of phage displayed peptide on the coat of the M13 phage can be 

correlated to the absence of fluorescence on the surface of the epoxy. Thus, the phage 

displayed peptide is essential for binding to the epoxy surface. 

 

 

 The water contact angles of the epoxy resin before and after incubation with 

peptide-displaying phages were also investigated using a Goniometer. As shown in Fig. 

15b, an epoxy surface has a contact angle of 75°, while an epoxy surface after incubation 

with the peptide-displaying phages shows a contact angle of 30°. The results suggest that 

the change of the surface behavior of the epoxy is due to the strong binding of phage 

displayed peptides to epoxy. Further, we investigated the localized binding of phage 

displayed peptide (TLHPAAD) to epoxy microstructures.  
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 The epoxy microstructures on glass were generated by using stencil masks to cover 

epoxy, followed by plasma oxidation. The phage displayed peptides were then allowed to 

bind to these epoxy microstructures, and the bindings were characterized with fluorescent 

characterization, as shown in Fig. 16. Significantly, stronger fluorescent signals were 

observed localized on the epoxy patterns, relative to the glass substrate. This result clearly 

indicates that the microstructured epoxy in parts enhanced binding affinity toward phage 

displayed peptides over the host glass substrate. 

 

 

           

Fig.15. (a) Fluorescent characterization of the phage displayed peptide TLHPAAD on the 

plain epoxy surface and control with no phage displayed peptide, (b) Goniometer analysis 

of the phage displayed peptide on epoxy surface. Scale bar: 20 µm [26]. 
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Fig. 16. Fluorescent characterization of TLHPAAD phage displayed peptide on epoxy 

microstructured surfaces (a) optical images and (b) fluorescent images. Scale bar: 50 µm 

[26].  

 

 

 

2.5. Conclusion 

 

 

 In this work, we have demonstrated for the first time the recognition of epoxy with 

peptides identified from a biocombinatorial phage display screening. Further, we 

demonstrated the selective recognition of epoxy microstructures with the phage-displayed 
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peptides. The results may open new avenues in fundamental studies and practical 

applications, including biological analytical devices, self-assembly of epoxy based hybrid 

materials, surface and interface, cell biology, etc. 
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CHAPTER 3 

 

 

RECOGNITION OF (POLY) ETHYLENETETRAPHTHALATE USING PHAGE 

-DISPLAYED PEPTIDES [48] 

 

 

 

3.1. Abstract 

  

 

 A powerful yet benign approach for identification of binding motifs to (poly) 

ethylene tetraphthalate PET via comprehensively screened phage displayed peptides is 

demonstrated for the first time. These results show that PET can be selectively recognized 

with peptide-displaying phages and bifunctional peptides. Further, along with the 

development of PET-based micropatterns using photlithography, recognition of PET with 

phage displayed peptides can be specifically localized in these microstructures. In addition, 

bifunctional peptides were designed to induce the self-assembly of hybrid materials on the 

PET surface. These results are expected to open prospects in the fabrication of sensors, 

analytical devices and immunoassay studies. 

 

 

 



36 

 

3.2. Introduction  

 

 

 PET (Polyethylene Terephthalate) is a thermoplastic, polyester resin that is known 

for mechanical flexibility and sturdiness. It is being employed as a model substrate in 

sensors [49], flexible batteries [50, 51], thin film transistors [52], biological scaffolds [53], 

therapeutic protein release platforms, mechanical and optical applications [54]. Though 

PET is as such an inert polymer, surface functionalization [25, 55] or the assembling of 

composites [49] onto its surface has increased its reactivity and detection abilities. In the 

recent years, PET is being extensively used in the design of transparent conductive films 

by the immobilization of conducting fillers like carbon nanotubes onto surface modified 

PET films [49, 56]. The films are not only cost effective but also find use in the 

development of transparent electrodes [49], organic light-emitting diodes [57], liquid 

crystal displays [54, 58] and photovoltaic cells [59]. It is thus expected that recognising the 

phage displayed peptide specific to PET could create new avenues in the fabrication of 

novel devices and hybrid materials for various applications. 

 

 

 

3.3. Experimental 

 

     

 Peptide recognition via Phage display: An aliquot of phage display library was 



37 

 

incubated with a 1cm/1cm PET film in Tris buffered saline containing 0.1-0.5% Tween-20 

(TBST) for 1 h at room temperature. The PET film was then washed several times with 

TBST buffer. The phages were eluted from the film by addition of glycine-HCl (pH 2.2) 

for 15 min, neutralized with Tris-HCl, pH 9.1, amplified, and subjected to additional 

panning rounds. Eluted phages were then amplified in E. coli, and the panning was repeated 

for up to three rounds, under increasingly stringent conditions, to obtain phage clones 

expressing peptides having the highest binding affinities to the PET samples. After the final 

round of panning, DNA sequence analysis of the isolated phage clones yielded heptameric 

PET-binding peptides. 

   

 

 Fluorescent characterization of PET: A 1cm x1cm PET film was exposed to 10 µl 

of PET binding phage displayed peptides in TBS buffer for 0.5 h in a 35mm petri dish, 

followed by washing with TBS buffer, and incubated with 0.1 M NaHCO3, 1% BSA, at 

pH 8.6 for 0.5 h in order to reduce the non-specific adsorptions of antibody and FITC on 

the substrate. Then, the surface was exposed to anti-M13 phage antibody (1 µg in 1.5 ml 

buffer) for 0.5 h with gently shaking, and then rinsed with TBS to remove the unconjugated 

antibody. Finally, avidin–FITC label (2.0 unit ml-1) was applied to the biotin conjugated 

phage through a biotin–avidin interaction, and the surface was exposed to the FITC label 

for 0.5 h, and then rinsed several times with TBS to remove the unconjugated avidin–FITC 

label. The color intensity of the surface was observed by a fluorescence microscope 

(Microscopes, Inc., St. Louis, MO). A control experiment was also conducted with M13 

phage without phage displayed peptides, following the above procedure. 
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 Photolithography on (Poly) ethyleneterephthalate:  A 3x5 cm PET film was fixed 

on glass to conduct photolithography using AZ 5214. The films were coated with HMDS 

at 4000 rpm and 45 s, followed by AZ 5214 at 2000 rpm and 30 s. The films were soft 

baked at 105 °C for 1 min and covered with a photomask. Exposure was done at 6 s using 

a UV source of 20 mJ/Wcm-2. The films were finally developed for 1 min 30 s for further 

fluorescent characterization. 

 

 

 Fluorescent characterization on patterned (poly) ethylenetetraphthalate: A 

patterned PET film was exposed to 10 µl of PET binding phage displayed peptides in TBS 

buffer for 0.5 h in a 35mm petri dish, followed by washing with TBS buffer, and incubated 

with 0.1 M NaHCO3, 1% BSA, at pH 8.6 for 0.5 h in order to reduce the non-specific 

adsorptions of antibody and FITC on the substrate. Then, the surface was exposed to anti-

M13 phage antibody (1 µg in 1.5 ml buffer) for 0.5 h with gently shaking, and then rinsed 

with TBS to remove the unconjugated antibody. Finally, avidin–FITC label (2.0 unit ml-1) 

was applied to the biotin conjugated phage through a biotin–avidin interaction, and the 

surface was exposed to the FITC label for 0.5 h, and then rinsed several times with TBS to 

remove the unconjugated avidin–FITC label. The color intensity of the surface was 

observed by a fluorescence microscope (Microscopes, Inc., St. Louis, MO).  

 

 

 Bi-functional peptide mediated silver nanoparticle synthesis on PET surface: A 1 

cm x 1 cm PET film (both patterned and non-patterned) was incubated with 10 µl of 50 
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mM bifuctional peptide (PET binding motif) GGGGNPSSLFRYLPSD followed by 1.5 ml 

of 30mM Silver nitrate solution in PBS buffer of pH 6 and 7 for 3 days in a 35 mm petri 

dish. This was followed by washing with PBS pH 7.5 and distilled water and was blow 

dried. This enabled the enabled the formation of uniformly-sized silver nanoparticles on 

plain PET film. The silver nanoparticles were then characterized by an optical microscope 

and Scanning electron microscope. 

 

 

 

3.4. Results and Discussion 

 

  

 Analysis of the phage-displayed peptides that bind PET: A certain volume of phage 

display library (New England BioLabs, Ph.D.7) of random 7-mer peptides was incubated 

with the PET surface and then eluted from this substrate to collect the bound phage 

molecules. These random 7-mer peptides have been appropriately designed by the 

manufacturer to express in the specific pIII region of the filamentous phage molecule. An 

aliquot of the diamond specific phage molecules were then amplified in E. coli (ER 2738) 

followed by repeated centrifugation and PEG mediated (Polyethylene glycol) precipitation. 

Finally, the refined libraries were prepared for DNA sequencing, which allowed for 

identification of the diamond binding peptides. The phage displayed peptide is designed to 

have an N-terminus being free and a C-terminus fused to the phage, which does not have a 
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free negatively charged carboxylate during biopanning. Fig. 17 shows the peptide 

sequences obtained from three rounds of biopanning.  

                                               

 

Fig. 17. Table of phage displayed peptides specific to (poly) ethylenetetraphthalate [48]. 

 

 

 Two of the peptides DECYNN and NALVQIS were found to bind to the PET 

surface more frequently when compared to the other peptides which bind only once. As 

shown in Fig. 17, the natures of the peptides (with C-terminus amidated to avoid the free 

charge) were analyzed, including PI, net charge, average hydrophilicty, and ratio of 

hydrophilic residues to total number of residues. The PET-binding peptides obtained show 

a strong inclination towards hydrophobicity which is evident from the low average 
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hydrophilicity ratio of all the peptides. The isoelectric points and their corresponding net 

charge at pH 7.0 have also been analyzed in Fig. 17 .Majority of the peptide sequences 

carry no net charge / net negative and low net positive charge at neutral pH and also exhibit 

high values of pI. 

 

 

 Fluorescent characterization of PET- binding peptides: A 1cm x1cm PET film was 

exposed to 10 µl of PET binding phage displayed peptides (DEYCCNN / NALVQIS) were 

chosen for investigation. First, fluorescent characterization for the binding of these phage 

molecules to PET surfaces was investigated. This was accomplished by incubating the 

substrates sequentially to (1) amplified single-colony phage displayed peptide, (2) blocking 

buffer, (3) anti M13 phage coat protein- biotin conjugated monoclonal antibody, and (4) 

avidin-FITC, with buffer washing steps in between to remove non-specific binding. The 

intensity of FITC on the surface, which is a measure of the phage displayed peptides bound 

to PET, was observed by a fluorescence microscope as shown in Fig. 18. In addition to 

this, fluorescence characterization was also conducted using M13 phage alone without any 

phage displayed peptides, as a control, on PET surface as shown in Fig. 18.The absence of 

phage displayed peptide in the M13 phage can be correlated to the absence of fluorescence 

on the surface of both plain and plasma oxidized PET when compared to the ones obtained 

with phage displayed peptides on the PET surfaces. M13 phage without displayed peptides 

is incompetent to produce fluorescence as the displayed peptides are specific to PET. This 

concludes that the phage displayed peptides play an important role in determining the 

existence of fluorescence on PET. 
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Fig. 18. Fluorescent characterization of PET binding phage displayed peptides 

(DEYCNN, NALVQIS, AIVGTPF and control from L to R). Scale bar: 10 µm [48]. 

 

 

 

 Fluorescent characterization of PET binding peptides on patterned surface: A 3x5 

cm PET film was exposed to 10 µl of PET binding phage displayed peptides (DEYCCNN) 

were chosen for investigation. First, fluorescent characterization for the binding of these 

phage molecules to PET surfaces was investigated. This was accomplished by incubating 

the substrates sequentially to (1) amplified single-colony phage displayed peptide, (2) 

blocking buffer, (3) anti M13 phage coat protein- biotin conjugated monoclonal antibody, 
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and (4) avidin-FITC, with buffer washing steps in between to remove non-specific binding. 

The intensity of FITC on the surface, which is a measure of the phage displayed peptides 

bound to PET, was observed by a fluorescence microscope as shown in Fig. 19.  

 

 

 

Fig. 19. Fluorescent characterization of PET specific phage-displayed peptide on patterned 

surface. Scale bar: 20 µm [48]. 

 

 

 Bifunctional peptide enabled silver nanoparticle synthesis on PET surface:  A 1cm 

x 1cm PET film (both patterned and non-patterned) was incubated with bifuctional peptide 

(PET binding motif) GGGGNPSSLFRYLPSD followed by silver nitrate solution in PBS 

buffer.         
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Fig. 20. SEM-EDX characterization of silver nanoparticles synthesized in-situ using 

bifunctional silver-PET peptide [48]. 

 

 

 This enabled the enabled the formation of uniformly-sized silver nanoparticles on 

plain PET film.  Fig. 20a shows the SEM characterization of growth of silver nanoparticles 

on the PET surface followed by the EDX measurement which shows an Ag percentage of 

over 70 while in the control (Fig. 20b) shows no Ag measurement at all. This proves that 
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the bifunctional peptide is specific to PET and enables the growth of silver particles on 

only those surfaces incubated with the peptide.  

 

 

 

3.5. Conclusion  

 

 

 In summary, we have demonstrated for the first time the recognition of (poly) 

ethylenetetraphthalate with specific peptides identified from a combinatorial phage display 

library. The approach we describe here may open new avenues for a variety of PET-based 

fundamental studies and practical applications, including biological analytical devices, 

self-assembly of other PET-based hybrid materials, surface and interface, cell biology, etc. 

Although these results are promising, further studies are needed to help elucidate the 

mechanism of the peptides in recognizing PET, and the properties of the peptide 

functionalized PET. 
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CHAPTER 4 

 

 

CHARACTERIZATION OF PEPTIDE NANOTUBES USING PHAGE 

DISPLAYED PEPTIDES [60] 

 

 

 

4.1. Abstract  

 

 

 Bionanostructures built over precisely controlled molecular self-assembly on 

macrosurfaces have been finding wide applications in the area of bionanotechnology.  

Diphenylalanine aromatic peptide nanotubes are self-assembled nanostructures which have 

been gaining importance owing to their biocompatibility, mechanical rigidity, and inherent 

property of bio-recognition with unique physical and chemical stability. This study 

elucidates the characterization of peptide nanotubes using phage displayed peptides. 

Further, the most dominant peptide was chosen to build bifunctional peptides that can 

capture bacterial cells or synthesize silver nanoparticles on localized peptide nanotube 

surfaces.  These chemically functionalized surfaces can be employed in the designing of 

electrodes, energy storage and several other applications.  
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4.2. Introduction: 

 

 

 Peptide nanotubes are desirable organic building blocks for various 

bionanotechnological applications owing to their chemical flexibility [61, 62], 

biocompatibility [63], biological recognition abilities [64], thermal [65], and mechanical 

stability [66] that enable them to hierarchically assemble themselves into useful devices 

[67].  Self -assembly at the molecular level is the central basis of bottom up fabrication of 

bulk devices with well-defined nanosturutures [67]. This structural organization of these 

cyclic peptides into nanotubes is mediated by the non-covalent interactions between the 

amino acid residues [68]. These devices can find use as biosensors [69, 70], energy storage 

devices [71], in tissue engineering [72], environmental monitoring [73], and various other 

applications [74]. 

  

 

 Peptides are versatile, combinatorial amino acid sequences that are widely being 

used as recognition motifs. Being chemically diverse (hydropathy, acidity etc.), they can 

be modified accordingly to bind to specific target molecules on a defined substrate [75]. 

Peptides can be synthetically tailored to harbor certain molecules to form conjugate 

peptides that aid in binding to the specific target and also help in the formation of intricate 

hierarchal self- assemblies of different target molecules [76]. 
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  The fabrication of diphenylalanine based peptide nanotube composites using phage 

displayed peptides that act as nanoscaffolds for bottom-up hierarichal assembly is 

highlighted. The biocompatibility of the dipeptides combined with phage display peptides 

that mediate the self-assembly of silver nanoparticles or bacterial cells serve as effective 

analytical devices. 

 

 

 

4.3. Experimental 

 

  

 Preparation of Peptide nanotubes and phage display:  The peptide nanotubes H-

Phe-Phe-OH was purchased from Bachem (Torrance, CA) and NH2 -Phe(D)- Phe (L)- 

COOH from Peptide 2.0 (Chantilly, VA) and 1,1,1,3,3,3 hexaflouro 2-proponol (Matrix 

Scientific, Columbia, SC). The peptide nanotubes were grown by dissolving the 

lyophilized powder in 1, 1, 1, 3, 3, 3 hexaflouro-2-proponol to a final concentration of 

100mg/ml and left to grow for 1 hr. A volume of 10 µl of phage display library (New 

England BioLabs, Ph.D. 7, 1013 pfu ml-1) in 1.5 ml Tris.HCl (50 mM, pH 7.5) and NaCl 

(150 mM) buffer solution (TBS) with 0.1%tween-20, was incubated on the surface of 

PDMS for 1 h in 35 mm petri dish, then eluted from the substrate with 1.5 ml glycine-HCl 

+1%BSA (0.2 M, pH 2.2) and neutralized with 1 M Tris-HCl buffer at pH 9.1. The eluted 

phages were incubated with a SiO2/Si substrate for 1 h, to conduct negative screening of 

the phages which bind only to this substrate, followed by amplification in 20 ml of a 1:100 
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dilution of log phase Escherichia coli (ER 2738) grown in sterile LB media at 37 °C for 

4.5 h Phage particles were precipitated from the supernatant through the addition of 1/5 of 

the volume 20% (w/v) PEG-8000, 2.5 M NaCl.  The phage pellet after centrifugation was 

resuspended in 1 ml TBS. This purification and precipitation processes were repeated and 

finally the phage molecules were suspended in 0.2 ml TBS. The entire “biopanning” 

process was repeated a total of three times, using TBST buffer with tween-20 ranging from 

0.1%, 0.3% to 0.5% in every rotation of selection. After the third round of panning, the 

refined libraries were prepared for DNA sequencing to identify the peptides specific to 

peptide nanotubes. Following the third round of panning, bacteria was mixed with dilutions 

of the eluted phage Sequencing of the DNA samples was performed in Eton Bioscience 

(San Francisco, CA).  

 

 

 Fluorescence characterization of the peptide nanotubes: A SiO2 wafer containing 

the grown peptide nanotube solution was exposed to 10 µl of Peptide nanotube binding 

phage displayed peptides in TBS buffer for 0.5 h in a 35 mm petri dish, followed by 

washing with TBS buffer, and incubated with 0.1 M NaHCO3, 1% BSA, at pH 8.6 for 0.5 

h in order to reduce the non-specific adsorptions of antibody and FITC on the substrate. 

Then, the surface was exposed to anti-M13 phage antibody (1 µg in 1.5 ml buffer) for 0.5 

h with gently shaking, and then rinsed with TBS to remove the unconjugated antibody. 

Finally, avidin–FITC label (2.0 unit ml-1) was applied to the biotin conjugated phage 

through a biotin–avidin interaction, and the surface was exposed to the FITC label for 0.5 

h, and then rinsed several times with TBS to remove the unconjugated avidin–FITC label. 
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The color intensity of the surface was observed by a fluorescence microscope 

(Microscopes, Inc., St. Louis, MO), followed by characterizations. 

 

 

  AFM characterization of the phage-displayed on the peptide nanotube surface: 

Peptide nanotubes were grown in HFP at 2 mg/ml for 30 min in shaking condition. A SiO2 

wafer containing the grown peptide nanotube solution was exposed to 20 µl of peptide 

nanotube binding phage displayed peptides in TBS buffer for 1 h in a 35mm petri dish 

followed by washing with TBS buffer and distilled water. This was then used to 

characterize the phage on peptide nanotube using Atomic force Spectroscopy. 

 

 

 Bi-functional peptide mediated bacterial adhesion and fluorescence on peptide 

nanotube surface:   Escherichia coli O157: H7 Kwik-sticks and Anti- E.coli O157: H7 

biotin antibody was purchased from Fisher Scientific (Pittsburg, PA). E.coliO157: H7 

overnight culture was centrifuged and diluted in 2 ml of 50 mM PBS buffer of pH 7.5. A 

SiO2 wafer was bacteria characterized with 10 µl of the E.coliO157: H7 overnight culture 

for 30 min in 1.5 ml of 50 mM of PBS pH 7.5, followed by 30 µl of the grown peptide 

nanotube solution was incubated with 10 µl of 50 mM bifuctional peptide (PNT binding 

motif) GGGGGIGKFLHSAGKFGKAFVGEIMKS, then 1.5 ml of 0.1% Blocking buffer, 

1 µl of Anti- E.coliO157: H7 antibody diluted in 1.5 ml of 50 mM PBS buffer pH 7.5 and 

finally incubated with 10 µl FITC-streptavidin diluted in 1.5 ml of 50 mM PBS buffer pH 

7.5. The color intensity of the surface was observed by a fluorescence microscope. 
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 Bi-functional peptide mediated silver nanoparticle synthesis on peptide nanotube 

surface: A SiO2 wafer containing 30 µl of the grown peptide nanotube solution was 

incubated with 10 µl of 50 mM bifuctional peptide (PNT binding motif) 

GGGGNPSSLFRYLPSD followed by 1.5 ml of 30 mM Silver nitrate solution in PBS 

buffer of pH 6 and 7 for 3 days in a 35 mm petri dish. This was followed by washing with 

PBS pH 7.5 and distilled water and was blow dried. The silver nanoparticles were then 

characterized by an optical microscope and Scanning electron microscope [14]. 

 

 

 

4.4. Results and Discussion 

 

 

 Phage-displayed analysis of peptide nanotube surface: Peptide nanotubes were 

grown in the HFP solution at 2mg/ml for 1 h. The peptides specific to binding to peptide 

nanotubes were sequenced and analyzed. Fig. 21 shows the peptide sequences obtained 

from three rounds of biopanning. As shown in Fig. 21, the natures of the peptides (with C-

terminus amidated to avoid the free charge) were analyzed, including PI, net charge and 

average hydrophilicty. The Peptide nanotube-binding peptides obtained show a strong 

inclination towards hydrophobicity which is evident from the average hydrophilicity ratio 

of the two peptides. The isoelectric points and their corresponding net charge at pH 7.0 

have also been analyzed in Table 1. All the peptide sequences carry a net positive charge 

at neutral pH and also exhibit high values of pI. From the table, it is observed that Leucine 
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and Asparagine are the most commonly binding amino acids with RHLLLNQ being the 

most dominant peptide. 

       

 

    

     Fig. 21. Table of phage displayed peptides specific to peptide nanotubes [60]. 

 

 

 The dominant peptide (RHLLLNQ) was also isolated as a single colony and 

selected for fluorescent investigation. This was accomplished by incubating the peptide 

nanotube substrate sequentially to (1) amplified single-colony phage displayed peptide, (2) 

blocking buffer, (3) anti M13 phage coat protein- biotin conjugated monoclonal antibody, 

and (4) avidin-FITC, with buffer washing steps in between to remove non-specific binding. 

The intensity of FITC on the surface, which is a measure of the phage displayed peptides 

bound to peptide nanotubes, was observed by a fluorescence microscope as shown in Fig. 
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22. In addition to this, fluorescence characterization was also conducted using M13 phage 

library and without any phage displayed peptide as a control. 

 

 

 The absence of phage displayed peptide in the M13 phage can be correlated to the 

absence of fluorescence on the peptide nanotube surface when compared to the ones 

obtained with phage displayed peptides on the PNT surfaces. M13 phage is incompetent to 

produce fluorescence as the displayed peptides are specific to PNT surfaces. This 

concludes that the phage displayed peptides play an important role in determining the 

existence of fluorescence on PNT. 

 

                    

Fig. 22. Flourescent characterization of PNT surface (L) and control with no phage 

displayed peptide (R). Scale bar : 20 µm [60]. 

 

 

 AFM characterization of the phage-displayed on the peptide nanotube surface: 

Peptide nanotubes were grown in the HFP solution at 2 mg/ml for 30 min. A SiO2 wafer 
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containing the grown peptide nanotube solution was visualized using atomic force 

microscope. The surface of the overlapping peptide nanotubes of 2 micron width were 

visualized for the phage visualization. The phage was found to be 800 nm long and 10 nm 

high. The surface of the peptide nanotubes showed several phage particles on its surface. 

The nearby silicon dioxide did not show any phage particles which showed that the binding 

of the phage displayed peptide was specific to the peptide nanotube surface as shown in 

Fig. 23.  

 

 

               

Fig. 23. AFM characterization of the phage displayed peptide on peptide nanotube surface . 

(a) peptide nanotubes on silicon dioxide, (b) phage on peptide nanotube surface, (c) silicon 

dioxide surface with no phage control [60].   
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 Bi-functional peptide mediated bacterial adhesion and fluorescence on peptide 

nanotube surface: E.coliO157: H7 was incubated with the bifunctional peptide and peptide 

nanotubes on SiO2 surface. This was then visualized using an optical microscope, it was 

found that the bacteria was around 500nm in width and 700nm in length. A fluorescence 

characterization was also conducted to confirm the absence of the bacteria on SiO2 surface. 

It was seen that only the peptide nanotubes were fluorescent and not the surrounding SiO2. 

Another fluorescent characterization was conducted without the bifunctional peptide which 

showed no fluorescence as there was no adherence of bacteria on the peptide nanotubes. A 

second control was conducted using another type of bacteria Lactobacteria lactis 

(purchased from Fisher Scientific Pittsburgh, PA) which also showed the absence of 

fluorescence, indicating no binding of the bifunctional peptide with the round shaped 

bacteria. The above results highlight the importance of the bifunctional peptide’s role in 

obtaining the bacteria to bind on the peptide nanotube surface. 

 

  

 Bi-functional peptide mediated silver nanoparticle synthesis on Peptide Nanotube 

surface: An in situ silver nanoparticle synthesis was conducted in the presence of the 

bifunctional peptide (RNLLLHQ) and 30m M silver nitrate solution. Since the nanotubes 

get very easily washed off the surface after three days of incubation in the silver nitrate 

solution, the SiO2 surface was coated with a layer of Su8 and cured for 6 min. When the 

coated Su8 layer is still sticky, the peptide nanotubes solution was dropped onto the SiO2 

surface and heated at 200 ̊C for 10 min.  
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Fig. 24. Flourescent characterization of the bifunctional peptide mediated bacterial 

adhesion on peptide nanotube surface. (a) optical (L) and flourescent image (R) and (b) 

controls (L) no bifunctional peptide and L. lactis on peptide nanotube surface (R). Scale 

bar :  20 µm [60]. 

 

 

                   

Fig. 25. Silver bifunctional peptide mediated growth of silver nanoparticles on peptide 

nanotube surface. Scale bar: 500nm [60]. 
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 The SiO2 with the peptide nanotubes was then incubated with the bifunctional 

peptide for 30 min in a shaker at 70 rpm and then later transferred to a petri dish containing 

2 ml silver nitrate solution and left in a dark room on a shaker for 3 days. These were then 

visualized under an optical microscope and scanning electron microscope as shown in Fig. 

25. The silver nanoparticles synthesized had an average diameter of 150.0±16.8 nm, which 

was determined using Jimage. 

 

 

 

4.5. Conclusion 

 

 

 In summary, we have demonstrated for the first time the recognition of peptide 

nanotubes with specific peptides identified from a combinatorial phage display library. The 

approach we describe here may open new avenues for a variety of PNT-based fundamental 

studies and practical applications, including biological analytical devices, self-assembly of 

other PNT-based hybrid materials, surface and interface, cell biology, etc. Although these 

results are promising, further studies are needed to help elucidate the mechanism of the 

peptides in recognizing PNT, and the properties of the peptide functionalized PNT. 
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CHAPTER 5 

 

 

1-D, 2-D AND 3-D NANOSTRUCTURES IN SILK FIBROIN  VIA 

TRANSLATION OF INDUCED ELASTOMERIC INSTABILITY [77] 

 

 

 

5.1. Abstract 

 

 

 The development of a facile approach for fabricating a library of precisely 

positioned nanostructures offers exciting opportunities in fundamental research and 

practical applications. The current top-down nanofabrication methods have been restricted 

in accessibility in standard labs due to their due to the high cost and complexity. Likewise, 

bottom-up synthesis of nanowires has been limited in methods for positioning these 

structures at precisely defined locations. Nanostructured silk fibroin is a promising 

candidate for a variety of applications that merge the fields of biomedical optics and 

biomaterials due to silk fibroin being one of the strongest, transparent and biocompatible 

materials.  A novel fabrication method which requires only a simple etching tool to 

generate a library of 1-D, 2-D, and 3-D silk fibroin nanostructures in a large area via 

inducing elastomeric instability, pattern transfer and controlled etching is reported in this 

study. The patterning method could also be used for fabricating a wide range of 
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nanostructures in other materials such as semiconductors, metals, and biomaterials. It is 

anticipated that the large scale nanopatterning with hierarchical assembly of functional 

materials could open exciting opportunities in fundamental biochemical recognition 

studies, as well as applications ranging from sensors to energy storage devices. 

 

 

 

5.2. Introduction 

 

 

 Nanostructures exhibit unique and extraordinary surface [78-80], electronic [81, 

82], photonic [83], mechanical [82], and thermal [84, 85] properties compared to bulk 

surface properties. Many of these applications require nanostructures to be patterned over 

large areas at precisely defined locations. Thus, to generate nanostructures for practical 

applications, it is highly desirable to develop a fabrication method that is high-throughput, 

low-cost, easy-to-perform, and capable of generating highly ordered nanostructures on a 

large-scale area. Recently, a variety of conventional and unconventional nanofabrication 

methods have been developed for generating nanostructures at precisely defined locations, 

including e-beam lithography [86], superlattice nanowire pattern transfer [87], 

lithographically patterned nanowire electrodeposition [88], photolithography and etching 

for nanoscale lithography, nanoskiving, and nanoindentation lithography, and the 

nanostructures generated by these methods can also function as molds/masters for further 
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transferring the nanostructures into other materials or substrates. However, these methods 

require state-of-the-art facilities, high-cost, time-consuming experiments. 

  

 

 Recently, spontaneous formations of surface pattern [32, 89-91] have attracted 

great attention and have been investigated under a variety of methodologies. Typically, 

poly(dimethyl siloxane) (PDMS) is thermally [92] or mechanically stretched, followed by 

exposure to oxygen plasma [92, 93], argon plasma [89], flame, or UV ozone [94], to form 

a thin, hard layer on the surface. The typical resulting wrinkle patterns resulting after a 

release in strain are easy to fabricate and range from ~50 nm up to several micrometers.  

  

 

 Silks are natural protein polymers that represent a unique family of biopolymers 

due to their novel structural and biological properties. They offer unlimited opportunities 

for functionalization, processing and biological integration [95, 96]. Silk fibroin from 

Bombyx mori silkworm cocoons, is one of the strongest fibers in nature, and has attracted 

significant recent interest due to its remarkable  biocompatible and surface properties [95, 

96]. Silk can find a wide range of applications in biophotonics [97, 98], holograms [99-

101], diffraction patterns [102], microlens arrays [103], medical implants [104, 105], and 

drug delivery [106-108]. Dried silk film can be dissolved in water reversibly. With 

treatment by methanol, heat, etc., silk crystalline structures can also be made insoluble in 

water [109-117].  



62 

 

 Nanoimprint lithography and soft lithography have recently been developed for the 

generation of silk nanostructures [97, 116]. However, a mold of nanostructures in silicon 

(Si) is always required, since fabrication of Si mold uses high end techniques. However, 

these methods suffer the disadvantages of requiring capital equipment, small-scale 

fabrication, and time-consuming processes. Thus, a simple and rapid method for large-

scale, low-cost fabrication of silk nanostructures is highly desirable. 

 

 

 

5.3. Experimental [77] 

 

 

 Generation of PDMS wrinkle: PDMS prepolymer and curing agent (Sylgard 184) 

were thoroughly mixed at a weight ratio of 10:1, followed by degassing for 20 min and 

curing at 80° C for 2 h. A PDMS film is stretched by 25% with a uniaxial stretching strain, 

followed by exposure to oxygen plasma for 1.5 min at 80W to generate 400-500 nm sized 

wrinkles. 

  

 Transfer of PDMS wrinkle to PMMA surface:  SiO2 wafer was coated with 4 

%PMMA in chlorobenzene at 2000 rpm for 30 s to generate a 200-300 nm thin film. 

Similar results were obtained using a glass slide; however a SiO2 wafer shows distinct color 

changes when coated and provides visual cues for etching efficiency in later steps. This 
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film was dried at 60⁰ C for 10 min.  A capillary lithography was conducted by placing the 

PMMA coated wafer samples facing upward on a glass slide with the PDMS master facing 

the wrinkles. Drops of ethanol were added on top of the glass slides to enable solvent-

assisted transfer of patterns. This was left in the oven for 15 min at 60⁰ C.  The wrinkles 

were exactly repeated onto the PMMA surface which was observed in the optical 

microscope as shown in Fig. 26. The wrinkles were then subjected to plasma oxidation at 

different times to generate different sized wrinkles. After capillary lithography, the 

wrinkles are completely transferred onto the PMMA wrinkles creating a replica of the 

PDMS master. This was then subjected to plasma oxidation at different times, to observe 

the generation of the ribbons. 

 

 

                     

  Fig. 26. Schematic of the capillary lithography transfer of the wrinkles onto the PMMA 

surface [77]. 
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 Generation of silk nanoribbons: A SiO2 wafer was first coated with 1:10 diluted 

silk produced from B. mori cocoons, at 3000 rpm and 45 s to produce a thin silk film of 

nearly 50 nm thick and dried at 60 °C for 5 min. This was followed by coating with 4% 

PMMA in chlorobenzene and later dried 60 °C for 5 min. Capillary lithography was 

conducted by placing the PMMA or silk-coated wafer samples facing toward the PDMS 

master containing wrinkles and drops of acetone were added on top of the glass slides to 

enable solvent-assisted transfer of patterns. This was left in the oven for 15 min at 60 °C. 

The PMMA film with the wrinkles was then subjected to plasma oxidation at 80 W for 2.5 

min to generate the wrinkle hills. The remaining PMMA was washed away using acetone 

to reveal the silk nanoribbons. For the methanol treated silk nanoribbons, the wrinkle hills 

were first generated, then treated with methanol to treat the silk in the areas beside the hills 

and finally washed with acetone and water to remove the PMMA and non-methanol treated 

silk as shown in Fig. 27. 

 

 

                         

Fig. 27. Schematic of the generation of 1D silk ribbons (treated/ untreated with methanol) 

[77]. 
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 Generation of silk 2-D nanoribbons: Silk 1D ribbons were first created and treated 

with methanol before re-coating the silicon dioxide surface with silk. A capillary 

lithography was conducted at 90̊ to the original direction of ribbons for 15 min at 60 ̊C as 

shown in Fig. 28. The spin coating rate of silk for both the layers is 3000 rpm and 45 s to 

generate a thickness of 50 nm. 

 

  

               

                  Fig. 28. Schematic of the generation of 2D silk nanoribbons [77]. 

 

 

 Generation of silk-3D ribbons: A SiO2 wafer was first coated with 1:20 diluted silk 

at 3000 rpm and 60 s to produce a thin silk film of nearly 50 nm thick and dried at 60⁰ C 

for 5 min. The patterns were transferred directly onto the silk membrane by a process 

similar to the capillary lithography with acetone as the solvent but this was conducted at 

160 ⁰C for 15 min. Another method was also adopted to cause pattern transfer onto the silk 
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substrate by placing it in vacuum for 15 min and drops of water was used here instead of 

the acetone. 

 

 

                    

            Fig. 29. Schematic of the generation of 3D silk nanoribbons [77]. 

 

 

 Generation of wrinkles on silk fibroin Film: A PDMS template was subjected to 

25% uniaxial stretching strain for 1 min 30 s and 80 W, silk (0.2 mg/ml) was poured onto 

the PDMS template and left to dry for 1-2 days. The silk was then peeled off the template 

mechanically by dipping in methanol for 20 min and using a razor blade. The peeled silk 

film contains the required wrinkles. 
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5.4. Results and Discussion 

 

 

 The transfer of PDMS into a thin film of resist is a key step for the generation of 

silk nanoribbons, since it will function as a mask for the silk layer. We will first investigate 

the generation of PMMA nanoribbons. Fig. 26 outlines the process for generating a 

template in PMMA from wrinkled PDMS. A PDMS wrinkled elastomeric substrate is 

generated via stretching a PDMS film, followed by plasma oxidation and releasing the 

stretching strain (step 1). A wafer is spin-coated with a thin film of poly (methyl 

methacrylate) (PMMA). The PDMS with wrinkle patterns serves as a master to transfer the 

patterns onto the PMMA via capillary force (step 2). Thus, the PMMA film will show a 

sinusoidal wave structure on silk, which is followed by reactive ion etching (RIE) to narrow 

the width of the PMMA ribbon and open a window for the underlying layer (silk). The 

initial thickness of the PMMA layer is controlled by the spin or dip coating process and 

provides the basis for desired etching exposure times for the material. Thicker material 

layers require additional etching to remove the trough areas of the sinusoidal wave leaving 

the crest areas to produce nanoribbons. To preserve the pattern transferred into the material, 

a balance of etching time and material thickness should be observed. Fig. 30 shows the 

AFM images of PDMS wrinkles and the wrinkles transferred on PMMA, and it shows that 

the width of the wrinkle pattern is 1.0 µm nm, and the height of the wrinkle patterns are 

200 nm. The wrinkle patterns in PMMA are negative patterns of those in PDMS. With 

further plasma etching of PMMA, the height and width of PMMA ribbons were narrowed. 

With an etching time of 30 s, the pattern begins to define large ribbon structures with a 
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width of nearly 500 nm and a height of 200 nm, similar to the dimensions of the initial 

PMMA wrinklesobtained after capillary lithography. Larger intrastitial holes were created 

when the PMMA wrinkles were subjected to etching at 60 s and 90 s to produce 300 nm 

and 200 nm width ribbons but the PMMA still remained unetched in most parts of the 

wafer. On further etching the wrinkles separated from one another to produce very clear 

ribbons at 150 s and 210 s of 100 nm and nearly 60 nm widths respectively as shown in 

Fig. 1c. With an etching time longer than 2 min 10 s, it was seen that the wrinkles were 

entirely etched away leaving no trace of PMMA on the wafer surface. This is a clear 

indication of the effect of oxidation on the wrinkles width, which shows that with the 

increase in the time of oxidation a reduction in the width of wrinkles is observed. Therefore, 

at very long periods the wrinkle width becomes narrower and eventually disappears from 

the SiO2 surface. A nearly proportional decrease in PMMA wrinkle width, nearly 50 %, is 

observed as oxidation time increases every minute until the 2min 10s mark after which 

additional etching completely removes the pattern from the surface. The resulting 

nanoribbons are thus tunable by altering the etching times and can achieve a variety of 

widths dependent on etching time and the thickness of the PMMA layer.  

 

 

 Finally, biaxial patterns were created by transferring the patterns created on PDMS 

that has been simultaneously stretched on both directions. The biaxial PMMA wrinkles 

were characterized by AFM before and after oxidation as shown in Fig. 31.  
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Fig. 30. PMMA based nanoribbons generated at different times of etching conditions. (a) 

capillary lithography (b)30 s and 1 min of etching (c) 2 min and 2min 30 s, (d) 3 min 30 s 

of etching times. Scale bar: 500 nm [77]. 
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   The use of pre-generated wrinkle patterns transferred through capillary lithography 

allowed for controlled etching, thereby removing the areas between the wrinkles leaving 

easily controlled nanoribbons with widths dependent on etching time. 

                                                     

 

Fig. 31. Biaxial PMMA patterns on SiO2. Capillary (L) and after etching for 3 min 30 s 

(R). Scale bar: 500nm [77]. 

 

 

 Next, we will investigate the translation of PMMA nanoribbons into the 

underlaying silk layer. Through the use of solvents and the selectively-soluble polymers, 

PMMA and silk fibronin, surface geometries were successfully modified to generate a 

nanoribbon with controllable 1-D dimensions. Fig. 27 outlines the process for producing 

silk nanoribbons with tunable 1-D surfaces.  Step 1 is the creation of PMMA wrinkles 

where the wrinkle pattern from the PDMS was transferred onto the PMMA surface by 

capillary lithography, holes were created by etching the PMMA surface for 45 s. Step 2 is 

the creation of the silk nanoribbons by using the PMMA wrinkles as a mask and etching at 
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120 s to result in nearly 100 nm structures. Utilizing a solvent that would selectively 

dissolve only the PMMA, in Step 3 the surface was further washed with acetone to remove 

the PMMA layer while preserving the silk layer on the wafer. Step 3 is washing the surface 

with acetone, a solvent that selectively dissolves PMMA but does not affect the underlying 

silk layer, to remove the PMMA mask and result in silk Fibroin nanoribbon structures. Step 

3 starts with the pattern transfer onto PMMA via capillary lithography, followed by etching 

to create holes in the PMMA layer exposing the underlying silk layer. In Step 4, the 

exposed silk regions were treated with methanol to strengthen the β sheet structure of the 

silk protein, thereby making it insoluble in water whereas the untreated silk fibroin solution 

is capable of being dissolved in water. Upon additional etching, the methanol treated silk 

areas are etched to appropriate widths for nanoribbons. In step 5, the entire sample is 

washed with acetone followed by water to remove all the PMMA and untreated silk leaving 

only the methanol treated silk nano-ribbons.  

 

  

 The PMMA film acts as a mask containing the wrinkle patterns and the silk retains 

the pattern after the PMMA mask is removed to produce the ribbons. The silk nanoribbons 

thus generated are equidistantly oriented on the silicon dioxide surface of width ranging 

60-80 nm and a height of 50 nm. AFM characterization being shown in Fig. 32a and the 

SEM characterized image in Fig. 32a. Biaxial patterned silk ribbons were also created by 

transferring the PDMS patterns obtained by stretching on both directions following the 

same Experimental as silk one-dimensional nanoribbons. The AFM and SEM 

characterization images are shown in Fig. 32b.  
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 The next aim was to decrease the lability of the silk nanoribbons by inducing a 

chemical change in the underlying silk film. A methanol treatment was employed to 

decrease the water soluble properties of the silk film and the resulting nanoribbons. The 

areas of Silk coated with the PMMA are untreated with methanol due to the PMMA mask 

and remain water soluble and are removed during the washing process.  These methanol 

treated ribbons are 60-80 nm wide and 150 nm high, where both AFM and SEM 

characterizations are shown in Fig. 32c. 

 

  

 It can be understood that durable nanoscale ribbons can be generated using silk 

which, after treatment with methanol, can remain stable without dissolving in various 

solvents including water for a long period. We hypothesize that the use of additional 

chemical treatments could further increase or decrease solubility resistance, opening new 

possibilities of timed dissolution of nanoribbons and other nanostructures. This can be 

further applied in designing systems where water based buffers and solutions are used for 

various applications like bio sensing; surface and interface studies; and so on. 

 

 



73 

 

          

                   

Fig. 32. 1D nanoribbons generated on silk. (a) uniaxial ribbons, Scale bar: 500 nm (Inset: 

120 nm)  (b) biaxial ribbons, Scale bar: 500 nm, (c) methanol treated ribbons, Scale bar: 

1µm (Inset : 200 nm) [77]. 
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 The efficient generation of more complex nano-scale geometries continues to be a 

sought after goal, including tunable 2-D nanoribbon patterns. After the generation of silk 

one-dimensional structures, the generation of silk two-dimensional nanoribbons was 

investigated.  Fig. 28 outlines the schematic for the fabrication of two-dimensional 

structures. Silk 1D nanoribbons were first generated on a SiO2 wafer as described in the 

above Experimental and then treated with methanol for 5 min to decrease water solubility. 

This methanol treatment is done to avoid the ribbons dissolving in the second silk layer, 

which is applied in an aqueous solution over the existing structures.  The second layer of 

silk and PMMA were coated on the created silk 1D nanoribbons and the PDMS master was 

placed at 90 ̊to the original nanoribbon orientation during capillary lithography for pattern 

transfer. This was then subjected to careful etching for 150 s ensuring only the PMMA 

holes are created and the underlying layers are protected. The PMMA is removed by 

washing the surface with acetone to reveal the second layer of silk nanoribbons. The second 

layer of silk nanoribbons, thus produced, is perpendicular to the original layer of silk 

nanoribbons and are about 100 nm in width as shown in Fig. 33 (left).  

 

  

 A series of box patterns were also created in the above mentioned directions by 

etching away the nicks between the ribbon overlaps. The silk layer layering the methanol 

treated silk ribbons become more susceptible to etching, as the water from the silk layer 

seeps into the methanol silk making it more susceptive to be removed much easier than the 

surrounding ribbon areas as shown in Fig. 33b. 
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   Fig. 33. 2D silk nanostructures (a) and box patterns (b). Scale bar: 500 nm [77]. 

 

 

 On further etching, the surface silk ribbons get etched faster leaving just short lines 

or boxes of the methanol treated silk as seen Fig. 33b. The generation of 2-D structures 

introduces several new techniques to be explored with different pattern masks and 

selectively-soluble polymers to produce other nanoribbon geometries and patterns. This 

type of tunable, controlled patterning that result in precise, well-organised structures has 

been finding wide applications in various fields. 

 

  

 Further, we will explore the generation of 3D silk nanoribbons. Fig. 29 depicts the 

schematic of the production of three dimensional silk nanoribbons. First the pattern transfer 

is transferred from PDMS to silk coated on SiO2 either in oven or under vacuum, followed 

by plasma oxidation for 120 s similar to the PMMA wrinkles. Fig. 34a shows the silk 3-D 

a b 
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wrinkle transferred from the PDMS template before plasma oxidation. Fig. 34b shows the 

silk 3D nanoribbons created after etching at 100 s, both the AFM and SEM 

characterizations. The results indicate the creation of well organized, wave-like wrinkle 

patterns on the surface of the silk layer using controlled etching conditions. The silk 3D 

nanoribbons generated after plasma oxidation were found to be 50 nm high and nearly 100 

nm in width. The 3-D nanoribbons also show a width of nanoscale, but in the spatial, it 

shows a hill-like structure, instead of a flat ribbon.  

    

 

Fig. 34. 3D silk nanostructures (a) capillary lithography Scale bar: 1 µm and (b) after 

etching for 2 min, Scale bar: 2 µm (Inset : 150 nm) [77]. 
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Fig. 35. Uniaxial and biaxial silk film containing the wrinkles (a) AFM characterization 

and (b) SEM characterization. Scale bar: 1µm [77]. 

 

 Another method was employed to produce the wrinkles, both uniaxial, were 

produced directly on silk film. This was achieved by producing a PDMS template stretched 

uniaxially and subjected to plasma oxidation at 80 W and 2 min to produce 1µm wrinkles 

of 200 nm height. Raw silk was then poured onto this PDMS template and left to dry for 

1-2 days. This silk film was then mechanically peeled off the template to reveal both 

uniaxial and biaxial wrinkles as shown in Fig. 35. The same was repeated by bending the 
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PDMS in convex and concave directions to produce the silk film containing the wrinkles 

with the bent directions as shown in Fig. 36. 

 

                              

 

Fig. 36. Convex bending of wrinkles silk film (L) and concave bending of wrinkles 

replicated into a silk film (R) [77]. 

 

 

 One recurring problem of ribbons being lost in between was noticed, when 

subjected to higher etching conditions making the pinch greater between the nanowrinkles. 

The results indicate that by transferring directly from PDMS with controlled etching, a 

nanoscale structures in silk can be generated with similar dimension ratios. Using a variety 

of different master patterns additional 3-D nanostructures can be generated allowing for a 

more complete spatial differentiation of dimensions on a nanoscale. Additional 
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investigation is needed on the limits of feasible patterning with the lithographic methods 

outlined above. However, promising results of efficient nanopattern control and tunability 

contribute to several exciting and potential applications. 

 

 

 

5.5. Conclusion 

 

 

 In summary, we have successfully created a library of nanostructures in silk fibroin 

via translation of induced elastomeric instability. Our approach is transformative in that it 

will create a new process for fabricating a variety of micro/nanostructures in diverse 

materials at precisely-defined locations without using lithographic techniques. The method 

will also use this process for fabricating silk nanostructures which can process unique 

properties for applications in optical sensors, optical waveguides, tissue engineering 

scaffolds, and neural electrode arrays. This is a radical paradigm shift away from standard 

lithographic fabrication. The approach is a facile method involving controlled etching and 

pattern transfer, and the fabrication process is simple, easy to perform, low cost, and rapid. 

The interaction among materials instability, materials transfer and materials etching 

invents a new fabrication technology process. The method will also fill critical gaps in 

understanding the interactions between materials instability, pattern transfer and controlled 
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etching for creating this new fabrication technology process, and will advance our 

fundamental knowledge of non-lithographic nano-manufacturing. 
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CHAPTER 6 

    

 

FABRICATION OF MAMMALIAN HAIR BASED MICROFLUIDICS[118] 

 

 

 

6.1. Abstract 

 

 

 The development of a simple approach for the generation of microstructures could 

expand opportunities in both fundamental studies and practical applications. Mammalian 

hair is a filamentous biomaterial which is mechanically strong, flexible, abundant, and 

easily harvested. It is demonstrated for the first time a simple generation of microfluidic 

channels from mammalian hairs. Our results show that hairs with different widths result in 

the generation of microfluidic channels with different widths. Furthermore, with different 

textures of hairs, the shape of microfluidic channels can be varied. Finally, the utility of 

this microfluidic channel for bioassays and micro wire synthesis is analyzed. It is 

anticipated that these results could open exciting opportunities for investigating a variety 

of biological materials to fabricate micro/nano-structures and devices for fundamental 

studies, as well as applications ranging from biological analysis to materials synthesis. 
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6.2. Introduction  

 

 

 Microfluidics is of interest for a wide spectrum of applications due to their high-

throughput and low-cost mass fabrication and has been finding use in electronic devices  

[119, 120], optical devices [121, 122], bioanalysis [123, 124], cell biology [125, 126], and 

materials synthesis [127, 128]. It is based on the capillary system owing to the reduced 

consumption of reagent quantities in analysis, making it prominent in the field of 

bioanalysis. The fabrication of microfluidic devices were first conducted in into silicon 

[129, 130] and glass [131] which involves expensive processing procedures. 

Polydimethylsiloxane (PDMS) is a biocompatible silicon elastomer that has been widely 

used for the fabrication of microfluidic devices through soft lithography due to its low cost, 

less time consuming and facile prototyping and manufacturing. The PDMS based 

microfluidic channels are widely generated by replicating a master via soft lithography that 

is created by photolithography or other high end techniques involving expensive facilities 

[132, 133]. Therefore, it is highly desired to find masters that are easily available, 

inexpensive and less time consuming. Recently, several low cost options have been studied 

for the fabrication of microfluidic channels, including ink-jet printing on shrinky- dinks 

[134, 135], paper and thread based microfluidics [136, 137].  However, these methods do 

not offer micrometer sized channel resolution which inhibits additional applications like 

microwire synthesis and bio-analysis [118]. 
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 Hair is proteinaceous biological composite material which is formed heirarchicaly 

via intermediary fibrils, from α- keratin chains. Hair is usually found in mammals, with a 

resolution ranging from 10 to 100 µm, with different geometries, varying morphological 

components and diameters [138, 139]. The hydrophobic nature of hair along with its 

internal hydrophilic amino acid residues attributes to its mechanical strength and in 

addition makes it malleable into different shapes for different applications. Hair is naturally 

available in abundance and hence eliminates the need for any expensive manufacturing 

techniques [140]. 

 

 

 

6.3. Experimental [118] 

 

  

 Fabrication of microchannels from hairs: PDMS prepolymer and its curing agent 

(sylgard184) were thoroughly mixed at a weight ratio of 10:1, followed by degassing in 

vacuum for 1 h. Hair was selected and then cut to a desired length and fixed on to a flat 

surface with an adhesive tape between the hair and the surface to prevent curling. Then the 

degassed PDMS was poured over the hair. After curing at 80⁰C for2 h, the PDMS slab can 

be peeled from the hair easily, as hair is hydrophobic in nature, resulting in a microchannel. 

After drilling holes at both ends of the channels and sealing the PDMS elastomer on to 

glass, microfluidic channels were generated.                               

http://en.wikipedia.org/wiki/Mammals
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 Immunoassay: The channels fabricated from hairs were incubated with100 mg ml−1 

of rabbit Ig G for 15 min. Next, the channels were incubated with bovine serum albumin 

blocking solution for 30 min. Finally, they were incubated with 25 mg ml−1 of anti-rabbit 

IgG conjugated with fluorescein isothiocyanate dissolved in the buffer solution. Washing 

steps were performed in between each step. The fluorescent signals were characterized 

with a fluorescent microscope. 

 

 

 Live yeast cell analysis: The microfluidic channels were fabricated from hairs as 

described above in a line pattern and sealed onto glass. Upon completion of fabrication 

these channels were flushed with deionized water for 5 min to clean the channels of any 

contaminants.  Following this, the yeast cells Saccharomyces cerviseae and Saccharomyces 

pombe were allowed to flow through the channel for 20 s. These were then visualized and 

imaged with an inverted microscope. 

 

  

 Synthesis of epoxy microwire: The PDMS microfluidic channels were fabricated 

and sealed to glass slides. Degassed epoxy without curing agent was poured into a syringe. 

Using the syringe epoxy was injected into the channels. The epoxy in the channels was 

then cured in an oven for 2 h at 70 ⁰C. After curing the samples were removed and allowed 

to cool. The PDMS slabs were then removed from the glass slides by scraping with a sharp 

blade, exposing the channels. Using forceps, the cured epoxy was delicately removed from 

the microchannel, and the wire structure was characterized by SEM.  
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  Synthesis of silk microwire: Raw silk was obtained from Bombyx mori cocoons 

using a reported procedure [141].The PDMS microchannels were designed as mentioned 

and were not allowed to seal firmly with glass. A syringe filled with raw silk was injected 

into the channels and allowed to cure rapidly at 60°C for 15 min. The PDMS slab was then 

easily peeled off glass and the channel contained the cured silk microwires. These wires 

were then carefully removed from the channels using forceps for further characterization 

using SEM [118]. 

 

 

 

6.4. Results and Discussion   

  

  

 Mammalian hairs from different sources have been investigated. Hairs can be 

manually cut to different lengths, and the hairs can have widths varying from a few 

micrometers to hundreds of micrometers. The SEM images show that the hair surfaces are 

very rough, and the surface roughness properties for a human hair and a cat hair are 

different. shows microchannels fabricated from hairs. The length of the channel depends 

on the length of the hair, and the width of the channel is equal to the diameter of the hair. 
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Most significantly, a microfluidic channel fabricated from fine hair can reproducibly 

achieve a sub-20 mm width with high accuracy. Using thicker hair, a microchannel with a 

width of 80 mm can be achieved. When the hairs were obtained from the same source, the 

reproducibility of the fabricated channel in terms of height and morphology is very high. 

The hairs were firmly fixed on petri dishes with adhesive tapes, which avoided the curling 

of the hairs and prevented the hairs from being engulfed in PDMS entirely, resulting in the 

widths of the channels to be the same as the diameters of the hairs. Hairs from different 

sources exhibit a variety of surface morphologies, and after translating the hairs into 

microchannels, negative patterns of these surface morphologies can be formed in PDMS 

channels, and sub-features and wrinkles in the channels can be seen. 

  

  

 By varying the positions of hairs manually, microfluidic channels can be fabricated 

in different geometries. All of these properties can then be further altered by changing the 

initial width or length of the hair. Other channels were formed by bending and twisting the 

hair into desired shapes such as curves or semicircles. The flexibility and durability of hair 

allow it to be worked into a specific form for a specific function. Furthermore, multiple 

hairs were used to create elaborate designs and shapes of microfluidic channels, such as Y-

shaped or X-shaped channels by manipulating two hairs. 

 

 This hair-based bio-inspired microfluidics fabrication method has several 
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advantages: (i) the entire fabrication Experimental can be carried out in ambient 

temperatures, and does not require harsh chemicals or cleanroom facilities. (ii) Hair lengths 

can be varied from a small scale to a large scale (millimeter to meter), therefore the length 

of the resulting channel can exceed the standard photolithography fabrication range, which 

is limited to the size of a wafer. (iii) The width of the microfluidic channel can be as low 

as a few micrometers. (iv) Due to the resilient and flexible nature of hair, the shape of the 

channel can be manually changed by manipulating the hair. 

 

  

 Microfluidic channels have been widely used in combinatorial protein screening, 

immunoassay and studies in cell sorting, counting and manipulations [14], and in this work, 

hair-based fabricated microfluidic channels were also investigated for application in 

biological analysis.  As shown in Fig. 37a, the microfluidic channels were incubated with 

rabbit IgG, BSA, and anti-rabbit IgG conjugated with FITC. Washing steps were performed 

for each step in between. This fluorescent signals clearly indicate that strong binding of 

anti-rabbit IgG to rabbit IgG was performed in the channel. We also used yeast cells for 

analyzing various strains of cells in microfluidic channels. Two different kinds of yeast 

strains, S. cervisieae (oval shaped) and S. pombe (rod shaped) were allowed to flow 

through the hair based channels, and were visualized using an inverted microscope as 

shown in Fig. 37b [118].  
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Fig. 37. Immunoassay (a) and live yeast cell analysis using the hair based microfluidic 

channels. Scale bar : 50 µm [118].                                                                                   

  

  

 In addition, a microfluidic channel fabricated from a mammalian hair was 

investigated for fabricating a microwire, as shown in Fig. 38. By using preexisting 

microchannels as templates it was possible to synthesize wires with the same contours as 

the channels. When these microwires were removed from the channels they imitate the 

original hair that was used to form the channel. As shown in Fig. 38a, the resulting epoxy 

microwire, which replicated the PDMS channel effectively, has a semicircular cross 

section, and shows the same sub-features as the original hair. Silk microwire was also 
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synthesized, as shown in Fig. 38b.  

 

 

                  

         Fig. 38. Microwire synthesis using hair based microfluidic channels (a) epoxy and 

(b) silk [118] .  

 

 

 During the curing process the silk solution evaporated, decreasing in volume and 

settling on one side of the channel. The silk-based wire appears ribbon-like and does not 
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replicate the structure of the channel entirely. Moreover, bio-inspired hairfabricated 

microfluidic channels could be used for fabricating microwires in a variety of other 

materials, such as metal, protein fibers, etc. By using hair with a smaller diameter or 

varying the hair shapes and lengths, templates could be created to fabricate a variety of 

microwire structure. 

 

 

   

6.5. Conclusion 

 

 

 In this work, we have demonstrated a bio-inspired mammalian hair-based 

fabrication of microfluidic channels, and their application for bioanalysis and microwire 

synthesis. The method provides a simple, low cost, and easy-to-handle approach for the 

fabrication of microfluidic channels due to the flexible, abundant, and easily harvested 

nature of hairs. The approach we describe here may open new avenues for applications in 

various fields, including immunoassay, cell analysis, or microwire synthesis. 
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CHAPTER 7 

 

 

SUPER HYDROPHOBIC, TRANSPARENT, AND BIODEGRADABLE 

MATERIALS [142] 

 

 

7.1. Abstract 

  

 A super hydrophobic surface has been created by aligning of nanostructures of 

peptide nanotubes on the surface of biodegradable silk macrosurface. Depending on the 

type of biomaterial, super hydrophobic surfaces have proven to be anti-adhesive, anti- 

contaminating and electrically conductive surfaces. Silk surfaces being biodegradable, 

optically transparent and the ease of being molded have found use in several applications. 

Peptide nanotubes, on the other hand, are chemically diverse and biological recognition 

units that are hydrophobic in nature. The alignment of the hydrophobic peptide nanotubes 

on the surface of hydrophilic silk will result in the design of super hydrophobic, transparent 

and biodegradable surface. A UV-Vis spectrometer analysis was also conducted to the 

super hydrophobic surface. These chemically modified surfaces can open exciting ventures 

finding use as biosensors and storage devices.  
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7.2. Introduction 

 

  

 Many applications of substances are majorly dependent on the bulk and surface 

properties of substances. The bulk properties include stiffness, toughness, optical clarity 

and the ability to biodegrade while surface properties include adhesion, biocompatibity and 

wettability.  The controlled wettability of surfaces is a very important property for the 

production of functionally significant devices. Super-hydrophobic surfaces with a contact 

angle greater than 120 degrees have been gaining momentum in avoiding adhesion, 

contamination and electric conductivity on surfaces. This is usually determined by the 

surface microstructure and the chemical composition of the surface and these can be 

created wither by altering the roughness of the surface or by the assembly of nanostructures 

to create a low surface energy on the surface [143-145]. This water repelling nature can 

control the hydration of silk surfaces, thereby preventing its biodegradation.  

 

 

 Optically transparent and biodegradable substrates are important for fabricating 

flexible and green electronic devices by incorporating light emitting diodes [146-148] or 

by incorporating gold nanoparticles. Thus it is highly desired to design a highly 

hydrophobic and transparent surface that can find use as functional biomaterials. 
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 Silk Fibroin obtained from Bombyx mori is an important biomaterial owing to its 

biocompatibility, easier degradation in vivo, chemical flexibility, mechanical stability, ease 

of molding into different structures and optical transparency [141]. It has been finding wide 

applications in bone and tissue engineering as scaffolds [149, 150], drug delivery [151, 

152], and biosensors [153, 154]. While peptide nanotubes are desirable organic building 

blocks for various bio-nanotechnological applications owing to their chemical flexibility 

[61], biocompatibility [62], biological recognition abilities [63], thermal [64], and 

mechanical stability [66] that enable them to hierarchically assemble themselves into useful 

devices [96]. Self-assembly at the molecular level is the central basis of bottom up 

fabrication of bulk devices with well-defined nanostructures [67]. The alignment of the 

hydrophobic peptide nanotubes on the surface of hydrophilic silk will result in the design 

of super-hydrophobic, transparent, and biodegradable surface. These devices can find use 

as biosensors, energy storage devices, in tissue engineering, environmental monitoring, and 

various other applications.  

 

 

 

7.3. Experimental  

 

 

 Vertical Alignment of the peptide nanotubes on silk surface: Silk fibroin film is 

produced using a published protocol. ADNTs were deposited on the silk surface using a 

biomolecular vapour deposition method. In a typical deposition method, 10 mg of the 
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diphenylalanine lyophilized peptide powder NH2- Phe-Phe-OH and  was dissolved in 1 ml 

of the 1,1,1,3,3,3-hexafluoro-2-proponol was put on silk fibroin film and the substrate was 

placed 2 cm from the peptide nanotube solution. This setup was kept at 220̊ C from 5- 60 

min to deposit the peptide nanotubes vertically on the downward side of the substrate. The 

substrate was then reheated at 220̊ C for 30 min to stabilize the vertical peptide nanotubes. 

 

 

 Horizontal alignment of peptide nanotubes on the silk surface by solution mediated 

peptide growth:  A 10 mg/ ml of the peptide solution dissolved in HFP was left to grow in 

an eppendorf from 5 – 60 min on a shaker. This was then aliquoted on a silk film surface 

and allowed to dry in room temperature for 1 h. These randomly arranged horizontal 

peptide nanotubes were visualized using an optical microscope. 

 

 

 UV- Vis adsorbance spectroscopy of peptide nanotubes assembled on silk surface: 

A UV-Vis study was conducted on the silk fims containing the peptide nanotubes grown at 

different times, both vertically and horizontally, using the BioTek Synergy Multimode plate 

reader. The adsorbance system makes use of a Xenon Flash monochromator measuring the 

adsorbance over the wavelength range of 200-990 nm in the increments of 1 nm. Silk films 

with peptide nanotubes grown vertically and horizontally at 0, 10 min, 20 min, 30 min, 45 

min, and 1 h were prepared for the UV-Vis analyses. A spectrum curve of the different 

samples was conducted between 200-800nm at an increment of 10 nm to study the 

characteristics of the silk film containing peptide nanotubes grown at various densities. 
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7.4. Results and Discussion 

  

 

 Surface studies on vertically aligned peptide nanotubes on silk surface using a 

goniometer:The surface properties of the peptide nanotubes assembled on the silk surface 

can be studied using a goniometer. Water contact angle studies were taken on vertically 

aligned peptide nanotubes on silk surfaces.  

 

 

  

 

Fig. 39.  Goniometer characterization of vertically grown peptide nanotubes on silk surface 

at different times . Scale bar : 50 µm [142]. 
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 Different times were employed to get different densities on the silk surface. At 1 h 

the peptide nanotubes were found to be dense with a water contact angle of 135 degrees. 

With decresing times the peptide nanotube density decreased proportionally, so at 45 min, 

30 min, 15 min, and 5 min of growth the water contact angle reduced to 105 degrees, 80 

degrees, 55 degrees, and 35 degrees, respectively.  

 

 

 Surface studies on horizontally aligned peptide nanotubes on silk surface using a 

goniometer: Water contact angle studies were taken on horizontally aligned peptide 

nanotubes on silk surfaces to examine the surface properties of horizontally aligned peptide 

nanotubes on the silk surface.  Different times were employed in this condition as well to 

get different densities on the silk surface. At 1 h the peptide nanotubes were found to be 

dense with a water contact angle of 120 degrees. With decreasing times the peptide 

nanotube density decreased proportionally, so at 45 min, 30 min, 15 min, and 5 min of 

growth the water contact angle reduced to 105 degrees, 75 degrees, 50 degrees and 25 

degrees, respectively. This shows that the peptide nanotube density, irrespective of the 

alignment, plays a direct role in increasing the hydrophobicity of the substrate and 

decreases the solubility time of the underlying silk. 

 

 

 Surface characterization of the hydrophobic surfaces using UV-VIS spectroscopy: 

To demonstrate the transparency of the silk surface with assembled peptide nanotube, a 

UV-Vis study was conducted with respect to blank silk film. A spectrum curve was obtained 
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in the wavelength range of 200 nm -800 nm for both the blank silk film and the silk film 

assembled with vertically and horizontally aligned peptide nanotubes. 

 

 

 

 

Fig. 40. Goniometer characterization of horizontally grown peptide nanotubes on silk 

surface at different times . Scale bar : 50 µm [142]. 

 

 

 The spectrum curves obtained for all the silk surfaces with/ without peptide 

nanotubes all have similar OD values, which indicate that the surface still remains 

transparent irrespective of the peptide nanotubes. This establishes that the hydrophobicity 

of the biomaterial is determined by the density of the peptide nanotubes on the surface 

while the transparency of the surface is still maintained.  
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 Fig. 41. UV-VIS spectroscopy of the peptide nanotubes based silk hydrophobic surfaces 

[142]. 

 

 

 

7.5. Conclusion 

 

 

 In this report, we have demonstrated for the assembly of peptide nanotubes on silk 

surface for the purpose of turning the highly hydrophilic silk substrate into a hydrophobic 

one. The approach we describe here may open new avenues for a variety of silk and peptide 

nanotube-based fundamental studies and practical applications, including biological 

analytical devices, self-assembly of silk-based hybrid materials, surface and interface, cell 
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biology, etc. Although these results are promising, further studies are needed to help 

elucidate the application of the peptide nanotube-silk for the construction of a variety of 

biological, chemical, optical, mechanical, and electrical devices. 
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CHAPTER 8 

 

 

GRAPHENE BASED BIOSENSOR TO DETECT CARDIAC MARKER 

 

 

 

8.1. Abstract 

 

 

 Coronary heart disease is the primary cause of death in the United States. Though 

lifestyle changes and medicines are available to control CHD, early diagnosis is required 

for the elimination of its incidence. Currently, hospitals depend on the detection of cardiac 

troponin to predict the onset of CHD in patients. A sensitive graphene based nanosensor 

has been reported in this study to conduct the detection of this cardiac troponin I along with 

miRNAs responsible for CHD. It is believed that these results can help elucidate the 

elimination of heart disease, thereby improving the contemporary medical cure techniques. 
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8.2. Introduction 

 

 

 Coronary heart disease or heart attack mainly occurs due to the poor oxygenation 

of the coronary arteries, inadvertently stopping the blood supply to the heart. This is caused 

by the blockage in arteries due to the accumulation of lymphocytes, fat and cholesterol, 

resulting in the death of over 25% mortality rate. It is hence required to identify or eliminate 

the presence of cardiac markers required for the maintenance of proper heart functioning, 

thereby improving medical care and cure. The present technology is laborious and presents 

only 50% sensitivity to the cardiac markers [155]. Troponin I present in the myofilaments 

and is considered to be highly specific in the detection of cardiac muscle injury and 

coronary heart diseases [156]. Graphene has attracted strong attention in the scientific and 

technological domain owing to its large surface area [157], unique physiochemical 

properties [158, 159], excellent conductivity [160-162], and mechanical [20] properties. 

Microfluidic devices based on capillary action require low sample volume for the 

simultaneous analysis of a large number of biologically important molecules, thereby 

making it indispensable for bioanalysis [123, 163-165]. It is thus desired to develop a new 

sensor involving a microfluidic device assembled on the graphene electrode surface, 

combined with AC measurement of the impedance change to conduct the detection of the 

biomarkers of interest. 
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8.3. Experimental 

 

  

 Single-Bilayer Graphene grown on Cu film is first transferred onto SiO2 using a 

sacrificial layer of heavy polymer like PMMA (polymethylmethacralate), that will help it 

stay afloat when subjected to etching in ferric nitrate solution, to eliminate the copper layer 

off graphene. It is further dipped in 30% (HCl +hydrogen peroxide) and 30% (Ammonium 

hydroxide +hydrogen peroxide) for 15 mins each, followed by rinsing in distilled water.  

    

     

 

Fig. 42. Generation of PMMA free graphene film on SiO2. Scale bar: 20 µm. 

 

 

 The graphene, thus produced, on SiO2 is then dipped in acetone to wash off that 

sacrificial PMMA layer. The nanosensing device is based on antibody immobilized 

graphene nanosheet on SiO2 with an AC signal measurement. By using signal rate 
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(impedance vs time), analysis of different concentrations of samples can be performed 

continuously. The detection is performed with the nanosensor in a microfluidic channel as 

shown in Fig. 43. The sample is delivered to the electrode by the microfluidic device. The 

graphene electrode is immobilized with anti-troponinI via the linker, 1-pyrenebutanoic acid 

succinimidyl ester, followed by the anti-TroponinI antibody and finally, BSA to prevent 

non-specific interactions. 

 

 

 

 

 

 

                                  Fig. 43. Schematic of the biosensor device. 

 

 

 The device is now characterized for the sensing of TroponinI. The binding of the 

TroponinI with anti-troponinI immobilized on the electrode surface is hypothesized to 

change the impedance signal. This will assist in the investigation the detection limit of the 

cardiac marker.  
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8.4. Results and discussion 

 

 

 Fluorescent characterization of the miRNA and their respective PNA molecule: 

1µM of PNA 208b was incubated on the graphene film surface overnight enabled by the 

linked molecule and 2 h BSA 1%. The fluorescence was done by using the RNA208b FITC 

molecule. The control samples were incubated using 1 µm PNA 1 and PNA 133a and the 

fluorescence was tested using RNA 208b-FITC. The absence of fluorescence shows the 

specificity of binding of the RNA208b to PNA 208b as shown in Fig. 44. 

 

 

     

Fig. 44. miRNA 208b- PNA 208b binding characterization using fluorescence characterization. Scale bar: 

20 µm. 
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8.4. Conclusion 

 

 

  This research is still underway in conducting sensing experiments. Though the 

fluorescence study has given primary results, it is still to be tested on the sensing platform 

using impedance measurement on graphene based microfluidic sensor. 
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