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ABSTRACT

Advancement of Computing on Large Datasets via Parallel Computing and

Cyberinfrastructure

by

Ahmet Artu Yıldırım, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Daniel Watson
Department: Computer Science

Large datasets require efficient processing, storage and management to efficiently ex-

tract useful information for innovation and decision-making. This dissertation demonstrates

novel approaches and algorithms using virtual memory approach, parallel computing and

cyberinfrastructure. First, we introduce a tailored user-level virtual memory system for par-

allel algorithms that can process large raster data files in a desktop computer environment

with limited memory. The application area for this portion of the study is to develop parallel

terrain analysis algorithms that use multi-threading to take advantage of common multi-

core processors for greater efficiency. Second, we present two novel parallel WaveCluster

algorithms that perform cluster analysis by taking advantage of discrete wavelet transform

to reduce large data to coarser representations so data is smaller and more easily managed

than the original data in size and complexity. Finally, this dissertation demonstrates an

HPC gateway service that abstracts away many details and complexities involved in the use

of HPC systems including authentication, authorization, and data and job management.

(133 pages)
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PUBLIC ABSTRACT

Advancement of Computing on Large Datasets via Parallel Computing and

Cyberinfrastructure

by

Ahmet Artu Yıldırım, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Daniel Watson
Department: Computer Science

Large datasets require high processing power to compute, high-speed network connec-

tions to transmit, or high storage capacity to archive. With the advent of the internet, many

in the science community and the public at large are faced with a need to manage, store,

transmit and process large datasets in an efficient fashion to create value for all concerned.

By example, large environmental researchers analyze large map data to extract hydrologic

information from topography. However, processing these data and other tasks is hard –

sometimes impossible – in minimal resource environments such as desktop systems.

This dissertation demonstrates novel approaches and programming algorithms that

address several issues associated with large datasets. We present a novel virtual memory

system that can process large map data which are too big to fit in memory in raster-

based calculations. Then, we introduce parallel computer algorithms that reduce large

data to smaller, more easily managed forms; and finding the patterns inside of this smaller

representation of large data efficiently in large computer systems. We need also software

services on the internet to access large remote computer systems. We present a software

service named HydroGate that abstracts away many details and complexities involved in
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the use of large remote computer systems, including authentication, authorization, and data

and job management.
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CHAPTER 1

Introduction

There are inherent challenges to handle large datasets in storing, transmitting, process-

ing and managing. This phenomenon plays important role in today’s information technolo-

gies to extract useful information for innovation and decision-making in corporation and

scientific research.

Environmental researchers, modelers and water managers commonly use grid digital

elevation models (DEMs) to derive information related to topographically driven flow. Ad-

vances in technology for creating DEMs has increased their resolution and data size with

the result that algorithms for processing them are frequently memory limited. One of the

possible solutions to overcome this issue is virtual memory system that is the standard

approach to working with data that is too big to fit in memory.

Data reduction techniques are used to save time and bandwidth in enabling the user

to deal with larger datasets even in minimal resource environments, such as in desktop or

small cluster systems. The key point of this process is to reduce the data without making

it statistically indistinguishable from the original data, or at least to preserve the charac-

teristics of the original dataset in the reduced representation at a desired level of accuracy.

Because of the huge amounts of data involved, data reduction processes become the critical

element of the data mining process on the quest to retrieve meaningful information from

those datasets.

Researchers commonly employ clustering algorithms to map a set of objects into groups

(i.e., clusters) based on their similar properties, such as spatial and temporal similar-

ity. Sheikholeslami et al. [1] introduced a novel unsupervised clustering approach, called

WaveCluster, utilizing a discrete wavelet transform (DWT) that enables data analysts to

perform clustering in a multi-level fashion. This method has the ability to discover clusters
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with arbitrary shapes and can deal with outliers effectively.

A parallel computer is seen as a computer or a set of computers with multiple processors

that can work together on solving a problem [2]. Parallel processing techniques are exten-

sively used to divide the task into smaller subtasks and then executing them simultaneously

to cope with memory limits and to decrease the execution time of that task.

Parallel computer architectures can be classified according to the memory sharing mod-

els. One class of parallel architectures is distributed memory systems (DMS) containing

processors or nodes that are connected with each other by means of high-speed network

infrastructure. In this model, each processor has its own memory. Traditionally, data in

these architectures are shared among processors using message passing via the Message

Passing Interface (MPI) [3] library, typically used to construct the communication among

the processors by sending/receiving messages.

Another class of parallel architectures are shared memory systems (SMS). As the name

implies, each processor communicates each other via dedicated shared memory over a data

bus. Advantages of SMS over DMS the absence of the need to store duplicate memory

and much faster communication for the processors. On the other hand, distributed memory

architectures fully utilize the larger aggregate memory that allows us to solve larger problems

which typically imply large memory needs.

Cyberinfrastructure provides scientists a set of middleware services to access software

tools and data for collaborative scientific research over the high-speed network [4]. CI-

Water project provides cyberinfrastructure to enhance access to data and high performance

computing (HPC) for water resources modeling through data-driven simulation.

As the number of heterogeneous computing and storage systems increase, it necessi-

tates the development of gateway services to access these resources in an unified way. We

often need access to high performance computing (HPC) resources for running data and

computationally intensive models without being an HPC expert. To remedy this, science

web portals have been utilized that integrate scientific models, data analysis, and tools to

visualize results via web browsers.



3

In Chapter 2, we present a user-level virtual memory system which is the standard

approach for working with data that is too big to fit in memory in raster-based calcula-

tions. We see that there is a need to process large DEMs on desktop computers that are

often limited in total memory. This is the primary problem addressed in this work. The

application area for this portion of the study is the development of parallel terrain analysis

algorithms that use multi-threading to take advantage of common multi-core processors [5]

for greater efficiency.

In Chapter 3, we consider the problem of big data in terms of data reduction. The goal

of this work is to reduce big data in size and complexity, so that the reduced form might be

more manageable and computable using the resources in hand. This question leads us to the

concept of data reduction techniques. In this chapter, we survey the general-purpose data

reduction algorithms. A general discussion is provided on data reduction techniques that

are utilized to analyze data efficiently using reduced representations of big data. Special

emphasis is given to parallel wavelet-based multi-resolution data reduction techniques on

distributed memory systems using MPI, and shared memory architectures on GPUs along

with a demonstration of the improvement of performance and scalability.

Chapter 4 extends our parallel WaveCluster algorithm and introduces two new par-

allel wavelet-based clustering algorithms that address inefficient I/O operations over 2-

dimensional datasets and performance degradation by benefiting collective MPI [3] I/O

capabilities and efficient usage of data structures. Additionally, we cluster 3-dimensional

datasets with the new algorithms.

Chapter 5 presents a science gateway service named HydroGate to access to heteroge-

neous HPC storage and computational resources. HydroGate abstracts away many details

and complexities involved in the use of HPC systems including authentication, authoriza-

tion, data and job management, and encourages the sharing of scientific applications and

promotes collaboration among scientists. HydroGate has been developed as part of the

CI-WATER project which aims to broaden the application of cyberinfrastructure (CI) and

HPC techniques into the domain of integrated water resources modeling and is capable of
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dealing with various batch job schedulers and CI storage systems through a JSON-based

language.
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CHAPTER 2

A Virtual Tile Approach to Raster-based Calculations of

Large Digital Elevation Models in a Shared-Memory System

2.1 Abstract

Grid digital elevation models (DEMs) are commonly used in hydrology to derive infor-

mation related to topographically driven flow. Advances in technology for creating DEMs

has increased their resolution and data size with the result that algorithms for processing

them are frequently memory limited. This chapter presents a new approach to the manage-

ment of memory in the parallel solution of hydrologic terrain processing using a user-level

virtual memory system for shared-memory multithreaded systems. The method includes

tailored virtual memory management of raster-based calculations for data sets that are

larger than available memory and a novel order-of-calculations approach to parallel hydro-

logic terrain analysis applications. The method is illustrated for the pit filling algorithm

used first in most hydrologic terrain analysis workflows.

2.2 Introduction

Grid digital elevation models (DEMs) are commonly used in hydrology to derive in-

formation related to topographically driven flow [1–3]. When dealing with large digital

elevation model (DEM), datasets, computational efficiency and memory capacity become

important considerations. Prior work in TauDEM [4] has advanced parallel methods for

terrain processing using a message passing (MPI) approach that allows memory to be dis-

tributed across multiple processors in medium-sized cluster computers [5–7].

In desktop computers, virtual memory systems are the standard approach to working

with data that is too big to fit in memory. Operating systems typically implement virtual
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memory using page files that hold on disk contents of memory. However repeated swapping

(thrashing) occurs when these get large because the system has limited general capability to

anticipate the pages needed next. Most operating systems implement the virtual machine

in kernel that makes it difficult, sometimes impossible, to change its functionality and page

replacement policy. This necessities the implementation of a user-level tailored virtual

memory system to handle a programs’ locality better for fine-grain control [8].

There is a need to process large DEMs on desktop computers that are often limited

in total memory. This is the primary problem addressed in this work. It is also desirable

to have parallel terrain analysis algorithms that use multi-threading to take advantage of

common multi-core processors [9] for greater efficiency. This is a secondary consideration

in this work.

This chapter presents a new approach to the management of memory and the parallel

solution of the raster-based computations for shared-memory multithreaded systems, such

as desktop computers. The contributions of this method in the context of parallelism are a

tailored user-level tile based virtual memory manager for raster-based calculations for data

sets that are larger than available memory and a novel order-of-calculations approach to

parallel hydrology analysis applications.

We implemented a modified version of the Planchon and Darboux pit filling algorithm

[10] as implemented in [4, 6] as an application of our tiled virtual memory manager and

evaluated its effectiveness for pit removal in DEMs of varying size, with a varying number

of operating system threads and memory capacity. The results demonstrate several benefits

over the use of standard virtual memory approaches.

Furthermore, this study examines a load-balancing technique to minimize the idle times

which might occur in case of uneven load between compute threads due to data variability.

We used the GDAL library [11] to enable a wide range of raster file formats within the

implemented memory manager. We implemented our memory manager using the Microsoft

Windows 7 operating system as it is widely used for desktop Geographic Information System

terrain analysis and enabling the processing of large DEMs on Windows systems was a goal
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of this work. The source code of the virtual memory project and the pit-filling algorithm

can be found at https://bitbucket.org/ahmetartu/hydrovtmm.

The chapter is organized as follows. Section 2.3 provides background and literature

review. Section 2.4 gives specifics of the modified Planchon and Darboux Algorithm used

here. Section 2.5 describes the design of the multi-threaded tiled virtual memory manager

for raster-based calculations that is contributed here. Section 2.6 gives performance results.

Finally, we discuss conclusions based on the obtained results in Section 2.7.

2.3 Background

This review addresses three subjects that are needed to set the context for this work.

First we review existing DEM pit filling approaches focusing on the Planchon and Darboux

Algorithm [10] modified and used in this work. We then examine other efforts that use

parallel methods for hydrologic terrain analysis and general methods for virtual memory

management to enable the processing of large data sets that do not fit in physically available

computer memory.

Pits, defined as grid cells or sets of grid cells completely surrounded by higher grid cells

often occur during DEM production and are generally considered to be artifacts of the data

collection process [12]. Drainage conditioning to remove pits is an important preprocessing

step in the hydrologic analysis of DEMs, and is representative of a broad class of raster-

based algorithms (e.g. [1, 13]) designed to determine topographically driven flow. Once

drainage conditioning has been performed, a DEM that has no pits is referred to as being

hydrologically conditioned. The most common approach to drainage conditioning is pit

filling, whereby pit grid cells are raised to a level where they are at a minimum equal to

the lowest surrounding grid cell and can drain. A well-known effective pit filling algorithm

is described by Planchon and Darboux [10]. Pit removal using the Planchon and Darboux

(PD) algorithm is one of the multiple hydrologic terrain analysis functions in the TauDEM

package. Time-complexity of the direct implementation of the PD algorithm is reported to

grow with the number of cells N in DEM as O(N1.5) [10]. Planchon et al. also provided

an improved implementation that embedded a recursive dry upward cell function that was
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reported to achieve a time-complexity of O(N1.2) [10]. Alternative pit filling algorithms,

some claiming better efficiency have been presented by others [14–16].

The Planchon and Darboux (PD) approach fills pits by covering the whole surface with

a layer of “water” up to a level greater than or equal to the highest point in the DEM, then

removes the excess water in an iterative manner. Doing so, the algorithm naturally leaves

the water in the depressions at the height of their outlet. Let Z ∈ R
2 be the set of input

elevation points (i.e., the input DEM with size m, where each member is an elevation point

xi, 1 ≤ i ≤ m) and let W ∈ R
2 be the output DEM consisting of “filled” elevation points

yi. The goal of the PD algorithm is to increase each elevation point xi with a minimal

difference of elevation. The PD algorithm initializes all grid cells to a large value (greater

than the highest point in the domain). It then uses iterative scans across the domain to

lower elevation values to the lowest elevation greater than or equal to the original terrain

hydrologically conditioned so that they drain to one of their neighbors.

Tarboton et al. [4,6] implemented a parallel version of the PD algorithm. This adopted

a distributed memory domain partitioning approach to parallelism and divided the domain

into horizontal stripes, one stripe per parallel process. The PD algorithm was applied

separately to each stripe in parallel, with a step to exchange information across stripe

boundaries at the end of each iteration so as to ensure convergence to the same global

solution as obtained by a serial implementation. The original PD algorithm and the Wallis

et al. parallel implementation visit each grid cell on each iteration. Scans of the grid cycle

through all eight possible combinations of row and column scan orders. PD also offered an

improved implementation that used a recursive dry upward tree search each time a cell was

set to the original elevation to enhance efficiency. However each iterative pass across the

DEM still examined each grid cell.

Subsequent to the Wallis et al. [6] work, the TauDEM team [4] identified the visiting

of each grid cell on each iteration as an inefficiency and developed a stack based approach

whereby unresolved grid cells are placed on a stack on the first scan, then removed from the

first stack on each subsequent scan and placed on a second stack. Stacks are then switched.
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This limits the scanning to two directions rather than eight, but was found to result in a

speedup of a factor of 2 for small datasets and 4.3 for a modestly large 1.5 GB dataset in

comparison to the eight combination full grid scanning. The benefits of the stack thus seem

to outweigh the inefficiency of fewer scan directions. The TauDEM team did not evaluate

the recursive dry upward approach of the improved PD algorithm. Recursive methods use

the system stack to expand system memory, posing a challenge for memory management

in large data computations. They also pose a challenge for a domain partitioned parallel

approach as cross partition calls are less predictable. They are also hard to implement on

a stack as they would require additional code to track the stack position of each grid cell

and to handle changing the order in which grid cells on the stack are processed. The two

direction stack based modified PD algorithm was incorporated into the publicly released

version of TauDEM [4] that was the starting point for this work. The focus of this chapter

is on virtual memory management for large DEM data, and the modified PD algorithm as

used by TauDEM [4,6] is used as an example to illustrate a general approach.

Beyond pit filling several parallel computing technologies have been employed in the

implementation of the hydrologic algorithms to achieve higher performance by effectively

utilizing available processors in the system including MPI for distributed memory archi-

tectures [5, 6, 17], OpenMP [18] or low-level standard threading library for multi-threaded

shared memory architectures, and NVIDIA CUDA for general-purpose computing on graph-

ics processing units (GPUs) [19, 20]. Xu et al. [18] present a grid-associated algorithm to

improve the performance of a D8 algorithm [21] via OpenMP technology which is a thread-

level standard of parallel programming. CUDA algorithms for drainage network determi-

nation are presented by Ortega and Rueda [20], achieving up to 8x speed-up improvement

with respect to corresponding CPU implementation. Do et al. introduced a parallel algo-

rithm to compute the global flow accumulation in a DEM using MPI [17] where hierarchical

catchment basins are computed by means of a parallel spanning tree algorithm to model

the flow of water. Each processor computes a local flow direction graph using the D8 flow

routing model.
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There have been a number of general approaches to better manage virtual memory.

The Tempest [22] interface was proposed for customizing the memory policies of a given

application on parallel computers. Translation lookaside buffer (TLB) is a limited memory

cache that is utilized for efficient memory address translation. However, TLB misses are

also common in memory-hungry applications such as databases and in-memory caches. To

eliminate these, Basu et al. [23] proposed mapping part of a process’ linear virtual address

space with a direct segment. Huang et al. [24] introduced a power-aware virtual memory

system to reduce the energy consumed by the memory for data-centric applications.

Software programs may implement their own level of memory management to overcome

the inefficiencies of system-level virtual memory. For example, ArcGIS reportedly uses quad-

tree tiling to organize on disk file storage in a way that facilitated better virtual memory

management [25]. However full details of their implementation are not available.

2.4 Modified Planchon and Darboux Algorithm

We employed a modified version of the PD algorithm, as used in TauDEM [4], in this

study. The PD algorithm has two phases, initialization (Algorithm 1) and filling (Algorithm

2). Initialization starts by allocating memory space for elevation data, W . Then, if the cell

is located at the edge, the algorithm assigns the value of cell in Z to each cell of W with

the same cell location, otherwise a maximum number is assigned. Here edge is defined to

include cells at the edge of the DEM or internal cells adjacent to cells with no data values,

or cells marked as internally draining and not to be filled in a separate input file. Thus, it is

assumed that water may drain from the edges of the input DEM or into internally draining

or no data cells (because data may not fit neatly into the rectangular DEM domain). We

employ stacks to hold indexes of the cells not yet solved. The indexes of the cells having

excess “water” in W are pushed onto the first stack, (S1), which is used later in the filling

phase. An upper bound on the number of elements the stack needs to hold is the number

of internal (non-edge) grid cells in the DEM.

In the filling phase (Algorithm 2), the cell values of W are decreased in an iterative

manner until no cell value is changed. The procedure pulls an unresolved grid cell from
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Algorithm 1 Initialisation Phase of Stack-based Planchon and Darboux Algorithm

Require: Input DEM Z
Ensure: Elevation data W , stack S1

1: procedure initializePlanchon(Z)
2: for Cell number i ← 1 to |Z| do
3: if ci ∈ Z is on the edge then
4: W (i) ← Z(i)
5: else
6: W (i) ← +∞
7: S1 ← push(S1, i);
8: end if
9: end for

10: return W , S1

11: end procedure

stack, S1. The operation of minN8(W (i)) denotes finding the minimum value among 8

neighbours of the cell W (i). In Line 6, the algorithm checks whether the value of Z(i) is

greater than or equal to the minimum elevation of its 8 neighbours plus a small parameter

ǫ to enforce strictly positive slopes. This parameter may be 0, and is defaulted to 0 where

minimally altered hydrologically conditioned surfaces are desired. If true, this implies that

the cell drains, so the value of Z(i) is assigned to the cell W (i). Otherwise the value Nmin+ǫ

is assigned to the cell, lowering its value to the elevation at which it drains (line 10). Cells

that are set to their original elevation value (line 7) do not need to be revisited so are not

placed on the stack S2. Cells lowered to a neighbor value (plus ǫ) may need to be revisited

in a later iteration so are pushed to the stack S2. The stacks decrease in size progressively

as cells are processed. After each iteration, in Line 16, the indexes pointing to the stacks

are swapped.

The original PD algorithm did not employ a stack as described above. Rather at each

iteration it scanned the entire DEM examining for each cell whether W (i) > Z(i), and if

true examined neighbor elevations and applied the excess water removal logic.

2.5 Virtual tile approach to the parallel raster-based algorithm

We implemented a parallel modified PD algorithm for a multi-threaded shared memory
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Algorithm 2 Filling Phase of Planchon and Darboux Algorithm

Require: Input DEM Z, elevation dataW , stacks S1 and S2, ǫ-descending path parameter,
i denotes to the visited cell index, minN8(W (i)) denotes to minimum elevation of the
neighbouring cells of cell i

Ensure: Elevation data W
1: procedure fillPlanchon(Z, W , S1, S2, ǫ)
2: do
3: for all cell number i in S1 do
4: if W (i) > Z(i) then
5: Nmin ← minN8(W (i))
6: if Z(i) ≥ Nmin + ǫ then
7: W (i) ← Z(i)
8: else
9: if W (i) > Nmin + ǫ then

10: W (i) ← Nmin + ǫ
11: end if
12: S2 ← push(S2, i)
13: end if
14: end if
15: end for
16: call swapStacks(S1, S2)
17: while any cell c ∈ W is changed
18: return W
19: end procedure

system with limited memory to process large DEMs. The input DEM is divided into a

number of generally square q×q tiles where q is tile size that can be considered a generalized

domain decomposition approach when compared to the TauDEM stripe approach. Tiles

may be rectangular along the edges to accommodate domain sizes that are not multiples

of q. Each tile is processed individually by one thread. Tiles are distributed among the

threads with respect to number of cells in the stacks using a load balancing mechanism.

In order to process big DEMs, which might be larger than available physical memory, we

adopt a tile-based user-level virtual memory management system. The memory system

swaps out tiles and their related data to hard-disk to free the memory space automatically

when the predefined memory limit is reached. Tiles are chosen for swapping out by the

memory manager according to a least recently used rule.

In our algorithm, we use a single input/output (I/O) thread and multiple compute
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Figure 2.1: Partition of the DEM into tiles with one-cell border. Grid cells contain elevation
values with nondraining cells (pits) in the tile detail depicted in gray.

threads. Compute threads are responsible for the execution of the PD algorithm while

the I/O thread is used to avoid performance bottlenecks due to overlapping disk I/O and

compute operations. The I/O thread services all compute threads. The main thread is

regarded as a compute thread and is responsible for spawning other compute threads and

the I/O thread. Memory address space is shared among all threads, alleviating the overhead

associated with interprocess communication in shared memory systems.

We adopt data parallelism among compute threads where each thread works on one

tile at a time and executes the same algorithm (Algorithm 3). Each tile is a rectangular

subset of the DEM that consists of primary data and a one-cell border that overlaps into

the primary data from adjacent tiles as illustrated in Figure 2.5, that is used to facilitate

transfer of information between tiles. The primary data of all tiles completely covers the

domain without overlap. A tile page, Tk, has the corresponding subset of elevation data,

Wk, input DEM data, Zk and two stacks. Tile pages are indexed by tile page number k

that define the page uniquely in the address space. The initializePlanchon and fillPlanchon

functions change values only within the primary data, but refer to values from adjacent grid

cells using the edge data held locally as part of each tile page.

After the initialization pass (Lines 3-5) and each filling pass (Lines 9-13) the resulting

elevation values are hydrologically conditioned within the local context of each tile, but
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Algorithm 3 Multithreaded PD algorithm

Require: Input DEM Z, tile size TS, memory limit ML, number of compute threads NC,
each with start index, SIi and end index, EIi, referencing the tiles it processes.

Ensure: Output DEM W (final elevation data)
1: procedure parallelplanchon(Z, TS, ML, NC)
2: for all Compute Threads i in parallel do
3: for k ← SIi, EIi do
4: call initializePlanchon(Tk)
5: end for
6: call exchangeBorders() with barrier()
7: call performLoadBalancing() with barrier()
8: do
9: for k ← SIi, EIi do

10: if Tk is not finished then
11: call fillPlanchon(Tk)
12: end if
13: end for
14: call exchangeBorders() with barrier()
15: call performLoadBalancing() with barrier()
16: while any cell elevation in W is changed
17: end for
18: call barrier()
19: call writeOutputDEM()
20: end procedure

may need to be modified as each tile is juxtaposed with its surrounding tiles. Hence,

local elevation data on the edges must be updated from surrounding tiles. Neighboring

threads exchange the border of the tiles. Thus, we implement a barrier to synchronize all

threads at this point to make sure all the threads are at the same position. Barriers are

shown in Algorithm 3. Although barriers are desired to be avoided to fully exploit the

parallelism in algorithm design, in order to circumvent race conditions it is required. Then

the exchangeBorders function is called for each tile by each owner thread. This accesses the

data from each bordering tile and updates its edge data with the corresponding primary

data from the adjacent tile.

Remaining cells to be processed at the next iteration can be determined by the number

of cells in the stack. This determines the require processing time for each tile. After locally

filling the pits of the tiles, imbalance might occur in which some threads finish the local filling
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before other threads. To avoid this inefficiency, we implement load balancing functionality

that distributes the tiles to the threads evenly based on the number of cells in the stacks.

Before distributing the tiles, all threads must wait for the main thread that executes the

loadBalancing function. loadBalancing examines the size of the unresolved stack in each

tile and adjusts the tiles assigned to each thread by setting SIi and EIi prior to the next

iteration. More discussion about the load balancing can be found in Load balancing section.

A virtual memory management strategy (Figure 2.5) was developed to support imple-

mentation of this algorithm in systems where the physical memory is limited. A memory

manager is responsible for performing swapping operations as memory reaches its maxi-

mum capacity. In system-level virtual memory, each program on the operating system has

its own address space that is consisting of memory chunks (pages) [26]. In our approach,

each thread is provided a set of tiles on the DEM file and its associated data whose memory

is managed by the virtual memory through a well-defined software interface.

All memory management functionality is performed by the I/O thread, using the GDAL

library [11]) so that processing in the compute threads may proceed in parallel with I/O

swapping of tiles to disk. One of the reasons for a single I/O thread is that GDAL did not

support parallel I/O. However even with a parallel I/O library on the PC platforms we are

targeting, the parallel I/O capability is limited and a single I/O thread avoids cross thread

I/O bottlenecks.

The main thread initializes the memory manager and creates the tile page table. Tile

page table is in shared memory accessible to the compute threads and I/O thread. The tile

page table contains tile data structures mainly including tile state, memory addresses of

original and conditioned DEM data and stack data. We implemented a tailored stack data

structure where the data are kept in memory in a contiguous fashion in order to serialize the

writing and reading of stack memory content efficiently. The stack data structure contains a

dynamically increasing heap array (using the realloc utility), and size and capacity variables.

Figure 2.5 illustrates how tiles are assigned to compute threads. Note that the ex-

changeBorders function results in tiles assigned to one thread being accessed by adjacent
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threads. This is a non-locking read access so that contention that may occur when a thread

attempts to lock a memory block that is owned by another thread [27] can be avoided. Data

sharing in shared memory systems is one source of performance degradation and should be

avoided where possible, thus the exchangeBorders function is called only at infrequent in-

tervals.

Each tile page has state, µk where µk = {notloaded, present, swappedout, finished}:

notloaded, indicating that the page has not yet been requested by any compute thread;
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Figure 2.4: (a)Tile page table maps each page to a region in a DEM dataset, data block in
a physical memory or data stored in a swap file on the hard disk (b) Tile state diagram

present, the page is resident in the memory; swappedout, the page is swapped out to the

disk; or finished, all elevation points in the tile have been hydrologically conditioned and

no more pit-filling is required. The condition finished is set on a tile when its stack size

becomes 0. The algorithm iterates until all the tiles have achieved the state of finished, or

until all stacks on all processes remain unchanged. The page table is illustrated in Figure

2.4(a) with tile states illustrated in Figure 2.4(b).

A distinguishing property in our model, as compared to most GIS software, e.g.,

ArgGIS, is that a tile page does not consist only of raster data, but also contains algorithm-

specific data such as the input, output and associated data that comprise the memory space

of the program.

A message queue is used for interprocess communication between compute threads and

the I/O thread. The I/O thread constantly retrieves the messages in the message loop in a

First In, First Out (FIFO) manner. The message passing between the compute threads and

I/O thread is performed using PostThreadMessage and PeekMessage of Win32 functions.

If a compute thread requests a tile retrieval, it sends a message to the I/O thread and waits
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until the page is returned. If the page is present in memory, the operation is completed

without waiting. Each tile has a time stamp variable to keep track of the last request time.

The time stamp is updated by the I/O thread when requested by any compute thread.

Using this time stamp, the memory manager swaps out the oldest tiles according to the

Least Recently Used (LRU) replacement algorithm.

The granularity of the virtual memory manager is an important parameter that affects

the system’s performance. A small page/tile size can result in larger page tables, which

might cause the system to spend its CPU time mostly in I/O operations. On the other

hand, too large a tile size can hinder the benefit of using memory management and memory

usage can exceed the memory limit by a factor of tile page size.

Thrashing is a well-known phenomenon encountered when a process idles excessively

waiting for the referenced page to be loaded by the operating system. In this algorithm, the

effect of thrashing is alleviated by pre-fetching tiles using a pre-specified pattern based on

knowledge of the sequence in which the algorithm accesses tiles. The prefetching technique

has been applied for sequential programs in which predicting patterns of program execution

and data access in the near future improves the system efficiency [28]. In the implemented

virtual memory system, when a tile is requested, the memory manager caches the next α

tiles (from the flist array) in this pattern asynchronously. The goal of this prefetching

technique is to increase the hit rate of tiles found in present memory when requested. We

define the hit rate as the number of tile references whose memory present in RAM divided

by the total number of tile references.

2.5.1 API to access to the virtual memory manager

The user-level virtual memory is designed to be used as a general-purpose virtual

memory for raster-based computations to execute on a single machine with limited memory

through a well-defined interface. The raster-based algorithm accesses the VM through a

well-defined interface so as to enable the potential for application with other raster-based

algorithms. The API is explained below.
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• initializeMemoryManager(S): The function accepts array S that contains the set-

ting values of the virtual memory manager including maximum allowable memory,

and the DEM file accessed to determine extent and tile sizes. Using the parameter

S, the virtual memory is initialized and memory allocated for resources such as the

messaging system and the data structures used by the main thread.

• getT ile(tid, f list[]): A compute thread requests the tile with uniquely-defined tile id

tid from VM. A tile can be owned by only one compute thread for writing at a time to

avoid race condition error. During the tile-retrieval process with the getTile function,

the tile’s reference count is incremented by 1. The virtual memory manager prevents

access to a shared resource from other threads using the EnterCriticalSection and

LeaveCriticalSection Win32 functions. As an advantage with respect to most operat-

ing system level virtual memory systems, the tiles to be prefetched are determined by

the algorithm from the flist array containing tile ids. Prefetching occurs in parallel.

The next tile on the list is prefetched by the virtual memory manager. After load-

ing each tile, the virtual memory manager checks the memory limit and if this has

been exceeded swaps out the least-recently accessed tile not in use. This strategy is

a heuristic attempt to ensure that the next tiles needed by the compute threads will

be in memory when they are requested.

• unlockT ile(tid): After the compute thread is finished with the tile, the tile is explicitly

released by the owner thread. The virtual memory manager decrements the tile’s

reference count where the tile is requested with getT ile function. When the tile’s

reference count reaches 0, the tile is returned to the memory pool. Then, virtual

memory manager decides to keep the tile in memory or swaps out to the disk based

on the page replacement algorithm to free memory space.

• saveT ile(tid): If the tile is finished completely by the compute thread, the result is

saved to the disk via saveT ile function and then the tile is marked as finished state

which is the final state of a tile.
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• performLoadBalancing(tiles[], ctid): Given a set of tile ids tiles[] and compute

thread id ctid, performLoadBalancing returns the working set of tiles for the com-

pute thread ctid. The virtual memory manager distributes the tiles evenly among the

compute threads. Load balancing is a program option that can be disabled if desired.

• finalizeMemoryManager(): The memory resources used by the virtual memory

manager are freed.

2.5.2 Load balancing

The variable nature of the topography that the algorithm operates on gives rise to

variability in the number of cells on the unresolved stack for each tile at each iteration.

Load balancing has been applied for concurrent MPI execution streams that exhibit irreg-

ular structure and dynamic load patterns [29] and to ensure that the load on each core is

proportional to its computing power in multi-core architectures [30]. We developed a load

balancing mechanism that is specifically tailored for the parallel modified PD algorithm.

The modified PD algorithm applied to a tile iteratively processes unresolved cells whose

indices are stored on a stack. The size of the stack on a tile indicates the work load per

tile. The load balancing rule distributes the tiles based on tile stack size (|S|). Figure 2.5.2

illustrates the load balancing mechanism. Let T be the set of all tiles and CT be the set of

compute threads. Then
∑ |S| = ∑|T |

i=1 |S|i is the sum of stack sizes, and |S| = ∑ |S|/ |CT |

is used as the target number of elements in the stacks per compute thread. The load balanc-

ing algorithm assigns consecutive tiles to each compute thread to take advantage of CPU

caches through the principle of memory locality. The number of assigned cells might be

greater than or equal to |S| as the tile granularity affects the distribution of the load.

2.6 Experimental Results

Numerical experiments were performed to evaluate the virtual memory manager using

five DEM datasets obtained from the National Elevation Dataset web site (http://ned.

usgs.gov) (Table 2.1). These ranged from a relatively small test dataset to a dataset that
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Figure 2.5: Illustration of load balancing among the compute threads; In this example,
∑ |S| = 1000, |S| = 250 for 4 compute threads and 10 tiles
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Figure 2.6: Time results in log10 seconds for DEM3 as a function of tile size (a) Total
execution time (b) Waiting time (c) Algorithm time. (for varying number of compute
threads up to 4 and prefetch count α = 1)

exceeded the physical memory capacity of the test computer. Tile sizes, number of compute

threads and memory capacity were all varied in the runs. The experiments were conducted

on a machine equipped with an Intel Core I7 processor with 3.40 GHz and configured

with either 4 GB or 16 GB of RAM. We used the 64-bit version of Microsoft Windows 7.

Although not popular in HPC systems, Windows is widely used for desktop Geographic

Information System terrain analysis and enabling the processing of large DEMs on these

systems was a goal of this work.

Tile size is one of the most important parameters impacting the performance of the

parallel PD algorithm. To examine the impact of tile size, the parallel PD algorithm was ex-

ecuted with shared virtual memory management enabled and a varying number of compute
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threads up to 4 using DEM3 with a range of tile sizes from 1000 to 15000 on a machine

with 16 GB RAM. The maximum memory capacity for this experiment was set to half

memory size of DEM3 dataset for these runs. Maximum memory is the size of the allocated

memory for the entire page structure. In this experiment it was purposely set less than the

total memory required by the algorithm, around 4 times the file size, or 16 GB to induce

swapping and exercise the user level virtual memory management.

The total execution time is a combination of Algorithm time and I/O Waiting time

(i.e., the elapsed time between the time a tile is requested and the completion of that request

by the I/O thread). In Figure 2.6(a), the total execution time is seen to decrease sharply

when more than 2 compute threads are utilized for a tile size of 1000. Parallelization is seen

here to be effective in overlapping I/O operations with computation by the I/O thread. We

observe that total execution time continues to decrease as the tile size increases up to 9000,

in which case the minimum time is achieved with 468 seconds when 2 compute threads are

used. After a tile size of 9000, the total execution time begins to increase due to a thrashing

effect because the memory manager performs an excessive number of disk swapping oper-

ations. The waiting time accounts for the majority of this total execution time, indicating

an increased I/O overhead cost associated with small tile sizes and correspondingly more

distinct disk accesses (Figure 2.6(b)). The algorithm time is also dependent on tile size,

reflecting the additional computation involved with edge exchanges for smaller tile sizes,

although this effect is significantly smaller than the I/O effect quantified by the wait time

(Figure 2.6(c)). These experiments show that the tile size can have a dramatic effect on

performance of the program but this effect diminishes as the tile size increases, and then

becomes more prominent due to better data locality. This experiment suggests limiting

tile sizes to approximately 9000 for this system for the best performance using 3 compute

threads. Multithreading also helps decrease the algorithm time. However, we observe that

as the memory limit decreases, the performance benefit of multithreading diminishes be-

cause the algorithm becomes more I/O intensive. Because I/O overhead increases as tile

sizes decrease, experiments for tile sizes less than 1000 were not performed. Conversely, note
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that when the tile size is 15000, the algorithm execution times with 3 and 4 compute threads

approach the algorithm time with 2 compute threads because of the unfair load distribution

among the threads. We also performed the experiment for tile size 24000 to investigate the

effect of the biggest tile size on the virtual memory manager but the experiments failed due

to insufficient memory.

Table 2.1: Properties of DEM datasets used in the experiments
Label Location Domain Size File Size

DEM1 GSL Basin (100 m cells) 4045x7402 117 MB

DEM2 GSL Basin (27.3 m cells) 14849x27174 1.61 GB

DEM3 Boise River Basin (10 m cells) 24856x41000 3.98 GB

DEM4 Wasatch Front (10 m cells) 34649x44611 6.05 GB

DEM5 Chesapeake Bay (10 m cells) 45056x49152 8.65 GB

Memory use during the run of the parallel PD algorithm to evaluate the effect of tile size

with the DEM3 dataset was profiled to find the average and maximum memory used (Table

2.2) where the memory limit was set to 2000 MB. In practice, because memory is allocated

in tile size increments for each thread, the maximum memory usage is larger than the target

memory capacity parameter. The amount of this excess varies with tile size. When we set

the tile size to 24000, the algorithm is failed to allocate memory space because the test

machine doesn’t have sufficient memory space and, therefore, we completely lost the benefit

of the virtual memory system. The experiments show that the amount by which actual

memory use exceeds target memory capacity increases with tile size. Maximum memory

use exceeding the target parameter is a disadvantage of this virtual memory management

approach as it limits the control on memory use by the program, resulting in potential for

operating system virtual memory to kick in or for the program to crash due to insufficient

memory.

In a second experiment we evaluated the parallel performance of the algorithm on DEM

datasets that fit within RAM and where swapping was not needed. With the hardware

reconfigured to 16 GB RAM we tested the speed on the first four DEM datasets. Although

we achieved best time result with tile size 9000, tile size was set to 1000. Speed up ratios

for this test (Figure 2.6) show a beneficial speed-up relative to the sequential modified PD
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Table 2.2: Memory profile result of DEM3 in which expected maximum memory limit is
2000 MB

Tile Size
(q)

Avg. Memory
Usage

Max. Achieved
Memory Usage

1000 1828 MB 2046 MB

3000 1851 MB 2396 MB

5000 1780 MB 3477 MB

7000 2089 MB 4955 MB

9000 2249 MB 6392 MB

11000 2438 MB 9253 MB

13000 3308 MB 12242 MB

15000 3456 MB 13683 MB

24000 × ×

1.0

1.5

2.0

2.5

3.0

3.5

1 2 3 4 5 6 7 8
Number of Compute Threads

S
pe

ed
−

up
 R

at
io Datasets

DEM1

DEM2

DEM3

DEM4

Figure 2.7: Speedup Ratio of the parallel PD algorithm for DEM1, DEM2, DEM3 and
DEM4

algorithm with one I/O thread. A speed-up ratio of around 3 was obtained with 8 compute

threads. Speed-up ratios are generally slightly more for the larger datasets, though this

pattern is not consistent across the full range of the number of threads tested, the variability

presumably being due to differences in the data. The machine used in the study has four

cores, but the experiments were expanded to 8 compute threads to observe the effect of the

hyper-threading feature of the processor, which improves processor performance by enabling
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the execution of pipeline-scaled interleaving of multiple threads on a single core, resulting

in a modest performance benefit.
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Figure 2.8: Hit rate results in percentage for virtual memory manager without prefetching
(blue bars) and with prefetching (red bars) with respect to memory capacity and number
of compute thread for DEM1

Next, the prefetching capability of the shared virtual memory manager module, de-

scribed at the end of Section 3, was evaluated (Figure 2.6). The experiments were conducted

with respect to the fraction of tiles that can be present in the available system memory.

For example, 1/4 memory means there can be at most 1/4 of total number of tiles present

in memory at the same time. The experiments show that as the size of the memory limit

allowed to be used by the application decreases, the hit rate (i.e., the fraction of tiles already

in memory when requested) also decreases due to an increasing number of swapping out

operations. This may lead to higher loads on the I/O thread and disk. By contrast, because

the implemented system uses one I/O thread, prefetching more than one tile ahead may also

result in other threads experiencing higher I/O times. This I/O bottleneck is exacerbated
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Figure 2.9: Compute thread loads with respect to a number of processed points (a) Without
load balancing (b) With load balancing

in the presence of multiple compute threads and low memory limits.

Table 2.3 shows average (HRD) and standard deviation (σHRD) values of the difference

of hit rates (HRD) between the VM with prefetching (P ) and without prefetching (WP ) in

percentage with respect to memory capacity (M) and a number of compute threads (CT ).

The values are computed as follows:

HRD(CT,M) = (HRCT,M,P −HRCT,M,WP ) (2.1)

HRD(M) =

CT
∑

i=1

HRDi,M

CT
(2.2)

σHRD(M) =

√

√

√

√

√

√

CT
∑

i=1

(HRD(i,M) −HRD(M))2

CT − 1
(2.3)

As the virtual memory limit decreases, the average of difference of hit rate values

increase that shows the benefit of using prefetching for low memory limit. However, the

variation of hit ratios also increase. This is because increasing compute threads affects the

hit ratio more under lower memory limits when compared to higher memory limits.
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Table 2.3: Average (HRD) and standard deviation (σHRD) of the difference of hit ratio
between the VM with prefetching and without prefetching in percentage with respect to a
number of compute threads for varying memory limits

Statistics Full
Mem.

1/2
Mem.

1/4
Mem.

1/8
Mem.

Average 0.784 5.834 22.664 31.279

Std. Dev. 0.015 0.450 9.355 11.301

Table 2.4: DEM datasets for which Pitremove was successfully run using TauDEM 5.1, the
parallel PD algorithm with Operating System’s built-in virtual memory system (WVM)
and tiled virtual memory (TVM) approach

DEM1
(0.1
GB)

DEM2
(2.3
GB)

DEM3
(4 GB)

DEM4
(6 GB)

DEM5
(8.7
GB)

TauDEM 5.1 X X × × ×

PD Algorithm with WVM X X X × ×

PD Algorithm with TVM X X X X X

We evaluated the load balancing mechanism in which the tiles are distributed among

the compute threads. Without a load balancing mechanism the number of points (grid cells)

evaluated by each compute thread is quite unevenly distributed (Figure 2.9 a), resulting

in the threads with fewer points to evaluate waiting for the threads with more points to

evaluate before each synchronization that occurs with each call of the exchangeBorders

function. When load balancing is not enabled, the compute thread 6 (CT6) processes

nearly 6 × 105 more cells than the compute thread 7 (CT7). However, the load balancing

approach resulted in a much more even distribution of the number of points processed by

each thread (Figure 2.9 b) where the difference of processed cells between the compute

threads dropped significantly. Fair data distribution can be enhanced by the use of smaller

tile size that affects the granularity of the virtual memory.

The objectives of the study were to develop a capability to run the PD algorithm for

large datasets without relying on the operating system’s built-in virtual memory system.

We performed an experiment using three approaches for the five DEMs listed in Table 2.1.

We used a machine configured with 4 GB RAM. The last two DEM datasets require memory
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significantly more than this. DEM4 is 6.05 GB and requires nearly 21 GB of memory for

the algorithm, while DEM5 is 8.65 GB and requires 34 GB of memory for the algorithm.

We set the target memory capacity for our tiled virtual memory (TVM) approach to 2

GB and used a tile size of 1000 because of its better memory usage efficiency (see Table

2.2). We also performed a run with the tiled virtual memory disabled so that the Windows

7 operating system’s built-in virtual memory manager (WVM) was invoked. The default

Windows 7 paging file size was used. The third comparison ran the same problem using

TauDEM 5.1 [4] which uses an MPI message-passing approach to implement the PD parallel

algorithm. It has no virtual memory management so also relies on the Windows 7 virtual

memory manager for swapping where the total memory demanded by all processes is greater

than the physical memory capacity. As illustrated in Table 2.4, we were able to successfully

run the PD algorithm with the developed system for all the datasets, the largest of which

demanded memory more than five times the physical memory available. By contrast, the

TauDEM 5.1 package failed to process DEM3, DEM4 and DEM5, and the PD algorithm

with WVM failed to process DEM4 and DEM5.

2.7 Conclusion and Discussion

The increased availability of high resolution DEMs is driving the need for software

to process and analyze these on all systems including desktop PC systems with limited

memory. In this chapter we introduced a virtual tile memory manager that can be used with

hydrologic terrain analysis programs to provide user level memory management and enable

the processing of large DEMs on a PC, where operating system virtual memory management

and multi-process domain partitioning fail. This was illustrated using a parallel pit removal

algorithm for hydrologically conditioning DEM datasets. Elimination of pits is an essential

step in hydrologic terrain analysis, required before applying other hydrological algorithms to

calculate flow paths, slopes, and delineation of watersheds and sub-watersheds. We used a

parallel implementation of a modified Planchon and Darboux algorithm [10] for pit removal

in shared-memory multithreaded systems, designed to run on desktop computers having

limited system memory. system. The system is optimized to retrieve tiles with a high hit
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ratio. The main conclusions of the system developed are:

1. We are able to run this hydrologic terrain analysis algorithm on limited memory

systems for datasets so large that previously available algorithms fail. This overcomes

the main obstacle of the memory capacity of the machine, by utilizing a user-level

shared virtual memory system.

2. While evaluated with pitremove, there is nothing in the user-level virtual memory

system that should preclude it from use with other algorithms which may require

modification of the page replacement algorithm based on algorithm-specific data access

patterns to maximize system throughput.

3. Efficiencies were achieved using algorithm refinements such as load balancing and the

pre-fetching approach used in the page replacement algorithm of the user-level shared

virtual memory system that increased hit rate and reduced wait time.

We conclude from the experimental results that the implemented parallel application

is beneficial to geoscientists and researchers for computing raster-based computations in

very large DEM datasets on a single machine with limited memory. We believe that the

implemented system also can be used for other flow algebra algorithms used in TauDEM [7]

with slight modification. For other algorithms the pre-fetching approach will need to be

modified according to the algorithm-specific data access patterns. Furthermore, it may be

beneficial to explore adaptive page replacement algorithms that change the replacement

algorithm at run time based on the tile-access pattern of the system.
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CHAPTER 3

Parallel Data Reduction Techniques for Big Datasets*

3.1 Abstract

Data reduction is perhaps the most critical component in retrieving information from

big data (i.e., petascale-sized data) in many data-mining processes. The central issue of

these data reduction techniques is to save time and bandwidth in enabling the user to

deal with larger datasets even in minimal resource environments, such as in desktop or

small cluster systems. In this chapter, we will examine the motivations behind why these

reduction techniques are important in the analysis of big datasets. Then we will present

several basic reduction techniques in detail, stressing the advantages and disadvantages of

each. We also consider signal processing techniques for mining big data by the use of discrete

wavelet transformations and server-side data reduction techniques. Lastly, we include a

general discussion on parallel algorithms for data reduction, with special emphasis given

to parallel wavelet-based multi-resolution data reduction techniques on distributed memory

systems using MPI and shared memory architectures on GPUs along with a demonstration

of the improvement of performance and scalability for one case study. The contribution of

this chapter is to demonstrate parallel WaveCluster algorithm employing Discrete Wavelet

Transform to reduce data for clustering big cloud dataset using MPI. We processed this

dataset on a computer cluster system where the memory is limited in single processors

within the available hardware.

3.2 Introduction

With the advent of information technologies, we live in the age of data. Data need

to be processed and analyzed efficiently to extract useful information for innovation and

∗Authors: Ahmet Artu Yıldırım, Cem Özdoğan, Daniel Watson
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decision-making in corporation and scientific research. While the term of big data is relative

and subjective and varies over time, a good working definition is the following:

Big data is data that takes an excessive amount of time/space to store, transmit, and

process using available resources.

One remedy in dealing with big data might be to adopt a distributed computing model

to utilize its aggregate memory and scalable computational power. Unfortunately, dis-

tributed computing approaches such as grid computing and cloud computing are not with-

out their disadvantages (e.g., network latency, communication overhead, and high-energy

consumption). An ”in-box” solution would alleviate many of these problems, and GPUs

(Graphical Processing Units) offer perhaps the most attractive alternative. However, as a

cooperative processor, GPUs are often limited in terms of the diversity of operations that

can be performed simultaneously and often suffer as a result of their limited global memory

as well as memory bus congestion between the motherboard and the graphics card. Paral-

lel applications as an emerging computing paradigm in dealing with big datasets have the

potential to substantially increase performance with these hybrid models, because hybrid

models exploit both advantages of distributed memory models and shared memory models.

A major benefit of data reduction techniques is to save time and bandwidth by enabling

the user to deal with larger datasets within minimal resources available at hand. The key

point of this process is to reduce the data without making it statistically indistinguishable

from the original data, or at least to preserve the characteristics of the original dataset in

the reduced representation at a desired level of accuracy. Because of the huge amounts

of data involved, data reduction processes become the critical element of the data mining

process on the quest to retrieve meaningful information from those datasets. Reducing big

data also remains a challenging task that the straightforward approach working well for

small data, but might end up with impractical computation times for big data. Hence, the

phase of software and architecture design together is crucial in the process of developing

data reduction algorithm for processing big data.

In this chapter, we will examine the motivations behind why these reduction techniques
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are important in the analysis of big datasets by focusing on a variety of parallel computing

models ranging from shared-memory parallelism to message-passing parallelism. We will

show the benefit of distributed memory system in terms of memory space to process big

data because of the systems aggregate memory. However, although many of todays com-

puting systems have many processing elements, we still lack data reduction applications

that benefit from multi-core technology. Special emphasis in this chapter will be given to

parallel clustering algorithms on distributed memory systems using the MPI library as well

as shared memory systems on graphics processing units (GPUs) using CUDA (Compute

Unified Device Architecture developed by NVIDIA).

3.3 General Reduction Techniques

Significant CPU time is often wasted because of the unnecessary processing of redun-

dant and non-representative data in big datasets. Substantial speedup can often be achieved

through the elimination of these types of data. Furthermore, once non-representative data

is removed from large datasets, the storage and transmission of these datasets becomes less

problematic.

There are a variety of data reduction techniques in current literature; each technique

is applicable in different problem domains. In this section, we provide a brief overview of

sampling by far the simplest method in implementation but not without intrinsic prob-

lems and feature selection as a data reduction technique, where the goal is to find the

best representational data among all possible feature combinations. Then we examine fea-

ture extraction methods, where the aim is to reduce numerical data using common signal

processing techniques, including discrete Fourier transforms (DFTs) and discrete wavelet

transforms (DWTs).

3.3.1 Sampling and Feature Selection

The goal of sampling is to select a subset of elements that adequately represents the

complete population. At first glance, sampling may appear to be overly simplistic, but these

methods are nonetheless a very usable class of techniques in data reduction, especially
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with the advent of big data. With the help of sampling, algorithms performed on the

sampled population retain a reasonable degree of accuracy while yielding a significantly

faster execution.

Perhaps the most straightforward sampling method is simple random sampling (Al-

gorithm 4), in which sample tuples are chosen randomly using a pseudorandom number

generator. In simple random sampling, the original big data population is randomly sam-

pled, and those sampled units are added to the (initially empty) sampled population set

with (or without) replacement. With replacement, as sampled units are placed into the

sampled population set, if an identical unit already exists in that set, it is replaced by the

sampled unit. Thus, one unit is randomly selected first with probability of 1/N where N

is the size of population, and there are no duplicate elements in the sampled population.

Without replacement, sampled units are added to the sampled population set without prej-

udice, and thus identical elements may exist in the resulting set. In simple random sample

without replacement, because there are
(

N
n

)

possible samples, where n is sample size, the

probability of selecting a sampled unit is 1 /
(

N
n

)

[1].

It is worth noting that random number generation on parallel computers is not straight-

forward, and care must be taken to avoid exact duplication of the pseudorandom sequence

when multiple processing elements are employed. The reader is directed to [2–4] for more

detailed information on parallel pseudorandom number generation.

Algorithm 4 Simple random sampling algorithm

Require: Set of tuples X, size of samples n
Ensure: Set of sample tuples S
1: S ← ∅
2: for i = 1→ n do
3: x ← selectRandomTuple(X)
4: S ← S ∪ {x}
5: end for

Another sampling method is systematic sampling, illustrated in Algorithm 5. The

advantage of this method over the simple random method is that systematic sampling does

not need a parallel random number generator. Let k = N/n and R be a random number



38

(a) (b)

Figure 3.1: Sampling illustrations on 2D domain (a) Simple random sampling (b) Systematic
sampling

between 1 and k, then every ith tuple, R + i× k, in database is selected according to the

equation R + i× k. Because systematic sampling performs selection of the sampled units

in a well-patterned manner, the tuples must be stored in a random fashion in the database;

otherwise, systematic sampling may introduce unwanted bias into the sampled set. For

example, as a web server records the information of the visitors, the order of information

stored in the database might produce bias if the employment status of the visitors affects

this ordering because of heterogeneous characteristics of the population.

Algorithm 5 Systematic sampling algorithm

Require: Set of tuples X, size of population N , size of samples n
Ensure: Set of sample tuples S
1: S ← ∅
2: k ← N/n
3: R ← randomNumber(1, k)
4: for i = 0→ n− 1 do
5: x ← X(R+ i× k)
6: S ← S ∪ {x}
7: end for

In stratified sampling, shown in Algorithm 6, population units are divided into dis-

joint, homogeneous groups, called strata in which a sampling technique such as simple

random sampling or systematic sampling is applied on those strata independently. One of
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the advantages of stratified sampling is to minimize estimation error. For example, suppose

the manager of a web site wishes to obtain sampled users represented fairly in a sampled

population, and that the information of gender proportions is known in advance. There-

fore, the group (strata) consisting of all males are sampled together, and then the same

sampling operation is applied on the remaining portion of database tuples (i.e., females),

independently.

Algorithm 6 Stratified sampling algorithm

Require: Set of tuples X, size of population N , size of strata h, set of strata Z =
{z1, z2, . . . , zh} and filter operation σ

Ensure: Set of sample tuples S
1: S ← ∅
2: for all zi ∈ Z do
3: X

′ ← σzi=true(X)
4: S

′ ← applySampling(X
′

)
5: S ← S ∪ S

′

6: end for

While sampling techniques are straightforward and efficient in reducing data, they may

introduce a biased result, because the sampled set does not represent the population fairly.

Thus, feature subset selection (FSS) techniques come up as a promising way to deal with

this problem. A feature is defined as an attribute of the data specifying one of its distinctive

characteristics. The objective of an FSS is to find the feature subset with size d representing

the data best among all possible feature set combinations,
(

n
d

)

, over n features. To measure

how well the selected feature subset represents the data, an objective function is used to

evaluate the goodness of the candidate subset. Feature subset Y maximizes the objective

function J(Y).

Exhaustive search, shown in Algorithm 7, is one straightforward way to find the opti-

mum feature subset of size d. This algorithm is able to obtain the optimal feature set of

size d over all possible feature subsets. The algorithm is considered a top-down approach

where it starts from an empty feature subset and incrementally finds the solution. The

most optimal feature set is the set having maximum goodness value. While exhaustive

search guarantees the best solution, it is obvious that it exhibits poor performance due to



40

its exponential algorithm complexity of O(J(Yi)) × O(
(

n
d

)

) = O(J(Yi)
(

n
d

)

). Therefore,

exhaustive search can be used only in practice if the data has a small number of features.

The search space of exhaustive search is illustrated in Figure 3.3.1 where every leaf node is

traversed to find the optimum solution.

Figure 3.2: Search space of exhaustive search where n = 5 and d = 3

Algorithm 7 Exhaustive feature selection algorithm

Require: Set of features X, size of feature set n, size of target feature subset d, set of
possible feature subsets, F , of X where each subset is of size d

Ensure: Optimum feature subset Yopt of size d
1: Yopt ← ∅
2: Gopt ← −∞
3: for all Yi ∈ F = {Y0, Y1, . . . , Yk} | k =

(

n
d

)

do
4: Gi ← J(Yi)
5: if Gi > Gopt then
6: Yopt ← Yi

7: Gopt ← Gi

8: end if
9: end for

In contrast to the exhaustive search approach, the branch and bound algorithm for

future subset selection [5] finds the optimal feature set in a bottom-up manner using a

tree structure. Hence, the algorithm discards m features to find the feature subset with d

dimensions where m = n − d. The monotonicity property of feature subsets with respect

to objective function, J , is satisfied at each iteration in which only one feature is discarded.

Thus, the objective function is maximized at each iteration as shown in Equation 3.1.

J1(Yi1) ≤ J2(Yi1 , Yi2) ≤ · · · ≤ Jm(Yi1 , Yi2 , . . . , Yin) (3.1)

The search space of the branch and bound algorithm is illustrated as a tree structure

form in Figure 3.3.1. The tree has m + 1 levels where 0 ≤ i ≤ m. Each leaf node
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represents a candidate feature subset. The label near each node indicates the feature to

be discarded. Traversing begins from the root node and switches to the next level. When

the goodness-of-fit value of the feature set is less than the current maximum value or

there are no nodes left to be visited at level i, the algorithm backtracks up to the previous

level. The maximum goodness-of-fit value is calculated when the leaf node is reached for the

corresponding candidate feature set. The algorithm finishes when it backtracks to level zero

and the candidate feature set with highest goodness-of-fit value is considered the optimal

feature set.

Figure 3.3: Search space of branch and bound algorithm where n = 5 and d = 2. Sample
traversed path is shown by dashed lines

Although the branch and bound algorithm is superior to the exhaustive search algo-

rithm in terms of algorithmic efficiency, the objective function is invoked not only for the

leaf nodes, but also for other nodes in the tree. In addition, there is no guarantee that

every node is visited. In order to alleviate this problem, Somol et al. [6] introduced a fast

branch and bound algorithm (FBB) for optimal subset selection. The FBB algorithm uses

a prediction mechanism to save the computation time of excessive invocation of objective

function by monitoring goodness-of-fit changes.

Another data reduction approach is to use heuristic feature selection algorithms such as

sequential forward selection (SFS, shown in Algorithm 8) and sequential backward selection

(SBS, shown in Algorithm 9), which employ a greedy approach by respectively adding or

removing the best features in an incremental fashion. The SFS algorithm starts with an

empty set and then adds features one by one, whereas the SBS algorithm starts with all
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feature sets and then yield a suboptimum feature set by incrementally discarding features.

Because heuristic algorithms substantially reduce the search space (for example by three

orders of magnitude when n = 20, d = 10 [7], they are considered faster than exhaustive

search at the expense of optimality. Furthermore, because forward selection starts with

small subsets and then enlarges them, while backward selection starts with large subsets and

then shrinks them, experiments show that forward selection is typically faster than backward

selection because of the computational cost in repetitively processing large subsets [8]. As a

forward selection approach, FOCUS by Almuallim and Dietterich [9] is a quasi-polynomial

algorithm that starts searching from the bottom when the size of candidate feature subsets

is one, then increments the size until the minimum goodness is satisfied.

Algorithm 8 Sequential forward feature selection algorithm

Require: Set of features X = {x0, x1, . . . , xn}, size of feature set n, size of target feature
subset d

Ensure: Suboptimum feature subset Ysubopt of size d
1: Ysubopt ← ∅
2: for j = 1→ d do
3: x ← max(J(Ysubopt ∪ {xi})) | xi ∈ X and xi /∈ Ysubopt

4: Ysubopt ← Ysubopt ∪ {x}
5: end for

Algorithm 9 Sequential backward feature selection algorithm

Require: Set of features X = {x0, x1, . . . , xn}, size of feature set n, size of target feature
subset d

Ensure: Suboptimum feature subset Ysubopt of size d
1: Ysubopt ← X
2: for j = 1→ n − d do
3: x ← min(J(Ysubopt − {xi})) | xi ∈ X and xi ∈ Ysubopt

4: Ysubopt ← Ysubopt − {x}
5: end for

The drawback of these heuristic algorithms is a problem called nesting, in which the

operation of adding (SFS) or removing (SBS) cannot be undone once the operation is

finished. This situation is a primary cause of a suboptimal solution. To overcome the nesting

problem, some algorithms have been proposed, such as the Plus-L-Minus-R introduced by

Stearns [10] in which the algorithm performs l adding operations and r removing operations.
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If l > r, it functions like the forward selection algorithm, otherwise it functions like the

backward selection algorithm. One drawback of the Plus-L-Minus-R algorithm is that the

parameters of l and r must be determined to obtain the best feature set. To compensate for

this problem, a floating search method is proposed in which the algorithm changes l and r

values at run time to maximize the feature set optimality [11].

Figure 3.4: Flow of the filter model

As stated by John et al. [12], the approach of any data reduction algorithm falls into two

models for selecting relevant feature subsets. The first is the filter model (see Figure 3.3.1)

in which the phase of feature selection algorithm is applied independently of the induction

algorithm as a preprocessing step. This is contrasted with the wrapper model (see Figure

3.3.1), which wraps the induction algorithm into the feature selection step. In the wrapper

model, the evaluation phase of the goodness function for the feature subset is performed

according to the induction algorithm. Each model has its own strengths and weaknesses;

the filter model may introduce irrelevant features that may impose performance problems

on the induction algorithm because of its separate existence but still performs relatively

faster than the wrapper model. Even so, the wrapper model has the ability to find more

relevant subsets at a reasonable cost to performance.

The wrapper model utilizes an n-fold cross validation technique where the input feature

set is divided into n partitions of equal sizes. Using those partitions, the algorithm uses

n1 partitions as training data and performs a validation operation on one partition. This

operation is repeated n times for each of the other partitions and the feature subset with the

maximum averaged goodness-of-fit value is regarded as the best solution. Cross validation

can also avoid the phenomena of over-fitting; the problem of fitting noise into the model.

While the wrapper model may not be ideal for big data due to its performance inefficiencies,

some feature pruning techniques or sampling techniques applied to training data may yield

faster execution times.
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Figure 3.5: Flow of the wrapper model with cross validation

3.3.2 Data Reduction using Signal Processing Techniques

Another way to reduce big data to a manageable size is to use contemporary signal

processing techniques. Although those methods fall into the class of feature extraction

methods in the context of dimensionality reduction [13], they are considered here as an al-

ternative approach to feature selection techniques. Feature extraction methods reduce the

dimensionality by mapping a set of elements in one space to another; however, feature selec-

tion methods perform this reduction task by finding the best feature subset. Additionally,

because feature selections methods require an objective function to evaluate the goodness

of the subset, the output of the reduction operation therefore depends on the objective

function. By contrast, feature extraction methods solve the reduction problem on another

space on transformed data without using objective function. Because of the fact that signal

processing techniques do not work on non-numerical data, they require a quantization step

to process non-numerical data as a preprocessing step before applying the signal processing

technique.

The Discrete Fourier Transform (DFT) method is used in many signal-processing stud-

ies that seek a reduction in data, for example in reducing time series data (that naturally

tends toward large amounts of data) without sacrificing trend behavior [14]. The main aim

of applying a DFT is to convert a series of data from the time domain into the frequency

domain by decomposing the signal into a number of sinusoidal components. The DFT ex-
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tracts features from sequences in which each feature in the transformed feature space refers

to one DFT coefficient.

While the DFT is useful tool for analyzing signal data, they often fail to properly

analyze non-stationary data that might be frequently encountered in time series data. To

overcome this problem, another signal processing technique, the Discrete Wavelet Trans-

form (DWT) can be employed to analyze the components of non-stationary signals [15].

Moreover, while DFTs transform the signal from the time/space domain into frequency do-

main, DWTs transform the signal into time/frequency domain. Thus, DWTs are beneficial

by preserving the spatial property of the data on the transformed feature space (unlike

DFTs). DWTs are location-sensitive unlike DFTs. Wu et al. [16] show that the DWT is a

better tool than the DFT for the application of time series analysis because DWTs reduce

the error of distance estimates on the transformed data.

DWTs decompose signals into high-frequency and low-frequency components using

filtering techniques. The low-frequency component represents a lower resolution approxi-

mation of the original feature space on which the data-mining algorithm is applied to obtain

(upon re-application of the DWT on the low-frequency component) solutions at different

scales from fine (as in the case of the original dataset) to coarse as in the case of multiple

applications of the DWT). In addition, a lookup table can be used to map the units from

the transformed feature space back to a unit in the original feature space, providing a useful

indexing capability of the resulting units in the transformed space.

As implied above, wavelet transforms can be applied to the input data multiple times on

the low-frequency component in a recursive manner, creating a multi-resolution sampling of

the original feature set. This recursive operation of decomposing the signal is called a filter

bank. Each operation of wavelet transform constitutes half-sized objects in the transformed

feature space for each dimension as compared to previous dimension of the feature space.

Figure 3.6 illustrates the low-frequency component extracted from the image of Abra-

ham Lincoln. As shown in the Figures, as the scale level of the wavelet transform increases,

we obtain coarser representation of the original data in which typically a data-mining algo-
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(a) (b) (c) (d)

Figure 3.6: Illustration of Low-frequency Component in Art (a) Original image (b) Low-
Frequency Component (scale level = 3) (c) Low-Frequency Component (scale level = 4) (d)
Low-frequency Component in Art, mosaic painting of Abraham Lincoln by Leon Harmon,
which is small in resolution and a coarser representation of the original image

rithm is applied to extract the information from this reduced data. For example, in Figure

3.6(b), DWT is applied three times on the low-frequency component (scale level is 3), and

in Figure 3.6(c), DWT is applied one more time using Figure 3.6(b), so the scale level be-

comes four. Thus, the reduced data in Figure 3.6(c) has half-sized cells as compared to the

Figure 3.6(b) and Figure 3.6(c) has coarser representation of the input data as compared

to the previous low-frequency component (Figure 3.6(b)). For comparison, Figure 3.6(d) is

actually a rather famous illustration by Leon Harmon (1973) created to illustrate his article

on the recognition of human faces.

There are many popular wavelet algorithms including Haar wavelets, Daubechies wavelets,

Morlet wavelets and Mexican Hat wavelets. As stated by [17], Haar wavelets [18] are used in

many studies because of its simplicity, fast and memory-efficient characteristics. It should

also be mentioned that it is necessary to scale source datasets linearly to power of two

for each dimension, since the signal rate decreases by a factor of two at each level. Let

X = {x1, x2, . . . , xn} be an input data of size n. Then the low frequency component of the

data can be extracted via averaging operation as shown in Equation 3.2.
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(3.2)

Each object in the low-frequency component of the feature space W j
ϕ, is also contained

in the low-frequency component of the previous transformed feature space W j−1
ϕ . Hence,

the feature spaces are nested [18], that is:

W j
ϕ ⊂W j−1

ϕ ⊂W j−2
ϕ ⊂ · · · ⊂W 0

ϕ (3.3)

The main advantages of using DWT over DFT are listed below [19].

• DWT is able to capture time-dependent local properties of data, whereas DFT can

only capture global properties.

• The algorithmic complexity of DWT is linear with the length of data, which is superior

to even fast Fourier transform with O(nlogn) complexity.

• While DFT provides the set of frequency components in the signal, DWT allows us to

analyze the data at different scales. The low-frequency component of the transformed

space represents the approximation of the data in another scale.

• Unlike DFTs, DWTs have many wavelet functions. Thus, they provide access to

information that can be obscured by other methods.

3.4 Parallel Data Reduction Algorithms

3.4.1 Parallel Processing

Despite to substantial improvements on processor technology in terms of speed, data

reduction algorithms may still not complete the required task in a reasonable amount of

time at big data. Besides, there may not have enough available memory resources to hold
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all the data on a single computer. One of the possible solutions to overcome those issues

and efficiently mine big data is to make utilization of parallel algorithms [20]. Parallel

processing techniques are extensively used to divide the task into smaller subtasks and then

executing them simultaneously to cope with memory limits and to decrease the execution

time of that task.

Parallel computer architectures are classified according to the memory sharing mod-

els. One class of parallel architectures is distributed memory systems (DMS) containing

processors or nodes which are connected with each other by means of high-speed network

infrastructure. In this model, each processor has its own memory. Traditionally, data in

these architectures are shared among processors using message passing via the Message

Passing Interface (MPI) [21] library, typically used to construct the communication among

the processors by sending/receiving messages.

Another class of parallel architectures are shared memory systems (SMS). As the name

implies, each processor communicates each other via dedicated shared memory over a data

bus. Advantages of SMS over DMS the absence of the need to store duplicate memory

and much faster communication for the processors. On the other hand, distributed memory

architectures fully utilize the larger aggregate memory that allows us to solve larger problems

which typically imply large memory needs.

As a distributed memory system, MapReduce [22] promises to provide a way of dealing

with big data. In this model, the programmer is not required to specify the parallelism

in code. At its core, there are only two functions which are map and reduce. The map

function processes key/value pairs and divides the data into a group of sub-data where each

sub-data is represented by a key value. The sub-data, also known as intermediate values,

are stored in a distributed file system by a key-value pair. By contrast, the reduce function

merges all intermediate values associated with the same key. In the starting phase of the

job, the library splits the input files into pieces of typically 16 megabytes to 64 megabytes.

It then starts up the many copies of the program on a cluster. The implementation has

been developed based on master/worker model. Master node makes assignments of map and
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reduce tasks to available worker jobs. Each worker writes the intermediate results of map

and reduce operations to local disks which can be accessed by all nodes in the cluster. One

of the characteristics of the system is that processors are not allowed to communicate with

each other directly. Thus, while this strategy has been criticized to be too low-level and not-

novel, the model provides us scalability to support the ever-growing data. It also ensures

fault-tolerance by storing intermediate files on distributed file system and its dynamic job

scheduling system.

Figure 3.7: Illustration of map-reduce model where the number of pieces, M = 6

We have plenty of model choices for shared memory systems. Threading is one way to

run concurrent processes on multicore processors where each thread might run on different

cores in a single process. Threads share the process address space and can access other

process resources as well. Another choice is OpenMP [23]. OpenMP seeks to speed up the

processing of loops by using pragma directives. As an application programming interface

(API), OpenMP provides the programmer flexibility, ease of use and transparency in the

creation of CPU threads.

With the advent of many-cored graphical processing units (GPUs), auxiliary processing

units (such as GPUs) can be utilized for general purpose computation. In addition to

its traditional usage of accelerating the graphic rendering, GPUs can be harnessed as co-

processors through the use of languages such as CUDA. NVIDIA introduced CUDA [24]

(Compute Unified Device Architecture) to enable these general purpose computations on
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NVIDIA GPUs in an efficient way. In CUDA programming, the programmer partitions the

problem into subproblems that can be solved independently in parallel on GPU cores. In

practice, the programmer writes a function named kernel and accesses the data using thread

IDs in a multidimensional manner. The advantage of this model is that once the parallel

program is developed, it can scale transparently to hundreds of processor cores independent

on any CUDA-capable NVIDIA graphic processors.

There are three main stages in CUDA program flow. First: input data is copied from

local memory (RAM) to the global memory of the graphic processor so that processing

cores can access the input data quickly. Secondly, the CUDA machine executes the parallel

program given. Lastly, data residing on the global memory of the GPU need to be copied

from global memory to local memory. The primary disadvantage of this model is that this

mechanism may incur performance bottlenecks as a result of extra memory copy operations.

In some cases this may decreases the speedup ratio of the parallel program to tht epoint

where it is comparable compared to sequential algorithms. Another disadvantage of CUDA

is that the CUDA kernel is not allowed to access the disk, or call the functions of operating

system or libraries developed for CPUs.

OpenCL [25] (Open Computing Language) is the first open standard for general-

purpose parallel programming of heterogeneous systems. It enables the programmer to

write portable parallel code for machines with multicore CPUs and GPUs as well. The

generalization of the OpenCL interface allows efficient mapping to a wide range or hard-

ware. Like the CUDA model, a kernel function needs to be specified in which each unit of

concurrent execution accesses the data via thread ids. OpenCL applications can work with

large arrays or multidimensional matrices.

Since GPU hardware implements a SIMD (Single instruction, multiple data) based

parallel execution model, each control unit in the GPU broadcasts 1 instruction among the

processor units inside the same processor group, – for which the instruction is executed

in parallel. This architectural difference from the traditional CPU architecture requires

non-trivial parallel programming models. It also comes with its intrinsic restrictions in
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developing a parallel program such as synchronization issues among the GPUs and the

complications of having different level of memory models. Furthermore, many classical

programming techniques such as recursion may not be easily applied in GPU computing.

Thus, GPU programs have to be developed in accordance with the underlying architecture.

3.4.2 Server-side Parallel Data Reduction Method for Data Centers

Due to often massive bandwidth requirements, the operation of data movement oc-

curring between hosting datacenters and workstations may require a substantial amount of

time. One remedy is to run data reduction applications on the data centers themselves to

take advantage of data locality. Wang et al. [26] introduced the Script Workflow Analysis

for MultiProcessing (SWAMP) system. In SWAMP system, the user is required to write

a shell script and then the script is submitted to the OpenDAP data server using Data

Access Protocol (DAP). The SWAMP parser has the ability to recognize netCDF options

and parameters. The execution engine of SWAMP manages the script execution and builds

dependency trees. The SWAMP engine can potentially exploit parallel execution of the

script when possible.

Singh et al. [27] introduced parallel feature selection algorithm to evaluate quickly

billions of potential features for very large data sets using a map-reduce framework. In the

mapping phase, each map worker iterates over the training records of the block and produces

intermediate data records for each new feature. In the reduce phase, each reduce worker

computes an estimated coefficient for each feature. Finally, post-processing is performed to

aggregate the coefficients for all features in the same feature class.

3.5 Parallel WaveCluster Algorithm

3.5.1 WaveCluster Algorithm

Clustering is a common data mining technique that used for information retrieval by

grouping similar objects into disjoint classes or clusters [28]. There has been a rapid growth

of very large or big datasets in scientific and commercial domains with the recent progress in
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data storage technology. Because cluster analysis has become a critical task for the mining

of the data, a considerable amount of research has been carried out in developing sequential

clustering analysis methods. Clustering algorithms have been highly utilized in various fields

such as satellite image segmentation [29], unsupervised document clustering [30], and in the

clustering of bioinformatics data [31]. The WaveCluster algorithm is a multi-resolution

clustering algorithm introduced by [32]. This algorithm is designed to perform clustering

on large spatial datasets by taking advantage of discrete wavelet transforms. Thus, the

algorithm has the ability of detecting arbitrary shape clusters at different scales and can

handle noise in an appropriate way.

WaveCluster algorithms contains three phases. In the first phase, algorithm quantizes

the feature space and then assigns objects to the units. This phase affects the performance

of clustering for different values of interval sizes. In the second phase, discrete the wavelet

transform is applied on the feature space multiple times. Discrete wavelet transforms are a

powerful tool for time-frequency analysis that decomposes the signal into average subband

and detail subbands using filtering techniques. The WaveCluster algorithm gains the ability

to remove outliers with the wavelet transform and detects the clusters at different levels of

accuracy (multi-resolution property), from fine to coarse, by applying wavelet transforms

multiple times. Following the transformation, dense regions (clusters) are detected by find-

ing connected components and labels are assigned to the units in the transformed feature

space. Next, a lookup table is constructed to map the units in the transformed feature

space to original feature space. In the third and last phase, The WaveCluster algorithm

assigns the cluster number of each object in the original feature space. In Figure 3.8, the

effect of the wavelet transformation on source dataset (see Figure 3.8(a)) is demonstrated.

The results of the WaveCluster algorithm for different values of ρ is shown in Figures

3.8(b) and 3.8(c); where ρ (the scale level) represents how many times wavelet transform

is applied on the feature space. There are 6 clusters detected with ρ = 2 (Figure 3.8(b))

and 3 clusters are detected with ρ = 3 (Figure 3.8(c)). In the performed experiments,
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(a) (b) (c)

Figure 3.8: WaveCluster algorithm multi-resolution property. (a) Original source dataset.
(b) ρ = 2 and 6 clusters are detected. (c) ρ = 3 and 3 clusters are detected. (where ρ is the
scale level)

connected components are found on average subbands (feature space) using classical two-

pass connected component labelling algorithm [33] at different scales.

3.5.2 Parallel WaveCluster Algorithm on the Distributed Memory System

We report now our developed parallel WaveCluster algorithm based on the message-

passing model using the MPI library [34]. This algorithm scales linearly with the increasing

number of objects in the dataset. One may conclude that it makes mining big datasets pos-

sible via the parallel algorithm on distributed memory systems, without having restrictions

due to the dataset size and other relevant criteria.

In the message-passing approach, each copy of the single program runs on processors

independently, and communication is provided by the manner of sending and receiving

messages among nodes. In our implementation, we followed a master-slave model. Each

processor works on a specific partition of the dataset and executes the discrete wavelet

transform and connected component labeling algorithm. The obtained results from each

processor are then locally correct, but might not be globally correct. Therefore, processors

exchange their local results and then check for correctness. This operation is achieved

simply by sending the border data of the local results to the master node, called the parent

node. This border data consists of transformed values and their corresponding local cluster



54

numbers. After processors send the border data to the parent node, the parent node creates

a merge table for all processors with respect to the global adjacency property of all cells. This

requirement for sustaining consistency in effect creates a barrier primitive. Accordingly, all

processors wait for the parent node to receive merged table. Then, all processors update the

cluster numbers of the units on local feature space. Lastly, processors map the objects of

the original feature space to the clusters using lookup table. In the lookup table, each entry

specifies the relationships of one unit in the transformed feature space to the corresponding

units of the original feature space. The flow of the algorithm is depicted in Figure 10.

Algorithm 10 Parallel WaveCluster Algorithm for Distributed Memory Systems

Experiments for this technique were conducted and obtained performance behaviors

were presented for 1, 2, 4, 8, 16 and 32 core cases on a cluster system having 32 cores with a

2.8 GHz clock speed and fast Ethernet (100 Mbit/sec) as underlying communication. Our

experiments have shown that the cluster shape complexity of the dataset has minimal impact

on the execution time of the algorithm. Datasets below are named as DS32 (1073741824
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objects) and DS65 (4294967296 objects) according to the dataset size. The DS 65 case is

beyond the limit of dataset size that fits into the memory of a single processor within the

available hardware, and is studied by running that dataset with 8, 16 and 32 processors.

Table 3.1: Execution times and speed-up ratios for varying dataset sizes and number of
processors (np)
Dataset np = 1 np = 2 np = 4 np = 8 np = 16 np = 32

Execution Times (in seconds)

DS65 - - - 17.59 9.70 5.21

DS32 35.19 17.96 9.15 4.41 2.50 1.30

Speed-up Ratios

DS65 - - - 1 1.81 3.37

DS32 1 1.95 3.84 7.97 14.07 27.06

Table 3.1 shows execution times and speed-up ratios with respect to the number of

objects in the dataset for varied numbers of processors. Analysis of the dataset DS65 is

only possible at or above the size of eight processors in our computer cluster system. The

benefit of the distributed memory system is easily observed above in processing big data.

Experimental results have shown that this parallel clustering algorithm provides a superior

speed-up and linear scaling behavior (time complexity) and is useful in overcoming space

complexity constraints via aggregate memory of the cluster system.

3.5.3 Parallel Data Reduction on GPUs

In this section, the parallel implementation of the WaveCluster algorithm on GPUs

is presented [35]. The WaveCluster approach first extracts the low-frequency component

from the signal using the wavelet transform. This phase is considered to be a data re-

duction stage in which the low-frequency component is representative of the dataset to be

processed in another phase. The phase of applying wavelet transform may be invoked mul-

tiple times, consequently yielding a clustering result from fine to coarse with respect to the

predefined scale level m which reflects the feature of multi-resolution of the algorithm. In

the WaveCluster algorithm, a cluster is defined as a group of connected units in the trans-

formed feature space. In this study, we used a Haar wavelet [36], because of its initial small

window width and easy implementation. Then a lookup table is built that maps more than
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one unit in the original dataset to one unit in the transformed dataset. After this phase,

a data mining algorithm is performed on the low-frequency component and the resulting

units are transformed back to the original resolution using a look-up table. To find the

connected units, the algorithm uses standard Connected Component Labeling algorithm.

Algorithm 11 CUDA Algorithm of Low-Frequency Component Extraction

Algorithm 11 shows the pseudo-code of the extraction of low-frequency component on

CUDA machine. The kernel is invoked j times and each invocation results in the extraction

of coarser component. The kernel also removes outliers on the transformed feature space in

which the threshold value TH is chosen as arbitrary. Each CUDA thread is responsible for

finding one approximation value extracted from the feature space of 2x2 size. Before kernel

invocation, the input feature space is transferred from host memory to the CUDA global

memory and the output buffer is allocated in the device memory for storing the transformed

feature space. Because the input data is 2-dimensional, the wavelet transform is applied

twice. Each CUDA thread applies one-dimensional wavelet transform to each column of the

local feature space and stores intermediate values in the shared memory buffer H. The final

approximation value is eventually calculated by applying second one-dimensional wavelet

transform on each row of the points on H. Hence, buffer H is used to store temporal results.

To facilitate the data access operation, the algorithm benefits from shared memory located
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on the CUDA machine.

We implemented the CUDA version of the algorithm, connected component labeling,

and the look-up phase, and then evaluated the performance of each CUDA kernels on very

large synthetic datasets. CUDA experiments were conducted on a Linux workstation with

2 GB RAM, Intel Core2Duo (2 Cores, 2.4 GHz, 4MB L2 Cache) processor and NVIDIA

GTX 465 (1 GB memory, 352 computing cores, each core runs at 1.215 GHz) with compute

capability 2.0 and runtime version 3.10. In this section, we present the extraction phase of

the low frequency component as a data reduction algorithm on GPUs. In these experiments,

two-dimensional fog datasets (DataSet1; DS1 and DataSet2; DS2) are used. These datasets

have been obtained from the web site of NASA Weather Satellite Imagery Viewers (2011).

As a distinctive property, DS1 has more clusters than DS2, but the size of clusters is bigger

in DS2. The larger datasets (DS(1 or 2 ) with the size of 4096, 2048, 1024 and 512) have

been obtained by scaling the datasets linearly.

Execution times (in microseconds) and the corresponding kernel speed-up values for

the low-frequency extraction algorithm are presented in Table 3.2.

Table 3.2: Performance results of CUDA and CPU versions of Low-Frequency Component
Extraction for scale level 1 on datasets (DS1 & DS2); times in microseconds

Dataset Number of Points Execution
Time (CPU)

Execution
Time (GPU)

Kernel Speed-up

DS1 4096 16777216 121286 735 165.01

DS1 2048 4194304 30739 228 134.82

DS1 1024 1048576 7742 94 82.36

DS1 512 262144 1958 52 37.65

DS2 4096 16777216 121267 735 164.98

DS2 2048 4194304 30406 230 132.20

DS2 1024 1048576 7710 95 81.15

DS2 512 262144 1956 54 36.22

The obtained results indicate achievement of up to a 165.01x kernel speed-up ratio in

dataset DS1 with the size 4096 in the kernel of low-frequency extraction. We obtained high

speed-up ratios as the number of points increased in the dataset. This result indicates that

the operation of the signal component extraction in the wavelet transform is suitable for

execution on CUDA devices.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Application of WaveCluster approach on fog datasets. (a) DS1 dataset. (b) ρ
= 3 and K = 35 for DS1. (c) ρ = 4 and K = 15 and for DS1. (d) DS2 dataset. (e) ρ = 3
and K = 21 for DS2. (f) ρ = 4 and K = 6 for DS2. (where ρ is the scale level and K is the
number of clusters detected)

The detected numbers of clusters (K) for varying scale level ρ are depicted in Figure

3.9. As shown in the figures, there is a negative correlation between the scale level, ρ, and

number of clusters K. Because resizing the dataset results in a coarser representation of the

original dataset, the number of clusters decreases with the increasing scale level ρ. This

phenomenon is a natural consequence of applying wavelet transforms on the low-frequency

component of the original signal.

3.6 Conclusion

In this chapter, we have investigated the study of data reduction methodologies for big

datasets both from the point of theory as well as application with special emphasis on par-

allel data reduction algorithms. Big datasets need to be processed and analyzed efficiently
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to extract useful information for innovation and decision-making in corporate and scientific

research. However, because the process of data retrieval on big data is computationally

expensive, a data reduction operation can result in substantial speed up in the execution of

the data retrieval process. The ultimate goal of the data reduction techniques is to save time

and bandwidth by enabling the user to deal with larger datasets within minimal resources

without sacrificing the features of the original dataset in the reduced representation of the

dataset at the desired level of accuracy.

Despite substantial improvements on processor technology in terms of speed, data

reduction algorithms may still not complete the required task in a reasonable amount of

time. Additionally, there may not be enough available memory resources to hold all the data

on a single computer. One of the possible solutions to overcome these issues and efficiently

mine big data is to implement and use parallel approaches [20] that work by dividing the

task into smaller subtasks and then executing them simultaneously to cope with memory

limits and to decrease the execution time of given task.

Graphical processing units (GPUs) are regarded as co-processors of the CPU and have

tremendous computational power. NVIDIA introduced CUDA, providing a programming

model for parallel computation on GPUs. In this chapter, we have presented a CUDA algo-

rithm of a wavelet transform that is used in the WaveCluster algorithm for reducing mag-

nitude of the original dataset. The WaveCluster approach first extracts the low-frequency

components from the signal using a wavelet transform and then performs connected com-

ponent labeling on the low-frequency component to find the clusters represented in the

dataset. The algorithm has a multi-resolution feature. Thus, the algorithm has the abil-

ity of detecting arbitrarily-shaped clusters at different scales and can handle noise in an

appropriate way.

Due to limited memory capacity of the video cards, CUDA devices may not be a remedy

to all problems in processing big data. Much larger datasets could be mined on distributed

memory architectures with the aggregate memory of the system using message passing APIs

such as MPI. We have also implemented the WaveCluster algorithm for distributed memory
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models using MPI [34] in which a master-slave model and replicated approach are followed.

A dataset that does not fit into the available memory is processed by taking advantage of

the aggregate memory on the distributed memory system.

Each parallel memory architecture has intrinsic advantages over other models. With

increasingly hybrid architectures, an MPI model (or a map-reduce model) can be used to

achieve data distribution between GPU nodes where CUDA functions as the main comput-

ing engine [37]. Hence, they can be considered complementary models for maximizing the

use of system resources.
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CHAPTER 4

A comparative study of the parallel wavelet-based clustering

algorithm on 3 dimensional dataset*

4.1 Abstract

Cluster analysis – as a technique for grouping a set of objects into similar clusters –

is an integral part of data analysis and has received wide interest among data mining spe-

cialists. The parallel wavelet-based clustering algorithm using Discrete Wavelet Transforms

(DWT) has been shown to extract the approximation component of the input data on which

objects of the clusters are detected based on the object connectivity property. However,

this algorithm suffers from inefficient I/O operations and performance degradation due to

redundant data processing. We address these issues to improve the parallel algorithm’s

efficiency and extend the algorithm further by investigating two merging techniques (both

merge-table and priority-queue based approaches), and apply them on 3-dimensional data.

In this study, we compare two parallel WaveCluster algorithms and a parallel K-means

algorithm to evaluate the implemented algorithms’ effectiveness.

4.2 Introduction

Cluster analysis is a widely-used technique that is employed to map a set of objects

into groups (i.e., clusters) based on their similar properties, such as spatial and temporal

similarity. Sheikholeslami et al. [1] introduced a novel unsupervised clustering approach,

called WaveCluster, utilizing a discrete wavelet transform (DWT) that enables data analysts

to perform clustering in a multi-level fashion. This method has the ability to discover

clusters with arbitrary shapes and can deal with outliers effectively.

∗Ahmet Artu Yıldırım, Daniel Watson



66

We previously reported a parallel wavelet-based clustering algorithm to process large

datasets using a message-passing library (MPI) for distributed memory architectures [2].

While this algorithm achieves linear behaviour in terms of algorithm complexity, it suffers

from inefficient I/O operations over 2-dimensional datasets and performance degradation

due to redundant data processing. In this study, we introduce two parallel wavelet-based

clustering algorithms that address these issues by benefiting collective MPI I/O capabilities

and efficient usage of data structures. Additionally, we cluster 3-dimensional datasets with

the new algorithms.

To illustrate the effectiveness of this approach, a comparison is performed between

our two new parallel WaveCluster algorithms and parallel k-means clustering algorithm.

Because one of the fundamental reasons of employing parallelism is to overcome space

restrictions by exploiting aggregate memory on the distributed memory systems, and to

obtain scalable performance, we take these two important metrics into consideration to

measure the performance of the parallel algorithms.

4.3 Wavelet Transforms

Wavelet transforms (WT) are a mathematical technique to analyze non-stationary data

in order to extract frequency information at different resolution scales from the original

signal. WTs are commonly used in variety of areas such as in image compression [3],

speech recognition [4], and in the analysis of DNA sequences [5]. WTs can be considered

a complementary approach to Fourier transforms (FTs). One disadvantage of FTs is that

they cannot determine which frequency band exists at any specific time interval in the

signal. Short-time Fourier transforms (STFTs) might provide a remedy for time-frequency

analysis by dividing the signal into successive segments and then performing an FT on each

one, but STFTs suffer from the requirement of choosing the ‘right’ window width, where a

narrow window leads to good time resolution but poor frequency resolution, and vice versa.

A more detailed discussion of this effect can be found in [6–8].

The main idea of the Wavelet transform is based on the dilation and translation of the

wavelet Ψ (‘small wave’ function) (i.e., the mother wavelet) continuously over the signal
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f(t) [9];

Wf (s, τ) =

∫ ∞

−∞
f(t)Ψ∗

s,τ (t)dt (4.1)

The mother wavelet Ψ is defined as;

Ψs,τ (t) =
1√
s
Ψ

(

t− τ

s

)

(4.2)

where s is the dilation or scaling factor determining the window width, and the factor

τ manages the translation of the wavelet function Ψ. 1√
s
is for energy normalization.

There are many mother wavelet functions, such as Haar, Daubechies, Morlet and Mex-

ican hat. Some mother wavelets are depicted in Figure 4.1. In order to be regarded as a

mother wavelet, the function must satisfy the two conditions in Equation 4.3a, which indi-

cates the net area of the corresponding wavelet graph must be zero, but the absolute area

cannot be zero (4.3b). Thus, it must be an oscillating function and have unit energy [10].

∫ ∞

−∞
Ψ(t) dt = 0 (4.3a)

∫ ∞

−∞
|Ψ(t)|2 dt = 1 (4.3b)
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Figure 4.1: Some mother wavelet functions: Haar, Daubechies 4, C3 Coiflet, S8 Symlet

In this chapter, the approximation coefficients will be referred to as the ‘low-frequency

component’, and the term of ‘high-frequency component’ will be used interchangeably as the

detail coefficients of the signal. By means of the mother wavelet function, detail coefficients

can be detected at different time intervals. However, we need another function used to

retrieve average coefficients of the signal, which is referred to as the scaling function (i.e.,

the father wavelet) Φ. The father wavelet is orthogonal to the mother wavelet in that

both wavelet functions form the basis for the multiresolution analysis. In fact, the father

wavelet is not considered as a ‘wavelet function’ because it does not satisfy the condition

(Equation 4.3a). However, by the combination of both wavelet functions, we gain the ability

to decompose the signal into low-frequency and high-frequency components.

Algorithm 12 shows the procedure to compute discrete wavelet transforms (DWTs) that

return the list of low-frequency components and high-frequency components. In DWTs, the

size of the input signal must be power of two in each dimension to perfectly decompose
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Algorithm 12 Discrete Wavelet Transform (DWT) algorithm

Require: Signal X with size N = 2level where level is integer
Ensure: List of low-frequency components A and high-frequency components D
1: A0 ← X
2: D ← ∅
3: for j = 1→ level do
4: [Aj ,Dj ] ← DWTΦ,Ψ(Aj−1)
5: end for

the signal, while this is not a requirement in continuous wavelet transforms (CWTs) due to

continuous nature of the signal and the factors of s and τ . Aj denotes the approximation

coefficients and Dj denotes detail coefficients at level j. After each level, the components of

Aj and Dj are extracted using Aj−1 in a recursive manner where A0 refers to the original

input signal.

Figure 4.2 shows the decomposition of a sample non-stationary signal by means of

Daubechies wavelet function. Because the width of the wavelet window is doubled at each

level, the time resolution is halved because of downsampling by two; thus we obtain coarser

representations of the original signal; however, the frequency resolution is doubled in that

the approximation components contain the lowest half of the frequency and the detail

components take the other half.

4.4 Wavelet-based Clustering Algorithm

Cluster analysis is a widely-used technique that is employed to map a set of objects

into groups (i.e., clusters) based on their similar properties, such as spatial and temporal

similarity. Sheikholeslami et al. [1] introduced a novel unsupervised clustering approach,

called WaveCluster, using DWTs that enable data analysts to perform clustering in a multi-

level fashion. The method can discover clusters with arbitrary shapes and can deal with

outliers (data points that don’t belong to any cluster) effectively.
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Figure 4.2: Wavelet decomposition of a sample non-stationary signal. (a) Original signal

(A0). (b) Approximated coefficients at level 1. (A1). (c) Approximated coefficients at level

2 (A2). (d) Approximated coefficients at level 3 (A3). (e) Approximated coefficients at level

4 (A4). (f) Detailed coefficients at level 1 (D1). (g) Detailed coefficients at level 2 (D2).

(h) Detailed coefficients at level 3 (D3). (i) Detailed coefficients at level 4 (D4).

WaveCluster defines the notion of a cluster as a dense region consisting of neighboring

objects (in the 8-connected neighborhood) in the low-frequency component of the data at

level j (Aj). The low-frequency component represents a lower resolution approximation of

the original feature space on which connected component labeling algorithm is performed
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to detect clusters at different scales from fine to coarse. Hence, the clustering algorithm

gains multi-resolution properties by means of the DWT. The corresponding algorithm with

its multi-resolution property is illustrated in Figure 4.3. The algorithm discards detail

coefficients and uses approximation values (low-frequency component) that are extracted

by the low-pass filter operation L[n]j at level j. The algorithm applies thresholding to the

approximation coefficients in the last level to remove the outlier data (i.e, nodata vertices

whose values are less than threshold).

F [n]

L[n]1

H[n]1

2 ↓

2 ↓

L[n]2

H[n]2

2 ↓

2 ↓ CCL Lookup 2j ↑

Original Space Level 1 Level 2 Original Space

Figure 4.3: Multiresolution property of the WaveCluster algorithm at level 2 on 1 dimen-

sional data

In our implementation, we use the Haar wavelet [11], whose scaling function is described

as:

φ(t) =















1 0 ≤ t < 1,

0 otherwise.

(4.4)

The Connected Component Labeling algorithm (CCL) is illustrated in Algorithm 13.

The algorithm traverses through a list of vertices V in the WaveCluster algorithm such that

the list is substituted by the low-frequency component of the input data. In the initialization

phase between Line 1 and 4 of the algorithm, all vertices are marked as unvisited and their

cluster numbers are set to a special value nocluster indicating no vertex is associated with
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any cluster. The algorithm uses stack S to avoid recursive calls and to keep track of the

connected vertices. When there is no element in the stack (stack is empty) in Line 6, the

algorithm finds another vertex that is not visited yet and has no nodata value. In Line 12,

the algorithm pushes the adjacent vertices vk to the stack where each vertex has no nodata

value. Thus, all connected vertices are traversed and assigned a unique cluster number to

represent distinct clusters over V . The algorithmic complexity of the CCL algorithm is

O(N) where N is the size of the input list.

Algorithm 13 Connected Component Labeling (CCL) algorithm

Require: V is a list of vertices with size N where the vertices vi, vj , vk ∈ V and vertex vk
is adjacent to vj. i, j and k are indices that identify the vertices over V .

Ensure: C stores the cluster numbers of the vertices where the value nocluster indicates
the vertex vi is not associated with any cluster.

1: for i = 1→ N do
2: visited[i] ← false
3: C[i] ← nocluster
4: end for
5: clusternumber ← 1
6: for all vi ∈ V where visited[i] 6= true and vi 6= nodata do
7: S ← push(S, vi)
8: while S is not empty do
9: vj ← pop(S)

10: visited[j] ← true
11: C[j] ← clusternumber
12: S ← push(S, vk) where vk is neighbour of vj and vk 6= nodata
13: end while
14: clusternumber ← clusternumber + 1
15: end for

In the final phase, mapping the units in the transformed feature space to the original

feature space, a lookup procedure is carried out that one object in the low-frequency compo-

nent at level j corresponds to 2(j×d) objects in the original signal where d is the dimension

of the data. If the object is not represented in the transformed feature space (outlier), the

object in the original space is assigned a nocluster value.



73

4.5 Parallel Wavelet-based Clustering Algorithms

We previously reported parallel wavelet-based clustering algorithm using a message-

passing library (MPI) for the distributed memory architecture. While the algorithm pos-

sesses linear behaviour in terms of algorithm complexity, it suffers from the inefficient I/O

operations and performance degradation due to redundant data processing. In this study,

we address those issues by improving two parallel WaveCluster algorithms that are based

on merge tables and priory-queues, respectively. The two parallel algorithms differ from

the way they handle the merging phase, which is fundamental in the context of parallelism.

In the previous algorithm [2], the master processor reads the whole 2-dimensional input

dataset and then distributes each stripe of data to the slave processors. This approach leads

to inefficient I/O operation. In order to minimize I/O times, both algorithms benefit from

collective MPI I/O capabilities in which each processor reads its local data in parallel

collectively via MPI File Read function. We also extend the study by processing larger

and 3-dimensional datasets.

4.5.1 Priority-queue Based Parallel WaveCluster Algorithm

Algorithm 14 Parallel WaveCluster Algorithm using priority-queue structure; where ρ is
target wavelet level and i denotes MPI process number i, that is, Aj,i is the partition of
low-frequency component in level j, Ci is the output of the CCL algorithm at the first
invocation, and then the output of Merge algorithm in loop, CRi is the final clustering
result of partition i, all processed by MPI processes in parallel

1: A0,i ← loadLocalDomain (A0, i)
2: Aρ,i ← DWT (A0,i, ρ, threshold)
3: Ci ← CCL(Aρ,i)
4: repeat
5: Gi ← swapGhostRegion()
6: Ci ← Merge(Ci, Gi)
7: until no cluster value is changed globally
8: CRi ← lookup(A0,i, Ci, ρ)
9: writeClusteringResult(CRi, i)

We implemented a new parallel WaveCluster algorithm whose merging phase is per-

formed using priority-queue data structure. As algorithmic improvements, in the merging

phase of the previous parallel WaveCluster algorithm [2], the master processor creates the
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merging table with respect to the adjacency relations of bordering data for each slave pro-

cessor. Then, the algorithm distributes the result that each processor updates its local

clustering numbers using the merging table. This approach leads to inefficiency due to the

idle time of slave processors during the execution of merging phase at master processor.

We employ cooperative merging operation between adjacent processors to alleviate this

execution inefficiency. In this approach, each processor maintains its local clustering re-

sult. Ultimately, this leads to a globally correct result as ghost regions are swapped among

adjacent processors.

The main algorithm is given in Algorithm 14. All operations in the algorithm figure

are performed in parallel. The partitions of A0 = A0,1 ∪ A0,2 ∪ . . . ∪ A0,n are distributed

evenly among the MPI processes in a striped fashion where n is the number of MPI pro-

cesses. Each process performs discrete wavelet transform using its own input partition data

independently and returns the local low-frequency component with level ρ in Line 2. The

value of input vertex over A0 has either 1 or 0 that indicates whether there is a vertex or

not at a particular index at A0. The algorithm uses threshold value to remove the outlier

vertices. The algorithm considers all vertices in the domain to be ’outliers‘ when threshold

value is 1. When the value is 0, the algorithm does not discard any vertex from the domain.

In Line 3 CCL function finds the connected vertices using local transformed feature space.
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Processor 2

Processor 1

Ghost Regions

Level 2

Level 1

Original Data

Figure 4.4: Parallel WaveCluster Algorithm with ghost data illustration using 2 processors

Subsequent calls, between Lines 4 and 7, deal with merging of the connected vertices

that might possibly run through the process borders. The parallel merge phase is performed

to merge the clusters globally, and propagates the minimum cluster number through the

connected vertices of the local domain. In this phase, the parallel algorithm first calls

swapGhostRegions in Line 5, whose goal is to exchange ghost data among the neighbouring

processes, as illustrated in Figure 4.4. The ghost region is a low-frequency component with

1-vertex thickness that is adjacent to the local low-frequency component of the neighbouring

MPI process. By swapping the ghost regions, the algorithm propagates the minimum cluster

number of the connected vertices through the processes, which possibly can span the whole

domain. Then, the process calls merge function in Line 6 to merge the clusters in the local

transformed domain using the latest ghost data.

In themerge function (shown in detail in Algorithm 15), we use priority queue structure

PQ to retrieve the minimum cluster number on the ghost data (Line 7), and stack S to

propagate the cluster number among the connected vertices. If the cluster number of the

popped ghost vertex is smaller than the neighbouring vertex of the local domain (Line 12),
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Algorithm 15 Priority-queue based cluster merging algorithm

Require: C is a list of local cluster numbers of the vertices with size N where cluster
numbers of ci, cj , ck, cg, ∈ C for the vertices vi, vj , vk and vg respectively. G is the
ghost region retrieved from the neighbouring MPI processes where the vertex vg ∈ G,
PQ is the priority queue structure whose function pop(PQ) returns and removes the
vertex with minimum cluster number at the priority queue, S is stack structure.

Ensure: The algorithm returns the updated list of clustering result C
1: ischanged ← false
2: for i = 1→ N do
3: visited[i] ← false
4: end for
5: PQ ← push(PQ, G) where vg ∈ G and cg 6= nocluster
6: while PQ is not empty do
7: vg ← pop(PQ)
8: S ← push(S, ci) where ci is neighbour of vg and ci 6= nocluster
9: while S is not empty do

10: cj ← pop(S)
11: visited[j] ← true
12: if ck < cj then
13: C[j] ← ck
14: ischanged ← true
15: S ← push(S, ck) where vk is neighbour of vj and ck 6= nocluster
16: end if
17: end while
18: end while

the merge function updates all the connected vertices’ cluster numbers, and then marks

those vertices as visited –which insures that those vertices are never visited for one iteration

of the merging phase only. This merging phase runs until all clusters are detected globally,

keeping track with the variable ischanged locally and by reducing all ischanged variables

to the single globalischanged variable via MPI Reduce function globally.

Finally, the lookup procedure is called in Algorithm 14 in Line 8 to map the vertices

in the transformed feature space to the original feature space. Those that are considered

‘outliers’ based on threshold value, are marked with special nocluster value, and the results

are written to the disk in parallel.
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4.5.2 Merge-table Based Parallel WaveCluster Algorithm

The second parallel WaveCluster algorithm is based on merge-table which is similar

to the previous algorithm introduced in [2]. We observe that memory consumption on

the merging phase is too high due to data sparsity because of the nature of lookup table

usage with O(N) space complexity where N is the number of all vertices on input dataset.

We addressed this memory consumption issue using a hash table storing only the cluster

numbers of vertices which do not have nodata values.

The main phases of the merge-table based WaveCluster algorithm are shown on Al-

gorithm 16. The merge table is the data structure that stores one record for each vertex

and each record associates the initial cluster number with the final cluster number. At each

iteration to merge the local clustering results, the algorithm repeatedly propagates the min-

imum cluster number through the connected vertices in the local transformed domain. The

algorithm maintains the merge table using a hash table rather than the lookup table used

in the previous implementation to keep track of the proposed cluster number that is smaller

than the current cluster number. The hash table key is the initial cluster number and the

associated values are the proposed/final cluster number and the coordinate information of

the vertex residing on the ghost data. This hash table is initialized before the MPI process

starts performing the merging phase. In subsequent iterations, this merge table is updated

based on the ghost data in updateMergeTable function. The merging phase continues until

no changes occur in the merge tables globally. Finally, using this merge table, each process

changes the cluster numbers of the connected vertices to reflect the correct cluster numbers

in updateClusterNumbers, an operation performed using a stack data structure.

4.6 Performance Evaluation

In this section, we present the performance comparisons of the two parallel WaveCluster

algorithms by means of the elapsed algorithm time and their speed-up ratios for synthetically

generated 3-dimensional datasets. We implemented a synthetic data generation program

that allowed us to minimize application-specific artifacts and concentrate more on properties

and benefits of proposed algorithms. Generated input datasets have equal length for each



78

Algorithm 16Merge-table based Parallel WaveCluster Algorithm; whereMT is the merge-
table
1: A0,i ← loadLocalDomain (A0, i)
2: Aρ,i ← DWT (A0,i, ρ, threshold)
3: Ci ← CCL(Aρ,i)
4: MT = initializeMergeTable(Ci)
5: repeat
6: Gi ← swapGhostRegion()
7: MT ← updateMergeTable(Gi,MT )
8: until any merge table is not updated globally
9: Ci ← updateClusterNumbers(Ci,MT )

10: CRi ← lookup(A0,i, Ci, ρ)
11: writeClusteringResult(CRi, i)

three dimension and power of two as a condition of discrete wavelet transform to fully

exploit multi-resolution analysis. The vertex value of dataset is either 1 with probability

0.3 or 0. Thus, the objects over the dataset are evenly distributed. The discussion about

the effects of data distribution on the parallel WaveCluster algorithm can be found in [2].

In these experiments, we generated three datasets named Dataset1, Dataset2 and Dataset3

where number of objects –vertices with value 1– are nearly 40K, 80K and 161K, respectively.

The details of the datasets are shown in Table 4.1.

Table 4.1: Datasets used in the experiments
Name Size Number of

Objects

Dataset1 512 MB 40,268,934

Dataset2 1 GB 80,536,099

Dataset3 2 GB 161,067,172

We compare the parallel WaveCluster algorithm that has better benchmark results

with the common parallel clustering algorithm – parallel K-Means algorithm. The experi-

ments are conducted on a cluster where each node is equipped with two Quad-Core AMD

Opteron(tm) Processor 2376 (8 total cores/node) and 16 GB memory. The interconnection

among the nodes is achieved over double data rate (DDR) infiniband. The main perfor-

mance measures that we consider are then running time of the parallel algorithms and their

speed-up ratio with respect to serial execution of the algorithm.
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Figure 4.5: Parallel WaveCluster Algorithms with varying input dataset files and wavelet

levels

In both parallel WaveCluster algorithms, the input on the original space is initially

evenly distributed among p processors in a striped fashion. Figure 4.5 shows the benchmark

results of the two parallel WaveCluster algorithms with different merging approaches called

the priority-queue approach and the merge-table approach. The experiments are conducted

for wavelet levels 1 and 2 for all datasets. Both parallel WaveCluster algorithms do not scale

well for wavelet level 1 because of the high communication time in exchanging the border

data. Furthermore, the run time of the algorithm starts to increase when more than 16

processors are used for Dataset1 and Dataset2, and 8 processors for Dataset3. The reason

is that the communication time dominates the computation time that is required to obtain

a globally correct result. Although the algorithms do not pose effectiveness in the context

of parallelism for wavelet level 1, we did not observe this behaviour when the wavelet level
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is 2.

Note that the number of objects to be exchanged between the neighboring processes are

decreased by factor of 2d at each level where d is the dimension of the input dataset. In our

experiments, the communication time is decreased by a factor of 8 as wavelet level increases.

The communication overhead is reduced with the cost of coarser clustering analysis of

original data. This shows that the wavelet level highly significantly affects the scaling

behaviour of the parallel algorithm due to adverse effect of communication time. While we

obtain identical speed-up results on Dataset1 and Dataset2, in the largest one, Dataset3,

the merging approach performs better than the priority-queue approach when the wavelet

level is 2.

We performed comparison experiments between the two parallel WaveCluster algo-

rithms and the parallel K-means algorithm [12]. We have chosen the parallel K-means

algorithm as a representative of a classical parallel clustering algorithm. We define the

speedup in comparisons as a fraction of the execution times of the parallel K-means algo-

rithm relative to the parallel WaveCluster algorithm for a varying number of processors and

wavelet levels. The speed-up equation is shown below:

Sp =
Tpkmeans, p

Tpwavecluster, p

(4.5)

Table 4.2: Execution times (in seconds) of the parallel WaveCluster (PWC) algorithms
using priority queue (PQ) and merge table (MT) approaches for wavelet levels (ρ) 1 and 2,
and the parallel K-means algorithm with a varying number of processors (np) on Dataset1

Exec. Time/np 1 2 4 8 16 32 64

P. K-means 2387.46 395.15 144.31 98.53 45.67 24.98 20.01

PWC-PQ (ρ = 1) 12.59 8.06 5.33 4.16 3.86 4.95 8.17
PWC-PQ (ρ = 2) 10.19 5.11 2.56 1.29 0.67 0.37 0.31

PWC-MT (ρ = 1) 13.10 7.83 4.50 2.91 2.77 4.54 8.62
PWC-MT (ρ = 2) 10.18 5.09 2.55 1.28 0.66 0.37 0.29
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Figure 4.6: Speed-up Comparison between Parallel WaveCluster Algorithms and Parallel

K-Means algorithm; where wavelet levels 1, 2 on Dataset1, K = 20

The parallel K-means algorithm must be configured to detect K distinct clusters where

K is fixed. However, the number of clusters detected by the WaveCluster algorithm is

determined by the wavelet level and the threshold value which is used to remove outlier

objects that do not belong to any clusters. The performance of both parallel WaveCluster

algorithms can be better seen in Table 4.2 for varying processors and wavelet levels. The

execution time of parallel K-means algorithm are also included. Note that both parallel

WaveCluster algorithms perform significantly better than parallel K-means algorithm on

finding clusters. Figure 4.6 shows that both parallel WaveCluster algorithms are nearly 70

times faster than the parallel K-means algorithm on wavelet level 2 and 8 times faster on

wavelet level 1 where maximum number of processors are utilized. We choose the parameter

K = 20 in the experiments for K-means algorithm. Because the speed-up values are

measured in terms of parallel performance of the algorithms (
Tpkmeans, p

Tpwavecluster, p
), a slight speed-

up drop occurs because parallel K-means algorithm (to which our algorithm is compared)

experiences performance comparatively greater increase when 4 processors are used – even

though the wall clock time decreases in both cases. This result shows the effectiveness of
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the parallel WaveCluster algorithm when compared to the parallel K-means algorithm.

4.7 Conclusion

Parallel WaveCluster algorithms with their detailed description and comparison study

have been presented here. We have improved upon previous work by investigating two

different merging techniques, namely priority-queue and merge-table approaches that play

important role in the parallel algorithm. These parallel algorithms find distinct clusters

using discrete wavelet transformation on distributed memory architectures using the MPI

API. Due to high compute times, we did not obtain scalability when wavelet level is 1.

However, the scaling behavior is acquired for wavelet level 2.

We have chosen parallel K-means algorithm as a classical parallel clustering algorithm

to compare the performance of two parallel WaveCluster algorithms. As an inherent prop-

erty of the WaveCluster algorithm opposed to the K-means algorithm, it is capable of

removing outlier objects that do not belong to any clusters. The effectiveness of the par-

allel WaveCluster algorithms as compared to the parallel K-means algorithm are shown in

the study to have achieved up to 70x speed-up ratio where wavelet level is 2 on Dataset1.
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CHAPTER 5

HydroGate: A Service-oriented Gateway to HPC Resources

to Facilitate Environmental Research

5.1 Abstract

Environmental researchers, modelers, water managers, and users often require access

to high performance computing (HPC) resources for running data and computationally in-

tensive models without being an HPC expert. To remedy this, science web portals have

been created that integrate scientific models, data analysis, and tools to visualize results via

web browsers. in this study, we present a general-purpose science gateway service named

HydroGate created to access heterogeneous HPC storage and computational resources. Hy-

droGate abstracts away many details and complexities involved in the use of HPC systems

including authentication, authorization, data and job management, and encourages the

sharing of scientific applications and promotes collaboration among scientists via unified

access to HPC centers. HydroGate has been developed as part of the CI-WATER project

which aims to broaden the application of cyberinfrastructure (CI) and HPC techniques into

the domain of integrated water resources modeling. HydroGate is capable of dealing with

various batch job schedulers and CI storage systems through a JSON-based manifest.

5.2 Introduction

Cyberinfrastructure provides scientists a set of middleware services to access software

tools and data for collaborative scientific research over the high-speed network [1]. This

work is part of the CI-Water project that has developed cyberinfrastructure to enhance

access to data and high performance computing for water resources modeling. We present

a science gateway web service named HydroGate that facilitates the ability of environ-
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mental researchers, modelers, water managers, and users to benefit from high-performance

computing (HPC) resources for running computationally intensive models without an HPC

expert. Integration of data, hardware, simulation models and software tools to visualize

and disseminate results impact science into policy, management, and decisions. In cyberin-

frastructure, state-of-the-art high-performance computing (HPC) facilities play important

role for running computationally or memory intensive simulations.

At the core of cyberinfrastructure system as well as in grid computing [2], Service-

Oriented Architectures (SOAs) play an important role whose goal is to achieve loose coupling

among interacting software agents [3]. With a uniform interface using standard HTTP

methods (i.e. PUT, GET, POST, DELETE ) and a lightweight infrastructure, Restful web

services [4] encourage widespread adoption among gateway designers [5, 6].

In this study, we present a science gateway for heterogeneous HPC storage and com-

putational resources. This gateway software, named HydroGate, is a Restful web service

that takes input via HTTP methods, and then performs tasks on the selected HPC center

on behalf of the web service user. HydroGate abstracts away many details and complexi-

ties involved in the use of HPC systems including authentication, authorization, data and

job management via unified access to HPC centers. It virtualizes a variety of storage and

job scheduler systems in which the web service user accesses all these resources through a

unified web interface and uses a system-independent JSON manifest to describe the HPC

jobs.

5.2.1 Problem Description

1. HPC centers have a mix of heterogeneous job resource managers and scripts used

to define HPC job parameters (i.e., job limits, program parameters, and number

of compute nodes and processors to utilize) and security requirements in accessing

the resources. It is an important feature for a HPC gateway to support widely-

used software systems on HPC centers and to allow gateway users to access HPC
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centers’ computing and storage resources through a unified application protocol and

job description language in a secure fashion.

2. Storage systems are utilized in cyberinfrastructure systems that provide durable, se-

cure and scalable scientific data storage to compute services over the network.

3. Another challenge [7] is that a HPC gateway service should enable scientific applica-

tions to be rapidly deployed on computational resources, exposing these capabilities

as a web service to science web portals and applications.

4. Optimization is a desirable feature in handling high traffic for gateway services. We

optimize data retrieval operations by transferring large package files without staging

files via data streaming directly to HPC centers. This approach avoids the need to

cache the file before transferring, thus eliminating redundant I/O.

5.2.2 Our Solutions to the Problems

1. HydroGate provides a single point of access to the HPC centers with PBS [8] and

SLURM [9] job resource managers using a JSON-based manifest to define HPC jobs

in which the data communication between HydroGate and HPC centers is achieved

using a secure shell (SSH) [10] for secure remote login and remote command execution.

2. HydroGate transfers the input files required for HPC execution from these cyberin-

frastructure storage servers to the HPC center’s storage servers. The input files are

compressed in a zip format which is termed a package in the context of CI-Water. An

input package can reside on a local disk, an SFTP server, a web server, a distributed

file system manager, or online cloud storage system. HydroGate recognizes the un-

derlying storage protocol using the URL’s scheme and begins transferring files over

the secure shell (SSH) to HPC centers.

3. Scientific applications are installed in the central location of HPC center that Hydro-

Gate authorize users to access these applications in a unified fashion. Each scientific
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application is installed once on the HPC center and then is used by all accounts.

Besides, no HydroGate software component need be installed – particularly on HPC

systems – other than scientific programs (zero-installation philosophy). This is a key

feature of HydroGate that distunguishes it from other toolkits [5, 6, 11].

4. HydroGate is a database-driven web service, where it holds the records of HPC cen-

ters, service users, program parameters, HPC jobs, package information, etc., and

establish many connections to HPC centers using secure shell (SSH) where the estab-

lishment of connections to HPC centers as well as to the database server are expensive.

We implement resource pooling mechanisms for the intent of minimizing connection

resources on memory.

5.2.3 Functionalities of the HydroGate

HydroGate utilizes the secure shell (SSH) protocol which helps standardize access to

HPC centers. It provides flexibility, interoperability and easy integration with new HPC

resources. The core functionalities of HydroGate are listed below:

• Security using token-based authentication to the HydroGate service and SSH-based

authentication to HPC centers

• File transfer back and forth between HPC storage and CI storage, which is trans-

parent to the service user

• Submission of jobs that the user has permission to perform on the specified HPC

center

• Monitoring of job status by means of a URL callback mechanism, carried out by

HydroGate to avoid requiring end users to poll job status continuously, that notifies

service users when the status of job is changed and the output package is transferred

to CI storage

• Automatic batch script generation based on the HPC center preferences and

program requirements using a JSON-based manifest
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• Discovery functions to determine the capabilities of HPC centers, HPC programs,

program parameters and so on that the gateway user can query.

5.3 Related Works

Gateway software services have been proved as a way to facilitate interaction and

integration with the complex systems for the service users. Although the feature of loose

coupling is necessary in building a successful web service due to the interoperability nature

of the Web, gateway services also impose a well-defined software architecture and protocol

to communicate with the underlying heterogeneous systems.

Unicore [11] aims to provide a seamless batch interface for German HPC centers in

a Grid Computing Environment. The goals of building such a software include allowing

the service users to create, manipulate and control complex batch jobs for the execution at

heterogeneous systems, use of existing and emerging technologies with minimal intrusion

into existing computing practices and policies. However, because Unicore relies on a tightly-

coupled architecture, Unicore clients requires its server components to be installed on HPC

centers.

NEWT [5] is a web service that is used to access HPC resources in a web browser

environment using AJAX and JSON at the National Energy Research Scientific Comput-

ing (NERSC) center. It exposes the similar resources as URIs with HydroGate including

authentication, files/directories, batch jobs and UNIX shell commands. NEWT provides

a fine level of access to the resources, for example, it allows the service clients to down-

load and upload files at a given URI which are mapped to actual filesystem resources on

the backend systems and allows to execute jobs given parameters. Although this approach

might lead to more flexible access to the resources at HPC centers, without a higher level

of abstraction, it might increase the complexity in the integration of future HPC centers

due to the heterogeneous nature of these systems. Similar to UNICORE, NEWS also relies

on software components to be installed on server side, which is Globus grid toolkit [12] for

accessing compute and data resources.

GISolve [13] provides a set of REST Web APIs for CyberGIS [14] authentication,
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application integration, and cyberinfrastructure-based computation. As an architectural

difference with HydroGate, GISolve is a gateway as a widely accessible platform mainly

benefiting end-users to access CyberGIS resources, on contrary, HydroGate advocates a

diverse architecture that might contain a various types of software systems and protocols

in order to be used by scientific portal applications through an unified interface.

5.4 Science Grid Gateway to HPC Centers

Accessing and using High Performance Computer (HPC) centers pose inherent chal-

lenges for non HPC specialists. HPC users typically perform authentication, data transfers,

program installation and job management using a terminal user interface and difficult to

use commands whose communication is established over secure shell (SSH). To remedy

this problem, science web portals [13, 15, 16] have been introduced that integrate scientific

models, data analysis and tools to visualize results via web browsers.

Grid computing provides a software abstraction layer that isolates all of the details

through a unified interface to access heterogeneous computer systems (i.e. multiple HPC

centers). The Globus Toolkit has emerged as a de Facto Standard for grid computing [2]

by providing a set of tools for application programming (API) and software development

kits (SDKs). However, given the steep learning curve for service commands and program

interfaces to use Globus directly [17], challenges to integrating Globus with grid platforms

and, difficulties in solving the sociological and institutional problems, researchers seek easy-

to-use and concise APIs in the form of URLs to expose grid computing capabilities over

the web [5,6,11,18]. Moreover, HPC users are mostly obliged to use existing software tools

installed on HPC centers that highly affects the design of HPC gateway services.

HydroGate is designed to transcend difficulties in accessing HPC centers via an unified

RestFul interface and allows rapid integration of HPC centers with heterogeneous software

systems for science web portals. In this model, administrators are in charge of installing

programs onto HPC centers and entering necessary records to the HydroGate database to

introduce the scientifi applications and the parameters to the system. In this section, we

report the inner-workings of the web service and show a typical Cyberinfrastructure (CI)
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architecture that HydroGate is designed to run on.

5.5 Architecture

HydroGate has been developed as part of the CI-WATER project which aims to broaden

the application of cyberinfrastructure and HPC techniques into the domain of integrated

water resources modeling. Initial implementation of HydroGate is as part of the CI-WATER

web portal which is the service user of HydroGate. However we believe that HydroGate

can be utilized by not only water resource modeling, but can also serve as general-purpose

grid middleware for scientific web portals/applications.

A number of web standards are used in science grid gateways such as Java servlet

engine [19], OGSA [20], WS-Resource framework [21], SOAP [22] and WPS [23]. While

each has its own advantages and disadvantages for grid gateway programmers, we adopt

the Representational State Transfer (REST) architectural style that attempts to minimize

latency and network communication, while maximizing the independence and scalability of

component implementations [24]. RESTful web services also encourage the integration of

web service and client applications through standard HTTP methods (i.e. GET, POST,

PUT, DELETE).

Figure 5.1 shows a Cyberinfrastructure (CI) architecture that HydroGate is designed

to run on. A CI user interracts with the CI system over a modern web browser. The web

server passes a user’s HPC-related requests to the HydroGate web service that performs on

behalf of the user on the specified HPC center. The CI web server stores all the package

files on a CI storage. There are several approaches to storing files on the CI storage in-

cluding a local file system, distributed file system, SFTP server, SCP server or online cloud

storage. The distributed file system that HydroGate can interoperate is iRods. iRods [25]

is used for managing, sharing, publishing and preserving distributed data collections as a

cyberinfrastructure. Data are distributed among a varying type of storage systems across

geographically-dispersed data sources.

In order to submit a HPC job, a user defines a set of input files, a model/scientific

program to run, parameters of the HPC job and optionally a HPC center that the user
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Figure 5.1: A Cyberinfrastructure architecture in submitting job to HPC centers using
CI server, CI storage system, HydroGate and multiple HPC centers; (1) CI user requests
token from HydroGate and submit a job (2) CI server uploads the input package to CI
storage server or creates the input package using existing files on the storage (3) HydroGate
transfers the input package to a specified HPC center (4) HydroGate creates job script on
the HPC center (5) After the job is completed, HydroGate creates the output package on
the HPC center and transfers it to the CI storage

is allowed to utilize, and ultimatelly submits a HPC job to the CI server using the web

interface. Then, the CI server creates a zip file (a package) containing all required input

files on the CI storage and authenticates to HydroGate through a token-based authentication

mechanism. Job submission is carried on in two steps: Transferring the package from the

CI storage to the HPC storage via upload package function and describing the HPC job to

Hydrogate (i.e. input package, program name, program parameters, number of compute

nodes and processors to utilize etc.) via submit job function. This approach provides us a

package-reusing capability in which redundant package transfers are avoided for the HPC

job requests using the same input files, but differ by job/program parameters. For example,

the user can instruct the gateway to transfer the input package to a specified HPC center and

then run the models on the uploaded package that differs by the parameters such as number
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of processors used during the run or program parameters. After the invocation of submit job

function, HydroGate creates a job script file based on the specifications of the underlying

job scheduler, submits the job the HPC center and starts monitoring the job status. As the

status of the job changes, HydoGate updates the related record on the HydroGate database.

Whenever the job execution is completed on the HPC center, HydroGate creates the output

package containing the output file of the job and automatically transfers the output package

from the HPC center to the CI storage.

CI Server
HydroGate

Server

HTTPS

HPC Centers

SSH

CI Storage System

GSI

SSH

Figure 5.2: Security protocols among the software components in the architecture of Hy-
droGate

Figure 5.2 shows the security protocols used in data transportation among the software

components in the architecture. The Restful interface exposed by HydroGate is accessed

over HTTPS protocol for secure transformation of the messages. Although we take advan-

tage of SSH in accessing the HPC centers, the network protocol between HydroGate and the

CI storage system depends on the underlying storage software system. If the CI storage is

consists of SCP or SFTP server, SSH protocol is used in exchanging data, however, if iRODS

is utilized, HydroGate benefits Grid Security Infrastructure (GSI) for authentication.
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5.5.1 Authentication

Authentication is an important aspect of the security in the design of web services. In

a grid environment, it is required for a service to handle multiple security mechanisms [26].

HydroGate applies two authentication methods; the one required when a user accesses to

the service using token-based authentication and the other one in accessing HPC resources

using the secure shell (SSH) [27].

Given the user name and password identifying a user using request token function over

HTTPS channel, HydroGate signs and issues a security software token which is one-time

password that is valid for a constant period of time to achieve higher security. This approach

allows the CI server not to hold user credential information in memory during the use of

service and simplifies the access to HydroGate.

HydroGate establishes the connection to the HPC centers using SSH-based authenti-

cation that is ubiquitous for encrypting and transferring data and commands over insecure

network. Because establishing SSH connections is memory-intensive and relatively slow op-

eration, we implement SSH pooling mechanism holding the existing connections that aims

to reuse existing SSH connections whenever necessary with minimum SSH connections.

We have considered two ways for the gateway to authenticate science client applications;

through an individual account that every science web portal user must have, or a general

account in which there is one HPC account used in accessing a particular HPC center for

all service users that have right to access. Because HydroGate modifies the structure of

the home directory (i.e. creating package and job folders, installing scientific applications

locally), the implications of files being changed in individual user accounts or a general

account need to be evaluated. We implement general account approach where user records

including credential information, access rights etc. are stored on HydroGate database.

Considerations are:

1. In the case of an individual account, possible changes to files being used by HydroGate

by the user working separately from HydroGate.

2. The burden associated with establishing an HPC user account.
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3. Some CI users may be reluctant to share their HPC account with the science web

portal.

4. Maintaining separate SSH connections for each user in the connection pool may be

less efficient.

On the other hand, there are also the concerns of many HPC centers that they may

want to know who is using their system that the individual account approach might be

necessary in this case.

5.5.2 Job Description Language

Job scheduler systems are used to allocate computer cluster resources and schedule the

execution of batch jobs on HPC centers. A typical HPC user is required to create a script

file that contains job limits, executable path, program parameters etc. and then run the

designated tool of the job scheduler to submit a job to the system by passing a script file

as parameter.

We implement a general-purpose JSON-based HydroGate job description language

(HJDL) that defines a batch job including programs to run, program parameters and

scheduler-specific information. The HJDL language not only supports to describe a single

batch job, but also capable to define multiple HJDL jobs called a workflow whose programs

run sequentially defined in single script file.

HJDL script text is passed to submit job functionas a parameter. Using HJDL script,

HydroGate creates a corresponding job script file on a HPC center based on the specifica-

tions of the job scheduler system that can be either PBS or SLURM in the current version

(Figure 5.3). We store HPC center specific parameters and template scripts on HydroGate

database. This approach provides us flexibility in which each job scheduler system on a

HPC center might define its own settings, for example, a queue name that the project is

allowed to use and required modules needs to be loaded before the batch job runs.

There are a set of defined variables in the template files whose values are set by Hy-

droGate when creating a job script on the file system of the HPC center. Definition of the
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HydroGate Job Description FIle

PBS Script File SLURM Script File

{ 

 "program": "pitremove", 

 "walltime": "00:00:50", 

 "outputlist": ["output.tif"], 

 "parameters": { 

   "nodes": 4, 

   "ppn": 2", 

   "z": "logan.tif", 

   "fel": "output.tif" 

 } 

}

#!/bin/bash 

 

#PBS -N JOB76 

#PBS -e stderr.log 

#PBS -o stdout.log 

#PBS -l nodes=4:ppn=2 

#PBS -l walltime=00:00:50 

 

mpiexec -n 8 pitremove -fel 

output.tif -z logan.tif 

. 

.

#!/bin/bash 

#SBATCH --job-name=JOB76 

#SBATCH --output=stdout.log 

#SBATCH --error=stderr.log 

#SBATCH -N 4 

#SBATCH --ntasks-per-node 2 

#SBATCH --time=00:00:50 

 

./rc/tools/utils/dkinit 

use -q OpenMPI 

mpiexec -n 8 pitremove -fel 

output.tif -z logan.tif 

. 

.

Figure 5.3: HydroGate Job Description Language (HJDL) script and the corresponding
batch scripts of PBS and SLURM

Table 5.1: Template variables with their definition
Template Variable Definition

$HGW JOB NAME Uniquely assigned job name

$HGW ERROR LOG FILE File name of error log

$HGW OUTPUT LOG FILE File name of standard error

$HGW NODES Number of nodes

$HGW PPN Number of processor per node

$HGW WALLTIME Maximum allowed walltime

$HGW RUNNER Program runner or interpreter

$HGW RUNNER PARAM Runner/Interpreter parameter

$HGW PROGRAM Path of the scientific program to run

$HGW PROGRAM PARAM Program parameter

$HGW RESULT ZIP FILE NAME Name of output package file

$HGW RESULT FILE LIST Output files contained in the output package

template variables is shown in Table 5.1. HydroGate is capable to run a variety of programs

including Python programs and MPI programs. For example, to run a Python program on
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a HPC center, the variable of $HGW RUNNER set to python which is interpreter of Python

programs and $HGW RUNNER PARAM contains mostly empty string. However, in case

of MPI, $HGW RUNNER is mpiexec and $HGW RUNNER PARAM includes MPI options

such as number of processors that the MPI program requires to run on. We show a sample

PBS template file to describe single batch job in Listing 5.1.

Listing 5.1: PBS Template

#!/ b in / sh

#PBS −N $HGW JOB NAME

#PBS −A CI−WATER

#PBS −e $HGW ERROR LOG FILE

#PBS −o $HGW OUTPUT LOG FILE

#PBS − l nodes=$HGWNODES: ppn=$HGWPPN

#PBS − l wa l l t ime=$HGWWALLTIME

cd $PBS O WORKDIR

$HGWRUNNER $HGWRUNNERPARAM $HGWPROGRAM $HGWPROGRAMPARAM

rc=$?

[ $ r c −ne 0 ] && echo $ r c > $HGW ERRORCODE FILE && zip −q s td e r r .

l og s tdout . l og && exit $ r c

echo 0 > $HGW ERRORCODE FILE

z ip −q $HGW RESULT ZIP FILE NAME $HGW RESULT FILE LIST
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5.5.3 Resource Pooling Mechanism

HydroGate is a multi-threaded web service maintaining a thread pool with a number of

work thread items that are managed by the scheduler component. The goal of this thread

pool is to minimize the turnaround time. The scheduler passes compute and connection

intensive operations to the work item. If the number of allowed work thread items is

exceeded, the request is queued to the FIFO queue to be assigned later when an available

work item exists. Currently, we take advantage of thread pool in transferring the package

between HPC centers and CI storage systems and submitting batch job.

HPC Work Thread

Pool 

Scheduler

Idle

Idle

Idle

HydroGate Database

Available SSH

Connections

HPC Connection #1

HPC Connection #2

HPC Connection #3

HPC Connection #4

(1)

(2)

(3)

1. Scheduler directs the request to an

available thread

2. Thread retrieves a ready-to-use

SQL connection if available, otherwise

pool component creates a connection

3. Thread obtains required information

from HydroGate database

4. Thread retrieves an available SSH 

connection from SSH pool to connect 

to a HPC center. Otherwise it creates a 

SSH pool using the credential information 

obtained from HydroGate database

Busy

Busy

SQL Connection #1

SQL Connection #2

SQL Connection #3

Available SQL

Connections

(4)

Figure 5.4: HydroGate Pooling Mechanism

Because HydroGate accesses HPC centers using the secure shell, these precious re-

sources needs to be used effectively. To mitigate that, we maintain SSH resource pool

containing HPC specific ready-to-use SSH connections. When an HPC connection is re-

quested from the work thread pool for a HPC center, the SSH connection pool checks and

then returns if the available connection exists. Otherwise, the SSH connection pool con-

structs the connection and adds it to the pool. This mechanism is shown in Figure 5.4.

HydroGate also maintains a pool for SQL connections to be a fully capable web service

with minimum operating system resources.
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5.6 Case Study

In this section, we present a case study to demonstrate the usage and show its effec-

tiveness in accessing HPC centers. We choose TauDEM (Terrain Analysis Using Digital

Elevation Models) software suite [28] that is a set of Digital Elevation Model (DEM) tools

for the extraction and analysis of hydrologic information from topography as represented by

a DEM. TauDEM consists of a set of command line MPI [29] programs that are capable to

run on HPC centers as well as desktop computers. We installed TauDEM programs on USU

HPC center for demonstration. HydroGate is a database-driven gateway service. Thus, to

introduce TauDEM programs to Hydrogate, we inserted required records of the TauDEM

executables (etc. installation locations, parameters of the programs) on the HydoGate

database.

In science, a workflow that defines a set of consecutive operations to achieve a particular

objective, is common. HydroGate supports a workflow mechanism through its JSON-based

job definition language (HJDL). We compute the contributing area of the selected region

using aread8 program. However, aread8 requires a D8 flow directions grid as input that

is produced by d8flowdir program, in turn, d8flowdir depends on pitremove program to

obtain the hydrologically correct elevation grid. In this case, the workflow to generate the

contributing area consists of a set of atomic operations to be executed on the HPC centers.

The following demonstrates the steps of the HydroGate web service functions calls to

compute aread8 workflow using USU HPC center which is using SLURM job scheduler

system. We take advantage of iRODS storage system installed in Utah State University to

store the packages in a distributed fashion. The web service functions are invoked using

curl [30] command line tool. Variable naming conventions used in the listings is shown in

Table 5.2.

1. Token Request: Service users need to obtain a security token to access the services

of HydroGate. The token is only valid for a limited time and then expires. Given

credential information as username and password, request token function returns token

string and expire duration in minutes. username parameter is the account name of a
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Table 5.2: Variable naming conventions in the listings
Variable Definition

$HOSTNAME HydroGate host address

$TOKEN Token string

$USERNAME Account name of the user

$PASSWORD Account password of the
user

$JOBDEF Batch job definition

service user that is managed by HydroGate. Error convention is the same throughout

the returned JSON data in which if the value of status key is failed, description key

shows the error information. However, the detailed error information is logged on the

server for security concerns.

Listing 5.2: Token request script

Input :

cu r l −k −X POST −−data ”username=$USERNAME&password=$PASSWORD

” https : //$HOSTNAME/hydrogate / r eques t token /

Output :

{” l i f e t im e ” :500 , ” s t a tu s ” : ” su c c e s s ” , ” token” : ”$TOKEN” , ”username

” : ”$USERNAME”}

2. Package Upload: As a prerequisite of the batch submission, the package file

containing the input files needs to be transferred from the CI storage –which is using

iRODS in this case– to a HPC center storage. HydroGate follows a asynchronous

processing model that upload package returns immediately once the task is assigned

to one of the thread in the thread pool. The upload package function returns a

package ID that identifies the package uniquely on the all HPC centers that HydroGate

recognizes. The HPC center that the package is to be transferred to is given in hpc

parameter. The package key contains the URL of the package that in this case, it’s the

location of the package in iRODS file system. HydroGate is also capable to transfer
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the packages in various protocols (e.g HTTP , HTTPS and FTPS) that is recognized

using the schema name the URL string.

Listing 5.3: Package transfer script

Input :

cu r l −k −X POST −−data ” token=$TOKEN&package=/usu/home/ rods

/75 ec4ba2b75c316c64f4c6ba /dem31937741937071 . t i f . z ip&hpc=

USU” https : //$HOSTNAME/hydrogate / upload package /

Output :

{” packageid ” : ”112” , ” s t a tu s ” : ” su c c e s s ”}

3. Check Package Status (Optional): HydroGate has capabilities to inform the

service user about the status of a package during the transfer in two ways. First, the

user can poll the status by invoking retrieve package status function given package

ID. This function returns the status as a string in state key of the response JSON data

(e.g. PackageInQueue, PackageTransferDone, PackageTransferError) However, this

approach might cause the congestion on the network and might not be an effective

solution. Thus, we also implemented HTTP callback mechanism that given the client

address, HydroGate passes the status and package id information in the form of query

string by calling the URL.

Listing 5.4: Check package status script

Input :

cu r l −k −X GET ”https : //$HOSTNAME/hydrogate /

r e t r i e v e p a c k ag e s t a t u s ? token=$TOKEN&packageid=112”

Output :

{” packageid ” : ”112” , ” s t a tu s ” : ” su c c e s s ”}
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4. Job Submission: Once the input package is transferred to the HPC center, the user

can submit job by describing the batch job in HJDL language. Because we separate

the package and the job concept, It allows the service users to submit multiple jobs

using the same package, but the jobs might differ by program and job parameters.

This approach avoids redundant package transfer to the HPC center and provides

effective usage of the HPC storage capacity.

submit job function requires the job definition which is passed in jobdefinition key.

The contents of the JOBDEF variable in Listing 5.5 is shown in Listing 5.6. The

tasks of the workflow are defined separately with a unique key value and its parameters

and the sequence of the tasks are defined in workflow key. The file names that are

given as parameters of the tasks exist in the package file. The walltime value is

given as a expected total wall time of the workflow. Upon the completion of the

workflow successfully, HydroGate creates a output package containing the files given

in outputlist key and starts transferring the package to the CI storage automatically.

The client user is able to check the status of the job via retrieve job status function by

passing the unique job id returned from submitjob function, or through URL callback

mechanism.

Listing 5.5: Job submission script

Input :

cu r l −k −X POST −−data ” token=$TOKEN=112& j o b d e f i n i t i o n=

$JOBDEF” https : //HOSTNAME/hydrogate / submit job /

Output :

{” job id ” : ”79” , ” outputpath” : ”/usu/home/ rods /79/ r e s u l t . z ip ” , ”

s t a tu s ” : ” su c c e s s ”}
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Listing 5.6: Job description ($JOBDEF) used in the workflow to compute the con-

tributing area

{

”program” : ”myworkflow” , ”wal l t ime ” : ” 00 : 05 : 00 ” , ”

ou t p u t l i s t ” : [ ” d8f low . t i f ” , ” d8contarea . t i f ” ] ,

” task−pitremove ” : {

”program” : ” pitremove ” ,

” parameters” : {”z” : ” logan . t i f ” , ” f e l ” : ” p i t f i l l e d .

t i f ”}

} ,

” task−d8 f l owd i r ” : {

”program” : ” d8 f l owd i r ” ,

” parameters” : {” f e l ” : ” p i t f i l l e d . t i f ” , ” sd8” : ”

sd8s l ope . t i f ” , ”p” : ” d8f low . t i f ” }

} ,

” task−aread8 ” : {

”program” : ” aread8 ” , ”parameters” : {”p” : ”d8f low . t i f ”

, ”ad8” : ” d8contarea . t i f ”}

} ,

”workf low” : [ ” task−pitremove ” , ” task−d8 f l owd i r ” , ” task−

aread8 ” ] ,

}
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5.7 Future Research

Access control for gateway systems is an important part in building HPC gateway

services. HydroGate advocates to follow global account approach that one HPC account

is necessary per HPC center. While this approach encourages the sharing of scientific

applications and data, and provides an eco-system fully controlled by HydroGate, there

might some necessities for some users in accessing to HPC centers with their account.

Besides, using separate accounts might be required by the system administrators of HPC

centers. We are planning to implement account-based access control in the future releases.

Currently, database records are added to the database without the aid of a client

program. Thus, a tool is necessary to manage the records of HPC, program parameters and

so on for better management of system.

5.8 Conclusion

We introduced HydroGate gateway service to facilitate environmental research using

high-performance computing centers. HydroGate is designed to transcend difficulties in

accessing heterogeneous storage systems and HPC centers via an unified RestFul interface

and allows rapid integration of HPC centers with heterogeneous software systems for science

web portals. We believe HPC gateway systems play an important role to make the complex

HPC systems accessible for service clients by allowing them to execute compute and data

intensive programs through an unified and elegant web interface.

In this chapter it has shown the capabilities of HydroGate and the case study to

compute the contributing area have been demonstrated. We benefit USU HPC center that

is using SLURM job scheduler system in the case study, but the concept is also proved to

be effective on other HPC systems with PBS job scheduler.
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CHAPTER 6

Conclusions

This dissertation presented novel approaches for dealing with big data using algorithmic

and architectural techniques. From Chapter 1, we show from experimental results that

the implemented virtual memory manager is beneficial for geoscientists and researchers

in processing raster data – in this case very large DEM datasets – to fit in the memory

of a single machine. We are able to run this hydrologic terrain analysis algorithm on

limited memory systems for datasets so large that previously available algorithms fail. This

overcomes the main obstacle of the memory capacity of the machine, by utilizing a user-level

shared virtual memory system. Efficiencies were achieved using algorithm refinements such

as the load balancing and the pre-fetching approach used in the page replacement algorithm

of the user-level shared virtual memory system that increased hit rate and reduced wait

time.

In Chapter 2, we showed that a big dataset which is beyond the limit of the memory of a

single node in the HPC cluster system is processed using parallel WaveCluster algorithm by

benefiting 8, 16 and 32 processors for which we achieved linear scalability behavior. In Chap-

ter 3, we extended the parallel WaveCluster algorithm and presented detailed description

and comparison study of this algorithm. We improved upon previous work by investigating

two different merging techniques, namely priority-queue and merge-table approaches that

play an important role in the parallel algorithm. These parallel algorithms find distinct

clusters using discrete wavelet transformations on distributed memory architectures using

the MPI API. The effectiveness of the parallel WaveCluster algorithms as compared to the

parallel K-means algorithm are shown in our study to have achieved dramatic speed-up

ratios where wavelet level is 2 on Dataset1.

In Chapter 4, we introduce the HydroGate gateway service to facilitate environmental
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research using high-performance computing centers. HydroGate is designed to transcend

difficulties in accessing heterogeneous storage systems and HPC centers via a unified Rest-

Ful interface and allows rapid integration of HPC centers with heterogeneous software sys-

tems for science web portals. We believe HPC gateway systems play an important role to

make complex HPC systems more accessible for service clients by allowing them to execute

compute and data intensive programs through an unified and elegant web interface. It is

demonstrated that the capabilities of HydroGate and the case study data can be used to

compute the contributing area. We made use of the USU HPC center that is using SLURM

job scheduler system in the case study, but the concept is also proven to be effective on

other HPC systems with PBS job scheduler.
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