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ABSTRACT 

Electrokinetic Flow in a Nanochannel  

with an Overlapped Electrical Double Layer 

by 

Zhuorui Song, Doctor of Philosophy 

Utah State University, 2015 

 

Major Professor: Dr. Heng Ban 

Department: Mechanical and Aerospace Engineering 

 

Electrokinetic flows within an overlapped Electrical Double Layer (EDL), which 

are not well-understood, were theoretically investigated in this study with the particular 

attention on the consideration of hydronium ions in the EDL. Theoretical models for ful-

ly-developed steady pressure-driven flow for salt-free water or a binary salt solution in a 

slit-like nanochannel connecting to two reservoirs were developed. The transient flow in 

such a domain was also simulated from static state to the final steady state. In these models, 

the Poisson equation and the Nernst-Planck equation were solved either by analytic 

methods or by the finite element method. Surface adsorption-desorption equilibrium and 

water equilibrium were considered to account for the proton exchange at the surface and in 

the fluid. These models were the first to include those comprehensive processes that are 

uniquely important for overlapped EDL scenarios. 

This study improves the understanding of electrokinetic flows within an overlapped 

EDL by demonstrating the profound impact of hydronium ions on the EDL structure. In the 
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steady flow of potassium chloride solutions, hydronium ions are more enriched than po-

tassium ions by up to 2~3 orders of magnitude, making the electrokinetic effects greatly 

depressed. The unequal enrichment effects of counterions were omitted in the traditional 

theory partially because the transient is extremely slow. The simulation results show that a 

concentration hump of hydronium ions initially forming at the channel entrance gradually 

expands over the whole channel in a way similar to the concentration plug flow moving 

downstream. The time required for the flow to reach the steady state could be as long as 

thousands of times the hydraulic retention time, dependent on the degree of the EDL 

overlap. This study improves the fundamental understanding for nanofluidic flows.  

     (163 pages) 
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PUBLIC ABSTRACT 

Electrokinetic Flow in a Nanochannel  

with an Overlapped Electrical Double Layer 

by 

Zhuorui Song, Doctor of Philosophy 

Utah State University, 2015 

 

Major Professor: Dr. Heng Ban 

Department: Mechanical and Aerospace Engineering 

 

This research is a theoretical study aiming to improve the understanding of 

nanofluidic flows. Nanofluidic flows have a wide range of potential application in many 

fields, such as DNA analysis, drug delivery, analyte separation, power generation, and so 

on. The most common material used in nanofluidic flows is silica whose surfaces are 

charged mainly due to proton exchange with the fluids. Charges on the surfaces as well as 

near the surfaces in the fluid side cause a significantly different response of the fluids to the 

applied electric field or pressure difference compared to those at normal scale. In the pre-

vious studies, surface charges were usually assumed to be constant without further proton 

exchange, or the fluids were motionless. This study theoretically investigated the flow 

through a nanochannel with the consideration of dynamic proton exchange. The results 

show that dynamic proton exchange has significant but slow influence on nanofluidics 

flows. This study improves the fundamental understanding for nanofluidic flows.  

     Zhuorui Song  
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CHAPTER 1  
 

INTRODUCTION 

1.1 Problem Statement and Motivation 

Nanofluidic flow is generally referred to transport of fluids that are confined to the 

structures with at least one characteristic dimension below 100 nm [1]. Transport phe-

nomena in these structures present unique features that are not observed at microfluidic 

size scales or above because the interactions of fluid with solid surfaces become prominent 

due to the drastically large surface-to-volume ratio. The primary physical mechanisms of 

nanofluidic transport include van der Waals forces and electrostatic forces, accounting for 

short and long-range interactions between related chemical components in liquid and 

surfaces, respectively.  

Electrostatic forces, resulting from surface charges, cause an organized charge 

distribution near the solid surface known as the electrical double layer (the EDL). Elec-

trostatics in the EDL and the resulting electrokinetic effects are the most important physical 

phenomenon in nanofluidic transport. When fluid is confined in a structure at nanoscale, 

such as in a nanochannel, the EDLs from opposite walls may have strong interactions. The 

phenomenon is called the EDL overlap, which results in significant changes in the com-

position of the fluid, the related electric field, and the fluid dynamic properties. Electro-

kinetic flows under the EDL overlap condition may have important applications in DNA 

analysis, drug delivery, analyte separation, power generation, and flow control [1-4]. For 

example, the efficiency of electric power generation by means of pressure driven 

nanofluidic flow was found to have its maximum at a certain level of EDL overlap [5, 6]. 
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With the development of these applications, there is increasing need to better understand 

electrokinetic effects, particularly with the presence of the EDL overlap.  

In this research, we examine electrokinetic effects for systems that are not less than 

10 nm, in which van der Waals forces are insignificant comparing to electrostatic forces. A 

benefit from this restriction is that it is appropriate to apply continuum equations in mod-

eling [4]. For smaller systems of less than ~10 nm where dynamic behavior of individual 

molecules becomes dominant, the continuum approach is not applicable in principle, but 

the understanding based on the continuum modeling are still beneficial as a quantitive 

reference.  

In addition, we focus on electrokinetic effects caused by charged surfaces made of 

silica, mainly because silica are among the most popular materials in microfluidics and 

nanofluidics [7]. The electrochemical charges on silica surfaces are primarily caused by the 

proton exchange between surface chemical groups and the contacting salt solutions. The 

proton exchange has effects not only on surface charges, but also on the bulk pH. However, 

the variation of bulk pH due to this interaction has not drawn sufficient attention in existing 

studies on electrokinetic flows. Thus, there is a need to quantify the bulk pH and to further 

investigate its influence on electrokinetic flows.  

1.2 Research Goals and Objectives 

The research aims to quantify the pH change in electrokinetic flows under condi-

tions of EDL overlap, which readily occurs for dilute electrolyte solution confined in a 

space with at least one dimension at nanoscale, and to examine the influence of the pH 
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change on electrokinetic effects. We focus on the pressure-driven flow in a slit-like 

nanochannel made of silica with various level of EDL overlap in this study.  

The overall goals of this study are listed as below: 

1) Quantify the pH change in the pressure-driven flow confined between silica walls 

under conditions of EDL overlap. 

2) Indentify the influence of EDL overlap on the EDL structure, and transport phenomena 

of the pressure-driven flow.  

3) Clarify the applicability of the Boltzmann distribution in an overlapped EDL in elec-

trokinetic flows. 

To achieve the goals, the specific objectives of this work are listed as below: 

1) Establish analytic models for the fully-developed, steady-state, and pressure-driven 

flow of salt-free water and binary salt solutions, respectively, through a nanochannel 

connecting to a reservoir at each end. 

2) Identify the structure of an overlapped EDL based on the new developed models and 

evaluate the influence of EDL on bulk pH, surface charge, and flow dynamics. 

3) Numerically simulate the unsteady flow of binary salt solutions in a 2D nanochannel 

within an overlapped EDL. Simulation results are used to validate the analytic models, 

and to capture the transient phenomena of ion transports starting from electrostatic 

equilibrium to final stationary equilibrium. 

4) Perform dimensionless analysis for the transient pressure driven flow.  

The analysis intends to reveal the importance of taking hydronium and hydroxide 

ions into account to electrokinetic flows within overlapped EDL limits, leading to new 

knowledge of EDL overlap. The study can improve the fundamental understanding of the 
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EDL overlap and provide advances on the applications of taking use of EDL overlap in 

nanofluidic devices. 

1.3 Overview of the Dissertation 

In this dissertation, we first present the background knowledge related to electro-

kinetic flows in Chapter 2. The mathematic descriptions for electrokinetic transport phe-

nomena and for chemical equilibrium on silica surfaces are summarized in Chapter 3. The 

next two chapters are presented in the form similar to papers, which includes conclusions. 

Chapter 4 investigates the structure of an overlapped EDL in salt-free water, and the rel-

evant electrokinetic effects. Chapter 5 focuses on the electrokinetic flow of binary salt 

solutions. The fully-developed steady pressure-driven flow within an overlapped EDL is 

modeled. The modeled EDL structure is compared with that at electrostatic equilibrium to 

reveal the influence of the flow. The transient behavior of the pressure driven flow in a 

nanochannel is further simulated and discussed in Chapter 6. Main conclusions and con-

tributions from the dissertation study are presented in Chapter 7. 
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CHAPTER 2  
 

LITERATURE REVIEW AND BACKGROUND 

Electrokinetic effects is one of the biggest concerns in the microfluidics and 

nanofluidics flow. Because it is resulted from the unbalanced charge distribution in the 

electric double layer (EDL), some concepts and principles relating to the EDL are first 

introduced in this chapter. Next, we present a review on theoretical treatments of modeling 

ion distribution in the EDL, and briefly introduce the mechanism of charge generation on 

silica surfaces. Finally, the coupling effects between surface chemical groups and the bulk 

pH is discussed for electrokinetic flows with EDL overlap.  

2.1 Electrical Double Layer 

When liquid phase comes in contact with solid phase, charged species such as ions, 

electrons, and dipolar constituents change their positions in the neighborhood of the in-

terface to minimize their total free energy. As a result, net charges accumulate on solid 

surfaces, generating an electric potential difference between the surface and any location in 

the liquid. Because of the electrostatic interaction, a number of counterions, referred to the 

ions of opposite surface charge, are attracted to the surface, while coions are repelled away. 

The unbalance charge distribution is then formed, and usually restricted to a thin layer of 

the liquid close to the surface. The layer is called the electrical double layer (EDL). The 

resulting composition of liquid in the EDL is significantly different from the original bulk 

fluid where the electroneutrality condition exists. The redistribution of ions tends to 

weaken the electric field originally created by surface charges, and they interact to retrieve 
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new electrostatic equilibrium. 

The thickness of the EDL is commonly characterized by the Debye length    .   

is the Debye-Hückel parameter. The Debye length is strongly dependent on the type and 

concentration of ions. In a binary salt solution of 0.01 mM and 100 mM, for instance,     

is equal to        and 1 nm, respectively. The EDL effects is of great importance to the 

flow in the structure with at least one dimension falling to the level of the Debye length.  

Gouy-Chapman-Stern model (GCS) is the classic model widely used to describe 

the behavior of a solid-liquid interface. According the GCS model, there are two layers, the 

Stern layer and the Gouy or diffuse layer, in the neighborhood of the interface (Fig. 2.1). 

The Stern layer is the one next to the interface, while the diffuse layer is right out of the 

Stern layer. In the Stern layer, all ions are assumed to be immobile due to the strong electric 

force. Specifically adsorbed ions are bound tightly to the surface, locating at a plane called 

the inner Helmholtz plane(IHP), while nonspecifically adsorbed ions are assumed to be 

trapped at the outer Helmholtz plane OHP(OHP). The thickness of the Stern layer is 

commonly of the order of a little beyond one hydrated ion radius(~0.5 nm), or even one 

bare ion radius(~0.1 nm). Beyond the OHP is the diffuse layer, in which ions are mobile. 

Their distribution is assumed to obey the Boltzmann statistics physics, or the Boltzmann 

distribution. 
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Fig. 2.1. Schematic diagram of electrical double layer 

 

An electric potential field is formed in the EDL, and ions are redistributed due to 

the electrostatic interaction of surface charges and ions. The GCS model assumes that all 

ions adsorbed in the Stern layer are merely located either at the IHP or at the OHP, while 

the separate spaces between these planes and the solid surface are free of any charge. The 

dielectric permittivity is assumed to be identical inside the Stern layer, but different from 

the original bulk solution. Thus, the Stern layer behaves as parallel plate capacitors, in 

which the potential drops off linearly along the direction away from the surface. The po-

tential drop continues throughout the diffuse layer until the charges restore neutral at the 

edge of the EDL double layer. In the diffuse layer, the permittivity of the solution is 

commonly assumed to be unaffected by the electric field. Thus, the potential exponentially 

decays, while ions obey the Boltzmann distribution. 

In correspondence with the EDL structure, fluid dynamics is quite different inside 

the EDL. Stern proposed that there is an imaginary plane at a distance from the surface 
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below which the fluid is stationary along with those immobile ions. The imaginary plane is 

called the shear plane, which is usually defined as the meeting place of the Stern layer and 

the diffuse layer, i.e. the OHP in the GCS model. Therefore, fluid viscosity is regarded as 

an infinite number below the shear plane. In the remaining space of the EDL, fluid vis-

cosity is commonly assumed to be constant. The electric potential on the shear plane is 

referred to the   potential, which has played an important role to electrokinetic flows.  

2.2 Modeling for Ion Distributions in Electrokinetic Flows 

As mentioned above, net surface charge attracts counterions and repel away coions 

in the diffuse layer. These mobile ions account for the primary reason for electrokinetic 

effects. In this section, we present a review of modeling ion distribution in a thin EDL, and 

in an overlapped EDL, respectively, for electrokinetic flows. 

2.2.1 In a thin EDL 

A thin EDL is referred to the one whose thickness is significantly less than the flow 

characteristic length. In the classic treatment of a thin EDL, ion distributions are related to 

local electric field with the assumption of Boltzmann equilibrium. This assumption is 

absolutely valid when the following conditions are satisfied: a) the finite size of ions can be 

neglected so that the ions are regarded as infinitesimal point charges, b) ions are considered 

as continuous distribution, and c) all interactions except electrostatic forces and Brownian 

motion can be disregarded. These conditions are quite loose for practical electrokinetic 

flows in a relative large system(>10 nm). Salt solutions used in electrokinetic flows are 

commonly not too dense with ion concentration less than 1 M. If there is no external forces 
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applied to the fluid, ions are controlled by diffusion and electromigration, which are related 

to Brownian motion and electrostatic forces, respectively. Thus, the Boltzmann equilib-

rium is assured. Even in the flow along the direction parallel to the surfaces, the Boltzmann 

distribution is still valid in a thin EML layer as examined in [8] and further discussed in 

Chapter 3. 

Therefore, the Boltzmann equation coupled with the Poisson equation(the PB 

equation) is usually solved for the electric field, which is then used to determine ion dis-

tribution. The PB equation is a nonlinear second order differential equation, and its analytic 

solution has been well investigated in past studies. In the extreme case that the electric 

potential energy of electrolytes induced by surface charges is sufficiently lower than their 

thermal energy, the Debye-Hückel approximation can be used to linearize the PB equation 

and make it possible to find an analytical solution [9-12]. For symmetric salt solutions 

confined between two charged flat plates, analytical solutions have been proposed in terms 

of a first-kind elliptic integral with reference to the Zeta potential [13], or Jacobi elliptic 

functions [14-16]. In cases that the EDLs are not overlapped, the Gouy-Chapman solution 

is suitable for symmetric electrolytes [9, 17] or asymmetric 2:1 and 1:2 electrolytes [18].  

2.2.2 In an Overlapped EDL 

An overlapped EDL is formed as the EDLs from opposite surfaces tend to have a 

strong interaction. For a specific system, the existence and the degree of the EDL overlap is 

characterized by the comparison of the distance between opposite surfaces with the Debye 

length. The overlap of the EDLs readily occurs in dilute electrolyte solution confined in 

structures at nanoscale. For instance, in a channel with a half height H of 33 nm, the 
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monovalent electrolyte solution needs to be below 0.1 mM to form a strongly overlapped 

EDL with H < 1. 

The EDL overlap brings some unique features of ion distribution and electric po-

tential field. First, no electroneutrality exists in the fluid. The enrichment of counterions 

and the depletion of coions are spanned in the whole space including the region away from 

the solid surfaces. Second, there is no uniform electric potential field in the fluid. In the 

absence of EDL overlap, the electric potential rapidly decays to its bulk value and then 

maintains the value in the region out of an EDL. Such uniform electric potential distribu-

tion cannot be achieved in an overlapped EDL due to the loss of charge neutrality. The 

potential significantly decays from the surface to the midplane between the interacting 

surfaces. 

The Boltzmann distribution was widely assumed in most studies dealing with an 

overlapped EDL. Stein and his colleague studied the pressure-driven flow in a nanochannel 

between two reservoirs[5, 6, 19-21]. They proposed a model with the assumption of the 

Boltzmann distribution for all species in the channel. The enrichment and depletion effects 

at the channel midplane due to the ELD overlap was particularly concerned by setting a 

nonzero electric potential. Baldessari and Santiago [22] suggested the same treatment, 

while Wang et al. [23, 24] used an enrichment coefficient denoted by the comparison of ion 

concentrations after and before the ELD overlap. Boltzmann equilibrium is established as 

salt solutions are relaxed for a sufficiently long time [25]. 

However, it is questionable to assume the Boltzmann distribution in an overlapped 

EDL. It was argued that the Boltzmann distribution is valid only for an infinite space where 

the electrolyte solution far away surfaces is neutral [7, 26-28]. Generally speaking, the 
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Nernst-Planck(NP) equation is a better description for ion distributions under this situation. 

The application of the NP equation requires additional constraints to complete modeling. 

The ion distribution obtained from the NP equation is usually referred to concentrations at 

the channel center. Their values are unknown under conditions of the EDL overlap, since 

they are not simply equal to those in the original bulk with the absence of the EDL overlap. 

Additional constraints must be added to determine the reference concentrations. Tessier 

and Slater put forward with a model for static salt solutions in a closed channel using the 

NP equation [29]. They assumed the conservation of each chemical species in the channel, 

including in the solution and on the surfaces. Li and his colleagues [7, 26-28] assumed the 

species conservation along the cross section including surfaces in their model. Water dis-

sociation was particularly involved in their model to account for the enrichment of hy-

dronium ions. With the assumption of species conservation, the modeled ion distributions 

theoretically exist only in a closed channel. 

As far as we know, the current theoretical models are not appropriate for electro-

kinetic flows. In electrokinetic flows under conditions of the EDL overlap, ion transport 

along the flow direction is often dominated mainly by electromigration and convection, 

instead of diffusion. Apparently, the Boltzmann equilibrium is not appropriate, which 

concerns about the mechanism of electromigration and diffusion. The species conversation 

condition is not valid either as the EDLs are related to an open system in electrokinetic 

flows. Therefore, it is needed to put forward with new models to better understand elec-

trokinetic flows. 
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2.3 Mechanisms of Proton Exchange on Silica Surfaces 

The electric field in an EDL results from net charges accumulated at the solid-fluid 

interface. Typical physical mechanisms by which the charges are generated include a) the 

dissociation and association of surface chemical groups, b) ion adsorption from electrolyte 

solution, and c) crystal lattice defects. Charges on silica surfaces are mainly caused by the 

first two mechanisms that we briefly discuss below.  

Typical chemical reactions relating to silanol groups at silica surfaces are written as 

[30] 

                                                                                                                                  (2-1)  

     
                                                                                                                            (2-2)  

Further protonation of siloxane groups(SiOH
+
2) is disregarded as it is extremely low except 

under very acidic solutions(pH < 3) [31, 32]. Similarly, the protonation of other surface 

chemical groups such as Si2O is considered inert [16, 31]. The dissolution of silica into 

silicate ions(HSiO
-
3) is also ignored, which is considerable only in a very basic solution(pH 

> 9) [32]. The Stern layer model assumes that the charged components are located at the 

IHP. 

According to the above chemical reactions, silica surfaces can be positively 

charged, negatively charged, or neutralized, dependent on the surface pH or the surface 

proton activity, denoted by pH0. The surface pH at which negative and positive charges 

have the same number, is called the pH at the point of zero charge, denoted by pHz. The 

surface is negatively charged for pH0 > pHz as the dominant chemical reaction is the one 

described by Eq. (2-1), while positive charged for pH0 < pHz due to the domination of the 
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reaction described by Eq. (2-2). 

Once charged groups such as SiO
-
 and SiOH

+
2 are generated due to proton exchange, 

they attempt to adsorb other types of ions from the solution. This kind of adsorption is 

called nonspecific adsorption. If KCl solution is considered, for example, the following 

nonspecific adsorptions occur at the interface, 

                                                                                                                                  (2-3) 

     
                                                                                                                         (2-4) 

According to the Stern model, nonspecifically ions are located at the OHP.  

With the increase of salt concentration, more ions are nonspecifically adsorbed. 

Nonspecifically adsorbed ions has significant effects on surface charge density only for salt 

solution with at high concentration(1 mM to 1 M) [32]. Because the EDL overlap readily 

occurs in dilute salt solution(<1 mM), we ignore the nonspecific adsorption throughout the 

dissertation research. In this study, the dissociation of silanol groups accounts for the 

generation of all charges in the Stern layer. 

2.4 Coupling Effects of Surface Charges and the Bulk pH 

Surface charges have a strong interaction with the bulk pH as they both are asso-

ciated with the surface pH. At the surfaces, there is an adsorption-desorption equilibrium 

between protons and silanol groups as mentioned above. On the other hand, there is 

Boltzmann distribution inside the EDL the surface proton is related to the pH in the solu-

tions, referring to as the bulk pH, because of the electrostatic effects and Brownian motion. 

Thus, it can be anticipated that surface charge has an interaction with the bulk pH in two 
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aspects.  

First, an appropriate bulk pH adjustment changes the surface pH, and then forces 

the establishment of a new equilibrium to change the composition of surface chemical 

groups. It has been well realized in past studies that the amount or even the sign of surface 

charge is controllable by simply presetting the bulk pH with a buffer solution. The elec-

trostatic balances are dramatically sensitive to the bulk pH.  

Second, the bulk pH seems to be affected by the proton transfer as well. In recent 

experiments, a notable pH variation was observed inside a silica oxide nanochannel of ~50 

nm high in the process of filling water, 0.073-0.5 M HCl or KCl solution [33]. The reason 

was clearly concluded as the addition of surface-released protons into the bulk flow. The 

variation of bulk pH may also exist in electrokinetic flows in spite of lack of strong evi-

dence. Van der Heyden et al. [6] reported an interesting and unexplained transient behavior 

of the streaming conductance of 0.01 mM KCl solution in a silica nanochannel of 75 nm 

high, 50 m wide and 4.5 mm long. The measured streaming conductance, which is a 

quantity strongly dependent on charge density in the EDL, was often very low in hours 

upon initially filling before creeping to stable values. This phenomena can be qualitatively 

explained by the pH shifting during relaxation as discussed in Chapter 5.  

However, the possible variation of the bulk pH has not drawn sufficient attention in 

the traditional theory for electrokinetic flows. The main reason for such an omission is that 

electrokinetic flows are typically investigated within non-overlapped EDLs out of which 

surface-dissociated hydronium ions are mostly diffused into the bulk flow [27, 28]. The 

other reason is that the pH variation seems to be depressed with the addition of buffer so-

lutions, which is often the case in experimental studies [5, 6, 19, 20, 34]. When electro-
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kinetic flows are considered within an overlapped EDL, protons are confined in a narrow 

space and may be enriched so strongly as to surpass the buffer capacity, leading to an er-

roneous estimate of the solution pH if made depending on the buffer capacity. Finally, it is 

probably because the EDLs commonly exist in open systems where surface-dissociated 

hydronium ions are eventually diffused out of the EDLs into somewhere else, such as a 

reservoir. Thus, the consideration of the effects of surface chemical equilibrium on the bulk 

pH is particularly noteworthy under conditions of EDL overlap. The coupling effects be-

tween the bulk pH and surface charges must be taken into account in modeling electroki-

netic flow within an overlapped EDL. 

2.4 Dissociation Equilibrium of Water  

In order to model the variation of the bulk pH, it is necessary to consider the 

pH-determined chemical equilibrium in the solution, which were ignored in most previous 

models dealing with the effects of EDL overlap [19, 22, 35-38]. In the absence of the pH 

related buffer electrolyte in the solution, protons(hydronium ions) are in balance with hy-

droxide ions and water molecules. The dissociation equilibrium of water plays a critical 

role in buffering the variation of protons in the solution. Meanwhile, the transport of hy-

dronium and hydroxide ions needs to be taken into account though their numbers might be 

orders of magnitude less than those of other electrolyte in the bulk solution. Thus, it is 

needed to develop the overall model including water dissociation equilibrium, surface 

equilibrium and the contribution of hydronium and hydroxide ions for better understanding 

electrokinetic flows under conditions of EDL overlap.  
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CHAPTER 3  
 

MATHEMATIC DESCRIPTIONS OF ELECTROKINETIC FLOWS 

In this chapter we present the mathematic description of electrokinetic flows of 

interest. The governing equations of electrokinetic transport phenomena in the diffuse 

layer are presented for continuous, incompressible and Newtonian flows in the first section. 

In the next section, we introduce a theory that combines the zeroth-order Stern model with 

the site dissociation model to describe the electric field in the Stern layer including on the 

surface. The mathematic framework presented in this chapter has been well established for 

over at least decades, and will be applied for specific modeling throughout the dissertation. 

3.1 Electrokinetic Transport in the Diffuse Layer 

Transport phenomena we discuss here are restricted to the diffuse electrical layer, 

where both fluid and chemical species are assumed to be mobile according to the Stern 

layer model.  

3.1.1 Fluid Transport 

The continuum approach can be used to describe fluid transport in nanofluidic 

systems of interest(> 10 nm). A straightforward analysis on the applicability of continuum 

theory via Knudsen number suggests that the continuum theory breaks down for water 

transport in systems with a characteristic length as small as ~3 nm, provided that Knudsen 

number of 1 is defined as the transition point between continuum and discrete flow [4]. It is 

also concluded by the comparison between molecular dynamics and continuum simula-
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tions that the continuum theory is applicable in channels with a height down to 2.22 nm 

[39]. Thus, electrokinetic flows are described by the Navier-Stokes equations. 

The continuity equation is given by, 

                                                                                                                                              (3-1) 

where u is the bulk flow velocity, and fluid is treated as incompressible because the 

pressure increase is usually restricted to a few bars in most applications of electrokinetic 

flows. 

Electrokinetic flows are characterized by the presence of an electric body force 

which arises from the existence of charged species in an electric field. The electric field 

associated with electrokinetic flows is commonly generated by one or a few sources in-

cluding net surface charges, an applied electric potential gradient, and/or a streaming po-

tential gradient which is induced by the accumulation of counterions downstream in the 

pressure-driven flow. Therefore, the momentum equation with an electrical body force 

term is given by  

 
  

  
                                                                                                      (3-2) 

where p is the pressure,  the fluid density, t the time,  the fluid viscosity, F the Faraday 

constant,  the electric potential, 
e
 local charge density which is defined by 

e = Fzici. F 

is Faraday's number, z the valence, c the molar concentration, and subscript i denotes ith 

ion. The nonlinear advection term on the LHS is retained for completeness, although it is 

usually negligible because of low Re number in most of the electrokinetic flows. In 

accordance with the Stern model,  is assumed to be constant everywhere in the diffusive 

layer as well as in the region out of the EDL. A recent review on nanofluidics also shows 
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that this assumption is unlikely to be broken unless the channel is extremely narrow(height 

< 5nm) [4]. The third term on the RHS accounts for the electrical body force, which is 

insignificant out of the diffuse layer due to the electroneutrality. The advective term on the 

LHS can be neglected in most cases of electrokinetic phenomena as the Reynolds number 

usually falls between 10
-6

 ~ 1. 

3.1.2 Chemical Species Transport 

The motion of chemical species in electrokinetic flows are generally attributed to 

the diffusion due to the Brownian motion, the convection accompanying with fluid 

transport, and the electromigration caused by the electrostatic forces. Aside from physical 

mechanisms, some species are in chemical equilibriums so that they may transport in 

various chemical groups. We first describe the species transport in strong electrolyte solu-

tions where the electrolyte is fully dissociated to free ions, and then discuss the transport in 

weak electrolyte solutions.  

3.1.2.1 Strong Electrolyte 

A strong electrolyte such as KCl is completely dissociated into free ions, which 

have no chemical binding with each other. According to the mass conservation law, the 

transport of these ions in the absence of chemical reactions is governed by the NP equation,  

   

  
                                                                                                                                      (3-3)  

              
     

  
                                                                                                    (3-4) 

where j is the flux density, D the diffusivity, R the universal gas constant, and T the 

temperature. The electrolyte mobility is related to the diffusivity as Di/RT using the 
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Nernst-Einstein relation. The first term of Eq. (3-3) represents the rate of change of ion 

concentration in a unit volume while the second term is the rate at which ions enter the 

volume. The terms on the RHS of Eq. (3-4) represent the effects of diffusion, convection 

and electromigration, respectively. The NP equation is also applicable for neutral 

components whose transport is governed by diffusion and convection. Under some special 

conditions, such as at electrostatic equilibrium, the NP equation can be simplified to give 

an explicit expression of ion concentrations in terms of the electric potential. 

At electrostatic equilibrium, the NP equation leads to the Boltzmann distribution. 

The diffusion and electromigration must be in balance with each other since the convection 

term and the time-dependent term in Eq. (3-3) are zero. For an infinite large plane surface, 

in a Cartesian coordinate system whose y direction is normal to the plane, Eq. (3-3) is re-

written as 

 
    

    
 

  

 

  
   

  

  
                                                                                                              (3-5) 

The potential and ion concentration vary only along y direction in an EDL. Provide that the 

electrolyte solution is confined in a half-infinite space, an electroneutrality condition is 

achieved at an infinite distance away from the surface(y = ∞), such that  
        

  
 

       

  
   and ci(y = ∞) = ci,∞. Integrating Eq. (3-5) twice with respect to y and applying 

the boundary conditions at y = ∞, yields the Boltzmann distribution, 

             
    

  
                                                                                                                   (3-6) 

where ci,∞ is the original ion concentration, and (y = ∞) is referred as zero. Though Eq. 

(3-6) is derived from the 1D variation of ion concentration and electric field, it holds in 
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three dimensional space as long as the electrolyte solution is at equilibrium and the 

electroneutrality exits somewhere in liquid. 

Under conditions of electrokinetic flows, the derivation of the Boltzmann distri-

bution from the NP equation is pretty strict, requiring a few assumptions: a) ion distribution 

is stationary to remove the time derivative term, b) Significant variation of concentration 

and electric potential occurs only normal to the surfaces, c) the EDLs are not overlapped so 

that the original bulk concentration remains far away from the charged surface. The 

streaming potential field is commonly much smaller than the internal field caused by 

surface charges. Therefore, when the flow is fully developed and at steady state, the as-

sumptions of a) and b) are acceptable. The applicability of the Boltzmann  distribution 

depends on whether the EDLs are overlapped or not. For the fully-developed steady flow, 

Eq. (3-3) is simplified to  

 
    

    
 

  

 

  
   

  

  
                                                                                                              (3-7) 

where  is the potential field caused by surface charges and normal to the wall. In the 

absence of EDL overlap, the original ion concentration remains in the channel, i.e. ci(y = ∞) 

= ci,∞. The solution to Eq. (3-7) can be obtained in a way similar to the derivation of Eq. 

(3-6) and gives rise to 

             
    

  
                                                                                                                   (3-8) 

The identity of Eqs. (3-6) and (3-8) demonstrates the existence of the Boltzmann 

distribution in a thin EDL under the current flow conditions. However, the presence of 

EDL overlap breaks down the Boltzmann distribution as the last assumption mentioned 

above is not satisfied. Nevertheless, Eq. (3-7) can be similarly solved, yielding [8], 
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                                                                                                                     (3-9) 

where subscript c represents quantities at the position where the opposite EDLs meets, and 

c is imposed as zero. In a nanochannel, for example, this position is regarded as the 

channel midplane. ci,c are unknowns and need to be solved by applying some other 

constraints. 

3.1.2.2 Weak Electrolyte 

As a weak electrolyte is dissolved in water, its individual components do not 

completely dissociate, and their transport may be significantly affected by the interaction 

between them. Buffer solutions, containing at least a weak electrolyte, have been widely 

used in experimental studies in attempt to control the pH in an EDL. However, the 

transport of buffer solution was barely considered in modeling electrokinetic flows in past 

studies, as the buffer components are generally a few orders of magnitude less than other 

electrolytes of interest. Because the EDL overlap readily occurs in dilute ionic solutions 

with relative concentrate buffer, the influence of buffer solutions becomes considerable on 

the structure of the EDL. Thus, it is of importance to understand the transport of weak 

electrolytes, particularly for electrokinetic flows within an overlapped EDL. 

For simplicity we consider binary electrolyte the following dissociation reaction,  

                                                                                                                                    (3-10) 

The relation between the components is related to the dissociation equilibrium constant 

KAB, which is defined as 

                                                                                                                                  (3-11) 
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We further assume that the chemical equilibrium is established much faster than other 

physical processes. Therefore, KAB can be assumed to identical in electrokinetic flows.  

To account for the relevant chemical changes, a source term is added to the con-

servation equation of A
+
, B

-
, and AB as below 

   

  
                                                                                                                             (3-12) 

where G is the generation rate per unit volume. If there is no chemical reactions but the one 

in Eq. (3-10), the generation of A
+
 and B

-
 must be at the same amount as the elimination of 

  . The relation between the generation rates of A
+
, B

-
, and AB is given by 

                                                                                                                             (3-13) 

The coupling transport of all the components in electrokinetic flows is the most important 

feature of weak electrolyte solution. 

A very special case of the weak electrolyte is water, which itself is at the dissocia-

tion equilibrium between H
+
, OH

-
 and neutral water molecules. Without considering any 

other pH related buffer, the transport of H
+
 and OH

-
 in water can be obtained by rewriting 

Eqs. (3-11)-(3-13) as 

  
  

  
                                                                                                                   (3-14) 

     

  
                                                                                                               (3-15) 

                                                                                                                                        (3-16) 

                                                                                                                                   (3-17) 

Applying Eqs. (3-4) and (3-15)-(3-17) to eliminate the source term in Eq. (3-14), the NP 

equation of H
+
 is given by 
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             (3-18) 

Eq. (3-18) can be successfully reduced to either Eq. (3-5) or (3-7) if transport of H
+
 is 

assumed under the corresponding flow conditions. Therefore, the distribution of H
+
 in the 

EDL is described by Eq. (3-6), (3-8) or (3-9). We use those analytical solutions for 

modeling the distribution of H
+
 in this study. 

3.1.3 Electric Field 

The electrical potential and ion concentration are related by the Poisson equation 

      
   

   
                                                                                                                             (3-19)  

where   is the dielectric constant of the electrolyte solution and is assumed to be constant 

everywhere in the bulk solution starting from the shear plane. 

 is the dielectric 

permittivity of vacuum. 

The potential in electrostatic equilibrium situation can be determined by combining 

the Poisson equation of Eq. (3-19) and the Boltzmann equation of Eq. (3-6) 

      
         

   
      

    

  
                                                                                            (3-20)  

Eq. (3-20) is so called the Poisson-Boltzmann equation (the PB equation) which is one of 

the most important equations for fundamental understanding of colloids, electrochemistry 

and electrokinetic phenomena. The PB equation is usually expressed in a dimensionless 

form, such as 

                                                                                                                         (3-21)  

where  *
= -ziF/RT, 


, and H is the characteristic length. F2

ci,∞z
2
i /RT)

1/2
, 

is the Debye-Hückel parameter. Superscript * represents dimensionless quantities.  



24 

 

 

 

3.2 Electric Field and Surface Charge in the Stern Layer 

In this section we introduce the classic theory of modeling the electrical field in the 

Stern layer and the charge density at silica surfaces. 

3.2.1 Zeroth-Order Stern Model 

The simplest one of Stern models, called zeroth-order Stern model [30] or the basic 

Stern model [15, 40] assumes that only specifically adsorbed ions are attractive at the IHP 

in the Stern layer. There is free of ions between the IHP and the OHP, and nonspecifically 

adsorbed ions at the OHP. According to Gauss's law, net charge in the EDL including on the 

surface must be in neutrality, yielding 

                                                                                                                                       (3-22)  

where d is the total charge density of mobile ions in the diffusive layer, and  is the 

charge density at the IHP, namely surface charge density.  

Since no charges are contained between the surface and the OHP, this region acts as 

a parallel plate capacitor whose effective capacity is characterized by  

  
  

     
                                                                                                                                    (3-23)  

where  is surface potential, the potential at the IHP, and d is the potential at the OHP. 

If we further regard the OHP as the shear plane beyond which fluid may start to 

move, the effective capacity can be rewritten as  

  
  

    
                                                                                                                                      (3-24)  

where  is the potential at the shear plane.  

The zeroth-order Stern model is an appropriate depiction for dilute electrolyte so-
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lution in contact with silica surfaces. In the case of high salt concentration, we need use 

more sophisticated models such as electrical triple-layer model to concern the influence of 

nonspecifically adsorbed ions [32, 41]. 

3.2.2 Dynamic Single Site Model 

We now present a straightforward model to determine surface charge density as-

suming that charges are all generated due to the deprotonation of silanol groups. Thus, the 

surface adsorption is associated with the chemical reaction represented by Eq. (2-1), re-

written as 

                                                                                                                                  (2-1) 

The presented model is restricted to weak acidic or basic solution in which the protonation 

of silanol groups (Eq. (2-2)) is insignificant comparing to the deprotonation (Eq. (2-1)) [16, 

30] and can be ignored. Without the consideration of the protonation effects, the surface is 

always negatively charged no matter what the bulk pH is. It is in apparent contradiction 

with the fact that positively charges dominate silica surfaces in a strong acidic solution. 

If surface silica components do not diffuse inside the surface material or dissolve 

into the bulk solution, the total concentration of chargeable sits is assumed to be unchanged 

during the transient process of electrokinetic flows, yielding 

                                                                                                                                  (3-25)  

where total, SiOH and SiO- are the molar density of total chargeable sites, SiOH groups and 

SiO
-
 groups on the surface. totalAv, where  is the site number density and Av is the 

Avogadro's number. 

The governing equation for dynamic association-dissociation process of silanol 
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groups is given by 

      

  
                                                                                                                 (3-26)  

Here, c
H+,0

 is the surface activity of protons, which is assumed to equal its local molar 

concentration. K1 is the reverse equilibrium reaction rate constant with which the 

concentration of SiO
-
 and H

+
 determines the binding rate of H

+
 on surfaces. K2 is the 

forward equilibrium reaction rate constant used to characterize the dissociation rate of 

SiOH, or the generation rate of H
+
 due to the dissociation. K1 and K2 are correlated using 

the logarithmic dissociation constant, pK, that is  

  

  
                                                                                                                                 (3-27)  

Combing Eqs. (3-25) and (3-26), SiO- is related to c
H+,0

 in terms of surface properties 

      

  
                                                                                                        (3-28) 

Surface charge density  is attributed to the dissociation of silanol groups, giving 

rise to  

                                                                                                                                        (3-29) 

When the equilibrium state is achieved, the density of SiO
-
 groups does not change 

with respect to time, 

      

  
                                                                                                                                      (3-30) 

Combining Eqs. (3-27)-(3-30), the surface charge density at equilibrium is given by 

    
       

           
                                                                                                                     (3-31) 

3.2.3 Two Sites Model 
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When the surface pH is close to pHz in a acidic solution, the magnitude of surface 

charge results from the balance between SiO
-
 and SiOH

+
2 groups. It is better to model the 

surface charge density on silica surfaces using the two sites model which assumes the 

following chemical reactions 

                                                                                                                                  (2-1) 

     
                                                                                                                            (2-2) 

with the dissociation constants Ka and Kb 

          
       

    

     
                                                                                                       (3-32) 

          
      

    

 
     

 
                                                                                                       (3-33) 

Again, we assume that the number of chargeable sites is not varied during the 

proton transfer process, that is  

                         
                                                                                                (3-34) 

Surface charge density is related to charged sites on the surface by 

           
                                                                                                                    (3-35) 

Combining Eqs. (3-32) and (3-33) and applying SiOH+
2
 =SiO-, we can obtain the 

pH of a point of zero charge 

    
       

 
                                                                                                                            (3-36) 

It is usually to define the difference of the logarithmic equilibrium constants pK for 

convenience 

                                                                                                                                (3-37) 
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pK and pHz along with total are the most important parameters in this approach to model 

the related chemical reactions. All of them are properties of the surface material. 

From Eqs. (3-32)-(3-37), we may establish the relation between the charge density 

and the proton activity on the surface as 

    
                          

                     
                                                                                                 (3-38) 

where  = 2 × 10
-pK/2

, and pH0 is the surface pH given by c
H+,0

= 10
-pH0

. 

In the traditional theory of dealing with a thin EDL, the surface activity of protons 

is related to the bulk activity by Eq. (3-6) due to the Boltzmann distribution. Thus, Eq. 

(3-38) is rewritten as  

   
                          

   
  

 

                     
   
  

 
                                                                                         (3-39) 

where pH∞ is the original bulk pH given by c
H+,∞

= 10
-pH∞

. Eq. (3-39) was first derived by 

Healy and White [30].  

For the steady state flow in an infinite long nanochannel, the distribution of protons 

is governed by Eq. (3-9). And we use the zeroth-order Stern layer model to describe the 

electric field in the Stern layer. The substitution of Eqs. (3-9) and (3-24) into Eq. (3-38) 

gives 

   
                           

 

  
 
  
 

    

                      
 

  
 
  
 

    
                                                                                 (3-40) 

where pHc is the pH at the channel center, given by c
H+,c

= 10
-pHc

. Eq. (3-40) defines  as a 

function of  and pHc in the presence of EDL overlap.  
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CHAPTER 4  
 

SALT FREE WATER IN A NANOCHANNEL  

4.1 Introduction 

Salt-free water in a slit-like nanochannel is investigated in this chapter as first step 

for studying the impact of surface association-dissociation equilibriums on the bulk pH 

under conditions of the EDL overlap. We started the research with salt-free water mainly 

because of the simplicity that no salt ions but hydronium and hydroxide ions are taken into 

account. Through this study on salt-free water, however, a solution methodology can be 

established for further analysis on dilute salt solution in a nanochannel. In the meanwhile, 

the results we obtained from salt-free water could be used for reference in modeling dilute 

salt solutions, which approach salt-free under the condition of extremely low salt concen-

tration.  

In this chapter, we aim to quantify the effects of surface-solution equilibrium in-

teractions on the bulk pH for salt-free water in an overlapped EDL, and to provide an ap-

plicability range of an approximate model. The electric potential field and ion distribution 

across the channel are modeled by the Poisson equation and the NP equation, with the 

consideration of water dissolution equilibrium and surface adsorption-desorption equilib-

rium. Exact and approximate analytical solutions of the Poisson-Nernst-Planck (PNP) 

equation are derived for water, but they can be applied for other binary salt solutions as 

well. The exact solution, which is expressed in terms of Jacobian elliptic functions, is ac-

curate but a little complicated for applications. On the contrary, the approximate solution is 

easy to use but restricted to circumstances of strong EDL overlap. Based on analytical 
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solutions of ion distribution and electric field, the dynamic behaviors of the pressure driven 

flow are next analyzed. The established solution methodology for salt-free water is applied 

to salt solutions in Chapter 5.  

4.2 Electric Potential Field and Ion Distribution 

Salt-free water is investigated in a slit-like silica channel with the EDL whose 

thickness is similar to or less than the channel height. Hydronium and hydroxide ions are 

the only charged species considered in water. The studied channel is bounded between two 

plane walls with a height of 2H, and is sufficiently long and wide so that the entrance ef-

fects and sidewall effects are negligible. A Cartesian coordinate system is used where the 

x-axis is in the streamwise direction and the y-axis in the transverse direction. The walls are 

located at y = ±H, while the channel midplane at y = 0. 

4.2.1 Mathematic Model 

The electric field in an EDL can be regarded as the superposition of two inde-

pendent electric field components: one is along the streamwise direction caused by an 

induced or applied external electric field, and the other is along the transverse direction 

created by the surface charge. In electrokinetic flows, the streamwise potential gradient is 

generally much smaller than the transverse one in an EDL. Thus, the transverse electric 

field that can be related to ion distribution by the Poisson equation [9], and Eq. (3-20) is 

rewritten as 

   

     
        

   
                                                                                                                           (4-1)  
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where  is the transverse electric potential in the channel, c± are molar concentrations of 

counterions and coions. Silica surfaces are commonly negatively charged. Thus, H
+
 is the 

counterion enriched in the EDL while OH
-
 is the coion to be concerned. 

The influence of the transverse electric field on ion distribution is described by the 

one dimensional NP equation. Distributions of H
+
 and OH

-
 are given by Eq. (3-9), re-

written as 

           
 

  
                                                                                                           (4-2)  

where c is the potential at the channel midplane, against which the transverse electric 

potential is evaluated. Its value is not set as zero as we did in derivation of Eq. (3-9) in 

order to clarify its physical meaning in later discussion. Because the opposite EDLs are 

overlapped, counterion is in higher concentration at the channel center than what it was in 

the original liquid, while coion is in lower concentration. Hence c±c are unknown priories 

whose determination is critical to quantify ion distributions across the channel. 

By combining Eq. (4-2) with Eq. (4-1), and normalizing relevant parameters, the 

dimensionless PNP equation is expressed as following 

    

    
 

     

 
    

          
      

       
                                                              (4-3)  

where *
= -F/RT, y

*
 = y/H, c

*
±= c±/c∞, and  2c∞F

2
/


RT. c∞ is the original molar 

concentration of H
+
 or OH

-
 in water, and superscript 

*
 represents dimensionless 

parameters. Eq. (4-3) can be rewritten in terms of hyperbolic function as [29] 
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                                                                                 (4-4)  

where eff = c*
+c c

*
-c


 is an effective Debye parameter, and *

chm = ln(c
*
+c/c

*
-c)/2 is 

associated with the enrichment and depletion effects at the channel midplane. It is 

equivalent to an additional electric potential being combined with the real electric field. Eq. 

(4-4) approaches the PB equation (Eq. (3-21)) as eff   and *
chm  0 in the absence of EDL 

overlap.  

Eq. (4-4) is subjected to the following boundary conditions at the channel center 

         

                 
                                                                                                (4-5)  

The first boundary condition is symmetric condition, and the second one results from the 

definition of the potential reference. It should be noted that Eqs. (4-4) and (4-5) are not 

limited to salt-free water. They as well as the corresponding solutions are applicable for 

other symmetric salt solutions, such as KCl solution.  

4.2.2 Exact Solution 

The exact analytical solution of Eq. (4-4) subject to Eq. (4-5) has been derived by 

Behrens and Borkovec [14, 15]. In the case of *
  +

*
chm - 

*
c > 0, it can be written as 

     
                                                                                                                        (4-6) 

where cd is a Jacobian elliptic function of argument n = effHy
*
exp(-*

chm/2)/2, and 

parameter m = exp(-2*
chm). Behrens and Borkovec [14] proposed a solution in the same 

form but with different Jacobian argument and parameter such as, n = Hy
*
exp(*

c/2) and m 

= exp(-2*
c), where *

c is a specific nonzero quantity accounting for the enrichment and 

depletion effects in an overlapped EDL. Our solution in Eq. (4-6) is fundamentally unlike 
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theirs by distinguishing *
chm from *

c. With the introduction of *
chm , we improve the 

understanding of the electric field in an overlapped EDL. Also, our solution is different 

from theirs in replacement of  by eff . Moreover, one can tell from the format of Eq. (4-6) 

that the difference between  and c, instead of the absolute value of c, is the one that 

really matters to ion distribution. Hence, c will be treated as zero hereafter to compact the 

expressions. 

Based on the resulting electric field, more parameters can be determined. First of all, 

according to the basic Stern model which has been introduced in Section 3.2, Zeta potential 

 is equal to the electric potential at the OHP, which can be obtained by setting y
*
 = 1 in Eq. 

(4-6) 

  
   

 
                                                                                                                     (4-7)  

Next, the basic Stern model also assumes that surface charge density  is equal to 

the total charge density in the diffusive layer in magnitude according to Eq. (3-22). Thus, 

 is related to the electric field by the Gauss's law 

    
     

  

         

                                                                                                                    (4-8)  

where the dimensionless electric potential gradient normal to the wall is obtained by taking  

the derivative of Eq. (4-6) with respect to y
*
 

   

   
         

 

    
 

  
           

            
                                                                                   (4-9)  

Substituting Eq. (4-9) into Eq. (4-8),  is expressed in terms of *
chm and eff 

               
          

  

             

             
                                                                     (4-10)  

Finally, combining Eq. (4-6) with Eq. (4-2) and normalizing, ion distribution in the 
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channel is given by 

  
     

                                                                                                                            (4-11)  

Ion distribution, like the transverse electric field, Zeta potential and surface charge density, 

is modeled in terms of two independent variables, *
chm and eff. To complete the modeling, 

two more constraints are needed to determine the values of *
chm and eff. 

4.2.3 Approximate Solution  

When the channel is sufficiently narrow to have the EDLs strongly overlapped, 

counterions could be in excess of coions by several orders of magnitude in the entire space 

including the channel center. Thus, coions have very little contribution to special charge 

density and can be disregarded. Mathematically, the domination of counterions over coions 

implies *
chm = ln(c

*
+c/c

*
-c)/2 >> 0 or*

  +
*
chm >> 0, leading to sinh*

  +
*
chm)  exp*

  

+*
chm)/2. With the omission of coions, Eq. (4-4) is simplified to 

    

     
     

 
   

                                                                                                                   (4-12) 

whose analytical solution subjected to the boundary conditions Eq. (4-5) has been 

proposed in earlier studies [9]. The electric field is related to the concentration of 

counterions as 

            
        

 

 
                                                                                                      (4-13)  

Using a methodology similar to the derivation for the exact solution, the following 

relations can be obtained from Eq. (4-13) 
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                                                                                                           (4-14) 

    
          

 

 
    

      
 

 
                                                                                               (4-15)  

  
     

       
        

 

 
                                                                                                        (4-16)  

Overall, the electric field, surface charge density, and concentration profile of counterion 

are dependent on only one independent variable c
*
+c, implying weak coupling comparing to 

the exaction solution. One can first determine c
*
+c using one supplemental constraint, and 

then c
*
- using the other supplemental constraint. 

When applicable, the approximate solution has an advantage over the exact solu-

tion because it is more convenient to treat trigonometric functions in calculations than 

Jacobian elliptic functions. It is also easier to determine unknown priories in the approx-

imate solution with relatively weak coupling. Furthermore, the approximate solution has 

different application range. When asymmetric electrolyte solution is considered, the ap-

proximate solution is acceptable as long as counterions have the same valence, while the 

exact solution presented above definitely fails. Thus, we still benefit from the approximate 

solution in spite of the existence of the exact solution. 

4.2.4 Determine Unknown Priories  

To determine *
chm and eff for the exact solution, or c

*
±c for the approximate solution, 

two supplemental constraints are needed, including the dissociation equilibrium of water 

and the chemical equilibrium on surfaces.  

H
+
 and OH

-
 are assumed to be in equilibrium with water molecules in the bulk. The 

addition of surface-dissociated H
+
 shifts the original water equilibrium. If the dissociation 
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constant is assumed to be the same everywhere [27, 28], the following relations are ob-

tained 

  
    

     
     

                                                                                                                 (4-17)  

With the use of Eq. (4-17), eff is equal to even under conditions of EDL overlap, which is 

always true for salt-free water but questionable for salt solutions. As we discuss in next 

chapter, the EDL overlap makes eff different from  for electrokinetic flows of salt 

solution.  

The surface chemical equilibrium provides a boundary condition to specify the 

influence of surface material on the electric field. Three types of surface conditions have 

been used in the literature: (i) prescribed Zeta potential, (ii) prescribed surface charge 

density, and (iii) dynamic adsorption-desorption equilibrium on the surface. Zeta potential 

and surface charge density are not natural properties of surface material. Fundamentally, 

they depend on the properties of both the surface and the electrolyte solution next to it. In 

recent studies, the site-binding theorem has drawn more attention since it reflects the 

chemical nature of the interface and charging process.  

In this study, we assume SiOH, SiO
-
 and SiOH

+
2 groups are at chemical equilibrium. 

According to the two sites model, the surface charge density is expressed as an implicit 

function of  and pHc via Eq. (3-40), rewritten as 

   
                          

 

  
 
  
 

    

                     
 

  
 
  
 

    
                                                                                  (4-18) 

where pHc = pH∞ - log10(c
*
+c),  and  are given by Eqs. (4-7) and (4-10) for the exact 

analytic solution, or Eqs. (4-14) and (4-15) for the approximate solution. We use the two 

sites model instead of the single site model because the EDL overlap effects might 
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significantly increases the acidity of salt-free water, making the deprotonation of silanol 

groups as important as the protonation. Hence, it is better to use the two sites model for 

modeling surface charge density.  

To determine the priories of *
chm and eff in the exact solution, the coupling equa-

tions of Eqs. (4-7), (4-10), (4-17) and (4-18) were solved using MATLAB R2009a software 

package. The priory of c
*
+c in the approximate solution was determined by solving Eqs. 

(4-14), (4-15) and (4-18), and then c
*
-c was obtained from Eq. (4-17). It should be noted that 

the ion distribution and electric field are self-consistently determined as the derivation uses 

no information relating to flow conditions. It means that the EDL structure in salt-free 

water is unchanged no matter what water is in motion or stationary. 

4.3 Electrokinetic flow 

After the electric potential field and ion distribution are modeled, we turn our at-

tention to the steady-state pressure-driven flow of water in a long slit-like nanochannel. 

The flow creates a streaming potential field, which pushes counterions against the bulk 

motion. The bulk velocity under the influence of the streaming potential field is given by 

[9] 

  
  

  
          

    

 
     

 

 
                                                                                   (4-19)  

where Px = -dP/dx is the pressure gradient, and Ex is the electric field strength caused by the 

streaming potential. The first term on the RHS represents the contribution of the pressure 

gradient to the bulk flow, and the second term is the velocity reduction due to the streaming 

potential. Substituting Eqs. (4-6) and (4-7) into Eq. (4-19) yields 
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                                                                                                (4-20)  

where f(y
*
) is a function representing the difference between local electric potential and 

Zeta potential 

           
    

 
   

              

        
   

The transport of ions in the channel is governed by the NP equation. Assuming the 

flow is fully developed, the concentration gradient along the streamwise direction is neg-

ligible. The average ion flux per cross-sectional area is obtained by integrating Eq. (3-3) 

            
 

 
                                                                                                                    (4-21)  

where u± is the velocity of H
+
 and OH

-
 

      
 

   
                                                                                                                       (4-22) 

 The streaming potential field exerts an electric force on charged ions, creating additional 

velocity component besides the bulk velocity. The ionic current density through the 

channel is given by  

                                                                                                                                  (4-23)  

At steady state, the transport of H
+
 and OH

-
 must be in balance to give  

                                                                                                                                                (4-24)  

Combining Eqs. (4-21)-(4-24), the streaming potential gradient is related to the 

pressure gradient as following 

   
  

  

    
    

         
 
    

  
   
 

   
    

        
 

   
   

      
     

 
    

                                                                    (4-25)  

The streaming potential field always causes additional flow friction, which is called 

the electroviscous effect. By integrating the bulk velocity distribution in Eq. (4-20) across 
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the channel, the volume flow rate is given by 

  
    

  
   

      

 
        

 

 
                                                                                   (4-26)  

If setting Ex = 0 in Eq. (4-26) to get rid of the influence of the streaming potential field, the 

obtained flow rate is identical to that of the classical Poiseuille flow between two flat plats. 

The pressure gradient required to generate the same flow rate Q in the Poiseuille flow is 

denoted by Px0. Thus, the electroviscous effect can be characterized by the ratio of Px to 

Px0, yielding 

  

   
   

    

  

  

   
      

 

 
                                                                                                  (4-27)  

The value of Px/Px0 is always larger than unity, accounting for the increase of flow friction. 

4.4 Results and Discussion 

Calculations were performed for the approximate and the exact solutions using 

some common properties. The surface properties used in the calculations are pHz = 3.5, 

pK = 10, C = 2.9 F/ m
2
, and = 8.0 nm

-2
. Water is assumed at T = 25 °C with D+ = 9.31 × 

10
-9

 m
2
/s, D- = 5.28 × 10

-9
 m

2
/s,= 0.8904 × 10

-3
 Pa s, pH∞ = 7 and . The corre-

sponding Debye length  
   is 1.04 m. H varies between 0.01 m and 10 m to achieve 

various levels of EDL overlap.  

Fig. 4.1 plots the pH profiles, i.e. hydronium ion distribution, across the channel at 

κH of 0.1,1 and10, as predicted by both the exact and the approximate solutions. The pre-

dicted pH maintains at the original value of 7 in the center region of y
*
 = 0~0.4 at κH = 10, 

showing the absence of the EDL overlap in this case. In contrast, the pH at the channel 
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center decreases to 6.2 and 4.8 at κH = 1 and 0.1, respectively. Such a significant deviation 

from the original bulk pH signifies the appearance of an overlapped EDL. Regardless of 

the existence of EDL overlap, the pH increases from near the wall toward the center since 

hydronium ions are attracted to the negatively charge wall. The figure also shows a good 

agreement between two analytical solutions for κH = 0.1 and 1, implying that the ap-

proximate solution is very accurate under conditions of strong EDL overlap. 

 

 
Fig. 4.1. pH profile across the channel at κH = 0.1,1 and 10. 

 

Fig. 4.2 plots profiles of the pH at the channel center pHc, and the one at the wall 

pH0, across the channel for various κH. Both pH profiles are flat for κH > 4, and pHc and 

pH0 are almost fixed to 7 and 4.8, respectively. The fixed pH at the channel center and at 

the wall implies the pH distribution near the walls is independent of channel size, as the 

opposite EDLs are too far to interact with each other in the corresponding channels. Due 

the EDL overlap effects, the bulk pH may notably decreases with the decrease of κH or 



41 

 

 

 

channel size. An apparent decrease of pHc occurs at κH = 4, indicating the start of EDL 

overlap. In contrast, the decrease of pH0 seems delayed, and it appears only in much nar-

rower channels with κH < 0.2 as shown in the inset of Fig. 4.2. As a result of the asyn-

chronous pH change, there is less different between pHc and pH0 for smaller κH. Hence, the 

increasing EDL overlap causes hydronium ion distribution more concentrated and more 

uniform inside the channel.  

 

 
Fig. 4.2. Dependence of the pH at the midplane and at surfaces on EDL overlap 

 

Fig. 4.3 plots the dimensionless electric potential profiles across the channel at κH 

of 0.1, 1 and 10. The electric potential decreases from the maximum at the wall to zero at 

the channel center in all three profiles. As discussed earlier, the center potential is not a 

contributing factor for the electric field and was treated as zero in the calculation. There-

fore, the potential should be understood as the potential difference above the center. The 

figure shows the profile for κH of 10 is almost flat in the center region while the potential 
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decay is fully completed in a distance of 4    away from the wall. It suggests that the 

thickness of the EDL is about 4   , in agreement with the results obtained from Fig. 4.2 

that the EDL overlap starts at κH = 4. The profiles for κH of 0.1 and 1 are nearly flat but 

continuously dropping from the wall, reflecting the flat curving of the corresponding pH 

profiles in Fig. 4.1. 

 

 
Fig. 4.3. Potential profiles across the channel at κH = 0.1, 1 and 10 

 

Fig. 4.4 shows the influence of EDL overlap on *
 (y

*
 = 1), Zeta potential in di-

mensionless form, and *
chm, the equivalent electric potential that quantifies the enrichment 

and depletion effects at the midplane. Fig. 4.5 plots  as a function of κH. The figures 

show that all three quantities are independent of κH for κH > 4. The independence is due to 

the absence of EDL overlap again. With the decrease of κH in the κH range of less than 4, 

there is a remarkable change of the EDL structure. First, Zeta potential decreases in mag-

nitude as shown in Fig. 4.4. Next, the profile of *
chm monotonically increases from zero in 
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Fig. 4.4. *
chm is a more accurate indicator for the EDL overlap than the Debye length    , 

which provides a convenient but rough estimation on the thickness of an EDL. The EDL 

overlap is regarded as starting in a channel of H = 5.7   , if we identify the overlap with 

*
chm = 0.01, or of H = 4.1    corresponding to *

chm = 0.05. Finally, surface charge density 

has a slight decrease within 5% for κH > 0.5, and a strong decrease for κH < 0.5 as shown in 

Fig. 4.5.  

 

 
Fig. 4.4. Dependence of*

 (y
*
 = 1)and *

chm on EDL overlap 

 

It is of interest to note that Zeta potential decreases as soon as the overlap starts at 

κH = 4, while surface charge density decreases only under conditions of extremely strong 

EDL overlap at κH < 0.5. This phenomenon is in consistence with the synchronous re-

sponse of pHc and pH0 to the EDL overlap as shown in Fig. 4.2. For the κH range of 0.5 ~ 2, 

the EDL effects is confined in the center region, causing little variation of hydronium ion 

concentration near the wall. Hence, surface charge density is unchanged as the same 
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chemical equilibrium remains on the surface. As κH < 0.5, hydronium ion concentration at 

the wall significantly increases under the influence of EDL overlap, effectively shifting the 

surface equilibrium and reducing surface charge to a much lower level. The results indicate 

that the prescribing surface charge density method, with applicability for κH = 0.5~2, has a 

wider application range than the prescribing Zeta potential method.  

 

 
Fig. 4.5. Dependence of surface charge density on EDL overlap 

 

The degree of EDL overlap is classified by the application range of the approximate 

solution and the prescribing surface charge density or Zeta potential method in Table 4.1. 

There is no EDL overlap as κH > 4. It is reasonable to apply either the prescribed surface 

charge density or the prescribed Zeta potential in modeling electrokinetic flows. A weak 

EDL overlap appears for κH between 2 and 4, followed by a strong EDL overlap at κH < 2. 

The comparisons between the exact and approximate model predictions in a series of fig-

ures (Fig. 4.2.- Fig. 4.5.) show they are in excellent agreement only for κH < 2. Therefore, 
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the application of the approximate solution is restricted to the EDLs with strong overlap. 

When the EDLs are extremely overlapped with κH < 0.5, the overlap effects extend over 

the entire diffusive layer, resulting to the unacceptable application of prescribing surface 

potential or surface charge density as a boundary condition on walls. Nevertheless, the 

prescribing surface charge density method is still appropriate as long as the EDL overlap is 

not extremely strong.  

 

Table 4.1. Regimes of EDL overlap 

H < 0.5 0.5 ~ 2 2 ~ 4 > 4 

Approximate Solution √ √ × × 

Prescribing  × √ √ √ 

Prescribing  × × × √ 

 

Fig. 4.6 shows the velocity profiles for hydronium ion, hydroxide ion, and bulk 

solution as predicted by the exact model at H = 1. The bulk velocity profile of the 

Poiseuille flow is also plotted for reference. All velocities are normalized using the average 

velocity of the Poiseuille flow, U = H
2
Px0/3. From the figure we can see that there is a 

slightly deceleration of bulk flow, a notable acceleration of hydroxide ions and a significant 

deceleration of hydronium ions under the influence of the streaming potential field. At the 

region near the wall, hydronium ions are moving backward to the upstream with a negative 

velocity. Hence, not all hydronium ions flow though the channel with the bulk flow as 
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some of them are circulating inside the channel, similar to transport of potassium ions in 

electrokinetic flows [42]. In spite of the difference of profiles of hydronium ion and hy-

droxide ion, their overall fluxes across the channel must be equal according to Eq. (4-23). It 

is because that hydronium ion is enriched by a few orders of magnitude to compensate for 

the backward transport near the wall. 

 

 
Fig. 4.6. Velocity profiles of bulk flow and ions for κH = 1 

 

Fig. 4.7 plots the prediction of Px/Px0 by the exact model for various levels of ELD 

overlap. There is a peak of 6% in the curve at H of ~1.3 as shown in the figure. For κH < 

1.3, the increasing EDL overlap causes the decrease of the electroviscous effect because 

the streaming potential for a given pressure gradient is reduced as shown in Fig. 4.8, and 

because of the less number of hydronium ions in the channel corresponding to a lower 

surface charge density in Fig. 4.5. As κH > 1.3, the electroviscous effect gradually disap-

pear with the increase of channel height or κH. 
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Fig. 4.7. Electroviscous effect for various levels of EDL overlap 

 

 
Fig. 4.8. Streaming potential for various levels of EDL overlap 
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4.5 Conclusion  

Using salt-free water in a slit-like silica channel, the effects of the proton transfer 

between surfaces and the solution on an overlapped EDL were investigated. The ion dis-

tribution and electric potential field inside the channel were determined by solving the 

Poisson and Nernst-Planck equations and by considering chemical equilibrium in water as 

well as on the walls. Two analytic solutions of the PNP equation were derived not only for 

water but also for symmetric electrolyte solutions. One is the exact solution in terms of 

Jacobian elliptic functions, and the other is an approximate solution suitable for strongly 

overlapped EDLs. The solution methodology can be used for the analysis of dilute solu-

tions within overlapped EDL.  

The results show the EDL overlap makes a significant change to the bulk pH, 

electric potential, and surface charge density. There is an immediate change of the pH at the 

channel center and the Zeta potential once the EDLs start being overlapped at κH = 4, while 

the surface charge density and the pH at the wall are affected by the EDL overlap at κH < 

0.2. It suggests that the method of prescribing surface changed density as a boundary 

condition is appropriate as long as κH > 0.2, while prescribing the surface Zeta potential is 

only appropriate for κH > 4. The increase of EDL overlap causes the decrease of the overall 

solution pH, which inhibits the further release of protons from the surfaces and causes the 

decrease of surface charge density. There is a good agreement between the exact model and 

the approximate model in predicting the solution pH at κH < 2, which is the regime of EDL 

overlap to allow the use of the approximate solution for the PNP equation. In the calcula-

tions with typical parameters, the maximum electroviscous effect is about 6% as κH = 1.3.  
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CHAPTER 5  
 

FLOWS OF SALT SOLUTIONS IN A NANOCHANNEL 

5.1 Introduction 

This chapter is to investigate the pH change in electrokinetic flows of dilute solu-

tions as well as its impact on flow dynamics under conditions of EDL overlap. An analytic 

model is proposed for the fully-developed steady pressure-driven flow of KCl solutions in 

an infinitely long slit-like nanochannel connected to a reservoir on each end. In this model, 

the PNP equation is solved for the electric field across the channel with constraints in-

cluding surface adsorption-desorption equilibrium, water equilibrium, and species flux 

conservation through the channel. Calculations were carried out for 10
-3 

~ 10
2
 mM KCl 

solution in nanochannels of 75 nm and 490 nm high, respectively. The results show hy-

dronium ions are more enriched than potassium ions by up to 2~3 orders of magnitude 

within an overlapped EDL. Hydronium ions may be dominant over potassium ions in the 

steady flow of very low salt solutions. In comparison with the overlapped EDL at elec-

trostatic equilibrium where hydronium ions and potassium ions are equally enriched, sur-

faces are significantly less charged, seriously decreasing the electroviscous effect. 

5.2. Analytic Model 

The electrokinetic flow of binary salt solution in a slit-like nanochannel is modeled 

in this section. The flow is assumed to be steady-state, fully developed, and driven by a 

pressure difference between channel ends. The assumption of the steady flow implies that 
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the bulk flow as well as the transport of all species with the flow is stationary. The channel 

is not less than 10 nm high to allow the application of the continuum assumption [4], and 

sufficiently long and wide to make the entrance and sidewall effects negligible. A Cartesian 

coordinate system is used where the x-axis is along the flow direction and the y-axis is 

normal to the channel walls. The height, length and width of the channel are characterized 

by 2H, L, and W, respectively. The channel walls are located at y = ±H while the midplane 

at y = 0 . The model is established for KCl solution, but can be applied to other binary salt 

solutions.  

5.2.1 Electric Field and Ion Distribution 

A strong transverse electric field, normal to the channel walls, is created by charged 

surfaces. In electrokinetic flows, the streamwise electric field strength is usually less 

weaker than the transverse one in the EDL. Therefore, the transverse electric field across 

the channel is related to ion distribution through the one dimensional Poisson equation, 

rewriting Eq. (3-19) as  

 

  
 

  

  
   

      

   
                                                                                                                       (5-1)  

where   is the electric potential along the transverse direction. Ions contributing to the 

generation of such an electric field described by Eq. (5-1) include K
+
 and Cl

-
, which are 

taken into account in classic analytical models, as well as H
+
 and OH

-
, which are 

particularly considered in this model in order to investigate the coupling effects between 

surface chemical equilibrium and the bulk pH.  

In the steady and fully developed flow through a slit-like channel, ion concentra-

tions vary only along the transverse direction. Ion distributions are related to the electric 
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field by the one dimensional NP equation, whose solution is given by Eq. (3-9) [8], re-

written as 

             
   

  
                                                                                                                    (5-2)  

where subscript c denotes the channel midplane, and the electric potential at the midplane 

is imposed as zero. It should be noted that surface charges have significant influence on ion 

distribution within the whole channel under conditions of EDL overlap. Thus, the 

concentrations of all ions become unknowns at the midplane where the electroneutrality 

condition is broken. They must be modeled by additional constraints. 

Combining Eqs. (5-1) and (5-2) yields the PNP equation expressed in a dimen-

sionless form as 

    

            
 
            

                                                                                           (5-3)  

where    
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Superscript 
*
 denotes dimensionless quantities, and subscript   denotes where local 

electroneutrality is not affected by surface charges, such as the reservoirs connected to the 

channel.     
   is an effective Debye length, and *

chm is an equivalent electric potential. 

They both characterize the impact of the EDL overlap on the electric field.  

*
chm acts as an additional electric potential to the real electric field. It is actually 

caused by the enrichment and depletion effects at the midplane. This term will vanish as the 



52 

 

 

 

electroneutrality condition is satisfied at the midplane if the EDLs are not overlapped. It 

was treated as a non-zero real electric potential in previous modeling for an overlapped 

EDL [5, 6, 19-21]. 

eff is regarded as the change of   due to the deviation of ion distributions from the 

Boltzmann distribution. Eq. (5-3) is reduced to the classic PB equation if eff = , which can 

be achieved under one of the following conditions: a) No EDLs are overlapped to break the 

electroneutrality condition at the midplane, so that ci,c = ci,∞ ; b) Salt solution is in elec-

trostatic equilibrium in the channel and in the reservoirs, so that c
*

K+,c
 = c

*

H+,c
 = 1/c

*

Cl-,c
 = 

1/c
*

OH-,c
, or c) Only salt-free water is contained in the system so that c

K+,∞
 = c

Cl-,∞ = 0, and 

c
*

H+,c
 = 1/c

*

OH-,c
. 

When the Boltzmann distribution is assumed for salt solutions with overlapped 

EDLs [19], it implies that the modeled EDL structure occurs only at static state with ful-

ly-established electrostatic equilibrium. In this study, the electrostatic equilibrium condi-

tion is not satisfied, so that the values of both eff and *
chm must be quantified.  

The boundary conditions that Eq. (5-3) is subject to are given by 

         
         

   
                                                                                                        (5-4)  

The solution of Eq. (5-3) subjected to the boundary conditions in Eq. (5-4) is given 

by [15] 

                                                                                                                                 (5-5)  

where cd is a Jacobian function of argument n = effHy
*
exp(**

chm/2)/2, and parameter m = 

exp(-2*
chm).  

It should be noted that ion distributions and the electrical field described by Eqs. 
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(5-2) and (5-5) refer to all ion concentrations at the midplane. They can be determined with 

additional constraints based on other concurrent physical-chemical processes, including 

surface adsorption-desorption equilibrium, and the species flux conservation, and water 

dissociation equilibrium, as presented later.   

5.2.2. Surface Chemical Equilibriums 

The surface adsorption-desorption equilibrium is assumed as the boundary condi-

tion on walls for the electric potential field. The two sites model gives the relation of , 

pHc and , so that Eq. (3-40) is rewritten as 

   
                          

 

  
 
  
 

    

                     
 

  
 
  
 

    
                                                                                    (5-6)  

where pHc = pH∞ - log10(c
*
+c) is the pH at the midplane,  is surface charge density, and  is 

the electric potential at the shear layer. Setting y
*
 = 1 in Eq. (5-5) gives rise to  

   
  

 
                                                                                                                   (5-7) 

 is given by the Gauss's law 

    
     

  

         

                                                                                                                    (5-8) 

Substituting Eq. (5-5) into Eq. (5-8) yields 

               
          

  

             

             
                                                                       (5-9) 

where sd and cn are Jacobian functions. 

5.2.3. Water Dissociation 

KCl electrolyte is assumed to completely dissolve into free ions, while water dis-

sociation is in equilibrium throughout the salt solution. Thus, the product of hydronium and 
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hydroxide ion concentration is constant in the entire channel and in the reservoirs, yielding  

   
      

       
        

                                                                                                  (5-10) 

5.2.4. Species Flux Conservation  

The present model is established for the steady flow through a channel connecting 

to a reservoir at each end. When the transport of each species is at steady state, the flux of 

ith species through the channel Ji, is equal to its loss of gain in the upstream or downstream 

reservoir per unit time i, according to the species conservation law, yielding 

                                                                                                                                                (5-11) 

The transport of species is composed of chemical groups in which the species is 

involved. Because KCl electrolytes are completely dissolved, they exist as only free ions in 

salt solutions. In contrast, water is weakly dissolved based on local equilibrium, and most 

of H
+
 and OH

-
 are combined as water molecules.  

Regardless of the entrance effects, the species flux of K
+
 and Cl

-
 across the channel 

is given by integrating the streamwise flux density over its cross section 

                         

 
                                                                    (5-12) 

where up, ue and um,i are three velocity components given by 

   
  

  
                                                                                                                           (5-13) 

    
    

 
                                                                                                                    (5-14) 

     
     

  
                                                                                                                              (5-15) 

where Px is the pressure gradient and Ex is the streaming potential gradient. up and ue are 

the bulk velocities caused by the external pressure gradient and by the induced streaming 
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potential gradient, respectively. Their combination gives rise to the velocity of the bulk 

flow, or the velocity component of species accompanying with the bulk flow. um,i is the 

electrophoretic velocity accounting for the drift velocity of charged species driven by the 

streaming potential.  

The total flux of H
+
 and OH

-
 is given by 

                                     

 
                                (5-16) 

where the transport of water molecules accounts for the contribution of the dynamic 

dissociation equilibrium of water.   

The loss of these species in the upstream reservoir or the gain in the downstream 

reservoir can be determined by considering only the convection of ions. The ion distribu-

tions and the electrical field remain uniform in the regions far away from the channel ends. 

As a result, the diffusive and electrophoretic fluxes of species are negligible, and the 

convective flux alone is left to account for the loss or the gain of species per unit time, 

yielding 

                                                                                                                           (5-17) 

                                                                                                            (5-18) 

where Q is the volume rate of the flow leaving the upstream reservoir. According to the 

mass conservation law, it is equal to the bulk flow rate through the channel  

                 

 
                                                                                                     (5-19) 

Combining Eqs. (5-11), (5-12), (5-17) and (5-19) gives rise to the species flux 

conservation equations as 

     
                     

 
                                                                   (5-20) 
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The equation has been proposed in a previous model for electrokinetic flows through a 

uniform slit [43].  

Similarly, Eqs. (5-10), (5-11), (5-16), (5-18), and (5-19) are combined to give the 

constraint for the transport of H
+
 

      
       

      

      
  
             

       
      

      
  
            

 
    (5-21) 

In most of previous studies on electrokinetic flows, ionic current through the 

channel is assumed to be zero, which is called the current equilibrium condition. Such a 

condition is in insistence with the species flux conservation. By combining Eqs. (5-11), 

(5-17) and (5-18), the ionic current is given by 

                                                                          (5-22) 

Applying the electroneutrality condition in the reservoirs, i.e.                    

        , Eq. (5-22) is reduced to the current equilibrium condition, 

                                                                                                                      (5-23) 

As a summary of the above discussion, five constraints are imposed to determine 

five independent quantities of c
*

H+,c
, c

*

OH-,c
, c

*

K+,c
, c

*

Cl-,c
 and Ex, and two other dependent 

parameters of *
chm and eff. The constraints include surface chemical equilibrium described 

by Eqs. (5-6), (5-7) and (5-9), water dissociation equilibrium by Eq. (5-10), and the flux 

conservation of K
+
, Cl

- and H
+
 by Eqs. (5-20) and (5-21). These equations were solved 

through multiple iterations using MATLAB R2009a. We first solved for *
chm. *

chm  An 

appropriate guess of *
chm is initially given, and then a calculated *

chm is obtained by the 

following iterative procedure: 
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1) Give an initial guess for c
*

H+,c
, 

2) Obtain eff by solving the coupled equations Eqs. (5-6), (5-7), and (5-9), 

3) Solve for c
*

OH-,c
, c

*

K+,c
, c

*

Cl-,c
 and Ex in sequence. c

*

OH-,c
 is obtained from Eq. (5-10), c

*

K+,c
 

and c
*

Cl-,c
  from the guessed *

chm and the calculated eff, and Ex from the flux conser-

vation of K
+
 by Eq. (5-20). 

4) Obtain c
*

H+,c
 from Eq. (5-21). 

5) Repeat step 1) - 4) until the calculated c
*

H+,c
 matches its initial guess 

6) Obtain *
chm from the flux conservation of Cl

-
 by Eq. (5-20). 

The value of *
chm is determined if the calculated one matches its initial guess, otherwise, it 

is set as the initial guess for next iteration. Other independent quantities are then 

determined by repeating step 1) - 4) with the calculated *
chm.  

An approximate solution of the PNP equation is used to replace Eq. (5-5) in the 

calculations for H > ~15 because the above algorithm failed to converge in cases of high 

salt solutions. With H > ~15, the enrichment and depletion effect at the midplane is almost 

negligible, so that *
chm falls to below machine epsilon. Thus, the computation of Eqs. (5-7) 

and (5-9) leads to an enormous computation error. In this case, *
chm can be simply imposed 

as zero due to the electroneutrality condition at the midplane. An approximate solution of 

Eq. (5-3) subjected to Eq. (5-4) is given by [9, 17] 

                
        

 
                                                                   (5-24) 

Substituting Eq. (5-24) into Eq. (5-8) yields  

                                                                                               (5-25) 
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Eqs. (5-10), (5-20), (5-21), (5-24) and (5-25) are solved in the similar iterative procedure 

as used for deriving the exact solution. The results from the exact and approximate 

solutions are perfectly matched for H > 10, which validates the present model. 

5.4. Results and Discussion 

The calculations use the parameters from previous experiments which investigated 

the pressure driven flow in a nanochannel [6]. The channel geometry is set as W of 50 m, 

L of 4.5 mm, and 2H of 75 nm and 490 nm. The solution properties are given at T = 25 °C, 

including D
K+ = 1.96 × 10

-9
 m

2
/s , D

Cl-
 = 2.03 × 10

-9
 m

2
/s, D

H+ = 9.31 × 10
-9

 m
2
/s, D

OH- = 

5.28 × 10
-9

 m
2
/s, = 0.8904 × 10

-3
 Pa s . If no extra acid or alkaline is added to change the 

pH of salt solutions, c
H+,∞

= c
OH-,∞

= 10
-4 

mM. KCl solutions vary from 10
-3 

mM to 10
2 
mM. 

Surface parameters are = 8.0 nm
-2

, C = 0.3 F/ m
2
, pK = 8.4, and pHz = 3.5 . They are 

chosen in an appropriate range for silica surfaces [16, 19, 27] to make the model predic-

tions in good agreement with the experimental data of the 75 nm channel in high salt so-

lutions. 
 

To examine the impact of the proton exchange on the EDL structure at the steady 

flow state, the predictions of the present model are compared with the traditional model 

[19]. The latter model assumes the Boltzmann distribution and neglects  hydronium and 

hydroxide ions in the calculation of spatial charge density. In fact, it can be reduced from 

the present model through the following simplifications: (i) c
H+,∞

= c
OH-,∞

= 0
 
and eff =  in 

Eq. (5-3), (ii) c
H+,c = c

H+,∞
exp(*

chm) to give pHc in Eq. (3-40), (iii) remove Eq. (5-10), and 
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(iv) replace Eq. (5-20) and (5-21) with the current equilibrium condition of JK+ - JCl- = 0. It 

should be kept in mind that the Boltzmann distribution is valid only at electrostatic equi-

librium in cases of the EDL overlap. Hence, the EDL structure predicted by the traditional 

model is suitable for static salt solutions, while the present model for the steady state flow. 

5.4.1 EDL Structure 

Fig. 5.1 plots transverse electric potential and concentration profiles along the cross 

section for 0.01 mM KCl solution in the 75 nm channel with the corresponding H of 0.4. 

The concentration profile of OH
-
 is not shown as c

*

OH- is simply the reciprocal of c
*

H+. The 

electric potential increases in magnitude from the channel midplane(at y
*
 = 0) to the wall(at 

y
*
 = 1), while c

K+ increases and c
Cl-

 decreases. A significant variation of electric potential 

and ion concentrations across the whole channel is a feature of the EDL overlap.  

 

 
Fig. 5.1. Profiles of a), b) c

*

K+ and c
*

Cl-
, and c) c

H+/c
K+ along the cross section for 0.01 mM 

KCl in the 75 nm channel 
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Fig. 5.1c demonstrates that the concentration of H
+
 becomes a few times as much as 

that of K
+
 across the channel, in spite of the fact that the former is only 1% of the latter in 

the original salt solution or in the reservoirs. It implies that the enrichment of H
+
 is hun-

dreds times stronger than that of K
+
 comparing to their original concentration. The domi-

nant enrichment of H
+
 over K

+
 has profound effects on the EDL structure and electroki-

netic flows. It is also shown that the ratio of concentration of H
+
 to K

+
 is the same across 

the channel. The reason is that ions with equal valence must be proportionally affected by 

the electric field according to Eq. (5-2). Hence, the comparison of ion concentrations at the 

midplane reflects their difference across the whole channel.  

Fig. 5.2 plots the prediction of *
chm as a function of H, and provides a convenient 

conversion between salt concentration and H for two studied channels. *
chm is a quantity 

that reflects the enrichment of all counterions as well as the depletion effects of all coions 

at the midplane. Like H, *
chm is a direct measure of the degree of the EDL overlap since 

the presence of the overlap is literally understood as the variation at the midplane. If       

is referred to as the critical value of *
chm, above which the EDLs are overlapped, the critical 

H is 7.5 or so for both channels, corresponding to salt solutions of 3.5 mM in the 75 nm 

channel and of 0.1 mM in the 490 nm one as shown in Fig. 5.2. For a specific nanochannel, 

stronger EDL overlap exists in lower salt solutions with larger *
chm and smaller H. 



61 

 

 

 

  
Fig. 5.2. Relation of *

chm,H and salt concentration. 

 

Fig. 5.3 compares the predictions of two models in the enrichment and depletion 

effects at the midplane. In high salt solutions withH > 10 where the EDL overlap is ob-

viously absent since *
chm is as small as less than 0.001, both models predict all c

*
i,c are 

nearly of unity. The agreement between the model predictions suggests that the Boltzmann 

distribution is an appropriate description forH > 10, and that the omission of H
+
 in the 

calculation of spatial charge density is reasonable because H
+
 is negligible in numbers 

comparing with K
+
 across the channel. In low salt solutions with H < 10, strong de-

pendence of c
*
i,c on salt concentration or H are predicted by both models, but the de-

pendence is in a deferent way. 

The present model predicts unequal enrichment of K
+
 and H

+
 in an overlapped EDL. 

The concentrations of K
+
 and Cl

-
 at the midplane are almost as much as their original 

concentrations, while H
+
 is radically enriched. It is surprising that c

*

K+,c
 is not always larger 
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than 1 as shown in Fig. 5.3b, implying that K
+
 is even depleted at the midplane somehow 

despite the overall enrichment across the channel. The curves of c
*

H+,c
 dramatically rise up 

with the decrease of salt concentration in weakly overlapped EDLs with 2 < H < 10, and 

become nearly flat in strongly overlapped EDLs with H < ~2, as shown in Fig. 5.3a. The 

plateau behavior occurs because salt solutions are extremely diluted to be almost salt-free 

water. For instance, the values of c
*

H+,c
 in 0.001 mM solution are within 0.5% difference 

away from those for salt-free water in the two studied channels. As a consequence of un-

equal enrichment, H
+
 becomes the leading contributor to spatial charge density in a strong 

overlapped EDL as its concentration is comparable to or a few orders of magnitude larger 

than that of K
+ when H > 2. 

The traditional model suggests that K
+ and H

+
 are always equally enriched at the 

midplane in an overlapped EDL such as c
*

K+,c
 = c

*

H+,c
, and that the stronger overlap leads to 

the greater enrichment. Because K
+ is more than H

+
 by a few orders of magnitude in the 

reservoirs, such a domination extends to the space inside the channel. Therefore, it is K
+
, 

instead of H
+
 as predicted by the present model, that carry most of spatial charges in an 

overlapped EDL. 

The discrepancy between the predictions is not too surprising because the primary 

mechanisms of ion transport are completely different in these two models. Diffusion and 

electromigration are balanced to affect ion distributions at electrostatic equilibrium. In 

electrokinetic flows, however, the species transport along the streamwise direction is 

governed mainly by convection and electromigration. When a sudden pressure difference 

starts the flow, the streaming potential is immediately induced to push all counterions 
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against the fluid motion. Because the mobility of H
+
 is about 4 times larger than that of K

+
, 

it is harder for the bulk flow to carry H
+
 downstream, leading to the consistent accumula-

tion of H
+
 inside the channel until the steady state is achieved.  

  

 
Fig. 5.3. Enrichment and depletion effects at the midplane 

 

The phenomenon of unequal enrichment is related to the mobility of salt 

counterions. Fig. 5.4 compares the enrichment and depletion effects at the midplane of the 

75 nm channel for salt solutions with various mobility of 0.11, 0.21, 0.5, 0.8 and 1 times as 

large as D
H+. 0.11D

H+ and 0.21D
H+ are equal to the mobility of Li

+ and K
+
, respectively. 

The other values belong to no real salt counterions, but are chosen to illustrate the influence 

of relatively large mobility of salt counterions on the EDL structure. With the increase of 

mobility of salt counterions, hydronium ions are less enriched as shown in Fig. 5.4a, while 
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salt counterions are more enriched Fig. 5.4b. When the mobility of salt counterion is suf-

ficiently large, such as being equal to D
H+, salt counterion, instead of H

+
, is the one that 

becomes more enriched. 

 

 
Fig. 5.4. Impact of mobility of salt counterion on the enrichment and depletion effects at 

the midplane in the 75 nm channel 

 

Surface charge density plays a critical role to quantifying the EDL structure. Net 

surface charge is equal to the amount of charges carried by all ions along the cross section 

in magnitude in a long channel, no matter whether fluid is in motion or not. On the other 

hand, it reflects the magnitude of surface proton activity via the association-dissociation 

equilibrium of silanol groups. The stronger proton activity make surfaces less charged.  

Fig. 5.5 demonstrates that the predictions of surface charge density by two models 
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are well matched for high salt solutions, similar to the agreement of ion concentrations at 

the midplane. It implies that ion distributions are identical at electrostatic equilibrium and 

in the steady flow if the EDLs are not overlapped. Such a non-overlapped EDL has been 

well understood in past studies. Thus, later discussions are focused on low salt solutions to 

investigate the structure of an EDL with various overlap. 

 

 
Fig. 5.5. Comparison of the present model and the traditional model in surface charge 

density 

 

The present model predicts that surfaces are less charged in lower salt solutions 

with 2 < H < 10 and nearly equally charged forH < ~2 as shown in Fig. 5.5. Surface 

charge density predicted by the present model is merely 10~30% of the prediction of the 

traditional model. The dependence of surface charge density on the EDL overlap, and the 

discrepancy between two models' predictions are in accordance with the enrichment of H
+
 

at the midplane as shown in Fig. 5.3b. The stronger enrichment of H
+
 shifts surface equi-

librium to allow surfaces less charged. 
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The above discussions lead to a few conclusions about the structure of an over-

lapped EDL. First, it is strongly dependent on the flow status. An overlapped EDL at the 

steady flow state is featured by strong enrichment of H
+
, weak enrichment of K

+
, low 

surface charge density, and less spatial charges along the cross section, in contrast to those 

at electrostatic equilibrium. Provided that the steady flow is approaching static state after 

suddenly turning off the pressure supply, the EDL structure changes when shifting to the 

new equilibrium in several aspects: a) surfaces release protons so as to be more negatively 

charged, b) H
+
 diffuse out of the channel, c) K

+
 are attracted into the channel from the 

reservoirs, and d) the overall concentration of counterions increases. Therefore, the 

Boltzmann distribution which describes ion distributions at electrostatic equilibrium is not 

suitable for the steady flow. Second, H
+
 has a considerable contribution to spatial charge in 

the EDL at the steady flow state. The mechanisms relating to H
+
 play an important role to 

modeling an overlapped EDL. Finally, the EDL structure significantly varies with salt 

concentration in a weakly overlapped EDL with 2 < H < 10, but has little change in a 

strong overlapped EDL with H < ~2. The reason is that H
+
 is overwhelming in numbers in 

extremely low salt solutions. As a result, the slight change of the concentration of K
+
 has 

no significant impact on the EDL structure.  

5.4.2 Effects of pH∞ 

The EDL structure is likely dependent on the pH of the original salt solution, pH∞, 

which affects surface adsorption-desorption equilibriums via surface proton activity. It is 

well known that adjusting pH∞ makes the surfaces differently charged, but the experience 

is mostly based on the Boltzmann equilibrium. It is important to understand whether and 
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how pH∞ affects the structure of an overlapped EDL at the steady flow state where the 

Boltzmann equilibrium is not applicable.  

Fig. 5.6 and Fig. 5.7 compare two models in the predictions of the pH at the 

midplane pHc, and surface charge density , respectively, for KCl solutions in the 75 nm 

channel with various pH∞ of 6, 7, and 8. The value of pH∞ is controlled by adding HCl or 

KOH into original salt solutions. so that no other ions are involved. As a result, either Cl
-
  

or H
+
 slightly increases, and the concentration of salt solutions is defined as the minimum 

of two salt ions. The traditional model shows that both pHc and the magnitude of  

greatly increase by a larger pH∞. The results are in accordance with the previous experi-

ence. 

 

 
Fig. 5.6. Effects of pH∞ on pHc in the 75 nm channel 

 

The present model suggests that the EDL structure is strongly dependent on pH∞  

if the EDLs are not overlapped or weakly overlapped, but becomes independent when the 
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EDLs are strongly overlapped in low salt solutions. In a non-overlapped EDL, there is no 

enrichment at the midplane so that pHc is equal to pH∞. Any adjustment of pH∞ is fully 

transferred into the EDL, exerting the most significant effects on the EDL structure. When 

the EDLs are overlapped, the pH change in the reservoirs is merely partially transferred 

into the channel, as the enrichment of H
+
 buffers the pH change in the channel. With the 

increase of the EDL overlap, the stronger enrichment of H
+
 makes the pH in the channel 

less sensitive to the change of pH∞. In extremely dilute salt solutions with H < ~2, the 

change of pH∞ has no impact on the EDL structure.  

 
Fig. 5.7. Effects of pH∞ on  in the 75 nm channel 

 

5.4.3 Streaming Conductance and Electrical Conductance 

The streaming conductance and the electrical conductance of a channel were in-

vestigated by measuring the voltage on various external resistors [6]. The streaming con-

ductance is defined as 
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                                                                                                   (5-26) 

which identifies the capability of a nanochannel to allow the transport of spatial charges 

with the bulk flow. The electrical conductance is defined as 

      
    

   
                   

 
                                                                                 (5-27) 

which measures the capability of a nanochannel to create a conduction current due to the 

electrophoretic transport of spatial charges. For a specific channel, Gstr is dependent on 

local spatial charge density, while Gelec is related to ion distributions and ion motilities. 

They both are measurable variables through which it is possible to experimentally 

investigate the EDL structure. 

Fig. 5.8 compares the predictions of the present and traditional models against 

experimental data [6] for streaming conductance. The predictions agree well with exper-

imental data in high salt solutions, partially because surface parameters are deliberately 

chosen in modeling. In low salt solutions, the predictions of the traditional model are in 

agreement with experimental results, while the present model predicts only about 10% and 

30% of the measured values for the 75 nm and 490 nm channel, respectively. However, it 

was also observed in the experiments that streaming conductance was very low(<0.5 

pA/bar) for hours upon initially filling the 75 nm channels with low salt solutions before it 

crept up to the stable values. Such a low streaming conductance is close to the predictions 

of the present model. 
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Fig. 5.8. Comparison of the present model, the traditional model and experimental data [6] 

in the streaming conductance 

 

The initial low streaming conductance is likely caused by strong enrichment of H
+
 

after initial filling. It was reported that the bulk pH dropped to pHz in nearly half length of 

the nanochannel due to the release of protons from silica surfaces during the capillary 

filling process [33]. If this phenomenon occurred in the studied experiments, the initial 

EDLs tended to have features like those in the steady flow, including low surface charge 

density or less counterions across the channel. It explains why the initial streaming con-

ductance is better predicted by the present model, instead of the traditional one. 

The better agreement of the traditional model predictions and experimental data in 

low salt solutions, suggests that the EDL structures were more like the ones at static state 

when the data were collected a few hours after filling. Approaching electrostatic equilib-

rium after initial filling is a process similar to the shifting of the EDL structure from the 

steady state to the static state. The concentration of counterions continuously increases 
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during the process, leading to an increasing streaming conductance. Nevertheless, the 

transient may process as long as a few hours, because transport of ions are dominated by 

the diffusion with time scale of L
2
/Di estimated as a few hours. 

The discrepancy between the predictions and experimental data in Fig. 5.8 is likely 

resulted from the failure to achieve the steady flow in experiments. According to numerical 

simulation results discussed in next chapter, a few hours may be needed to obtain the 

steady flow under experimental conditions. Had the pressure supply been intermittently 

applied with the duration of a few minutes, the EDL structure in the channel would have 

been closer to electrostatic equilibrium.  

The electrical conductance is slightly associated with the type of salt solutions at 

the steady flow in an overlapped EDL. The electrical conductance is proportional to the 

mobility of countions. As discussed earlier, salt counterions are dominant at electrostatic 

equilibrium, causing the strong dependence of Gelec on the type of salt solutions. For in-

stance, the replacement of KCl with LiCl may decrease Gelec by a factor of 2 due to the 

great difference of the mobility of K
+
and Li

+
. However, the majority of counterions in the 

steady flow is hydronium ions whose mobility is commonly a few times larger than other 

salt ions. As a consequence, Gelec is insensitive to the mobility of salt ions. 

Fig. 5.9 compares the predictions of two models against and experimental studies 

[6] for the channel electrical conductance. In consistence with low counterions in an 

overlapped EDL at the steady flow state, the electrical conductance is generally lower 

comparing to the EDL at electrostatic equilibrium, but gets closer in extremely low salt 

solutions. The reason is that H
+
, with higher mobility, takes the place of K

+
 to be the 

dominating counterion. 
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Fig. 5.9. Comparison of the present model, the traditional model and experimental data [6] 

in the channel conductance 

 

However, both models underestimate the electrical conductance comparing to ex-

perimental data. There must be reasons other than the addition of surface-dissociated hy-

dronium ions to account for the unpredicted electrical conductance. A possible reason is to 

consider the conductance in the Stern layer where protons are assumed to mobile and other 

counterions immobile [6].  

5.4.5 Electroviscous Effect 

The flow through a nanochannel induces a streamwise potential difference, called 

the streaming potential, which exerts a force on charged ions and produces a backflow of 

fluid. The flow shows an increased apparent viscous drag with respect to the Poiseuille 

flow. This phenomenon is called the electroviscous effect.  

For electrokinetic flows at steady state, the streaming potential gradient is related to 
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the pressure gradient by combing Eqs. (5-23), (5-26) and (5-27), yielding 

    
    

     
                                                                                                                              (5-28) 

Substituting Eqs. (5-5), (5-13) and (5-14) into Eq. (5-19) yields  

                                                                                                                                   (5-29) 

where    
    

  
 and     

      

  
   

             

       
    

 
. The first term of RHS of 

Eq. (5-29) accounts for the fluid transport due to the pressure gradient, while the second 

term for the change of the flow rate due to the electroviscous effect.   

Substituting Eq. (5-28) into Eq. (5-29) yields 

        
    

     
   

  

                                                                                                           (5-30) 

Regardless of the electroviscous effect, imposing Ex = 0 in Eq. (5-29) gives rise to 

    
 

  
                                                                                                                                        (5-31) 

where Px0 denotes the pressure gradient required for the Poiseuille flow to deliver the fluid 

at the flow rate of Q. 

The electroviscous effect can be quantified by Px/Px0, which is always larger than unity. 

The larger the value of Px/Px0, the greater the electroviscous effect. Combining Eq. (5-31) 

and Eq. (5-30) gives  

  

   
    

  

  

    

     
  

  

                                                                                                               (5-32) 

Fig. 5.10 compares the predictions of two models in Px/Px0. The curves from the 

present model present a peak value atH = ~6 where the EDLs are barely overlapped, 

significantly drop with the increase of the EDL overlap in low salt solutions with H = 2~6, 
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and become almost flat in extremely low salt solutions with H < ~2. It is noteworthy that 

the electroviscous effect predicted by the present model is only 5~30% as much as that of 

the tradition model. The weaker electroviscous effect is in consistence with the lower 

surface charge density as discussed earlier.   

 

 
Fig. 5.10. Electroviscous effect 

 

5.5. Conclusions 

The steady state pressure driven flow in a nanochannel has been modeled with the 

consideration of hydronium ions in the calculation of spatial charge density. The ion dis-

tributions and the electric field across the channel are solved by the Poisson equation and 

the NP equation with several constraints: species flux conservation condition, water equi-

librium, and surface adsorption-desorption equilibrium. The EDL structure and measure-

able parameters are calculated for the potassium chloride solution ranged between 
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0.001mM and 100mM in channels of 75nm and 490nm. The modeling results are com-

pared with the predictions of the traditional model which assumes the Boltzmann distri-

bution to obtain the EDL structure when salt solutions are at rest. The comparison shows 

that the structure of an overlapped EDL in the steady flow is significantly different from 

that at electrostatic equilibrium in several aspects. 

First, counterions are unequally enriched in an overlapped EDL. Salt counterions 

are merely weakly enriched as their enrichment at the midplane is negligible, while hy-

dronium ions are strongly enriched because the pH decreases by 2~3 at the midplane and 

even more near surfaces. The unequal enrichment occurs because hydronium ions have 

higher mobility and are more likely to be retained in the channel by the streaming potential. 

As a result, hydronium ions may be dominant over salt counterions in the channel. The 

omission of hydronium ions in the calculation of spatial charge density is not appropriate 

for the steady flow within an overlapped EDL. 

Second, channel surfaces are less charged, and charge density becomes as low as 

only 10~30%, corresponding to more enrichment of hydronium ions. As a result, all elec-

trokinetic effects, such as the streaming potential, the streaming conductance, and the 

electroviscous effect, are significantly depressed.  

Finally, the EDL structure is independent of the concentration of hydronium ions 

and salt ions in extremely low salt solutions withH < ~2. In this case, salt solutions are 

simply treated as pure water, so that the change of the bulk pH and/or salt concentration in 

the reservoirs has insignificant impact on the EDL structure.  
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CHAPTER 6  
 

TRANSIENT ELECTROLYTE SOLUTION 

6.1 Introduction 

It was revealed from the previous studies that the structure of an overlapped EDL at 

the steady flow state is a way different from that at electrostatic equilibrium. In this chapter, 

the evolution of the EDL structure is presented. Numerical simulation is performed for the 

flow of binary salt solution in a nanochannel connecting with a reservoir at each end. The 

Poison equation, the NP equation and the NS equation are solved using a finite element 

method. The proton exchange between channel surfaces and salt solution, and water dis-

sociation are particularly considered. After the simulation, the time scale of ion transport in 

the nanochannel is examined. An approximate solution based on the time scale analysis is 

proposed to estimate the time required for the flow to get steady state. 

6.2 Modeling Transient Pressure-Driven Flow 

Mathematical model is proposed for transient electrokinetic flow of KCl solutions, 

as an example of binary salt solutions, through a slit-like silica channel. All the species 

considered in modeling include K
+
, H

+
, Cl

-
, OH

-
, and H2O as it is assumed that KCl is fully 

dissociated and that water is at self-dissociation equilibrium. Other residual components in 

a real salt solution are ignored.   

6.2.1 Governing Equations 

To normalize the governing equations and the relevant boundary conditions, the 
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following dimensionless parameters and scaled variables listed in Table 6.1 are used. 

 

Table 6.1. Dimensionless parameters and scaled variables 

Velocity u
*
 u/U  

Ion flux density j
*
i  ji/Uci,∞ 

Electrical potential  *
 F/RT  

Pressure p
*
 p/U

2
 

Ionic molar concentration c
*
i ci/ci,∞ 

Spatial charge density e zici / ci,∞  

Outward flux density N
*
i Ni/Uci,∞  

Surface charge density 
 HF/(


RT) 

x,y direction coordinate x
*
, y

*
 x/H, y/H 

Time t
*
 tU/H   

Gradient 

  

Reynolds number Re UH/ 

Schmidt number Sci Di 

 

Here, U is the characteristic flow velocity, and H half height of the channel. Su-

perscript 
*
 represents the dimensionless parameters, subscript   denotes ith species, in-

cluding K
+
, H

+
, Cl

-
 and OH

-
, and subscript ∞ denotes the original salt solution.  

The governing equations for electrokinetic flows have been discussed in Chapter 3. 
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Substituting dimensionless parameters and scaled variables in Table 6.1, Eqs. (3-1)-(3-3), 

(3-18) and (3-19) are rewritten as 

                                                                                                                                            (6-1) 

   

   
           

 

  
             

                                                                        (6-2) 

  
  
 

   
       

                                                                                                                          (6-3) 

     
 

           
                                                                                                                        (6-4) 

  
  
 

            
  

 

         
    

 
    
  

  
   

       
      

  

 
    
  

  
       

       
     

        

                (6-5) 

                
                                                                                                                (6-6) 

where   
       

   , representing the ratio of thermal energy to kinetic energy. j
*
i is the 

scaled flux density, which is given by substituting scaled variables into Eq. (3-4) 

  
   

 

     
    

    
    

    
 

     
                                                                                        (6-7) 

It is assumed that dissociation equilibrium of water is established much faster than 

other physical and chemical processes, and that the dissociation constant is identical 

throughout salt solution, yielding a relation between H
+
 and OH

-
 as described by Eq. (3-17) 

   
     

                                                                                                                                     (6-8) 

6.3.2 Proton Transfer at Channel Surfaces 

When silica surfaces are in contact with water or dilute salt solutions, the dissoci-

ation of silanol groups shown in Eq. (2-1) is the principal mechanism accounting for the 
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appearance of net change on surfaces [16, 30]. Other possible chemical reactions associ-

ated with silica surfaces are considered inert. The dynamic single site model presented in 

Chapter 3 is used to treat the coupling effects of the electric potential field and proton ac-

tivity at the solid-liquid interface. It is further assumed that chemical reaction on channel 

surfaces is faster by a few orders of magnitude than transport of H
+
 in salt solutions. Hence, 

there is always at chemical equilibrium throughout the transient process. Surface charge 

density can be described by Eq. (3-31), whose dimensionless form is given by 

  
   

         

            
    
        

                                                                                                   (6-9)  

where c
*

H+,0
 is dimensionless proton activity at the surfaces, which is related to c

*

H+,d
 , the 

dimensionless concentration of H
+
 at the shear plane, by assuming the Boltzmann 

equilibrium 

     
       

       
  

 
                                                                                                  (6-10)  

where  is Zeta potential and    is the potential at the surface. 

According to the zeroth-order Stern model,  and  are related via. Eq. (3-24)  

  
  

    
                                                                                                                                       (6-11) 

Substituting Eq. (6-11) into Eq. (6-10) gives rise to   

     
       

      
    

  
                                                                                                       (6-12) 

For electrokinetic flows at room temperature with typical parameters of 

mC/m
2 

and C = 2.9 F/m
2
, the difference between c

*

H+,0
 and c

*

H+,d
 is as low as less 

than 2%. Therefore, it is practicable to assume the proton activities at the surface and at the 

shear plane are identical. Eq. (6-12) is then rewritten as  
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                                                                                                                                (6-13)  

Eq. (6-13) can be actually achieved from the Gouy-Chapman model [15, 30] for the diffuse 

layer, in which  is assumed to be identical with  .  

Substituting Eq. (6-13) to Eq. (6-9) yields 

  
   

         

            
    
        

                                                                                                (6-14)  

The outward flux density, Ni, is defined as the rate of ith ion leaving the bulk at the 

boundary per unit area 

  
        

                                                                                                                    (6-15)  

  
         

  
      

    
    
                                                                                      (6-16)  

where     is the normal unit vector perpendicular to the surface. The outward flux density 

of water molecules in Eq. (6-16) represents the contribution of water dissociation to the 

flux density of hydronium and hydroxide ions. Hydronium ions confined in the Stern layer 

are treated as part of the channel surfaces, instead of the bulk solution. 

Because protons are bounded with only SiO
-
 groups at the channel surfaces, hy-

dronium ions leave the bulk as many as the loss of SiO
-
 groups, yielding 

     
      

  
                                                                                                                           (6-17)  

Substituting Eq. (6-9) into Eq. (6-17) and normalizing, the out flux density of H
+
 is related 

to surface proton activity 

   
  

          

   
  
             

 

  
  
 

   
                                                                                               (6-18)  

which suggests that net proton exchange will not occur at the steady state when surface 

activity of protons becomes stationary.    
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6.3 Numerical Methodology 

The coupled governing equations of Eqs. (6-1)-(6-6) were solved using the com-

mercial software package COMSOL 3.5a Multiphysics. The equation system was specified 

in the PDE coefficient form application model, and solved by the finite element analysis 

with a Lagrange multiplier method.  

6.4.1 Computation Geometry 

The computational domain for a nanochannel connecting to a well at each end is 

sketched in Fig. 6.1, which is not drawn to scale. Only half of the physical domain was 

used for computation due to the geometrical symmetry. The channel with length L of 10 

m and half height H of 10nm is confined between the surface numbered as 4 and the 

symmetric plane as 8. The upstream and downstream wells are confined between planes 

1238 and 5678, respectively, each of which is 50 m long and 50 m high. A scaled Car-

tesian coordinate system is used where the channel mid-section is located at x
*
 = 0, the 

channel entrance at x
*
 = -50, the channel exit at x

*
 = 50, the channel wall at y

*
 = 1, and the 

symmetric plane at y
*
 = 0. The reduction of the flow area due to the Stern layer is disre-

garded since the Stern layer is typically one ionic diameter thick(~0.5 nm), notably less 

than the channel height. 
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Fig. 6.1. Computational domain for a nanochannel connecting to a well at each end 

 

6.4.2 Boundary and Initial Conditions  

The boundary conditions subjected to the governing equations are summarized in 

Table 6.2.  

 

Table 6.2. Boundary conditions 

Plane u
*
 K

+
& Cl

-
 H

+
 *

 

1    
   

    
 c

*
i = 1  c

*
i = 1  *

 = 0 

2,3,5,6 u
*
 = 0 N

*
i = 0 Eq. (6-20)            

4 u
*
 = 0 N

*
i = 0 Eq. (6-19)            

  

7 p
*
 = 0 c

*
i = 1 c

*
i = 1        

8          N
*
i = 0 Eq. (6-20)            
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The flow enters the domain at plane 1 and leaves at plane 2 in response to the 

suddenly applied external pressure difference. These planes are regarded as reservoirs 

where ion concentrations are fixed. The electric field is grounded at the inlet and isolated at 

the outlet. In convenience to investigate the electroviscous effect, the pressure difference is 

imposed as what is required to achieve an average flow rate of U for the Poiseuille flow 

through a channel of the same height.  

Plane 4 represents the channel surface where the impact of the EDL must be con-

sidered. The fluid is regarded as motionless below a shear layer which is identical to the 

inner Helmholtz plane according to the Basic Stern model. The layer is typically one ionic 

diameter thick (~ 0.4 nm), no more than 1% of the channel height, so that the narrowing is 

ignored in modeling. When the dissociation-association equilibrium is assumed, the 

boundary condition subjected to the Poisson equation is imposed as surface charge density 

described by Eq. (6-9). Salt ions are isolated at plane 4, but the proton exchange that is 

critical to the electronic flow must be consider for the transport of hydronium ions in the 

bulk solution. Combining Eqs. (6-7), (6-8), (6-16) and (6-18) yields 

 

      
        

      
  

 
    
      

 

 
  
         

     
        

 
          

   
  
             

 

  
  
 

   
                                                                                                         (6-19) 

Planes 2, 3, 5, and 6 are the well walls where no-slip condition for fluid, electric 

isolation, and no-penetration conditions for all ions are used. At plane 8, all physicals are 

symmetric. Applying N
*

H+ = N
*

OH- = 0, the boundary condition for the transport of hydro-

nium ions at these planes is written as 
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                                                      (6-20)  

The system is initially at electrostatic equilibrium which is obtained by soling the 

stationary problem in the same computation domain. The boundary conditions listed in 

Table 6.2 were used, except that p
*
 was imposed as zero at plane 1 to get rid of the external 

pressure difference.  

6.4.3 Mesh and Time Steps 

The computations were performed in a finite element mesh made of 20 × 600 

quadrilateral elements in the channel and 44350 triangular elements in the wells as 

schemed in Fig. 6.2. The mesh was refined near the channel wall and at the interface be-

tween the channel and the wells where the potential and concentration gradients are pro-

nounced. The closest grid to the channel wall is in a distance of less than 1.5 nm.  

 

    
Fig. 6.2. Meshes at the channel entrance 

 

The dimensionless time steps are basically controlled by the built-in time step 

solver BDF which uses various-orders variable-step-size backward differentiation formu-

las, but the maximum time step is bounded to 0.05 for t
*
 < 1000 and 3 for t

*
 ≥ 1000.  
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6.4.4 Parameter Range Used in Calculations 

The flow of 0.01 mM KCl was simulated with the following physical parameters: T 

= 25 °C, = 1000 Kg/m
3
,= 0.8904 × 10

-3
 Pa·s, = 5.0 nm

-2
, pK = 7.5, D

K+ = 

1.96 × 10
-9

 m
2
/s, D

Cl-
 = 2.03 × 10

-9
 m

2
/s, D

H+ = 9.31 × 10
-9

 m
2
/s, and D

OH- = 5.28 × 10
-9

 m
2
/s. 

The corresponding H is 1, indicating the existence of EDL overlap in the studied channel.  

The characteristic velocity U is chosen as 0.196 m/s to make ReSci at the order of 

unity. The simulated flow meets the condition of H/L << ReSci << L/H, just like typical 

electrokinetic flows. When the flow reaches the steady state, the variation of ionic con-

centration and electric potential along the streamwise direction is insignificant inside the 

channel. The entrance effect exists only near the ends of the channel. If the flow is rather 

slow such as ReSci ~ H/L, the entrance effect plays an important role to the flow. A slower 

flow with ReSci << H/L causes no change of the EDL structure due to the convective 

transport of ions is negligible. In the case of ReSci ~ L/H, the EDL effect is strongly de-

pressed by the extremely strong convective transport of ions, and ion distribution in the 

channel is close to what is in the upstream well. Therefore, the imposed value of U ensures 

that this study focus on the electrokinetic flow with negligible entrance effects. More de-

tails can be found later in the section of scale analysis of ion transport. 

6.5. Validation of Numerical Simulation 

Mesh and time stepping method have been validated first. And then the accuracy of 

the model is examined for the steady state flow and for static solution, two problems whose 

analytical solutions exist under conditions of EDL overlap.  
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6.5.1 Mesh Validation 

Grid resolution tests were performed for finer grids (20 × 1200 quads + 2 × 18100 

triangles, and 25 × 1000 quads + 2 × 16900 triangles ) and a coarse grid (15 × 400 quads + 

2 × 16400 triangles). Fig. 6.3 plots profiles of hydronium ion concentration along the 

channel midsection (x
*
 = 0) resulted from different grids at t

*
 = 1000 and 20000. 

Distribution of hydornium ion is focused here mainly because its distriubtion has the most 

violent transient feature in comparison with other physical responses, and also because 

hydronium ions are the key reason accounting for the transient of the EDL structure.  

 

 
Fig. 6.3. Comparison of profiles of hydronium concentration along the channel midsection 

(x
*
 = 0) when using different meshes 

 

The comparison shows the results are almost independent of mesh size at t
*
 = 1000, 

as all curves are nearly overlapped. At t
*
 = 20000, the profiles are slightly different, mainly 

at the position where the large variation of the concentration occurs. The prediction from 

the coarse grid is significantly closer to the channel exit, but the other predicitons agree 
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well with each other. Overall, the influence of mesh size is quite limited, especially at the 

beginning of the transient. 

6.5.1 Validation of Time Steps  

Time steps are determined mainly by the built-in time-step solver of 'BDF'. 'BDF' 

stands for the multi-step backward differentiation formula, meaning that it keeps and uses 

information from previous steps to calculate the next one. If no other restrictions are con-

sidered, time steps solved by the solver are initially below 0.01 at the very beginning, and 

gradually growing up to a few seconds after t
*
 = 10 and more than 10 seconds after t

*
 = 

1000. 

 

 
Fig. 6.4. Comparison of profiles of hydronium concentration along the channel midsection 

when using different maximum time steps 

 

To examine the influence of time stepping on the simulation, the maximum time 

step is set as 0.05 for t
*
 < 1000, and 1, 3, 5, 10 for t

*
 ≥ 1000. These additional restrictions 
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greatly short time steps, most of which are equal to the maximum time step. The predicted 

concentration profiles of hydronium ion show a difference below 2%, as shown in Fig. 6.5. 

Thus, the time stepping method used in the current simulation is validated. 

6.5.1 Analytical Model for Static Solution 

We now develop an analytical model for motionless KCl solution in a slit-like 

channel whose ends are connected to reservoirs. In the absence of the convective transport, 

ions are assumed to follow the Boltzmann distribution. Eq. (3-6) can be rewritten in a 

dimensionless form 

  
          

                                                                                                                         (6-21)  

where the electric potential field and ion distribution are referred to the reservoirs where 

the electroneutrality exists, and then *
∞  = 0 and c

*
i,∞  = 1. Eq. (6-21) is applicable for 

static solution regardless of whether the EDLs are overlapped. 

If the channel is sufficiently long, we can assume that the electric field is deter-

mined by the PB equation. Eq. (3-20) is represented by  

    

                                                                                                                               (6-22)   

with the boundary conditions of 
         

     , and *
(y

*
 = 0) = *

c. In an overlapped EDL, 

*
c is a non-zero value due to the loss of the electroneutrality at the channel midplane. The 

analytical solution of the equation above is given by [15] 

     
                                                                                                                      (6-23)  

where n = Hy
*
exp(-*

c/2)/2 and m = exp(2*
c). 

Concentration profiles across the channel are obtained by substituting Eq. (6-23) 
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into Eq. (6-21) 

  
            

                                                                                                            (6-24)  

Setting y
*
 = 1 in Eq. (6-24), the proton activity at the shear plane is given by 

     
          

                                                                                                (6-25)  

Surface charge density is obtained from Eq. (6-22) 

  
      

    
    

     
 

    
 

  
              

              
                                                                   (6-26)  

Eqs. (6-14), (6-25) and (6-26) were solved simultaneously for *
c, 


 and c

*

H+,d
 using Matlab 

R2009a. Ion profiles given by Eq. (6-24) are finally determined with the substitution of a 

solved *
c. 

6.5.2 Analytical Model for Steady State Flow 

We presented an analytical model for the steady pressure-driven flow in a slit-like 

channel in Chapter 5. To be identical with the single site model used in this chapter, the 

previous analytical model is modified by replacing Eq. (5-6) with Eq. (6-14). More details 

about the modeling can be found in Chapter 5. 

6.5.3 Comparison of Numerical and Analytical Results 

The comparison of ion concentrations along the channel midsection(x
*
 = 0) is 

presented for static solution in Fig. 6.5 and for the steady state flow in Fig. 6.6. The overlap 

of the curves shows that numerical and analytical results are in excellent agreement for 

both cases. It validates the accuracy of the simulation model. Meanwhile, the agreement 

suggests that the assumptions used for the derivation of the analytic solutions are appro-

priate under conditions of EDL overlap. More specifically, ions follow Boltzmann distri-
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bution at electrostatic equilibrium, while the species flux conservation should be obeyed at 

the steady state flow.   

 
Fig. 6.5. Comparison of numerical simulation and analytic solution in concentration pro-

files of a) H
+
, b) K

+
, and c) Cl

- 
for static fluid at the midsection 

 

 
Fig. 6.6. Comparison of numerical simulation and analytic solution in concentration pro-

files of a) H
+
, b) K

+
, and c) Cl

- 
for steady flow at the midsection 



91 

 

 

 

6.6. Simulation Results 

The transient of the EDL structure is the principle feature of the studied electro-

kinetic flow. The flow results in redistribution of ions, and variation of surface charge 

density and the electric field in the channel. When counterions are enriched at the down-

stream end of the channel, the time-dependent enrichment induces and varies the streaming 

potential, i.e. the potential difference between two wells. According to the characteristics 

of ionic distribution, surface charge, and the streaming potential during the process starting 

from initial relax state, the transient flow is divided into three stages: early, middle, and 

late.  

6.6.1 The Early Stage 

The early stage is featured by the increasing streaming potential, as well as the in-

significant change of the EDL structure inside the channel. Its time range is between 0 and 

~10 for the current simulation. Fig. 6.7 and Fig. 6.8 plot the electric potential and ion 

concentrations along the centerline (y
*
 = 0) in and near the channel at the early stage, re-

spectively. The initial electric field is attributed to negative charges on the channel surfaces. 

The electric potential is slightly smaller in the channel than in the wells, and there is no 

electric potential difference between the wells. The streaming potential keeps increasing as 

shown in Fig. 6.7. 

At the very beginning, the applied pressure difference drives the salt solution in a 

way free of influence of mobile ions. The Poiseuille flow has been fully established before 

the hydrodynamic relaxation time of H
2
/3, evaluated as 0.007 if scaled by H/U to be 

consistence with the simulation. In such a short time, the downstream enrichment of 



92 

 

 

 

counterions due to the transport of the bulk flow is not sufficient to arise a significant 

streaming electric field. Hence, the transient process is not much different from the de-

velopment of the Poiseuille flow. 

 

 
Fig. 6.7. Potential profiles along the centerline(y

*
 = 0) at the early stage 

 

The electrokinetic flow starts to deviates from the Poiseuille flow upon the pres-

ence of the streaming potential. Fig. 6.8 shows all three ions slightly shift downstream at t
*
 

= 0.1. At the same time, the streaming potential slightly but apparently increases, as shown 

in Fig. 6.7. However, the streamwise electromigration of ions is too small to act against the 

convection. As a result, the concentration profile of ions shift as a whole without signifi-

cant distortion from their initial state.  

At t
*
 = 0.1~10, the transport of ions is being considerably affected by the 

streamwise electromigration, which becomes stronger and stronger with the increase of the 

streaming potential. First of all, H
+
 are pushed upstream from the exit where they are en-
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riched at t
*
 = 0.1 and become even depleted at t

*
 = 10. Meanwhile, the bulk flow tends to 

carry more H
+
 into the channel. The opposite transports conflict at the entrance, forming a 

concentration hump. Second, K
+
 continue to accumulate near the exit. The concentration 

profiles of K
+
 and H

+
, shift along the opposite direction, because H

+
 with higher mobility 

move almost 5 times as fast as K
+
 in response to the streaming potential. K

+
 which are less 

affected are able to continuously move downstream with the bulk flow, leading to a higher 

electrical potential in the downstream well. Finally, Cl
- travel downstream like K

+
, but in a 

more violent way. The streaming potential accelerates coions, so that Cl
- from the upstream 

well buffer its initial depletion in the channel. Overall, the change of the EDL structure 

mainly occurs near the ends of the channel during the early stage. If the Boltzmann dis-

tribution is assumed for modeling the pressure-driven flow within an overlapped EDL [5, 6, 

19-21], the model likely provides the information at the end of the early stage. 

 

 
Fig. 6.8. Concentration profiles along the centerline at the early stage 
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Similar initial transient of concentration and potential profiles has been reported for 

the flow in a finite capillary of radius 1 or 5 times the Debye length without concerning H
+
 

and OH
-
 [44], because H

+
 has negligible contribution to electrokinetic flows comparing to 

K
+
 or salt counterions at the early stage. 

6.6.2 The Middle and Late Stage 

The middle stage following the early one, ends by the hydraulic retention time 

(HRT), L/U, the time needed for the Poiseuille flow to sweep over the channel once. HRT is 

equal to 100 if scaled H/U for the current simulation. Fig. 6.9 plots the concentration pro-

files along the centerline in the channel including the region near its ends for t
*
 = 10, 20, 50 

and 100. One of main features of this stage is the significant increase of the concentration 

of Cl
-
. By the end of the middle stage, it rises up to nearly the original salt solution at the 

centerline. As a consequence, the enrichment of H
+
 and K

+
 are slightly and equally en-

hanced to maintain electroneutrality across the channel including the walls. Therefore, all 

ions become more dense in the channel. The concentration hump of H
+
 steadily grows at 

the entrance. The other important features of the middle stage include the decrease of the 

streaming potential due to the upstream shift of H
+
 and K

+
 at the exit, and insignificant 

change of surface charges. More discussions of these two features are shown later. Some of 

main features of the early and middle stage are in consistence with the previous simulation 

for the capillary flow with an overlapped EDL and with the assumption of constant surface 

charges [44]. 
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Fig. 6.9. Potential profiles along the centerline at the late stage 

 

The late stage is the last period before final steady state. This stage distinguishes 

from the first two stage mainly because of large variation of concentrations of counterions 

as shown in Fig. 6.10. The curves for t
*
 = 30000 in the figure represent ion distributions at 

steady state. 

Fig. 6.10a presents a series of concentration profiles of H
+
 at the late stage. The 

growth of the concentration hump of H
+
 continues before t

*
 = 500 when its peak value rises 

up to as highly as ~250. After then, the uphill side of the concentration hump will not 

change any longer in position and shape, while the downhill side propagates downstream 

like a concentration plug. The flat plateau of the concentration humps implies that the en-

richment of H
+
 is enhanced by about two orders of magnitude and stays stationary after the 

concentration plug passes. The front side of the plug is a narrow region, so called the transit 

region, across which there is a sharp variation in concentration. In the other direction, the 

depletion region of H
+
 which is right next to the channel exit at t

*
 = 10, extends upstream 
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and eventually meets the shock wave near x
*
 = 0 at t

*
 = 5000. The depletion region plays an 

important role to sucking H
+
 into the channel from the downstream well. Thus, H

+
 are 

redistributed through the downstream propagation of the concentration plug and the up-

stream expansion of the depletion region. At the places where the propagation/extension 

has not arrived yet, the concentration is not different from the end of the middle stage. The 

redistribution of H
+
 has profound influence on the distribution of other ions, surface charge 

and the electric potential field.  

 

 
Fig. 6.10. Concentration profiles along the centerline at the late stage 

 

A similar plug-like propagation is shown in Fig. 6.10b for K
+
 and in Fig. 6.10c for 

Cl
-
. Unlike H

+
, the concentration plug of K

+
 initially exists in the channel, and travels out 

of the channel exit. By the end of the late stage, its initial enrichment is largely reduced. 

The concentration of K
+
 slightly increases at the downstream part before the concentration 

plug arrives, in a response to the depletion of H
+
 which causes surfaces more charged to 
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attract more K
+
. The transient redistribution of Cl

- is dependent on the variation of H
+
 as 

well, but it is negligible comparing to the large variation of counterions. At the steady state, 

the concentration of Cl
- slightly increases in the channel.  

To capture the transient behavior of transverse ion distributions at the late stage, Fig. 

6.11 plots the concentration profiles of H
+
 and K

+
 across the midsection (x

*
 = 0) where the 

concentration plugs arrive at t
*
 = ~4500. The plotted profiles for t

*
 = 4000, 4500, 5000 

represent typical transverse ionic distributions before, during, and after the concentration 

plugs. The transverse distribution of Cl
- is not investigated because of its less significance. 

The figure shows that the concentrations of both ions radically rise up toward the walls at 

all times. The curve of H
+
 is slightly lower at t

*
 = 4000 when the downstream depletion has 

a significant influence on ion distribution at the midsection, than the one at t
*
 = 100. Next, 

it jumps up from t
*
 = 4000 to 4500 and to 5000, implying that H

+
 are enriched in the whole 

channel when experiencing the propagation. The transverse distribution of H
+
 behind the 

concentration plug becomes nearly stationary as the profiles for t
*
 = 5000 and 30000 are 

almost overlapped. Therefore, it is concluded that the transient feature of H
+
 along the 

centerline is also true for its transverse distribution. The same conclusion for K
+
 can be 

drawn through similar analysis of Fig. 6.11b. In fact, the transverse equilibrium is estab-

lished at time scale of H/D
2
i, which is faster than the streamwise transport by a few orders of 

magnitude. The transverse transport of ions can be regarded as at quasi-steady equilibrium 

except in the transit region. 
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Fig. 6.11. Transverse ionic distribution at the midsection 

 

At the middle and late stage, the streaming potential keeps dropping. Fig. 6.12 plots 

the electric potential along the centerline for t
*
 = 10, 100, 500, 5000, and 30000. The 

streaming potential monotonically decreases with respect to time by more than half. The 

curve for t
*
 = 5000 consists of two linear segments,  the flatter one at x

*
 = -50~5 and the 

steeper one at x
*
 = 5~50. The turn point corresponds to the position of the shock wave. It 

suggests that the streamwise electric field in the channel separates two regions. The one in 

the upstream part is weaker, while the other one is stronger. Accompanying with the 

propagation of the concentration plugs, the weaker electric field replaces the stronger one 

in the channel.  
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Fig. 6.12. Potential profiles along the centerline at the middle and late stage 

 

6.6.3 Surface Charge Density 

Surface charge density is plotted in Fig. 6.13 for typical moments in the early, 

middle and late stage. The surfaces are equally charged in the channel except near its ends 

at t
*
 = 0 and t

*
 = 100. Local charge density varies in a difference of less than 0.1% before 

the late stage, corresponding to the insignificant variation of ion concentrations. During the 

late stage, however, surface charge significantly varies via the proton exchange with the 

bulk solution. It variation is strongly related to the transient redistribution of H
+
. There is a 

transit region presenting a large variation of surface charge, in consistence with the con-

centration plug propagation of H
+
. The transit region propagates downstream, leaving an 

equal but less charge density behind. For the current simulation, charge density drops to 

only one fifth of its initial value after the concentration plugs sweep. In response to the 

depletion region of H
+
, a more-charged region is initially formed at the channel exit and 
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extends upstream. After t
*
 = 15000, surface charge density doubles at the downstream part 

of the channel. Large variation of surface charge is the unique feature of the late stage. 

Furthermore, it reflects local proton exchange with the bulk solution. The channel surfaces 

release protons at the downstream part, absorb protons at the transit region, and barely 

exchange at the upstream part.  

 

 
  

Fig. 6.13. Net charge density on the channel surfaces 

 

6.6.4 Ion Transport at the Late Stage 

To further understand the role that ion transport plays to the redistribution of ions 

during the late stage, the flux density of H
+
 and K

+
 in the channel at t

*
 = 4500 are inves-

tigated.  

Fig. 6.14a demonstrates the direction of the flux of H
+
 around the midsection where 

the transit region locates. The figure is not scaled to reflect the magnitude. It is shown that 

H
+
 are moving upstream in the downstream part of the channel (x

*
 > 2) where the 
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streamwise electric field is sufficiently strong to overcome the convective transport. H
+
 are 

circulating in the upstream part ( x
*
 < -1) and in the transit region ( -1 < x

*
 < 2) because the 

dominant transport component is the convection in the neighborhood of the channel center 

but the electromigration near the walls. 

 

 
Fig. 6.14. Flux density of H

+
 at t

*
 = 4500. a) normalized flux density near the midsection, 

and b) streamwise flux density along cross sections. 

 

Fig. 6.14b plots the streamwise flux density of H
+
 along various cross sections at t

*
 

= 4500. In the upstream part except at the very end (x
*
 < -45) where the end effect is strong, 

the profiles are identical. The overlapped profiles at x
*
 = -5 and -40 is shown in the figure 

as an example. The flux density is relative large due to the strong enrichment of H
+
, but the 

total streamwise flux across the channel, i.e. the integration of the flux density along the 

cross section, is as small as -0.07UHc
H+,∞

. In the downstream part, all profiles are entirely 

below zero, and the closer to the shock wave, the lower the profiles. The total streamwise 
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flux varies from -6.5UHc
H+,∞

 at x
*
 = 40 to -14.0UHc

H+,∞
 at x

*
 = 2. Its value is not a constant 

because the surfaces are releasing protons into the bulk solution. When the total 

streamwise fluxes from the downstream and upstream parts are compared, it can be con-

cluded that H
+
 circulating inside the upstream part nearly enter the transit region, while H

+
  

sucked from the downstream well and released by the surfaces in the downstream part are 

stored in the transit region. The storage is either in the bulk solution as free ions, or on the 

surfaces as components bounded with silanol groups. Once local storage is completed, the 

concentration plug propagates forward. 

Fig. 6.15 demonstrates the transport of K
+
 with the same configuration as Fig. 6.14. 

There are two separate circulations, one in the upstream part, and the other in the down-

stream part including the transit region. In the upstream part, K
+
 are mostly moving 

downstream except near the walls. Profiles of the streamwise flux density are overlapped 

in the upstream part, such as those at x
*
 = -5 and at x

*
 = -40 as shown in Fig. 6.15b. The 

corresponding streamwise flux is evaluated as 0.85UHc
K+,∞

. Recalling that the flow with 

average flow rate of 0.84U at this moment brings K
+
 into the channel at the rate of 

0.84UHc
K+,∞

, no K
+
 are left in the upstream part as the fluxes are equal within a small 

calculation error. In the downstream part, K
+
 are circulating with a larger magnitude. Its 

streamwise flux decreases along the flow direction from 0.99UHc
K+,∞ at x

*
 = 2 to 

0.91UHc
K+,∞ at x

*
 = 40, but apparently larger than the coming flux. It implies that the 

coming flux is unable to compensate all the loss in the transit region where K
+
 will be less 

enriched. And a number of K
+
 are retained in the downstream part where the surfaces with 

more charges present stronger attraction to K
+
.  
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Fig. 6.15. Flux density of K

+ 
at t

*
 = 4500. a) normalized flux density near the midsection, 

and b) streamwise flux density along cross sections. 

 

6.6.5 Positions of Concentration Plugs 

Fig. 6.16 plots the location of the concentration plugs of H
+
 and K

+
. The location is 

referred to as somewhere along the downhill/uphill side of H
+
/K

+
 so that 

    
 

      . The 

slight difference of the curves is attributed to the definition of the location, but generally, 

the concentration plugs should always be at the same position since their propagation is at 

the same pace. It is shown from the figure that it takes as long as about 275HRT for the 

concentration plugs to travel through the channel. The reason for such a long time is that 

the feed of H
+
 from the downstream well is quite slow comparing to the storage capacity of 

protons in the channel. It is also noted that the propagation rate, i.e. the slope of the curves, 

is relatively large in the upstream half channel and drops to only one sixth or so in the 
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downstream half channel. The difference is mainly related to the transient of surface 

charges. Because the surfaces at the downstream part are releasing protons to provide ad-

ditional supply of H
+
, the transit region absorbs H

+
 with a larger flux while locating at the 

upstream half channel. When the concentration plugs arrive at the downstream half part 

where the surfaces are more charged, extra H
+
 are needed to neutralize surface charges.  

 

 
Fig. 6.16. Location of concentration plugs 

 

As far as we know, such a long time to establish the steady state flow within an 

overlapped EDL has never been reported before. This conclusion has profound impact on 

real applications of the electrokinetic flow with overlapped EDLs. For instance, dilute KCl 

solution was driven through a channel of 75 nm high and 4.5 mm long under the pressure 

bias of 0.4 MPa in the past experiments [6]. Such a flow has HRT of 98 seconds, the 

transient process can maintain a few hours if the same time of 275 HRT is assumed to 

achieve its steady state.  
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6.6.5 Electroviscous Effect 

The electroviscous effect results from the streaming potential which drives 

counterions against the bulk flow, causing additional flow friction. To evaluate the tran-

sient of electroviscous effect, Fig. 6.17 presents the scaled flow rate of the electrokinetic 

flow with the consideration of the EDL effects with respect to time, against the Poiseuille 

flow with no EDL effects in the same computation domain. The Poiseuille flow was sim-

ulated by solving only the NS equation. Under the pressure difference of 3LU/H
2
, the 

steady Poiseuille plate flow has the flow rate of UH or Q
*
 = 1. The simulation results show 

the Poiseuille flow has Q
*
 = 0.984 at steady state, which is slightly less than 1 because 

minor pressure loss at the channel ends.  

 
Fig. 6.17. Variation of the flow rate through the channel 

 

The transient of the flow rate of the electrokinetic flow can be divided into three 

stages. First, the flow rate rapidly increases as t
*
 < 0.05. The transient behavior agrees well 

with what is for the Poiseuille flow, because the streaming potential is not sufficiently 
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strong to cause an significant friction increase. Second, Q
*
 rapidly decreases to its mini-

mum value of 0.76 in the period of 0.05 < t
*
 < 11. At the same time, the Poiseuille flow has 

already achieved its steady state. The flow friction quickly increases accompanying the 

establishment of the steaming potential. At t
*
 = 11 when the streaming potential reaches its 

maximum, the electroviscous effect is the strongest and the flow rate is reduced by 23%. 

Finally, the flow rate is slowly back up for 11 < t
*
 < 27500. The electrokinetic flow is only 

3% slower than the Poiseuille flow at the steady state when the electroviscous effect be-

comes negligible.  

It should be stressed that the increase of flow rate in 11 < t
*
 < 27500 is quite slow. 

The inset of Fig. 6.17 demonstrates that the change of the flow rate in the last period has the 

similar tendency as the propagation of concentration plugs plotted in Fig. 6.16. The simi-

larity is mainly because the steady state distribution of ions replaces the initial Boltzmann 

distribution step by step, accompanying with the plug-like concentration propagation. As a 

consequence, the flow friction decreases in the region that the replacement completes, as 

the streamwise electrical body force is significantly reduced due to the decrease of spatial 

charge density and the streamwise potential gradient. The overall flow friction consists of 

the ones before and behind the concentration plugs, and decreases in proportion to the  

propagation. Therefore, the change of the flow rate is strongly dependent on the location of 

the concentration plugs. 
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6.7 Time Scale Analysis 

Numerical results in the last section show that the time to achieve steady state is as 

long as 275HRT, and that the EDL structure becomes quite different from Boltzmann dis-

tribution. The transient is mainly featured by the downstream propagation and the up-

stream extension. However, the transient features can be apparently different under some 

special cases, such as an extremely slow flow in which the EDL structure should approach 

Boltzmann distribution as the influence of the flow is negligible. In this section, we per-

form time scale analysis of ion transport to classify the transient behavior of electrokinetic 

flows.  

6.7.1 Time Scale of the NP Equation 

In a two-dimensional channel with x direction parallel to the walls and y direction 

normal to the walls, the salt solution flows along x direction. Ion transport is govern by the 

NP equation. Substituting the continuity equation of Eq. (3-1) into the NP equation of Eq. 

(3-4), yields  

   

  
  

   

  
    

    

   
 

    

   
  

     

  
 

 

  
   

  

  
  

 

  
   

  

  
                                           (6-27) 

The electric potential can be treated as the combination of its two components 

                                                                                                                         (6-28) 

where  is the transverse component referenced to the channel center, i.e.x,0, and 

x is the streamwise component, which is constant along every cross section.  

Substituting Eq. (6-28) into Eq. (6-27) yields 

   

  
  

   

  
    

    

   
 

    

   
  

     

  
 

 

  
   

  

  
  

 

  
   

  

  
  

 

  
   

  

  
                    (6-29) 
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To normalize Eq. (6-29), we use the following parameters, which are of order unity, 

  
 

  
   

 

 
    

  

    
   

 

 
   

 

 
   

 

  
   

 

 
                                                      (6-30) 

where t is the characteristic time scale, U the characteristic velocity,  the potential 

difference between channel ends. With the substitution of Eq. (6-30), Eq. (6-29) is 

rewritten as 

 
   

  
        

   

  
   

      

  
  

    

  
     

 

  
   

  

  
      

  
   

  

  
   

 

  
   

  

  
                                      (6-31) 

Here, = H/L,  = H
2
/tDi,  = ziF/RT, and  = H/L.  is mainly related to surface 

properties.  represents the ratio of the streamwise electric field strength to the transverse 

one, which is related to the flow rate and the EDL structure. Time scale of each transport 

component is given by comparing their coefficients with . For example, the convection 

(the second term in the LHS) has a time scale of L/U using  ~ ReSci. The terms in the 

RHS represent streamwise diffusion, transverse diffusion, major streamwise 

electromigration, minor streamwise electromigration and transverse electromigration with 

time scales of 
  

  
, 

  

  
, 

    

       
, 

    

      
, and 

    

      
, respectively. 

All the derivatives in Eq. (6-31) are basically no more than unity in the majority of 

the channel. Particularly, 
 

  
   

  

  
  is of unity order in the EDL, or throughout the 

channel in which the EDLs are overlapping. The only exceptions are 
    

  
  and 

 

  
   

  

  
  

in the transit region where they could be much larger than unity as discussed later. 

The orders of the coefficients in Eq. (6-31) vary among ReSci, 2
 and 1. In typi-
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cal electrokinetic flows in an approximately infinitely long nanochannel,  ~ 1[9], << 1, 

Sci = 400 ~ 1000, Re = 10
-5

 ~ 10
-3

 , and  << ReSci << 1/.  must be at the same order 

as ReSci, because the major electromigration is the one to balance the convection along 

the flow direction. The order of  depends on the characteristic time on which the 

transport is investigated. Hence, the coefficients comply with 2
 ~ 2

 << ReSci ~ << 

~ 1 under the condition of  << ReSci << 1/.  

6.7.2 Transverse Equilibrium 

If only taking the terms with highest orders of 1, Eq. (6-31) is reduced to 

 
   

  
 

    

  
   

 

  
   

  

  
                                                                                                        (6-32) 

which indicates that ion distribution along the transverse direction is mainly governed by 

electromigration and diffusion, and the equilibrium is established at the time scale of H
2
/Di, 

which is 5 s for the previous numerical simulation. If ion transport is examined at a much 

larger time scale such that  << 1, Eq. (6-32) can be expressed as  

    
    

    
     

  

 

  
   

       

  
                                                                                             (6-33) 

The transverse equilibrium is at quasi-steady. The solution of Eq. (6-33) with the 

boundary conditions x,0 and ci(x, y, t) = ci,c(x, t) is given by Eq. (3-9) 

                        
   

  
                                                                                     (6-34) 

ci,c(x, t) is the concentration of ith ion at the channel center, accounting for the 

contribution of other transport components. Eq.(6-34) has been widely used to model 

concentration profiles as we did for steady state flow in an infinitely long channel in 

Chapter 4 and also surveyed in Chapter 2.  
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6.7.3 Streamwise Transport 

Electrokinetic flows of salt solutions may lead to a large change of ion distribution 

as suggested by the simulation results. Although all streamwise transport terms are not as 

strong as the transverse terms at the steady state, they play an critical role to the transient 

behavior. 

According to the analysis of Eq. (6-31), the convection and major electromigration 

has the second highest order of ReSci, but still larger than the lowest order of2
. Thus, the 

streamwise transport is mainly governed by the convection and major electromigration 

with the time scale of L/U, which is equal to 50 s for the previous numerical simulation. 

The balance of the two major streamwise transports are simply guaranteed by 
   

  
   and 

   

     . Thus, ion distribution and the electric field maintain uniform along the 

streamwise direction in the channel, except in the transit region. 

The transit region is a narrow region, similar to a shock in which large variation of 

ion concentrations occurs. To illustrate ion transport in the transit region with a width of L, 

Eq. (6-31) is rescaled as 

 
   

  
       

  
   

  
  

       

  
   

    

  
        

  
    

  
 

  
        

  
    

  

  
    

 

  
   

  

  
                              (6-35) 

where ' = H/L,  
 
     ,      

      , and  
 
     

 .   
  is the streamwise 

potential difference across the transit region. Other dimensionless parameters are defined 

in Section 6.7.1. This treatment makes all the derivatives are at the same order, so that the 

terms can be compared by focusing on the coefficients.  
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Diffusion and convection along the streamwise direction are two of the leading 

transport terms in the transit region. They must be at the same order because convection 

triggers the change of ion distribution, while the streamwise diffusion is the one to balance 

the convection in this region. It yields ReSci' ~ '
2
, further leading to L ~ H/ReSci << L if 

recalling the assumption of ReSci >> . It should be noted that Eq.(6-34) is no longer a 

description for ion distributions in the transit region because the transverse terms are not 

the only major contributions. Ion distributions must be modeled in a 2-D space instead. 

As a summary of the analysis of the streamwise transport, Ions are almost uni-

formly distributed along the streamwise direction in the majority of the channel, but ab-

ruptly vary in a narrow region under the condition of H/L << ReSci << L/H . The analysis is 

in accordance with the presence of concentration plugs in the previous simulation.  

Moreover, ion distributions are at quasi-steady state in the channel, including the transit 

region, if the transient is considered at a time scale as large as the hydraulic retention time 

of L/U.   

6.7.4 Other Types of Electrokinetic Flows 

The above scale analysis is applied for electrokinetic flows under the condition of 

H/L << ReSci << L/H . The key feature is the presence of the transit region, and the qua-

si-steady state in the channel. Next, we qualitatively examine ion distributions of other 

electrokinetic flows that the condition of H/L << ReSci << L/H is not satisfied.  

When ReSci is less than H/L by orders, convection is too small to induce a con-

siderable streaming potential field. Ion distributions are not able to significantly deviate 

from Boltzmann distribution in this case. Salt solutions can be treated as being at rest, 
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without the influence of trivial convection.  

If the flow is rather slow, or the channel is relatively short such that ReSci ~ H/L, the 

streamwise diffusion is at the same level as the convection and the major electromigration. 

It seems that the transit region fully extends to cover the whole channel, or the end effects 

has strong influence on the channel. Hence, ion concentrations significantly vary along the 

flow direction ( 
   

  
  ), and the streamwise electric field is no longer uniform (

   

      

and 
   

     ). This is a quite different scenario from the previous simulation, as the con-

centration plugs likely disappear.  

When ReSci >> L/H, convection and electromigration along the streamwise direc-

tion become the dominating terms. This situation may exist when the flow flushes over 

short nanopores. When the sudden flow is added, counterions start to circulate in the 

channel. The circulation is so strong as to completely mix ions which will quickly achieve 

uniform distribution. When the flow is at steady state, the EDL effects are negligible as the 

internal electric field due to surface charges is too small to have significant influence on the 

flow as well as ion distribution in the channel.  

For electrokinetic flows with ReSci ~ L/H, the convection is at the same order as the 

transverse diffusion, and the streaming potential field is as strong as the internal electric 

field. The electroneutrality condition along the cross section is not valid due to the influ-

ence of the strong streaming potential field. There is no transverse quasi-steady state dur-

ing the transient. The mixing behavior seems to have strong influences on the transient, but 

is left to the future study.  
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6.8 Approximate Solution for Concentration Plug Propagation 

6.8.1 Basic Concept 

It is of importance to estimate how long the steady state will be reached for a spe-

cific system. It is anticipatable that the time to achieve the steady state is dependent on a 

number of factors, including the channel geometry, salt concentration, the bulk pH, sur-

face chemical properties, and the flow conditions. The complete change of the EDL 

structure due to the added electrokinetic flow may finish in a wide range from a few se-

conds to as long as a few hours. 

A straightforward model is proposed here to quantify the propagation rate, so 

called the concentration plug transport model. According to the above time scale analysis, 

there is a narrow transit region in the channel under the condition of H/L << ReSci << L/H. 

The propagation of the concentration plug is the process that the transit region travels 

downstream. The whole domain is enclosed between two cross sections located at x = a 

and x = b, the channel wall at y = H, and the symmetric plane at y = 0. The upstream re-

gion, the transit region, and the downstream region are sketched in sequence in Fig. 6.18, 

and separated by dash lines.  

 
Fig. 6.18. Sketch of concentration plug transport model 
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In the upstream and downstream regions, we assume (i) negligible streamwise 

concentration variation such that 
   

  
  , (ii) uniform streamwise electrical field such 

that 
 

  
 

  

  
    and 

  

  
  , (iii) no proton exchange through the surface such that 

     , and (iv) constant surface charge density along the streamwise direction, i.e. 

   

  
  . These assumptions are in accordance with the time scale analysis and also the 

previous simulation. They extremely simplify the NP equation, the Poison equation and 

the relevant boundary conditions at surfaces, making it possible to obtain an analytical 

solution. In contrast, the electric field and concentration profiles sharply change in both 

the streamwise and the transverse directions in the transit region. It is formidable to ob-

tain an analytical solution there. 

When the transit region travels downstream in a finite channel, the upstream re-

gion extends, while the downstream region shrinks. Because the propagation is very slow 

comparing to transverse equilibrium in the bulk and proton exchange on surfaces, the 

EDL structure is at quasi state, which is treated as stationary in each region.  

The concentration plug transport model quantifies the propagation rate through 

modeling the transport phenomena in the upstream and downstream region. According to 

the species conservation law, the species that enters the transit region from the neigh-

bored regions is stored in the transit region including in the fluid and on the surface.  

6.8.2 Approximate Solution 

The propagation rate of concentration plugs is mainly restricted by the limited 

supply rate of protons comparing to the relative large storage capacity of protons in the 
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channel. Transport and storage of hydronium ions are focused in this subsection to deter-

mine the propagation rate.  

In a nanochannel with an overlapped EDL, the generation rate of H
+
 due to water 

dissociation is much smaller than its transport so that the source term in Eq. (3-14) can be 

ignored, and the integral of Eq. (3-14) within the domain sketched in Fig. 6.18 is given by  

  
    

     
 
 

  
                               

 

 
 
   

        
 

 
 
   

     (6-36) 

where         

 
, denotes the average quantity along the cross section. All terms in 

Eq.(6-36) are evaluated for the propagation through an infinitesmal distance of dxplug over 

a time span of dt. With the assumption that the transit region is unchanged in geometry, 

the upstream one extends by dxplug and the downstream one contracts by the same length.  

If the EDL structure of each region is stationary, the change of H
+
 numbers in the 

domain is associated with the change of the geometry of the upstream and downstream 

regions, yielding 

         
 

 
        

          
                                                                                            (6-37) 

If the potential field is defined by Eq.(6-28), the outward flux density at x = a is 

obtained by the combination of Eq. (6-7) and Eq. (6-15) as 

                  
  

  

  
 

  
   

  

  
 

  

  
 

  

  
                                                       (6-38) 

With the assumption of 
  

  

  
   and 

  

  
   in the upstream region, Eq. (6-38) can be 

integrated along x = a to yield the average outward flux at the entrance of the domain, 



116 

 

 

 

                                                                                                                                (6-39) 

where           
  

   
  

  

  

  
  is the flux of H

+
 across the channel. 

The average outward flux at x = b is derived in a similar way, yielding 

                                                                                                                                   (6-40) 

The different signs of the bracketed terms in Eq. (6-39) and (6-40) are because two 

surfaces at x = a and at x = b are in the opposite direction. 

Due to the symmetric condition, there is no proton exchange at y = 0, yielding 

       
 

 
 
   

                                                                                                                       (6-41) 

The outward flux through the wall at y = H is related to the change rate of surface 

charge density via. Eq. (6-16) 

       
 

 
 
   

  
      

 
 

   
                                                                                                       (6-42) 

Because surface charge density is assumed to be constant in the upstream and 

downstream regions, the change of total surface charge is caused by the change of the 

geometry of the upstream and downstream regions, yielding 

      
 

 
                

                                                                                                      (6-43) 

Combining with Eqs. (6-37) and (6-39)-(6-43), Eq.(6-36) can be rewritten as, 

 
      

  
        

  

  
  

   

   

         
                                                                                 (6-44) 

where the second term represents proton exchange with the environment, and the first 

term is the storage of protons in the channel, either as free ions in the bulk solution or as 

components bounded with silanol groups.  

Rearranging Eq. (6-44) yields the propagation rate uplug as  
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                                                                                   (6-45) 

where      
     

  
   

   
,       

       
   

   

   
 and    

     
     

   . The propagation rate is 

estimated without knowing the structure of the transit region. In order to evaluate uplug, the 

quantities of Eq. (6-45) should be determined with some assumptions. 

First, we assume the EDL structure in the upstream region is the same to that at the 

steady flow state, which has already been modeled in Chapter 5, and the corresponding 

analytical solutions of these quantities are listed in Table 6.3. This assumption is in good 

agreement with the previous simulation results. The total flux of H
+
 across x = a is also 

ignored. or there is no proton exchange between the transit and upstream regions.  

 

Table 6.3. Determination of quantities in the approximate solution 

Quantity x = a x = b 

c
*

H+ Eq. (5-2) Eq. (6-24) 

*
 Eq. (5-5) Eq. (6-23) 


 Eq. (5-9) Eq. (6-26) 

u
*
(u  = up + ue) / Eqs. (5-13) and (5-14) 

   

   
 / Eq. (5-20) 

J
*

H+ 0 Eq. (5-12) 
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Second, it is assumed that the EDL structure in the downstream region is at elec-

trostatic equilibrium. The transient of surface charge and ion distributions in the down-

stream region are ignored. According to the simulation results, the assumption is valid 

only at the early/middle stage. At the late stage, ion distributions gradually deviate from 

Boltzmann distribution, leading to a significant modeling error.  

Finally, the streamwise potential field in the downstream region is assumed to be 

constant throughout the late stage, and its value is given by assuming the species flux 

conservation of K
+
. The streaming potential is obtained by solving Eq. (5-20) based on 

Boltzmann distribution. The bulk velocity is next solved by substituting the streaming 

potential into Eqs. (5-13) and (5-14). The total flux of H
+
 across x = b is estimated by 

substituting u
*
 and 

   

    into Eq. (5-12) with the assumption of Boltzmann distribution of 

H
+
.   

With the above assumptions, all quantities in Eq.(6-45) are independent of time so 

that the concentration plug of H
+
 propagates at a constant rate. The flow reaches its steady 

state once the concentration plug arrives at the exit of the channel. Thus, the time required 

for reaching the steady flow is given by  

   
 

     
 

   
  
   

     

     
    

   
 

  
  
  

 

 
                                                                                         (6-46)  

where ts is proportional to the HRT. 

6.8.3 Estimation for the Propagation Rate 

Electrokinetic flows of various salt solutions though a channel with H of 10 nm and 

of 100 nm were calculated. The calculations used the same parameters as the previous 
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simulation. Fig. 6.19 plots ts/HRT for salt solutions of 10
-4

 ~ 1mM with the pH at 7. ts/HRT 

is almost linearly dependent on salt concentration for a given channel under conditions of 

EDL overlap. ts could be larger than the HRT by a few order of magnitude. Such a large 

time scale has never been reported in the literature. The time scale was usually suggested as 

the HRT or a few times the HRT [25, 44]. 

ts varies in a wide range in real applications. For example, in the experiment re-

ported in [6], KCl solution flows through a channel of 75 nm high and 4.5 mm long under 

the pressure bias of 0.4 MPa. Though the HRT is only 97.7 seconds, ts estimated from the 

approximate solution are as long as 0.75 and 7.9 hours for 0.01 mM and 0.1 mM solutions, 

respectively. Had the channel been shortened to 45 m with the corresponding HRT of 

0.0977 seconds, such as in nanopores, the steady state flow will be achieved in less than a 

few seconds.  

 

 
Fig. 6.19. t

*
s as a function of salt concentration. 
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ts is mainly related to the flux of protons absorbed from the downstream reservoir, 

as well as the storage capacity of protons in the channel. The dimensionless flux is evalu-

ated by      
 , while the dimensionless storage of protons in the solution and on the 

surface is characterized by       
   and  

     

         

   
 , respectively. These quantities 

are plotted in Fig. 6.20 and Fig. 6.21 for electrokinetic flows of various salt solutions in the 

channel with H of 100 nm.  

Fig. 6.20 demonstrates that the dimensionless flux of H
+
 increases in lower salt 

solutions, because H
+
 is more enriched with a more overlapped EDL at static equilibrium. 

It should be noted that the flux of H
+
 from the downstream reservoir is mainly affected by 

the end effects. Information at the interface between the channel and the reservoir, in-

cluding distribution of hydronium ions, the bulk flow field, and the electric field, deter-

mines the flux of H
+
. Generally, the flux of H

+
 slightly increases with respect to time during 

the late stage. Constant flux of H
+
 assumed in the model is not a precise description, but the 

assumption make it possible to roughly estimate the flux by avoiding the complex exit 

effects.  

Fig. 6.21 suggests that most newly added protons are adsorbed to the surfaces ex-

cept on extremely dilute salt solution. For instance, for 0.01 mM KCl solution, 83% of 

protons are bound to the surfaces and only 17% are left in fluid. The store capacity could be 

larger than net flux of proton by a few orders of magnitude for salt solutions of around 

0.1mM, leading to the corresponding ts/HRT as large as thousands. It means that the feed of 

protons is so slow that the concentration plug propagates at a small rate.  

The storage capacity of a nanochannel results from the difference of the EDL 
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structure at static equilibrium and at steady flow equilibrium. In an extremely dilute solu-

tion, no additional protons can be stored in the channel when the fluid changes from static 

state to steady state flow. It is in consistence with the analysis of salt-free water in Chapter 

3 that the EDL structure is not dependent on the flow status. When the EDL overlap effects 

is lack in a salt regime of higher than 1mM(H > 10), the storage capacity decreases to 

nearly zero as well, because the EDL structure is unchanged by the flow in this case as we 

described in Chapter 5.  

 
Fig. 6.20. Net flux of H

+
 across the transit region in the channel of H = 100 nm. 
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Fig. 6.21. Storage of protons in the channel of H = 100 nm. 

 

6.8.4 Comparison between Estimation and Simulation Results 

The approximate solution for the time to reach steady state is only a rough esti-

mation. Under the condition of the previous simulation that 0.01 mM KCl solution flow 

through a nanochannel of H = 100 nm, ts is estimated as 64 HRT, or t
*
 = 6400, which is 

about one fourth of the simulation prediction t
*
 = 25000. Recalling fast propagation in the 

upstream half channel as shown in Fig. 6.16, the prediction of the approximate solution has 

a difference of less than 10%. But in the downstream half channel, the propagation be-

comes much slower and the approximate solution overestimates the propagation rate by a 

few times. 

The overestimation of the propagation rate in the downstream half channel is 

caused by two reasons. The first reason is that channel surfaces are more charged in the 

downstream region. The charge density where the concentration plug meets the down-

stream region, increases in magnitude since t
*
 = 2000 and finally doubles its initial value as 
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shown in Fig. 6.12. With the assumption of constant 
, the approximate solution un-

derestimates the storage capacity of protons on surfaces. It is also because the concentra-

tion of H
+
 is significantly reduced in the downstream region. The approximate solution 

further overestimates the upstream electromigration of H
+
, or the flux of H

+
 entering the 

transit region. Overall, the assumption of the unchanged EDL structure in the downstream 

region leads to a great error in the prediction of the propagation rate in the downstream half 

channel.  

6.9 Summary 

The research investigates the transient behavior of the pressure-driven flow within 

an overlapped EDL, particularly with the consideration of proton exchange between silica 

surfaces and the bulk flow. A flow of 0.01mM KCl solution through a nanochannel with 

half height H of 100 nm and length L of 10 m between two large wells was simulated. A 

deliberate pressure difference was chosen to satisfy the condition of               

with which typical electrokinetic flows comply. The Poisson equation, the Nernst-Planck 

equations, and the Navier-Stokes equations were solved by COMSOL 3.5a using a finite 

element method. Hydronium, hydroxide, potassium, and chloride ions were involved in the 

model. The simulation assumed water dissociation equilibrium in the solution and used the 

single site model for the proton exchange on the channel surfaces. Before applying the 

pressure difference, the salt solution is at rest and ions follow Boltzmann equilibrium. The 

simulation results of electrical field, ion concentrations, surface charge density, flux den-

sity, and flow rate were presented and discussed. 
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The flow is divided into three stage, early, middle, and late. In the early stage which 

lasts about 10H/U, the streaming potential keeps increasing mainly due to the accumula-

tion of potassium ions at the channel exit, while the EDL structure is unchanged except at 

the very ends of the channel. The middle stage ends by about 100H/U. In this stage, chlo-

ride ions accompanying with the bulk flow accumulate in the channel. As a result, the 

concentrations of hydronium, potassium, and chloride ions slightly increase.  

The late stage is as long as about 25000H/U, or 250 times of hydraulic retention 

time. The EDL structure experiences a large variation from two directions. First, there is a 

transit region that propagates downstream. The transit region is a narrow region across 

which there is a large variation of ion concentrations, surface charges, and streamwise 

electric field. Hydronium ions are sucked into the channel from the downstream reservoir 

and potassium ions are driven out of the channel exit. A concentration hump of hydronium 

ions is initially formed near the channel entrance, and then extends downstream like a 

concentration plug moving forward. Once the transit region passes by, the EDL structure 

becomes nearly stationary and close to its final steady state, while hydronium ions circulate 

in the channel. Second, hydronium ions are depleted in the downstream part, and the de-

pletion region extends upstream until meeting with the concentration plug. Accompanying 

the depletion of hydronium ions, the channel surfaces are firstly releasing protons, and 

absorb protons in the transit region, and unchanged after the concentration plugs sweep 

over.  

Time scales of ion transport in electrokinetic flows are finally examined. It is 

concluded that the concentration plug-like propagation exists under the condition of H/L 

<< ReSci << L/H. An analytical model is developed to estimate the time required to achieve 
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steady state, which could be thousands of times larger than the hydraulic retention time in a 

channel with a half height of 10 nm or 100 nm due to the EDL overlap effects. The analytic 

model prediction qualitatively agrees with the simulation results.  

  



126 

 

 

 

CHAPTER 7  
 

CONCLUSIONS AND CONTRIBUTIONS 

The dissertation investigated that the pressure driven flow through a slit-like silica 

nanochannel with an overlapped EDL, particularly with the consideration of the coupling 

effects of surface proton exchange and transport of hydronium ions in the bulk. Compre-

hensive analytical models have been established for the first time for salt-free water, and 

for electrolyte solutions with the pressure-driven flow. Numerical simulations were per-

formed to examine the transient behavior of the flow starting from its electrostatic state. 

Main conclusions and contributions of this dissertation study are summarized as below: 

 (i) The EDL structure in pure water is self-consistent. Hydronium ions and hy-

droxide ions follow Boltzmann distribution in the fully-developed steady-state pressure 

flow and at electrostatic equilibrium, regardless of the EDL overlap. The knowledge pro-

vides an ideal reference for studying the EDL structure of dilute salt solutions. 

(ii) Counterions are unequally enriched in the steady flow within an overlapped 

EDL. Hydronium ions are much more enriched than other counterions because hydronium 

ions with larger mobility are more retained in the channel by the streaming potential. As a 

consequence of unequal enrichment of counterions, the electrokinetic effects, such as 

electroviscous effects, streaming potential, surface charges, electrical conductance and so 

on, are greatly depressed.  

In spite of the profound influence of unequal enrichment on the electrokinetic ef-

fects, this phenomenon has never drawn attention in the previous studies. This phenome-

non clarifies the application of Boltzmann distribution under conditions of EDL overlap. 
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Boltzmann distribution exists in an electrostatic salt solution, no matter whether the EDLs 

are overlapped or not, but generally not in the steady flow. It also suggests that the coupling 

effects of surface dynamic equilibrium and transport of hydronium ions plays a critical role 

to affecting the EDL structure in the steady flow. It is of importance to consider the cou-

pling effects in modeling for the flows with an overlapped EDL. 

(iii) In a strongly overlapped EDL with H < ~2, the EDL structure is independent 

on the change of salt concentration and the pH.  

(iv) There is a late stage during the transient electrokinetic flow with an overlapped 

EDL, at which a concentration hump of hydronium ions initially formed at the channel 

entrance propagates downstream and a depletion region of hydronium ions extends up-

stream. The behavior of hydronium ion concentration deeply affects the transient of the 

EDL structure, such as surface charge and potassium ion concentration. Thus, the Boltz-

mann distribution is only the intermediate stage shortly after the applied pressure differ-

ence, and the EDL structure becomes completely different once experiencing the late stage.  

(v) The time required for the electrokinetic flow to reach the steady state might be 

as long as thousands of times of the hydraulic retention time, dependent on the degree of 

the EDL overlap, because the feed of hydronium ions from the downstream reservoir is 

relatively small comparing to the large storage capacity of protons in the channel, either as 

free ions in the bulk or as part of components on the surfaces. Such slow transient has never 

been reported before. It partially explains the omission of the transient of the electrokinetic 

flow within an overlapped EDL in previous studies.  
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APPENDIX A 

COMSOL Multiphysics is used as a numerical solver for partial differential equa-

tions in Chapter 6. Comsol Multiphysics is an integrated environment for modeling and 

simulating the problems described by time dependent or stationary second order partial 

differential equations in one, two, and three dimensions. These equations may be coupled 

in an almost arbitrary way. In the current simulation, most of the PDEs were modeled by 

the application model called 'PED, coefficient form'. One advantage of using the coeffi-

cient form PDE is to get an arbitrary second order PDE. Steps of setting up COMSOL to 

model the physics in Chapter 6 are presented in this appendix in order that the beginners of 

COMSOL are able to repeat the simulation. 

A.1 Geometry and Meshing  

The 2D geometry was firstly created as sketched in Fig. A.1 after opening a new 

COMSOL file. The geometry is simply a union of three rectangles. One can easily create 

such a geometry following the manual, so that the drawing is not presented in details. 

 

 
Fig. A.1. Drawing of Geometry 

 

Quadrilateral meshes were first created for the channel, i.e. the subdomain confined 
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between planes 4, 9, 8 and 10. In the menu of 'Mesh', select 'Mapped Mesh Parameters' to 

pop up a mesh-setting window. In the window, click 'Boundary', highlight planes 4 and 8 in 

'Boundary selection', and click 'constrained edge element distribution' to open up more 

options. Then input 600 for 'Number of edge elements', 5 for 'Element ratio', Exponential 

for 'Distribution method', and active 'symmetric'. Next, highlight planes 9 and 10, and input 

20 for 'Number of edge elements', 0.1 for 'Element ratio', and Exponential for 'Distribution 

method'. Finally, click 'Mesh Selected' at the bottom of the window to create quadrilateral 

meshes which are finer at the surface and ends of the channel, and click 'OK' to close the 

pop-up window.  

Next, unstructured triangular meshes were created for the wells/reservoirs. In the 

menu of 'Mesh', select 'Free Mesh Parameters' to pop up a window. In the window, first 

select 'Subdomain', highlight the subdomains that the wells belong to, input 5 for 

'Maximum element size', and select 'Triangle (Advancing front)'. Then click 'Mesh 

Selected' to mesh the wells, and click 'OK' to close the pop-up window. 

Total elements include 12000 quadrilateral ones in the channel, as well as 44350 

triangular ones in the wells. If the grid needs change, open 'Mapped Mesh Parameters' to 

remesh quadrilateral meshes and 'Free Mesh Parameters' to remesh triangular meshes.  

A.2 Physics Setting  

After creating the geometry and meshes, the following steps lead to set up the 

governing equations and the corresponding boundary and initial conditions in order to 

solve the problem described in Chapter 6. 
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A.2.1 Constants and Scalar Expressions  

Constants and scalar expressions are first set in COMSOL. They are readable by 

other types of expressions. 

Surface properties, fluid properties, and other physics constants are treated as 

constants when setting COMSOL. Summarizing them in a single table makes it easier to 

adjust the values of physical properties. In the menu of 'Options', click 'Constants' to open a 

window where constants listed in Table A.1 are inputted.  

 

Table A.1. Constants 

Name Expression Name Expression 

F 96485.3415[C/mol] CH0 0.0001[mol/m^3] 

R 8.431[J/mol·K] CK0 0.01[mol/m^3] 

Av 6.022e23[1/mol] CCl0 cK0 

K 1e-8[mol^2/m^6] C0 cK0+cH0 

e 1.6e-19[C] DH 9.31e-9[m^2/s] 

T 298[K] DOH 5.28e-9[m^2/s] 

rho 1e3[kg/m^3] DK 1.957e-9[m^2/s] 

mu 0.8904e-3[Pa·s] DCl 2.032e-9[m^2/s] 

tau 5e18[1/m^2] epsilon 78.54*8.854e-12[C/(V*m)] 

C 2.9[F/m^2] H 1e-7[m] 

pK 7.5 U 0.1957[m/s] 

 

Scalar Expressions are related to constants. In the menu of 'Options', select 

'Expressions/Scalar Expressions' to open a window where scalar expressions listed in Table 
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A.2 are inputted.  

 

Table A.2. Scalar expressions 

Name Expression Name Expression 

ScK mu/(rho·DK) Re rho·U·H/mu 

ScCl mu/(rho·DCl) kappa F·sqrt(2·C0/(epsilon·R·T)) 

ScH mu/(rho·DH) alpha C0·R·T/(rho·U^2) 

ScOH mu/(rho·DOH)   

 

A.2.2 Models 

Several variables are about to be solved, including phi standing for electric poten-

tial, CH, CK, CCl, and COH for concentrations of H
+
, K

+
, Cl

-
, and OH

-
 respectively, u and 

v for velocity components along the x and y directions, as well as p for pressure.  

Before adding models, select 'Expressions/Subdomain Expressions' in the menu of 

'Options' to input the expressions listed in Table A.3 for all the subdomains. Expressions 

presented in Table A.3 are related to local values of variables to be solved. All parameters 

and variables in those expressions are defined in Table A.1 and Table A.2, except phix and 

phiy which are self-defined variables by COMSOL, representing the derivative of phi 

along the x and y directions. 

Some variables are defined for boundary 4 in the similar way. Select 

'Expressions/Boundary Expressions' in the menu of 'Options' to open up a new window. 

And then select boundary 4, input the expressions listed in Table A.4, and click 'OK' to 

close the window. 

The steps below set up the governing equations and the boundary and initial con-
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ditions using defined parameters and variables. When adding a model, click 'Multiphysics' 

to open 'Model Navigator' window. Then select a model and input dependent variables, and 

click 'Add' to add the model into the geometry. 

 

Table A.3. Subdomain expressions 

Name Expression Name Expression 

COH K/CH0^2/CH rhoe CK0·(CK-CCl)/C0+(1-CK0/C0)·(cH-cOH) 

Fdiff 1+COH·ScH/(CH·ScOH) Ftime 1+ cOH/cH 

Fx -phix·rhoe·alpha Fy -phiy·rhoe·alpha 

EMKx phix /(Re·ScK) EMKy phiy /(Re·ScK) 

EMClx phix /(Re·ScCl) EMCly phiy /(Re·ScCl) 

EMHx phix·Fdiff/(Re·ScH) EMHy phiy·Fdiff/(Re·ScH) 

 

Table A.4. Boundary expressions 

Name Expression 

sigma -e·tau/(1+ CH·CH0·10^( pK -3)) 

sigma_norm sigma·H·F/(epsilon·R·T) 

proton_exchange tau/Av·10^( pK-3)·CHt/(H·(1+CH·CH0·10^( pK-3))^2) 

 

1) Poisson equation 

In the 'Model Navigator' window, select Poisson equation by clicking 'Application 

Modes/COMSOL Multiphysics/PDE Models/Classical PDEs/Poisson's Equation', and 

input 'phi' as its dependent variable.  

In the Model Builder ('Model Tree' window at the left on the COMSOL GUI), 

right-click on 'Poisson's Equation (poeq)' and select 'Subdomain Settings' to set Poisson 

equation. In the 'Subdomain Settings - Poisson's Equation (poeq)' window, the equation is 
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expressed as 

                             (A-1) 

The coefficients in Eq. (A-1) are set as below: c = 1 and f = (kappa·H)^2·rhoe, and initial 

values are imposed as phi(t0) = 0. 

In the Model Builder, right-click on 'Poisson equation' again and select 'Boundary 

Conditions' to set up boundary conditions for Poisson equation. In the pop-up window, 

click 'Groups', and then 'New' to create a new group. Change the name of the group to 

'Reservoir walls', click the symbol of 'Neumann boundary condition', and leave the coef-

ficients of q and g to be their default values 0. Click 'Apply' to set up Neumann condition 

for this group, meaning electric insulations at the reservoir walls. Repeat the process to 

create several groups, namely 'Inlet', 'Outlet', 'Channel wall', 'Symmetric', 'Interior'. Among 

them, the groups of 'Outlet', 'Symmetric', and 'Interior' use Neumann condition with default 

settings again, while 'Inlet' uses Dirichlet boundary condition with coefficients of q = g = r 

= 0 and h =1, implying there is grounded at the inlet. Dirichlet boundary condition is also 

used at 'Channel wall', but with q = 0 and g = sigma_norm to relate local surface charge 

density to surface proton activity. All elements use the default setting, i.e. La-

grange-Quadratic elements for all governing equations.  

In the 'Boundary Conditions' window, select 'Plane 1' in the list of options below 

'Boundaries', and then select 'Inlet' from the drop-down menu after clicking 'Group', so that 

plane 1 is classified as 'Inlet'. In a similar way, let planes 2, 3, 5 and 6 belong in the group of 

'Reservoir walls', plane 7 in 'Outlet', Planes 8, 11 and 12 in 'Symmetric', plane 4 in 'Channel 

wall', Planes 9 and 10 in 'Interior'. The same classification of planes is also applied to the 

setting of boundary conditions of the remaining models. 
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2) Momentum equations  

In the 'Model Navigator' window, select 'Application Modes/COMSOL 

Multiphysics/PDE Models/PDE, Coefficient Form', input 'u v p' as its dependent variables, 

and change the application model name to 'Momentum'. Click 'Add' to add a PDE within 

Coefficient Form into the geometry, and then click 'OK'. 

The governing equation and its initial conditions of the momentum equations can 

be set in a way similar to the Poisson equation. The coefficient-form PDE is expressed by 

  
   

      
  

  
                                        (A-2) 

where, u is the variables to be solved. such as [u, v, p] for the momentum equations, and the 

coefficients are set as below 
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All parameters in 'Init' are imposed as zero. If the time-dependent terms are not in existence 

in Eq. (A-2), select 'Solve /Solver Parameter' to open a 'Solver Parameters' window where 

the solver changes from 'Stationary' to 'Time dependent'. The time-dependent terms will 

appear in the window of 'Subdomain Settings'. 

In the Model Builder, right-click on 'PDE, Coefficient Form(Momentum)' and se-

lect 'Boundary Conditions' to set up boundary conditions for the momentum equations. For 

the group of 'Reservoir walls' and 'Channel wall', select Dirichlet boundary condition and 

let q = g = h = r = 0, but impose '-u -v 0' for 'constr' below 'Weak' to adapt the no-slip 
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boundary conditions. For the group of 'Inlet', set Dirichlet boundary condition with q = 0, g 

= (-nx·p, -ny·p, 0), h = (0, 0, 0; 0, 0, 0; 0, 0, 1), r = (0, 0, 300·mu/(rho·U·H) ). For the group 

of 'Outlet', set Dirichlet boundary condition with q = 0, g = (-nx·p, -ny·p, 0), h = (0, 0, 0; 0, 

0, 0; 0, 0, 1), r = (0, 0, 0). For the groups of 'Interior' and 'Symmetric', select Neumann  

boundary condition with default settings. 

3) Nernst-Planck equation of K
+
 and Cl

-
 

Add another PDE within coefficients form, named as NPKCl into the geometry, 

and its two dependent variables are set as CK and CCl. Its coefficients are given by  

   
          

           
 ,       

  
  

 ,     
  
  

 ,    
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 . 

All parameters in 'Init' are imposed as 1. 

Next, select Neumann boundary condition with default settings for the groups of 

'Reservoir walls', 'Channel wall', and 'Symmetric', representing no-penetration condition at 

these planes. For the groups of 'Inlet' and 'Outlet', set Dirichlet boundary conditions with q 

= 0, g = (0, 0), h = (1, 0; 0, 1), and r = (1 ; 1) to fix the concentrations of K
+
 and Cl

-
 at these 

planes. It is no need to manually set the boundary conditions for 'Interior'. Click 

'Boundaries' in the window of 'Boundary settings', select plane 9, and mark 'Select by 

group' and 'Interior boundaries' to automatically set interior boundaries by COMSOL. 

4) Nernst-Planck equation of H
+
 

Add the final PDE with coefficients form, named as NPH, into the geometry, and 

the coefficients are given by    
              

              
 , a = ea = f = 0, da = 



141 

 

 

 

Ftime,  = (EMHx, EMHy),  = (Ftime, Ftime),  = (0,0). All initial values are set as 1.  

The setting of most boundary conditions for H
+
 are the same to those for K

+
. The 

only difference is the setting for 'Channel wall' which uses Neumann boundary condition 

with q = 0; g = (u·nx + v·ny) ·CH - proton_exchange.  

A.2.3 Solver Settings  

Finally, the parameters used by the solver were set. Click 'Solver/Solver parame-

ters' to open the window of 'Solver parameters'. Check whether the solver uses 'Time 

dependent', if not, highlight 'Time dependent'. The computation was performed in the 

ranges of t
*
 < 1000 and t

*
 ≥ 1000 separately. 

In the page of 'General', input 'range(0, 0.1, 1); range(11, 1, 20); range(25, 5, 100); 

range(200, 100, 1000)' for 'Times' when the simulation results will be stored for data 

analysis. In the page of 'Time Stepping', use the default time stepping method of 'BDF', 

change 'Time steps taken by solver' to 'Strict', and then click 'Manual tuning of nonlinear 

solver' to set 'Maximum time step' by '0.05'. Click 'Apply' to complete the settings of the 

solver for solving the problem within t
*
 < 1000.  

Once the computation for t
*
 < 1000 is completed, change the setting of 'Times' to 

'range(1500; 500; 35000)', and 'Maximum time step' to '3'. 

A.3 Computation  

The physics setting above were used to solve the transient problem which starts 

from an initial static state. In order to obtain the EDL structure at electrostatic equilibrium, 

the stationary problem was solved. Change the solver to 'Stationary'. And then select 
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'Solve/Solver Manager' to open up a window of 'Solver Manager'. In the page of 'Initial 

Value', click on 'Initial value expression' for 'Initial value' and 'Zero' for 'Values of variables 

not solved for and linearization point'. In the page of 'Solve For', highlight all models ex-

cept 'PDE, Coefficient Form(Momentum)' so that only the Poisson equation and the Nernst 

equations are solved. Click 'Apply' to apply the changes. Click 'Solve' to start the compu-

tation.  

After the computation solving for the EDL at electrostatic state, change the solver 

back to 'Time dependent', and select 'Solve/Solver Manager' again. In the page of 'Initial 

Value', click on 'Current solution' for 'Initial value' and for 'Values of variables not solved 

for and linearization point', or click 'Store Solution' to save the results and click on 'Stored 

solution' for both items. In the page of 'Solve For', highlight all models. Click 'Apply' and 

then 'Solve' to start the computation for the transient problem. 
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