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ABSTRACT 

Improvement of Nutrient Utilization Efficiency, Ruminal Fermentation and Lactational 

Performance of Dairy Cows by Feeding Birdsfoot Trefoil 

  

by 

 

 

Rachael G. Christensen, Doctor of Philosophy 

Utah State University, 2015 

 

Major Professor: Dr. Jong-Su Eun 

Department: Animal, Dairy, and Veterinary Science 

 

 

Forages containing condensed tannins (CT) have potential to reduce the 

environmental impact of dairy farming. In 3 studies, I hypothesized that feeding 

CTcontaining birdsfoot trefoil (Lotus corniculatus, BFT) would result in improved 

nutrient utilization and lactational performance of dairy cows compared with control 

forages of the respective experiments.  

Improved milk components, reduction in waste N, and overall improved N efficiency 

were hypothesized for BFT-fed cows compared to those cows fed alfalfa hay (Study 1) or 

grass-based diets (Study 2). In addition, a decrease in in vitro methane production and 

improved rumen fermentation due to diets based on BFT pasture and concentrate 

supplementation compared with grass pasture-based diets was the hypothesis of the third 

study.  

Study 1 showed BFT-hay diets improved lactational performance through increased 

energy-corrected milk yield and increased milk protein yield, resulting in improved N 
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utilization efficiency compared with the alfalfa hay diet. Total volatile fatty acids 

concentration tended to increase, and greater microbial protein yield was exhibited by 

cows fed BFT compared to other diets tested. Therefore, BFT can replace alfalfa hay in 

dairy diets and showed improved feed and N utilization efficiencies and lactational 

performance. 

Study 2 determined that pasture nutrient content increased for BFT pasture compared 

to the mixed grass control, contributing to increases in milk yield most weeks during the 

2-year study. Energy-corrected milk yield increased most weeks by BFT-grazed cows 

due to increased milk yield, although milk protein concentration was similar between 

treatments. Cows grazing BFT pasture increased N efficiency coupled with decreased 

milk urea N secretion in the first, but not the second year, suggesting an environmental 

advantage over traditional grass-based pastures depending on the effect of growing 

conditions on pasture quality at time of grazing.  

Study 3 showed that offering BFT pasture to continuous cultures without or with 

barley grain or total mixed ration supplements reduced methane production and altered 

rumen microbial populations. The reduced methane production on the continuous 

cultures was likely due to direct and/or indirect effects of CT on rumen microbiota. 

Overall, diets including BFT showed improved nutritive, lactational, and 

environmental benefits by decreasing N waste and methane production over typical 

alfalfa hay-based dairy diets and grass pastures.  

 (206 pages) 
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PUBLIC ABSTRACT 

Improvement of Nutrient Utilization Efficiency and Lactational Performance of Dairy 

 

 Cows by Feeding Birdsfoot Trefoil 

 

Rachael G. Christensen 

Condensed tannins (CT) are compounds that have shown potential to reduce the 

environmental impact of dairy farming waste products. In two live animal studies and a 

continuous culture study, it was hypothesized that feeding birdsfoot trefoil (Lotus 

corniculatus, BFT), a CT-containing legume, would improve nutrient utilization, milk, 

and component yield of dairy cows compared with feeding alfalfa hay or grass pasture in 

two studies, while feeding BFT forage would decrease methane production and improve 

rumen fermentation in addition to concentrate supplementation was the hypothesis of the 

third study. Reduction in milk urea nitrogen (MUN) and ruminal ammonia N nitrogen 

(NH3-N) concentrations was used to indicate reduction in N waste.  

The first study resulted in increased energy-corrected milk yield and increased milk 

protein yield for BFT-hay fed cows compared with the alfalfa diet, and improved N 

utilization for milk; however MUN and ruminal NH3-N were not different between 

treatments. 

A 2 year study showed that BFT-grazed cows increased milk yield, protein yield, and 

energy-corrected milk yield, but did not show a reduction in waste N compared to grass-

based pastures.  

A third experiment showed that feeding BFT forage pasture reduced methane 

production, altered rumen microbial populations and subsequent fermentation, and 

supplementation further improved nutrient yields and reduced methane. 
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Overall, diets including BFT showed improved nutritive and some reduction in N 

waste compared to typical alfalfa dairy diets and grass pastures. Further research is 

needed to understand interactive aspects of tannins and nutrient utilization with other 

feeds and microbial populations to reveal the full benefits of BFT.  
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CHAPTER 1 

INTRODUCTION 

Sustainability is defined as “meeting society’s present needs without compromising 

the ability of future generations to meet their own needs” and is made up of 3 interlinked 

pillars (Figure 1.1): environmental responsibility, economic viability and social 

acceptability (EPA, 2010). In consideration of these core pillars, the sustainability of 

animal production agriculture comes under extensive public scrutiny. Many studies have 

shown that production agriculture contributes greatly to environmental pollution or 

excess of nutrients to air and water and in the United States, Asia and Europe, increasing 

public attention has focused on animal agricultural production systems as a major 

nonpoint source of pollution affecting the quality of air, streams and groundwater 

resources (Wang et al., 2010; von Keyserlingk et al., 2013). 

The 2 nutrients from animal production systems of the greatest concern are N and P 

because of their impact on air, water quality, and eutrophication. Nutrient management 

research has been conducted to identify strategies that reduce N and P pollution (EPA, 

2012). In addition, methane (CH4) has received critical attention as an agricultural 

pollutant, because it is a greenhouse gas (GHG) that contributes to climate change with 

an effect equivalent to 25 times that of CO2 over a 100-yr period (IPCC, 2007). In 

perspective, on a world-wide basis, dairy animals, including cull cows and beef cattle 

from dairy breeds, are estimated to contribute only 4% to anthropogenic GHG emissions 

(FAO, 2010). In many developed countries, the contribution of dairy production to GHG 

emissions is estimated even lower, due to the higher productivity of livestock agriculture, 

the dilution by emissions from other sectors, and lack of significant land use change 
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(Hagemann et al., 2011; Knapp et al., 2014). However, the argument can be made that 

not all land needed for feed production is accounted for correctly in some models, and 

inference to all situations is not applicable. 

Legume forages, including alfalfa (Medicago sativa: AF) and birdsfoot trefoil (Lotus 

corniculatus L.: BFT), are superb sources of both crude and true protein for livestock. 

However, most of the protein in alfalfa is degraded quickly in the silo when ensiled, or in 

the rumen when fed, impairing the efficient use of N by the cow. Protein nutrition 

influences productivity, profitability, and the efficiency of N use. For mature cows in 

zero N balance (requiring no weight gain, or under no demand for body condition use for 

energy), feed N that is not converted into milk N must be excreted. The efficiency of 

converting feed N to milk N seldom exceeds 30%; thus more than 70% of feed N is 

typically lost with approximately 30% lost in feces and about 40% lost in urine, mostly as 

urea (VandeHaar and St. Pierre, 2006). Efficient use of N for protein production (meat or 

milk) is difficult to improve, and better sustainability is reached if less CP is fed. 

However, too little protein will reduce production in early lactation and high genetic 

merit cows. Advancements in protein nutrition and precision feeding of amino acid 

balanced rations can improve N efficiency by reducing diet CP but ensuring essential 

amino acids are provided (NRC, 2001) 

Feeding cows less protein can dramatically decrease urinary N excretion and 

increase the efficiency of N use. Excess feed N is deaminated and excreted as urea, a N 

waste compound, in urine and milk, while undigested ruminal undegradable protein and 

metabolic N (sloughed intestinal cells and hind gut fermentation products) are excreted in 

the feces (VandeHaar and St. Pierre, 2006). The route and amount of N excretion is of 
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primary environmental concern; urinary N is more volatile than fecal N and is rapidly 

converted to ammonia. Simply reducing the amount of protein fed, however, can have 

negative impacts on productivity if the diet is not correctly balanced. Both nutrient intake 

and nutrient excretion (nutrient management) must be carefully considered.  

Nutrient management is a complex issue because interrelationships among manure 

management, soil conservation, crop production, animal nutrition, and economic 

consequences must be considered. If economic viability cannot be achieved, then 

sustainability cannot be achieved. Researchers (Kohn et al., 1997; Jonker et al., 2002; 

Rotz, 2004) have proposed that home-grown forages, both as harvested hay and pasture, 

represent the best use of resources to minimize environmental impact of importing feeds 

on the farm. Because forages comprise the largest portion of dairy cow diets, improving 

the efficiency of product conversion from consumed forages is the best way of 

optimizing feed usage on individual farms, which leads to reduction of nutrient waste. 

Corn silage and alfalfa (as hay and silage), closely followed by grass hay and grass 

silage are the most commonly utilized forages on US dairy farms. While recent 

improvements in plant breeding, agronomic management of forage stands, better 

equipment and harvesting techniques have all helped to improve forage quality, the 

underlying nature of plant cell wall composition and lignin content affecting digestibility 

in ruminant animals still remains under-researched. This has become the limiting and 

largest unknown factor in increasing the efficient use of dairy diets to optimize lactation 

performance. Additionally, there are some physiological factors of forages, such as the 

aforementioned highly rumen-degradable protein in alfalfa and the increased methane 

output from ruminants consuming high forage diets, which could potentially reduce the 
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efficiency that might be gained from improved digestibility of fiber, undermining efforts 

to be sustainable. 

Some forages, such as BFT, contain polyphenolic compounds with bioactivity that 

has proven beneficial to increase productivity or well-being of the animals that consume 

them (Patra and Saxena, 2011). In the case of BFT, condensed tannins (CT) bind to 

soluble proteins in the rumen, and then release those proteins once the complex reaches 

the acidic abomasum (Waghorn, 2008). This reduces the degradation of protein to 

ammonia in the rumen (Weiss et al., 2009). Diets containing modest levels of CT (around 

2-4%) reduce proteolysis during ensiling and rumen fermentation by up to 50% (Grabber 

et al., 2001). This unique protein–binding feature of CT offers an alternative, naturally 

derived bioactive compound to help reduce N losses on dairy farms.  

Another unique feature of BFT is that it is non-bloating, which enables it to be 

grazed in pure stands. Non-grazing varieties of AH and other legumes can cause bloat in 

grazing cattle, especially during the fast growing spring season when most grazing dairies 

want to maximize the use of fresh forage. Birdsfoot trefoil can be grazed as a fresh 

pasture, increasing its desirability as a forage for dairy cows. Recent studies suggest that 

in addition to CT and its non-bloating characteristics, BFT has unique fiber development 

and lignin growth patterns that may increase digestibility and improve utilization of 

nutrients in ruminant diets compared with other legumes (Hunt, 2013). Cast in this new 

light, BFT may prove to be even more valuable than once thought, though more research 

is needed regarding application of BFT on the farm, and managing the stand to overcome 

unique agronomic challenges associated with BFT. 
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The benefits of CT for improving protein utilization and ruminant performance are 

well-cited in New Zealand livestock systems for sheep and cattle fed pasture or green-

chopped forages. Flow of feed protein to the small intestine increased by 30% in sheep 

fed increased tannin concentrations, up to 4% of dry matter intake (Waghorn and Shelton, 

1997). Milk production of pastured, non-supplemented Holstein cows was increased by 

2.7 kg per day due to the tannins in the birdsfoot trefoil (Woodward et al., 2009). The 

potential for CT to improve protein utilization and milk production of dairy cattle have 

not been evaluated in forage-concentrate rations typical of U.S. dairy farms (Grabber et 

al., 2001), particularly in hay-based diets. Research is needed to determine cattle 

performance on diets containing BFT and the effect of its digestibility on the total diet 

when fed in a traditional forage-concentrate ration utilizing dry hay and as a grazing 

forage in cows of typical US milk yield. 

The overall hypothesis in a series of studies reported in this dissertation was that 

feeding BFT to lactating dairy cows would increase dairy efficiency, CT in BFT-

containing diets would reduce milk urea N and urinary N excretion and improve N 

efficiency, and increase milk and milk protein yield compared to alfalfa hay or grass-

based diets. In addition, in vitro CH4 and fermentation end-products of BFT pasture 

forage compared to orchardgrass forage and effects of differing types of supplementation 

on methane production was also studied. 
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CHAPTER 2 

REVIEW OF LITERATURE 

SUSTAINABILITY OF U.S. ANIMAL AGRICULTURE 

The current US legal definition of sustainability (US Code Title 7, Section 3103) is 

as follows: “An integrated system of plant and animal production practices having a site-

specific application that will over the long-term: satisfy human food and fiber needs, 

enhance environmental quality and the natural resource base upon which the agriculture 

economy depends, make the most efficient use of nonrenewable resources and on-farm 

resources and integrate, where appropriate, natural biological cycles and controls, sustain 

the economic viability of farm operations, and enhance the quality of life for farmers and 

society as a whole.”  

Hence, sustainability is made up of three interlinked facets: environmental 

responsibility, economic viability and social acceptability (Thompson, 2007; EPA, 2010; 

see Figure 1.1). In consideration of these core pillars, the sustainability of animal 

agriculture production comes under extensive public scrutiny. Many studies have shown 

that production agriculture contributes greatly to environmental pollution or excess of 

nutrients to air and water, and in the United States, Asia, and Europe, increasing public 

attention has focused on animal agricultural production systems as a major nonpoint 

source of pollution affecting the quality of streams and groundwater resources (Wang et 

al., 2010; von Keyserlingk et al., 2013). 

Environmental issues and global food security are important concerns for 

governments and policy-makers who are conscious of both the prediction that the global 

population will increase to over 9.5 billion people by the year 2050 and also of the 
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proportion of their national population that is currently food-insecure (FAO, 2009). 

Increased population growth will increase competition for resources such as water, land, 

and energy among agriculture, municipalities, and industrial enterprises. It is important to 

note, however, that ruminant livestock will play a crucial role in future global food 

security because far more grazing land exists, unusable for human food, than cropping 

land since most agricultural land can be grazed but only a small proportion is suitable for 

intensive crops (Gill et al., 2010). Ruminant animals can transform pasture into high 

quality human food and convert human-inedible by-products of food production into 

high-quality human food. If mitigation strategies are implemented that reduce GHG but 

also reduce production output, then the environmental benefits would be at least partly 

negated by increased food costs or reduced supply of animal-based foods (VandeHaar 

and St. Pierre, 2006; Knapp et al., 2014.) 

Concurrent with increased use of water comes the increased risks associated with 

contamination. The 2 nutrients from animal production systems of the greatest concern 

are N and P because of their impact on air, water quality, and eutrophication. Salt and 

nitrates are the most widespread groundwater contaminants in the United States and salt 

contamination is a growing challenge in many regions of the United States. Public 

attention has focused on animal agricultural production systems as a major nonpoint 

source of pollution affecting the quality of streams and groundwater resources. 

Agricultural enterprises are striving to lower emissions and reduce amounts of polluting 

nutrients leaving farms. Nutrient management research has been conducted to identify 

strategies that reduce N and P pollution. In addition, methane (CH4) has received critical 

attention as an agricultural pollutant because it is a greenhouse gas that effects the global 
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surface temperature and has a global warming potential 21 times greater than that of 

carbon dioxide (IPCC, 2007). 

 

NUTRIENT METABOLISM AND DIGESTIBILITY 

 

Feed ingredients provide the substrates for microbial fermentation within the rumen 

of a dairy cow, and differences in feed digestibility, dry matter intake, rate of passage, 

and chemical composition alter the amount of energy extracted by the microbes. The 

concentrations of metabolites formed by digestion can alter the proportions of fatty acids, 

protein, VFA and CH4 produced. The proportions of individual metabolites affect the 

amount of CH4 produced due to reducing equivalents, meaning that any dietary 

component or intervention that causes a shift in favor of propionate production will be 

accompanied by a reduction in CH4 production per unit of feed fermented (Van Nevel 

and Demeyer, 1996). Rumen protein degradation and assimilation into microbial protein 

can result in either a net consumption or net production of H2. Biohydrogenation (BH) of 

fatty acids (FA) in the rumen will result in a net consumption of H2. Consequently, 

variations in rumen N metabolism and BH will affect CH4 production, and since 

carbohydrate and protein substrates are also used for microbial maintenance and growth, 

theoretical predictions of VFA patterns and CH4 formation do not always correlate to in 

vitro and in vivo observations (Knapp et al., 2014). Similarly, alterations in N metabolism 

by rumen microbes can increase or decrease efficiency in milk N:N intake and 

subsequent partitioning of excess N to waste products. 
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N Metabolism 

Metabolism of N compounds in ruminant animals is a complex pathway involving 

multiple mechanisms (Van Soest, 1994). There are several forms of N utilized by 

ruminants. Non-protein N (NPN) includes urea supplied by saliva, recycled from the 

rumen, ammonia from protein degradation in silages and wet feeds, and supplemented 

ammonia, in addition to fermentation of the most readily hydrolysable proteins (the “A” 

fraction) in the diet. True dietary protein or feed protein may be categorized as ruminal 

degradable (RDP) or undegradable protein (RUP; NRC, 2001). Rumen microbes utilize 

NPN and true protein from RDP to support their growth and reproduction, becoming an 

important source of protein to the animal called microbial crude protein (MCP). 

Microbial protein provides between 50 and 80% of the total protein in dairy cows and is a 

high quality amino acid (AA) source including greater concentrations of methionine and 

lysine, the 2 most limiting AA for milk production (NRC, 2001). These protein sources, 

combined with RUP, and endogenous CP all contribute to passage of metabolizable 

protein (MP) to the small intestine, where it is enzymatically digested and the component 

AA and small peptides are available to the animal for absorption by the small intestine. 

These peptides and AA are used for the growth, maintenance, reproduction and 

production of ruminants (NRC, 2001).  

Ruminal Undegraded Protein 

Ruminal undegraded protein is digested in the duodenum of the small intestine but 

not digested by rumen microbes, so it does not contribute to MCP synthesis, and instead 

provides a source of AA to the animal. The goal of feeding RUP is to complement the 

AA profile of MCP in order to maximize N use efficiency as well as to meet AA 
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requirements of the animal because MCP alone cannot meet all the requirements. 

Ruminal undegradable protein is assumed to be 100% true protein, and digestibility 

varies among feedstuffs, ranging from 50 to 100% (NRC, 2001). 

Ration RUP concentration and extent of N digestion in the rumen influences the flow 

of RUP to the duodenum. In addition to N concentration and source, dietary components 

such as condensed tannins (CT) may influence the proportion of RUP and MCP in MP. 

Condensed tannins can inhibit the degradation of protein the rumen (Barry and McNabb, 

1999; Min et al., 2003) through a binding action of CT with protein which protects the 

bound protein from microbial degradation. Effects of CT on ruminal N metabolism are 

well documented and are influenced by tannin plant source and chemistry of the tannin 

(epicathecins and epigallocathecins, for example; Patra and Saxena, 2011) which affects 

bioactivity as well as overall diet CP%, and digestibility of N in the rumen (Min et al., 

2003; Carulla et al., 2005; Waghorn, 2008). For example, a 27.8% reduction in NH3–N 

concentration and a reduction in flow (26%) occurred with BFT compared to alfalfa in 

continuous cultures fed forage diets (Williams et al., 2010). In contrast, Williams et al. 

(2011) investigated TMR comprised of CT-containing forages compared to alfalfa TMR 

in vitro and found that the two diets containing low- and moderate-CT concentration BFT 

did not affect NH3–N concentrations or flow. These contrasting results may have resulted 

from different CT contents between the two studies (20.8 g CT/kg DM in the BFT forage 

versus 3.75 or 7.44 g CT/kg DM, respectively in the concentrate-supplemented diets). 

Similarly, John and Lancashire (1981) used sheep to compare the BFT cultivars Empire 

and Maitland, containing low (i.e., 2.5 g CT/kg DM) and high (i.e., 14.5 g CT/kg DM) 
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levels of CT, respectively, and found that the high CT cultivar bound more N and 

reduced NH3–N concentration in the rumen (John and Lancashire, 1981). 

Ruminal Metabolizable Energy 

Ruminal metabolizable energy is energy available in forms that can be utilized by 

rumen microbes for growth and reproduction. It is the most important and limiting factor 

determining MCP synthesis in lactating dairy cattle. Rumen microbes use carbon 

structures from carbohydrates and available ATP as energy and substrates for AA and 

protein synthesis. Microbial yield depends on microbial growth rate and the fractional 

degradation of the metabolizable energy available in the rumen, which is usually a 

reflection of the carbohydrate portion in the diet (Nocek and Tamminga, 1991). In 

addition to supporting microbial growth in the rumen, cows require energy for 

maintenance, growth, pregnancy and lactation, which is more difficult to differentiate and 

predict in ruminants. However, these energy sources are vitally important, and are the 

missing link in terms of full understanding of N utilization efficiency, as energy is 

required to synchronize with N sources for MCP production. 

The metabolizable energy (ME) and net energy requirements for cow maintenance, 

activity, reproduction, and productive purposes have been estimated and are published in 

energy accounting systems (NRC, 2001). However, recommendations are not always 

consistent. For example, the NRC (2001) estimates the maintenance requirement to be 

approximately 0.54 MJ of ME/kg of BW0.75 for mature lactating cows, assuming a 

conversion of ME to net energy of 0.62. This includes an additional allowance of 10% of 

maintenance for normal activity that is not expended when fasting heat production is 

measured (i.e., cows in calorimeters). One recent study (Mandok et al., 2013) was 
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conducted to fine-tune energy requirements of non-lactating pregnant cows (i.e., to 

estimate maintenance energy requirements) suggested ME requirements for pregnancy to 

be 1.07 MJ of ME/kg of BW0.75 (or 117 MJ of ME/d), which is greater than that 

published in the NRC (2001). The difference was potentially due to increased 

maintenance requirements in cattle selected for greater milk production, an 

underestimation of the ME requirements for pregnancy in mid to late gestation, an 

overestimation of the ME content of autumn pasture (the diet source used in the study), or 

low efficiency of use of ME from autumn pasture for maintenance or conceptus 

metabolism. Even if the estimated ME content of pasture used in these calculations was 

too high, it would not fully explain the discrepancy between predicted and measured 

values. Clearly, much more research into energy requirements and energy consumption 

and metabolism of dairy cows in relation to feed intake, digestibility, and feed source is 

needed. 

Fecal and Urinary Losses of N 

The route and amount of N excretion is of primary environmental concern; urinary N 

is more volatile than fecal N and is rapidly converted to ammonia by ureases present in 

soil and on pen floors (Lee et al., 2014). Overall intake of N affects the total amount of N 

excreted via manure, but the type of carbohydrate and forage provided in the diet have 

greater impacts on the route (fecal or urinary) of excretion (Weiss et al., 2009). Protein in 

the diet directly affects the amount excreted, as shown in a recent study be Lee et al. 

(2014) where manure from cows consuming a 16.7 % CP diet had an increased ammonia 

emission rate, and urinary N contribution to nitrate-N was 100% greater than manure 

from cows consuming 14.8% CP diet. 
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Excess dietary N (from excess feed CP as well as AA from cell turnover and enzyme 

production) is converted to urea, which is a soluble compound that will diffuse into 

various body fluids, such as blood, milk, and urine (Kauffman and St-Pierre, 2001). 

About 80% of N consumed in excess of 500 g/d is believed to be excreted in urine in 

dairy cows (Castillo et al., 2001; Kebreab et al., 2001). Total N excretion as well as 

urinary N excretion can be decreased if overall dietary CP concentration can be reduced. 

Efficiency of N use from the diet (N output in milk divided by N intake) is low in dairy 

cattle, so research to increase efficiency continues to accumulate and is important if the 

environmental impacts of dairy production are to be reduced. Proper dietary balance is 

required to reduce the amount of dietary protein required by high producing cows and 

achieve optimal milk production, while still decreasing negative impacts on the 

environment. Because excessive N excretion is primarily caused by overfeeding RDP 

(Rotz, 2004), decreasing N intake by reducing the CP concentration in the diet can 

decrease total N excretion, including urinary N. Dairy cattle rations with 16.5% CP are 

recommended to support maximum milk and milk protein production, while decreasing N 

excretion compared with higher CP rations (Olmos-Colmenero and Broderick, 2006a). 

More recent studies (Lee et al., 2012a,b; Giallongo et al., 2014) have explored rations 

with CP concentrations even more reduced, but these rations require that essential amino 

acids (EAA) such as lysine, methionine and histidine be supplemented. As total protein 

in the diet decreases, EAA concentration tends to drop below required levels to sustain 

production (Lee et al., 2012a). Research in refining diets to meet EAA requirements is 

ongoing. 
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Undigested RUP and metabolic N (sloughed intestinal cells and hind gut 

fermentation products) are excreted in the feces (Tamminga, 1992). Dairy cows typically 

produce more ammonia in the feces per animal than other livestock due to overfeeding of 

protein in the diet, inefficient utilization of dietary protein in the rumen, realtively larger 

urinary excretion volume with a high concentration of urinary N, and inefficient 

conversion of dietary N to usable protein products. One study summarized data from 554 

lactating cows from several experiments and estimated the average dairy cow weighing 

625 kg, producing 40 kg/d milk with 25 kg/d DMI and 0.68 kg/d N intake would excrete 

0.44 kg N/d in manure, with sources equally contributed by urine and feces (Nennich et 

al., 2005).  

Increased fecal N may also be due to increased DMI stimulated by RUP rather than 

attributed to excretion of undigested feed protein (Flis and Wattiaux, 2005). Huhtanen et 

al. (2008) reviewed fecal N output from 207 trials and found fecal N was better 

associated with DMI than N intake, while the prediction was improved when both factors 

were included in the model. Including both DMI and N intake in prediction equations for 

fecal N excretion is important, as metabolic and endogenous N, which are major 

contributors to fecal N, are related to DMI (Van Soest, 1994). Huhtanen et al. (2008) 

estimated that every 1-kg increase in DMI corresponded to 6.7-g increase in fecal N 

output. 

In contrast, Groff and Wu (2005) fed rations with increasing CP concentrations from 

15.0 to 18.8% DM and observed increased fecal, urinary, and milk urea N excretion with 

increasing CP concentration, with small and varying differences in DMI and subsequent 

milk protein yield.. Olmos-Colmenero and Broderick (2006b) observed similar responses 
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to rations ranging in CP concentration from 13.5 to 19.4% DM, resulting in increased 

fecal, urinary, and milk urea N (MUN) excretion and a quadratic milk protein yield 

response, peaking at 16.5% CP. In both studies, DMI was not affected by CP 

concentration, but N digestibility and intake increased linearly with increased CP, 

indicating N intake and absorption drove N excretion.  

Milk Urea Nitrogen  

Milk urea N represents a waste product of incomplete capture of ammonia in the 

rumen. Increased MUN is associated with rations with elevated CP, specifically increased 

proportion of RDP, which may be related to increased urinary and total N excretion. 

Greater MUN values are associated with increased blood concentration of circulating 

urea (DePeters and Ferguson, 1992). While MUN is directly influenced by nutritional 

factors, those most commonly associated with MUN are dietary carbohydrate source and 

extent of digestion in relation to solubility and degradability of protein sources in the 

rumen, and synchronization of carbohydrate and protein substrates to rumen microbes. 

Milk UN, though a waste product, is also considered a practical way to assess dietary 

balance and determine sufficient efficiency of nutrient utilization (Rotz, 2004). Kalscheur 

et al. (2006) fed cows diets differing only in percentage of RDP. Milk urea N was 

increased from 9.5 to 16.4 mg/ 100 mL as RDP increased from 6.8 to 11.0 % of DM, 

respectively. Incidentally, for the 11.0% RDP diet, milk production increased by 2.1 kg 

as CP of the diet linearly increased by 0.09 kg/d with increased diet RDP. Cows fed diets 

formulated with CP to be below NRC requirements for RDP had comparatively reduced 

milk production, milk fat, and milk protein due to reduced dietary RDP for rumen 

microbial growth. As RDP was increased in the diet of lactating dairy cows, MUN 
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concentrations increased linearly and the efficiency of conversion of feed N to milk N 

decreased. 

Researchers have also found a positive correlation between urinary N excretion and 

MUN (Kauffman and St-Pierre, 2001; Nennich et al., 2006). Nennich et al. (2006) 

compiled data from 16 individual feeding studies comprised of 372 data points for 

lactating Holstein cows and found MUN to be an excellent predictor of urinary N 

excretion. Factors related to urine excretion (P < 0.01) included DMI, N intake, BW, 

MUN, and DIM, with N intake as the best single predictor. The relationship of Urine N 

excretion, kg/d to MUN is predicted by the following equation: 

UN=[BW×0.254 ]−[MILK×1.03 ]+[NI×0.2101 ]+[MUN×5.09]+[MTP×21.8]−[MF×

6.5 ]−138.8  

where MILK is milk yield in kg/d, NI is N intake in kg/d, MUN is g/d, MTP is milk true 

protein in g/d, and MF is milkfat in g/d.  

Nitrogen Utilization Efficiency 

One way to decrease negative impacts of N on the environment is to increase the 

efficiency of protein utilization in the cow, which results in less N excreted per unit of 

milk produced. Increased nutrient utilization can lead to increased profitability on the 

farm as well as less excreted waste (Huhtanen et al., 2008). Jonker et al. (2002) reported 

that N utilization efficiency was decreased by 0.05 percentage units for every additional 

gram of N in the diet over the recommended intake of N. Due to extensive alteration of N 

from feed in the rumen, dietary CP concentration cannot accurately predict the amount or 

composition of protein ultimately supplied to the animal. Increased dietary CP 

concentrations generally corresponds with increased N intake by increasing DMI and 
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increasing N excretion from feces, urine, and milk, with very little gain in N conversion 

to usable product (a measure of N utilization efficiency).  

A recent study investigated diets with reduced CP fed to dairy cows and found 

dietary CP as low as 12% did not reduce milk production in dairy cows, although nutrient 

digestibility and MCP synthesis in the rumen were depressed (Aschemann et al., 2012). 

In that study, however, cows had relatively low production capability (approximately 29 

kg/d), and intake was restricted, so the effect of protein on feed intake could not be 

demonstrated. Trials with high producing dairy cows have shown variable effects of 

decreasing dietary CP or MP on DMI. In trials where DMI was decreased when feeding 

the MP-deficient diets, milk production also decreased, reducing N efficiency (Lee et al., 

2011a,2012a). In contrast, when DMI did not decrease, milk production was also not 

different from diets with adequate MP (Lee et al., 2012b; Giallongo et al., 2014). 

In addition to altering protein in the diet, supplementation of concentrates to increase 

energy available to the cow can improve efficiency of N utilization. The increase in milk 

production observed in several studies as a result of increased proportion of concentrate 

of the diet was likely due to greater energy supply. For example, Benchaar et al. (2014) 

compared high forage (HF) diets to high concentrate (HC) diets supplemented with flax 

seed or flaxseed oil, and found feeding HC diets to cows increased (P<0.01) apparent 

total-tract digestibility of DM (8%) and OM (9%) , but had no effect on CP and ADF 

digestibility. Productivity increased by 100 g/kg N intake (P<0.01) from improved 

efficiency of energy utilization by the animal or increased digestibility and absorption of 

energy from the diet. In most cases, increasing energy in the diet leads to better efficiency 

(Benchaar et al., 2014). Their findings suggest that increasing the proportion of 



21 

concentrate in the diet improved N utilization as illustrated by reduced concentrations of 

ruminal NH3-N and MUN and the greater use of dietary N for milk protein synthesis (i.e., 

milk N:N intake). The improved N utilization is likely due to a greater starch supply from 

high-concentrate diets. Indeed, NH3-N utilization in the rumen is strongly influenced by 

carbohydrate availability (Russell et al., 1992). Hristov and Giallongo (2014) suggested 

that supply of fermentable carbohydrates (i.e., via increasing concentrate proportion in 

the diet) decreases NH3-N production in the rumen (by reducing the deamination process 

or enhancing the capture of released AA by rumen microbes) or increases microbial 

capture of released NH3-N in the rumen. This study confirmed an earlier one by Agle et 

al. (2010), who showed that increased concentrate proportion in the diet of dairy cows 

reduced ruminal NH3-N concentration. 

Dietary protein intake is the most important factor determining milk nitrogen 

efficiency, reduction of urinary nitrogen losses, and consequently, ammonia emissions 

from dairy cow manure. Dairy cows producing up to 44 kg/ d can be fed balanced diets 

with 16% CP without affecting milk production or composition (Olmos-Colmenero and 

Broderick, 2006a). Diets with CP < 15% (MP deficiency of < -12%) will likely result in 

decreased milk yield, partially through decreased DMI. Low CP diets (i.e., deficient in 

metabolizable protein) may benefit from supplementation with EAA, partially through an 

effect on increased DMI (Kalschuer et. al., 1999). 

The loss in milk production from reducing diet CP or altering RDP ratio in the diet 

currently far outweighs the benefits of reduced N excretion. However, further research 

into balancing rations for groups of cows may find loss in milk production of the cows 

acceptable if the N excretion of an entire group is reduced. Milk losses from 
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underfeeding CP need to be quantified and the risks and benefits of balanced protein 

feeding, particularly for groups of animals, before diets are drastically altered. Kalscheur 

et al. (1999) demonstrated that when feeding below CP requirements, as dietary CP 

increases, the efficiency of N use declines and the amount of urinary N loss increases. 

Thus, diets formulated for maximal milk production may not be optimal to minimize N 

excretion per unit of milk produced. 

Nutrient Management 

Nutrient management is a complex issue because relationships among manure 

management, soil conservation, crop production, animal nutrition, and economic 

consequences must be considered. Outweighing all of these considerations is the 

economic viability of farms when approaching nutrient management issues (VandeHaar 

and St. Pierre, 2006). If economic viability cannot be achieved, then sustainability cannot 

be achieved. 

Kohn et al., (1997) proposed a model to analyze the relative importance of altering 

various components of dairy farm nutrient management (manure management, soil, crop, 

and animal nutrition) on N reduction and concluded that optimizing the feeding strategy 

played the most important role in reducing N losses. Nutrient management should focus 

on maximizing utilization of farm-raised feeds to minimize purchased nutrient imports. 

Purchased feeds should be used only as needed to support animals’ nutrient requirements 

to meet the farm’s production goal (VandeHaar and St. Pierre, 2006; Rotz, 2004; 

VandeHaar, 1998). Where home-grown forages, both as harvested hay and pasture, 

comprise the largest portion of dairy cow diets, improving the efficiency of product 

conversion from consumed forages is the best way of optimizing feed usage on individual 
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farms, that can cycle waste nutrients back into the crops for concentrate or forages fed to 

the cows, which reduces nutrient loss to the environment. 

Effect of Forages on N Excretion 

Forage type may also affect N partitioning and excretion. Corn and legume silages 

are commonly fed together in rations for dairy cattle. The fermentable starch found in 

corn silage may complement the RDP found in legume silage in providing a fermentable 

source of carbohydrate to the rumen microbes, which may decrease ruminal N losses. 

Overall intake of N affects the amount of N excreted via manure, whereas types of 

carbohydrate (starch in corn silage vs. sugars in grass silage) and forage species (red 

clover and BFT legume vs. grasses) have greater impacts on the route (fecal or urinary) 

of excretion. In a recent study by Halmemies-Beauchet-Filleau et al. (2014) comparing 

different ratios of grass silage (GS) to red clover silage (RCS) in TMR, intake of DM and 

milk yield tended to be higher when RCS and GS were offered as a mixture than when 

fed alone. Red clover contains polyphenol oxidase, which binds protein and, as inclusion 

of RCS in the diet increased, it tended to reduce whole-body N balance, increased 

linearly the proportion of dietary N excreted in feces and urine, and decreased the 

utilization of dietary N for milk protein synthesis linearly. A reduction in recovery of N 

in milk was accompanied by increased partitioning of N into urine and feces 

(Halmemies-Beauchet-Filleau et al., 2014).  

Legumes that contain CT, such as BFT, also have the potential to reduce the 

degradation of plant protein to NH3-N in the rumen, but unlike polyphenol oxidase from 

clover, the CT in BFT release proteins in the abomasum, leading to improvements in feed 

efficiency and reduction of N waste excretion. Results of studies suggest that feeding 
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BFT may decrease excretion of N, especially via urine (Patra and Saxena, 2011). 

Improvements in N efficiency were seen in some trials utilizing grazed BFT (Waghorn 

and Shelton, 1997; Woodward et al., 2009), but some studies show that CT in the diet did 

not affect excretion of fecal or urinary N but improved milk protein efficiency (Hymes-

Fecht et al., 2013). More research is needed to explore the interactions of CT-containing 

legume feeds such as BFT with other dietary components, BFT fiber digestion, and the 

consequential N partitioning effects these diets may have in reducing waste excretion 

from dairy cows and improving efficiency and environmental quality. 

Methane in Ruminant Livestock 

Enteric CH4 emission from ruminant livestock and CH4 emission from stored manure 

are major contributors to anthropogenic emission of greenhouse gases in many countries 

(EPA, 2012; NRC 2003). Enteric CH4 production in ruminants is a well-understood 

process that is closely related to the production of VFA in the rumen (Hungate, 1967; 

Johnson and Johnson, 1995). Feeding and nutrition have modest (2.5 to 15%) potential to 

mitigate enteric CH4 per unit of energy-corrected milk (ECM) in intensive dairy 

operations in developed countries, with significantly more potential when combined with 

methane-mitigating crop and forage production improvements in developing countries 

(FAO, 2010; Knapp et al., 2014). Methane emissions can be reduced by improving feed 

efficiency. Feed additives, chemical inhibitors, and biological approaches to altering 

methanogen populations, activities, and fermentation cannot compromise rumen 

digestibility and fiber fermentation if they are to be viable CH4-reduction approaches. 

Whereas the primary substrate for methanogenesis is H2, which is generated mostly 

during fermentation of plant cell wall carbohydrates to acetate and butyrate (Moss et al., 
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2000), alterations of rumen fermentation to favor propionate production are the most 

studied nutritional strategy to reduce CH4 production. 

A recent review (Knapp et al., 2014) examined management factors that could have 

an effect on CH4 reduction (Figure 2.2). Approaches recently studied in genetics, 

physiology, and health to improve herd productivity can have a greater impact than diet 

manipulation on environmental sustainability. Integrating all the factors contributing to 

methane mitigation is the best approach in order to see quantifiable changes in methane 

output from dairy farms. 

Methane generated in the rumen is formed primarily from hydrogen produced during 

the fermentation of feed, particularly of high fiber diets. The amount of CH4 produced is 

therefore dependent upon the amount of hexose fermented and the amount of individual 

VFA produced during the fermentation of forage and diet components in the rumen. 

Changing the fermentation stoichiometry to produce more propionate at the expense of 

acetate and butyrate typically results in less CH4 from fermentation. Forages that have 

greater concentrations of non-fiber carbohydrates, such as corn silage and BFT (Noviandi 

et al., 2014), generally promote fermentation that leads to greater propionate production, 

which competes for hydrogen at the expense of CH4 production. Forages that are more 

digestible, due to less NDF, reduced maturity, increased digestibility or other agronomic 

differences, are also apt to produce less CH4.  

 

 GRAZING DAIRY SYSTEMS IN THE UNITED STATES 

 

Significant variability in commodity prices, competition between animals and 

humans for feedstuffs like grains and concentrates, and perceived animal welfare 
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concerns around permanent housing of livestock have led to increased global interest in 

grazing systems for dairy cows. Pastures, including temperate and tropical grasses and 

legumes, are, under most circumstances, the most cost-effective sources of nutrients 

(Peyraud and Delagarde, 2013), with the cost of milk production declining quadratically 

with increased utilization of grazed pasture (Dillon et al., 2008). However, one of the 

challenges of a pasture-based system is the seasonal variation in pasture availability and 

nutritive value resulting in the need to provide supplementary feed during periods of 

pasture or nutrient deficit in order to maintain the greatest milk production per unit of 

feed.  

Consumers are increasingly aware of “functional food” components that can have 

positive effects on health maintenance and disease prevention. A number of specific FA 

are now recognized as having beneficial effects on human health, and these include the 

omega-3 FA and cis-9,trans-11 CLA that are present in milk fat (Lock and Bauman, 

2004). Consumer demand for dairy products from grazed cows is increasing: studies have 

revealed that high consumption of dairy products may help to prevent heart disease, 

different types of cancer, and other chronic diseases, although the mechanisms are not 

understood (WHO, 2003; Leaf et al., 2003; Dewhurst, 2005), and grazing cows tend to 

have increased concentration of these desirable omega-3 fatty acids (Lock and Shingfield, 

2004). Fat-soluble vitamins are important in human nutrition and they may also improve 

the oxidative stability of milk fat with increased proportions of polyunsaturated FA.  

Small to medium sized dairies are decreasing in number and are interested in 

alternative strategies to remain profitable. There are 39% fewer small farms than a decade 

ago (von Keyserlingk, 2013), but consumer interest in organic and pasture-based dairy 
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products is growing, creating a market for their products. Although conventionally 

managed farms with more than 500 milking cows now account for 63% of the milk 

supply in the U.S. (USDA-NASS, 2012), the other 37% present a potential pool of farms 

that could turn to pasture systems as a resource for a low cost feed and marketing strategy 

to increase profitability of dairy products (Paine, 2009). Although most of the milk 

supply in the U.S. comes from these large farms, most of the dairy operations (90%) in 

the U.S. have fewer than 200 cows (USDA-NASS, 2012). In addition, as farms focus on 

utilizing homegrown feeds, particularly pasture forage, theoretically the carbon foot print 

and need to import nutrients to the farm can be reduced, which could make pasture-based 

farms more sustainable than conventionally managed counterparts.  

Use of Pasture as a Forage Source 

Since the inception of the USDA National Organic Program pasture rule in 2010, 

which requires ruminants in organic systems to graze pasture for 120 days and receive a 

minimum of 30 percent dry matter intake from pasture during the grazing season 

(Rinehart and Baier, 2011), increased establishment of grazing systems to develop high 

quality forage sources has been a focus for grazing-based dairy farms.  

Grazing systems can have lower operating expenses, lower feed costs, and higher 

net incomes per cow (Dartt et al., 1999). But because milk production is lower from dairy 

cows on pasture-only diets than from those fed a total mixed ration (TMR), this reduction 

in milk production can decrease the overall productivity and sustainability of grazing-

based systems as it can have greater land requirements and waste generation per unit of 

milk produced, depending on the model used to estimate the nutrient parameters (Capper 

et al., 2009). When pasture plus concentrate is fed to high genetic merit cows, milk 
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production is less than that of cows fed nutritionally balanced TMR in confinement 

feeding systems (Auldist et al., 2013; Bargo et al., 2003). Studies with high producing 

dairy cows on pasture (Reis and Combs, 2000; Soriano et al., 2000; Bargo et al., 2002) 

reported that energy supplementation with 8 to 9 kg/d of corn-based concentrates resulted 

in total DMI of 22 kg/d and milk production of 30 kg/d. In a comprehensive review of the 

literature investigating the supplementation of grazing dairy cows, Bargo et al. (2003) 

concluded that, on average, supplementation increases milk yield (1 kg/kg of DM 

concentrate DMI), milk protein percentage (+0.01%/kg of DM concentrate DMI) and 

yield (+0.01 kg/kg of DM concentrate DMI), and milk fat yield (+0.02 kg/kg of DM 

concentrate DMI), but reduces milk fat percentage (−0.13%/ kg of DM concentrate DMI; 

Bargo et al., 2003). This represents a reduction in animal performance compared with 

non-grazing systems and may be related to an alteration of ruminal fermentation and 

digestion when cows grazed good quality pasture only, or a reduction in DMI (reviewed 

in Hills et al., 2015). VandeHaar (1998) compared a grass-based grazing system and the 

expected milk outcome to 2 different conventional systems; one that used by-product 

feeds like cottonseed, bran, and distiller grains, and one that used no byproducts (Table 

2.1). Within conventional systems, 3 different levels of milk production were analyzed. 

VandeHaar reported that even with lower feed costs using pasture, the decrease in cow 

performance reduced the land-use efficiency compared to confinement systems by 34%. 

In addition, the reduction in protein production per ha reduced the efficiency of land use 

even more. The protein production is reduced because the conventionally fed cows 

produced more milk, with increased protein concentration. Unspecified in the study is 

land use for grain and by-product production fed in the conventional system, or the 
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increased contribution of longer cow productive life due to the grass pasture. Phelan et al. 

(2013) reported performance data of cows grazing in a legume- grass system that, when 

used in VandeHaar’s scenario and provided equations, show land use that is 78% 

efficient, which was equal to or an improvement over some of the example confinement 

systems, even with reduced milk yield from grazing cows (Table 2.1). The model used to 

describe the scenario is conclusive only if the data inputs truly represent the scenario 

described. Advantages and disadvantages of grazing vs. confinement systems are best 

determined in a case-to-case basis, depend significantly on quality and source of forages 

and feeds, how they are managed and how effectively supplementation is used in the 

system, besides modeling details and accuracy of inputs used in the model. 

Hills et al. (2015) report many factors that can affect DMI for grazing dairy cows 

and concluded that individualized supplementation based on cow needs, and not same 

rate of supplementation based only on pasture nutrient status was a more effective and 

productive strategy, which would lead to increased sustainability of pasture-based 

systems. 

Pasture-based diets with high-quality pastures (<50% NDF) and concentrate 

supplementation are often characterized by reduced rumen pH (<6.0), low 

acetate:propionate ratio, high ruminal NH3-N concentration, and high rate of ruminal 

passage of feed (Holden et al., 1994; Bargo et al., 2003; Perez-Ramirez et al., 2009). 

Supplementing a pasture-based feeding system with a TMR may improve performance 

through improvement in rumen digestion and fermentation. This system is called partial 

TMR (pTMR) because the pasture grazed by the cows is separate from the TMR. 

Feeding a pTMR results in increased performance because of an increased DMI and milk 
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production with increased fat and protein concentrations (Alvarez et al., 2001; Bargo et 

al., 2001; Audlist et al., 2013). Potential positive effects on rumen fermentation could 

include increased or more stable rumen pH from the forage portion and a reduction in 

rumen NH3-N concentration from forage sources when supplements are provided that are 

greater in effective fiber and reduced in CP content than pasture.  

As grazing forages mature across a grazing season and from year to year, they 

produce a greater quantity of feed and are better able to recover after grazing, but fiber 

concentration increases, concurrently decreasing forage digestibility, energy, and protein 

concentration (Roche et al., 2013; Hills et al., 2015). Other approaches may be required 

to increase or maintain milk production as forages decrease in quality. Altering the time 

of cow access to pasture is one way to manage both the pasture quality and intake, as 

demonstrated in a study by Kennedy et al. (2009) where cows that were allotted less time 

to graze still maintained milk production and pasture quality was actually improved. Such 

a strategy would allow farms with limited pasture due to season or land area to still graze 

effectively. Pérez-Ramírez et al. (2009) looked at varying pasture allowance (low and 

high; 13 vs. 24 kg DM /d per cow, respectively) and time restriction (unrestricted, 5 hours 

and 9 hours) but report reduction in intake when pasture time is restricted. However, milk 

production was only decreased by 1.4 kg/d for both 5 and 9 h at pasture from the 

unrestricted treatment, which suggests that reducing time on pasture is a viable 

management scheme. Another strategy is using starch-containing forages as a 

supplement. Researchers in Austria supplemented cows grazing grass or consuming grass 

silage with corn silage for 15 wk and found the increased energy content due to corn-
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silage supplementation increased the efficiency of N utilization (30%), compared to the 

ryegrass control (26%, Baldinger et al., 2014). 

Grazing systems generally focus on maximizing herbage DMI while maintaining a 

high quality and quantity of the grazed herbage over the grazing season (Tas et al., 2006; 

Peyraud and Delagarde, 2013). Dairy cows with a high proportion of forages in their diet, 

or those grazing intensively managed grassland (Kolver and Muller, 1998; Peyraud and 

Delagarde, 2013), had a lower MY than cows fed concentrate-supplemented diets. The 

lower MY could be attributed partly to a lower DMI due to reduction of herbage quality 

over the grazing season and partly to an imbalance among absorbed nutrients (Kolver and 

Muller, 1998). To determine the reasons for the differences in production, Kolver and 

Muller (1998) compared cows grazing high-quality pastures (Dactylus glomerata) with 

cows being fed TMR. They then simulated the pasture diets in the Cornell Net 

Carbohydrate and Protein System (CNCPS; Fox et al., 1995) to partition energy 

expenditure attributed to various physiological and physical functions due to grazing. 

Grazing cows produced 15.4 kg/d less milk than cows on TMR; the results of the model 

simulation indicated that 61% of this effect was due to lower DMI, 24% of the difference 

was due to energy expenditure in grazing and walking, 12% was estimated to be due to 

the excretion of surplus N, 7% reflected the greater energy content of the milk from 

grazing cows, and 5% due to differences in the partitioning of energy between milk 

production and body condition score (Kolver and Muller, 1998). The authors concluded 

that overall intake of nutrients, rather than a limitation in any one nutrient in pasture, was 

the primary factor that limited milk production from high-quality pasture, with the 

remaining factors reflecting differences in energy partitioning to activity, milk 
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composition, or urea synthesis. These data confirmed the difference in milk production 

between TMR-fed cows and cows grazing high-quality pasture was related to the system 

of farming and not to the nutritional profile of the feed, per se. 

Sustainability of Grazing Dairies 

Although the idea of grazing forage and high forage rations seems to imply that a 

reduction in carbon use and an increase in sustainability should accompany grazing 

dairies, some studies of dairy systems (Capper et al., 2009; Lizarralde et al., 2014) in 

South America and the U.S. have shown grazing to reduce the efficiency of nutrient use 

and land use and increase in the carbon footprint. Improving the productivity of a dairy 

system through increased milk output with supplements to provide the nutrients needed to 

match pasture inadequacies was shown in these studies to have a greater effect on the 

carbon footprint of milk than converting from confinement systems to intensive grass-

based systems or vice versa (Capper et al., 2009). However, the approach used by the 

authors to quantify sustainability in grazing and conventional systems is biased to support 

conventional systems, and it is arguable if the methods correctly represent the 

contribution of all inputs in conventional systems.  

Hills et al. (2015) determined that maintaining greater amounts of milk production 

while minimizing grain supplementation of pasture-fed dairy cows can improve the 

sustainability of grazing-based dairy production in some cases, but more research is 

needed to refine the application of this theory to the farm. Some studies (Auldist et al., 

2013; Phelan et al., 2013; Baldinger et al., 2014) have shown that conscientious 

management of pastures and utilization of high quality forage species and combinations 

of pasture species and the proper amount of supplementation increases the productivity of 
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dairy cows on pasture compared to unsupplemented pasture treatments but production 

efficiency in some cases still lags behind performance in confinement settings.  

Other studies investigating alternative types of grazing (i.e. rotatinous grazing; 

Carvahlo, 2013) offer additional methods of increasing sustainable use of forges without 

the need for supplementation, implying that many alternatives exist that can increase 

sustainability with use of grazed pastures as the major forage source. There is evidence 

that grazing management (e.g. moderate grazing) which promotes higher individual 

animal production fosters both parameters of efficient animal production and 

environmental or ecosystem balances, and described in a review by Carvalho (2013) as 

well as a recent study by Lemaire et al. (2014) Both studies emphasize that the creation 

of innovative practices and new areas of research are needed to preserve ecosystem 

balance while maintaining animal productivity, but that it is possible to do so. 

Biohydrogenation of Dietary FA and Effects on 
Milk of Grazing Dairy Cows 

 
Milk from grazed dairy cows has been purported among researches and consumers to 

be more beneficial for human health than the milk of conventionally fed cows. Reduction 

in the overall consumption of saturated fatty acids (SFA), trans-fatty acids (TFA), and 

cholesterol has been encouraged by health professionals worldwide while an increased 

intake of n-3 polyunsaturated (PUFA) is said to improve health (Griel and Kris-Etherton, 

2006; Kris-Etherton et al.,, 2007).  

Unsaturated fats, while desirable in human diets, are toxic to rumen microbes, and 

they have evolved mechanisms to desaturate fats, though they do not metabolize fats for 

energy themselves. This ability to desaturate and alter fats from their native chemistry 
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while in the rumen is known as rumen biohydrogenation (BH), and has complicated the 

study of fats in dairy cow diets. 

 Both the total concentration in the diet, and the composition of FA profiles in the diet 

are of concern. If total dietary fat concentration exceeds about 7%, studies have shown 

that rumen digestibility of other feeds is impaired, reducing energy efficiency through 

reduced fiber digestion and decreased milk fat secretion (Bauman and Griinari, 2001). In 

regards to fatty acid profiles, the greater the percentage of saturated fats in the diet, the 

less likely there will be negative effects on milk fat concentration and milk production, 

and some studies have shown that specific fatty acids act as bioactive mediators to alter 

milk fat due to a shift in the biohydrogenation pathway of cis-9, cis-12 18:2 to trans-10 

18:1 rather than to trans-11 18:1 due to disturbance in rumen fermentation processes 

(Griinari and Bauman, 1999). Additionally, Dhiman et al. (2000) showed that specific 

fatty acids, such as linolenic and linoleic, when supplemented to cows increased CLA 

content of milk by an average of 250 %. Sources of linolenic and linoleic acids were 

roasted soybean, soy oil and linseed oil treatments compared with control which had no 

oil supplement. The average increase of CLA was 97, 438, 305, and 318% for roasted 

soybean, soy oil and linseed oil treatments, respectively. A recent study by Benchaar et 

al. (2014) investigating effect of forage-to-concentrate ratio (F:C) in the ration, grass 

silage, and supplementation with flaxseed (FS) or flaxseed oil (FO) showed that 

increasing the concentrate proportion in the diet by 10% reduced ruminal pH by 0.6 units, 

shifted volatile fatty acid (VFA) pattern toward more propionate (increase of 15 mol/ 100 

mol) and less acetate, and decreased protozoal numbers by 32%. These changes in 

ruminal fermentation resulted in a decrease of in sacco effective ruminal degradability of 
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acid detergent fiber and neutral detergent fiber of grass silage. Lower acetate: propionate 

and trans-11: trans-10 ratios were observed when feeding concentrate diets versus forage 

diets (Benchaar et al., 2014). However, the lack of changes in milk fat yield may suggest 

that the decrease in milk fat content was a result of a dilution effect due to increased milk 

yield when cows were fed higher proportion of concentrate in the diet. Clearly, diet F:C 

as well as fat sources used as supplements can alter rumen fermentation and lead to 

differences in FA profiles of milk fat. 

Consumer interest in CLA has focused efforts of the dairy industry to improve CLA 

concentration in milk. Dairy products are one of the major sources of CLA in the human 

diet, and Kepler and Tove (1967) identified the cis-9, trans-11 isomer of C18:2 fatty acid 

as an intermediate and contributor in the BH of linoleic acid by the rumen bacterium 

Butyrivibrio fibrisolvens. In the rumen, dietary lipids are hydrolyzed, and resulting 

unsaturated FA are converted to SFA by the rumen microorganisms (Harfoot and 

Hazelwood, 1988). Much attention has been given to CLA because of its anticarcinogenic 

properties (Dhiman et al., 1999; Lock and Shingfield, 2004). Dietary management of 

dairy cows to increase CLA concentration in milk may be beneficial for human health 

and for the dairy industry. Conjugated linoleic acid in milk originates from CLA 

produced during ruminal BH of linoleic acid and desaturation of vaccenic acid (trans-11 

18:1; VA) in the mammary gland (Harfoot and Hazelwood, 1988). Factors affecting the 

flow of CLA isomers and trans-18:1 FA to the duodenum as a result of ruminal BH need 

to be elucidated to increase the CLA concentration in milk and meat of ruminants used 

for human consumption.  
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There are limited data addressing the basis for increased concentration of CLA in 

milk from grazing cows. The increased concentration of CLA in milk fat from grazing 

animals could be a result of the increased concentration of octadecatrienoic acid (18:3) in 

fresh forage or specific plant chemicals (Lee and Jenkins, 2011) or increased 

concentration of rapidly degradable carbohydrates induces a microbial change resulting 

in a profound modification of ruminal BH and isomerization of C18:2 (Lechartier and 

Peyraud, 2010) from the soluble sugars in fresh plants (Kelly et al., 1998a). 

Concentration of CLA in milk fat is affected by the intake of unsaturated FA (Chouinard 

et al., 1999; Kelly et al., 1998b). In cows grazing pasture, the major dietary unsaturated 

FA is linolenic acid. A study of BH of linolenic acid, cis-9, cis-12, cis-15-

octadecatrienoic acid, showed that it was converted to cis-9, trans-11, cis-15 conjugated 

triene, then to trans-11, cis-15 C18:2, and finally to trans-11 C18:1, trans-15 C18:1, or 

cis-15 C18:1 (Harfoot and Hazelwood, 1988). Therefore, BH pathways of linolenic acid 

did not involve CLA as an intermediate. However, cis-9, trans-11 CLA may be produced 

endogenously from trans-11 octadenoic acid by Δ9-desaturase in the body tissues 

(Griinari et al., 2000). 

Other factors may affect CLA production in the rumen when cows are switched to 

pasture. The type and source of dietary carbohydrate may influence rates of microbial 

fermentation in a way that alters the rate of CLA production or utilization by rumen 

microbes and ultimately the concentration of CLA in milk fat. Such an effect could help 

explain the reported differences in the CLA content of milk fat observed between cows 

fed fresh forage (pasture) and cows fed preserved forages (Dhiman et al., 1999; Roche et 

al., 2013). Replacing corn with wheat and feeding a rapidly fermentable carbohydrate 
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source in diets increased the yield of trans-10 C18:1 and reduced the yield of trans-11 

C18:1 in milk (Lechartier and Peyraud, 2010). The linear increase in the yield of trans-10 

C18:1 in milk as forage level decreased also suggests a shift in the BH pathways of C18:2 

that increased the rumen ratio of trans-10 C18:1 from trans-11 C18:1 (Chouinard et al., 

1999). One study that examined milk produced in different regions of the world and 

under different feeding systems found that milk from cows fed fresh green forage, 

especially those grazing grass, had a much higher unsaturated: saturated FA proportion, 

with more polyunsaturated FA and more CLA (in particular C18:2 cis-9, trans-11), than 

milk from silage-fed cows (Elgersma et al., 2006). Sugars, such as fructosans, starch, 

pectins, and soluble fiber content, greatly decline during the fermentation process used to 

preserve forage as silages (Van Soest, 1994) and during the drying process necessary to 

obtain hay, the forage is subject to respiration, which can lead to a 10 to 20% decrease in 

the carbohydrate fraction of the plant cell contents. Thus, the high concentrations of 

rapidly fermentable starch, sugars, and soluble fiber that are found in high quality 

pastures may create a rumen environment and conditions that favor a greater production 

of CLA by rumen bacteria over silage- and hay-fed cows (Holden et al., 1994). The 

dynamics of the rumen environment and microbial population could differ in the grazing 

animal from cows fed conserved feeds. Passage rate and fluid dilution rate increase 

because of the high water intake associated with grazing pasture. Meal size, feeding 

frequency, bite size, and time spent ruminating differ in cows grazing pasture, and these 

factors could be important in the alteration of rumen fermentation and the influence on 

rumen production and utilization of CLA (Kelly et al., 1998b). More in vivo research is 

needed to elucidate effects of differing forages and forage conservation methods and the 
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resulting FA profiles in milk and rumen fluid. More recent studies have found that CT 

from forages inhibited ruminal BH, thus leading to the accumulation of C18:1 trans-11 

(trans vaccenic acids; TVA) at the cost of C18:0 production (Khiaosa-Ard et al., 2009; 

Lee et al., 2011b), suggesting that bioactive compounds such as CT in BFT could alter 

both rumen and milk FA profiles. 

Forage Legumes in Pasture 

The forage quality of legumes (CP and NDF content compared to grasses) does not 

decrease as rapidly with advancing maturity as does grasses (Waghorn and Clark, 2004). 

It has been shown that incorporating forage legumes into grass pastures offers advantages 

over all-grass pastures. Legumes fix N from the air into the soil via legume root nodules, 

where some of this N is transferred to companion grown grasses to improve their overall 

growth as well (Giller and Cadisch, 1995; Høgh-Jensen et al., 2004). Legumes continue 

growth in mid-summer when growth of cool-season grasses becomes reduced, improving 

the year round yield of forage (Sleugh et al., 2000; Berdahl et al., 2001; Lauriault et al., 

2003). Legumes such as white clover, lucerne and BFT have higher nutritional value 

compared with perennial ryegrass due to their higher metabolizable energy content and 

lower levels of structural carbohydrate (Ulyatt, 1981). In sacco and in vitro incubation 

studies of digestion kinetics have shown legumes have higher digestible protein levels 

and faster rate of passage through the rumen than most grass species (Burke et al., 2000). 

Legumes maintain a higher nutritive value through late summer-autumn in contrast to 

perennial pastures containing grasses due to increased digestibility and CP concentrations 

and reduced NDF than pastures that are exclusively based on grasses (Van Soest, 1965; 

Kilcher, 1981). However, commonly grown legumes like alfalfa and clover (Trifolium 
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sp.) can cause bloat; hence, they are not often used as sole pasture species and should not 

constitute more than 50% of a pasture mixture (Undersander et al., 2002). Indoor feeding 

experiments and short-term grazing studies have demonstrated various benefits as a result 

of feeding legumes including increased milk and milk solids production, reduced CH4 

emissions, and improved N use efficiency (Woodward et al., 2009). While the magnitude 

of benefits differs among legume species, the responses are usually due to the greater 

DMI of cows fed legumes, the greater nutritive value of the legumes, and the presence of 

CT in some legumes such as BFT (Woodward et al., 2002). Bryant et al. (2014) found 

that seasonal variations in forage nutrient content, particularly CP, affected the N use 

efficiency of cows on pasture. Longer-term and multi-season studies to examine these 

theories are few in the literature. 

The ultimate goal of proper rumen function is to maximize microbial growth through 

the amount of RDP that is captured into rumen microbial cells. Low ruminal pH increases 

maintenance requirements of microbes to maintain ion balance across the cell membrane 

(Russell, 1998). On the other hand, increasing rate of passage from the rumen probably 

has dramatic effects on increasing microbial growth efficiency by decreasing microbial 

turnover (Wells and Russell, 1996). Improving nutrient utilization efficiency in pastured 

cows can be achieved by utilizing forages with increased energy content or increased 

digestibility, which can be the case with legume forages.  

 

 BIRDSFOOT TREFOIL 

 

Birdsfoot trefoil is a non-bloating, productive legume that is well suited to pasture-

based dairy and beef production. Birdsfoot trefoil is a species distributed throughout the 
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world, and grows under a wide range of environmental conditions. It is considered one of 

the major forage legumes after alfalfa (Medicago sativa) and white clover (Trifolium 

repens) (Singh et al., 2007). Yields reported for BFT cropped in agricultural lands range 

between 8000 and 10,000 kg DM ha−1 year−1 (Cassida et al., 2000), which represents 

around 50–80% of alfalfa performance (Blumenthal and McGraw, 1999). Cultivation of 

BFT in the U.S. is estimated to be 1 million ha with greatest use in the Northeast, 

Midwest, and along the Pacific coast (Blumenthal and McGraw, 1999). In comparison, 

10 to 11 million ha of alfalfa are cultivated in the US annually (Barnes and Sheaffer, 

1995).  

 Birdsfoot trefoil can be cropped as a stand-alone forage or a mixed species for both 

beef and dairy grazing applications. For example, inter-seeding BFT into tall fescue 

(Festuca arundinacea Schreb) pastures increased CP concentration and total yield of 

pasture. However, ADG of steers grazing rhizomatus BFT (RBFT) pastures was greater 

(P < 0.10) than that of steers on mixed BFT- tall fescue treatments in that study. Steers 

grazing normal phenotype BFT had about 12% lower (P < 0.10) ADG than those grazing 

RBFT but gained faster (P < 0.10) than those grazing BFT+TF, RBFT+TF or TF. Steers 

increased to a total weight of 445 kg/ha for RBFT pasture compared to 226 kg/ha for the 

TF treatment (Wen et al., 2002). Early experiments showed that dairy cows grazing BFT-

dominant pastures produced more milk (+ 3.2 kg/d) and had a greater milk protein 

concentration (+ 0.15 %) than those grazing perennial ryegrass or white clover-dominant 

pastures (Harris et al., 1998). The greater milk yield of cows grazing BFT was due, in 

part, to improved pasture quality and greater DMI, and possibly the presence of CT in the 

BFT pasture (Harris et al., 1998). Woodward et al. (2000) fed cows either perennial 
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ryegrass or BFT, and the cows were also drenched with either polyethylene glycol (PEG) 

to block the action of CT or water (as a control). Milk yields were greater on BFT (21.2 

kg/d) than on BFT + PEG (18.6 kg/d), ryegrass (15.5 kg/d), or ryegrass + PEG (15.5 

kg/d), indicating that CT contributed 46% to the increased milk yield that resulted from 

feeding BFT rather than ryegrass. In addition, an in vitro study reported by our group also 

showed that tall fescue and BFT mixed diets improved nutrient utilization by decreasing 

NH3-N concentration and CH4 production compared to alfalfa and tall fescue mixes 

(Noviandi et al., 2014). 

Forage Quality of BFT 

The nutritive value of Lotus species, including BFT, is considered to be similar or 

even superior to that of AF and WC. Digestibility of DM for Lotus species ranges 

between 72% and 78%, whereas CP ranges between 16% and 24%, and ADF varied 

between 24% and 30% (Blumenthal and McGraw, 1999). In the U.S., BFT has replaced 

much of the clover previously grown with grasses in the Northeast U.S. (Blumenthal and 

McGraw, 1999). 

One of the most important features of some Lotus species is their content of 

condensed tannins (CT), also known as proanthocyanidins, in vacuoles of leaves and 

stems. Tannins are a secondary compound produced by many families of dicotyledonous 

and other higher-order plants. They are water soluble, polyphenolic compounds that vary 

widely in chemical structure but exhibit the common characteristic of binding proteins. 

Tannins thought to be produced by plants to deter herbivory (Feeney, 1976; Rhoades and 

Cates, 1976) and provide a sink for excess carbon (Bryant et al., 1983; Hernandez and 

Van Breusegem, 2010). When ingested by animals, they increase the efficiency of protein 
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metabolism when present in low to moderate concentrations (Aerts et al., 1999; Mueller-

Harvey, 2006; Waghorn, 2008), and have been shown to have antihelmintic, 

antimicrobial and antifungal properties (Scalbert, 1991; Schultz et al., 1992). There are 

two main types of tannins in plants, hydrolysable tannins, and condensed tannins (CT). 

Ruminants consuming forages containing moderate amounts of CT (around 5 mg CT/g 

DM) show reduced ruminal protein degradation to NH3 which can increase the quantity 

of protein that appears in the small intestine. Condensed tannins prevent the formation of 

protein films in the rumen which allows control of rumen bloat without using additional 

chemicals (Aerts et al., 1999; Patra and Saxena, 2009). However, forages with excess CT 

concentrations have been reported to cause decreased palatability and feed intake and 

reductions in nutrient utilization (Aerts et al., 1999; Makkar, 2003). The CT 

concentration of BFT is moderate, yet has been shown to be effective at improving 

protein use in ruminants.  

Condensed tannins in BFT bind to proteins at the near-neutral pH of the rumen, 

reducing ruminal protein degradation and ammonia production, and then dissociate at the 

low pH of the abomasum, releasing protein for digestion and absorption in the lower 

digestive tract of the ruminant (Waghorn et al., 1987). This mechanism has been the 

explanation for increases in milk yield in dairy cows consuming BFT (Woodward et al., 

2000, 2009; Turner et al., 2005), and the diversion of excreted nitrogen from urine to 

feces, contributing to the reduction of the potential for volatilization of ammonia from 

dairy manure (Misselbrook et al., 2005; Woodward et al., 2009). 
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Use of BFT in Lactation Dairy Diets 

There is increasing interest in the use of BFT both alone in grazing situations or as a 

TMR ingredient to support the efficient production of ruminants on pasture and in 

confined operations while reducing negative environmental impacts from excessive N 

waste. In grazing-based dairy production, BFT provides diets with potential for increased 

feed intake due to its increased rate of digestibility and moderate CP concentration. In 

one study (Woodward et al., 2000), milk production of cows fed BFT was 21.2 kg/d 

compared to 15.5 kg/d for the ryegrass treatment, due to greater DMI, improved forage 

quality due to increases in CP (21.7 % vs. 16.6% for ryegrass) and decreased NDF (40.8 

% vs. 54.8% for ryegrass) and the action of CT. The CT not only contributed to around 

40-50% of the increase in milk production (Woodward et al., 2000) but also improved 

energy use efficiency by the cows (an increase of 34 ml FCM/MJ ME vs ryegrass).  

Increases in milk components are also reported in studies feeding BFT to dairy cows. 

Woodward et al. (2000) attribute the action of CT in BFT pasture to explain the increase 

in milk protein concentration. Cows were fed BFT or BFT+PEG treatments to separate 

legume effect from CT effect. Both BFT and BFT+PEG treated cows had increases 

(P<0.001) in milk protein concentrations compared to ryegrass or ryegrass+PEG fed 

cows (3.24 vs 3.10%). This difference in protein concentration may have been associated 

with the increased protein in the BFT compared with the ryegrass (21.7 vs. 16.5%, 

respectively), along with increased ME intakes, promoting increased availability and 

absorption of protein. However, the increased (P<0.001) milk protein concentration of 

cows fed BFT compared with BFT+PEG (3.34 vs. 3.16%, respectively) also suggests a 
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specific role for CT in the change, which in this case accounted for 75% of the increase 

above ryegrass-fed cows (3.10% milk protein). 

Very few studies have been conducted to determine the use of BFT hay in dairy 

rations and the effects of these rations on milk production and nutrient utilization. In vitro 

studies have been conducted (Williams et al., 2010, 2011) and reported increases in VFA 

production and decreases in ruminal NH3-N concentration for diets that contained BFT 

hay alone or as a TMR ingredient, indicating that BFT hay in dairy rations has promise to 

improve lactational performance, but few data exist to show if this is really the case in 

vivo. Birdsfoot trefoil conserved as a hay crop is cheaper to store and easier to transport 

than silage, so it would provide a way to manage excess spring forage production that 

could be used later in the year or as a cash crop.  

Digestibility of BFT by Ruminants 

Birdsfoot trefoil digestibility can exceed that of other legumes. Digestibility is 

closely related with NDF concentration (Van Soest, 1994). Based on a 3-year study, 

Cassida et al. (2000) reported that concentration of CP, NDF, and acid detergent fiber 

(ADF) in BFT averaged 20.9, 35.9, and 29.5% DM, respectively, while alfalfa averaged 

19.7, 39.0, and 28.4% DM, respectively. Williams et al. (2010) reported similar results, 

with 20.0 and 18.5% CP for alfalfa and BFT, respectively, while NDF for alfalfa and 

BFT were 40.8 and 35.8%, respectively. Digestibility of forages can be affected by many 

factors, primarily by forage species, as cellulose, lignin, and relative ratios of these 

chemical constituents vary greatly among forage species. Tomlin et al. (1965) showed 

that BFT cellulose at the early bloom stage was digested more rapidly than ALF 

cellulose, despite similar lignin concentrations (11.2 vs. 11.4 % DM, respectively). 
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Mowat et al. (1969) found a negative correlation between cell wall lignin and digestibility 

in alfalfa, though BFT cell wall lignin content was not correlated with overall 

digestibility. Increased cell wall digestibility in BFT may lead to increased DMI in 

ruminants. 

Fiber digestibility of forages is determined by content and extent of NDF digestion. 

Digestibility of NDF is complex and influenced by the combination of several factors. 

The fraction of NDF that is potentially digestible determines digestibility, the rate of 

NDF degradation in the rumen, and the rate of passage from the rumen (Allen, 2000). 

Potentially digestible NDF (pdNDF) is a laboratory measure of the absolute extent of 

NDF digestion by ruminal microorganisms. Increasing proportion of pdNDF and 

decreasing the indigestible NDF (iNDF) fraction could result in greater fiber digestibility. 

Birdsfoot trefoil could potentially have increased pdNDF and reduced iNDF fractions, 

due to the unique structural features mentioned above. Grasses often have a greater 

proportion of pdNDF to iNDF and higher in vitro NDF digestibility than legume forages, 

but digestion of legume NDF occurs faster (Smith et al., 1972) and could increase total 

amount of NDF digested in vivo.  

Effects of BFT on CH4 Production  

There is a body of evidence to demonstrate that feeding CT-containing forages or 

supplementing with CT extracts decreases CH4 production in vitro (Bhatta et al., 2009; 

Tan et al., 2011; Williams et al., 2011) and in vivo (Animut et al., 2008; Woodward et al., 

2009; Sun et al., 2012). The inhibitory effects of CT on rumen methanogenesis have been 

attributed to direct effects of defaunation on methanogenic archaea (Finlay et al., 1994; 

Patra and Saxena 2009, 2011) and indirect effects through a depression of fiber digestion 
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in the rumen (Patra and Saxena, 2011). Other rumen factors likely contribute to overall 

fermentation patterns, and more studies in dairy cows are needed to understand the 

mechanisms that drive methane production and possible effects CT may have in vivo. 

Condensed tannins may also reduce CH4 possibly by directly inhibiting the activity of 

methanogenic bacteria (Tavendale et al., 2005) and is dependent on source, chemical 

structure and concentration in the diet. Birdsfoot trefoil tannin concentrations from 2.5 to 

8.5% DM have been found to reduce enteric CH4 production without reducing 

digestibility (Carulla et al., 2005; Animut et al., 2008). As the BFT proportion in the diets 

utilized in one in vitro study increased, CH4 production decreased (Noviandi et al., 2014), 

with less CH4 produced in diets containing greater concentration of BFT forage and 

increased overall CT concentration. Cultures that were fed with diets that contained a 

greater concentration of CT (2.43%) showed reduced CH4; however, the treatment that 

had 1.65% CT exhibited no measurable effect on CH4 production. Also in that study 

(Noviandi et al., 2014), VFA concentration was similar across dietary treatments, 

suggesting no detrimental effects on ruminal fermentation. Therefore, the decreased CH4 

production may have resulted from direct toxicity of CT on methanogens resulting in 

decreased methanogenesis rather than indirect effects of depression of ruminal fiber 

digestion in cultures (Noviandi et al., 2014). Eun and Min (2012) stated that reliable and 

distinguishable effects of CT on CH4 reduction can be expected only from CT 

concentrations greater than 2.0% DM.  

In several studies, the reduction in CH4 due to feeding forages containing condensed 

tannins was confounded with changes in forage quality, such as lower NDF content. For 

example, in the study by Woodward et al. (2002), CH4 emissions from lactating dairy 



47 

cows were lower for cows grazing sulla pastures than perennial ryegrass pastures (6.1 vs. 

7.2% of GE intake), but the NDF content of sulla was much less than that of the ryegrass 

(14.7 vs. 48.3% of DM). Because lower-fiber diets are associated with lower CH4 

emissions (Johnson and Johnson, 1995), the methane reduction in that study may have 

been due to a change in nutrient composition. Thus, it is uncertain that condensed tannin 

extracts and condensed tannin-containing forages are effective at reducing enteric CH4 

emissions from cattle. In a study by Beauchemin et al. (2007), the lack of effect of 

quebracho tannin extract supplementation on CH4 production was consistent with the 

lack of effect on total tract DM and fiber digestibility. Despite no effects of quebracho 

tannin extract on total tract digestibility, the linear reduction in total VFA concentration 

with increasing concentration of quebracho tannin extract supplementation (0, 1%, 2% of 

DM supplementation) together with linear reduction in acetate:propionate ratio, suggests 

some changes occurred in ruminal fermentation as a result of dietary inclusion of tannins. 

More research is needed to elucidate effects of tannins on interactions of fermentation 

products and rumen methanogenic archaea.  

Effects of CT on Fiber Digestion 

The tannin-protein reaction has been widely exploited to improve efficiency of N 

utilization in ruminants (Aerts et al., 1999). However, the effects of CT on fiber, 

carbohydrates and VFA is less understood and the extent to which they complex with 

other nutrients in the rumen and consequential effects on energy and N metabolism in 

ruminants have been variable. 

The major fiber-degrading bacteria in the rumen such as Fibrobacter succinogenes, 

Ruminococcus albus, and Ruminococcus flavefaciens have been found to be inhibited by 
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tannins, although the degree of inhibition varied among studies depending upon the 

concentration and type of tannins (Patra and Saxena, 2011). The rate of fiber digestion is 

slowed due to complexing of tannins with fiber digesting enzymes or selective reduction 

of fiber-digesting bacteria due to specific tannin toxicity. The exposure of F. 

succinogenes to CT appears to cause the formation of tannin-protein complexes on the 

cell surface, which is suggested to interfere with the adhesion process of bacterial cells to 

cellulose (Patra and Saxena, 2011). This interference explains the reduction of the rate 

and extent of fiber digestion. As fiber digestion slows, subsequent release of energy 

metabolites (specifically propionate) would be reduced, but at a rate that achieves better 

synchrony with rumen utilization of N compounds for protein production. Similarly, CT 

in BFT inhibited the growth of Clostridium proteoclasticum, B. fibrisolvens, Eubacterium 

spp. R. albus, F. succinogenes and S. bovis, and the rate of proteolysis in vitro (Min et al., 

2005). Jones et al. (1994) demonstrated that the growth of proteolytic bacteria i.e., B. 

fibrisolvens, R. amylophilus and S. bovis was reduced by sainfoin (Onobrychris viciifolia) 

CT, but a strain of P. ruminicola was tolerant to these CT. However, an inclusion of 30% 

Calliandra leaves containing tannins in the diet significantly reduced total cellulolytic 

bacteria including primary fiber degrading F. succinogenes and Ruminococcus spp. 

without affecting the total proteolytic bacteria and fungi, or efficiency of microbial 

protein synthesis (McSweeney et al., 2001). 

SUMMARY  

 

 

To date, the majority of agricultural research in the United States has been focused 

on increasing productivity and efficiency, particularly on utilizing technologies that 
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complement existing production systems and lead to benefits for the private sector (NRC, 

2010). This mindset leaves several gaps in knowledge, so a need exists in current 

research to provide education and awareness of options producers can use to increase 

sustainability. It is possible to increase efficiency using low-input options like alternative 

forages. The same system that caused the problems cannot be expected to solve the 

problems without significant alteration in many aspects. Research that looks at alternative 

systems or technology, such as pasture-based dairy production, using new forages 

including BFT, looking at bioactive compounds such as CT to help solve ruminant waste 

issues, and allowing for whole system redesign (Reganold et al., 2011) may have to be 

the approach the industry uses to meet the challenges of sustainability. However, this 

approach will require a shifting of resources to fund new transdisciplinary research and to 

eliminate non-sustainable practices. This research must also address the significant gaps 

regarding the growing public concerns about dairy cattle production, including 

sustainability, environmental impact, and the welfare of food-production animals. 

Three separate experiments were designed to address these principles of 

sustainability by incorporating new forage, bioactive compounds, and nutrient 

management strategies mentioned above by use of birdsfoot trefoil in dairy cow diets. 

The specific aim of these projects is to help answer the following questions: 1) Is 

birdsfoot trefoil a feasible option to feed to confined and grazing dairy cows to help 

achieve the desired increase in nutrient utilization by affecting an increase in N 

production and reduction in N waste? and, 2) Can birdsfoot trefoil be effectively used and 

managed in practical settings and in diets of dairy farms in the Western regions of the 

United States? Increasing nutrient utilization will lead to improved sustainability and 
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efficient resource use, which will help to support long-term sustainability in the dairy 

industry. 

Engagement in sustainable practices means more than public awareness of an 

established position (von Keyserlingk, et al., 2013); it will involve the opportunity to 

meet social needs in the broader society, and still meet the three core facets of 

sustainability. The dairy industry will need to be prepared to make changes to everyday 

production practices. It may require the acceptance that, in some cases, less milk 

production per cow may be desirable and necessary in order to support long term 

sustainability, as less milk may require less input, may lower the cost of production, and 

generate less waste, while still generating profit for dairy farms to be sustainable in the 

future. 
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Table 2.1 Effect of annual milk production and type of diet on lifetime efficiency of land 

use by a dairy cow. 

 Grazing Confined Feeding1 

Item Grass-

legume 

system2 

Grass 

only 

system1 

Without by-product feeds With by-product feeds 

Milk 

production

, kg/yr 

6400 3 5000  5000  10,000 15,000  5000 10,000 15,000  

Feed,4 

kg/yr of 

DM/yr 

51405 60506 5870 81207 10,540 59508 8380 11,150 

Land 

required,5 

ha/yr 

0.47 0.54 0.66 0.97 1.34 0.30 0.49 0.68 

Protein 

production

, kg/ha 

646 359 295 371 392 642 731 770 

Efficiency 

of land 

use,8 % 

78 43 35 45 47 76 88 93 

1 Adapted from VandeHaar, 1998 J. Dairy Sci. 82:272-282. 
2Estimated from data reported by Phelan, et al., 2013 J Dairy Sci. 96:1598-1611 using 

VandeHaar (1998) equations.  
3The average lifetime of a cow is 4.83 yr and consists of 730 d as a heifer, three 305-d 

lactations, and two 60-d dry periods. Milk production is the 3.5% FCM production of a 

cow during its productive lifetime, divided by the 2.83 yr spent as a cow. 
4The annual feed DMI for an animal is the lifetime DM consumption divided by the 2.83 

yr spent as a lactating or dry cow. Thus, the annual feed DM required per cow is similar 

to the predicted annual feed DM needs per cow in a dairy enterprise (cows plus 

replacement heifers) of similar annual milk production. Digestibility is assumed to 

decrease as intake increases and is discounted for a cow or heifer at a given life stage as 

[1.0 – DF (MM – 1)0.8], where DF = discount factor, and MM = multiple of maintenance 

intake. The base discount factor is 4% for the grazing system and confined feeding 

system without by-product feeds and 6% for the confined feeding system with byproduct 

feeds. 
5Feed DM consumed during the lifetime of cow in a legume-grass grazing system 

(Phelan et al., 2013) consists of 92% pasture and 8 % concentrate which consists of 26% 

barley grain, 25% corn gluten feed, 35% beet pulp, 12 % soybean meal and 1% minerals 

and vitamins. High quality pasture is considered to be available for the entire year so that 

the average diet contained 1.6 Mcal of NEL at 3× maintenance intake per kilogram of 

DM and 21 % CP 
6Feed DM consumed during the lifetime of cow in a grazing system consists of 99% 

pasture and 1% minerals and vitamins. High quality pasture is considered to be available 
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for the entire year so that the average diet contained 1.6 Mcal of NEL at 3× maintenance 

intake per kilogram of DM and 16% CP. 
7Feed DMI during the lifetime of a confined cow fed no by-product feeds and producing 

10,000 kg/yr consists of 34% alfalfa, 26% corn silage, 26% corn grain, 12% soybeans, 

and 2% minerals and vitamins. The average diet during the lifetime of the cow contains 

1.65 Mcal of 3× NEL/kg of DM and 16% CP. The amount of soybeans fed is decreased 

with lower milk production and increased with higher milk production. 
8Feed DMI during the lifetime of a confined cow fed by-product feeds and producing 

10,000 kg/yr consists of 25% alfalfa, 25% corn silage, 13% corn grain, 2% soybeans, 

12% corn gluten feed, 10% cottonseeds, 10% wheat middlings, 1% blood meal, and 2% 

minerals and vitamins. The average diet during the cow’s lifetime contains 1.65 Mcal of 

3× NEL/kg of DM and 16% CP. The amount of soybeans fed is decreased with lower 

milk production and increased with higher milk production. 
9Annual cropping yields are 11,120 kg/ha for alfalfa, 20,210 kg/ha for corn silage, 8150 

kg/ha for corn grain, and 2690 kg/ha for soybeans. 
10Protein production per hectare is 3.5% FCM yield times 3.3% protein plus accretion of 

body and conceptus protein during the lifetime of the cow divided by the 2.83 yr spent as 

a cow divided by the land required per year. A cow is considered to weigh 625 kg at 

maturity and calves to weigh 45 kg at birth. Body mass is considered to be 12% protein. 
11Efficiency of land use is the protein production per hectare from dairy farming relative 

to the amount of protein that could be produced from soybeans and corn grown for direct 

human consumption. Equal cropping of corn and soybeans would provide 986 kg 

protein/ha with the same protein to calorie ratio as whole milk at 3.5% fat. This 

calculation of efficiency assumes that milk protein, because of its greater digestibility and 

better amino acid profile, is 20% more valuable on a weight basis than is the protein of 

the mix of corn and soybeans. 
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Figure 2.1 The 3 pillars of sustainability. Image courtesy of Triumvirate environmental 

(http://www.triumvirate.com) 
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Figure 2.2 Estimated maximum impact of factors influencing methane mitigation in 

intensive dairy production.1Various approaches to mitigating CH4 in that have been 

demonstrated to be effective on an in vivo basis. Combined factors are not 

completely additive due to overlap of metabolic functions affecting methane 

production. Adapted from Knapp, et al., 2014.  
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CHAPTER 3 

FEEDING BIRDSFOOT TREFOIL HAY IN HIGH-FORAGE DIETS 

INCREASES FIBER DIGESTION, NITROGEN UTILIZATION EFFICIENCY, 

AND LACTATIONAL PERFORMANCE BY DAIRY COWS 

INTRODUCTION 

Forage quality affects feed intake and dietary energy density, lactational performance, 

cow health, and feed cost. Dairy producers in the western US use alfalfa (Medicago 

sativa L.) to make up the majority of the forage portion in dairy diets. Alfalfa is a very 

palatable legume that is high in CP and low in fiber, and thus feeding alfalfa can 

maximize intake and production of dairy cattle (Martin and Mertens, 2005). However, the 

protein in alfalfa is extensively degraded to ammonia in the rumen, resulting in excess N 

waste excretion. Birdsfoot trefoil (Lotus corniculatus L.; BFT) is a non-bloating forage 

legume that is similar to alfalfa in feeding value, and has a potential to be fed as a main 

forage to dairy cows due to its unique cell wall digestion characteristics as well as 

condensed tannins (CT; Williams et al., 2011). Within the legume family, there is 

evidence that lignification has less effect on digestibility in BFT than in alfalfa. At the 

early bloom stage, Tomlin et al. (1965) demonstrated BFT cellulose to be digested more 

rapidly than alfalfa cellulose, despite similar lignin concentrations. McGraw and Marten 

(1986) reported greater digestibility of BFT stems than alfalfa stems. Mowat et al. (1969) 

found a highly negative correlation (R2 = 0.78) between cell wall lignin concentration and 

in vitro cell wall digestibility in alfalfa, BFT cell wall digestibility was not correlated 

with lignin concentration (R2 = 0.13). Greater cell wall digestibility in BFT may lead to 

an increase in DMI by lactating dairy cows (Allen, 2000). In addition, feeding BFT has 



77 

been reported to improve N utilization by ruminants due to CT in BFT (Barry and 

McNabb, 1999; Min et al., 2003). Moderate concentrations of CT (2.0–4.0% DM) bind 

protein by hydrogen bonding at near neutral pH (i.e., pH 6.0–7.0) in the rumen to form 

CT–protein complexes, but dissociate and release bound protein at pH < 3.5 in the 

abomasum (Barry et al., 2001). Using continuous cultures, we previously reported that 

ammonia-N (NH3-N) concentration and flow were reduced when replacing alfalfa hay 

(AH) with BFT hay (BFTH) in dairy TMR (Williams et al., 2011). This in vitro result 

suggests that incorporating BFTH as a CT-containing legume forage into dairy TMR can 

have a potential to improve environmental performance of dairy operations through a 

reduction in N excretion.  

Several studies have shown that BFT fed to dairy cows as a preserved silage (Hymes-

Fecht et al., 2013) or fresh forage (Woodward et al., 2000) increases N utilization, 

reduces N excretion in urine, and shifts N excretion to feces. However, no studies have 

been done to determine if BFT preserved as a dry hay have the same effects as fresh or 

wet-preserved forages. Thus, we sought to determine effects of feeding BFTH in high-

forage dairy diets on nutrient intake and utilization, ruminal fermentation profiles, and 

lactational performance of dairy cows. It was hypothesized that feeding BFTH-based 

lactation diet would increase intake of DM and digested NDF by dairy cows compared 

with AH-based diet due to increased NDF digestibility, leading to improved lactational 

performance and N utilization efficiency. 
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MATERIALS AND METHODS 

 

The dairy cows used in this study were cared for according to the Live Animal Use in 

Research Guidelines of the Institutional Animal Care and Use Committee at Utah State 

University. The experiment was conducted at the Caine Dairy Research Center 

(Wellsville, UT), Utah State University. 

Cows, Experimental Design, and Diets 

Nine multiparous lactating Holstein cows, 3 of which were previously surgically 

fitted with rumen cannula, were used for this experiment. Cows began the experiment 

averaging 131 ± 22.6 DIM. Average BW were 778 ± 73.6 and 787 ± 65.7 kg at the 

beginning and the end of the experiment, respectively. 

The design of the experiment was a triple 3 × 3 Latin square. Within each square, 

cows were randomly assigned to a sequence of 3 diets during each of the three 21-d 

periods (14 d of treatment adaptation and 7 d of data and sample collections). The 3 

experimental diets included: 1) AH-based TMR (AHT); 2) AH and BFTH-based TMR 

(ABT); and BFTH-based TMR (BT; Table 1). As a forage source, AH was partially or 

completely replaced with BFTH in ABT or BT, respectively. Corn silage was included in 

the 3 diets at 15.4% DM. The diets included AH at 42% in AHT or 21% in ABT. Typical 

lactating dairy diets in the Intermountain West (i.e., Utah, Idaho, Wyoming, Montana, 

and parts of Arizona and Nevada) contain more AH than corn silage, and baled AH is 

commonly fed to provide 50 to 75% of the dietary forage with total forage levels 

averaging 45 to 55% of the dietary DM. The BT contained BFTH at 42% of diet DM. 

Therefore, 3 experimental diets maintained forage-to-concentrate ratio of 58:42 on a DM 
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basis. The BFTH used in this experiment was Norcen variety, planted in fall 2009 on a 

private ranch (Garland, UT), and was the second cutting harvested at early-bloom stage 

July 17, 2011 by mower-conditioner (model 830, John Deere, Moline, IL), and allowed to 

sun-cure for 5 d before baling. The chemical composition of the BFTH was 15.8, 39.0, 

and 33.8% DM for CP, NDF, and ADF, respectively. The AH used in our experiment 

was clean, bright green, fine-stemmed second cutting, and preserved as sun-cured hay 

with a chemical composition of 17.7, 34.6, and 30.0% DM for CP, NDF, and ADF, 

respectively.  

Condensed tannin of AH and BFTH were isolated and purified from ground samples 

of the hay (0.5 mm) using the modified HCl-butanol-acetone assay (Grabber et al., 2013); 

a BioMate 3 spectrophotometer was used to quantify the CT. While CT concentration of 

AH was negligible, BFTH contained 1.55% CT, resulting in 0.38 and 0.51% CT 

concentration to ABT and BT, respectively (Table 3.1). 

The TMR diets excluding corn silage were processed for approximately 15 min in a 

TMR wagon (model 455, Roto-Mix, Dodge City, KS). The corn silage used in this 

experiment had a chemical composition of 6.27, 39.4, and 25.8% DM for CP, NDF, and 

ADF, respectively, and was added just prior to feeding each diet, mixed and wieghed 

with a Rissler TMR mixer cart (I. H. Rissler Mfg, Curtiss, WI). Diets were formulated to 

be isonitrogenous across treatments averaging 15.6% CP, isocaloric (1.60 Mcal/kg), and 

to meet NRC (2001) recommendations for RDP, RUP, minerals, and vitamins of a mid-

lactation dairy cow weighing 780 kg (BCS = 3.0) and producing 36.3 kg of milk/d 

containing 3.5% fat and 3.0% true protein with 24.9 kg/d of DMI. Concentration of NDF 

was slightly less for both BFTH diets (39.7 and 38.5% of DM for ABT and BT, 
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respectively) compared with AHT (41.1% of DM; Table 3.1), whereas NFC 

concentration was 2.8% units greater in BT than AHT and ABT (34.3 vs. 31.5%), 

respectively.  

Cows were housed in a tie-stall barn on a rubber mattress covered with straw and 

were individually fed. Cows had free access to water. Diets were mixed at 0400 h and fed 

twice daily as a TMR with 70% of allotted feed fed at 0500 h and 30% fed at 1400 h. 

Feed offered and refused was recorded daily, and samples taken during the sampling 

week to determine DMI with weekly adjustment to achieve between 5 and 10% refusals. 

Cows were milked twice daily at 0300 and 1500 h. Milk weights were recorded using 

BouMatic automated meters (Madison, WI) at each milking throughout the experiment. 

Milk samples were collected from 6 consecutive milkings during d 15 through 17 in each 

sampling period. Individual milk samples were analyzed by the Rocky Mountain DHIA 

Laboratory (Nibley, UT) for fat, true protein, lactose, and MUN. Daily milk composition 

was calculated from the weighted a.m. and p.m. observations. Yields of milk fat, true 

protein, and lactose were calculated by multiplying milk yield from respective day by fat, 

true protein, and lactose concentrations of the milk from each individual cow. To convert 

milk true protein to milk N, 6.38 was used as the conversion factor (DePeters and Cant, 

1992), and total milk N (kg/d) was calculated as milk true protein/6.38 + MUN (DHIA, 

2013), where milk true protein and MUN were expressed as kg/d. 

Feed Sampling and Analysis 

Samples of AH, BFTH, and corn silage were taken weekly to determine DM 

concentration, and dietary concentrations of forages and concentrates were adjusted 

weekly on an as-fed basis to reflect changes in the DM concentrations. Samples of feeds 
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were collected weekly to determine DM concentration and composited by period for 

chemical analysis. Samples of TMR fed and orts for each cow were collected daily 

during the sampling week and stored frozen at -20°C until composited for analysis. Then, 

the composite samples were dried at 60°C for 48 h, ground to pass a 1 mm screen (Wiley 

Mill model 4; Thomas Scientific Co., Swedesboro, NJ), and retained for chemical 

analyses. The DM concentrations of samples were used to calculate DM and nutrient 

intake. 

Analytical DM concentration of samples was determined by oven drying overnight at 

105°C, and OM was determined by ashing at 550°C for 5 h (AOAC, 2000; method 

942.05). Crude protein concentration was determined by automated N dry combustion 

(Flash 2000 Automatic Elemental Analyzer, ThermoFischer Scientific, The Netherlands; 

AOAC, 2000; method 968.06). Concentrations of NDF and ADF were determined 

sequentially using a fiber analyzer (200/220, Ankom Technology Corp., Macedon, NY) 

according to the methodology supplied by the company, which is based on the methods 

described by Van Soest et al. (1991). Sodium sulfite was used in the procedure for NDF 

determination with pre-treatment of heat stable amylase (Type XI-A from Bacillus 

subtilis; Sigma-Aldrich Corporation, St. Louis, MO).  

Apparent total tract digestibility of CP and NDF were measured during the last week 

in each period using acid-insoluble ash (AIA) as an internal marker (Van Keulen and 

Young, 1977). Fecal samples (approximately 100 g, wet weight) were collected for each 

cow from the rectum twice daily (a.m. and p.m.) every 12 hours moving ahead 2 h each 

day for the 5 d sampling of feces beginning on d 15. This schedule provided 12 

representative samples of feces for each cow. Samples were composited across sampling 
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times for each cow, dried at 60C for 72 h, ground to pass a 1-mm screen (standard 

model 4), and stored for chemical analysis. Intake of digested NDF was calculated from 

NDF intake and concentrations of AIA and NDF in diets fed, orts, and feces using the 

following equation: intake of digested NDF (kg/d) = intake of NDF (kg/d) × 100 − [100 × 

(AIAd/AIAf) × (NDFf/NDFd)], where AIAd = AIA concentration in the diet actually 

consumed, AIAf = AIA concentration in the feces, NDFf = concentration of the NDF in 

the feces, and NDFd = concentration of the NDF in the diet actually consumed. Intake of 

undigested NDF was calculated from the following equation: intake of undigested NDF 

(kg/d) = intake of NDF (kg/d) − intake of digested NDF (kg/d) (Eun and Beauchemin, 

2005). 

 

Ruminal Fermentation Sampling and Analysis 

Ruminal pH was continuously measured on cannulated cows for 2 consecutive days 

starting on d 15 using the Lethbridge Research Centre Ruminal pH Measurement System 

(LRCpH; Dascor, Escondido, CA) as described by Penner et al. (2006). Readings in pH 

buffers 4 and 7 were recorded prior to placing the LRCpH system in the rumen. Ruminal 

pH readings were taken every 30 s and stored by the data logger. After about 48 h of 

continuous pH measurement, the LRCpH was removed from the rumen, washed in 39°C 

water, and millivolt readings were recorded in pH buffers 4 and 7. The daily ruminal pH 

data was averaged for each minute and summarized as minimum pH, mean pH, and 

maximum pH. Also, when ruminal pH was less than 5.8, daily episodes, duration (h/d), 

and area (pH × min) were calculated. The threshold of 5.8 was chosen because it has been 

previously described by others (Nocek, 1997; Maekawa et al., 2002; Beauchemin and 

Yang, 2005) to cause ruminal acidosis.  
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Samples of whole ruminal contents were collected at 0, 2, 4, 6, 8, 10, and 12 h 

following the a.m. feeding on d 20 and 21 of each experimental period from cannulated 

cows. Rumen samples were collected from different locations in the reticulo-rumen 

(ventral sac, reticulum, and feed mat in the dorsal rumen; approximately 250 g each), 

composited, and filtered through a polyester screen (pore size 355m; B & S H 

Thompson, Ville Mont-Royal, QC, Canada) and immediately analyzed for pH. Two 

separate 5-mL aliquots of the rumen samples were conserved and immediately frozen 

until processed for analyses of NH3-N and VFA. Concentration of NH3-N of rumen 

contents was determined using methods described by Rhine et al. (1998) after thawing 

samples and adding 1 mL of 1% sulfuric acid. For VFA determination, 5-mL samples 

taken at 0 and 6 h post a.m. feeding were added to 1 mL of 25% meta-phosphoric acid 

and quantified using a GLC (model 5890 series II; Hewlet Packard Co, Palo Alto, CA.) 

with a capillary column (30 m × 0.32 mm i.d., 1 μm phase thickness, Zebron ZB-FAAP, 

Phenomenex, Torrance, CA) and flame-ionization detection. The oven temperature was 

170°C held for 4 min, which was then increased by 5°C/min to 185°C, and then by 

3°C/min to 220°C, and held at this temperature for 1 min. The injector temperature was 

225°C, the detector temperature was 250°C, and the carrier gas was helium (Eun and 

Beauchemin, 2007). 

Urine Sampling and Analysis 

Spot urine samples were collected at 0600 and 1800 on d 18 and 19 in each period 

from all cows. Urine samples were acidified during collection to a pH < 3.8 by addition 

of 4 M HCl. The acid solution was added to urine in the urine containers during 

collection, and then the urine was frozen in separate containers at −20°C. For analysis, 
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samples were thawed and composited by cow and period, and aliquots were diluted at 

1:39 with urine diluent. Diluent was 0.202% sodium 1-heptane sulfonic acid and 0.086% 

ammonium dihydrogen phosphate (NH4H2PO4), acidified to pH 2.1 with 4 M HCl, and 

directly analyzed for the pyrimidine and purine derivatives (PD) allantoin, uric acid, 

xanthine, hypoxanthine, and pseudouridine, as well as creatinine by using an HPLC 

(Waters Corp., Milford, MA) according to the procedures of Shingfield and Offer (1999). 

Urinary creatinine was used as a marker to estimate urine volume (Valadares et al., 1999; 

Leonardi et al., 2003). In calculating urine volume, we assumed that creatinine output 

averaged 28 mg/kg of BW as estimated by Whittet (2004). Similar daily creatinine 

outputs, ranging from 25 to 30 mg/kg of BW have been reported (McCarthy et al., 1983; 

Jones et al., 1990). The ratio of the urinary PD allantoin and uric acid to creatinine was 

used to estimate the relative differences in MCP production (Shingfield and Offer, 1998). 

Supply of MCP to the small intestine was estimated based on estimates of urinary 

excretion of PD, according to the method of Chen and Gomes (1992). Pyrimidine and PD 

were calculated based on methods of Wattiaux and Karg, 2004 and Janicek et al., 2008. 

 Statistical Analyses 

Data were summarized for each cow by measurement period. All data were 

statistically analyzed using the mixed model procedure of SAS (SAS Institute, 2012) with 

a model that included the fixed effect of dietary treatment using the repeated option. Cow 

and period were the terms of the random statement. Nutrient and DM intake, milk yield, 

milk composition data, VFA profiles, and N utilization were analyzed as repeated 

measures in sampling days. Simple, autoregressive one, and compound symmetry 

covariance structures were used in the analysis depending on low values for the Akaike’s 
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information criteria and Schwartz’s Bayesian criterion. Milk yield and milk composition 

data were subjected to analyses using unstructured covariance structures. Data for NH3-N 

were analyzed by the heterogeneous compound symmetry structure. For all models used, 

degrees of freedom were estimated with the Kenward-Roger specification in the models. 

Means were compared using a protected (P ≤ 0.10) LSD test. Unless otherwise stated, 

significance was declared at P ≤ 0.05, and tendency towards significance at 0.05 < P ≤ 

0.10. All results are reported as least squared means. 

RESULTS AND DISCUSSION 

Intake of DM and Nutrients, Digestibility, and Milk Production 

Intake of DM averaged 26.2 kg/d and CP averaged 16.1 % DM and was similar 

across treatments, while feeding BFTH-containing diets resulted in 3 and 6% less NDF 

fiber intake (P<0.01) for ABT and BT diets, respectively, compared with AHT (Table 

3.2). Intake of ADF was 4 and 5% less for ABT and BT, respectively, than AHT 

(P<0.02). Previously reported intake due to the effects of feeding CT-containing forages 

or CT extracts in ruminants have yielded inconsistent results, and focused only on effects 

of CT on N digestion (Woodward et al., 2001; Benchaar et al., 2008; Dschaak et al., 

2011). Increased DMI was observed due to feeding BFT silage-based diets (2.59% CT; 

Woodward et al., 2001), whereas others found no effect of supplementing CT extract on 

DMI in either Jersey heifers (Baah et al., 2007 with 0.60% quebracho CT extract) or 

lactating dairy cows (Benchaar et al., 2008 with 0.45% CT). Conversely, decreases in 

DMI of diets containing CT have been reported either in dairy cows (Dschaak et al., 2011 

with 2.25% CT from quebracho CT extract) or in sheep (Barry and McNabb, 1999 with 

7.5 to 10.0% CT from BFT pasture; Priolo et al., 2000 with 2.5% CT from carob pulp). In 
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the current study, the CT in BFTH did not lead to the increased DMI, because the CT 

concentration of ABT and BT was less (0.38 and 0.51%, respectively) than that reported 

in other studies. Meanwhile, the depressing effect on feed intake reported in the literature 

was attributed to the negative impact of palatability (Cooper and Owen-Smith, 1985) or 

to a short-term effect of astringency (Landau et al., 2000) in many of these cases where 

the CT concentration was greater than that used in the present study. These results 

suggest that effects of feeding CT-containing forages or CT extracts on feed intake in 

ruminants could be influenced by source and chemical nature of CT, as CT activity is 

variable, reactive in some cases binding to each other, and in other cases may have no 

activity whatsoever. 

Feeding BT tended to increase (P = 0.10) NDF digestibility compared with AHT and 

ABT, leading to an increase of digested NDF intake but a 16% reduction in undigested 

NDF intake when cows were fed BT (Table 3.2). Ward (2012) reported that the 

indigestible fraction of NDF in legume hay averaged 54.2% of NDF for recently 

submitted forage samples. In the current study, 49.5% NDF of the AHT was undigested, 

but only 45.0% of NDF in the BT was undigested. Differences in digestibility of forages 

affect retention time in the rumen, and are related to differences in lignin concentration 

and lignification patterns in stems and leaves of the forage (Hoffman et al., 1993; Buxton, 

1996). An increase in ruminal digestion of fibrous feed particles can increase particle 

fragility and makes particles more susceptible to breakdown during chewing (Chai et al., 

1984). In an early study by Ingalls et al. (1966), an initial rate of disappearance of DM, 

cell wall constituents, fiber, and lignin were faster for BFT than for alfalfa. In addition, in 

a comparative study of commonly cultivated forages, voluntary intake relative to cell 
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wall content substantially increased for BFTH compared with AH and other forages 

above the standard deviation of the other forages (Van Soest, 1965). Differences in lignin 

composition and structure between AH and BFTH can also influence the digestibility of 

NDF in the rumen. In a study by Buxton and Russell (1988), the ratio of the oxidation 

products of sinapyl: coniferyl alcohols, a measurement of differing subunits of lignin, 

were 0.79 in AH and 0.14 in BFTH, suggesting differences in the lignin composition of 

these 2 legume species. More recently, Hunt et al. (2014) reported that lignification of 

stems of BFT differed from alfalfa stems, as the plant elongated and matured, resulting in 

reduced liginification of fiber in plant cell walls that potentially could increase digestion 

rates of BFT NDF relative to AH NDF. In addition to cell wall chemical differences, 

MacAdam and Griggs (2013) reported greater NFC concentration in BFTH than AH 

when both species were harvested at 6-wk intervals. Because initiation of digestion of 

fiber by rumen microbes occurs in the cell lumen, a much more digestible layer in the 

stem fiber cells would enhance microbial colonization of fiber and increase digestion of 

NDF. 

Milk and ECM yields tended to increase (P = 0.09) for cows consuming BFTH-

containing diets (Table 3.2). This is in agreement with Hymes-Fecht et al., (2013) where 

BFT silage-fed cows had increased milk and ECM yields compared to those fed alfalfa 

silage. Similar milk yield increases in BFT-fed cows were also reported in 2 studies 

utilizing fresh BFT, without or with polyethylene glycol (Woodward et al., 1999,2009). 

The addition of polyethylene glycol inactivated the binding activity of forage tannins in 

these studies, attributing CT activity as the only dietary difference, which suggests that 

CT in the diets resulted in increased milk yield. However, the CT concentration in the 
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current study was much less than that in the studies by Woodward et al. (2.6% and 1.9% 

in 1999 and 2009, respectively), which could imply that other differences such as 

enhanced NDF digestion in the BFTH used in our study and its subsequent effects on 

ruminal fermentation, and not CT in BFTH, likely played a role in increased milk 

production. 

Milk fat concentration and yield were not different across dietary treatments, 

whereas milk true protein concentration and yield were greater for cows consuming ABT 

relative to those fed AHT (Table 3.2). Similar results were found in milk of cows fed 

BFT silage-containing diets (Hymes-Fecht et al., 2013). Cows fed BT tended to have 

increased feed efficiency based on milk yield (P = 0.09) and increased feed efficiency 

based on ECM yield compared to those fed ABT; however, there were no differences 

between AHT and BT on the feed efficiencies.  

Ruminal Fermentation Characteristics  

Dietary treatments in general did not influence ruminal pH profiles with minor 

effects on minimum and maximum ruminal pH (Table 3.3). Mean pH averaged 6.47 

across treatments, which is typical in cows fed high-forage diets. However, the maximum 

pH pf BT-fed cows never exceeded that of AHT or ABT, which could suggest increased 

fermentation from that diet. Hymes-Fecht et al., (2013) reported minor effects on ruminal 

pH by feeding BFT silage-based diet. Dietary NDF concentration for all treatments used 

in the current study would be adequate to maintain optimal ruminal pH.  

Total VFA concentration tended to increase (P = 0.09) in cows fed BT compared to 

those fed AHT and ABT (Table 3.3). Feeding BFTH resulted in a tendency for acetate 

proportion to decrease (P = 0.09), propionate proportion to increase (P = 0.07), leading to 
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a tendency for decreased acetate-to-propionate ratio (P = 0.07). Effects of feeding CT-

containing forages or CT extracts on VFA profiles have been variable. Carulla et al. 

(2005) reported that VFA concentrations remained unchanged, but molar proportion of 

propionate increased in sheep fed diets supplemented with CT-containing black wattle 

(Acacia mearnsii). Decreased acetate-to-propionate ratio was reported for cows fed BFT 

silage (Hymes-Fecht et al., 2013) and in a continuous culture study (Williams et al., 

2011) for TMR diets containing BFTH. The tendency for increased total VFA 

concentration due to feeding the BT in the present study suggests enhanced ruminal 

fermentability by feeding BFTH and can support increased energy supply for lactation. In 

addition, increase in propionate and decrease in acetate corresponded to improvements in 

fiber digestion of forages (Eun and Beauchemin, 2007). It is not uncommon to observe 

changes in VFA proportions as a direct effect of enhanced fiber digestion in the rumen, 

implying that feeding BFTH may affect microbial growth, shift the metabolic pathways 

by which specific microbes utilize substrates, or both. Propionate is quantitatively the 

most important VFA precursor of glucose synthesis and, therefore, has a major impact on 

hormonal release and tissue distribution of nutrients (Nagaraja et al., 1997). 

Consequently, increased VFA concentration and propionate proportion as a result of 

feeding BFTH would contribute to improving nutrient supply and utilization, which may 

have resulted in increases in milk production as well as feed efficiency observed in the 

current study. 

While concentration of NH3-N was similar across treatments, cows fed BT exhibited 

greater MCP yield relative to those fed AHT and ABT (Table 3.3). The most efficient 

way to improve nutrient utilization in the rumen is to maximize microbial growth by 
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capturing N-containing compounds released from RDP sources and convert that N into 

rumen microbial cells. Tannin-protein complexes inhibit the fermentation of forage 

protein to ammonia in the rumen, increasing the amount of protein that reaches the small 

intestine (Barry et al., 1986; Waghorn et al., 1987). Therefore, CT included in the diet as 

a supplement or as a component of the forage would be expected to reduce the amount of 

N fermented in the rumen. However, there was no effect on NH3-N concentration in 

response to dietary treatments in the current study, indicating that CT concentration in 

ABT and BT may have been inadequate to form substantial tannin-protein complexes, 

one of the most promising effects of CT on ruminal fermentation. Besides adequate N 

supply, ruminal MCP synthesis also depends on supply of adequate amounts of 

carbohydrate as an energy and carbon source for the synthesis of peptide bonds (Bach et 

al., 2005). When cows are fed high-forage diets like the ones tested in the current study, 

contribution from ruminally fermented NDF for the synthesis of MCP would be greater 

than for high-concentrate diets. Enhanced NDF digestion evidenced by increased VFA 

concentration by feeding BT may have provided greater energy for MCP yield due to 

feeding BT. Berthiaume et al. (2010) examined alfalfa cultivars with high vs. low NDF 

digestibility in vitro and observed increased total VFA production and increased apparent 

digestibility of DM and OM. These factors may have contributed to increased MCP yield 

in this study.  

Utilization of N  

Intake of N was not different among treatments, whereas cows on BFTH-containing 

diets secreted more milk N than those on AHT, resulting in 3 - 7% improvement in N 

utilization efficiency for milk N for ABT or BT diets, respectively (Table 3.4). That both 
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BFTH-containing diets resulted in improvements suggests that even small inclusions of 

BFTH can enhance digestion and efficiency of N utilization and increases the desirability 

of feeding BFTH. A similar improvement in N utilization efficiency (4%) was reported 

for a BFT silage diet (Hymes-Fecht et al., 2013). Concentration of MUN, which reflects 

inefficiency of dietary N utilization and ruminal NH3-N, did not differ between 

treatments. Like the effect of CT on NH3-N concentration discussed earlier, a relatively 

small concentration of CT in ABT and BT may have resulted in no effect on MUN 

concentration in the present study. Benchaar et al. (2008) and Aguerre et al. (2010) 

observed no effect of supplementation of quebracho CT extract at 0.45-0.90% DM on 

MUN concentration. 

The observance of no change in N intake and MUN concentration led to lack of 

response of N excretion into urine, feces, and manure due to dietary treatments (Table 

3.4). In contrast, cows fed ABT and BT tended to increase milk N-to-manure N ratio (P = 

0.07), which is attributed to the shift of N to increased milk N secretion coupled with 

increased MCP yield from feeding the BFTH-containing diets. A greater milk N-to-

manure N ratio is more desirable, indicating that less manure N must be managed per unit 

of milk N produced by the herd. Thus, feeding BFTH in dairy diets may reduce manure 

NH3-N by increasing secretion of milk N per unit of manure N excreted. Feeding BFT 

silage diets shifted the route of N excretion from urine to feces in one study (Hymes-

Fecht et al., 2013), which is an effective way of reducing NH3 volatilization and resultant 

N waste. However, where reduced excretion of manure N was only numerically observed 

from feeding BFTH in the current study, it is difficult to make assumptions that BFTH 

can effectively reduce N excretion in manure.   
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CONCLUSIONS 

Replacing alfalfa hay with birdsfoot trefoil hay in high forage, hay-based diets 

decreased NDF and ADF intake, tended to increase milk yield, ECM and increased ECM 

efficiency. The ABT and BT diets both tended to increase milk yield by an average 3.5% 

more than AHT, suggesting that even a diet that partially replaced AH with BFTH shows 

promise to improve milk efficiency per unit of N intake, which can be a benefit to farms 

with limited supply of BFTH. An additional economic benefit was found if added income 

from increased milk protein was considered. In addition, cows fed with birdsfoot trefoil 

hay had improved microbial protein yield. Improved digestibility of fiber in BFT hay due 

to cell wall characteristics such as reduced iNDF concentration of BFTH, as suggested in 

this study, may have contributed to improved milk protein secretion compared to cows 

fed alfalfa hay diet. Result of this study suggest that dairies that feed BFT preserved as 

hay may see production increases when including BFTH in high forage diets, even with a 

21% inclusion of BFTH. Overall industry goals of increasing digestibility of NDF from 

forage that can lead to improved N utilization efficiency could be met when BFTH is fed. 

Producers with elevated feed costs, such as organic farmers, could benefit from feeding 

BFTH. Future research to determine specific rumen microbe and consequential effects in 

vivo from feeding BFTH with greater CT concentration than that fed in this study and 

consequential dairy cow performance is well warranted. Although we reported enhanced 

digestion of BFTH possibly due to its favorable cell wall structure toward microbial 

fermentation, we have yet to explore how reduced CT-containing BFTH affects microbial 

community structure, particularly cellulolytic bacteria.  
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Table 3.1. Ingredients and chemical composition (means ± SD) of experimental diets fed 

to dairy cows (n = 3 sample replicates) 

Item 

Experimental diet1 

AHT ABT BT 

Ingredient, % of DM    

Alfalfa hay 42.0 20.7 – 

Birdsfoot trefoil hay – 20.7 42.6 

Corn silage 15.4 15.4 15.4 

Corn grain, flaked 22.5 22.1 21.9 

Cottonseed, whole 6.20 6.20 6.20 

Soybean meal 1.30 3.50 4.80 

Corn DDGS2 7.10 7.00 6.80 

Beet pulp, shreds 1.50 – – 

Fat supplement3 0.40 1.50 1.20 

Calcium carbonate 1.01 1.01 1.01 

Salt 0.31 0.31 0.31 

Urea 0.70 0.70 0.70 

Magnesium oxide 0.18 0.18 0.18 

Vitamins and minerals4 0.14 0.14 0.14 

Sodium bicarbonate 0.70 0.70 0.70 

Nutrient composition, % of DM    

DM, % 60.3 ± 4.12 60.0 ± 3.89 62.1 ± 1.60 

OM 91.0 ± 1.64 90.4 ± 0.35 91.8 ± 0.93 

CP 15.9 ± 0.73 15.5 ± 0.19 15.2 ± 0.63 

RDP, % of CP5 53.5 53.4 53.5 

RUP, % of CP5 46.5 46.6 46.5 

NDF 41.1 ± 0.78 39.7 ± 3.48 38.5 ± 0.72 

ADF 28.8 ± 0.83 27.6 ± 2.66 26.9 ± 0.17 

NFC5 31.1 31.9 34.3 

NEL6, Mcal/kg 1.60 1.60 1.60 

Condensed tannins, % of DM 0.05 ± 0.01 0.38 ± 0.06 0.51 ± 0.08 
1AHT = alfalfa hay-based TMR; ABT = alfalfa hay and birdsfoot trefoil hay-based TMR; 

BT = birdsfoot trefoil hay-based TMR. 
2DDGS = dried distillers grains with solubles. 
3Calcium salts of palm oil (EnerGII®, Virtus Nutrition, LLC, Corcoran, CA). 
4Formulated to contain (per kg DM): 13.4 mg of Se (from sodium selenate), 550 mg of 

Cu (from copper-AA complex), 2412 mg of Zn (from zinc-AA complex and zinc sulfate), 

2290 mg of Mn (from manganese-AA complex), 33 mg of Co (from cobalt carbonate), 

185,045 IU of vitamin A, 22,909 IU of vitamin D, 616 IU of vitamin E, and 285 mg of 

Rumensin® (Elanco Animal Health, Greenfield, IN). 
5NFC = 100 – CP – NDF – ether extract – ash. 
6Based on tabular value (NRC, 2001). 
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Table 3.2. Intake of DM and nutrients, milk yield and composition, and efficiencies of 

DM and N used for milk production of lactating dairy cows fed different legume hay-

based diets 

Item  

Dietary treatment1   

AHT ABT BT SEM P 

Intake, kg/d      

DM 25.7 26.5 26.7 0.57 0.33 

CP 4.16 4.13 4.01 0.10 0.27 

NDF 10.6a
 10.3ab

 10.0b
 0.30 ˂ 0.01 

ADF 7.36a
 7.10b

 6.99b
 0.218 0.02 

Digestibility, %      

CP 74.2 72.3 75.5 1.18 0.18 

NDF 50.5 52.3 55.0 1.99 0.10 

Digested NDF intake, kg/d 5.25 5.36 5.53 0.28 0.20 

Undigested NDF intake, 

kg/d 5.35a 5.12a 4.47b 0.36 0.01 

Yield, kg/d      

Milk  38.3 39.3 40.0 1.94 0.09 

ECM 37.4 38.1 39.3 1.55 0.09 

Milk composition, %      

Fat 3.37 3.25 3.38 0.145 0.22 

True protein 2.84b
 2.93a

 2.94a
 0.080 < 0.01 

Lactose 4.83 4.82 4.82 0.046 0.83 

Milk component yield, 

kg/d 

     

Fat 1.28 1.27 1.34 0.055 0.13 

True protein 1.08b
 1.13a

 1.16a
 0.047 0.03 

Lactose 1.85 1.89 1.92 0.091 0.08 

Efficiency      

Milk yield/DMI 1.50 1.47 1.52 0.086 0.09 

ECM yield/DMI 1.45ab
 1.44b

 1.48a
 0.060 0.05 

a-bMeans within a row that do not have a common superscript differ at P ˂ 0.05. 
1AHT = alfalfa hay-based TMR; ABT = alfalfa hay and birdsfoot trefoil hay-based TMR; 

BT = birdsfoot trefoil hay-based TMR.  
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Table 3.3. Ruminal fermentation characteristics of lactating dairy cows fed different 

legume hay-based diets 

 Dietary treatment1   

Item AHT ABT BT SEM P 

Minimum pH 5.70a 5.56b 5.70a 0.106 0.05 

Maximum pH 7.21a 7.22a 6.91b 0.083 0.05 

Mean pH 6.45 6.53 6.37 0.072 0.34 

pH < 5.8      

Daily episodes 6.00 3.33 3.33 3.707 0.84 

Duration, h/d 2.12 0.53 1.16 1.408 0.67 

Area, pH × min 16.4 2.75 8.68 10.72 0.60 

Total VFA, mM 102 106 119 6.3 0.09 

Individual VFA, mol/100 

mol      

Acetate (A) 61.1 59.0 59.7 1.93 0.09 

Propionate (P) 23.5 26.1 24.7 1.25 0.06 

Butyrate 10.8 10.7 10.8 0.56 0.83 

A:P 2.62 2.26 2.42 0.20 0.07 

Ammonia-N, mg/100 mL 8.33 6.05 6.70 1.244 0.51 

MCP,2 g/d 1793b 1824b 2115a 93.1 0.01 
a-bMeans within a row that do not have a common superscript differ at P ˂ 0.05. 
1AHT = alfalfa hay-based TMR; ABT = alfalfa hay and birdsfoot trefoil hay-based TMR; 

BT = birdsfoot trefoil hay-based TMR. 
2Microbial protein production, g/d = ({[PD production − (0.385 × BW0.075)]/0.85} × 70 × 

6.25)/(0.13 × 0.83 × 1,000) (Janicek et al., 2008).  
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Table 3.4. Nitrogen utilization of lactating dairy cows fed different legume hay-based 

diets 

 Dietary treatment1   

Item AHT ABT BT SEM P 

N intake, g/d 666 662 646 25.1 0.76 

Milk N, g/d 184b 194a 197a 7.7 < 0.01 

Milk N:N intake2 0.27b 0.29a 0.30a 0.02 0.05 

MUN, mg/100 mL 14.1 14.4 14.8 0.68 0.19 

Urinary N excretion,3 

g/d 289 299 306 17.0 0.17 

Fecal N excretion,4 g/d  191 166 145 18.6 0.17 

Manure N excretion,5 

g/d 481 465 449 22.2 0.47 

UN:FN6 1.51 1.80 2.11 0.473 0.24 

MkN:MaN7 0.38 0.43 0.44 0.021 0.07 
a-bMeans within a row that do not have a common superscript differ at P ˂ 0.05. 

1AHT = alfalfa hay-based TMR; ABT = alfalfa hay and birdsfoot trefoil hay-based TMR; 

BT = birdsfoot trefoil hay-based TMR. 
2Efficiency of use of feed N to milk N. 
3Predicted using the following equation: 0.026 × MUN, mg/100 mL × BW, kg (Wattiaux 

and Karg, 2004). 
4Predicted using the following equation: N intake, g/d – urinary N excretion, g/d – milk 

N, g/d. 
5Manure N, g/d = urinary N excretion, g/d + fecal N excretion, g/d. 
6UN:FN = ratio of urinary N to fecal N, where urinary N and fecal N are expressed in g/d. 
7MkN:MaN = ratio of milk N to manure N, where milk N and manure N are expressed as 

g N/day 
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CHAPTER 4 

LACTATION PERFORMANCE AND RUMEN FERMENTATION OF DAIRY 

COWS GRAZING MIXED GRASS OR BIRDSFOOT TREFOIL PASTURE  

INTRODUCTION 

 

The sustainability of pasture-based dairy systems depends strongly on the quality and 

quantity of home-grown pasture. Nutrient availability in pasture forages is species, 

location and climate dependent (Van Soest et al., 1978) and is more complicated to 

manipulate and predict than nutrient availability in intensive systems since it includes 

qualitative and quantitative unknowns associated with grazing (Kilcher, 1981; Bargo, et 

al., 2003; Peyraud and Delagarde, 2013). Dairy cow digestion and utilization of nutrients 

involves interactions of the animal, its diet and the ruminal microbial population. The 

most important dietary aspects regarding grazing systems in this interaction are herbage 

characteristics and animal ingestive behavior (Chilibroste et al., 2012; Peyraud and 

Delagarde, 2013) and they can greatly affect productive performance and nutrient 

utilization of the grazing animal. 

In the temperate parts of the United States, grazing dairy systems are primarily based 

on permanent mixtures of cool-season grasses, predominantly tall fescue, orchardgrass, 

perennial ryegrass (Lolium perenne), red and white clover (Trifolium repens; NRCS, 

2015). The production and quality of these pastures is often limited during the summer 

months, due to a combination of hot weather and a shortage of rain in unirrigated 

systems. Botanically diverse pastures, grass/legume mixes, and legume pastures, 

however, have been shown to improve the yield of the pasture (Daly et al., 1996) or have 
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superior nutritional profiles (Sanderson et al., 2003) to grass pasture alone. One major 

problem with common mixed species pastures is that they often contain insufficient 

proportion of legume to capture the added nutritional value as extra milk production 

(Cosgrove et al., 2006) resulting in less milk production than is possible. 

 Some novel plant species have been proposed to be incorporated into pasture 

mixtures or as stand-alone pasture forage (Ström, 2012; Woodward et al., 2013; 

Pembelton et al., 2014), including chicory (Cichorium intybus), plantain (Plantago 

lanceolata), big trefoil (Lotus pedunculatus) and birdsfoot trefoil (BFT, Lotus 

corniculatus L). How these species affect the overall utilization and management of 

pastures and influence the rumen environment in vivo needs to be investigated if they 

could be potentially used to improve nutrient utilization and in turn increase 

sustainability. In addition, few studies have been conducted on commercial farms to 

determine if alternative forages are feasible for use in commercial dairy systems. 

Condensed tannins are phenolic plant secondary compounds present in a number of 

legumes, including the foliage and stems of BFT, big trefoil and in the flowers of white 

clover. They act by binding to plant protein, forming hydrogen-bonded complexes 

(Mueller-Harvey, 2006) that make protein unavailable for rumen degradation (Bae et al., 

1993; Jones et al., 1994; Smith et al., 2005). As a result, the amount of ammonia released 

from rumen digestion is reduced (Waghorn, 2008), improving rumen N utilization 

efficiency as well as animal performance. In addition, these plant species offer 

advantages over other pasture forages for dairy cows in order to reduce the environmental 

impact of N waste (Ramírez-Restrepo and Barry, 2005). However, effects of CT on 

rumen fermentation and nutrient utilization are dependent on the concentration and 
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chemical nature of the CT in the forage and total diet (Waghorn, 2008; Eun and Min, 

2012). 

Birdsfoot trefoil has been shown to be a hardy, productive and persistent legume 

under irrigation in the Mountain West region of the United States (MacAdam and Griggs, 

2006). The unique type (based primarily on epicatechins; Waghorn, 2008) and 

concentration (ranging from 20 to 120 g/kg; Aerts et al., 1999) of condensed tannins in 

BFT increase ruminant weight gain in cattle (Wen et al., 2002; MacAdam et al., 2011) 

and lambs (Douglas et al., 1999) and milk production in dairy cows (Turner et al., 2005; 

Woodward et al., 2009; Jacobs and Woodward, 2010). Due to altitude and temperate 

seasons, the CT concentration of BFT grown in the Mountain West region is typically 

lower than that produced in other regions (18.7 vs. 24.3 g/kg for various North American 

locations, Grabber et al., 2013; vs. 23.6 g/kg, New Zealand, Woodward et al., 2000 and 

21.6 g/kg, New Zealand, Jacobs and Woodward, 2010). In addition, little to no research 

has been done on commercial dairies to determine long-term, multi-year effects of low-

CT, irrigated BFT pasture on nutrient utilization and milk production of lactating dairy 

cows. Although BFT is tolerant of dry summers and appears well adapted to rotational 

grazing, difficulties with establishment and low competitive ability in seedlings 

(Chapman et al., 2008; Woodward et al., 2000) may limit its use on dairy farms. 

Our hypothesis was that nutrient utilization, ruminal fermentation, and lactational 

performance would be different in dairy cattle grazing monoculture BFT pasture 

compared to those of cows grazing typical irrigated mixed grass pasture (perennial 

ryegrass and white clover mixture).  
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MATERIALS AND METHODS 

The dairy cows used in this study were cared for according to the Live Animal Use 

in Research Guidelines of the Institutional Animal Care and Use Committee at Utah State 

University. The study was conducted at a commercial organic dairy farm (Weston, ID) in 

May through August of 2012 (year 1) and May through July, 2013 (year 2). 

Experimental Design, Cows, and Treatments  

For the 2-year study, an independent grazing experiment in each year was conducted 

using 18 Holstein and Holstein X Jersey crossbred multiparous dairy cows in mid-

lactation. The experiments were conducted in a randomized complete block design, with 

18 cows paired based on breed, previous milk production and BW, then they were 

randomly assigned to one of 2 treatments (n = 9): 1) mixed cool-season grass pasture 

(70% perennial ryegrass, 15% white clover, and 15% other cool-season grasses and 

weeds; MGP) and 2) BFT pasture (BFTP). Before the study started, cows grazed 

commonly on a mixed cool season grass sward. In 2012, the cows were in their second to 

fourth lactation (3.3 ± 0.97) and 111 ± 14.2 DIM at the start of the experiment with BW 

of 541 ± 58.9 and 602 ± 66.7 kg at the beginning and the end of data collection, 

respectively. Average milk yield was 34.8 ± 13.15 kg/d in the adaptation period. The 

cows used in 2013 were in their second to fifth lactation (3.5 ± 1.25) and 119 ± 16.6 DIM 

at the start of the experiment with BW of 618 ± 61.7 and 600 ± 48.6 kg at the beginning 

and the end respectively. Milk yield averaged 32.9 ± 5.43 kg/d during the adaptation 

period. 

Sampling for both years lasted 8 weeks, with sampling in four, 2-week periods. 
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Pasture Establishment, Management and Supplementation 

Approximately 4.5 ha of pasture for each treatment was allocated for the grazing trial 

in both experimental years. The field where BFT was to be planted had been cropped for 

alfalfa hay for 3 yr and preceded by an annual crop of barley. On August 11, 2011, BFT 

was planted using a broadcast seeder (Brillion Sure Stand, Brillion Farm Equipment, 

Brillion, WI) into a prepared seedbed and irrigated immediately. The BFT cultivar was 

‘Norcen’ (Norfarm Seeds Inc., Bemidji, MN) coated with OMRI-certified Apex™ Green 

(Summit Seed Coatings LLC, Boise, ID) containing Nitragin K rhizobium inoculant 

(Novozymes BioAg Inc., Brookfield, WI) specific for BFT and planted at a rate of 25 kg 

pure live seed (PLS) per ha, including 3 kg/ha hard seed. Pasture establishment details are 

reported elsewhere (Hunt et al., 2014c). The MGP was of previously-established grass 

pasture containing mixtures of perennial ryegrass, white clover, orchardgrass (Dactylis 

glomerata L.), tall fescue [Schedonorus arundinaceus (Schreb.) Dumort.], and 

quackgrass [Elymus repens (L.) Gould] (Hunt et al., 2014c). Both pastures were irrigated 

simultaneously by a lateral roll sprinkler system. No fertilizer was used on the pastures 

per organic dairy requirements. Permanent fences surrounded the treatment pastures, and 

temporary electric fences were used to separate weekly pasture allocations and 12-h 

allocations (paddocks). First grazing commenced June 20, 2012 with approximately 

6,000 kg/ha BFT DM or 4,800 kg/ha grass DM offered to the cows. In 2013, grazing was 

begun earlier to collect data for spring growth not available the first year, and 

consequently grazing began May 14, 2013 with 6,750 kg/ha BFT DM or 5,100 kg/ha  

mixed grasses offered to cows. Plastic water troughs and salt blocks were moved weekly 

into the grazing area to allow ad libitum access to water and salt. Cows were moved to a 
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fresh paddock after every milking, and following grazing, pastures were irrigated within 

3 d and allowed to rest for approximately 6 wk. Then, cows returned to graze those 

pastures. Paddock area was held constant throughout the study, with no alterations made 

for pasture biomass changes: area was planned so that biomass of pasture at lowest 

growth stage would still provide 3 × required pasture DMI for 9 cows, based on 35 kg 

FCM production and estimated energy content of forage from previous studies (Williams, 

et al., 2011). 

Cows were individually fed 2.27 kg of supplement [95% ground barley grain 

(11.2 % CP; 18.2 % NDF, 56.4 % starch, DM basis) and 5% organic dairy mineral which 

provided 1 % calcium, 0.025% phosphorus, 0.007% sodium, 0.0035% magnesium, and 

(/kg of DM): 47 mg of Zn, 9.6 mg of Cu, 0.16 mg of Se, 181 IU of vitamin A, 300 IU of 

vitamin D, and 50 IU of vitamin E using organically approved ingredients) twice daily 

following each a.m. and p.m. milking while in headlocks. Refusal of barley grain for each 

cow was recorded for 2 d measured simultaneously with the milk sampling week.  

Climate Data  

Average monthly minimum and maximum temperatures, and total monthly 

precipitation and evapotranspiration were calculated from data collected by the nearest 

weather station (Lewiston, UT). Data were provided by the Utah State University Climate 

Center, Climate Database Server, which gives daily evapotranspiration estimated by the 

ASCE-standardized Penman-Monteith method (ASCE-EWRI, 2005). Fifty-year averages 

were calculated from data gathered by the same weather station, provided by Western 

Regional Climate Center reports of National Climatic Data Center 1945-2008 monthly 

mean temperatures. Fig. 4.1 shows monthly temperature (a), precipitation and 
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evapotranspiration data (b) for 2012 and 2013 as well as mean data for 1945-2008 at this 

weather station. 

Chemical Analysis of Forage and Supplement 

To determine DM of the pastures, pre- and post-grazing pasture herbage samples 

were cut to the approximate grazing height (approx. 5 cm above soil level), and divided 

into two subsamples. One set of samples were weighed fresh, dried in an oven at 65°C 

for 48 h, and reweighed to ascertain DM. To determine the chemical composition of the 

pastures, a second subsample of approximately 100 to 200 g was frozen at -20°C. This 

subsample was later freeze-dried and ground to pass a 1 mm screen in preparation for 

analysis of nutrient and CT composition. Analytical DM content of samples was used to 

calculate intake and nutrient composition of the herbage and was determined by oven 

drying at 105C overnight; OM was determined by ashing in a 550C oven for 5 h 

(AOAC, 2000; method 942.05). Samples of the concentrate were collected each sample 

week, composited by grazing season, and analyzed as above for DM and as described 

below for nutrient content.  

Forage and supplement CP concentration was determined by automated N dry 

combustion (Flash 2000 Automatic Elemental Analyzer, ThermoFischer Scientific, The 

Netherlands; AOAC, 2000; method 968.06). Herbage concentration of NDF and ADF 

were determined sequentially using an ANKOM200/220 Fiber Analyzer (Ankom 

Technology Corp., Macedon, NY) according to the methodology supplied by the 

company, which is based on the methods described by Van Soest et al. (1991). 

Pretreatment with heat-stable α-amylase (Type XI-A from Bacillus subtilis; Sigma-

Aldrich Corp., St Louis, MO) was used in the NDF analysis. Sodium sulfite was used in 



112 

the analysis and NDF was expressed inclusive of residual ash. Ether extract was 

measured using a fat analyzer (XT20, ANKOM Technology; AOAC, 2000; method 

2003.05). 

The CT concentration of the forages for each sample week was determined by direct 

analysis of plant material extracted using the iron-butanol-HCl-acetone procedure 

(Grabber et al., 2013). Three samples of freeze-dried, ground material from BFT and 

MGP pasture samples collected each sample week were analyzed in triplicate for CT 

concentration. A standard curve was created from purified L. corniculatus tannins. The 

resulting tannin extracts and standard curves were analyzed colorimetrically using a 

BioMate3 spectrophotometer (ThermoScientific, Rochester, NY) at 550 nM absorbance. 

Milk Production Measurements 

Milk yield was measured for all experimental cows in the a.m. and p.m. for 4 

consecutive milkings every 2 wk with a calibrated portable milk meter (Waikato Milking 

Systems NZ Ltd, Hamilton, New Zealand). Individual milk samples (60 mL per milking) 

were preserved with Broad Spectrum Microtabs II (D & F Control Systems Inc., San 

Ramon, CA) and stored at 4°C until analysis by the Rocky Mountain DHIA Laboratory 

(Nibley, UT) for fat and true protein analysis using mid-infrared wave-band (2 to 15 µm) 

procedures by an infrared instrument (Bentley 2000; Bentley Instruments, Chaska, MN) 

calibrated weekly using raw milk standards provided by Eastern Laboratory Services 

(Fairlawn, OH). Milk urea N was analyzed using the Berthelot enzymatic procedure on a 

ChemSpec 150 Analyzer (Bentley Instruments, Chaska, MN). Daily milk composition 

was calculated from the weighted a.m. and p.m. observations. Yields of milk fat and true 

protein were calculated by multiplying milk yield from the respective day by fat and true 
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protein concentrations, respectively, for each individual cow. Milk yield, components 

yield, and concentrations were averaged for each day for statistical analysis. In this study, 

we used ECM to compare solids content of milk because true milk protein was the 

component of the greatest interest, calculated using the equation: [(0.327 × milk yield 

(kg) + (12.95 × fat yield (kg)] + (7.65 × true protein yield (kg)) (DHIA, 2013). To 

convert milk true protein (TP) to milk N, a conversion factor of 6.38 was used (DePeters 

and Cant, 1992).  

Sampling and Analysis of Rumen Fluid 

Ruminal fluid was sampled from individual cows 2 h after the a.m. feeding of grain 

supplement following milking on week 2 and 6 each year of experiment using an orally 

administered Geishauser probe, a solid, tube-like probe with rows of small holes on the 

end connected to flexible poly tubing (Geishauser, 1993). These sampling weeks were 

selected to reflect show sufficient change in rumen fluid over time, but minimize animal 

handling. The first 100 mL of ruminal fluid was discharged to avoid contamination from 

saliva, and then 300 mL was collected for analysis. The pH of the ruminal fluid was 

measured within 5 min of collecting the samples using a portable pH meter (Oakton pH 

6; Oakton Instruments, Vernon Hills, IL). Fluid was then strained through a polyester 

screen (pore size 355 μm; B & S H Thompson, Ville Mont-Royal, QC, Canada). Five mL 

of the filtered ruminal fluid was added to 1 mL of 1% sulfuric acid, and samples were 

frozen at -20 C for later NH3-N determination. Concentration of NH3-N in the ruminal 

contents was determined as described by Rhine et al., (1998). Another 5 mL of the 

filtered ruminal fluid was added to 1 mL of 25% of meta-phosphoric acid, and the 

samples were frozen at -20 C for later VFA determination. The VFA were quantified 
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using gas chromatography (Hewlett-Packard model 6890 series II) with a capillary 

column (30 m, 0.32 mm i.d., 1-μm phase thickness, Zebron ZB-FAAP, Phenomenex, 

Torrance, CA), and flame-ionization detection. Crotonic acid was used as an internal 

standard. The oven temperature was 170°C held for 4 min, then increased by 5°C/min to 

185°C, and then by 3°C/min to 220°C, and held at this temperature for 1 min. The 

injector temperature was 225°C, the detector temperature was 250°C, and the carrier gas 

was helium. 

Statistical Analysis and Calculations 

Composition data from analysis of the 2 pastures were analyzed with GLMMIX in 

SAS (SAS Institute, 2013-2014) using a model that included sample week and treatment 

(pasture source). Animal production data were analyzed as a randomized block design 

using the PROC MIXED of SAS (SAS Institute, 2013-2014). A single mean observation 

was computed for each cow for each sample week (n = 9). Treatment means were 

determined using data from individual measurements collected from animal samples on 

weeks 2, 4, 6, and 8 for milk yields and components and weeks 2 and 6 for rumen 

fermentation parameters. Covariate analysis was included in milk yield and composition 

analysis for 2012 due to an outlier cow in one treatment. No effect of treatment (pasture 

forage source) was observed for data collected during the adaptation (week 0); hence, 

week 0 was excluded from the statistical analysis. Due to the different grazing start times 

for the 2 years, the effect of forage was found to be different for each year, so each year 

was reported separately. For all statistical analyses, significance was declared at P ≤ 0.05 

and trends at 0.05 < P ≤ 0.10.  
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RESULTS AND DISCUSSION 

 Climate Data 

Temperature, precipitation, and evapotranspiration in 2012 -2013 are reported as 

monthly means in Figure 4.1. Average monthly maximum temperature in 2012 were 

elevated compared with that of the 50-yr average (A), and evapotranspiration (B) for the 

early spring months in 2012 was increased compared to 2013. This can indicate more 

heat units to increase rate of growth of pasture forage. The average monthly precipitation 

in 2012 for the spring and early summer months was much reduced compared with that 

of the 50-yr average. This reduction in precipitation likely increased forage maturity and 

nutrient concentrations of forages through the early phase of the season prior to grazing. 

In 2013, precipitation was similar to the 50-yr average for the spring months, which 

supported growth well. Evapotranspiration was not as great in 2013 as in 2012. Reduced 

evapotranspiration in wet years or increased evapotranspiration in dry years can influence 

plant growth (Lynk et al., 1990; Litherland et al., 2002; Machado et al., 2007). Although 

the pastures were under irrigation during the sample weeks, irrigation only followed the 

cows as they grazed. Therefore, paddocks could have been stressed by weather 

conditions, which may have affected plant rate of maturity. Overall climate conditions 

indicate that forages in 2012 could have grown faster and matured at a faster rate, 

influencing CP and NDF concentrations. 

Characteristics of Experimental Pasture Forages 

Table 4.1 reports the nutrient composition of the pastures grazed during the 

experiment in 2012. Forage DM was greater for MGP than BFTP. Concentration of CP 

was expected to be greater for BFTP than MGP; however, during the first year the 



116 

seasonal average for the 2 pasture forages was similar, while at wk 6 and 8, CP 

concentration of the BFTP was less than the MGP. Concentration of NDF was much 

reduced for BFTP compared with MGP throughout the grazing season. Non-fiber 

carbohydrate concentration of pasture forages was consistently greater for BFTP 

compared with MGP with 10 unit increases on average for the BFTP. Concentration of 

CT was greater for BFTP throughout the grazing season in 2012, with two-fold greater 

concentration for seasonal average in the BFTP than the MGP.  

In 2013, pre-grazed forage DM concentration for MGP generally exceeded that of 

BFTP for each sampling week and over the season (Table 4.2). Concentration of CP for 

the BFTP was greater than that of the MGP, exceeding it by 3 percentage units for the 

seasonal average. Concentration of NDF for MGP showed a 20 percentage unit increase 

over BFTP, with each week consistently greater for MGP. Concentration of NFC was 

also greater for BFTP compared with the MGP throughout the grazing season. 

Concentration of CT was greater for BFTP than MGP, and it increased gradually as the 

grazing season progressed. 

When comparing the two years, CP concentration for BFTP was greater in 2013 than 

in 2012, but it was similar in the 2 seasons for MGP. In addition, NFC concentration was 

greater in 2013 compared to 2012 regardless of type of pastures. Increased 

evapotranspiration and increased temperature recorded for April and May of 2012 

(Figure 4.1) led to increased heat units sufficient to promote an increased rate of maturity 

for the forages. By the time pastures were grazed for the study, increased NDF, decreased 

CP, and decreased NFC in both forages compared to 2013 were noted.  
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In a grazing study comparing spring-growth BFTP with ryegrass and clover, Jacobs 

and Woodward (2010) reported BFTP nutrients that are similar to our results; seasonal 

average DM was similar (17.9%), though CP for BFTP (22.4%) was greater in that study 

than our first year average for BFTP (15.6%), but similar to our second year average. 

Concentration of NDF in BFTP averaged 32.4% DM in that short-term study (Jacobs and 

Woodward, 2010), which was similar to our first year average, but was 6 percentage units 

greater than our second year average concentration of NDF. Woodward et al. (1999) 

reported BFTP with greater CP (25.6% DM), less ADF and NDF (22.9 and 30.4%, 

respectively), and greater NFC concentrations compared with high-quality ryegrass, with 

BFTP nutritive concentrations comparable to those in our study. Hymes-Fecht et al. 

(2013) reported 34.2% NFC as an average for the BFT silage used in their study, and the 

value was greater than that observed in 2012 of our study, but less than that found in 

2013. Woodward et al. (2009) reported 22.3% NFC in a 45% fresh BFT diet and 18.2% 

NFC in a 76% ryegrass and 14% white clover diet. The concentration of NDF has the 

greatest effect on NFC concentration; as NDF concentration increases with plant 

maturity, the NFC concentration decreases (Fulkerson et al., 2007). A study of pasture 

grown in the same region as our study (MacAdam et al., 2011) reported low tannin 

variety Norcen BFTP to have similar CP (22.3% DM), but greater NDF and ADF 

concentrations (45 and 36% DM, respectively) compared with our findings, which 

suggests impacts of climate conditions on plant growth and development varies by year, 

climate, and region. 

Most of the differences between weeks the first year was attributed to greater 

maturity and climatic effects on the newly seeded pasture, as it required time to mature 
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before grazing commenced, resulting in over-matured forages grazed during the first 

rotation. Forages generally decline in nutritive value with increasing maturity (Van Soest 

et al., 1978) which can also affect intake. As NDF increases in forages, voluntary intake 

decreases, as longer rumen retention time restricts rumen volume to allow more forage to 

be consumed (Allen, 2000). As NDF increases with maturity in both legumes and 

grasses, CP decreases dramatically as grasses mature (Kilcher, 1981) but CP in legumes 

decreases only slightly (Coblentz and Grabber, 2013). Pasture species nutrient content 

(protein, carbohydrates including fiber, minerals and vitamins) and metabolizable energy 

(ME) density changes in relation to season (Fulkerson et al., 1998; Smith et al., 1998; 

Stockdale, 1999; Entz et al., 2002), stage of growth (Kilcher, 1981; Reeves et al., 1996; 

Ayres et al., 1998; Fulkerson et al., 2007), soil fertility or fertilizer application rate 

(particularly N; Reeves et al., 1996), and soil moisture status (Entz et al., 2002). 

 Since our forage was sampled over an 8 week period for each year, covering more 

than one grazing rotation, forage nutrient concentration was influenced by and varied 

according to what part of the growth phase (i.e., vegetative, flowering, mature) the 

pasture was in when grazed. Similarly, Cassida et al. (2000) showed that maturity and 

climate affected BFT; concentrations of NDF increased from 250 to 380 g kg−1, ADF 

increased from 180 to 320 g kg−1 in BFT, CP decreased from 280 to 180 g kg−1and in situ 

dry matter disappearance decreased from 860 to 730 g kg−1for spring cuttings as forage 

matured over 22 days. Undegradable intake protein increased from 12 to 22 g kg−1with 

maturity for BFT species for spring growth in that study (Cassida et al., 2000). 

Birdsfoot trefoil pasture seemed to mature more slowly than MGP in both seasons 

and concentration of NDF was less compared to the MGP in the same time period. This 
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could indicate increased digestibility of BFTP compared to MGP. Initiation of digestion 

of fiber by rumen microbes occurs in the cell lumen, so a highly digestible layer in the 

cells would enhance microbial colonization of fiber and increase digestion of NDF. More 

recently, Hunt et al. (2014b) reported that lignification of stems and leaves of BFT 

compared with alfalfa was different as the stem matured and elongated, and these 

potential cell wall differences could increase digestion rates of NDF in the BFT.  

Milk Production, Yield and Components  

Milk yield was greater (P<0.05) for cows consuming BFTP compared to MGP for 

week 4 for the first year (Figure 4.2). However, for the second year milk yield for BFTP 

cows was greater by an average of 4.2 kg/d over the study period. Increased CP, NFC and 

decreased NDF concentrations for the BFT forage due to spring growth and vegetative 

stage of production for the forage was likely a contributor to improved milk yield for year 

2. 

Table 4.3 shows the milk production and composition for grazed cows by sample 

week for 2012. Milk yield was greater for BFTP cows only for weeks 4 and 8, which 

contributed to a season increase of 1.5 kg/d for BFTP cows compared to MGP cows. 

Energy-corrected milk was greater for BFTP cows from the 4th sample week to the end of 

the season, due to greater milk yield or protein yield, depending on the week. There were 

no differences in fat concentration during the first year and milk true protein 

concentration was different only for week 4 (P<0.05) due to treatment. Milk urea N 

varied for each forage by sample week over the season for year 1, but the overall season 

averages were similar for both pasture treatments. 
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For the second year (Table 4.4), week of study also influenced milk yield, with yield 

decreasing for MGP cows as the season continued, but increasing week 4 and then 

declining for BFTP cows, reflecting the increase and then decrease in nutrient content of 

the forage. Yield of ECM also was greater (P<0.05) for BFTP -fed cows compared to the 

MGP cows for most weeks the second year. Milk yield for weeks 4, 6 and 8 for the 

second year was greater by an average of 5.1 kg/d for the BFTP cows compared to MGP 

cows. Energy- corrected milk was greater for MGP cows for week 2, but decreased for 

week 6 and 8 compared to BFTP cows which was influenced by greater fat concentration 

for the MGP cows, but greater yield for the BFTP cows. Fat concentration was greater for 

MGP cows for most weeks compared to BFTP cows, while protein concentration only 

differed by week and was not influenced by forage source. For year 2, MUN was greater 

for the BFTP cows compared to the MGP cows by an average of 4 mg/100 mL. 

Milk yield and ECM were greater for both treatments the second year compared to 

the first year, but BFTP cows consistently increased in milk production over the MGP 

cows both years and nearly every week. However, for year 1 BFTP cows had greater 

milkfat, where year 2, MGP cows had greater milkfat compared to BFTP cows. Milk true 

protein concentration followed the same pattern as milkfat for year 1. In contrast, year 2 

milk protein concentration was generally the same for both treatments. Because of these 

differences, yields of protein and fat were varied between treatments for both years, with 

protein yield higher for BFTP cows than MGP cows for both years. 

Woodward et al. (1999) report greater MY of BFTP-fed cows (17.23 vs. 12.07 

kg/cow/d for BFTP and ryegrass pasture, respectively), although cows in that study did 

not receive supplementation. Three other studies by Woodward et al., where BFTP was 
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fed with or without polyethylene glycol (PEG; Woodward et al., 1999,2000, and 2009) 

all showed at least 5 kg/d greater milk production in BFTP cows compared to 

BFTP+PEG, ryegrass and ryegrass + PEG. The addition of PEG inactivated the binding 

activity of forage tannins in these studies, with the intent that CT activity would be the 

only dietary difference in the respective forage treatments, suggesting that diet CT 

increased milk yield. The authors also attributed greater milk yield in part to the 

improved pasture quality and increased DMI of cows consuming BFT (Woodward et al., 

1999). The CT concentration of BFTP in the current study (average of 1.09% of DM for 

both seasons) was less than that in both studies by Woodward (2.7% and 1.9%, 1999 and 

2000, respectively), which implies that other differences such as enhanced NDF 

digestion, decreased NDF and increased NFC in the legume forage and not solely CT 

concentration, likely played a role in increased milk production in our study. 

Woodward et al. (1999) reported increased milk solids for BFTP compared to ryegrass 

(1.28 kg vs. 0.90 for BFTP and ryegrass, respectively) though the contribution from fat or 

protein was not differentiated. In another study, Woodward et al. (2000) reported 

increased milk protein in BFTP cows, but no difference in milkfat or lactose. Similar 

results were found in milk of cows fed BFT-silage-containing diets (Hymes-Fecht et al., 

2013). That study also showed greater milk true protein concentration and yield in cows 

fed BFT silage compared to alfalfa- and red-clover silage fed cows. In contrast, Dschaak 

et al. (2011) supplemented TMR diets with 3% DM CT extract from quebracho and saw 

no increases in milk yield due to tannin supplementation, and milk composition was not 

different. The response in milk production in our study is likely due to increased nutrient 

intake of BFTP from the increased energy value of increased forage NFC (averaging 10 
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units increase) and decreased NDF concentration (15% reduction) of BFTP compared to 

the MGP, and possibly the increase of condensed tannins in BFTP (Woodward et al., 

2013). Increased forage nutrient availability most likely supported greater milk and 

protein yield in the BFTP-grazed cows. Though forage protein was usually elevated in 

BFTP, it is important to note that ruminants will not improve performance in response to 

additional absorbed CP if total amino acid supply is not limiting performance. For 

example, Waghorn (2008) noted that for ruminants fed a fibrous diet (e.g. over 500 g/kg 

dietary DM), productive performance is first limited by diet energy concentration. The 

yield of VFA will be low when stemmy, mature, fibrous material requires extensive 

chewing before rumen microbes can attach for fermentation, and addition of CT to the 

diet may inhibit some fiber-degrading bacteria (Waghorn, 2008). In these cases, increases 

in AA absorption will only contribute to the energy balance, rather than protein synthesis. 

During the first year, sample weeks with the least MUN also coincided with the 

greatest concentration of CT in BFTP over the MGP (average of 1.21 CT compared to 

0.45 % of DM for BFTP and MGP, respectively), which may have contributed to an 

increase in milk protein. Dschaak et al. (2011) detected decreased concentration of MUN 

by 16.2% in cows supplemented with condensed tannin extract (CTE). Milk urea N 

decreased by 7.2% in cows supplemented with CTE at 1.8% DM, but not at lower 

concentrations of 0.45 to 0.9% DM (Aguerre et al., 2010). Likewise, Benchaar et al. 

(2008) observed no effects of CTE supplemented at 0.64% of DM on MUN. It seems at 

least 1% of CT in diet DM must be present to see effects on MUN; however, in year 2 

when the CT concentration of BFTP was consistently greater for BFTP than MGP, MUN 

excretion was also greater for BFTP cows. 
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Though our study showed no difference in MUN concentration between treatments 

the first year, milk protein secretion was greater that year for cows grazing BFTP, 

possibly indicating an increase in N efficiency. In the second year, cows grazing early 

spring growth of the forages led to increased intake protein, and less CT present in the 

grass forage, though BFTP had slightly greater CT concentration compared to both the 

year 1 BFTP and MGP both years. Jonker et al. (1998) indicated that MUN is indirectly 

affected by efficiency of ruminal N fermentation and carbohydrate digestibility, through 

an increase in milk N secretion, a decrease in N intake, or an increase in fecal N. Diet 

energy availability may have been greater in the BFTP in the first year compared to the 

MGP and rumen ammonia was probably utilized for rumen microbial crude protein 

production rather than diffused to the rumen wall and contributing to MUN. Though the 

CT content for BFTP was greater for most weeks in year 2, excessive protein degradation 

could have exceeded CT-binding capacity for protein, which could explain the increased 

MUN concentrations for BFTP cows. The relationship of total available protein in the 

rumen to CT concentration and complexing availability is still not completely 

understood, and requires more research. Broderick (1995) reported that MUN more 

clearly reflected dietary CP intake than did ruminal ammonia concentration. In our study 

it is evident that forming CT-protein complexes decreased protein degradation and NH3-

N production in the rumen only for weeks with forage CT concentration exceeding 1% 

and CP below 18% DM. 

Rumen Fermentation Characteristics  

Rumen pH was affected by pasture species (Table 4.5) for both sample weeks of year 

2012; BFTP pH was 0.8 units below the treatment average for the first year. Total VFA 
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was 20 mM less for the BFTP compared to the MGP for both sample weeks of year 1. 

None of the dietary treatments nor sample weeks influenced proportions of acetate or 

propionate, though butyrate was increased (P<0.05) for the MGP treatments for week 2, 

contributing to a seasonal increase in butyrate for grass-fed cows. Ratio of acetate to 

propionate (A: P) was not different between treatments or weeks the first year. 

For year 2013, pH was not different between weeks, though BFTP was 0.20 units 

greater compared to MGP (P<0.05) for the season average. Total VFA was 20 mM 

greater for MGP cows for both weeks of year 2. No differences in acetate or propionate 

proportions were noted for year 2, though butyrate was increased for MGP cows for week 

2. Ratio of acetate to propionate was not different, though rumen ammonia was greater 

for both sample weeks for BFTP cows. 

When comparing both years, rumen pH was greater for both treatments the second 

year compared to the first year. The largest difference in rumen pH was 0.21 units 

between MGP and BFTP in week 6 of the second year. The milkfat the first season was 

less for both treatments compared to the second season, which may have been related to 

the reduced rumen pH effect of the forages. Peyraud (1993) reported that ruminal pH 

rapidly decreases as intake increases for fresh grass, though increased intake of white 

clover (WC) showed no effect on pH. Average rumen pH for grasses in that study were 

6.6 and 5.8 for 15 kg and 20 kg DM intake, respectively. Average rumen pH for WC was 

6.5 for both levels of intake, and the authors attributed lower sugar content and greater 

CP content of WC to increase buffering efficiency in the rumen. The increased CP 

concentration of BFTP could have been attributed to increased buffer capacity in our 

study the second year, when BFTP was consistently greater in CP. Total VFA was greater 
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both years for MGP compared to BFTP cows. Dschaak et al. (2011) reported that diets 

with supplementation of 2.2 % DM CTE decreased total VFA concentration, which 

corresponded to the decreased DMI in that study. In contrast, Waghorn and Shelton 

(1997) reported that, in sheep fed a 37% fresh BFT: 63 % ryegrass/clover pasture diet 

containing 1 % CT, there were no differences in VFA concentration (100 mmol/L) 

compared to the 100% ryegrass/clover pasture and the PEG-drenched, BFT-fed groups, 

suggesting that CT did not affect VFA production. Beauchemin et al., (2007) reported 

that increasing supplementation of quebracho CTE (up to 2% of DMI) tended (P = 0.08) 

to decrease total VFA concentration by 8.4 %, decreased acetate molar proportion by 0.8 

mol/ 100mol and A: P ratio by 0.19 units. Waghorn et al. (1987, 1994) noted that CT in 

temperate forages can slow rates of digestion in the rumen, so the benefits to animal 

performance could represent a higher efficiency of feed utilization, associated with 

decreased dry matter intake. The reduction in total VFA in our study for BFTP is difficult 

to explain, since rudimentary DMI measurements suggested increased DMI for BFTP- 

grazed cows (data not published), and milk production was increased. It is possible the 

CT could have reduced fiber digestion through interactions with microbial digestion 

enzymes, or toxic effects on specific cellulolytic bacteria, which could have reduced total 

VFA in BFTP, but these factors are difficult to measure in vivo, and were not addressed 

in this study. 

In this study, increased rumen concentration of acetate was generally influenced by 

dietary fiber concentration that increased as the pastures matured, and was greater in 

MGP cows due to elevated forage NDF. Increased NDF concentration of MGP could 

have also contributed to the increase in butyrate, and likely influenced A:P ratio as the 
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season progressed. Elevated rumen pH and A:P ratio during year 2 compared to year 1 

for both treatments could also have been influenced by the forage to grain ratio of the 

cows’ diet, as we recorded decreased intake of grain supplement in year 2 (data not 

shown) compared to year 1. 

In our study, we did not see a difference in propionate due to treatment (Table 4.5), 

though BFTP consistently had elevated NFC. In contrast, Noviandi et al. (2014) reported 

in a continuous culture experiment that propionate increased (P=0.03) by 10.2 % due to 

75% legume proportion in the diet and BFTP content (P< 0.01), which they attributed to 

increased NFC concentration from the BFTP.  

Rumen NH3–N ranged between 4.8 and 13.92 mg/100 mL for both years. We 

expected rumen ammonia concentration to be increased for both treatments, based on in 

vitro results reported previously in our lab (averaging 14.5 mg/100mL for grass 

treatments and 20.2 mg/100mL for BFT-dominant treatments; Noviandi et al., 2014) and 

especially for weeks when pasture was increased in protein content in the early part of the 

grazing season. When grazing non-tannin containing legumes, increased legume 

proportion in the diet of grazing cows increases protein content in the rumen which leads 

to the inefficient utilization of NH3–N for microbial protein synthesis. It is believed that 

energy is the most limiting factor in microbial growth in these cases (Bach et al., 2005), 

and thus, increasing NFC as a proportion of carbohydrates typically has positive effects 

by providing carbohydrate substrates for microbial protein synthesis. However, Lykos et 

al. (1997) found that inclusion of NFC in the range of 35 to 42% DM was needed to 

increase energy density in the diets. In our experiment, the NFC concentrations of MGP 

and BFTP were between 14 and 39% DM, and therefore, for most weeks during the study 
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the NFC concentrations were less than that thought necessary to improve NH3–N 

utilization. Hristov et al. (2005) suggested that increased concentrations of NFC improve 

the ability of ruminal microbes to capture and utilize NH3–N for protein synthesis. In the 

present study, NH3–N concentrations in MGP-grazed cows remained around the 

minimum indicated for optimizing microbial synthesis (5 mg/10 mL; Satter and Slyter, 

1974), but this did not alter milk protein concentration. Cows grazing BFTP had greater 

ruminal NH3-N year 2 compared to the grass-grazed cows that year; however, increased 

MUN secretion by these same cows (13.4 mg/100 mL on average; P < 0.01; Table 4.4) 

could indicate reduced N utilization efficiency, despite increased forage CT concentration 

at this same time. 

Most studies of BFT pasture source show that the net effect of dietary CT is a 

reduction in ammonia released from rumen protein digestion and increased flow of plant 

protein to the intestine for absorption with an increased concentration of N in feces and 

reduced urinary N output (Waghorn, 2008; Woodward et al., 2009; Patra and Saxena, 

2011). Though CT concentrations of BFTP in this study were less than other BFTP 

reported in New Zealand studies of BFTP (2.7 %; Woodward et al., 2009, 2011) and 

those reported for our region (3.8% DM; MacAdam et al., 2011), some effects on rumen 

NH3–N were present but appear to be influenced by forage CP concentration. Since we 

did not see reduction of ruminal NH3–N or MUN, our low CT concentration did not have 

as great an impact on N as some studies have reported. While inclusion of forages with 

CT in animal diets may not be profitable for temperate agriculture at the present time 

(Waghorn and Clark, 2006), changes in ruminant diets may be brought about by 

consumer demands and legislation. Were this to be the case, the value of CT for reducing 
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environmental N waste brought about by excess use of urea for fertilizer, or excessive N 

concentration in high-quality legume and grass pastures and improved animal health 

when forages containing CT are fed, will be apparent if chemical nitrogen fertilizer is 

taxed and drug use is further limited (Waghorn, 2008). Alternative, natural sources of 

rumen modifiers that improve efficiency of nutrient use in dairy cows to reduce waste 

may be more desirable than other inputs for animal production, and offer a strong 

incentive to maintain CT research. 

CONCLUSIONS 

This study quantified pasture nutrients and effects of forage maturity for 2 types of 

pasture over 8 sample weeks for 2 grazing seasons. Lactating cows grazing BFT pasture 

as a sole forage source in grazing commercial dairy farms improved milk yield an 

average of 18% over traditional grass pasture. Response in milk component yield varied, 

depending on the stage of forage maturity at grazing and growing conditions that affected 

pasture quality. Lactating cows grazing birdsfoot trefoil had greater season average for 

protein yield, reduced ruminal NH3–N for some weeks, as well as reduction in MUN in 

some but not all sample weeks. We found that differences in MUN and ruminal NH3–N 

concentrations between the cows grazing different forage sources did not correlate with 

CT concentrations. We conclude that CT contribute to increased milk production N 

efficiency only when CT concentrations in the forage were greater than 1% DM. 

Advantages of reduced NDF and increased NFC content of the BFTP likely contributed 

to improvements in milk production detected in this study more so than the tannin 

concentration contribution to improved milk production. If BFT pasture were to be 

adopted on a system-wide level, management of the pasture forage maturity would be 
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critical in order to provide the best quality and highest concentration of tannins in order 

to increase sustainability. More research is needed to determine long-term, year-to-year 

variations in the forage nutrients and their effects on milk production and overall 

efficiency of nutrient utilization, with the use of increased tannin-concentration varieties 

of BFT to be considered. 
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Table 4.1. Nutrient concentration of mixed grass pasture or birdsfoot trefoil pasture in 

2012 

Week and 

treatment1 

Pasture forage nutrient, % DM 

DM, % CP NDF ADF EE2 NFC3 CT4 

Wk 2        

  MGP 24.6a 11.2b 45.2a 26.3b 2.1 15.2b 0.45b 

  BFTP 16.8b 16.6a 31.7b 24.1a 3.3 24.3a 1.58a 

  Average 20.7 13.4d 38.6e 25.2d 2.7 19.8c 1.02d 

Wk 4        

  MGP 24.2 12.7 48.6a 28.0a 2.8 7.9b 1.11b 

  BFTP 20.9 12.8 32.5b 25.4b 2.4 26.9a 1.23a 

  Average 22.6 12.7d 40.6d 26.7c 2.6 17.4d 1.17c 

Wk 6        

  MGP 21.0 19.5a 50.8a 26.8 3.0 13.5 0.57b 

  BFTP 19.7 17.9b 36.6b 27.4 2.7 15.4 0.91a 

  Average 20.4 18.7c 43.7c 27.1c 2.7 14.6d 0.74e 

Wk 8        

  MGP 30.8a 20.5a 45.3a 24.1 3.5a 16.8b 0.60b 

  BFTP 17.1b 17.8b 31.4b 23.3 1.1b 26.4a 0.98a 

  Average 24.0 19.2c 38.3d 23.7e 2.3 21.6c 0.79e 

Wk 2 to Wk 8        

  MGP 24.3f 15.8 45.7f 24.1 2.7 13.3g 0.56g 

  BFTP 19.5g 15.5 32.9g 24.8 2.5 23.3f 1.15f 

Pooled SEM 1.75 0.35 0.51 0.14 0.52 1.80 0.004 
a-bWithin a column and week, means with different superscripts are different (P < 0.05). 
c-eWithin a column, averages with different superscripts are different (P < 0.05). 
f-gWithin a column, means with different superscripts are different (P < 0.05). 
1MGP = mixed grass pasture containing perennial ryegrass, orchardgrass, and white 

clover; BFTP = birdsfoot trefoil pasture. 
2EE = ether extract. 
3NFC = nonfiber carbohydrates = 100 ‒ CP ‒ NDF ‒ EE ‒ ash.  
4CT = condensed tannins. 

  



141 

Table 4.2. Nutrient concentration of mixed grass pasture or birdsfoot trefoil pasture in 

2013 

Week and 

treatment1 

Pasture forage nutrient, % DM 

DM, % CP NDF ADF EE2 NFC3 CT4 

Wk 2        

 MGP 22.6b 20.9 41.9a 25.7a 3.8a 22.8b 0.24 

 BFTP 17.0a 21.5 26.2b 18.8b 3.2b 38.3a 0.58 

 Average 19.8de 21.1c 34.0d 22.2d 3.5c 30.6d 0.41d 

Wk 4        

 MGP 21.1b 16.5b 40.1a 21.0a 3.7 29.5b 0.21b 

 BFTP 15.5a 21.7a 20.9b 15.5b 3.6 43.4a 0.85a 

 Average 18.3d 19.1c 30.6e 18.2e 3.6c 36.4c 0.52cd 

Wk 6        

  MGP 23.1b 10.4b 44.1a 29.5a 3.9a 30.2b 0.15b 

  BFTP 19.8a 16.9a 25.1b 25.0b 3.6b 44.4a 1.14a 

  Average 21.5de 13.6d 34.6d 27.2c 3.7c 37.3c 0.64c 

Wk 8        

  MGP 28.8b 12.1b 56.5a 37.0a 2.5b 19.4b 0.20b 

  BFTP 23.5a 14.4a 31.7b 21.3b 2.9a 29.7a 1.30a 

  Average 26.2c 13.3d 44.1c 29.2c 2.7d 24.6e 0.75c 

Wk 2 to Wk 8        

  MGP 23.9f 15.0g 45.6f 28.3f 3.5f 25.5g 0.20f 

  BFTP 18.9g 18.6f 26.0g 20.1g 3.3g 39.7f 0.97g 

Pooled SEM 0.65 0.66 1.6 1.32 0.04 2.3 0.29 
a-bWithin a column and week, means with different superscripts are different (P < 0.05). 
c-eWithin a column, averages with different superscripts are different (P < 0.05). 
f-gWithin a column, means with different superscripts are different (P < 0.05). 
1MGP = mixed grass pasture containing perennial ryegrass, orchardgrass, and white 

clover; BFTP = birdsfoot trefoil pasture. 
2EE = ether extract. 
3NFC = nonfiber carbohydrates = 100 ‒ CP ‒ NDF ‒ EE ‒ ash.  
4CT = condensed tannins. 
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Table 4.3. Milk production and composition of dairy cows grazing mixed grass pasture 

or birdsfoot trefoil pasture in 2012 

Treatment1 

Yield, kg/d Milk 

composition, % 

Milk component 

yield, kg/d 

MUN, 

mg/100 

mL Milk ECM Fat Protein Fat Protein 

Wk 2        

  MGP 31.3 31.2 3.50 2.89 1.10b 0.90 12.2 

  BFTP 31.9 33.3 3.63 3.01 1.21a 0.96 10.9 

  Average 31.6c 32.3c 3.56 2.95d 1.15c 0.93c 11.6c 

Wk 4        

  MGP 24.9b 23.6b 3.68 2.89b 0.92b 0.72b 11.1a 

  BFTP 28.7a 27.3a 3.71 3.17a 1.06a 0.91a 9.2b 

  Average 26.7c 25.5d 3.69 3.03c 0.99d 0.82d 10.2d 

Wk 6        

  MGP 26.1 25.9b 3.48 2.67 0.91b 0.69b 6.3b 

  BFTP 26.8 27.5a 3.81 2.91 1.02a 1.02a 10.1a 

  Average 26.5d 26.7d 3.56 2.79e 0.97d 0.86d 8.2e 

Wk 8        

  MGP 24.3b 23.9b 3.41 2.75 0.83b 0.67b 11.8 

  BFTP 25.4a 26.2a 3.73 2.98 1.05a 0.94a 13.4 

  Average 24.8e 26.6d 3.57 2.87f 0.94d 0.81d 12.6f 

Wk 2 to Wk 8        

  MGP 26.7h 26.2h 3.52 2.80h 0.94h 0.75h 10.3 

  BFTP 28.2g 28.5g 3.71 3.02g 1.09g 0.96g 10.9 

Pooled SEM 1.47 1.19 0.01 0.07 0.004 0.031 0.58 
a-bWithin a column and week, means with different superscripts are different (P < 0.05). 
c-fWithin a column, averages with different superscripts are different (P < 0.05). 
g-hWithin a column, means with different superscripts are different (P < 0.05). 
1MGP = mixed grass pasture containing perennial ryegrass, orchardgrass, and white 

clover; BFTP = birdsfoot trefoil pasture. 

 

 

  



143 

Table 4.4. Milk production and composition of dairy cows grazing mixed grass pasture 

or birdsfoot trefoil pasture in 2013 

Treatment1 

Yield, kg/d Milk 

composition, % 

Milk component 

yield, kg/d 

MUN, 

mg/100 

mL Milk ECM Fat Protein Fat Protein 

Wk 2        

  MGP 34.7 37.3b 3.98 3.08 1.37 1.06 14.8b 

  BFTP 35.2 36.7a 3.77 2.99 1.32 1.05 16.4a 

  Average 35.0c 37.0c 3.87c 3.04d 1.35c 1.06c 15.6c 

Wk 4        

  MGP 31.4b 32.0 3.51a 3.11 1.10 0.98b 13.6 

  BFTP 36.5a 34.8 2.97b 3.11 1.09 1.14a 13.8 

  Average 33.9c 33.4d 3.25d 3.11c 1.10d 1.06c 13.7d 

Wk 6        

  MGP 28.2b 29.0b 3.72a 2.93 1.05 0.82b 6.3b 

  BFTP 34.8a 33.8a 3.25b 2.93 1.13 1.02a 12.8a 

  Average 31.5d 31.4de 3.49de 2.93e 1.09d 0.92d 9.5e 

Wk 8        

  MGP 25.0b 25.9b 3.81 2.87 0.94b 0.72b 7.9b 

  BFTP 32.9a 33.6a 3.60 2.95 1.19a 0.97a 21.0a 

  Average 28.9e 29.7e 3.71ce 2.91e 1.07d 0.84e 14.5f 

Wk 2 to Wk 8        

  MGP 29.8h 31.1h 3.76a 2.99 1.12 0.89h 10.7h 

  BFTP 34.9g 34.7g 3.40b 2.99 1.18 1.04g 15.9g 

Pooled SEM 1.15 1.14 0.024 0.04 0.004 0.033 0.33 
a-bWithin a column and week, means with different superscripts are different (P < 0.05). 
c-fWithin a column, averages with different superscripts are different (P < 0.05). 
g-hWithin a column, means with different superscripts are different (P < 0.05). 
1MGP = mixed grass pasture containing perennial ryegrass, orchardgrass, and white 

clover; BFTP = birdsfoot trefoil pasture. 
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Table 4.5. Ruminal fermentation profiles of dairy cows grazing mixed grass pasture or 

birdsfoot trefoil pasture in 2012 and 2013 

a-bWithin a column and week, means with different superscript letter are different (P < 

0.05). 
c-dWithin a column, averages with different superscript letter are different (P < 0.05). 

clover; BFTP = birdsfoot trefoil pasture. 
1MGP = mixed grass pasture containing perennial ryegrass, orchardgrass, and white 
2Total volatile fatty acid concentration is expressed as mM. 

Week and 

Treatment1 
pH 

Total 

VFA2 

Individual VFA3 

A:P NH3-N
4 A P B 

Year 2012 

Wk 2        

  MGP 6.49a 97.5a 64.8 20.2 13.1a 3.2 4.80b 

  BFTP 6.30b 77.1b 61.8 20.3 10.4b 3.2 7.10a 

  Average 6.41c 87.2 63.3 20.3 11.8 3.13 5.95d 

Wk 6        

  MGP 6.15a 106.2a 64.3 19.2 11.9 3.3 7.09 

  BFTP 5.99b 79.4b 63.5 19.5 12.0 3.4 8.22 

  Average 6.07d 92.8 63.9 19.3 11.9 3.31 7.66c 

Wk 2 to 

Wk 6 
       

  MGP 6.32a 101.9a 64.6 19.9 12.6a 3.2 5.6b 

  BFTP 6.15b 78.3b 62.6 19.8 11.2b 3.3 7.7a 

 Average 6.23 90.1 63.6 19.8 11.9 3.3 6.8 

Pooled SE 0.09 1.16 0.93 0.38 0.589 0.48 0.689 

Year 2013 

Wk 2        

  MGP 6.87b 82.5a 66.8 17.7 12.1a 3.8 6.10b 

  BFTP 7.04a 67.5b 70.1 17.4 8.3b 4.1 11.04a 

  Average 6.96 80.6 68.40 17.54 10.20 3.89 8.57 

Wk 6        

  MGP 6.80b 75.0a 69.7 16.4 11.1 4.3 4.90b 

  BFTP 7.05a 56.7b 69.4 16.7 9.5 4.2 13.92a 

  Average 6.93 75.6 69.50 16.53 10.30 4.21 9.41 

Wk 2 to 

Wk 6 
       

  MGP 6.84b 78.8a 68.23 17.0 11.6a 4.1 5.5b 

  BFTP 7.05a 62.1b 69.70 17.0 8.9b 4.2 12.5a 

 Average 6.93 70.4 69.50 17.0 10.30 4.2 8.9 

Pooled SE 0.05 1.21 0.62 0.44 0.647 0.16 0.485 
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3Molar proportion is expressed as mol/100 mol. A = acetate; P = propionate; and B = 

butyrate. 
4Ammonia-N expressed as mg/100 mL. 
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A 

 

B

 

Fig. 4.1 Average monthly minimum (min.) and maximum (max.) temperatures for 

nearest weather station (Lewiston, UT) in 2012 and 2013 with 30-year average for 

comparison (A). Total monthly precipitation (precip.) and evapotranspiration in 2012 and 

2013, and 30-yr average monthly precipitation for comparison (B). 
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** 

 

Figure 4.2. Pasture forage effect on milk yield by week of study and treatment in 2012 

and 2013. Grazing start date was June 20 and May 14 in 2012 and 2013, respectively. 

Overall season effect of treatment was P = 0.42 and P = 0.02 in 2012 and 2013, 

respectively. *Treatment means by week in 2012 differ (P < 0.05). **Treatment means by 

week in 2013 differ (P < 0.05). 
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CHAPTER 5 

BIRDSFOOT TREFOIL (LOTUS CORNICULATUS) AFFECTS IN VITRO 

RUMEN MICROBIAL ECOSYSTEM AND METHANOGENESIS IN 

CONTINUOUS CULTURE DUE TO CONDENSED TANNINS 

INTRODUCTION  

 

 

Pasture-based dairies are most often small family-owned operations with the goal of 

improving farm profitability through increased reliance on pasture as a natural, local 

forage resource. Dairy pastures in the western USA are typically composed of cool-

season grass varieties. If managed under intensive rotational stocking they may contain 

more crude protein (CP) than can be efficiently used by dairy cows (Muller and Fales, 

1998). The protein in pasture forage is highly degradable, and when consumed by 

ruminants, excess protein is quickly converted to ammonia, resulting in elevated 

excretion of nitrogenous waste by the animal. If digestible carbohydrate sources are 

insufficient, inefficient utilization of pasture nitrogen (N) in the rumen occurs, limiting 

optimal microbial protein synthesis. This increases metabolic energy cost to convert 

ruminal ammonia-N (NH3-N) to urea. Therefore, N utilization would be improved by 

matching protein and carbohydrate supply, reducing the amount of N consumed by dairy 

cows, or incorporating more dietary N into milk protein (Higgs et al., 2013). 

Birdsfoot trefoil (Lotus corniculatus L.; BFT) is persistent in the cool, dry, alkaline 

soils of the Intermountain West in USA and is a condensed-tannin (CT) containing 

legume that does not cause bloat in cattle when grazed. Two effects of CT are the 

reduction of ruminal protein degradation by soluble protein precipitation in the rumen at 
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typical ruminal pH and reduced ruminal methane (CH4) production (Min et al., 2003; 

Williams et al., 2011). Methane is produced by methanogens in the rumen during 

anaerobic fermentation of soluble and structural carbohydrates contained in forage-based 

diets (Waghorn et al., 2002; Tavendale et al., 2005). Ruminal CH4 production represents 

3 to 9% feed energy loss and contributes to greenhouse gas emissions in the environment 

(Moss et al., 2000). Reducing enteric CH4 emissions has been of great interest for 

increasing sustainability of ruminant production. Diets containing 2.6% CT from BFT 

resulted in decreased CH4 emission in dairy cattle compared to grass-based diets 

(Woodward et al., 2001), while similar reduction on CH4 production was reported in a 

continuous culture study due to the presence of CT of BFT (Williams et al., 2011). The 

inhibitory effects of CT on ruminal methanogenesis have been attributed to direct effects 

on methanogenic archaea, protozoa-associated CH4 production, or an indirect result of a 

depression of fiber digestion in the rumen (Patra et al., 2012). 

Orchardgrass has become one of the mostly widely distributed grasses in the 

Northeast and Midwest (van Santen and Sleper, 1996). However, research regarding the 

supplementation and relationships between forage quality, CH4 emissions, and rumen 

fermentation is scarce. In contrast, these factors have been studied in perennial ryegrass 

(Lolium perenne L.) more than in any other grass due to its productivity, nutritive value, 

and prevalence in major grassland regions. The popularity of orchardgrass as a forage 

option to replace perennial ryegrass for grazing dairy farms has not been supported by 

detailed studies regarding supplementation or efficiency of nutrient utilization. 

 Microbial population changes in the gut of sheep fed CT-containing diets were 

reported using a 16S PCR technique (Min et al., 2002). To date, however, little research 
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has focused on changes in microbial population diversity, particularly methanogenic 

archaeal population, in response to feeding BFT of OG pasture-based diets and additional 

effects of supplementation. Therefore, the objective of this study was to investigate 

effects of feeding BFT pasture-based diets without or with concentrate supplementation 

on ruminal fermentation with a focus on CH4 production in continuous cultures. We were 

particularly interested in methanogenic archaea in response to feeding BFT-based diets, 

effects of supplementation, and resultant CH4 production. 

MATERIALS AND METHODS 

Pasture Forages, Dietary Treatments  
and Experimental Design 
 

Orchardgrass (Dactylis glomerata L.; OG) assessed in this experiment was planted 

in a randomized complete block design with 4 replications on August 4, 2010 at the Utah 

State University Experiment Station Intermountain Irrigated Pasture Project Farm in 

Lewiston, UT, USA. Irrigation was used for establishment of the pastures and during 

production. Nitrogen fertilizer was applied to OG monocultures in 3 applications of 20 kg 

N/ha during the growing season. Plots were harvested twice (August 5 and September 17, 

2013) by cutting to a height of 8 cm with a sickle-bar harvester (Swift Machine & 

Welding LTD, Swift Current, SK, Canada) while OG was in a vegetative stage. 

Birdsfoot trefoil was planted in 2012 at the Greenville Farm (Logan, UT, USA) in a 

randomized block with 3 replications. Irrigation was applied for establishment and during 

production. No fertilizer was applied to the BFT plots. The second and third regrowth 

were harvested using a hand sickle on July 16 and September 9, 2013.  



151 

Herbage samples were frozen at −4°C and freeze-dried (FreeZone 12 L Freeze Dry 

Systems, Labconco Corp., Kansas City, MO, USA). Herbage and TMR components 

samples were ground to pass a 4.0-mm screen (Wiley Mill, Model 4; Thomas Scientific 

Co., Swedesboro, NJ, USA), while subsamples of all dietary ingredients for proximate 

analyses were ground to pass a 1.0-mm screen.  

Six dietary treatments were randomly applied to an 8-unit dual-flow continuous 

culture fermentor system according to a 2 (pasture forages) × 3 (supplementations) 

factorial design. Treatments were replicated three times, and the experimental unit was 

the independent run of continuous cultures (n = 3). The six diets used in this study were 

control pasture forages (OGP and BFTP) only or forage with two supplements [ground 

barley (GB), and total mixed ration (TMR)]: OG pasture and no supplement (OGP‒NS); 

OGP supplemented with GB (OGP‒GB); OGP supplemented with TMR (OG‒TMR); 

BFT pasture and no supplement (BFTP‒NS); BFT pasture supplemented with GB 

(BFTP‒GB); and BFT pasture supplemented with TMR (BFTP‒TMR). The GB and the 

TMR were supplemented at 30% DM in the corresponding diets. These levels and type of 

supplementation were chosen based on data collected from organic dairy farms currently 

using these feeding strategies for mixed grass species pastures (R. Christensen, 

unpublished data). The barley grain was supplied from a local organic dairy, dried at 

60°C for 24 h, and ground to 4 mm (Wiley Mill Model 4). The TMR diets were balanced 

for each forage so that the nutrients were consistent between the forage treatments. It was 

composed of 70% DM forage and 30% TMR consisting of 15% canola meal (for OG) or 

15% barley straw (for BFT), 20% corn silage, 25% alfalfa hay, and 40% barley grain. 

They contained 16.3, 42.9, and 25.3% CP, neutral detergent fiber (NDF), and acid 
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detergent fiber (ADF), respectively for the OGP-TMR and 16.9, 37.3, and 25.8% CP, 

NDF, and ADF, respectively for the BFTP-TMR (Table 5.1). The GB or TMR 

supplementation is typical of late grazing season diets used on commercial organic dairy 

farms in the Intermountain West, USA (i.e., Utah, Idaho, Wyoming, Montana and parts 

of Arizona and Nevada). Diets were balanced to support a Holstein cow weighing 690 kg, 

producing 27 kg milk with 3.5% milk fat and 3.1% true protein using the Cornell-Penn-

Miner System (CPM Dairy, Version 3.0).  

Continuous Culture Operation 

Whole ruminal contents were collected from 2 dry, ruminally cannulated Holstein 

cows prior to a.m. feeding (average pH of 6.9). Cows were fed a 100% oat hay diet. All 

animal care protocols were approved by the Utah State University Institutional Animal 

Care and Use Committee. Rumen fluid was collected from various locations within the 

rumen, placed into preheated insulated containers, and transported to the laboratory. In 

the lab, rumen contents were strained through a polyester screen (PeCAP, pore size 355 

μm; B & SH Thompson, Ville Mont-Royal, QC, Canada), mixed from both cows and 

then with constant stirring, the filtered ruminal inoculum (750 ml) was added to a dual-

flow continuous culture fermentor (Prism Research Glass, Inc., Research Triangle Park, 

NC, USA), which was modified in construction and operation from the design described 

by Teather and Sauer (1988). The main modifications were a reconfigured overflow 

sidearm that angled downward at approximately 45° to facilitate emptying, and a faster 

stirring rate (45 rpm) that still allowed stratification of particles into an upper mat, a 

middle liquid layer of small feed particles, and a lower layer of dense particles.  
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An anaerobic condition was maintained in the fermentors by infusion of CO2 at a 

rate of 20 ml/min. Artificial saliva prepared according to Slyter et al. (1966) was 

continuously infused into fermentors at a rate of 0.85 ml/min using a pump (Model 323, 

Watson-Marlow Inc., Wilmington, MA, USA) to maintain a fractional dilution rate of 

7.2%/h. To mimic rumen motility, cultures were continuously stirred by a central paddle 

attached to an electric motor. Each fermentor received a total of 15 g of DM/day that was 

fed in 4 equal portions at 0600, 1200, 1800 and 2400 h. 

Sample Collection  

Cultures were adapted to experimental diets by increasing the proportion of the 

treatment diet as follows: cultures received 100% of the respective forage on day 1, then 

2:1 of the experimental diet forage to experimental diet ratio on day 2, and then 1:2 on 

day 3, and on day 4 100% of the treatment diet was fed. Three d adaptation to treatment 

diet was allowed (days 4 to 7) prior to data collection, sampling, and analysis of culture 

content, which were independently performed in each run. On d 8 and 9 of each run, 

ruminal culture pH data and 2 sets of 5 ml culture fluid samples for volatile fatty acids 

(VFA) and NH3-N analysis were collected. Culture pH was measured hourly, and CH4 

samples were collected from the headspace gas of each fermentor at 0600, 0900, 1200, 

1500 and 1800 h using a 10 μl gastight syringe (Hamilton Co., Reno, NV) and analyzed 

for CH4 with a GLC (Model CP-3900, Varian, Walnut Creek, CA, USA). Daily CH4 

production (mM/day) was calculated as reported by Jenkins et al. (2003) using the 

equation: CH4 proportion in fermentor headspace (mM/ml) × CO2 gas flow through the 

fermentor headspace (20 ml/min) × 60 min × 24 h. 
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Immediately after CH4 sampling at 0800 and 1400 h, 5 ml of culture contents were 

taken, added to 1 ml of 25% meta-phosphoric acid and stored at -40°C for VFA 

determination. At the same times as VFA sample collection, another 5 ml of culture 

content was collected from each fermentor, mixed with 1% sulfuric acid, and stored 

frozen (-40C) for NH3-N analysis. 

On the final day of each run (day 9), the total volume of fermentor contents was 

collected and blended using a blender (Master Prep, EURO-PRO Operating LLC, Boston, 

MA, USA) for 1 min. The homogenate was filtered through polyester material (PeCAP, 

pore size 355 μm) and stored frozen (-40C) for microbial population assays.  

DNA Extraction from Ruminal Culture Content 

Genomic bacterial DNA was isolated from 1 ml of each unknown rumen fluid 

sample according to the method described in the QIAamp DNA Mini Kit (QIAGEN, 

Valencia, CA, USA). Extracted DNA (2 μl) was quantified using a Nanodrop ND-1000 

spectrophotometer (Nyxor Biotech, Paris, France) and run on 0.8% agarose gel with 

0.5 M tris-borate-EDTA (TBE) buffer. The samples were then stored -80C for the real-

time PCR analysis.  

Primers, PCR amplification, and Gel Analysis 

A set of PCR primers was designed and validated (Koike and Kobayashi, 2001; 

Tajima et al., 2001; Tymensen and McAllister, 2011) for specific detection of species 

listed in Table 2. Primers [50 pmol of each per reaction mixture; primers 1 to 6 

(Integrated DNA Technologies, Inc., Coralville, IA, USA; Sheffield et al., 1989; Muyzer 
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et al., 1993)] were mixed with Jump Start Red-Taq Ready Mix (Sigma-Aldrich 

Corporation, St. Louis, MO, USA) according to Reysenbach et al. (1992).  

Amplifications of PCR were performed on the PTC-200 Peltier Thermal Cycler (MJ 

Research Inc., Waltham, MA, USA) with the following program: 1) denaturation at 95C 

for 3 min; 2) subsequent 35 denaturing cycles at 95C for 30 sec; 3) various annealing 

temperatures described in Table 2 for 30 sec and extension at 72C for 1 min (Tajima et 

al., 2001). Fifteen μL aliquots were resolved in a 7.5% polyacrylamide gel (37.5:1). The 

DGGE gel was run at 60°C and 82 V for 15 h using a DCode™ Universal Mutation 

Detection System (Bio-Rad Laboratories, USA). The DGGE gel was then stained with 

GelStar (Cambrex, USA), and the gel images were captured using a FluorChem Imager 

(Alpha Innotech). 

Gels were analyzed using the Quantity One software package, version 4.62 (Bio-Rad 

Laboratories, USA). After normalization, bands were defined for each sample by using 

band detection based on parameters and comparison to the standard lanes to determine 

the values of the experimental bands using those standards. Peak heights in the 

densitometric curves were used to determine the diversity indices based on the Shannon-

Weiner diversity index, calculated as H = -Σ[Piln(Pj)], where H is the diversity index 

and Pi is the importance probability of the bands in a lane (Pj = nj/n where ni is the height 

of an individual peak and n is the sum of all peak heights in the densitometric curves). 

Chemical Analysis 

Analytical DM concentration of forages and diet samples was determined by oven 

drying at 105°C for 3 h (AOAC, 2000; method 930.15), and organic matter (OM) was 

determined by ashing at 550ºC for 5 h (AOAC, 2000; method 942.05). Concentration of 
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N was determined using an organic elemental analyzer (Flash 2000; CE Elantech Inc., 

Lakewood, NJ, USA; AOAC, 2000; method 990.03). Concentrations of NDF and ADF 

were sequentially determined using an ANKOM200/220 Fiber Analyzer (ANKOM 

Technology, Macedon, NY, USA) according to the methodology supplied by the 

company, which is based on the methods described by Van Soest et al. (1991). Sodium 

sulfite was used in the procedure for NDF determination and pre-treated with heat stable 

amylase (Type XI-A from Bacillus subtilis; Sigma-Aldrich Corporation). Ether extract 

was measured (AOAC, 2000; method 2003.05) using a fat analyzer (XT20, ANKOM 

Technology). Total extractable CT concentration in forage samples and experimental 

diets was determined using a butanol-HCl colorimetric procedure (Terrill et al., 1992). 

Culture VFA were separated and quantified using a GLC (Model 6890 series II, 

Hewlett Packard Co., Avondale, PA, USA) with a capillary column (30 m × 0.32 mm 

i.d., 1 μm phase thickness, Zebron ZB-FAAP, Phenomenex, Torrance, CA, USA) and 

flame ionization detection. The oven temperature was held at 170°C for 4 min, increased 

to 185°C at a rate of 5°C/min, then increased by 3°C/min to 220°C and held at this 

temperature for 1 min. The injector and the detector temperatures were 225 and 250°C, 

respectively, and the carrier gas was helium (Eun and Beauchemin, 2007). Concentration 

of NH3-N was determined using colorimetric analysis as described by Rhine et al. (1998) 

using a plate reader (MRXe, Dynex Technologies, Chantilly, VA, USA).  

Statistical Analysis 

Data were analyzed using the MIXED procedure of SAS (SAS Inst., Inc., Cary, NC, 

USA) using the model described below:  
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Yijkl =  + Ri(Fj) + Pk + Sl + (PS)kl + eijkl, where Yij = individual response variable 

measured,  = overall mean, Ri(Fj) = random effect of fermentor j within independent run 

i, Pk = fixed effect of forage k (OG vs. BFT; k = 1 to 2), Sl = fixed effect of supplement l 

(NS vs. GB vs. TMR; l = 1 to 3), (PS)kl = interaction between forage k and supplement l 

and eijkl = residual error. Denominator degrees of freedom were estimated using the 

Kenward-Roger option. The same mixed model was used for variables that were repeated 

in time (culture pH and CH4), but sampling time and a repeated statement were added to 

the model.  

Significant effects were accepted when P ≤ 0.05, and trends were discussed when 0.5 

< P ≤ 0.10. When the interaction between type of forages and supplements was P ≤ 0.10, 

Bonferroni-adjusted P-values were used to assess the supplements within the type of 

forage. Results are reported as least square means. 

RESULTS  

Nutrient Composition of Diets  

Nutrient composition and CT concentration of diets are presented in Table 5.1. In 

comparison with grasses, legumes contain greater CP and less fiber concentrations, so all 

diets containing BFTP were greater in CP and less in NDF and ADF concentrations 

except for the TMR-supplemented diet, which were quite similar to OGP-TMR, as was 

intended. There was a considerable difference of non-fiber carbohydrates (NFC) 

concentration between OGP and BFTP (14.6 vs. 38.2%). With regard to the NS and GB 

diets, OGP‒NS and OGP‒GB had less CP concentrations compared with the BFTP‒NS 

and BFTP‒GB (11.5 and 11.9% vs. 20.6 and 18.3%, respectively), whereas fiber 
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concentrations of the BFTP‒GB were the least (25.6% NDF and 18.6% ADF). Ether 

extract concentration declined with supplementation in the OGP diets but were greater 

than the BFTP diets (average of 3.48 vs 2.37%, respectively). A noticeable CT 

concentration was detected only in BFTP forage (4.96% DM; Table 5.1). Consequently, 

dietary treatments containing BFTP had considerable concentrations of CT (2.70 and 

2.83% for BFTP‒GB and BFTP‒TMR, respectively). 

Culture pH, NH3-N and VFA Profiles  

Culture pH was maintained at least 6.01 across dietary treatments, and there was no 

difference among treatments in culture pH (Table 5.3). Concentration of NH3-N 

decreased when cultures were offered BFTP-based diets compared with OGP-based diets, 

while supplementing with GB or TMR did not affect NH3-N concentration regardless of 

source of pasture.  

Neither forage type nor supplementation had an effect on the concentration of total 

VFA (Table 5.3). Feeding BFTP-based diets increased molar proportion of acetate 

compared with OGP-based diets, whereas molar proportion of propionate was similar 

between OGP- and BFTP-based diets, leading to an increase in acetate-to-propionate 

ratio (A:P) due to feeding BFTP-based diets. Molar proportions of butyrate and all 

branched-chain VFA were reduced by offering BFTP-based diets compared with OGP-

based diets. Adding supplements decreased acetate proportion, but increased propionate 

proportion, regardless of forage type, resulting in a decrease in A:P. In addition, 

supplementing GB or TMR increased proportions of butyrate, valerate and isovalerate 

both in OGP- and BFTP-based diets. 
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Microbial Community Structure and CH4 Production 

Microbial population densities of F. succinogenes and R. flavefaciens decreased 

when cultures were fed BFTP-based diets compared with OGP-based diets, while R. 

albus was not affected by type of forage (Table 5.4). Adding supplements in general 

decreased the cellulolytic bacteria, but the decreases were greater in the BFTP-based 

diets compared with OGP-based diets, resulting in interactions between type of forage 

and supplementations.  

   Density of Methanobrevibacter spp. decreased in cultures fed BFTP-based diets, 

but density of Methanomicrobium spp. was not affected (Table 5.4). Adding supplements 

did not influence methanogens. Likewise, CH4 production was reduced by feeding BFTP-

based diets; however, supplementation of GB or TMR led to no effect on CH4 

production, regardless of type of forage (Fig. 1). 

DISCUSSION 

Nutrient Composition of Diets 

Birdsfoot trefoil deposits less NDF in the stem and leaf as it matures compared with 

OG (Mowat et al., 1969). Thus, BFTP consistently had less fiber concentration, despite 

the fact that forages were harvested at a comparable maturity. Although the intent of the 2 

TMR supplements was to formulate the diets with similar nutrient concentrations, NDF 

concentrations were more than 5 percentage units greater in the OGP-TMR compared 

with the BFTP-TMR. Birdsfoot trefoil contains 0.5 to 4.7% CT for various cultivars and 

growth conditions (Barry and McNabb, 1999; Grabber, 2009), and consequently in this 

study it was greater than most values reported in the literature. The concept of using CT-

containing forages in ruminant production is sound only when CT improve overall 
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ruminal fermentation without interfering with other ruminal functions. Condensed tannins 

in BFTP may have negative effects on fiber fermentation in the rumen because of a toxic 

property of CT against cellulolytic bacteria (Patra and Saxena, 2011), particularly with 

elevated concentration of CT is contained in the diet (Patra et al., 2012).  

Culture pH, NH3-N and VFA Profiles  

Because cultures were fed 100% or 70% pasture-based diets, it was expected that 

dietary treatment would not result in a negative effect on culture pH. Noviandi et al., 

(2014) reported that culture pH decreased when forages were supplemented with 30% 

corn, while it was similar between forage mixtures of grass and legume without or with 

distiller’s grain supplementation. Starch is often supplemented in pasture rations 

primarily as an energy source, because most pasture forages lack starch at an adequate 

amount to support extensive microbial biomass production (Kolver et al., 2007). 

However, increased starch fermentation can have adverse effects on rumen microbes, and 

ruminal pH is often reduced when supplemented with starch-containing concentrates. 

Calsamiglia et al. (2008) reported that the effect of ruminal pH on NDF digestibility was 

relatively small when ruminal pH exceeded 6.0, but digestibility of NDF decreased 

sharply when pH was below this threshold. Therefore, in our study, supplementing GB or 

TMR in pasture-based diets did not interfere with digestibility of fiber or apparent other 

ruminal physiological conditions. 

Ruminal NH3-N concentration decreased due to feeding BFTP-based diets and was 

not affected by the increased CP concentration in BFTP-based diets compared with OGP-

based diets (18.6 and 13.2% on average, respectively). Activity of CT was not inhibited 

despite reduced concentration of CT in BFTP diets with GB or TMR supplementation. 
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Protein-binding activity of CT in the BFT decreases ruminal NH3-N concentration in 2 

ways: 1) reducing dietary protein degradation via formation of insoluble tannin-protein 

complexes or decreasing the solubility of protein (Tanner et al., 1994; Min et al., 2000); 

and 2) inhibiting proteolytic bacteria and/or proteolytic enzymatic activity (Patra et al., 

2012). In vivo, these functions would shift an increased proportion of protein from 

ruminal degradation to digestion and absorption in the small intestine and result in 

increased N utilization efficiency. Under typical cattle feeding conditions, manipulation 

of ruminal protein degradation or increase of the efficiency of N utilization in the rumen 

is the most effective strategy to reduce N losses (Tamminga, 1996). Using data obtained 

from continuous culture studies, Bach et al., (2005) reported that as efficiency of N 

utilization increases, NH3-N accumulation in the fermentors decreases (R2 = 0.78). Thus, 

the reduction in the NH3-N concentration through CT in BFTP suggests an improvement 

in utilization of dietary N in ruminal fermentation. 

Ruminal NH3-N concentration is typically much less in defaunated animals 

compared to faunated ones (Jouany and Ushida, 1998; Santra and Karim, 2000). Some of 

these results could, on the one hand, be attributed to greater microbial synthesis, and on 

the other hand, to less bacterial recycling (Firkins et al., 1998; Koenig et al., 2000) and 

bacterial proteolysis when protozoa are missing (Onodera et al., 1977; Demeyer and Van 

Nevel, 1979). In order to assess effect of protozoa on ruminal NH3-N concentration, we 

contrasted estimated NH3-N concentration under faunated (NH3-N = 30.9 + 9.7 CP % 

DM) and defaunated condition (NH3-N = 8.4 CP % DM) using 2 separate equations 

obtained from a meta-analysis study using 75 concerned trials (Eugène et al., 2004). For 

faunated conditions, expected concentrations were 14.2, 14.6, 18.9, 23.1, 20.8, and 19.5 
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mg/100 ml, whereas under defaunated condition, 9.66, 10.0, 13.7, 17.3, 15.4, and 14.2 for 

OGP‒NS, OGP‒GB, OGP‒TMR, BFTP‒NS, BFTP‒GB, and BFTP‒TMR, respectively. 

Based on these estimates, there were sizable differences between culture NH3-N 

concentrations and estimated NH3-N concentrations under faunated conditions when 

BFTP-based diets were offered, but less differences when OGP-based diets were fed. 

This contrasting result infers that CT in BFTP may have reduced protozoal population, 

which likely contributed to decreased culture NH3-N concentration when BFTP-based 

diets were fed in the current study. Khiaosa-Ard et al. (2009) reported that a diet 

containing 7.9% CT extract from black wattle (Acasia mearnsii) decreased the total 

protozoal population relative to a control diet (1.91 vs. 7.26 × 103 cells/ml, respectively) 

in continuous cultures. Makkar et al. (1995) also reported that quebracho CT (0, 0.1, 0.2, 

and 0.4 mg/ml) linearly decreased the total protozoal population (2.75, 1.53, 1.46, and 

0.98 × 103 cells/ml, respectively).  

Due to potentially toxic effects of CT in BFTP, we expected some negative 

responses on ruminal fermentation profiles when cultures were fed BFTP-based diets in 

this study. Tannins affect ruminal fermentation by forming complexes with numerous 

types of molecules including carbohydrates, proteins, polysaccharides and enzymes 

involved in protein and carbohydrate digestion and bacterial cell membranes (Scalbert, 

1991; Reed, 1995). For example, cellulose can have direct surface interactions with 

tannins (Chiquette et al., 1988), and the tannins can alter microbial colonization on fiber 

particles, leading to reduced fiber digestibility. In the current study, it was expected that 

shifts in VFA profiles toward a decrease in acetate and an increase in propionate would 

occur when fiber digestion was altered due to interactions of tannins with rumen 



163 

microbes. On the contrary, feeding BFTP-based diets resulted in an increase in A:P with 

no effect on total VFA concentration. Feeding toxic compounds such as CT can have a 

profound impact on the growth rate of bacteria and alter the metabolic pathways of 

fermentation. However, given the complex interactions between microbial growth and 

fermentation environment, the rumen ecosystem may have developed a strategy to 

maintain a normal rate of substrate fermentation by changing the concentration and/or 

shifting the metabolic pathways by which specific microbes utilize substrates. 

In the present study, feeding BFTP-based diets decreased branched-chain VFA 

proportions which arise almost exclusively from the oxidative deamination of amino 

acids. The inability of the cellulolytic bacteria to transport preformed branched-chain 

amino acids across their cell wall makes the branched-chain VFA essential for normal 

growth of fiber-digesting bacteria (Bryant, 1973). The decreases in branched-chain VFA 

proportions due to feeding BFTP-based diets suggests reduced deaminative activity 

coupled with decreased ruminal N degradation through direct effects of CT in BFTP. 

Microbial Community Structure and CH4 Production 

Tannin toxicity has been hypothesized to result from selective inhibition of microbial 

cell wall synthesis (Jones et al., 1994; Smith and Mackie, 2004). The antibacterial 

activity of tannins is mediated by formation of complexes with the cell wall membrane of 

bacteria to cause morphological changes and secretion of extracellular enzymes (Smith et 

al., 2005). The major cellulolytic bacteria in the rumen such as R. albus, F. succinogenes 

and R. flavefaciens have been found to be inhibited by CT, although degree of inhibition 

and sensitivity of bacteria varied among the studies, depending upon the dose and type of 

CT. In a pure culture study, CT of BFT inhibited the growth of F. succinogenes at a 
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concentration of 400 µg/ml, but had no appreciable inhibitory effect on the growth at 

concentrations below 400 µg/ml (Bae et al., 1993). Min et al. (2005) observed that 

addition of 200, 400 and 600 µg CT/ml reduced the growth rate of F. succinogenes; 

however, the growth of R. albus transiently increased at low (50-100 µg/ml), but not at 

high (> 200 µg/ml) concentrations of CT. The CT reduced the extracellular 

endoglucanase activity at concentrations as low as 25 µg/ml, whereas cell-associated 

endoglucanase activity increased at CT concentrations of up to 300 µg/ml, and then 

decreased at 400 µg/ml (Min et al., 2005). The exposure of F. succinogenes to CT 

appears to cause the formation of tannin-protein complexes on the cell surface, which can 

induce interference with the adhesion process of bacterial cells to the cellulose. The 

selective antibacterial action of CT-containing BFT diets against F. succinogenes (gram-

negative) and R. flavefaciens (gram-positive) but not R. albus (gram-positive) is not clear 

in the current study. Generally, gram-positive bacteria have been known to be more 

susceptible to tannins than gram-negative bacteria (Jones et al., 1994). In the present 

study, R. flavefaciens may have been inhibited by R. albus in the reduced-cellulose 

condition of BFTP-based diets compared to OGP-based diets. Meanwhile, greater 

decreases in all cellulolytic bacteria through feeding BFTP-based diets evidenced by 

interactions between type of forage and supplementations indicate an additive effect 

between CT and readily fermentable carbohydrates from GB and TMR on the cellulolytic 

microbial ecosystems of the rumen.  

In the current study, concentration of CH4 decreased when cultures were fed BFTP-

based diets compared with OGP-based diets with a selective depression against 

Methanobrevibacter spp., but not Methanomicrobium spp. One possible mechanism for 
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this effect could be that the protozoa-associated methanogens are inhibited in the rumen 

by an anti-protozoal effect of the CT in BFTP. While Methanobrevibacter spp. are known 

as major protozoa-associated methanogens, Methanomicrobium spp. are classified as 

protozoa-free methanogens (Sharp et al., 1998). It is evident that the CT in BFTP at a 

relatively great concentration exerted their toxic effects against protozoa and protozoa-

associated methanogens, leading to the decrease in culture CH4 production. There is a 

body of evidence to indicate that CT decrease protozoal population (Makkar et al., 1995; 

Khiaosa-Ard et al., 2009; Tan et al., 2011), and the decrease in CH4 production can be 

mediated through decreased protozoal number (Bodas et al., 2012). Min et al. (2014) 

reported that feeding CT-containing pine bark (10.3% CT) selectively altered 

methanogenic archaeal populations in goats; among methanogens, Methanobrevibacter 

linearly decreased with increasing pine bark supplementation in goats (75, 72, and 49% 

for 0, 15 and 30% pine bark, respectively). The authors indicated that the decrease in 

Methanobrevibacter spp. prevalence was assumed to be linked to the substantial 

relationship between these archaea and protozoa and subsequent reduction in reducing 

equivalent (H2) cross-feeding between protozoa and archaea. 

CONCLUSIONS 

We assessed in vitro rumen microbial ecosystem response to feeding CT-containing 

BFTP diets in comparison with non-CT-containing OGP diets as pasture only controls or 

with 2 different types of supplementation. The CT in BFTP exerted anti-microbial 

properties against cellulolytic bacteria and methanogens, but those effects were species-

dependent. In addition, the CT of BFTP sizably reduced NH3-N concentration with its 

toxic effect on protozoal population. Type of supplementation did not affect CT activity 
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on rumen ammonia concentration, and suggested that various types of BFTP diets could 

be fed and still exert reductions in CH4 output. Care must be taken in extrapolating these 

results to in vivo conditions, as overall rumen microbial ecosystem function is likely feed 

intake dependent. Intake will eventually influence the amount of CT and supplement 

actually consumed by animals in their diets. Function of chemical activity of CT in BFTP 

on microbial physiology remains to be identified. A future direction for use of BFT in 

ruminants needs to consider the dynamic effects of CT on rumen microbial ecosystem 

with target diets and farming systems.  
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Table 5.1. Nutrient composition of dietary treatments provided to continuous cultures 

Item, % DM 

Diet 

OGP  BFTP 

NS GB TMR  NS GB TMR 

OM 85.0 88.7 89.5  91.0 89.5 90.6 

CP 11.5 11.9 16.3  20.6 18.3 16.9 

NDF 56.5 44.8 42.9  29.8 25.6 37.3 

ADF 31.6 24.2 25.3  23.3 18.6 25.8 

Ether extract 3.91 3.40 3.15  2.42 2.31 2.35 

NFC* 14.6 28.6 27.2  38.2 43.3 34.0 

Condensed 

tannins 

0.28 0.16 0.12  4.96 2.70 2.83 

OGP‒NS = orchardgrass (Dactylis glomerata L. as freeze-dried pasture and no 

supplement, OGP‒GB = orchardgrass supplemented with ground barley grain (30%), 

OGP‒TMR = orchardgrass supplemented with TMR (30%), BFTP‒NS = birdsfoot 

trefoil (Lotus corniculatus L) as freeze-dried pasture and no supplement, BFTP‒GB = 

birdsfoot trefoil supplemented with ground barley grain (30%) and BFTP‒TMR = 

birdsfoot trefoil supplemented with TMR (30%). 
*Non-fiber carbohydrates = 100 – CP – NDF – ether extract – ash. 

 

 



 

 

Table 5.2. Species-specific primers sequences for 16S RNA used in this experiment 

Bacterium Primer  Sequence (5´-3´) 
Annealing 

temperature, °C 
Reference* 

Cellulolytic bacteria     

Ruminococcus albus Ra1281f CCCTAAAAGCAGTCTTAGTTCG 60.0 1, 2 

 Ra1439r CCTCCTTGCGGTTAGAACA   

Ruminococcus flavefaciens Rf154f TCTGGAAACGGATGGTA 60.0 1, 2 

 Rf425r CCTTTAAGACAGGAGTTTACAA   

Fibrobacter succinogenes Fs219f GGTATGGGATGAGCTTGC 62.0 1, 2 

 Fs654r GCCTGCCCCTGAACTATC   

Methanogens     

Methanobrevibacter spp. NestMbbF TGGGAATTGCTGGWGATACTRTT 65.3 3 

 NestMbbR GGAGCRGCTCAAAGCCA   

Methanomicrobium spp. NestMmF GTTTAAAACACATGGGAAGA 59.5 3 

 NestMmR ATTCCCAGTATCTCTTAGACGC   
*1 = Koike and Kobayachi (2001); 2 = Tajima et al., (2001); 3 = Tymensen and McAllister (2012). 

  

1
7
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Table 5.3. Ruminal fermentation characteristics in continuous cultures receiving grazing lactating cow diets of grass or birdsfoot 

trefoil forages unsupplemented or supplemented with ground barley or TMR 

Item 

Diet 

SEM 

Significance of effect* OGP  BFTP 

NS GB TMR  NS GB TMR PF SUP INT 

Culture pH 6.23 6.11 6.01  6.08 6.19 6.22 0.085 0.53 0.77 0.07 

NH3-N, mg/100 ml 14.4 16.7 14.5  9.17 10.4 8.17 2.60 <0.01 0.14 0.87 

Total VFA, mM 41.2 44.1 45.7  35.9 41.6 43.1 3.54 0.17 0.22 0.85 

Individual VFA, mol/100 mol            

Acetate (A) 70.6a 62.3b 60.0c  73.1a 67.8b 66.8b 1.79 <0.01 <0.01 0.01 

Propionate (P) 19.2 20.5 22.1  19.2 20.4 21.9 1.06 0.80 <0.01 0.99 

Butyrate 7.13b 12.1a 13.0a  5.50b 8.70a 8.03a 1.075 <0.01 <0.01 0.04 

Valerate 1.13 1.55 2.03  0.78 1.24 1.68 0.269 0.02 <0.01 0.99 

Isobutyrate 0.57 0.53 0.59  0.41 0.29 0.21 0.194 0.02 0.76 0.76 

Isovalerate 1.08 2.59 2.19  0.94 1.84 1.44 0.498 0.02 <0.01 0.41 

A:P 3.78 3.00 2.69  3.94 3.27 3.13 0.228 <0.01 <0.01 0.30 

OGP‒NS = freeze-dried orchardgrass (Dactylis glomerata L) and no supplement, OGP‒GB = orchardgrass supplemented with 

ground barley grain (30%), OGP‒TMR = orchardgrass supplemented with TMR (30%), BFTP‒NS = freeze-dried birdsfoot trefoil 

pasture and no supplement, BFTP‒GB = birdsfoot trefoil (Lotus corniculatus L) supplemented with ground barley grain (30%) and 

BFTP‒TMR = birdsfoot trefoil supplemented with TMR (30%). 

Means in the same row within OG and BFT subgroups with different superscripts differ (p < 0.05). 
*CH4 = methane and NH3-N = ammonia-N. 
†PF = effect of forage (OGP vs. BFTP), SUP = effect of supplementation and INT = interaction between PF and SUP. 

  

1
7
7
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Table 5.4. Densitometric quantification (% intensity) of rumen bacteria and archaeal methanogen diversity in continuous cultures 

receiving pasture forages without or with barley or dairy TMR supplementation 

Item 

Diet 

SEM 

Significance of effect* OGP  BFTP 

NS GB TMR  NS GB TMR PF SUP INT 

Cellulolytic bacteria            

Ruminococcus albus 6.18 5.91 5.82  8.89a 5.48b 3.01c 0.739 0.90 0.06 0.06 

Fibrobacter succinogenes 6.21b 8.58a 6.49b  6.10a 4.51b 1.87c 0.481 <0.01 <0.01 <0.01 

Ruminococcus flavefaciens 9.78a 9.62a 8.11b  2.92a 2.03b 1.02b 0.432 <0.01 <0.01 <0.01 
Methanogens            

Methanobrevibacter spp. 8.07 7.81 5.53  4.92 4.26 3.87 0.729 0.02 0.20 0.20 

Methanomicrobium spp. 4.51 5.37 3.63  3.89 3.50 3.32 0.450 0.18 0.52 0.52 

OGP‒NS = orchardgrass (Dactylis glomerata L) forage and no supplement, OGP‒GB = orchardgrass supplemented with ground 

barley grain (30%), OGP‒TMR = orchardgrass supplemented with TMR (30%), BFT‒NS = birdsfoot trefoil foragae (Lotus 

corniculatus L) and no supplement; BFTP‒GB = birdsfoot trefoil supplemented with ground barley grain (30%) and BFTP‒TMR = 

birdsfoot trefoil supplemented with TMR (30%). 

Means in the same row within OGP and BFTP subgroups with different superscripts differ (P < 0.05). 
*F = effect of forage (OG vs. BFT), SUP = effect of supplementation and INT = interaction between F and SUP 

1
7
8
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Fig.5.1. Methane (CH4) production as affected by pasture forage type and energy 

supplementation in continuous cultures. OGP‒NS = orchardgrass (Dactylis glomerata L) 

forage and no supplement; OGP‒GB = orchardgrass forage supplemented with ground 

barley grain (30%); OGP‒TMR = orchardgrass forage supplemented with TMR (30%); 

BFTP‒NS = birdsfoot trefoil (Lotus corniculatus L) forage and no supplement; BFTP‒

GB = birdsfoot trefoil supplemented with ground barley grain (30%); BFTP‒TMR = 

birdsfoot trefoil supplemented with TMR (30%).  

Effects of pasture forage, supplementation, and interaction between forage and 

supplementation were P < 0.01, P = 0.34 and P = 0.95, respectively, with the SEM of 

1.50. 
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CHAPTER 6 

CONCLUSION 

In the United States, legume forages such as alfalfa and white clover are an 

important digestible fiber- and N- providing component of the diet for lactating cows. 

The economic sustainability of dairy systems depends strongly on the quality and 

quantity of home-grown hay and pasture, but their environmental sustainability depends 

on reduction of wastes from dairy cows consuming high-forage diets. Forage quality 

affects feed intake and feed energy density, lactational performance, cow health, and feed 

cost. The protein in high quality hay or pasture forage degrades quickly in the rumen, and 

when consumed by ruminants, most in excess of available energy sources is converted to 

ammonia, resulting in excessive excretion of nitrogenous waste. This process results in 

inefficient utilization of dietary nitrogen (N) in the rumen and limits optimal microbial 

protein synthesis. It also increases metabolic energy cost to convert ruminal ammonia-N 

(NH3-N) to urea and increases N waste excretion into the environment. Therefore, 

opportunities to improve N utilization would be found in either reducing the amount of N 

fermented to NH3-N in the rumen, reducing excess dietary N consumed by dairy cows, 

incorporating more dietary N into milk protein, or shifting N excretion from urine to less-

volatile fecal forms of excretion. 

 Due to the extensive use of high- quality legume and grass forages in dairy diets, 

both as a freshly grazed forage and as preserved hay and silage, research to improve 

utilization of the protein in these forages is warranted. Novel approaches for reducing the 

amount of N waste generated by dairy cows or incorporating more dietary N into milk 

protein are opportunities to improve N utilization. In addition to N waste, methane (CH4) 
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is also of concern. From 3 to 9 % of energy from feed is lost through ruminal CH4 

production, so reducing enteric CH4 emissions can also improve sustainability of 

ruminant production. 

Three research projects described in this dissertation address the improvement of the 

sustainability of dairy systems through the use of birdsfoot trefoil (Lotus corniculatus L.; 

BFT) in the diets of lactating cows. Birdsfoot trefoil is a non-bloating forage legume that 

is similar to alfalfa in feeding value, and has the potential to be fed as the forage 

component of dairy cow diets. It has cell wall digestion characteristics unique from 

alfalfa and contains condensed tannins (CT). Condensed tannins have been shown to 

reduce the degradation of plant protein by complexing with the protein in the rumen to 

prevent fermentation. In addition, research has shown an inhibitory effect of CT on 

ruminal methanogenesis, which is due in part to direct effects on methanogenic archaea, 

protozoa-associated CH4 production, or indirect effects through a depression of fiber 

digestion in the rumen. 

The hypothesis of the first study was that replacing alfalfa hay partially or 

completely with birdsfoot trefoil hay (BFTH) in high forage diets would improve 

lactational performance of cows. It was found that BFT hay diets had decreased NDF and 

ADF intake, tended to increase milk yield, and increased ECM efficiency compared to 

diets based on AH. In addition, cows fed with BFTH had improved milk N efficiency and 

microbial protein yield over cows fed AH diets. Improved digestibility of fiber in BFTH 

due to potentially more digestible cell wall structure of BFTH, supported increased milk 

N efficiency and ECM yield through greater milk protein concentration compared to 

cows fed the alfalfa hay diet. Results of this study suggest that dairies feeding BFT 
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preserved as hay may see production advantages when including BFTH in high forage 

diets. Improving sustainability by utilizing high forage diets that include forages with 

increased digestibility of NDF and improved N utilization efficiency could be met when 

BFTH is fed.  

In the second study of this dissertation, the use of BFT pasture (BFTP) for a sole 

forage source in grazing commercial dairy farms was explored. It was found that the BFT 

pasture can have advantages over traditional grass pasture, depending on the management 

and growing conditions that affect pasture quality. Lactating cows grazing BFT had 

greater milk yield and ECM yield for most sample weeks, but had reduced ruminal NH3–

N only some sample weeks, and reduction in MUN for BFTP cows in some but not all 

sample weeks during this two year study. It was found that decreases in MUN and 

ruminal NH3–N in BFTP cows could not be attributed to reduction of rumen degradable 

protein due to CT. We conclude that CT at low concentrations in BFTP are ineffective at 

consistently reducing environmental losses of N through MUN or ruminal NH3–N, as 

improvements occurred only when CT concentrations in the BFT forage were greater 

than 1% DM and forage CP was less than 18% DM. Advantages of reduced NDF and 

increased NFC concentration of the BFTP likely contributed to increased intake which 

could have led to the improvements in milk production detected in this study more than 

CT contribution to improved milk production. If BFTP were to be adopted on a system-

wide level, management of the pasture forage maturity at time of grazing is critical in 

order to provide the best quality forage base through a moderate NDF concentration and 

highest concentration of tannins in order to increase sustainability. 
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In the third study, response of in vitro rumen microbial ecosystems to feeding CT-

containing BFT diets was assessed, in comparison with non-CT-containing orchardgrass 

(OG) diets, as well as 2 different types of supplementation that is common to grazing 

dairies. Concentration of NH3-N decreased when cultures were offered BFT-based diets 

compared with OG-based diets, while supplementing ground barley (GB) or TMR did 

not affect NH3-N concentration regardless of source of forage. Feeding BFT-based diets 

increased the molar proportion of acetate compared with OG-based diets, whereas molar 

proportion of propionate was similar between OG- and BFT-based diets, which affected 

the acetate-to-propionate ratio (A:P). The CT in BFT exerted anti-microbial properties 

against cellulolytic bacteria and methanogens, but those effects depended on the species 

of interest. Microbial populations of F. succinogenes and R. flavefaciens decreased when 

cultures were offered BFT-based diets compared with OG-based diets, while R. albus 

was not affected by type of pasture forage. Adding supplements in general decreased the 

cellulolytic bacteria, but the decreases were greater in the BFT-based diets compared 

with OG-based diets, resulting in interactions between type of forage and supplements. 

Methanobrevibacter spp. decreased due to feeding BFT-based diets, but 

Methanomicrobium spp. was not affected, likely due to the former being associated with 

protozoa, which may have been affected by CT toxicity. In addition, the CT of BFT 

sizably reduced NH3-N concentration with its toxic effect on protozoal population. 

Extrapolating these results to in vivo conditions is challenging, as the overall rumen 

microbial ecosystem is likely feed intake-dependent, which determines the actual amount 

of CT consumed by animals. Consideration of the dynamic effects of CT on the rumen 

microbial ecosystem with target diets (i.e., high- concentrate or high-forage) and farming 
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systems (i.e., farms where cows are pasture- grazed vs cows conventionally fed preserved 

forages) is a direction that future research could address.  

It can be surmised from the results of these three studies utilizing BFT in dairy diets 

that effects of CT from BFT grown in the western U.S. are highly dependent on diet 

concentration, which is supported in the literature, and that the CP concentration of the 

diet or forage being consumed has an overarching effect on N utilization efficiency. 

Improvements in milk yield and ECM yield were evident in the first two studies, but 

cannot be said to be due only to CT action, as MUN and ruminal NH3-N were largely 

unaffected by the presence of CT in the rumen. This suggests that a critical concentration 

of CT in the rumen must be reached before a reduction in protein degradation can occur, 

and likely some type of interaction with diet protein type, CP concentration, and possibly 

energy substrates in the diet needs to be considered. Though not directly addressed in 

these studies, the unique type of cell wall structure and nutrient constituents such as 

reduced NDF and increased NFC in BFT compared to other forages appeared to affect 

rate and extent of digestion, which in turn affected intake and nutrient extraction from the 

diet. These factors were likely greater contributors to the improvement of lactational 

performance noted in these studies than an effect due to CT. The third study utilized 

varieties of BFT that were greater in CT concentration compared to the first two studies. 

The third study showed expected ruminal NH3-N reduction due to CT and revealed that 

specific methanogenic, cellulolytic and proteolytic bacteria are inhibited by CT while 

others are not. This effect was measured for only a few species of rumen bacteria, and 

could have had similar effects on other types of rumen microbes, which could exert 

overall effects on rumen energy and N use efficiency. It can be suggested that rumen CT 
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activity, which depends on DMI, CT concentration, and CT chemical structure of the CT-

containing forage being fed will all affect overall N utilization. Further studies in vivo are 

needed, particularly with varieties of BFT that consistently contain more than 1.5% CT. It 

was evident that the decreased NH3-N concentration due to feeding BFT-based diets in 

the third study was a result of CT in BFT, and its effect was not diluted despite reduced 

concentration of CT in BFTP diets with GB or TMR supplementation.  

In terms of improving sustainability, BFT increased milk yield and components in 

the first and second study, which could have improved the economic sustainability of 

those cows consuming BFT. Since N waste (in terms of rumen NH3-N and MUN 

reduction) was numerically reduced in study 1 for the BFTH- containing diets and 

affected by forage CT concentration due to sample week in study 2, (reduced ruminal 

ammonia was evident when CT was increased above about 1% DM), it is likely that CT 

diet concentration needs to be at least 1% to see N waste reduction in order to improve 

environmental sustainability. Reduction in rumen NH3-N was found in study 3 for diets 

with CT concentrations above 1% (2.7 and 2.83% DM for BFT- GB and BFT-TMR, 

respectively) even with supplementation compared to the non-CT forage. Thus, the 

reduction in the NH3-N concentration through CT in higher CT-containing BFT can 

contribute to improving utilization of dietary N in ruminal fermentation and reducing N 

excretion. 

These studies collectively show that BFT included as a major forage in dairy diets of 

either conventional hay-based TMR or as a pasture forage can improve lactational 

performance of dairy cows. The improvement of N utilization efficiency, however, was 

only evident in some of the study results. Milk N:manure N was only slightly improved 
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in study 1 due to feeding BFTH. Measures of N utilization in study 2 could only be based 

on milk production and MUN data, as intake data were not possible on an organic dairy 

due to organic constraints. Milk Urea N seemed to correlate with CP concentration of the 

pasture forages, and when pasture was lush and in a vegetative state (most of year 2) the 

MUN was increased for BFTP cows compared to MGP cows. Milk protein concentration 

was for the most part similar between treatments, and protein yields only fluctuated with 

the overall milk yield according to sample week, and seemed unconnected with the CT 

concentration of the BFTP. I cannot conclude that CT in BFT forage always improved N 

utilization- in these presented cases, it appears to depend on forage quality and CT 

concentration of the forage, and it was probably influenced by overall diet CP 

concentration, as well as chemical activity of the CT in the forages, which was not 

measured. 

Sustainability goals can be supported utilizing BFT, however, more research for in 

vivo, commercial dairy, and different BFT varieties is necessary to see how CT in BFT as 

well as the unique cell wall characteristics affect the interaction of diet components, and 

microbes in the rumen. Forages containing CT are acceptable for the dairy industry and 

offer much to enhance sustainability in ruminants despite many unknowns relative to the 

use of BFT in lactation dairy diets. 
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Table A.1. Least squares mean fatty acid composition of the milk from lactating cows 

grazing grass or birdsfoot trefoil pasture during 2 yr grazing study. 

Year 2012  

Fatty acid Week 2 Week 6  Significance of effect 

Grass BFT Grass BFT SEM week treatme

nt 

W × T 

C16:0 24.75 30.47 25.18 28.76 0.714 <0.0001 0.0002 0.9802 

C18:0 8.21 6.90 8.29 6.62 0.358 <0.0001 <0.0001 <0.000

1 

trans C18:1 0.07 0.791 0 0 0.198 0.008 0.0032 0.0004 

cis C18:1 17.49 13.99 20.89 16.55 0.868 <0.0001 <0.0001 0.0749 

cis-trans  3.45 2.49 2.76 2.56 0.267 <0.0001 0.0240 0.3332 

C18:2, n-6 2.76 2.76 3.01 2.72 0.137 0.438 0.0001 0.045 

C18:3, n-3 1.25 1.95 1.33 1.69 0.081 0.267 0.0001 0.0653 

cis 9, t 11 

CLA 

0.08 0.06 0.47 0 0.089 0.023 0.1638 0.112 

trans 10, cis 

12 CLA 

0.02 0.10 0.08 0 0.019 0.0773 0.7831 0.0047 

Others 9.90 10.7 10.51 9.04 0.163 0.0051 <0.0001 0.3681 

MUFA 24.68 21.84 27.49 23.30 0.958 0.0029 0.0002 0.856 

PUFA 17.12 12.84 14.24 16.51 0.649 <0.0001 0.177 0.0394 

SFA 56.84 64.91 56.54 59.96 0.927 0.298 <0.0001 0.256 

PUFA:SFA 0.302 0.198 0.253 0.277 0.013 <0.0001 0.9248 0.0523 

 

Year 2013  

 Week 2 Week 6  Significance of effect 

Fatty acid Grass  BFT  Grass  BFT  SEM week treatme

nt 

W × T 

C16:0 24.41 23.87 28.57 30.14 0.714 <0.0001 0.0002 0.9802 

C18:0 7.30 3.43 8.06 7.81 0.358 <0.0001 <0.0001 <0.000

1 

trans C18:1 0.07 1.09 0 0 0.198 0.008 0.0032 0.0004 

cis C18:1 18.07 11.44 19.6 18.11 0.868 <0.0001 <0.0001 0.0749 

cis-trans  3.38 5.22 2.03 2.56 0.267 <0.0001 0.0240 0.3332 

C18:2, n-6 1.79a 3.07b 2.10a 2.86b 0.137 0.438 0.0001 0.045 

C18:3,n-3 1.18a 1.95b 0.78c 1.69d 0.081 0.267 0.0001 0.0653 

c 9, t 11 

CLA 

1.27 1.33 0.79 0.87 0.089 0.023 0.1638 0.112 

t 10, c 12 

CLA 

0.00 0.00 0.05 0.07 0.019 0.0773 0.783 0.0047 

MUFA 24.63 24.33 25.86 24.41 0.958 0.0029 0.0002 0.856 

PUFA 16.26 20.30 11.72 12.56 0.649 <0.0001 0.177 0.0394 

SFA 57.55 58.25 60.04 62.17 0.927 0.298 <0.0001 0.256 

PUFA:SFA 0.283 0.351 0.203 0.196 0.013 <0.0001 0.9248 0.0523 
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