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ABSTRACT 
 

 

Effects of Environmental Water Transfers on Stream Temperatures 

by 

Logan Elmore, Master of Science 

Utah State University, 2015 

Major Professor: Dr. Sarah Null 
Department: Watershed Sciences 
 
 
 Low streamflows and warm stream temperatures, caused mainly from agricultural 

diversions, currently limit available habitat and productivity of trout, including native 

Lahontan cutthroat trout in Nevada’s Walker River Basin.  Environmental water 

purchases, which reallocate water from willing sellers to instream uses, are being 

evaluated to improve instream habitat. To test the efficacy of existing and potential 

environmental water transfers, this study uses River Modeling System version 4 (RMS4) 

to develop a stream temperature model to simulate environmental water transfer effects 

on stream temperature. Model runs simulate a range of environmental water transfers, 

from of 0.14 cms to 1.41 cms, at diversions and reservoirs.  Results indicate that low 

flows generally coincide with critically warm stream temperatures, thermal refugia exist 

on the East Walker River, a tributary of the Walker River, environmental water transfers 

can improve stream temperature for some highly impacted reaches by up to 3°C in dry 

years, and environmental water transfers have a greater effect in dry years than wet years.    
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PUBLIC ABSTRACT 
 
 

Effects of Environmental Water Transfers on Stream Temperatures 

by 

Logan Elmore, Master of Science 

Utah State University, 2015 

Major Professor: Dr. Sarah Null 
Department: Watershed Sciences 
 
 
 Low streamflows and warm stream temperatures, caused mainly from agricultural 

diversions, currently limit available habitat and productivity of trout, including native 

Lahontan cutthroat trout in Nevada’s Walker River Basin.  Environmental water 

purchases, which transfer water from willing sellers to instream uses (i.e for fish), are 

being evaluated to improve instream habitat.  To determine which environmental water 

purchases to prioritize, this study was undertaken to build a computer model in order to 

simulate stream temperatures under differing environmental water transfer scenarios.  

Model runs simulate a range of environmental water transfers at major diversions and 

reservoirs throughout the Walker River Basin.  Results indicate that low flows generally 

coincide with critically warm stream temperatures, cooler stream temperatures exist in 

the East Walker River, a tributary of the Walker River, during warm seasons which 

provide good habitat for fish, environmental transfers can improve stream temperatures 

for some highly impacted reaches by up to 3°C in dry years, and environmental water 

transfers have a greater effect in dry years than wet years. 
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CHAPTER 1 

INTRODUCTION 
 
 

 In the arid Walker Basin of western Nevada, low streamflows and warm stream 

temperatures limit native trout species (USFWS 1975).  Agricultural diversions have 

decreased streamflows causing critically warm temperatures for native Lahontan 

cutthroat trout (LCT), Onochynchus clarki henshawi, threatening their survival (Neville 

et al. 2006; Sharpe et al. 2008).  Currently, LCT have been extirpated from more than 

ninety percent of their historical habitat leaving low numbers of LCT in the Walker Basin 

(Coffin and Cowan 1995).  Consequently, LCT are listed as a federally threatened species 

under the Endangered Species Act, requiring management for their recovery (USFWS 

1975). 

When river flows are low, the assimilative heat capacity of rivers is reduced and 

less energy is required to raise the temperature of the water (Poole and Berman 2001; 

Cassie 2006). Therefore, streams with low flows have less thermal mass and stream 

temperatures respond to atmospheric conditions faster than streams with high flows 

(Olden and Naimen 2010). Studies have also documented that insolation-dominated 

streams warm more readily with atmospheric conditions when riparian vegetation is 

removed (Brown 1970; Cassie 2006) and that more aquatic species occupy shaded and 

cooler stream reaches (Hawkins et al. 1997; Rutherford et al. 1997; Meyer et al. 2010).  

One alternative to improve instream flows, cool stream temperatures, and possibly 

increase longitudinal connectivity is to purchase water rights for instream flows (Coffin 

and Cowan 1995; Yardas 2007).  Purchasing water rights from willing sellers to increase 

flows are termed environmental water transfers (Isé and Sunding 1998; Landry 1998; 
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Loomis et al. 2003; Acreman and Dunbar 2004; Katz 2006; Jones and Colby 2010).  The 

economics of environmental water transfers have been studied for the Carson and 

Truckee Rivers in California and Nevada (Isé and Sunding 1998) and in the southwestern 

US (Jones and Colby 2010).  In the Lahontan Valley purchase program in Nevada, some 

water rights holders retire low-quality land and profit from the sale (Isé and Sunding 

1998), a trend that is increasing in the southwestern US (Jones in Colby 2010). In the 

Walker Basin, transfers averaging around 6.8 million cubic meters have taken place since 

this project has started, with potentially more to occur. Therefore, environmental water 

transfers are a promising means to increase streamflow in thermally impacted rivers, 

while also not harming water rights holders.   

  Several studies have examined the effects of increased flows and decreased 

stream temperatures on aquatic organisms (Conner et al. 1998; Sinokrot and Gulliver 

2000; Meier et al. 2003; Chinnayakanahalli et al. 2011; Arismendi et al. 2013).  Research 

has shown that low flows often coincide with warm stream temperatures in midsummer 

(Bartholow 1991; Danehy et al. 2004), and warmer temperatures negatively affect aquatic 

organisms (Conner et al. 2003; Harvey 2006).  Specifically, Bartholow (1991) 

demonstrated that water diversions in the Poudre River in Colorado caused stream 

temperatures to exceed tolerance thresholds for rainbow (O. mykiss) and brown trout 

(Salmo trutta).  Similarly, Conner et al. (2003) illustrated the benefits of higher instream 

flows for Chinook salmon (O. tshawytscha) survival in Idaho’s Snake River.  Null et al. 

(2010) modeled instream flows and stream temperatures on California’s Shasta river to 

examine the quantity of water needed at specific reaches and times to maintain viable 

flows and stream temperature for coho salmon (O. kisutch).  However, no research has 
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specifically examined the effects of environmental water transfers on stream temperature, 

which is novel to this study.  This is a timely and important area of research because 

determining when and where environmental water transfers are most effective  may lead 

to improved thermal management for native fish species.   

Research objectives for this project are: 1) determine when and where thermal 

refugia for LCT currently exist in the Walker River and its tributaries, and 2) simulate 

and quantify environmental water transfer effects on stream temperatures.  Analysis of 

measured data will address objectives 1 and 2, and simulation modeling will address 

objective 3. 

Tennessee Valley Authority’s River Modeling System (RMS), a one-dimensional, 

process-based hydrodynamic and stream temperature model, simulates the effects of 

environmental water transfers on Walker River stream temperatures.  This paper begins 

by describing Walker River geography, hydrology, and LCT distribution.  Next, the RMS 

model is described, including input data and model output.  Model runs are then 

described that simulate a range of environmental water transfers (both existing and 

potential transfers) at major diversions and upstream reservoirs.  This brackets the range 

of potential environmental water transfer alternatives to improve understanding of when 

and where additional streamflow may improve stream temperatures for aquatic biota.  

Results compare environmental water transfer alternatives, focusing on the number of 

days and total river kilometers that stream temperature exceeds thermal thresholds for 

LCT.  Overall, this research provides water managers and decision-makers with stream 

temperature estimates for alternative environmental water transfer scenarios, allowing 

them to make more informed restoration decisions.   
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CHAPTER 2 

BACKGROUND 
 
 

2.1 Study Site 
 
 The mainstem Walker River is fed from two tributaries, the East and the West 

Walker Rivers.  The source of these tributaries is snowmelt and groundwater from the 

east-slope Sierra Nevada Mountains in California.  Headwaters of the Walker River in the 

highland Sierra Nevada ecoregion transition into the arid Great Basin ecoregion, 

ultimately draining into terminal Walker Lake (Jones 1992) (Figure 2-1).  Climate varies 

from microthermal at high elevations with cold winters and heavy snowfall to desert at 

lower elevations with arid, hot summers (Sharpe et al. 2008).  

The Walker Basin encompasses approximately 10,750 km2, of which 

approximately 450 km2 are irrigated farmland (Sharpe et al. 2008).  Agriculture is the 

main land use in the Walker Basin.  While agricultural land use is a small portion of land 

area, it has a disproportionate effect on the thermal regime of the Walker River because 

irrigation diversions remove approximately 80% of streamflow, based on average 1926-

1996 conditions (Pahl 2000, Yardas 2007).  Three major reservoirs have been built on the 

Walker Basin to provide water for irrigation.  Bridgeport Reservoir on the East Walker 

River is 1950 m above sea level and has storage capacity of nearly 52 million cubic 

meters (mm3).  Topaz Reservoir is 1525 m above sea level, with storage capacity of 73 

mm3.  Both reservoirs are physical barriers to fish passage (Jones 1992).   
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Figure 2-1: Walker River and tributaries with USGS discharge gages, stream temperature 
logger locations, and Smith Valley meteorological station.  
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Figure 2-2: Measured hourly stream temperatures from 20 iButton temperature loggers 
distributed throughout the Walker Basin.  Lighter hues are toward headwaters (elevation 
> 1500m) and darker hues are toward Walker Lake.  Gradient indicates LCT acute (28ᵒC) 
upper thermal limit range (Dickerson and Vinyard 1999).  

 

 

Figure 2-3: Measured 7 day average stream temperatures from 20 iButton temperature 
loggers distributed throughout the Walker Basin.  Lighter hues are toward the headwaters 
(elevation > 1500m) and darker hues are toward Walker Lake.  Gradient indicates LCT 
chronic 7 day average (24ᵒC) upper thermal limit range (Dickerson and Vinyard 1999). 
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Weber Reservoir is located on the mainstem Walker River at 1285 m above sea 

level, with a storage capacity of 15 mm3. Water demands are such that low flows and 

warm stream temperatures are prevalent during the irrigation season from March 1 

through October 31 (Yardas 2007).  Irrigation tailwater sometimes returns to the river 

warmer than ambient river temperatures, further elevating stream temperatures (Yardas 

2007).  Measured stream temperatures exceed chronic and acute LCT limits, especially 

during dry years (Figure 2-2; Figure 2-3).  Finally, streamflow is so low that Walker Lake 

is largely disconnected from the Walker River.  LCT are no longer present in Walker 

Lake because of rising lake salinity and longitudinal fragmentation throughout the 

Walker River (Coffin and Cowan 1995; Sedinger et al. 2012).  

2.2 Walker Basin Lahontan Cutthroat Trout Distribution 

 LCT are a threatened subspecies of cutthroat trout endemic to the Great Basin, 

whose range historically extended through eastern California, southeastern Oregon, and 

much of Nevada (Coffin and Cowan 1995) (Figure 2-4).  Prior to the 20th century, Walker 

River and Lake were home to a healthy population of LCT.  Currently LCT extent is less 

than 3% of their historical range in the Great Basin (Coffin and Cowan 1995; Dunham 

1999) and small populations of wild LCT persist in high elevation Walker River 

headwater streams (e.g. By-Day Creek).  Hatchery-raised LCT are stocked in lower 

elevations of the Walker Basin near Mason Valley Wildlife Refuge (Jones 1992; Coffin 

and Cowan 1995). 
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Figure 2-4: Historical LCT distribution and current estimated range outlined in red 
(adapted from Dunham et al. 1999).  
 
 
 Laboratory research suggests the chronic 7 day upper thermal limit for LCT is 

24°C (Dickerson and Vinyard 1999).  LCT can withstand acute (<2 hours) stream 

temperatures of up to 28°C in the laboratory; however, field studies in Coyote Lake, 

Quinn River, and Humbolt River basins suggest that LCT presence is greatly reduced at 

these temperatures (Dunham et al. 2003).   
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CHAPTER 3 
 

METHODS 
 
 

3.1 Model Description  
 
 This study uses Tennessee Valley Authority’s River Modeling System (RMS), 

which has a hydrodynamic module, ADYN, and a water quality module, RQUAL, to 

simulate streamflows and stream temperatures.  The modules are run sequentially 

(Hauser and Schohl 2002). This model was chosen because it is open source, has riparian 

shading logic, and is process-based.  The modeled spatial extent encompasses 

approximately 305 river kilometers, with an hourly time-step for years 2011 and 2012.  

2011 was a wet year and 2012 was a dry year (CDEC 2013).   The following sections 

describe the model, required input data, and model testing.  

ADYN solves one-dimensional equations for conservation of mass and 

momentum (St. Venant equations) for velocity and depth using a four-point implicit finite 

difference scheme with weighted spatial derivatives (Hauser and Schohl 2002).  Input 

requirements for ADYN are channel geometry, roughness coefficients, boundary 

conditions, and initial surface water elevations. ADYN outputs velocity and depth at each 

model node. 

 Simulated velocities and depths are passed to RQUAL, the water quality module.  

RQUAL uses the same geometric representation as ADYN to solve the Holly-Priessmann 

mass transport equation, which simulates the fate and transport (advection/diffusion) of 

heat energy to represent stream temperatures (Hauser and Schohl 2002).  RQUAL 

accounts for water surface (evaporative cooling) and streambed (hyporheic thermal 

diffusivity) heat fluxes.  Input requirements for RQUAL include meteorological data, 



10 
 

riparian shading estimates, boundary temperatures, and initial water temperature 

throughout the modeled reach.   

 
3.2 Channel Geometry  

 The Walker River is represented with 999 nodes from the outlets of Bridgeport 

and Topaz reservoirs to Walker Lake.  Nodes are spaced evenly every 0.3 km.  Five-point 

river cross sections describe lateral geometry (Figure 3-1).  Together, all center points 

represent channel gradient.  River geometry was estimated from non-water penetrating 

one meter resolution Light Detection and Ranging (LiDAR) digital terrain models (DTM) 

of the Walker River and tributaries in 2011 (USFWS pers.comm. 2012).  A river center 

line was estimated with the LiDAR DTM and lateral elevations recorded at 5m and 25m 

buffers (Figure 3-2).  Since LiDAR does not penetrate the water surface, 20 river cross 

sections were measured to estimate center point depth.  Sites were chosen for river 

accessibility.  Using auto-level and real-time kinematic (RTK) GPS surveys, a 

representative depth of 0.94 m obtained from the 20 river cross sections was subtracted 

from LiDAR center points to represent river bed elevation.  The roughness coefficient 

(Manning’s n) was assumed to be uniform at 0.05, which represents a natural stream 

channel with weeds and pools (Chapra 1997).    

 Weber Reservoir, located on the lower reach of the mainstem Walker River, is 

represented in the model as a spill-top weir.  Cross-sectional data for the reservoir were 

unavailable, geometries and bathometry elevations were estimated gradually up to a 

maximum depth of 9.1 m in this approximately 6 km reach. 
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Figure 3-1: Schematic of 5 point river cross-sections. 

 

 

Figure 3-2: LiDAR image of the Walker River near Mason Valley Wildlife Refuge with 
buffer lines and center line elevation points.  
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3.3 Walker River Input Data and Model Development  

Daily streamflow data for 2011 and 2012 from eighteen USGS gages provide 

upstream boundary and initial streamflow conditions.  Streamflow data were used to 

estimate diversions, accretions, and depletions by creating a water budget between gages 

in the East, West, and mainstem Walker River, and provide measured data for model 

calibration (USGS) (Figure 2-1).  Hourly or 3-hour stream temperature data was collected 

with iButton temperature loggers at twenty sites throughout the Walker Basin starting in 

late July 2011 through December 2012 for model calibration and boundary condition 

inputs at Bridgeport Reservoir, Topaz Reservoir, Sweetwater Creek, and Wabuska Drain.  

Meteorological data was from the Smith Valley, NV weather station (1442 m) on the 

West Walker River, operated by Desert Reach Institute (DRI 2014) (Figure 2-1). Input 

meteorological data included cloud cover, air temperature, dewpoint temperature, air 

pressure, wind speed, and solar radiation (Table 3-1). 

 

Table 3-1: Input data types, sources, collection periods, and collection sites 

 

Data Type 

 

Source 

 

Collection 

Period 

 

 

Location 

Center-Point 
Geometry Measured 2012 20 sites along the East Walker and 

Mainstem Walker to Walker Lake 
 

Streambank 
Geometry 

 

LiDAR - 
USFWS 

 
2011 

East, West, and Mainstem Walker 
River 

Streamflow USGS Jan. 1, 2011-
Dec. 31, 2012 

18 USGS stations along the East, 
West, and Mainstem Walker River 

Meteorological 
Data UNR-DRI Jan. 1, 2011-

Dec. 31, 2012 Smith Valley, NV station 

Stream 
Temperature Measured Aug 1, 2011-

Dec. 31, 2012 
20 locations throughout the East, 

West, and Mainstem Walker River 
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Water diversion data were unavailable and were instead estimated by creating a 

water budget from streamflow data and Walker Basin irrigation documents (Jones 1992; 

Pahl 2000; WRIT 2003; Yardas 2007; Sharpe et al. 2008; TNC 2013).  Locations of 

major diversions were determined from the National Hydrography Dataset and Google 

Earth aerial imagery. During irrigation season, more depletions, or water losses, occur 

between USGS gages than occur outside of the irrigation season.  Therefore, diversions 

were initially assumed to be 80% of depletions between gages and then adjusted in 

calibration (Table 3-2). When multiple major diversions were present between USGS 

gages, each diversion was assigned a percentage of depleted flow based on relative 

diversion size from the irrigation documents (Table 3-2).  For instance, if a depletion of 

10 cms occurred in EW Reach 2 (which has the FOX and BNGHH diversions – see Table 

3-2 for diversion acronyms), then 80% of depleted cms were assigned to the diversions at 

this location, where FOX diversion received 5.5 cms and BNGHH diversion received 2.5 

cms because diversion reports indicated the FOX diversion is larger than BNGHH (Table 

3-2; Figure 3-3).  The remaining 20% the depletions were assumed to be natural losses. 

On days with accretions, or water gains, between USGS gages, diversions were assumed 

to be zero.  Final diversion percentages are reported in Table 3-2.  Accretions could be 

from springs, ephemeral drainages, agricultural returns flows, etc.  Similarly, depletions 

could be from small agricultural diversions, evapotranspiration, groundwater sinks, etc.  

The Walker River had twelve major accretion and depletion reaches (Figure 3-3).  

Riparian vegetation height was estimated by averaging vegetation height on each 

bank for every modeled node using LiDAR DTMs (T. Landis, pers.comm.).  Solar 

radiation was measured with a pyranometer on stream banks where no significant riparian 
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vegetation was present, beneath medium height vegetation (mixed shrub) consisting 

mainly of willows (4.57 - 9.14 m), and beneath tall vegetation (large trees) consisting 

mainly of cottonwoods (>9.14 m).  These measurements were made on sunny days from 

August 10-12, 2012 at three different sites for each of the three vegetation height classes.  

Solar radiation measured under each vegetation height category was averaged, then 

divided by full insolation to determine solar radiation transmittance through riparian 

canopies. Solar radiation transmittance for each vegetation height category is a follows: 

1) short to no vegetation (0-4.6 m tall) with a solar transmittance of 100%, 2) medium 

vegetation (4.6-9.1 m tall) with a solar transmittance of 9%, and 3) tall vegetation (>9.1m 

tall) with a solar transmittance of 14%.  

 
Table 3-2: Diversion percentages and locations. 

Location 
River 

Km 
Diversion Name 

Percent 

depletion 

assigned to 

diversion 

Total depletion  

diverted 

between gages 

WW 
Reach 1 

27.71 Saroni Canal (SARONI) 11%  
70% 26.01 Colony-Plymouth Canal (COLONY) 39% 

24.68 Gage-Petersen Canal (GAGE) 20% 
WW 

Reach 3 8.16 Tunnel Ditch (TUNNEL) 88% 88% 

 
EW 

 Reach 2 

77.40 
Baker-SnyderNelson 

Greenwood 
Hall 

Hilburn 
Ditches (BNGHH) 

 
25% 80% 

76.26 Fox-Mickey Ditches (FOX) 55% 

 
WR 

Reach 1 

63.54 Mcleod-Campbell Ditches (MCCAMP) 33% 

80% 61.27 
SAB 

Sciariani 
West-Hyland 

Joggles 
Dairy 

Ditches  (SSWJD) 
47% 
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Figure 3-3: Major inflows, outflows, and accretion/depletion reaches for the Walker 
River and its tributaries. Outflow arrow thickness is relative to average annual diversion 
rate (cubic meter/year) (Yardas 2007); inflows arrows are not scaled with inflow rate.  
Diversion acronyms are provided in Table 3-2. EW stands for East Walker, WW stands 
for West Walker, and WR stands for the mainstem Walker River. 
 

3.5 Model Calibration 

 Modeled 2011 and 2012 streamflow and temperature were compared to measured 

data to test and calibrate models.  Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), 
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ratio of root mean square error to standard deviation of measured data (RSR), and root 

mean square error (RMSE) were calculated for streamflow and stream temperature to 

quantify model fit (see appendix for formulas and stream temperature calibration plots) 

(Moraisi et al. 2007).  NSE is a normalized statistic that determines the relative 

magnitude of residual variance compared to measured variance, indicating how well 

measured versus modeled data fits a 1:1 line.  The range is -∞ to 1, where 1 is optimal.  

PBIAS measures the average tendency of the simulated data to be larger or smaller than 

observed counterpoints.  Optimal values are 0, where positive values indicate model 

underestimation and negative values indicate overestimation.  RSR incorporates the 

benefits of error index statistics and includes a scaling and normalizing factor so that the 

resulting statistic and reported values can apply to various constituents, where the range 

of  values are 0 to a positive large constant, with an optimal value of  0.  RMSE is a 

common statistic that measures the difference between a modeled value and a measured 

value.  Together all of these statistics combine to provide a robust statistical description 

for assessing hydrologic model fit (Moraisi et al. 2007).   

The model was calibrated by adjusting extreme hourly changes (positive or 

negative) flow timing, diversion percentages, and heat exchange coefficients to improve 

model fit (Table 3-2; Table 3-3).  Streamflows and diversion percentages were adjusted 

in some cases to maintain enough streamflow (~ 0.06- 0.14 cms) so that models did not 

crash.  Added water was subtracted downstream (at the next node) so as to maintain 

conservation of water mass.  Twelve USGS streamflow gages and 10 iButton temperature 

loggers were used for calibration. Table 3-3 lists parameters that were adjusted to 

calibrate the stream temperature module, RQUAL.   
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Table 3-3: Parameters calibrated in RQUAL. 

Parameter Parameter Description Final 
Value 

Suggested range 
or value 

AA Wind speed coefficient in wind-driven 
evaporative cooling 

1.8e-
09 0.5e-9 to 4e-9 

BB Wind exponent in wind-driven evaporative 
cooling 0.9e-9 1e-9 to 3e-9 

XL Upper layer bed thickness (cm) 21 5 to 50 
XL2 Deep layer bed thickness (cm) 200 10 to 200 
DIF Thermal diffusivity of bed material (cm2/hr) 50 25-50 
CV Bed heat storage capacity (cal/cm3 ᵒC) 0.68 0.4-0.7 

BETW Fraction of solar radiation absorbed in water 
surface 0.4 0.4 

BEDALB Albedo of bed material 0.1 0.1 to 0.5 

SHSOL Fraction of solar radiation absorbed by shaded 
water 0.4 0.0 to 1.0 

SHDBT 
Fraction of drybulb/dewpoint temperatures 
depression by which drybulb temperature is 

cooler over shaded water 
0.5 0.0 to 1.0 

 

3.6 Model Runs 

 Environmental water transfers were represented as reduced diversions during 

irrigation season. (Note: 014 cms equals 5 cubic feet per second, cfs, 0.28 cms equals 10 

cfs, 0.71 equals 25 cfs, and 1.41 cms equals 50 cfs.)  Simulated water transfers were 

constrained to be smaller than actual diversions so extra water was not added to the 

system.  Forty model runs each were completed for 2011 and 2012, which are described 

below.  Table 3-4 summarizes models runs. 

Forty model runs each were completed for 2011 and 2012.  One alternative 

represented existing water transfers throughout the irrigation season (E. Borgen 

pers.comm. 2014) (Table 3-4).  Next, model run scenarios were completed analyzing 

potential daily water transfers of 0.14 cms and 0.28 cms at each diversion point and 

Bridgeport Reservoir on the East Walker.  Bridgeport Reservoir was chosen for these 

additions because of already existing transfers there and due to the average cooler stream 
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temperatures released from Bridgeport versus Topaz Reservoir. To further improve 

understanding of the water transfers necessary to reduce stream temperatures, sensitivity 

testing of daily additions of 0.71 cms and 1.41 cms were completed for the large 

diversions: Sab, Sciarani, West-Hyland, and Joggles and Dairy ditches (SSWJD), the 

East Walker upstream reservoir (Bridgeport), and the West Walker upstream reservoir 

(Topaz) (Table 3-4).  These locales were chosen simply because they are the only sites in 

the Walker Basin that could feasibly accommodate such transfers. Diversion Off model 

runs simulated the individual removal of each major point of diversion singly, 

represented in the model by setting individual diversions to zero one at a time (i.e. nine 

model runs).  No Diversions simulations were completed for both years, by setting all 

diversions to zero (Table 3-4).  Finally, two additional runs were done to test sensitivity 

to depth, with an increase in deepest center points by 20%, and increases of full shading 

at 10 locations throughout the Walker Basin (Table 3-4). 
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Table 3-4: Model runs for years 2011 and 2012. NOTE: Diversion Off additions are the 
last cms reported for each diversion. 

Model Run Run Description 

 
Existing Transfers 

 
 

Bridgeport 
 

Topaz 
 

SARON 
 

COLONY 
 

GAGE 
 

TUNNEL 
 

BNGHH 
 

FOX 
 

MCCAMP 
 

SSWJD 
 
 

CANAL 
 

No Diversions 
 

Depth Sensitivity 
 

Shade Sensitivity 

 
Average of 0.81 cms added in 2011 and 0.09 added in 2012 to 

Bridgeport, BNGHH, SSWJD, GAGE, and COLONY 
(Borgen, pers. comm.) 

 
Daily Instream flow additions of 0.14, 0.28 , 0.71 , or 1.41 cms 

 
Daily Instream flow additions of 0.71 or 1.41 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  0.32 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  1.13 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  0.51 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  0.83 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  0.58 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  0.85 cms 

 
Daily Instream flow additions of 0.14 , 0.28, or  1.30 cms 

 
Daily Instream flow additions of 0.14 , 0.28 , 0.71 , 1.41, or  

 0.76 cms 
 

Daily Instream flow additions of 0.14 , 0.28, or 0.45 cms 
 

Daily Instream flow additions of 0.75 cms at all sites 
 

Increased Depth by 20% on all center points 
 

Increased to full shade at ten unshaded rkms 
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CHAPTER 4 

RESULTS 
 
 

 Modeled winter stream temperatures under-predicted measured temperatures by 

up to 10 ᵒC.  This may be due to model code that ignores the heat of condensation for 

warmer river systems such as the Mississippi River (G. Hauser, pers.comm. 2014).  

Rather than modify model code, results focus on irrigation season from April 1-October 

31, the pertinent time period for environmental water transfers.   

4.1 Calibration Results 

4.1.1 Streamflow 

 Overall, modeled streamflow during irrigation season (April 1 - October 31) fits 

measured data well for 2011 and 2012 (Figure 4-1, Figure 4-2).  Average annual 2011 

irrigation season streamflow has an NSE of 0.99, RSR of 0.09, PBIAS of 0.27%, and an 

RMSE of 0.87 cms and 2012 irrigation season streamflow has an NSE of 0.92, RSR of 

0.23, PBIAS of 10.90%, and a RMSE of 0.17 cms (Table 4-1).  These statistics indicate 

very good model performance for both years (Moriasi et al. 2007).  Streamflow data were 

used to close the water balance by estimating accretions and depletions between the 

reaches for model calibration, which contributes to the tight model fit 

4.1.2 Steam Temperature 

 RMS produced a good representation of stream temperature for years 2011 and 

2012 (Table 4-2).  Measured stream temperatures were available from August 1-October 

31, 2011 and modeled temperatures were compared during this period, with an annual 

average NSE of 0.91, RSR of 0.276, PBIAS of 2.09%, and a RMSE of 2.01 ᵒC (Table 4-

2; Figure 4-3).  Stream temperatures were available throughout 2012 irrigation season, 
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and average annual measured versus modeled NSE was 0.90, RSR was 0.29, PBIAS was 

7.87 %, and RMSE was 2.14 ᵒC (Table 4-2; Figure 4-4).   

 

Figure 4-1:  Measured and modeled hourly streamfow for irrigation season 2011 at river 
km 94.02 

 

 

Figure 4-2: Measured and modeled hourly streamflow for irrigation season 2012 at river 
km 94.02. 
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Table 4-1: Measured versus modeled 2011 and 2012 streamflow statistics. 

2011 
River 

River  
Km 

RMSE 
(cms) 

NSE 
(unitless) 

RSR 
(unitless) 

PBIAS 
(%) 

n 
(days) 

East 
Walker 

137.4 0.71 0.99 0.10 0.10 245 

121.8 0.75 0.98 0.14 0.10 245 

Reach 
Statistics 

- 0.73 0.99 0.12 0.10 
245 

 
 
 

Walker 

112.4 0.69 0.99 0.04 0.04 245 

94.3 0.64 0.99 0.03 2.94 245 

77.8 0.67 0.99 0.04 -0.04 245 

53.4 1.46 0.99 0.12 9.83 245 

41.8 1.24 0.99 0.10 -3.14 245 

27.1 0.83 0.99 0.10 -2.84 245 

2.4 2.20 0.96 0.20 -2.06 245 

Reach 
Statistics 

- 1.10 0.99 0.08 0.67 245 

West 
Walker 

37.3 0.36 0.96 0.20 -2.06 245 

15.0 0.27 1.00 0.02 0.01 245 

10.4 0.60 0.99 0.05 0.36 245 

Reach 
Statistics 

- 0.41 0.98 0.09 -0.56 245 

 Average 0.87 0.98 0.09 0.27 245 

2012 
River 

      

East 
Walker 

137.4 0.13 0.97 0.17 0.73 245 

121.8 0.21 0.63 0.60 1.97 245 

Reach 
Statistics 

- 0.17 0.80 0.39 1.35 245 

 
 
 

Walker 

112.4 0.35 0.96 0.19 -3.92 245 

94.3 0.25 0.75 0.50 -12.51 245 

77.8 0.26 0.94 0.24 -11.70 245 

53.4 0.11 0.92 0.27 0.07 245 

41.8 0.08 0.97 0.16 0.02 245 

27.1 0.06 0.97 0.17 71.65 245 

2.4 0.06 0.96 0.19 83.96 245 

Reach 
Statistics 

- 0.17 0.92 0.25 18.22 245 

West 
Walker 

37.3 0.13 0.99 0.07 0.00 245 

15.0 0.16 0.99 0.07 0.02 245 

10.4 0.22 0.99 0.11 0.47 245 

Reach 
Statistics 

- 0.17 0.99 0.08 0.16 245 

 Average 0.17 0.92 0.23 10.90 245 
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 In general, model results are very good in comparison with many of the studies 

examined in Moriasi et al. (2007). Model fit is even better in the dry year 2012, which 

reduces uncertainty for hydrologic conditions when environmental water transfers are 

most likely to be utilized to maintain instream habitat for native fish and wildlife.  The 

large difference in spatial and temporal scale of this model should be considered in 

interpretation of these results, where large amount of data in this study produce better 

results than those described in Moraisi et al. (2007).   

4.2 Historical Conditions 

 Modeled Historical Conditions in 2011 and 2012 indicated stream temperatures 

were near or above the chronic average 7 day thermal limit of 24°C, as well as the acute 

daily maximum thermal limit of 28 °C during summer weeks of July 1 – August 26 for 

both years, from approximately river kilometer 160 through 65 and from river kilometer 

25 to the mouth of Walker Lake (Table 4-3).  For wet year 2011, the majority of the East 

Walker River is not thermally limited.  However, much of the West Walker and the 

majority of the mainstem Walker Rivers are thermally limited or near thermal limitation 

(Table 4-3).  During dry year 2012, the East Walker River is not thermally limited until 

the lower reaches near the confluence with the mainstem (Table 4-3).  Again, the West 

Walker and the Mainstem were generally thermally limited during summer. 
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Figure 4-3:  Measured and modeled hourly stream temperatures for irrigation season 
2011 at river km 94.02.  

 

 

Figure 4-4: Measured and modeled hourly stream temperatures for irrigation season 2012 
at river km 94.02. 
 

  

0 

5 

10 

15 

20 

25 

30 

35 

8/1/2011 8/31/2011 9/30/2011 10/30/2011 

Te
m

p
e

ra
tu

re
 ᵒ

C
 

Measured Modeled 

0 

5 

10 

15 

20 

25 

30 

35 

4/1/2012 5/1/2012 5/31/2012 6/30/2012 7/30/2012 8/29/2012 9/28/2012 10/28/2012 

Te
m

p
er

at
u

re
 ᵒ

C
 

Measured Modeled 



25 
 

Table 4-2: Measured versus modeled 2011 and 2012 stream temperature statistics. 

2011 
River 

River km 
RMSE 
(ᵒC) 

NSE 
(unitless) 

RSR 
(unitless) 

PBIAS (%) 
n 

(Hours) 

 
East 

Walker 

225.4 1.69 0.94 0.24 5.11 2172 

135.6 1.36 0.96 0.19 1.85 2173 

121.5 1.35 0.97 0.19 1.18 2173 

Reach 
Statistics 

- 1.47 0.96 0.21 2.71 - 

 
 

Walker 

94.0 1.94 0.94 0.25 -0.07 2167 

87.6 1.84 0.94 0.24 -3.34 2169 

77.5 2.24 0.91 0.30 10.26 2174 

46.1 1.68 0.94 0.25 1.51 2168 

2.7 4.43 0.65 0.60 -1.39 2173 

Reach 
Statistics 

- 2.43 0.87 0.33 1.39 - 

West 
Walker 

39.7 1.48 0.96 0.21 3.86 2168 

10.1 1.80 0.94 0.25 4.95 2174 

Reach 
Statistics 

- 1.64 0.95 0.23 4.40 
- 

 Average 2.01 0.91 0.28 2.09 2171 

2012 
River 

      

East 
Walker 

225.4 2.10 0.89 0.33 10.262 5136 

135.6 1.55 0.96 0.21 -3.379 4813 

121.5 2.38 0.89 0.33 -3.731 5136 

Reach 
Statistics 

- 2.01 0.91 0.29 1.05 
- 

 
 

Walker 

94.0 1.88 0.94 0.24 -4.372 5136 

87.6 2.17 0.93 0.27 -5.997 5136 

77.5 2.55 0.98 0.37 -1.034 5128 

46.1 2.10 0.90 0.32 -4.781 4343 

2.7 3.93 0.74 0.51 97.003 5136 

Reach 
Statistics 

- 2.53 0.87 0.34 16.16 
- 

West 
Walker 

39.7 1.28 0.97 0.19 -2.289 4341 

10.1 1.43 0.96 0.21 -0.633 5136 

Reach 
Statistics - 1.36 0.96 0.20 -1.46 - 

 Average 2.14 0.90 0.29 7.87 4922 

 



 
 

Table 4-3. Seven day average and maximum daily temperatures for summer weeks with Historical Conditions at selected river 
kilometers.  Shaded cells indicate exceeded thresholds. Top table is 2011, bottom table is 2012. 

 River 
km 

7/1/2011 7/8/2011 7/15/2011 7/22/2011 7/29/2011 8/5/2011 8/12/2011 8/19/2011 8/26/2011 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d  
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

 
East 

Walker 

225.4 18.8 25.1 19.0 25.0 21.0 24.6 21.2 24.9 21.1 24.4 21.4 23.9 20.0 23.7 20.2 23.3 20.2 21.8 

135.6 22.4 25.1 20.6 26.4 21.8 25.7 23.2 25.1 22.6 24.4 22.5 24.9 21.5 24.2 22.6 23.1 21.5 22.3 

121.5 22.8 25.0 20.8 26.5 21.8 26.4 23.3 25.2 22.7 24.8 22.6 25.4 21.6 24.6 22.8 23.5 21.6 22.6 

 
 

Walker 

94.0 22.6 25.0 21.8 26.8 22.2 26.8 23.7 27.0 23.3 26.5 23.0 27.1 21.9 26.9 23.1 25.3 21.9 23.7 

87.6 22.7 25.3 21.8 27.0 22.2 26.9 23.7 26.2 23.3 26.0 22.8 26.8 21.6 25.7 22.8 24.8 21.6 23.4 

77.5 22.8 25.2 21.8 26.7 22.2 26.2 23.7 26.0 23.3 24.4 22.8 25.2 21.3 24.8 22.5 23.3 21.4 22.2 

46.1 22.8 22.4 22.6 23.7 21.6 23.9 23.1 24.0 23.4 23.8 23.4 23.9 22.7 23.8 23.2 22.7 23.1 21.9 

2.7 23.4 23.1 22.6 26.4 22.0 28.2 23.5 25.8 23.2 26.0 23.2 26.8 22.0 25.6 23.4 24.7 22.2 23.3 

West 
Walker 

39.7 20.8 24.6 22.9 25.3 22.4 25.4 23.7 25.4 23.6 24.7 23.5 23.6 20.5 23.7 21.1 23.3 21.4 22.2 

10.1 21.4 24.8 22.4 26.3 22.3 25.8 23.8 26.0 23.5 24.8 23.3 25.3 21.3 25.3 22.1 23.3 21.7 22.3 

 
Max 
 

23.4 25.3 22.9 27.0 22.4 28.2 23.8 27.0 23.6 26.5 23.5 27.1 22.7 26.9 23.4 25.3 23.1 23.7 

 

 River   
km 

7/1/2012 7/8/2012 7/15/2012 7/22/2012 7/29/2012 8/5/2012 8/12/2012 8/19/2012 8/26/2012 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d  
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

7d 
Avg 

Week 
Max 

 
East 

Walker 

225.4 19.7 24.5 20.5 25.2 20.3 25.8 21.7 26.1 21.6 26.2 21.9 26.1 21.2 25.7 21.7 25.8 20.3 24.6 

135.6 22.8 26.2 23.1 26.5 20.0 24.8 23.6 26.7 23.5 26.8 23.5 26.5 21.9 25.2 22.4 25.5 19.8 23.5 

121.5 23.0 28.1 23.2 28.2 20.1 26.4 23.7 27.6 23.6 28.5 23.7 27.6 21.9 26.2 22.5 26.5 19.8 24.4 

 
 

Walker 

94.0 23.2 28.4 23.5 28.5 20.5 27.4 23.9 28.5 23.9 31.2 24.1 28.9 22.2 26.5 22.9 27.0 19.9 24.8 

87.6 23.3 28.4 23.5 28.4 20.4 27.2 23.9 28.5 23.8 30.4 24.1 28.6 22.1 26.5 22.9 26.9 19.8 24.3 

77.5 23.2 27.0 23.4 27.0 20.2 25.8 23.7 27.5 23.5 28.7 23.9 27.4 22.1 26.3 22.8 25.9 19.8 23.6 

46.1 22.2 23.4 23.4 24.4 22.1 24.0 22.6 24.1 23.7 24.6 23.9 24.9 23.4 24.7 22.9 23.8 21.9 23.4 

2.7 23.4 30.0 23.4 29.9 20.4 28.4 24.0 29.9 23.8 30.6 24.1 30.0 21.9 28.0 22.9 28.8 19.8 25.7 

West 
Walker 

39.7 20.8 24.9 23.2 25.5 21.6 25.0 23.7 26.3 23.7 26.3 23.8 26.4 23.1 25.8 23.5 25.9 21.6 24.2 

10.1 22.3 26.2 23.4 26.6 20.9 26.1 23.9 27.4 23.9 27.7 24.0 27.1 22.5 25.8 23.2 26.4 20.7 24.2 

 
Max 
 

23.4 30.0 23.5 29.9 22.1 28.4 24.0 29.9 23.9 31.2 24.1 30.0 23.4 28.0 23.5 28.8 21.9 25.7 

26 



27 
 

4.3 Existing Transfers 

 A handful of environmental water transfers have been negotiated and purchased 

in the Walker Basin, which change with hydrological conditions (wet versus dry years) as 

they are tied to water rights with varying seniority.  Average daily instream flow from 

existing environmental water transfers increased by 0.81 cms and 0.09 cms for years 

2011 and 2012, respectively (Borgen, pers. comm. 2014).  Existing water transfers at 

Bridgeport, BNGHH, SSWJD, COLONY and GAGE did not noticeably reduce stream 

temperatures below the 7 day average thermal limit during wet or dry years.  However, 

environmental water transfer effects were more pronounced for maximum daily 

temperatures.  The largest change in maximum daily temperature was 2.72 ᵒC on 

8/2/2011, reducing stream temperature from 29.68 ᵒC to 26.96 ᵒC, and 1.09 ᵒC on 

8/6/2012, reducing stream temperature from 29.95 ᵒC to 28.86 ᵒC, near river kilometer 

2.69 by the mouth of Walker Lake (Figure 4-5; Figure 4-6).  Due to the above average 

streamflow in the wet year 2011, temperature fluctuations can be seen in the model 

instability when encountering Weber Reservoir at around rkm 70 through 50 in Figure 4-

6.  Additionally, the stark drop in stream temperatures at the same river kilometers in the 

wet year 2012 can be attributed to the relatively large volume of water in Weber 

Reservoir, clearly illustrating the cooling properties of increasing thermal mass (Figure 4-

6). 
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Figure 4-5: Modeled daily maximum stream temperature longitudinal profile on 8/2/2011 
for Historical Conditions (solid line) and Existing Transfers (dashed line).  Points 
represent measured daily maximum temperatures on the East Walker, mainstem (circles), 
and West Walker (square) Rivers. Red shaded gradient represents range of 28ᵒC acute 
thermal limit for LCT. 

 
4.4 Comparison of Environmental Water Transfer Scenarios 

 Daily environmental water transfers of 0.14, 0.25, 0.71, and 1.41 cms during 

irrigation season did not significantly cool 7 day average stream temperatures during 

2011 or 2012, respectively (Table 4-4).  Environmental water transfers did not change 7 

day average stream temperatures because nightly low temperatures warmed while daily 

high temperatures cooled (Figure 4-7; Figure 4-8).  This trend was consistent for all 

environmental water transfer model simulations in the Walker Basin.  Environmental 

water transfers raise the thermal mass of the river, so that stream temperatures require 
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more energy to warm and thus heat and cool more slowly than with low flow conditions.  

Daily maximum stream temperatures were again reduced with environmental water 

transfers, especially in 2012, a dry year.  In 2012, daily maximum stream temperatures 

dropped by nearly 1ºC, 1.25ºC, 2ºC, and 2.5ºC with water transfers of 0.14, 0.25, 0.71, 

and 1.41 cms, respectively. Differences in the intensity of changes between the two years 

are explained by the large difference in streamflow (i.e. thermal mass) between wet and 

dry years.   

 

Figure 4-6: Modeled daily maximum stream temperature longitudinal profile on 8/2/2012 
for Historical Conditions (solid line) and Existing Transfers (dashed line).  Points 
represent measured daily maximum temperatures on the East Walker, mainstem (circles), 
and West Walker (square) Rivers. Red shaded gradient represents range of 28ᵒC acute 
thermal limit for LCT. 
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Figure 4-7: Hourly stream temperatures at river km 2.69 for week 7/22/2011. 
 
 

The largest maximum daily stream temperature changes occurred with daily 1.41 

cms instream flow increases at Topaz and Bridgeport Reservoirs.  Modeling suggests 

stream temperatures would be reduced by 0.53 ᵒC in the 65 rkms between Weber 

Reservoir to the mouth of Walker Lake in 2011 from increased Topaz Reservoir 

streamflow and 3.03 ᵒC in 2012 from increased Bridgeport Reservoir streamflow (Table 

4-4).  Results also indicate that environmental water transfers have a greater habitat 

benefit in dry years.  Wet years have more streamflow so environmental water purchases 

have less of an effect on stream temperatures. 

Diversions were reduced to zero at individual diversion locations for the 

Diversion Off scenarios, representing maximum environmental water transfers at each 

individual site.  With these runs, more substantial changes of 1.99 ᵒC, 1.80 ᵒC, and 2.39 

ᵒC occurred at large diversions such as BNGHH, MCCAMP, and COLONY downstream 
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of Weber Reservoir in dry year 2012 (Table 4-4).  Total amounts of instream flow added 

to the river (not diverted) are summarized in Table 4-5. 

 

Figure 4-8: Hourly stream temperatures at river km 2.69 for week 7/22/2012. 
  

  No Diversion conditions were estimated for both years, where diversions at all 

sites were set to zero.  These runs are helpful to bracket the range of possibilities for 

environmental water transfer effects on stream temperatures.  The total volume of water 

not diverted during irrigation season for these runs was 2686 m3 for 2011 and 1417 m3 

for 2012.  These runs reduced simulated daily maximum temperatures by 2.01 ºC in 2011 

and 3.28 ºC in 2012 near the mouth of Walker Lake.  With this alternative, the largest 

stream temperature reductions occurred above Weber Reservoir near Mason Valley 

Wildlife Refuge at river kilometer 77.52, but still failed to adequately reduce 7 day 

average stream temperatures during thermally limited weeks of July 1 through August 26 

from the confluence of the East and West Walker Rivers to Weber Reservoir (Table 4-4).  
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No Diversions to Walker Lake represents the best case scenario for Walker River (and 

Walker Lake) restoration. 

 
Table 4-4. Maximum change in 7 day average (chronic) and daily maximum (acute) 
stream temperatures by model run for 2011 and 2012 from July 1-August 26. 

 0.14 cms 0.28 cms 0.71 cms 1.41 cms 
 Diversion 

Off 

2011 Runs 7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

Bridgeport 0.00 0.10 0.00 0.16 0.01 0.33 0.01 0.49 - - 

Topaz - - - - 0.01 0.36 0.01 0.53 - - 

BNGHH 0.00 0.10 0.01 0.16 - - - - 0.01 0.31 

FOX 0.00 0.10 0.01 0.16 - - - - 0.01 0.53 

MCCAMP 0.00 0.10 0.01 0.16 - - - - 0.01 0.76 

SSWJD 0.01 0.10 0.01 0.16 0.01 0.28 0.01 0.31 0.00 0.45 

CANAL 0.00 0.00 0.00 0.01 - - - - 0.01 0.02 

SARONI 0.00 0.10 0.01 0.16 - - - - 0.01 0.25 

COLONY 0.00 0.10 0.01 0.16 - - - - 0.01 0.47 

GAGE 0.00 0.10 0.01 0.16 - - - - 0.01 0.29 

TUNNEL 0.01 0.10 0.01 0.16 - - - - 0.01 0.42 

No Diversion - - - - - - - - 0.09 2.01 

           

2012 Runs 7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

7d 
Avg 

Daily 
Max 

Bridgeport 0.02 0.96 0.04 1.27 0.08 2.29 0.25 3.03 - - 

Topaz - - - - 0.11 2.76 0.17 2.95 - - 

BNGHH 0.02 0.96 0.04 1.27 - - - - 0.08 1.99 

FOX 0.02 0.96 0.04 1.26 - - - - 0.07 1.70 

MCCAMP 0.02 0.96 0.04 1.27 - - - - 0.10 1.80 

SSWJD 0.02 0.96 0.04 1.25 0.08 1.63 0.13 2.36 0.09 1.63 

CANAL 0.01 0.87 0.04 1.18 - - - - 0.07 1.40 

SARONI 0.02 0.96 0.04 1.22 - - - - 0.06 1.35 

COLONY 0.02 0.96 0.04 1.23 - - - - 0.15 2.39 

GAGE 0.02 0.96 0.04 1.24 - - - - 0.10 1.82 

TUNNEL 0.02 0.96 0.04 1.25 - - - - 0.06 1.62 

No Diversion - - - - - - - - 0.26 3.28 
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Table 4-5: Total irrigation season water not diverted by model run in cms.  Columns in 
grey are single runs (i.e. all cells run together at one time). 

 2011 Runs Existing 
Transfers 

0.14 cms 
Additions 

0.28 cms 
Additions 

0.71 cms 
Additions 

1.41cms 
Additions 

Diversion 
Off 

No 
Diversions 

Bridgeport 7.87E+08 7.34E+08 1.47E+09 3.67E+09 7.34E+09 - - 

Topaz - - - 3.67E+09 7.34E+09 - - 

BNGHH 1.82E+08 6.63E+08 1.29E+09 - - 3.63E+09 3.63E+09 

FOX - 6.76E+08 1.34E+09 - - 8.90E+09 8.90E+09 

MCCAMP - 6.24E+08 1.24E+09 - - 1.05E+10 1.05E+10 

SSWJD 1.71E+09 5.62E+08 1.09E+09 2.54E+09 4.29E+09 5.53E+09 5.53E+09 

CANAL - 2.89E+08 5.70E+08 - - 2.36E+09 2.36E+09 

SARONI - 6.60E+08 1.27E+09 - - 2.91E+09 2.91E+09 

COLONY 1.12E+08 6.93E+08 1.35E+09 - - 1.02E+10 1.02E+10 

GAGE 7.03E+08 6.28E+08 1.24E+09 - - 4.55E+09 4.55E+09 

TUNNEL - 5.71E+08 1.13E+09 - - 8.26E+09 8.26E+09 

                

2012 Runs 
Existing 

Transfers  
0.14 cms 
Additions 

0.28 cms 
Additions 

0.71 cms 
Additions 

1.41cms 
Additions  

Diversion 
Off 

No 
Diversions 

Bridgeport 1.11E+08 7.31E+08 1.46E+09 3.66E+09 7.31E+09 - - 

Topaz - - - 3.66E+09 7.31E+09 - - 

BNGHH 0 7.00E+08 1.38E+09 - - 3.82E+09 3.82E+09 

FOX - 6.89E+08 1.31E+09 - - 2.06E+09 2.06E+09 

MCCAMP - 7.30E+08 1.44E+09 - - 6.26E+09 6.26E+09 

SSWJD 1.56E+08 7.25E+08 1.43E+09 3.01E+09 3.87E+09 4.24E+09 4.24E+09 

CANAL - 4.99E+08 9.87E+08 - - 3.53E+09 3.53E+09 

SARONI - 5.86E+08 9.94E+08 - - 1.23E+09 1.23E+09 

COLONY 4.02E+06 6.54E+08 1.27E+09 - - 4.34E+09 4.34E+09 

GAGE 1.96E+08 6.31E+08 1.15E+09 - - 2.03E+09 2.03E+09 

TUNNEL - 7.08E+08 1.30E+09 - - 2.48E+09 2.48E+09 

 

 Finally, two sensitivity analyses were conducted. A depth sensitivity analysis was 

done to examine any effects if a deeper river, where twenty percent was added to all 

center depths of 0.94 m, for a total of 1.18 m below water surface.  A shading analysis 

was also conducted to determine shading sensitivity. In this case, ten sites were chosen 

throughout the basin with no riparian shading (100% solar transmittance) and increased 
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to the willow category of most shading (9% solar transmittance).  The ten shading sites 

were river kilometers 140.04, 84.23, and 75.05 on the East Walker; 25.68 and 6.27 on the 

West Walker; 58.61, 54.43, 48.17, 28.62, and 1.67 on the mainstem Walker River. The 

results from these analyses indicated very little to no change (figures in Appendix B). 
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CHAPTER 5 
 

DISCUSSION 
 
 

 With Historical Conditions, much of the Walker River is thermally limited in July 

and August, including the lower reaches of the East Walker River from approximately 

river kilometer 160 to Weber Reservoir at river kilometer 65, the lowest reaches of the 

mainstem Walker from river kilometer 25 to Walker Lake, and most of the West Walker 

River.  In general, neither existing environmental water transfers nor larger water 

transfers of 1.41 cms or greater reduced 7 day average stream temperatures considerably 

in either year where the river is thermally limited because daily maximum temperatures 

were reduced as daily minimum temperatures increased.  In fact, even the No Diversions 

alternative did not reduce 7 day average stream temperatures below the confluence of the 

mainstem or the West Walker River (Table 4-4).   

However, environmental water transfers reduced maximum daily temperatures at 

all locations during summer (Table 4-4).  This was most pronounced downstream of 

Weber Reservoir and especially in dry year 2012, when additional streamflow reduced 

daily maximum stream temperatures by almost 1 ᵒC with only 0.14 cms transferred from 

agricultural users to instream flows near the mouth of Walker Lake.  Acute maximum 

stream temperature reductions could positively affect aquatic habitat, especially where 

connectivity of thermal refugia improves, such as the 65 river km below Weber Reservoir 

to Walker Lake, provided purchased water is released through Weber Reservoir (Figure 

5-1).  Determining whether acute stream temperature thresholds (greater than 28ᵒC for 2 

hours) or chronic stream temperatures (average weekly stream temperature exceeds 
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24ᵒC) most limit LCT warrants additional research to better focus thermal habitat 

restoration for cold water fishes, although it is outside the scope of this study. 

 

Figure 5-1: Probability of exceedance for daily maximum stream temperatures during 
irrigation season, 2012 (n=245 days) at river km 2.69. Red shading indicates 28ᵒC acute 
thermal limit for LCT.  
 
 
 The 2012 historical conditions simulation indicates the East Walker River is not 

thermally limiting for LCT until approximately river kilometer 160 during irrigation 

season.  This is supported by measured stream temperatures (Figure 2-2; Figure 2-3). 

Bridgeport Reservoir on the East Walker River is located at an elevation of 1950 m, 

approximately 500 m higher than Topaz Reservoir.  East Walker River flows through a 

canyon with topographical and riparian shading, which maintains cool reservoir release 

temperatures in this reach. Further, Sweetwater Creek, a small tributary in the upper 

reaches of East Walker River, contributes an average annual flow of 0.16 cms of cool 

water year round (average annual temperature is 10 ᵒC). Thus, the East Walker River 

provides thermal refugia for LCT and other trout species.  This indicates that East Walker 
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River is a promising location for future restoration targeting riparian vegetation or stream 

channel improvements to further improve currently suitable thermal habitat. 

 The West Walker River averages 2ᵒC warmer annually than the East Walker 

River.  The West Walker River is half the length of the East Walker River, with a shorter 

course to the confluence.  This reduces heating from insolation; however, releases from 

Topaz Reservoir are warmer than those from Bridgeport Reservoir (Figure 5-2) and there 

are no measurable cool water contributions from tributaries.  Therefore, the West Walker 

River probably rarely provides suitable LCT habitat during July and August with 

Historical Conditions.   

 

Figure 5-2: Measured average daily reservoir release temperatures from Bridgeport and 
Topaz Reservoirs. 
 
 
 Determining which water transfer alternatives most reduce stream temperatures in 

the Walker River was a top priority of this research.  Less than 5 days per year and less 

than 5 river kilometers between Weber Reservoir and Walker Lake exceed acute thermal 

limits in wet year 2011. However, in dry years like 2012, stream temperatures exceeded 
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28 ᵒC over 35 days and for up to 70 river kilometers (Figure 5-3; Figure 5-4).  Existing 

environmental water transfers effectively reduced the number of days and river length 

that maximum stream temperatures exceed 28ᵒC during dry years.  Environmental water 

transfers that allow substantial releases from Topaz or Bridgeport Reservoirs (for 

example releases of 1.41 cms) were promising for thermal management, with releases 

from Bridgeport Reservoir on the East Walker River providing larger reductions in 

stream temperature over a longer distance.  Modeling suggested that instream flow 

increases of 0.71 or 1.41 cms at the Sab, Sciariani, West-Hyland, Joggles, and Dairy 

(SSWDJ) Diversion at river km 61.27 could add approximately 20 days and an average 

of 40 river kilometers where stream temperatures do not exceed 28ᵒC.  This shows that 

environmental water transfers can improve thermal habitat in dry years.  

 

 

Figure 5-3: Number of days in 2012 that stream temperature exceeded 28°C for all 
reaches in selected model runs. 
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Figure 5-4:  River length that maximum daily stream temperatures exceeded 28°C for all 
reaches in selected model runs during the hottest week in 2012.  Point data are the 
average daily air temperatures for comparison. 
 
 
5.1 Limitations 

 Simulating hourly stream temperatures for approximately 300 river kilometers in 

two drastically different water years is not without limitations.  RMS, like all models, 

simplifies river systems and water management.  Better flow data for diversion canals 

and return flows would improve modeling.  Further, this modeling did not consider the 

political, legal, or economic feasibility or purchasing water for environmental transfers.  

This work focuses entirely on stream temperature and instream flow aspects of 

environmental water transfers to highlight thermal effects of water transfers rather than 

political or economic challenges. 

 As mentioned earlier, a limitation of RMS is the inability to accurately simulate 

stream temperatures below approximately 10 °C (Hauser pers. comm. 2014).  Stream 
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temperatures regularly fall below 10° C during early spring and fall in the Walker River 

(Figure 2-2; Figure 2-3).  These time periods generally were outside the irrigation season 

and were excluded from- calibration and results. As with all modeling studies, trend in 

stream temperatures are more telling for anticipating the effects of environmental water 

transfers than exact degree changes. An additional complication for future stream 

temperature management in the Walker River is projected climate change, which is 

ignored here.  Research suggests that reduced precipitation and warmer air temperatures 

will shift the dominant form of precipitation from snow to rain, causing flashier systems 

with earlier spring runoff (Palmer et al. 2009; Arismendi et al. 2013), which may further 

increase stream temperatures (Ficklin et al. 2011; Null et al. 2013).  Regardless, this 

research provides quantitative estimates of stream temperatures with environmental water 

transfers for a range of hydrologic conditions represented by wet and dry years.  
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CHAPTER 6 

CONCLUSIONS 
 
 

 Thermal refugia currently exist in the East Walker River upstream of river km 

160 during irrigation season when other river reaches are thermally limited. 

Environmental water transfers can improve stream temperatures by increasing thermal 

mass in dry years. Increasing streamflow reduces maximum daily stream temperatures 

although minimum daily temperatures warm and 7 day average stream temperatures 

generally remain unchanged.   

The extremely dry conditions of water year 2012 marked the beginning of a 

prolonged drought in California and Nevada, and demonstrate that environmental water 

transfers have a greater effect on stream temperatures in dry years. This research suggests 

that water year types matter for aquatic habitat and also that managing aquatic habitats in 

different water years and with different hydrologic conditions may require a range of 

strategies. Recent research has shown that ecosystems in regulated rivers receive 

relatively greater shortages than economic water uses (like water supply and hydropower 

generation) in dry years when instream flows are typically a smaller proportion of 

unregulated flows (Null and Viers 2013). Environmental water transfers from willing 

sellers may be a strategy to mitigate for this and provide an opportunity to manage 

regulated rivers with the warmer and drier conditions anticipated with climate change. 

The most promising environmental water transfer opportunities for the Walker 

Basin increased instream flow at either Topaz or Bridgeport Reservoirs, the upstream 

model boundaries. The 1.41 cms water transfer alternatives at these locations provided 

the greatest reduction (> 1°C) of stream temperatures for the longest distance (25+ rkms).  



42 
 

Further, streamflows and temperatures are most improved if purchased water is not stored 

in Weber Reservoir, but released to Walker Lake. Currently, the furthest downstream 25 

km of the Walker River has the lowest flows and the warmest stream temperatures, with 

poor habitat inhabited by invasive species such as carp (Cyprinus carpio) and catfish 

(Ictalurus punctatus).  This reach is consistently most affected by very warm stream 

temperatures, providing the greatest opportunity for environmental water transfers to 

improve habitat and increase longitudinal connectivity for LCT.   Even by transferring or 

releasing relatively small amounts of water such as 0.71 cms, the number of days and 

river miles with acute thermal limitation are reduced, improving the quality of the habitat 

for LCT.  This also may increase the connectivity of LCT longitudinally throughout the 

river, allowing them to move throughout the river and escape extreme high temperatures 

in low flow situations, particularly in more upstream reaches. The very small 

environmental water transfers of 0.14 and 0.28 cms were not beneficial and should not be 

considered for decision-making, except where additional purchases are likely so that 

cumulative flows could be measurably increased by numerous small environmental water 

purchases.  

The No Diversions alternative runs indicated that stream temperatures exceeded 

chronic and acute thermal limits in some locations and time periods without diversions 

from the Walker River.  This suggests that restoration should not focus exclusively on 

environmental water transfers to improve conditions in the Walker River.  Water 

transfers increase streamflow and reduce stream temperature to an extent, but restoration 

will be most effective if paired with other approaches, such as maintaining healthy 

riparian vegetation communities, improving channel complexity, eradicating invasive 



43 
 

species, or limiting nutrient-rich tailwater return flows that deplete dissolved oxygen 

levels in the river.   

Perhaps most importantly, the modeled results of this study contribute to our 

understanding of instream flow research by demonstrating that simply adding water to a 

river system does not necessarily improve fish habitat. For decades, most instream flow 

research has focused on the importance of adding water to river systems with the 

assumption that the water quality in the system will be automatically improved (Gore and 

Nestler 1988; Stanford et al. 1996; Arthington et al. 2004; Petts 2009).  This concept also 

extended into the environmental water transfer literature, where the main objective was to 

acquire water for the system without concern for the quality of the water acquired (Isé 

and Sunding 1998; Landry 1998; Katz 2006; Loomis et al. 2003; Acreman and Dunbar 

2004; Jones and Colby 2010).   

While the idea of increasing river flows to mimic natural levels is warranted (Poff 

et al. 1997), considering water quality of environmental purchases enables streamflow 

contributions to most improve habitat in impaired river systems.  Incorporating water 

quality into instream flow and environmental water transfer science is needed for both 

researchers and decision makers – especially as competition for freshwater increases in 

water scarce regions. Further, this study shows that focusing on water quality and 

quantity greatly improves instream conditions, even if it does not solve all aquatic 

degradation. In the Walker River, the best alternative is purchasing cool upstream 

reservoir water transfers of 1.41 cms at Bridgeport Reservoir, providing the longest reach 

of river with suitable streamflow and temperature conditions.  This thesis demonstrates 

that careful and systematic modeling of water quality and quantity can prioritize 
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restoration decision making by selecting the best management strategy for the system, 

thereby improving our understating of instream flow management as whole. 

  Finally, process-based hydrodynamic and stream temperature modeling is helpful 

to predict stream temperature response to environmental water transfers.  The methods 

and research carried out in this thesis provides managers with quantitative estimates of 

the number of river kilometers and number of days that stream temperatures exceed 

chronic and acute stream temperature limits for LCT.  These estimates provide crucial 

insight into prioritizing environmental water purchases for restoration, thereby bridging 

the aspects of instream flow science and thermal management in regulated river systems.   
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All plots are from river kilometer 2.69 on the Mainstem Walker River near the Mouth of 
Walker Lake.  Plots are shown as stream temperature time series for all available times 
during irrigation season: 8/1/2011-10/31/2011 and 4/1/2012-10/31/2012. 

2011 Plots  

Calibration plot: measured versus modeled stream temperature. 

 

Figure B-1: Measured versus modeled stream temperatures at RKM 2.69 near the mouth of Walker 
Lake. 

Historical Conditions scenario versus existing transfers at Bridgeport Reservoir, 
BNGHH, SSWJD, GAGE, and COLONY diversion, simulated as one run. 

 

Figure B-2: Historical conditions versus existing transfers stream temperatures at RKM 2.69 near the mouth of 
Walker Lake. 

Historical 

Conditions 

Existing 

Transfers 
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Water Transfer Scenario Runs: these plots show the different water right acquisitions of 
0.14, 0.28, 0.71, and 1.41 cms added at each diversion or reservoir in addition to their 
existing transfers versus the single existing transfers scenario.  

 

Figure B-3: Existing transfers versus 0.14 cms transfers from Bridgeport Reservoir stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

Figure B-4: Existing transfers versus 0.14 cms transfers from BNGHH diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-5: Existing transfers versus 0.14 cms transfers from FOX diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

 

Figure B-6: Existing transfers versus 0.14 cms transfers from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-7: Existing transfers versus 0.14 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

 

Figure B-8: Existing transfers versus 0.14 cms transfers from CANAL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-9: Existing transfers versus 0.14 cms transfers from SARONI diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

 

Figure B-10: Existing transfers versus 0.14 cms transfers from GAGE diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-11: Existing transfers versus 0.14 cms transfers from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

 

Figure B-12: Existing transfers versus 0.14 cms transfers from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-13: Existing transfers versus 0.28 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 

 

 

Figure B-14: Existing transfers versus 0.28 cms transfers from BNGHH diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-15: Existing transfers versus 0.28 cms transfers from FOX diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake 

 

 

 

Figure B-16: Existing transfers versus 0.28 cms transfers from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-17: Existing transfers versus 0.28 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

 

Figure B-18: Existing transfers versus 0.28 cms transfers from CANAL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-19: Existing transfers versus 0.28 cms transfers from SARONI diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

 

Figure B-20: Existing transfers versus 0.28 cms transfers from GAGE diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-21: Existing transfers versus 0.28 cms transfers from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-22: Existing transfers versus 0.28 cms transfers from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-23: Existing transfers versus 0.71 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 

 

 

 

Figure B-24: Existing transfers versus 0.71 cms transfers from Topaz Reservoir stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-25: Existing transfers versus 0.71 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-26: Existing transfers versus 1.41 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 
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Figure B-27: Existing transfers versus 1.41 cms transfers from Topaz Reservoir stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-28: Existing transfers versus 1.41 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Zero Diversion Scenarios: all diversions during the irrigation season turned off, singly, 
for each diversion. 

 

Figure B-29: Existing transfers versus zero diversions from BNGHH diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

 

Figure B-30: Existing transfers versus zero diversions from FOX diversion stream temperatures at RKM 2.69 near the 
mouth of Walker Lake. 
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Figure B-31: Existing transfers versus zero diversions from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-32: Existing transfers versus zero diversions from SSWJD diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 
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Figure B-33: Existing transfers versus zero diversions from CANAL diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

Figure B-34: Existing transfers versus zero diversions from SARONI diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 
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Figure B-35: Existing transfers versus zero diversions from GAGE diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

 

Figure B-36: Existing transfers versus zero diversions from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-37: Existing transfers versus zero diversions from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

No Diversion Scenario: All diversions turned off for all diversions combined in one run. 

 

Figure B-38: Existing transfers versus no diversions from all diversions (combined) stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 
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Sensitivity Anaylses: 

 

Figure B-39: Sensitivity analysis of Existing transfers with 0.94 m depth versus Existing transfers with 1.18 m depth 
(20% increase) stream temperatures at RKM 2.69 near the mouth of Walker Lake. 

 

 

 

Figure B-40: Sensitivity analysis of Existing transfers scenario versus Existing transfers with full shade stream 
temperatures at RKM 2.69 near the mouth of Walker Lake. 
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2012 Plots 

Calibration plot: measured versus modeled stream temperature. 

 

Figure B-41: Measured versus modeled stream temperatures at RKM 2.69 near the mouth of Walker 
Lake. 

 

Historical Conditions scenario versus existing transfers at Bridgeport Reservoir, 
BNGHH, SSWJD, GAGE, and COLONY diversion, simulated as one run. 

 

Figure B-42: Historical Conditions versus existing transfers stream temperatures at RKM 2.69 near the mouth of 
Walker Lake. 
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Water Transfer Scenario Runs: these plots show the different water right acquisitions of 
0.14, 0.28, 0.71, and 1.41 cms added at each diversion or reservoir in addition to their 
existing transfers versus the single existing transfers scenario.  

 

Figure B-43: Existing transfers versus 0.14 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 

 

 

 

Figure B-44: Existing transfers versus 0.14 cms transfers from BNGHH diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-45: Existing transfers versus 0.14 cms transfers from FOX diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

 

Figure B-46: Existing transfers versus 0.14 cms transfers from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-47: Existing transfers versus 0.14 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-48: Existing transfers versus 0.14 cms transfers from CANAL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-49: Existing transfers versus 0.14 cms transfers from SARONI diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-50: Existing transfers versus 0.14 cms transfers from GAGE diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-51: Existing transfers versus 0.14 cms transfers from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-52: Existing transfers versus 0.14 cms transfers from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-53: Existing transfers versus 0.28 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake. 

 

 

Figure B-54: Existing transfers versus 0.28 cms transfers from BNGHH diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-55: Existing transfers versus 0.28 cms transfers from FOX diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake 

 

 

Figure B-56: Existing transfers versus 0.28 cms transfers from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-57: Existing transfers versus 0.28 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 

 

 

Figure B-58: Existing transfers versus 0.28 cms transfers from CANAL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-59: Existing transfers versus 0.28 cms transfers from SARONI diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 

 

 

Figure B-60: Existing transfers versus 0.28 cms transfers from CANAL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-61: Existing transfers versus 0.28 cms transfers from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 

 

 

Figure B-62: Existing transfers versus 0.28 cms transfers from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-63: Existing transfers versus 0.71 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake 

 

 

 

Figure B-64: Existing transfers versus 0.71 cms transfers from Topaz Reservoir stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Figure B-65: Existing transfers versus 0.71 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 

 

 

Figure B-66: Existing transfers versus 1.41 cms transfers from Bridgeport Reservoir stream temperatures at RKM 
2.69 near the mouth of Walker Lake 
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Figure B-67: Existing transfers versus 1.41 cms transfers from Topaz Reservoir stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-68: Existing transfers versus 1.41 cms transfers from SSWJD diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake 
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Zero Diversion Scenarios: all diversions during the irrigation season turned off, singly, 
for each diversion. 

 

Figure B-69: Existing transfers versus zero diversions from BNGHH diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

Figure B-70: Existing transfers versus zero diversions from FOX diversion stream temperatures at RKM 2.69 near the 
mouth of Walker Lake. 
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Figure B-71: Existing transfers versus zero diversions from MCCAMP diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

 

Figure B-72: Existing transfers versus zero diversions from SSWJD diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 
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Figure B-73: Existing transfers versus zero diversions from CANAL diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

Figure B-74: Existing transfers versus zero diversions from SARONI diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 
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Figure B-75: Existing transfers versus zero diversions from GAGE diversion stream temperatures at RKM 2.69 near 
the mouth of Walker Lake. 

 

 

Figure B-76: Existing transfers versus zero diversions from COLONY diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Figure B-77: Existing transfers versus zero diversions from TUNNEL diversion stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 

 

No Diversion Scenario: All diversions turned off for all diversions combined in one run. 

 

Figure B-78: Existing transfers versus no diversions at all diversions (combined) stream temperatures at RKM 2.69 
near the mouth of Walker Lake. 
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Sensitivity Analyses: 

 

Figure B-79: Sensitivity analysis of Existing transfers with 0.94 m depth versus Existing transfers with 1.18 m depth 
(20% increase) stream temperatures at RKM 2.69 near the mouth of Walker Lake. 

 

 

Figure B-80: Sensitivity analysis of Existing transfers scenario versus Existing transfers with full shade stream 
temperatures at RKM 2.69 near the mouth of Walker Lake. 
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