
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

8-2015 

Agricultural Water Management in the Sevier River Basin, Utah: A Agricultural Water Management in the Sevier River Basin, Utah: A 

Multidisciplinary Approach Multidisciplinary Approach 

Daeha Kim 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Kim, Daeha, "Agricultural Water Management in the Sevier River Basin, Utah: A Multidisciplinary Approach" 
(2015). All Graduate Theses and Dissertations. 4362. 
https://digitalcommons.usu.edu/etd/4362 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fetd%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/4362?utm_source=digitalcommons.usu.edu%2Fetd%2F4362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 
AGRICULTURAL WATER MANAGEMENT IN THE SEVIER RIVER 

 
BASIN, UTAH:  A MULTIDISCIPLINARY APPROACH 

 
 

by 
 
 

Daeha Kim 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

 
of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Civil and Environmental Engineering 
 
Approved: 
 
 
    
Jagath J. Kaluarachchi, Ph.D.  Wynn R. Walker, Ph.D. 
Major Professor  Committee Member 
 
 
    
Mac McKee, Ph.D.  Christopher M. U. Neale, Ph.D. 
Committee Member  Committee Member 
 
 
    
DeeVon Bailey, Ph.D.  Mark R. McLellan, Ph.D. 
Committee Member  Vice President for Research and 
  Dean of the School of Graduate Studies 

 
 

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2015  



ii 
 

 

 

 

 

 

 

 

 

 

Copyright © Daeha Kim 2015 

All Rights Reserved 

  



iii 
 

ABSTRACT 

 
Agricultural Water Management in the Sevier River Basin, Utah:  

 
A Multidisciplinary Approach 

 
 

by 
 
 

Daeha Kim, Doctor of Philosophy 
 

Utah State University, 2015 
 
 
Major Professor: Dr. Jagath J. Kaluarachchi 
Department: Civil and Environmental Engineering 

 

Rural river basins with limited water always face the challenge of providing 

adequate water for agriculture given the high proportion of water use. Management of 

these river basins becomes even more complex with limited data, snowmelt driven runoff, 

salinity, and complex water storage and diversion patterns. One option to manage such 

river basins is to develop appropriate hydro-economic tools that consider maximizing 

farm income subject to water availability. This research addresses these concerns in the 

snowmelt-driven Sevier River Basin located in south central Utah where salinity is a 

concern while regulated flows cause lack of information of natural flows and water 

availability together with increased soil salinity. This dissertation addressed three 

important areas: use of a simple and practical approach of predicting natural flows and 

water availability using the Flow Duration Curve method (FDC); updating the AquaCrop 

model of FAO using remote sensing models and regional crop information to predict crop 
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response to water with and without salinity; and finally developing a hydro-economic 

analysis that considered crop price and yield variability to maximize producers’ utility. 

Snowmelt runoff is predicted using a combination of a snowmelt model and the FDC 

method with point climatic inputs. Applicability of the method is tested using both 

lumped and semi-distributed conceptual models. For crop production functions, FAO 

AquaCrop is validated using Landsat images and regional crop information without 

ground crop measurements. A novel remote sensing model is suggested with the concept 

of the radiance use efficiency model for estimating aboveground biomass. In the hydro-

economic analysis, variability in crop prices and yields is incorporated in the risk-term 

such that water and land allocation strategies considering producers’ profit and financial 

risk are provided for salinity-affected farms. 

 

(178 pages) 
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PUBLIC ABSTRACT 

Agricultural Water Management in the Sevier River Basin, Utah:  
 

A Multidisciplinary Approach 
 

by 
 
 

Daeha Kim, Doctor of Philosophy 
 

Utah State University, 2015 
 
 
Major Professor: Dr. Jagath J. Kaluarachchi 
Department: Civil and Environmental Engineering 

 

The Sevier River Basin situated in south central Utah is characterized by its semi-

arid climate, snowmelt-driven runoff, and high dependency on agricultural economy.  

High evapotranspiration and low precipitation make agricultural production challenging, 

but naturally stored water in the snowpack in the mountains alleviates water stresses 

during high water demand seasons. The snowmelt-driven river flow along the main 

channel is highly exploited for irrigation for farms near the Sevier River. Reservoir 

operations and river diversions result in heavily regulated flows from the upper to the 

lower basins. The return flows of over-irrigated water in the upper basin increase salinity 

of surface water. Long-term applications of salinity water in agriculture eventually 

produce high soil salinity in the agricultural areas near Delta in the lower basin, which 

deteriorated farmers’ crop productivity. Farmers cropping near Delta struggle with both 

water and salinity stresses. Indeed, crop prices and yields are always their concerns. For 
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them, efficient water management can be achieved with consideration of hydrologic, 

agronomic, and economic aspects of water resources. The overall goal of this research 

was to develop a decision supporting framework for efficient water and land allocations 

that considered hydrologic processes, crop response to water in salinity-affected farms, 

and farmers’ profit and financial risk. 

This research introduces a methodology for predicting water availability in a 

given cropping year from the snowpack in the mountains, and agronomic simulations 

with satellite images follow for quantifying crop response to water. The hydrologic 

predictions and the agronomic simulations are finally incorporated into an economic 

analysis that provides efficient water and land allocations with multiple crop selections. 

In a rural river basin, data limitation is a common concern for water resources engineers; 

thus simple but robust methodologies are proposed for hydrologic prediction. In the same 

context, satellite images are used for the estimation of crop yields in individual farms 

near Delta with no prior crop experimental plots. Historical records of crop prices are 

used for the economic analysis. The methodologies developed in this research provide a 

comprehensive decision analysis framework for efficient water management where water 

is scare and available from snowmelt only, the economy depends on agriculture only, and 

salinity is present in both soil and water due to long-term irrigation. The case study is for 

the agricultural area near Delta in the Sevier River Basin, but its applicability is not 

limited and is flexibly applicable to other agricultural regions. 
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CHAPTER 1 

INTRODUCTION 

Motivation 

Today’s water allocation problems in the world are becoming complex and 

multifaceted because of rapidly changing climatic, hydrologic, and socio-economic 

conditions. Climate change, increasing population, and conflicting water demands are a 

long-term challenge in hydrologic sciences, and approaches for solving related problems 

require multi-disciplinary approach. In agricultural water management, changes in both 

natural processes and human impacts are concerns when developing efficient 

management policies. In this context, a hydro-economic analysis is a good decision 

support system for managing agricultural water under the rapidly changing conditions. 

For multifaceted water policies for crop production, a hydro-economic analysis 

generally incorporates both of hydrologic and agronomic information and analyses. Water 

availability is a crucial constraint limiting crop production. Crop production functions 

enable to convert applied water into crop production. Prices estimate economic value of 

inputs and outputs for production by monetization. Hence, the best information from a 

hydro-economic analysis is the optimal use of water and other resources to provide 

maximum profit or utility to agricultural producers subject to the uncertainty of crop 

prices, costs, and availability of resources. 

In general, reliability and validity of hydrologic and agronomic predictions are 

dependent on model performance and availability of data. More scientific models and 

higher data availability are likely to guarantee reliability and validity of model 
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predictions. However, limited applicability of sophisticated physical models due to the 

lack of data is common in rural river basins. Also, a high fluctuation of crop prices can 

become a major concern for farmers for their financial risk exposure, thus a realistic 

consideration of prices is necessary. 

This dissertation deals with practical concerns that a hydro-economic analysis 

face under data limited conditions in a rural river basin where water is primarily available 

from snowmelt while water is managed through a system of reservoirs and diversions.  In 

order to come closer to reality, hydro-economic analyses should be implemented with 

representative hydrologic and agronomic models. Since detailed models generally have 

higher data requirements, applicability of such detailed hydro-economic analyses should 

be tested under data limited conditions. To overcome the data limitation in a rural basin, 

this research investigates simple and practical approaches to predicting natural flows and 

water availability in a snowmelt-driven river basin with limited data and regulated flows, 

and proposed improved methods of using state-of-the-art yet simple crop simulation 

model to predict crop response to water. Finally, an economic analysis is implemented 

through optimization to achieve appropriate land allocation and water use policies to 

balance between farmers’ profit and financial risk with consideration of variable climatic, 

hydrologic, and economic conditions. 

Research Objectives 

The goal of this research is to develop an efficient agricultural water allocation 

methodology in regions with managed water infrastructure, water scarcity, soil salinity 

stress, and limited data such that farmers’ utility is maximized. The specific objectives are: 
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1) To develop a methodology using the Flow Duration Curve (FDC) and a point 

snowmelt model to simulate both managed and natural streamflows in a semi-

arid river basin using point snow observations such that water availability can 

be estimated. 

2) To develop an approach to predict crop response to water for saline crop lands 

using a crop simulation model through validation using Landsat images and 

regional crop information when no crop ground measurements are available. 

3) To develop a risk-based hydro-economic analysis with consideration of 

variation in crop price and yield for efficient land and water allocations in an 

agricultural area with maximization of farmers’ utility.  

Dissertation Organization 

The dissertation is comprised of hydrologic, agronomic, and economic analyses 

section in accordance with the three objectives discussed earlier. These sections are 

described in Chapters 2 through 4. Chapter 5 provides a summary, conclusions and 

recommendations.  

Chapter 2 addresses the applicability of a simple revised FDC method in predicting 

snowmelt runoff in both regulated and unregulated watersheds. This work overcomes the 

drawbacks inherent in classical conceptual models, compare between the applicability of 

the revised FDC method and two conceptual models, and discussed reliability and 

accuracy of each method. This work also assesses the change in prediction performance 

with respect to the degree of spatial distribution of climatic inputs.  

Chapter 3 suggests an approach to estimating crop production without ground 
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measurements. Because satellite images can distinguish stressed farms from non-stressed 

ones, the RS model can show the difference in crop production between salinity affected 

and unaffected farms. The RS estimates of non-stressed farms are used to validate the 

built-in crops in FAO AquaCrop under non-stressed conditions. Also, the RS estimates of 

stressed-farms provide basic information for calibrating salinity stress of AquaCrop.  

In Chapter 4, strategies for efficient water and land allocations considering the economics 

of farm management are discussed. The proposed analysis considers producers’ financial 

risk from variability in climatic and economic conditions, thus the overall financial risk in 

profit is quantified. The proposed optimization approach of this hydro-economic analysis 

provides land and water allocation strategies balanced between producers’ profit and risk, 

and therefore the results are more practical for producers’ preseason decision-making. 
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CHAPTER 2 

PREDICTING STREAMFLOWS IN SNOWMELT-DRIVEN WATERSHEDS USING 

THE FLOW DURATION CURVE METHOD1 

ABSTRACT 

Predicting streamflows in snow-fed watersheds in the Western United States is 

important for water allocation. Since many of these watersheds are heavily regulated 

through canal networks and reservoirs, predicting expected natural flows and therefore 

water availability under limited data is always a challenge. This study investigates the 

applicability of the flow duration curve (FDC) method for predicting natural flows in 

gauged and regulated snow-fed watersheds. Point snow observations, air temperature, 

precipitation, and snow water equivalent were used to simulate the snowmelt process 

with the SNOW-17 model, and extended to streamflow simulation using the FDC method 

with a modified current precipitation index. For regulated watersheds, a parametric 

regional FDC method was applied to reconstruct natural flow. For comparison, a 

simplified tank model was used considering both lumped and semi-distributed 

approaches. The proximity regionalization method was used to simulate streamflows in 

the regulated watersheds with the tank model. The results showed that the FDC method is 

capable of producing satisfactory natural flow estimates in gauged watersheds when high 

correlation exists between current precipitation index and streamflow. For regulated 

                                                 
1 Reprinted from Hydrology and Earth System Sciences, Vol. 18, Daeha Kim, and Jagath J. 

Kaluarachchi, Predicting streamflows in snowmelt-driven watersheds using the flow duration curve method, 
pages 1679-1693, © Author(s) 2014. CC Attribution 3.0 License. 
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watersheds, the regional FDC method produced acceptable river diversion estimates, but 

it seemed to have more uncertainty due to less robustness of the FDC method. In spite of 

its simplicity, the FDC method is a practical approach with less computational burden for 

studies with minimal data availability. 

INTRODUCTION 

Snow accounts for a significant portion of precipitation in the mountainous 

Western United States and snowmelt plays an important role in forecasting streamflow 

(Serreze et al., 1999). Extreme amounts of snowfall can result in a flood in the melting 

season, and sometimes snow accumulation alleviates drought by natural redistribution of 

precipitation in a high water-demand period. In such regions, snowmelt controls the 

hydrologic processes and water relevant activities such as irrigation. Therefore, the 

reliable prediction of snowmelt is crucial for water resources planning and management 

(He et al., 2011; Mizukami et al., 2011; Singh and Singh, 2001). 

Conventionally, conceptual snowmelt models developed by combining rainfall–

runoff models with temperature index models using a parameterized melting factor (e.g., 

Anderson, 2006; Albert and Krajeski, 1998; Neitsch et al., 2001) have been used to 

predict daily streamflows in snow-fed watersheds. Conceptual modeling is an attractive 

solution to daily streamflow simulation not only for rainfall-fed but also for snow-fed 

watersheds due to its flexibility and applicability (Uhlenbrook et al., 1999; Smakhtin, 

1999). Examples include models such as SSARR (Cundy and Brooks, 1981), PRMS 

(Leavesley et al., 1983), NWSRFS (Larson, 2002), UBC (Quick and Pipes, 1976), 

CEQUEAU (Morin, 2002), HBV (Bergström, 1976), SRM (Martinec, 1975), and TANK 
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(Sugawara, 1995), among others. 

However, a significant simplification is necessary when complex hydrological 

behavior of a watershed is implicitly parameterized into a conceptual model (Blöschl et 

al., 2013). Such simplifications make it difficult to relate model parameters directly to 

measured watersheds properties (Beven, 2006). Hence, the parameters of conceptual 

models are usually identified by streamflow observations with calibration techniques 

such as the shuffled complex evolution or genetic algorithm. In truth, calibration is the 

major part of conceptual modeling, and it is still typically labor-consuming; however, 

computational efficiency has improved with advances in computer technology. In spite of 

the effort involved, uncertainty in conceptual models is always an important issue 

(Kuczera and Parent, 1998; Uhlenbrook et al., 1999; Panday et al., 2014). Furthermore, 

the parameter set calibrated by streamflow observations is usually not unique because 

there can be other sets of parameters providing similar model performance (Beven, 1993; 

Seibert, 1997; Oudin et al., 2006; Perrin et al., 2007). Particularly in snowmelt runoff 

modeling, calibration can produce less uniqueness, less robustness, and more uncertainty 

than rainfall–runoff modeling because additional inputs (e.g., air temperature) and 

parameters (e.g., melting factor) are required to define the snowmelt process. 

As an alternate approach, linking point snow observations to streamflow can be a 

pragmatic option. A common statistical approach for simple generation of daily 

streamflow is the flow duration curve (FDC) method. A FDC gives a summary of 

streamflow variation and represents the relationship between streamflow and its 

exceedance probability (Vogel and Fennessey, 1994). For streamflow generation, one or 



8 
 

multiple sets of donor variables are transferred to a target station by corresponding 

exceedance probability of the donor sets with that of the target. A number of variations of 

the FDC method have been used for the generation of daily streamflow data. Hughes and 

Smakhtin (1996), for instance, suggested a FDC method with a nonlinear spatial 

interpolation method to extend observed flow data. Smakhtin and Masse (2000) 

developed a variation of the FDC method to generate streamflow using rainfall 

observations as the donor variable instead of streamflow data. Recently, the FDC was 

used not only for generating streamflow directly, but also for calibrating conceptual 

models (Westerberg et al., 2011). Westerberg et al. (2011) used the FDC as a performance 

measure to circumvent uncertainty in discharge data and other drawbacks in model 

calibration with traditional methods. Despite the numerous applications with the FDC, 

there is still no good approach using the FDC method to generate daily streamflow from 

point snow observations. Given the simplicity of the FDC method, a suitable approach 

using the FDC method to predict snowmelt-driven runoff using point snow observations 

could be practical and cost-efficient due to the reduced computational effort. 

If the target station is ungauged, a regional FDC can estimate the FDC of the 

target station. The regional FDC is generally developed using the relationships between 

selected percentile flows in gauged FDCs and climatic or physical properties of the 

watersheds. Thus, the regional FDC estimates the unknown FDC of an ungauged 

watershed only with its physical properties. Many regional FDC methods have been 

proposed for generating streamflows in ungauged watersheds. Shu and Ouarda (2012) 

categorized the regional FDC methods as a statistical approach (e.g., Singh et al., 2001; 
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Claps et al., 2005), a parametric approach (e.g., Yu et al., 2002; Mohamoud, 2008), and a 

graphical approach (e.g., Smakhtin et al., 1997). 

The regional FDC can be used not only for generating streamflows in ungauged 

watersheds, but also for reconstructing natural flows of watersheds regulated by reservoir 

operations, river diversions and other human activities. Smakhtin (1999), for example, 

evaluated the impact of reservoir operations by comparing between regulated outflows 

from a reservoir and natural flow estimated by a regional FDC. In the Western United 

States, the prior appropriation doctrine, the water right of “first in time, first in right,” has 

produced many river basins with impaired streamflows. These impairments are 

particularly significant in watersheds with high aridity, low precipitation, and relatively 

large water demands. The regional FDC method can represent flow impairments by 

reconstructing natural flows using minimal data. The reconstruction of natural flow 

provides additional information to water managers for efficient water allocation during 

the high-demand periods. The volume difference between reconstructed natural flows and 

impaired streamflow observations can simply indicate the combined effects of reservoir 

operations, river diversions, and other human-driven activities. Thus, the effect of 

regulation in a watershed can be approximately evaluated from this comparison. 

As discussed earlier, prior studies using the FDC method with precipitation data 

focused on predicting streamflows in natural and managed watersheds under typical 

rainfall–runoff conditions and not with snowmelt-driven streamflow. Therefore, the goals 

of this work are twofold: first to assess the applicability of the FDC method in predicting 

streamflows in semi-arid snowmelt-driven watersheds through the comparison with 
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conceptual rainfall–runoff models incorporating a temperature index-based snowmelt 

model; and second to assess the possibility of extending the work through regionalization 

to predict natural streamflows in regulated watersheds to determine water availability. In 

this work, a modified approach to the FDC method for streamflow generation from 

rainfall observations (Smakhtin and Masse, 2000) is proposed. The simplified SNOW-17 

model was used here with point snow observations to estimate snowmelt discharge 

required by the FDC method and the conceptual model. Also, a parametric regional FDC 

method was applied for the reconstruction of natural flows and a proximity-based 

regionalization approach was used in the conceptual rainfall–runoff models for 

comparison with the regional FDC. By comparing with impaired streamflows and 

observed managed flows, water use in a watershed was estimated. 

DESCRIPTION OF THE STUDY AREA AND DATA 

The study area is the Sevier River basin, located in South Central Utah, and the 

details are given Figure 2-1. The Sevier River basin is a semi-arid basin with relatively 

high ET (evapotranspiration). The watersheds in or adjacent to the Sevier River basin are 

dominantly fed by snowmelt from the high-elevation region. Particularly, the Sevier 

River is significantly regulated by diversions and reservoir operations along the major 

channel for agricultural water use. Hence, a real-time streamflow monitoring system 

along the main channel is operated by the Sevier River Water Users Association, but it is 

difficult to estimate the natural discharge from the regulated watersheds using this 

monitoring system. 

This study used the US Geological Survey (USGS) streamflow stations for the 
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FDC method and conceptual modeling. Because only five watersheds in the Sevier River 

basin have natural streamflow observations, eight adjacent watersheds were included as 

well for generating streamflows in gauged watersheds. In addition, two USGS stations in 

the main Sevier River with significant impairments were selected for reconstructing 

natural flows using the regionalization methods. These two stations were assumed as 

ungauged watersheds although these have continuous daily observations. Hence, “gauged” 

watersheds in this study refer to watersheds with natural flow observations only, while 

“regulated” watersheds indicate watersheds with impaired flows and therefore these 

watersheds are treated as ungauged watersheds. 

Precipitation, maximum and minimum air temperature, and snow water 

equivalent (SWE) data from the SNOTEL stations operated by US Department of 

Agriculture (USDA) were used as inputs to the FDC method and conceptual modeling. 

The details of the USGS stations and corresponding SNOTEL stations are given in Table 

2-1 with corresponding data periods and watershed areas. Additionally, the records of 

canal diversions from the Utah Division of Water Rights were used to compare 

streamflows simulated by regionalization with actual river diversions. For the conceptual 

modeling, point SNOTEL data were adjusted to spatially averaged inputs using data from 

the PRISM database (PRISM Climate Group, 2012). The procedure included a 

comparison between a pixel located in a SNOTEL station and the areal average of pixels 

in a watershed or an elevation zone using 30 arcsec annual normals from 1981 to 2010. 

The ratio of the average of pixels to the pixel at a SNOTEL station was multiplied by the 

point precipitation at the SNOTEL station, while the difference between these was added 
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to the point temperature. For the regional FDC, the SNOTEL data adjusted by PRISM 

data were also used for calculating climatic variables. The USGS National Elevation 

Dataset (2012) and US General Soil Map served by USDA (2013) were used to obtain 

geomorphologic and soil properties of the watersheds. 

METHODOLOGY 

SNOW-17 snowmelt model 

This study uses SNOW-17 as the snowmelt model which has been used for river 

forecasting by the National Weather Service (NWS). SNOW-17 is a single-layered, 

conceptual snowmelt model. This model estimates SWE and snowmelt depth as outputs. 

Input data required are precipitation and air temperature only. Although the original 

SNOW-17 model has 10 parameters for point-scale simulation, this study used the 

simplified model similar to Raleigh and Lundquist (2012). For simplification, 

temperature for dividing rainfall and snowfall (PXTEMP), base temperature for non-rain 

melt (MBASE), and the liquid water holding capacity (PLWHC) were assumed at typical 

values of 1.5 °C, 0 °C, and 5%, respectively. Rain on snowmelt and daily melt at the 

snow-soil interface were deactivated since these contribute minimally to the energy 

budget of the snowmelt process (Raleigh and Lundquist, 2012; Walter et al., 2005). The 

simplified version has only five parameters, which are SCF, MFMAX, MFMIN, NMF, 

and TIPM. SCF is a multiplying factor to adjust new snow amounts. MFMAX and 

MFMIN are the maximum and minimum melting factors to calculate melting depths, 

respectively. NMF and TIPM are parameters for simulating energy exchange when there 

is no snowmelt. A detailed description of the model was given by Anderson (2006). This 
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study used Nash–Sutcliffe Efficiency (NSE) for performance evaluation of SNOW-17 

and model calibration. Parameters were optimized using the genetic algorithm in the 

Matlab environment. The NSE for snowmelt modeling (NSESWE) is defined as: 

NSEୗ ൌ 1 െ
∑ ൛୕ుሺ୲ሻି୕ుሺ୲ሻൟ

మ
౪సభ

∑ ሼ୕ుሺ୲ሻିഥ୕ుሽమ
౪సభ

 (2.1) 

where Qୗሺtሻ and  Qୗሺtሻ are observed and simulated SWE’s (mm) at time t, 

respectively, Qഥୗ is the mean observed SWE (mm), and T is the number of observations. 

Modified FDC method with precipitation index 

The FDC method is a non-parametric probability density function representing the 

relationship between magnitude of streamflow and its exceedance probability. The FDC 

method is typically used to generate daily streamflow at a station from highly correlating 

donor streamflow data sets with a target station. A drawback of this approach is that 

streamflow generation is dependent on the availability of donor data sets. Hence, in a 

region with a low density of stream gauging stations, the FDC method may face the 

difficulty of not having adequate donor streamflow data. 

Smakhtin and Masse (2000) developed a modified FDC method with a 

precipitation index to overcome the limited availability of donor variable sets. Their 

method included transforming the time series of precipitation into an index having similar 

properties to streamflow data. The transformation was to avoid zero values in 

precipitation data caused by the intermittency of precipitation events, which therefore 

produce a different shape of duration curve from a typical FDC. The duration curve of 

transformed precipitation could indicate the exceedance probability at the outlet, which 

determines the magnitude of streamflow. 
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This study modified the original concept as follows. First, the outflow depth 

simulated by SNOW-17 was used for constructing the FDC instead of precipitation data 

to represent the snowmelt process. Second, a constant recession coefficient was applied 

for the calculation of precipitation index of Smakhtin and Masse (2000), but different 

coefficients were used to represent the different hydrologic responses of rainfall and 

snowmelt to streamflow. The modified approach is given below. 

The current precipitation index at time t, ICP (t) in mm d-1 was defined in the 

original work as:  

Iେሺtሻ ൌ k ൈ Iେሺt െ 1ሻ ൈ Δt  Pሺtሻ (2.2) 

where k is the recession coefficient (d-1), P(t) is daily precipitation at time t (mm d-1), and 

∆t is the time interval (d). Recession coefficient, k, represents the similar concept to the 

baseflow recession coefficient and needs to be determined by observed streamflow. 

According to previous studies, k varies from 0.85 to 0.98 d−1 (Linsley et al., 1982; Fedora 

and Beschta, 1989). In addition, the initial value of ICP can be assumed as the long-term 

mean daily precipitation because of the fast convergence of calculations (Smakhtin and 

Masse, 2000). 

To consider the snowmelt process, outflow calculated by SNOW-17 was divided 

into two time series, since it was important to stipulate different recession coefficients for 

snowmelt and rainfall processes given the different timescales of these processes for 

generating streamflow (DeWalle and Rango, 2008). Time series of snowmelt depth and 

rainfall depth were separated based on the existence of snow cover (when SWE > 0). 

Finally, the two indices were summed for simulating ICP. Hence, the ICP is redefined as:  
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Iେሺtሻ ൌ Iୌሺtሻ  Iୈሺtሻ (2.3a) 

Iୌሺtሻ ൌ kୗ ൈ Iୌሺt െ 1ሻ ൈ Δt  Sሺtሻ (2.3b) 

Iୈሺtሻ ൌ kୖ ൈ Iୈሺt െ 1ሻ ൈ Δt  Rሺtሻ (2.3c) 

where ICS (t) is the current snowmelt index (mm) at time t, S(t) is the snowmelt depth 

(mm) at time t, ICR (t) is the current rainfall index (mm) at time t, R(t) is the rainfall depth 

(mm) at time t, kS and kR are recession coefficients (d-1) for snowmelt and rainfall, 

respectively. Generally, kS is greater than kR because snowmelt runoff varies more 

smoothly with time than quick flow caused by rain storms. In this study, kS and kR were 

selected by values showing maximum correlation between ICP and observed streamflow 

data. Figure 2-2 shows the proposed FDC method used in this work. 

The selection of a snow observation station when multiple stations are present in a 

watershed was based on high correlation between calculated ICP and observed streamflow. 

Although Smaktin and Masse (2000) commented that the effect of weights in the case of 

multiple stations was not a significant factor in their original FDC method with the 

precipitation index, a high correlation between ICP and streamflow supports better 

performance in the generation of streamflow because of the significant climatic variation 

of snow-fed watersheds located in high-elevation regions. 

Simplified tank model 

This study used the simplified tank model proposed by Cooper et al. (2007) to 

compare the performance under the conditions of similar and limited data availability. 

The simplified tank model reduced the number of parameters of the original tank model 

(Sugawara, 1995) to help minimize over-parameterization when the tank model was 
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combined with the snowmelt model. This simplified tank model shown in Figure 2-3a has 

two vertical layers with the primary soil moisture layer in the upper tank. This study did 

not consider the secondary soil moisture layer in the simplified tank model because it was 

not sensitive to runoff simulations (Cooper et al., 2007). Evapotranspiration (ET) in the 

tank model was independently estimated using the modified complementary method 

proposed by Anayah (2012). The combined model has 12 parameters (5 for snowmelt, 7 

for runoff). The structure of the tank model is adequately flexible to be calibrated by 

streamflow observations. It has more parameters than the Snowmelt Runoff Model with 

eight parameters (Martinec et al., 2008). 

The model produces several modes of response representing the different 

conditions that may prevail in a watershed. The upper tank has a non-linear response in 

the rainfall–runoff process because of its multiple horizontal outlets, whereas the lower 

tank has a linear response. There are three thresholds to determine the four modes of 

hydrologic response, which are HS, H1, and H2. HS represents the soil moisture-holding 

capacity (mm). H1 and H2 represent the lower and upper thresholds for generating direct 

runoff (mm). The detailed procedure for calculating streamflow is available from Cooper 

et al. (2007). 

This study used two approaches with the proposed tank model (as depicted in 

Figure 2-3) for evaluating the performance with and without the consideration of climatic 

variation in a watershed. The first approach was a completely lumped model with a single 

set of climatic inputs that disregards the climatic variation of a watershed (Figure 2-3a). 

The second approach was a semi-distributed tank model with five different tanks for the 
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upper layer to accommodate climatic variation due to elevation (Figure 2-3b). All of the 

upper tanks in both approaches were assumed to have same parameters for both 

snowmelt and runoff modeling. For the semi-distributed tank model, a watershed was 

divided into five zones with the aid of the area–elevation relationship. Inputs for each 

zone were individually computed from the corresponding SNOTEL station and PRISM 

data as explained earlier. 

The parameters were optimized using the genetic algorithm in Matlab for both the 

lumped and the semi-distributed tank models with the objective function of minimizing 

the sum of weighted squared residuals shown as below:  

Minimize	 ∑ wሺtሻ ൈ ൛Qሺtሻ െ Qሺtሻൟ
ଶ

୲ୀଵ  (2.4) 

where w(t) is weight (unitless) varying with magnitude of runoff data, Q(t) and Qሺtሻ are 

observed and simulated streamflows (m3 s-1), respectively, and T is the number of 

observations. The weights can be determined empirically with observed data for 

equalizing residuals in low flows with those in high flows. The weights used in previous 

studies (e.g. Kim and Kaluarachchi, 2008, 2009) ranged from 4 to 10. The average 

streamflows of gauged watersheds in the high flow season (April to June) were about 2 to 

10 times (with median of 5.17) than those in the low flow season (March to June). Hence, 

this study used a weight of 5 for the low runoff season and 1 for the high runoff season. 

Although Cooper et al. (2007) proposed two constraints to calibrate the tank model 

parameters with wide ranges, incorporating SNOW-17 into the tank model made it 

difficult to apply the constraints to the combined model. Hence, in the optimization with 

genetic algorithm, the ranges of parameters were identified using Monte Carlo 



18 
 

simulations with uniform distributions. One of the best 100 parameter sets obtained by 

sorting the values of the objective function was selected to set the parameter ranges for 

genetic algorithm. 

Regionalization 

This study applied regionalization to simulate natural streamflows in regulated 

watersheds with impaired observations. A parametric approach was selected for 

constructing the regional FDC. The model proposed by Shu and Ouarda (2012) was used 

and given as: 

Q ൌ a ൈ Vଵ
ୠ ൈ Vଶ

ୡ ൈ Vଷ
ୢ ൈ ⋯ (2.5) 

where QP is percentile flows, V1, V2, V3,	⋯ are selected physical or climatic descriptors, 

b, c, d, ⋯ are model parameters, and a is the error term. Logarithmic transformation of 

Equation (2.5) can help solve the model through linear regression. By step-wise 

regression, independent variables can be selected. 

Meanwhile, a proximity-based regionalization method was used for the tank 

model. In the case of conceptual modeling, regionalization of parameters for ungauged 

watersheds were categorized by three approaches (Peel and Blöschl, 2011): (a) regression 

analysis between individual parameters and watershed properties (e.g., Kim and 

Kaluarachchi, 2008; Gibbs et al., 2012); (b) parameter transfer based on spatial proximity 

(e.g., Vandewiele et al., 1991; Oudin et al., 2008); and (c) physical similarity (e.g., 

McIntyre et al., 2005; Oudin et al., 2008, 2010). Even if the performance of these three 

approaches was dependent on climatic conditions, performance and complexity of the 

model, and other factors, several studies concluded that the spatial proximity method was 
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attractive due to its better performance and simplicity (Oudin et al., 2008; Parajka et al., 

2013). Hence, this study used the proximity-based regionalization for regulated 

watersheds. Parameter sets were transferred from multiple gauged watersheds for better 

precision, and the average of streamflows simulated by the parameter sets was taken as 

the natural flow estimates for the regulated watersheds. 

RESULTS 

SNOW-17 modeling 

SNOW-17 was calibrated and verified by SWE observations at SNOTEL stations. 

Figure 2-4 shows the results of SNOW-17 modeling where the comparison between 

simulated and observed SWE is excellent. The average NSE values between simulated 

and observed SWE for calibration and validation were 0.942 (a range of 0.867 to 0.984) 

and 0.933 (a range of 0.793 to 0.967), respectively. The loss of NSE from calibration to 

validation was not significant and therefore the model was unlikely to be over-

parameterized. Also, the simple objective function of maximizing NSE (equivalent to 

minimizing the sum of squared residuals) seems to provide adequate performance as long 

as accumulated precipitation shows a consistent trend with observed SWE in the snow 

accumulation period. Simultaneous monitoring of precipitation and SWE at the same 

location may provide quality inputs to SNOW-17 modeling. 

However, a temperature index snowmelt model can have errors from strong winds 

and dew-point temperature (Anderson, 1976). In other words, good calibration by SWE 

observations does not necessarily guarantee accurate simulation of outflow depth. The 

loss of SWE by winds or sublimation, for instance, is not contributing to the melting 
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depth while some SWE reduction is observed. Thus, in a region with high possibility of 

such errors, caution is required to link point snowmelt observations to streamflow. 

Streamflow generation in gauged watersheds 

The time series of outflow depth from SNOW-17 was used to calculate ICP. Since 

the rationale behind the FDC method is that exceedance probability of ICP is same as that 

of streamflow, the data periods of both point snow observations and streamflow data 

should be same. In fact, ICP calculation is mathematically equivalent to the computation 

of storage in a single linear reservoir such as the lower tank in the tank model. Hence, the 

hydrological meaning of ICP is liquid water availability in a watershed with the 

assumption of a single linear reservoir. Through the ICP computation, the intermittent time 

series of outflow depth was transformed to a smooth time series. 

The computed recession coefficients of snowmelt varied from 0.97 to 0.98 d−1, 

while the range for rainfall was 0.85 to 0.86 d−1. These results demonstrate that snowmelt 

runoff was slowly changing during the year, unlike rainfall runoff that showed a 

relatively large fluctuation due to the intermittent storm events. In the study area, 

snowmelt runoff accounted for a large portion of streamflow and therefore the recession 

coefficient of snowmelt played a major role in the high correlation between ICP and 

streamflow. However, if there was noticeable contribution of rainfall runoff to streamflow 

observations, then the recession coefficient of rainfall would be more important and 

sensitive. Particularly, rainfall runoff can be crucial in the non-melting season, and 

therefore, the separation of recession coefficients is necessary for high correlation 

between ICP and streamflow. 
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When calibrating the lumped and semi-distributed tank models, Monte Carlo 

method was used to identify the parameter ranges of the tank model for optimization with 

genetic algorithm as commented earlier. The random simulations were to avoid local 

parameter sets providing unrealistic or poor streamflow simulation when using genetic 

algorithm with wide parameter ranges. To decide on the required number of simulations, 

the Clear Creek watershed was selected and tested among the given gauged watersheds. 

By increasing the number of simulations from 1,000 to 20,000, it found that 20,000 

simulations provided the efficient number of simulations with the initial parameter ranges. 

From the best 100 parameter sets of the 20,000 simulations, a parameter set with an 

acceptable NSE and a low reduction of NSE between calibration and validation was 

chosen. For optimization with genetic algorithm, the parameter ranges were rescaled with 

the ranges of approximately 50 to 200% of each parameter of the chosen set. With the 

rescaled parameter ranges, the genetic algorithm produced the optimal parameter set. It 

was later found that the optimal parameter set showed better performance than the best 

100 parameter sets of the 20,000 simulations for all gauged watersheds. From this 

observation, the optimal parameter set was assumed as the calibrated parameter set. 

As expected, the semi-distributed tank model performed better than the others 

with NSE, as shown in Table 2-2. Figure 2-5 depicts the simulated streamflow at several 

stations using the FDC method and the tank model. Due to the high climatic variation in 

mountainous watersheds, ignoring the elevation distribution could result in poor 

streamflow generation. These results confirmed the earlier studies (e.g., Martinec et al., 

2008; Uhlenbrook et al., 1999) that discussed the importance of the elevation distribution 
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on snowmelt runoff modeling. Theoretically, it is natural to expect poor performance 

from point snow observations of the FDC method and the on and off snow cover of the 

lumped tank model. However, the FDC method could be competitive when point snow 

observations are highly correlated with streamflow. Ferron Creek, Beaver River, and 

Mammoth Creek, which had fairly high correlation between ICP and streamflow data, 

showed good performance in streamflow prediction. Even the semi-distributed tank 

model did not show better results than the FDC method for Ferron Creek and Beaver 

River. 

Typically, watersheds showing good performance with the FDC method have 

good performance with the lumped and semi-distributed tank models too. Since both 

methods used linear reservoir coefficients for simulating streamflow, they performed well 

in watersheds with linear behavior and such watersheds were likely to have relatively 

homogenous climatic conditions. In addition, the FDC method showed the highest 

performance reduction from calibration to validation among the three methods. This may 

be due to the unstable correlation between ICP and streamflow and the uncertainty of the 

FDCs. 

Figure 2-6 shows a comparison between field discharge measurements and 

simulated streamflows in the calibration period. In order to avoid potential errors in 

streamflow observations converted from water stage, streamflow simulations by three 

methods were directly evaluated by field measurements. Table 2-3 summarizes the NSE 

and correlation coefficient values between field measurements and three simulations. 

Streamflow values for this evaluation were normalized by watershed area to remove the 
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influence of watershed scale. On average, the performance trend from the poorest to the 

best watersheds was similar to the calibrations with the continuous streamflow data in 

terms of NSE. However, Vernon Creek and Salt Creek experienced a large reduction of 

NSE when compared with field measurements. It means that these two watersheds had 

relatively large observational errors in the continuous streamflow data. In addition, 

Muddy Creek and Sevenmile Creek had better NSE for the lumped and semi-distributed 

tank models with field measurements. It also means the two watersheds possibly had 

considerable observational errors, but the conceptual models produced more precise 

streamflows than water stage data and rating curves. Also, Mammoth Creek, Sevier River 

at Hatch, and Coal Creek were likely to underestimate high flows with all three methods, 

but this was not experienced with continuous streamflow data. This indicates 

precipitation data for the three watersheds were also underestimated, or ICP and the model 

parameters were adapted by the underestimated high flows. 

Regional FDC for regulated watersheds 

The FDC method and the tank model were upscaled to watersheds affected by 

river diversions and reservoir operations to predict the natural flows at impaired 

streamflow stations. As mentioned earlier, regionalization was used for upscaling of 

regulated watersheds. The regulated station near the Piute Reservoir (Figure 2-1) is 

Sevier River near Kingston, and the other near the Sevier Bridge Reservoir is Sevier 

River below San Pitch River near Gunnison (hereafter Sevier River near 

Gunnison).Water use in agricultural areas through river diversions significantly affect 

streamflow observations in the two stations. Streamflow observations at Sevier River 
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near Kingston only include river diversions while the diversions and reservoir operations 

are included in streamflow observations at Sevier River near Gunnison. The two 

watersheds were divided into several sub-watersheds because these were too large to fall 

within the areas of gauged watersheds used for developing the regional FDCs. Hence, the 

sum of streamflows of each sub-watershed simulated by regionalization was the volume 

of natural flow at each target station. 

Climatic, geomorphologic, land cover and soil properties of the gauged 

watersheds were used to identify independent variables in determining the percentile 

flows of the parametric regional FDC. The candidate properties are listed in Table 2-4. 

The step-wise regression was implemented for each percentile flow in the Matlab 

environment. The variable with the largest significance among the candidates was taken 

as an independent variable for the first step. Then, other variables were added step by step 

based on the p value of F statistics. The selected variables for each percentile flow and 

the statistics of the regression analysis are given in Table 2-5. Overall, the regional FDC 

reproduced minimum, average, and standard deviation well, but underestimated the 

maximum of percentile flows. This means the regional FDC may underestimate 

percentile flows of large watersheds; therefore it is not recommended to use the regional 

FDC for an ungauged watershed with an area larger than the largest watershed of the 

regression model. 

As expected, watershed area was included in every percentile flow as an 

independent variable. Watershed area was positively related to percentile flows, and its 

multipliers ranged from 0.5 to 1.0. The multiplier had an increasing tendency as 
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percentile increases. The routing effect on high flow (low percentile) may cause less 

proportionality to watershed area than low flow (high percentile). 

Also, mean elevation was selected as another crucial independent variable. The 

multiplier of elevation varied from 2.2 to 3.7. Elevation was considered to be a 

geomorphologic property, but it represented the climatic variation of the watersheds 

because every climatic candidate had high correlation with elevation. It is a natural 

observation because more precipitation and lower air temperature are expected in the 

higher elevations. 

Proportion of clay, dry bulk density, and saturated hydraulic conductivity were 

chosen to explain the variance of the regression errors remained from watershed area and 

mean elevation. The higher proportion of clay means lower permeability of soil, and 

saturated hydraulic conductivity controlling infiltration. Hence, the proportion of clay 

seems to affect high flows while saturated hydraulic conductivity was selected for low 

flows. The higher dry bulk density produces less porosity and less water-holding capacity 

in soils, thus a positive relationship was obtained between dry bulk density and 30 and 40 

percentile flows. Drainage density was included as an additional significant variable for 

low flows with negative relationships. The negative relationship is probably because the 

higher drainage density means more distribution of streamflow in a watershed. When 

using the regional FDC approach, ICP was not necessarily used as the only donor variable 

to transfer exceedance probability to the target stations. In fact, the best donor variable is 

a data set that can show the best correlation with gauged streamflow at the target station. 

However, it is impossible to check the correlation between donor variables and ungauged 
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streamflow. Thus, one or multiple donor variables close to the target station have been 

typically used in the regional FDC approaches. Shu and Ouarda (2012) suggested using 

multiple donor variables to minimize the uncertainty of using a single donor variable. 

This study used two sets of neighboring streamflow observations as well as ICP to 

generate streamflows in sub-watersheds. The recession coefficients of ICP were assumed 

to be 0.98 and 0.85 d−1 for snowmelt and rainfall, respectively. As commented earlier, 

parameters of both lumped and semi-distributed tank models were transferred from 

nearby gauged watersheds for streamflow simulation at the target stations. The parameter 

sets of Mammoth Creek, Sevier River at Hatch, Coal Creek, and Beaver River were used 

for Sevier River near Kingston while Salina Creek, Manti Creek, Ferron Creek, and 

Sevenmile Creek were selected for Sevier River near Gunnison. Figure 2-7 shows the 

simulated streamflows by the regional FDC and the tank models with regionalized 

parameters at both target stations. In the case of Sevier River near Gunnison, the outflow 

from the Rocky Ford Reservoir was subtracted from the observed streamflow to calculate 

the discharge produced by the watershed only. It could be easily recognized that these 

two watersheds were significantly regulated based on the irregular shapes of hydrographs. 

At Sevier River near Kingston, the regional FDC method estimated more volume of 

natural flow than the lumped and the distributed tank models. On the other hand, water 

volume estimated by the regional FDC was between the estimates of the lumped and 

semi-distributed models at Sevier River near Gunnison. Volume errors between the 

regional FDC method and the tank models varied from −17.1 to +21.8%. The differences 

among the three methods were mainly in middle to high flows rather than low flows. The 
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correlation coefficients between the simulations with the regional FDC and the lumped 

tank model were 0.94 and 0.70 at both stations, respectively, while those between the 

regional FDC and the semi-distributed tank model were 0.92 and 0.90, respectively. The 

larger difference between the lumped and semi-distributed models at Sevier River near 

Gunnison may be due to the higher climatic variation of this watershed, making the 

lumped assumption inappropriate. This is evident from the greater difference of NSE 

between the lumped and semi-distributed models of gauged watersheds transferred to 

Sevier River near Gunnison.  

DISCUSSION 

FDC method for gauged watersheds 

The basis of the FDC method is point snowmelt modeling with SNOW-17. 

SNOW-17 performed well for the study area, but its parameter uncertainty could be a 

concern similar to conceptual runoff modeling. However, the five parameters used in 

SNOW-17 were small when compared to most classical hydrologic models. Indeed, a 

simpler snowmelt model (e.g., DeWalle and Rango, 2008) or observed snowmelt depth 

(equivalent to a reduction in observed SWE) could be an alternative for SNOW-17, while 

not necessarily reducing the uncertainty. 

The performance of the FDC method was affected by the correlation between ICP 

and streamflow. Particularly, the correlation between ICP and middle to high flow 

determined the performance. Figure 2-8 shows the relationship between the performance 

and the correlation coefficient between ICP and streamflow with exceedance probability 

less than 0.2. Based on this knowledge, good performance (NSE > 0.8) could be expected 
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when the correlation coefficient is greater than 0.8. The greater NSE in the validation 

period of Mammoth Creek and Sevier River at Hatch (Table 2-2) than in the calibration 

period could be explained by the correlation coefficient. These two watersheds had 

greater correlation coefficients (about 0.04 differences for both watersheds) in the 

validation period. The stable FDCs found for both watersheds also supported the better 

performance during validation.  

It is also noted that the FDC method is not any more robust than the other 

methods. As shown in Table 2-2, the NSE of the FDC method has a much wider range 

from the poorest to the best performing watersheds than the others. Indeed, more 

watersheds showed better NSE, as the inputs were more distributed. This means that 

considering only point inputs with the FDC method could result in highly variable 

performance. Also, more distributed inputs would be better for more robust performance, 

even in the case of a simple model. With the FDC method, its low input requirement and 

computational burden has to be traded with some loss of robustness of performance. 

In general, the FDC method had a poorer performance than the lumped and the 

semi-distributed tank models. One reason may be that the tank model was directly 

calibrated to streamflow observations, while the FDC method matched the magnitudes of 

ICP and streamflow based on an empirical probability density function. However, the 

main reason was that correlation between ICP and streamflow could be lower significantly 

from one period to another. Fish Creek, for instance, experienced a reduced correlation 

coefficient (about 0.35) from calibration to validation. On the other hand, the lumped and 

semi-distributed models that considered spatial variations did not have such large 
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reductions in NSE. It means a point snow observation might not represent the behavior of 

an entire watershed. Hence, the first task is to assess the applicability of the FDC method 

by evaluating the correlation between ICP and streamflow. 

There could be many reasons for the low correlation between ICP and streamflow. 

For example, Vernon Creek and Muddy Creek showed poor performances with the FDC 

method, but the reasons were different. Vernon Creek is close to the Sevier Desert, which 

has extremely low excess precipitation, unlike Muddy Creek. Thus, the consideration of 

other hydrological processes was necessary for Vernon Creek (ET in the lumped tank 

model) while the spatial variation of inputs is required for Muddy Creek. If ET is 

considered in the FDC method when computing ICP, the FDC method may perform better 

than the proposed approach. 

Regional FDC method for regulated watersheds 

It is impossible to evaluate the correlation between ICP and streamflow 

observation for regulated watersheds. With the low robustness of performance, using ICP 

as the only donor variable could result in a large bias in streamflow generation. Even in 

the case of transferring multiple ICP values, the bias would not be small due to the 

performance variability of the FDC method. Thus, the use of ICP was limited as one of the 

multiple donor variables. Neighboring streamflow observations were also transferred in 

order to make up the drawback of ICP. Hence, the role of ICP for regulated (or ungauged) 

watersheds was to capture the hydrologic responses not included in the neighboring 

streamflow observations. 

The simulated streamflows were higher than observed from April to October due 
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to river diversions for agriculture at both regulated watersheds, except for year 2011 at 

Sevier River near Gunnison. Sevier River near Gunnison is located below the intersection 

between the Sevier River and the San Pitch River, but it was difficult to know the 

streamflow from the San Pitch River on a regular basis. Streamflow in the San Pitch 

River was negligible in dry and normal years due to the high agricultural water demand 

in the San Pitch River basin, but it could not be neglected in a wet year such as 2011. 

Thus the observed streamflows at Sevier River near Gunnison were greater than the 

simulated natural flows in a wet year as shown in Figure 2-7b. 

Conceptually, when the simulated streamflow is greater than the observed flow, 

the difference indicates the volume of diversions. However, a similar difference could be 

assumed to represent the volume of return flow from the agricultural areas when the 

observation is greater than the simulated value. As depicted in Figure 2-7a, streamflow 

not decaying from November to March (the period of no diversions) demonstrated that 

the return flows through infiltration affected streamflow continuously. Return flows may 

affect streamflow during the period of diversions, but it was difficult to estimate the 

impact due to the complexity of combined flow. Simply, a positive difference between the 

simulated and observed flows in Figure 2-7a indicated diversions including return flows, 

whereas a negative difference indicated return flow. 

This study used observed diversions in the watersheds to validate the simulated 

natural streamflow. Most river diversions above Sevier River near Kingston were 

recorded for management purposes. Due to the high efficiency of water use in the 

agricultural area above this station, the effect of surface return flows may be small or 
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negligible during the period of diversions. Even though the return flows through 

infiltration may affect streamflow, it was relatively small when compared to the total 

diversions and streamflow during the period of diversions. If one assumes that there is no 

significant return flows during the diversion season, the difference between simulated and 

observed flows could be considered to be the volume of diversions. 

Table 2-6 shows the sum of observed diversions in the main channel of the Sevier 

River above Sevier River near Kingston and the estimated volumes from the three 

methods. The actual volume of diversions would be a little greater than the observed 

because some diversions might not be observed in spite of the large coverage of the 

diversion monitoring in the watershed. Hence, although Table 2-6 shows that the regional 

FDC method provided a larger natural flow than the others, the estimated volume of 

diversions by the regional FDC method could be considered a possible prediction. 

However, the volume difference between the regional FDC and the semi-

distributed model in Table 2-6 ranged from 13 to 40%. This relatively high variation may 

come from the low robustness of the FDC method, errors in the regional FDC, and 

uncertainty in the regionalized parameters of the conceptual models. With these error 

sources, the use of only one method may be inappropriate. It is apparent that the semi-

distributed model provides the most trustworthy results due to its better performance. Shu 

and Ouarda (2012) recommended at least four streamflow observations as donor 

variables for good precision with the FDC methods. Thus, the regional FDC with two 

streamflows and ICP in this study could add more uncertainty than a case with more donor 

variables. 
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An important goal of this work in using the regional approaches was to estimate 

the amount of water from streamflow without actual diversion data. In most of these 

situations data are limited, yet water managers require such information to better manage 

water demands. The results of this analysis, especially from Table 2-6, show the regional 

FDC method could produce acceptable estimates with less time and effort than 

conceptual modeling. There are several limitations in the regional FDC method. For 

every regionalization approach, including the regional FDC method, adequate streamflow 

observations are necessary to have good estimates. Parajka et al. (2013) commented that 

studies with more than 20 gauging stations produced better and stable performance with 

deterministic models. The regional FDC method is also sensitive to the number of 

gauging stations. Although the density of gauging stations was low in this study, gauged 

watersheds in the regional analysis should be adequate in terms of the watershed scale 

and climatic characteristics to minimize bias. As mentioned earlier, multiple donor 

variables can also minimize errors caused by bias of a single donor set. 

CONCLUSIONS 

In this study, a conceptual snowmelt model, SNOW-17, using point snow 

observations, was extended using a modified FDC method to simulate streamflows in the 

semi-arid and mountainous Sevier River basin of Utah. The FDC method was later 

extended to simulate natural streamflows in regulated watersheds by incorporating a 

parametric regional FDC method. The FDC method could be a simple practical approach 

for streamflow generation for watersheds with limited data. The FDC method was 

compared with the lumped and semi-distributed tank models under similar data 
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availability to simulate streamflows and later extended via regionalization to estimate 

natural flows in regulated watersheds. 

The results show that the FDC method could be a practical option for snow-fed 

watersheds with high correlation between ICP and streamflow. Of course, the performance 

of the snowmelt model was a prerequisite for good performance. With streamflow 

observations, ICP could be correlated and can be a good donor variable without other 

neighboring streamflow observations. In spite of the simplicity of the FDC method, it 

could provide approximate estimates of natural flow in terms of water volume. The 

spatial variation of climatic variables in a watershed could determine the performance of 

the FDC method. High ET could result in low correlation between ICP and streamflow. 

Thus, the consideration of ET in the calculation of ICP can enhance the accuracy of the 

FDC method. As seen here, when ICP and streamflow are highly correlated, the FDC 

method is able to outperform the lumped and semi-distributed models. Without the 

burden of parameter optimization and related computations of hydrologic processes, the 

FDC method could generate approximate streamflows with comparable precision to 

conceptual modeling. Importantly, checking the correlation between ICP and streamflow 

would be a key step for good performance. In the case of regulated or ungauged 

watersheds, a regional FDC should replace the gauged FDC. In snow-fed watersheds of 

the study area, drainage area and elevation were important to characterize percentile 

flows. Soil properties such as proportion of clay, saturated hydraulic conductivity, and 

dry bulk density, were also significant variables for estimating percentile flows of the 

regional FDC. Streamflows simulated by the regional FDC produced acceptable 



34 
 

streamflow estimates when compared to the other conceptual models. In this work, the 

simulated natural flow by regionalization was used to estimate the volume of river 

diversions in regulated watersheds with impaired streamflow observations. Both the 

regional FDC and regionalization of conceptual modeling estimated the approximate 

volumes of river diversions. Even though the regional FDC method produced more 

uncertain diversion volume, both estimation approaches could provide practical and 

acceptable values under data-limited conditions for water resources planning and 

management. In short, the FDC method can be a practical method for the simulation of 

natural flows in both gauged and ungauged or regulated watersheds, especially under 

limited data. However, the parameters of snowmelt modeling should be estimated using 

SWE observations as shown here. Other studies are necessary to determine the 

parameters of the snowmelt model for watersheds without SWE observations. Also, the 

difficulty of determining the recession coefficients for ICP calculation in ungauged 

watersheds is another remaining issue, since the typical values for gauged watersheds are 

assumed. In summary, the FDC approach used here could produce practical values of 

expected streamflows from point observations for watersheds with limited data. 
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Table 2-1. Details of gauged watersheds and corresponding USGS and SNOTEL stations. 

# USGS 
Station 

Gauged Watershed 
 

Area 
(km2) 

SNOTEL Station 
Data Period (Water Year a) 

Calibration Validation 

1 10173450 Mammoth Creek 271.9 Castle Valley 2001-2006 2007-2011 

2 10174500 
Sevier River at 
Hatch 

880.6 Midway Valley 2001-2006 2007-2011 

3 10194200 Clear Creek 424.8 Kimberly Mine 2001-2006 2007-2011 

4 10205030 Salina Creek 134.2 Pickle KEG 2001-2006 2007-2011 

5 10215900 Manti Creek 68.4 Seeley Creek 2001-2006 2007-2011 

6 10242000 Coal Creek 209.5 Webster Flat 2001-2006 2007-2011 

7 10234500 Beaver River 235.7 Merchant Valley 2001-2006 2007-2011 

8 10172700 Vernon Creek 64.7 Vernon Creek 2001-2006 2007-2011 

9 10146000 Salt Creek 247.6 Payson R.S. 2001-2006 2007-2011 

10 09310500 Fish Creek 155.7 
Mammoth-
Cottonwood 

2001-2006 2007-2011 

11 09326500 Ferron Creek 357.4 Buck Flat 2001-2006 2007-2011 

12 09330500 Muddy Creek 271.9 Dill's Camp 2001-2006 2007-2011 

13 09329050 Seven Mile Creek 62.2 Black Flat-U.M. CK 1992-1998 2008-2011 
a Water Year (WY): one year from Oct., 1st in the previous year to Sep., 30th in the current year.  
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Table 2-2. Performance comparison between the FDC method and the tank models. 

#  Watershed  
NSE 

 (Calibration / Validation) 
FDC Lumped Semi-distributed 

1 Mammoth Creek  0.83  /  0.88 0.83  /  0.85 0.88  /  0.80 

2 Sevier River at Hatch 0.77  /  0.80 0.89  /  0.83 0.94  /  0.89 

3 Clear Creek 0.75  /  0.60 0.78  /  0.75 0.86  /  0.80 

4 Salina Creek 0.53  /  0.50 0.60  /  0.57 0.69  /  0.76 

5 Manti Creek 0.65  /  0.36 0.84  /  0.61 0.89  /  0.66 

6 Coal Creek 0.87  /  0.55 0.90  /  0.42 0.89  /  0.72 

7 Beaver River 0.90  /  0.79 0.90  /  0.80 0.89  /  0.81 

8 Vernon Creek 0.36  / -1.03 0.75  /  0.47 0.76  /  0.31 

9 Salt Creek 0.55  / -0.11 0.57  /  0.44 0.65  /  0.46 

10 Fish Creek 0.81  / -0.33 0.86  /  0.63 0.83  /  0.62 

11 Ferron Creek 0.91  /  0.87 0.85  /  0.81 0.91  /  0.85 

12 Muddy Creek 0.31  / -0.04 0.46  /  0.68 0.71  /  0.52 

13 Seven Mile Creek 0.66  /  0.67 0.74  /  0.72 0.71  /  0.72 

Average 0.68  /  0.35 0.77  /  0.66 0.82  /  0.69 

Best 0.91  /  0.87 0.90  /  0.85 0.94  /  0.89 

Poorest 0.31  /  -1.03 0.46  /  0.68 0.65  /  0.46 
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Table 2-3. NSE and correlation coefficient between field measurements and the three 

model simulations. 

# Watershed 
NSE  Correlation Coefficient 

FDC Lumped 
Semi- 

distributed 
 FDC Lumped 

Semi- 
distributed 

1 Mammoth Creek  0.93 0.78 0.76  0.98 0.95 0.95 

2 Sevier River at Hatch 0.67 0.77 0.86  0.96 0.98 0.99 

3 Clear Creek 0.90 0.71 0.77  0.97 0.92 0.93 

4 Salina Creek 0.55 0.69 0.90  0.80 0.87 0.98 

5 Manti Creek 0.60 0.86 0.89  0.80 0.95 0.95 

6 Coal Creek 0.74 0.85 0.83  0.93 0.96 0.97 

7 Beaver River 0.93 0.96 0.95  0.97 0.98 0.98 

8 Vernon Creek 0.01 0.50 0.09  0.64 0.83 0.69 

9 Salt Creek 0.50 0.64 0.70  0.72 0.73 0.80 

10 Fish Creek 0.56 0.66 0.69  0.75 0.90 0.90 

11 Ferron Creek 0.90 0.91 0.91  0.95 0.95 0.89 

12 Muddy Creek 0.51 0.92 0.93  0.74 0.87 0.94 

13 Seven Mile Creek 0.72 0.91 0.93  0.88 0.94 0.94 

Average 0.66 0.78 0.79  0.85 0.91 0.92 

Best 0.93 0.96 0.95  0.97 0.98 0.99 

Poorest 0.01 0.50 0.09  0.64 0.73 0.69 
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Table 2-4. Candidate variables for the multiple linear regression analysis.  

Variable Notation Unit Max Mean Min 

Annual Precipitation PPT mm 867.0 613.1 484.8

Summer Rainfall RF mm 207.6 137.0 78.6

Annual mean degree-days < 0 °C ADD0 °C day 840.3 544.1 238.0

Annual mean degree-days > 15 °C ADD15 °C day 444.4 173.1 15.6

Average number of days > 15 °C WDAY days 104.8 59.4 13.8

Hargreaves reference ET ETo mm 1094.3 924.4 790.0

ARIDITY (ETo / PPT) AI mm mm-1 2.26 1.55 0.98

Drainage Area AR km2 868.9 260.1 63.1

Longest Flow Length LFL km 61.7 29.9 14.4

Watershed Slope WSLP degree 19.3 14.0 7.5

Mean Elevation ELE km 3.11 2.60 2.20

Drainage density RD km km-2 0.28 0.23 0.19

Forest cover FCV % 87 62 11

Saturated hydraulic conductivity KSAT μm s-1 21.9 9.2 5.2

Minimum depth to bedrock DBR cm 110.3 67.0 11.7

Dry bulk density DNS g cm-3 1.51 1.34 1.20

Proportion of clay CLAY % 33.5 24.9 13.4

Proportion of silt SILT % 52.4 33.9 14.9

Proportion of sand SAND % 56.9 40.9 26.2

Available water capacity AWC mm mm-1 0.17 0.14 0.07
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Table 2-5. Selected variables and statistics of the regional FDC method.  

 

Selected 

variables R2 

Observed  Estimated 

Max Mean Min Std a  Max Mean Min Std 

 . AR, ELE, CLAY 0.86 48.65 16.96 1.04 13.10  40.59 16.12 1.16 11.42ࡽ
  AR, ELE, CLAY 0.94 37.87 11.54 0.59 8.99  27.58 11.28 0.63 8.37ࡽ
  AR, ELE, CLAY 0.93 12.94 4.56 0.24 3.48  10.27 4.46 0.27 3.19ࡽ

  AR, ELE, CLAY 0.93 6.31 2.39 0.16 1.74  5.58 2.34 0.16 1.63ࡽ
  AR, ELE, CLAY 0.92 3.40 1.10 0.13 0.86  2.87 1.05 0.12 0.73ࡽ
  AR, ELE, DNS 0.93 2.72 0.74 0.09 0.67  2.04 0.70 0.09 0.51ࡽ
  AR, ELE, DNS 0.94 2.01 0.85 0.08 0.49  1.39 0.50 0.08 0.35ࡽ
  AR, ELE, KSAT 0.95 1.56 0.42 0.07 0.37  1.04 0.40 0.06 0.25ࡽ
  AR, ELE, KSAT 0.92 1.39 0.35 0.07 0.33  0.83 0.33 0.06 0.20ࡽ
 ૠ AR, ELE, KSAT 0.91 1.22 0.31 0.06 0.29  0.83 0.30 0.05 0.21ࡽ
 ૡ AR, ELE, KSAT 0.86 1.10 0.27 0.05 0.27  0.82 0.27 0.05 0.21ࡽ
  AR, RD, ELE, KSAT 0.96 1.05 0.24 0.05 0.26  0.82 0.23 0.04 0.21ૢࡽ
  AR, RD, ELE, KSAT 0.95 0.96 0.21 0.03 0.25  0.73 0.20 0.04 0.19ૢࡽ
 AR, RD, ELE, KSAT 0.97 0.88 0.18 0.02 0.23  0.65 0.17 0.02 0.17 ૢૢࡽ

 AR, RD, ELE, KSAT 0.82 0.83 0.15 0.01 0.22  0.48 0.13 0.02 0.14 ૢ.ૢૢࡽ
a Std: Standard deviation 
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Table 2-6. Estimated impairment and observed canal diversions at Sevier River near 

Kingston from April to September. The numbers within parentheses are percent 

difference from the observed volume. 

Year 

Estimated Volume of Diversion  
(×106 m3) 

Observed 
Volume of 
Diversion 
(×106 m3) 

FDC  
Lumped 

Tank 
Semi-distributed 

Tank 
2008 108 (+36%) 69 (-13%) 81 (+2%) 79 
2009 110 (+32%) 61 (-25%) 78 (-5%) 82 
2010 137 (+86%) 95 (+29%) 112 (+51%) 74 
2011 165 (+46%) 132 (+19%) 145 (+31%) 111 
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Figure 2-1. Physical layout of the Sevier River Basin, Utah. 
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Figure 2-2. Details of the proposed modeling approach with the FDC method and the 

SNOW-17 model. 
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Figure 2-3. Details of the proposed approach with the tank model and SNOW-17. 
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Figure 2-4. Results from SNOW-17 at SNOTEL stations: (a) Castle Valley, (b) Pickle 

KEG, and (c) Vernon Creek. 
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Figure 2-5. Simulated streamflows with the FDC and the tank model: (a) Ferron Creek, 

(b) Sevier River at Hatch, (c) Vernon Creek, and (d) Fish Creek. 
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Figure 2-6. Comparison between field discharge measurements and streamflow 

simulations. (Discharges are normalized by watershed area) 
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Figure 2-7. Simulated streamflow in regulated watersheds: (a) Sevier River near 

Kingston, and (b) Sevier River near Gunnison. FDC, Tank (L), and Tank (D) of the 

inside 1:1 plots are streamflows in m3 s-1 simulated by the FDC method, lumped tank, 

and semi-distributed tank models respectively. 
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Figure 2-8. Model performance vs. correlation between ICP and streamflow. Note 

correlation coefficient is calculated only when exceedence probability is less than 0.2. 

For validation, only positive NSEs are plotted. 
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CHAPTER 3 

VALIDATING FAO AQUACROP USING LANDSAT IMAGES AND REGIONAL 

CROP INFORMATION2 

ABSTRACT 

Defining crop response to water is a crucial part of decision-making for 

agricultural water management. This study is proposing an efficient and a low-cost 

approach to validate FAO’s AquaCrop model using remote sensing (RS) estimates instead 

of crop ground measurements. A radiance use efficiency (RUE) based RS model for 

estimating aboveground biomass (AGB) is proposed with Landsat images and regional 

crop information. The RS estimates are used to validate AquaCrop’s built-in crops and 

calibrate it under salinity stress. As a result, RS estimates of canopy cover (CC) and AGB 

were produced from an existing CC model and the proposed AGB model, respectively. 

These estimates became good replacements of the ground measurements for validation 

and calibration. Built-in maize of AquaCrop showed good agreement between 

simulations and RS estimates under non-stress conditions whereas built-in barley 

underestimated AGB compared to the RS estimates. By comparing the RS estimates in 

salinity-affected farms to AquaCrop simulations without considering salinity stress, AGB 

reduction due to salinity stress and corresponding CC reduction were quantified for 

calibration of Aqua Crop under salinity stress. The results of calibration predicted initial 

                                                 
2 Reprinted from Agricultural Water Management, Vol. 149, Daeha Kim, and Jagath J. 

Kaluarachchi, Validating FAO AquaCrop using Landsat images and regional crop information, pages 143-
155, Copyright (2015), with permission from Elsevier. 
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soil salinity of saline-stressed farms and the values are within the possible ranges. The 

proposed methodology shows that the readily available Landsat images and regional crop 

information could extend the validation of built-in crops of AquaCrop to regions without 

ground measurements. 

INTRODUCTION 

With increasing population, climate change, and the need for more food, water is 

probably the most important natural resource required for human survival. With the 

existing demand for water, improving crop production is difficult without efficient water 

management. Therefore, many studies have focused on water management that include 

optimization of water allocation under conflicting demands, quantifying crop response to 

water stress, building irrigation strategies, and so forth (e.g. Cai et al., 2003; Brown et al., 

2009; Geerts and Raes, 2009; Saeed and El-Nadi, 1997). In spite of improved crop 

productivity in the world, water management in agriculture still requires considerable 

attention. It is evident that global climate change alters crop yield response (Ainsworth 

and Ort, 2010). Water management in crop production is becoming complex and 

multifaceted because of the varying climatic, physical, and socio-economic conditions. 

In studies related to agricultural water management, defining crop response to 

water is crucial. As a common approach, simple empirical water production functions are 

used in many earlier studies (e.g. Doorenbos and Kassam, 1979; Vaux and Pruitt, 1983). 

However, the need for precise quantification of crop yield under water-limited conditions 

is becoming essential to improve agriculture water use efficiency (García-Vila and 

Fereres, 2012). Instead of the empirical water production functions, newer crop 
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simulation models (e.g. DSSAT, Jones et al., 2003; APSIM, McCown et al., 1996; 

CERES, Ritchie et al., 1985) provide acceptable estimates of crop development and 

production, but require detailed input data. 

As an alternative, AquaCrop (Steduto et al., 2009) of the Food and Agricultural 

Organization (FAO) of the United Nations is a good engineering model for defining the 

crop response to water. It provides a balanced approach between detailed simulation 

models and the simplicity of empirical functions with acceptable accuracy, robustness, 

and ease to use (Hsiao et al., 2009). Low input requirement and acceptable accuracy of 

AquaCrop makes its applicability and reliability high. The existing studies related to 

AquaCrop are currently expanding from calibration and validation (e.g. Mabane et al., 

2013; Andarzian et al., 2011; Heng et al., 2009) to irrigation scheduling (e.g. Geerts et al., 

2010), developing sowing strategy (e.g. Abrha et al., 2012), economic analysis (e.g. 

García-Vila and Fereres, 2012), and to developing policies to accommodate climate 

change (e.g. García-Vila et al., 2009). 

Fourteen major crops have been calibrated using AquaCrop with crop and soil 

moisture measurements from earlier experimental studies in various countries (Raes et al., 

2011) and these are already included as built-in crops in AquaCrop ver. 4.0. Additionally, 

these built-in crops are being validated in several different regions (e.g. Mabane et al., 

2013; Andarzian et al., 2011; Iqbal et al., 2014). Two important crop observations 

required to calibrate AquaCrop are green canopy cover (CC; portion of green canopy 

cover over ground) and aboveground biomass (AGB; dry biomass produced above 

ground per unit area) that are typically available through ground measurements 
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conducted in controlled experimental plots. However, such ground measurements or 

experimental studies are not readily available in many regions. In such cases, it is 

difficult to assess whether the built-in crops of AquaCrop are valid. Of course, the 

possibility exists for conducting experimental work in research farm plots but these 

efforts can be costly, labor intensive, and time consuming as data needs to be collected 

over a complete cropping cycle. 

Practically, remotes sensing (RS) estimates of CC and AGB could replace the 

ground measurements as discussed by the developers of AquaCrop (Steduto et al., 2009). 

CC, for instance, is frequently correlated with vegetation indices (VI) from multispectral 

images (e.g. Johnson and Trout, 2012; Trout et al., 2008; Lopez-Urrea et al., 2009; Calera 

et al., 2001). For AGB estimation, radiance use efficiency (RUE) model (Monteith, 1972) 

is often incorporated into RS models (e.g. Ruimy et al., 1994; Calera et al., 2004; Liu et 

al., 2010). However, several questions arise when using RS models. First, RS models 

usually require ground measurements for regression as AquaCrop does since the models 

need to upscale relationships between VI and crop observations. If a region has ground 

measurements for developing RS models, they can also be used for AquaCrop calibration 

or validation directly. If other inputs to AquaCrop are available, direct calibration from 

ground measurements can provide better precision by avoiding the uncertainty of RS 

models. On the contrary, when ground measurements are unavailable, RS models from 

different areas can be alternative estimators. However, the uncertainty exists if data from 

a given experimental area is extended to other regions. When resolution differences of RS 

images and/or geophysical differences cannot be ignored between the original and target 
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areas, the RS models from other areas can produce unreliable estimates. 

To overcome these shortcomings, establishing the relationship between RS 

images and regional crop information is a good alternative. Regional crop information 

can be more easily obtained than the ground measurements; for example, the National 

Agricultural Statistics Service (NASS) of U.S. Department of Agriculture (USDA) and 

FAOSTAT of the Statistics Division of FAO. If a model can successfully build a 

relationship between the spectral properties of RS images and regional crop information, 

the model will be more suitable for a target area than using a RS model from a different 

area. In addition, RS estimates can validate the built-in crops of AquaCrop more 

extensively than using limited ground measurements only due to the high availability of 

RS images and crop information. Therefore, the objectives of this work are to propose a 

RS model linking between Landsat images and county-level crop information from 

NASS for AGB estimation and to validate and calibrate crop parameters of AquaCrop 

using the RS estimates for a region with salinity stress. A RUE based AGB model is 

proposed and used for validating two built-in crops, producing AGB estimates for alfalfa 

development, and providing basic information for calibrating AquaCrop under salinity 

stress. 

METHODOLOGY AND DATA 

Description of study area 

The study area is the Millard County in central Utah and the details are given in 

Figure 3-1. Millard County has semi-arid climate with relatively high evapotranspiration 

(ET). As described in Figure 3-1, agricultural lands of Millard County are located in areas 
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around Delta and Fillmore which are close to the Sevier River, one of the main water 

sources of agriculture in the county. Rest of the county is mostly desert except for some 

mountains and the Sevier Lake. Water supply for agriculture is highly dependent on 

irrigation due to the lack of rainfall and high aridity. Canals are well constructed from the 

main channel or reservoirs in the Sevier River to the agricultural lands. Surface water 

supply to the agricultural lands in areas surrounding Delta (hereafter referred to as Delta) 

is mainly from DMAD and Gunnison Bend Reservoirs while that for areas surrounding 

Fillmore (hereafter referred to as Fillmore) are provided through the Central Utah Canal 

because Fillmore is far from the main channel and the reservoirs. 

In particular, a reduction in crop production due to high soil salinity is a crucial 

issue in Delta (State of Utah Natural Resources, 1999). Since Delta and the surrounding 

area are located in the downstream region of the Sevier River, salinity of irrigation water 

in Delta is relatively high due to natural sources and over-irrigations in the upstream 

regions. The continuous use of surface water with relatively high salinity eventually 

results in high soil salinity and a reduction in crop yield. On the other hand, the main 

water source of Fillmore is groundwater with better quality while some surface water is 

diverted from the Sevier River through the Central Utah Canal. Soil salinity in Fillmore is 

low and therefore salinity stress on crops is unexpected. 

Year 2011 was selected as the base year for calibrating AquaCrop under non-

stress and salinity stress conditions due to the high water availability in the Sevier River. 

Every reservoir in the Sevier River Basin was filled with snowmelt runoff in 2011. Even 

the Sevier Lake which is typically dry due to large diversions was full of snowmelt runoff 
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and return flows from agricultural lands. Thus, it is safe to assume that water stress is less 

of a concern compared to salinity stress on crop production. Additionally, years of 2008, 

2009, and 2013 were chosen for validation of non-stressed farms. Even though these 

additional years were expected to have some water scarcity, it was assumed that at least 

several farms with high productivity and no water stress were present. Three major crops 

in the Millard County are alfalfa, maize, and spring barley (hereafter referred to as 

barley), and accounted for over 90 percent of agricultural land use in the selected years. 

Methodology for estimation of CC and AGB 

Farm-scale CC and AGB observations of each crop are essential to validate 

AquaCrop. In the Millard County, there are no available ground measurements or 

experimental farms. To obtain the crop observations from individual farms in the county, 

this study evaluated the relationship between VI from Landsat images from U.S. 

Geological Survey (USGS) and crop information from NASS. The VI raster data with 

spatial resolution of 30×30 m2 (approximately 11 pixels per ha) were aggregated by using 

the means of pixels in boundaries of individual farms to produce representative values. 

CC estimation 

VI from multispectral images are frequently used for constructing statistical 

models to estimate CC because vegetation shows its unique spectral property when live 

green plants absorb solar energy for their photosynthesis. In general, reflectance in near 

infrared band increases as leaves grow, while that in the red band decreases due to the 

high absorbance from photosynthesis. The normalized difference vegetation index (NDVI; 

Huete et al., 2002) is mostly used as the estimator of CC among various VI because of its 
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simple structure and good performance. NDVI from Landsat images is defined simply as:  

NDVI ൌ ୍ୖିୖୈ

୍ୖାୖୈ
 (3.1) 

where NIR and RED are reflectances of the Landsat images in the near infrared band and 

the red band, respectively. For CC estimation with NDVI, this study used an existing 

model developed by Johnson and Trout (2012) for California’s San Joaquin Valley. 

Johnson and Trout (2012) suggested a linear relationship between NDVI and CC using 

Landsat images. Unlike many earlier studies relating VI and CC for crops (e.g. Carlson 

and Ripley, 1997; Gutman and Ignatov, 1998; Calera et al., 2001; Trout et al., 2008), 

Johnson and Trout (2012) proposed a general relationship using 18 different crops 

(including maize, barley, and alfalfa) with high goodness of fit. Accordingly CC is 

estimated as: 

CCୖୗ ൌ 1.26 ൈ NDVI െ 0.18, Rଶ ൌ 0.96 (3.2) 

where CCRS is CC estimated from Landsat images (unitless) and NDVI is obtained from 

Landsat images (unitless). In the original study, NDVI and CC observations ranged from 

0.12 to 0.88 and from 0.01 to 0.97, respectively. The model was in good agreement with 

prior models which were developed for individual crops such as wheat, barley, and grape 

(Johnson and Trout, 2012). 

AGB estimation 

AGB increases with time because it is the accumulated biomass photosynthesized. 

Therefore the development trend of AGB is different to CC. Whereas NDVI can easily 

capture CC development with a simple linear relationship, a non-linear relationship 

between NDVI and AGB is expected and is likely to make AGB estimation complex. 
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This study used the simple RUE model of Monteith (1972) for AGB estimation with 

NDVI. Conceptually, AGB synthesized by sunlight for a given period of time is simply 

calculated by RUE of a crop as:  

AGB ൌ  fୖ ൈ PAR ൈ ε ൈW	dt
୲భ
୲బ

 (3.3) 

where AGB is dry biomass produced by photosynthesis above unit area of ground (Mg 

ha−1), PAR is the photosynthetically active radiation (MJ ha−1d−1), fAPAR is the fraction of 

absorbed PAR (ratio of absorbed PAR by a plant to incident PAR, unitless), ε is RUE of a 

crop (Mg MJ−1), W is the stress term (unitless) ranged 0 (full stress) to 1(no stress), t0 is 

the time when photosynthesis activated, and t1istime when AGB is estimated. 

Since fAPAR can be approximated by CC (Liu et al., 2010; Roujean and Breon, 

1995), NDVI has a linear relationship with fAPAR as shown in the CC model. Thus, the 

RUE model is rewritten as: 

AGBୖୗ ൌ  ሺa ൈ NDVI  bሻ ൈ PAR ൈ ε ൈW	dt
୲భ
୲బ

 (3.4) 

where a and b are coefficients of the relationship between CC and NDVI, and AGBRS is 

the estimated AGB from Landsat images. As seen in the CC model, b is generally 

negative because NDVI at no vegetation (bare soil) is positive. When NDVI at no 

vegetation is considered as the NDVI of bare soil and (a × PAR × ε) term is replaced with 

a constant m, the RUE model is written as: 

AGBୖୗ ൌ  m ൈ ሺNDVI െ NDVIୱ୭୧୪ሻ ൈ W	dt
୲భ
୲బ

NDVI	ݎ݂			  NDVIୱ୭୧୪ (3.5) 

where NDVIsoil is NDVI of bare soil. When time integrated value of vegetation NDVI is 

given as TVNDVI and assuming no temporal variation of m and W, Equation (3.5) is 

written as: 
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AGBୖୗ ൌ m ൈWൈ TVNDVI (3.6a) 

TVNDVI ൌ  ሺNDVI െ NDVIୱ୭୧୪ሻ	dt			݂ݎ	NDVI  NDVIୱ୭୧୪
୲భ
୲బ

 (3.6b) 

In brief, AGB is theoretically proportional to TVNDVI which is the time 

integrated value of NDVI truncated by NDVIsoil with the assumptions of no temporal 

variation of m and W. The integration is only for when NDVI ≥ NDVIsoil. Although there 

exists temporal variation in m and W in reality, the assumption of minimal variation is 

statistically acceptable based on the high correlation between AGB ground measurements 

and time integrated values of NDVI that Calera et al. (2004) obtained with the same 

assumption. The only difference between Calera et al. (2004) and this study is the 

truncated NDVI by NDVIsoil to exclude non-vegetative NDVI from the integration. This 

truncation provides two advantages; it minimizes errors when taking a regional average 

of TVNDVI of individual farms with various cropping patterns. It also develops an AGB 

model one parameter to be estimated; hence it is mathematically possible to calibrate the 

parameter using only one measurement of AGB. The stress term, W, varies spatially 

across individual farms in a region unlike m because W is highly dependent on 

management practices in each farm such as irrigation scheduling. This study used the 

Leaf relative Water Content Index (LWCI; Hunt et al., 1987) which can directly indicate 

relative water content based on Beer–Lambert–Bouguer law. W is defined by LWCI as: 

W ൌ LWCI ൌ ି୪୭ሾଵିሺ୍ୖିୗ୍ୖሻሿ

ି୪୭ሾଵିሺ୍ୖିୗ୍ୖሻూሿ
 (3.7) 

where NIR and SWIR are reflectances of the Landsat images in the near infrared band 

and the shortwave infrared band, respectively. The subscript FT indicates reflectance at 
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full turgor when leaves hold water at the maximum holding capacity. Due to various 

sowing dates, the crop development patterns are different from one farm to another. Thus, 

this study considered only the highest (NIR–SWIR) of individual farms during the 

cropping periods. It is approximately equivalent to (NIR–SWIR) at maximum CC in a 

farm. (NIR–SWIR)FT is estimated by simply taking 99 percentile of the highest (NIR–

SWIR) values of individual farms. Therefore, the assumption is that (NIR–SWIR) of a 

farm could reach 99 percentile of the highest (NIR–SWIR) values in a region when non-

stressed. As commented, no temporal variation of W was assumed while W only 

displayed spatial variation of degree of stress in a region. 

Estimation of m from regional crop information 

In the AGB model, m is the only parameter to be estimated from regional crop 

information because other terms are available from Landsat images. Theoretically, m is 

the product of RUE of a crop, PAR, and the slope of the NDVI–CC relationship. If RUE 

and slope are typical for a particular crop, m can be representative for a region with 

homogeneous weather conditions because PAR is a function of solar radiation. 

Meanwhile, if regional crop information includes crop yield or height of each 

crop, mean AGB at harvest can be calculated using the concept of harvest index (ratio of 

harvested biomass to AGB) or existing regression models. This study used the county-

level annual yields of maize and barley and the state-average plant height of alfalfa in the 

NASS database. 

For maize and barley, county yield in NASS could be converted to county-level 

AGB at harvest (Prince et al., 2001; Lobell et al., 2002) as: 
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AGBୋ ൌ Yୌ ൈ MRY ൈ ሺ1 െ MCሻ/HI (3.8) 

where AGBG is county-average of AGB for maize or barley(Mg ha−1), YCS is the reported 

annual county yield from crop information (bu ha−1), MRY is mass per unit reported yield 

(Mg bu−1), MC is moisture content at harvest (unitless), and HI is the harvest index 

(unitless). 

In the case of alfalfa, plant height was used as a descriptor of AGB instead of 

annual yield because alfalfa is a perennial crop with multiple cuttings per year. Since the 

cutting cycle is dependent on farmers’ decisions, it is difficult to know the production 

from each cutting from the annual yield records. Hence, alfalfa AGB is estimated using 

linear models developed by Harmoney et al. (1997) and Griggs and Stringer (1988) from 

canopy height. This study used the average of the following models: 

AGBୟଵ ൌ െ0.247  8.029 ൈ Hୌ, Rଶ ൌ 0.65 (3.9a) 

AGBୟଶ ൌ 0.85 ൈ ሺ0.379  7.1 ൈ Hୌሻ, Rଶ ൌ 0.82 (3.9b) 

AGB ൌ ሺAGBୟଵ  AGBୟଶሻ/2 (3.9c) 

where AGBa1 and AGBa2 are estimates of AGB of alfalfa (Mg ha−1) determined by 

Harmoney et al. (1997) and Griggs and Stringer (1988), respectively. HCS is the county 

average of height of alfalfa (m). The typical portion of dry biomass of alfalfa herbage 

biomass is 0.85 in Equation (3.9b). In addition, the ratio of annual county yield to state 

yield was multiplied with the average in Equation (3.9c) because the alfalfa heights in 

NASS data are state averages. 

For estimating m, AGBRS of individual farms should be spatially averaged 

because AGBG and AGBA are average AGB values in a region. By assuming that the 
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spatial average of AGBRS from Landsat images of individual farms is equal to AGB 

estimates from crop information, m is estimated as: 

mෝ ൌ ୋి
ሾൈୈ୍ሿ

 (3.10) 

where mෝ  is the estimated m for the region (Mg ha−1 TVNDVI−1), AGBCS is the AGB 

obtained from regional crop information(Mg ha−1), i.e. AGBG and AGBA. E[W×TVNDVI] 

is the spatial average of [W×TVNDVI] of individual farms of the region. TVNDVI was 

integrated into the entire cropping period because AGBCS represents AGB at harvest. 

Figure 3-2 shows the schematic describing the proposed methodology. 

Remote sensing data 

RS images 

Landsat images were used to compute NDVI and LWCI. The images are from 

USGS Landsat Archive available at http://glovis.usgs.gov (accessed on Aug-4/2014). 

Images with low cloudiness were mainly used in this work to avoid the spectral 

reflectance interfered by cloud cover. Images with high cloudiness were also used only 

when clouds were present mostly outside of agricultural lands. The images used for each 

year are summarized with their properties in Table 3-1. The images were processed in the 

ArcGIS environment for the radiometric calibration (Chander et al., 2009).  

Land use and crop classification 

A farm level land use classification for the entire state of Utah was obtained from 

Utah Automated Geographic Reference Center (Utah Automated Geographic Reference 

Center, 2013). Crop classification was from CropScape data service (USDA, 2013a) at 
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30×30 m2 spatial resolution. CropScape raster data were used to assign cultivated crops 

into individual farms of the land use dataset. The cultivated crop in an individual farm 

was determined as the majority of the CropScape pixels within the boundaries of the farm 

defined by the land use data set. 

Regional crop information 

Since the annual yield of maize in 2011 was missing from NASS data, the data 

from the Utah State University Cooperative Extension (Wilde et al., 2012) were used. 

The annual yield in 2011 was 395 bu ha−1 and considered good compared to the state 

yield of 405 bu ha−1. The annual barley yield in 2011 from NASS statistics (USDA, 

2013b), was 262 bu ha−1. The state average of alfalfa height reported in Utah Crop 

Progress and Condition (USDA, 2013c) was about 0.61 m at the first cutting. Table 3-2 

summarizes the crop information for the selected years. 

 AquaCrop model 

AquaCrop is a model developed by FAO to simulate crop yield response to water 

in the atmosphere–plant–soil system. It simulates daily water and salt balances in the root 

zone and crop development with a small number of inputs (air temperature, rainfall, 

reference ET, and CO2 concentration). AquaCrop separates ET into soil evaporation and 

crop transpiration to calculate crop biomass production whereas the old FAO’s crop yield 

function (Doorenbos and Kassam, 1979) considered ET only. The separation makes it 

possible to avoid the confounding effect of non-productive water consumption. In 

addition, the final crop yield is partitioned into AGB and HI to avoid the confounding 

effects of water stress on AGB and HI. The key components of AquaCrop for simulating 
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crop yield are the calculation of AGB using normalized water productivity (WP*) and 

yield estimation using HI as shown below:  

B ൌ WP∗ ൈ ∑ቀ ୰


ቁ (3.11a) 

Tr ൌ Kୱ ൈ Kୡୠ ൈ ET୭ (3.11b) 

Y ൌ HI ൈ B (3.11c) 

where B is AGB (Mg ha−1) produced since the planting date, WP* is normalized water 

productivity (g m−2), ETo is daily reference grass ET (mm) calculated using the FAO 

Penman–Monteith equation (Allen et al., 1998), Tr is daily transpiration (mm), Ks is 

water stress coefficient, Kcb is basal crop coefficient which is proportional to CC, Y is 

crop yield (Mg ha−1), and HI is harvest index (unitless). 

In the calculation of Tr, Ks is estimated by tolerance of a given crop to water 

stress and water availability in the root zone simulated using the exponential drainage 

function of Raes (1982). For yield calculation, HI starts to increase from flowering or 

tuber initiation to reach a typical reference harvest index for a given crop at maturity. 

Further details of AquaCrop are available from Raes et al. (2009, 2011) and Steduto et al. 

(2009). 

This study used AquaCrop version 4.0 available at 

http://www.fao.org/nr/water/aquacrop.html (accessed on Jun-1/2013). All simulations 

with AquaCrop was implemented in the degree-day mode. This study used the Nash–

Sutcliffe model efficiency coefficient (EF) for performance evaluation. EF between 

AquaCrop simulation and RS estimates is defined as: 

EF ൌ 1 െ
∑ሺୗିሻమ

∑ሺିഥሻమ
 (3.12) 
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where Si is simulated CC or AGB by AquaCrop, and Oi is CC or AGB estimated by the 

RS models, and Oഥ is the average of the RS estimates. 

Input data for AquaCrop simulation 

Climatic data 

Daily climatic data for Delta were available from the meteorological station at 

Delta using the NOAA’s National Climatic Data Center (Station ID: GHCND: 

USW00023162) while data for Fillmore were from Holden, Utah using the USDA Soil 

Climate Analysis Net-work (Site Number: 2127). The station at Delta has only daily air 

temperature and precipitation whereas the station at Holden has air temperature, 

precipitation, wind speed, and relative humidity. The selection of a climate station for 

simulating AquaCrop was based upon proximity to the selected farm. Daily reference ET 

(ETo) was calculated with air temperature, precipitation, wind speed, and relative 

humidity using the FAO Penman–Monteith equation. Since these two stations are not far 

from each other, wind speed and relative humidity of Delta were taken from the 

observations at Holden when calculating ETo. The data showed the mean air temperatures 

at Delta and Holden from April to November in 2011 were 14.7 °C and 14.0 °C, and 

cumulative precipitations during the same period were 207.8 mm and 216.5 mm, 

respectively. Mean relative humidity and wind speed at Holden were 62.7% and 2.0 m s−1, 

respectively.  

Crop data 

Maize and barley have their built-in crop parameters in AquaCrop calibrated by 

Hsiao et al. (2009) and Araya et al. (2010), respectively. Alfalfa is not a built-in crop 
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because forage crops with multiple harvesting are unavailable in AquaCrop. Thus, this 

study produced a leafy crop using AquaCrop to mimic the growth of alfalfa for the first 

cutting cycle only. The green canopy development of alfalfa was from the temporal 

variation of crop coefficient recommended by Allen et al. (1998). Plant density to 

estimate initial canopy cover for each crop was not recorded for the selected farms, and 

therefore this study used the optimal densities for maximum yield proposed by earlier 

studies; the values are 79,000 plants ha−1for maize (Farnham, 2001), 1,850,000 plants 

ha−1for barley (McVay et al., 2009), and 1,620,000 plants ha−1 for alfalfa (Rankin, 2007). 

The planting dates were chosen for each crop using USDA information for Utah crops 

(USDA, 2013c). The upper (full stress) and lower (no stress) electrical conductivity (EC) 

thresholds for salinity stress were from Raes et al. (2011). The coefficient of salinity 

stress in AquaCrop linearly changes from the upper threshold to the lower threshold. The 

upper and lower thresholds are 10 dS m−1 and 2 dS m−1 for maize, 20 dS m−1 and 6 dS 

m−1 for barley, and 16 dS m−1 and 2 dS m−1 for alfalfa indicating maize is the most 

sensitive and barley is the most tolerant to salinity stress among the three crops. 

Management data 

Since irrigation mainly controls water and salt balance of the root zone, applied 

irrigation depth and timing are crucial to assess water and salinity stresses for the stressed 

fields. However, such specific records were not available in the study area. Thus, this 

study generated irrigation schedules for non-stressed farms using the option available in 

AquaCrop. For the stressed farms, the irrigation schedules were estimated using canal 

diversions and local soil moisture data as described next.  
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Farms in Delta were supplied surface water from the DMAD reservoir through 

Canal A and also from the Gunnison Bend Reservoir through three canals, Abraham canal, 

and Deseret high and low canals. This study assumed the total volume of diversions 

through these canals was evenly supplied to the irrigated lands in Delta. Daily depths of 

diversions were calculated by the sum of volume of diversions divided by irrigated area. 

The days with sudden increases in the time-series of soil moisture were assumed as the 

timing of irrigation. Irrigation depths were estimated by the sum of diversion depths from 

planting date to the first application or between two applications as shown in Figure 3-3. 

Salinity of irrigation water is available from the nearest USGS surface water station to the 

DMAD Reservoir, Sevier River near Lynndyl (Stations ID: 10224000). The average EC 

at this station was about 1.4 dS m−1 in 2011. 

Soil data 

Soil data were from the web soil survey (WSS) of USDA (2013d). WSS provides 

soil classification, physical and chemical properties, and other related data for the 

continental US. Soil properties of each farm were retrieved from WSS at regular intervals 

of 0.3 m depth from ground to a depth of 1.5 m. The properties were spatially averaged 

across the soil classes of the farms. Soil water contents at 15 bar and 1/3 bar in WSS were 

taken as permanent wilting point (θPWP) and field capacity (θFC), respectively while water 

contents at saturation (θSAT) was calculated from dry density at 1/3 bar. Saturated 

hydraulic conductivity (Ksat) was directly available from WSS. Table 3-3 provides the 

details of the profiles of the three representative soil types in the study area.  
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RESULTS 

Screening misclassified farms 

To exclude farms misclassified by CropScape raster data, this study screened 

farms without the generic trend of CC development for maize and barley. In addition, the 

county yields in NASS were only from harvested areas whereas CropScape data do not 

distinguish non-harvested areas from its crop classification. Hence, this study screened 

farms having more than two outliers (NDVI less than lower 95% confidence interval) in 

the NDVI time-series for all selected years. This step provided 573 maize and 145 barley 

farms for estimating m of the RS model in 2011. These remaining maize and barley farms 

encompassed 4,037 ha and 854 ha (58% and 42% of each CropScape classification in 

2011), respectively. The average areas of maize and barley farms were 7.04 ha and 5.89 

ha with standard deviations of 7.13 ha and 4.49 ha, respectively. Maize farms may 

include farms harvested as maize silage because it was difficult to distinguish maize 

farms from grain vs. silage with the available images. Typically, a sudden drop of VI 

between two consecutive images in the senescence phase was expected in the case of 

silage maize, but available Landsat images were not adequate to distinguish one from 

another. 

For alfalfa, farms with a sharp decrease in time-series of NDVI soon after the 

final height recording in NASS were selected to find the average height. The total area of 

selected 220 alfalfa farms accounted for 2,078 ha in 2011 (7.4% of CropScape 

classification). Average and standard deviation of areas of the sampled farms were 9.45 

ha and 5.85 ha, respectively. In the case of alfalfa, it was important to include farms with 
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the similar cutting cycle to the height records of alfalfa. 

CC and AGB estimations using RS models 

NDVI from the Landsat images were in the range of NDVI used in the original 

CC model. Because this study used the same type of satellite images of the original 

model, errors from difference in spectral and spatial resolutions could be considered 

negligible. The maximum of CCRS in 2011 estimated by the model were 0.875, 0.827, 

and 0.883 for maize, barley, and alfalfa, respectively.  

For the AGBG values of maize and barley, typical HI and MC values were chosen 

from earlier studies. HI and MC for maize selected are 0.49 and 0.12, respectively, from 

the average of values in Lobell et al. (2002) and Prince et al. (2001). HI for barley was 

chosen as 0.55 from Peltonen-Sainio et al. (2008) that investigated HI of modern spring 

barley adapted to northern climates. MC for barley was 0.12 by averaging values used by 

Lobell et al. (2002) and Prince et al. (2001). The estimated values of AGBA in 2011 for 

maize and barley were 18.373 Mg ha−1and 9.075 Mg ha−1, respectively. AGBA of alfalfa 

was estimated directly from the height records using the proposed statistical models 

earlier. Weekly height records of alfalfa were linearly interpolated with time to obtain the 

height at the acquisition date of the Landsat images. As explained earlier, AGBA was 

multiplied by the ratio of county yield (12.108 Mg ha−1) to state yield (10.131 Mg ha−1) 

to obtain a county estimate. The estimated AGBA was 4.436 Mg ha−1 on June 20, 2011 

which is the final image acquisition date before the first cutting. 

The estimated values of m of each crop are listed in Table 3-4 as well as other 

related statistics for each crop year. The values of NDVI of individual farms were 
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integrated through the cropping period after truncated by NDVIsoil. NDVIsoil of each farm 

was obtained from the Landsat image on dates when no vegetation was expected. 

Average and standard deviation of NDVIsoil in 2011 were 0.170 and 0.069, respectively. 

To obtain TVNDVI, NDVI between two image acquisition dates were linearly 

interpolated when integrating. As commented earlier, the stress term W was evaluated 

from the (NIR–SWIR) values of each farm. Average and standard deviation of W in 2011 

were 0.711 and 0.119 for maize, 0.709 and 0.203 for barley, and 0.684 and 0.150 for 

alfalfa, respectively. By dividing the AGBCS value by the mean of W×TVNDVI of 

individual farms, m for each crop was estimated. The integration of TVNDVI covered 

almost the entire cropping periods of the three crops. Using the estimated value of m, 

AGBRS of individual farms were calculated. Figure 3-4 depicts the spatial distribution of 

maize AGB at harvest in Delta and Fillmore in 2011. 

AquaCrop validation  

Non-stressed condition 

Three farms were selected first for each crop for each year to validate the crop 

parameters under non-stressed conditions. From the best five farms in terms of AGBRS 

one farm with no-stress (W=1) was chosen for each crop as the non-stressed farm for 

validating built-in maize and barley and for developing alfalfa with AquaCrop. All AGB 

values of the selected farms were greater than 99 percentiles of those of individual farms. 

Figure 3-5 illustrates the AquaCrop simulations with AGBRS for the three non-stressed 

farms. The AGB simulation with built-in maize was in good agreement with AGBRS 

whereas built-in barley was less than AGBRS at maturity. The only adjusted parameter for 
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maize was 96% to 85% of maximum CC which was categorized as a management 

parameter by Raes et al. (2011). In the case of barley, parameters Tr and WP* of built-in 

barley was adjusted for good agreement between AGBRS and AquaCrop simulations. 

Alfalfa was produced using the leafy crop type in AquaCrop. Parameters for crop 

development were calibrated using CCRS with the temporal variation of crop coefficient 

in Allen et al. (1998). The upper and lower thresholds of water stress for canopy 

expansion used were 0.7 and 0.2 from the FAO study (Steduto et al., 2012). Parameters 

for stomatal closure and early canopy senescence were set in the class of moderately 

sensitive to water. Aeration stress was set to the category of moderately sensitive to water 

stress as per Steduto et al. (2012). Because the parameters for water stress of alfalfa were 

only from literature with limited information, their reliability is not as good as with maize 

and barley. Adjusted and newly developed parameters of the three crops are listed in 

Table 3-5 with estimated sowing dates in the calibration year and unadjusted built-in 

parameters. 

Calibration of salinity stress using RS estimates 

The difference in maize AGBRS between in Delta and Fillmore confirms the 

presence soil salinity stress in Delta as shown in Figure 3-6. These results demonstrate 

that AGBRS in Fillmore was much greater than in Delta. Farms with high productivity 

(AGBRS more than 25 Mg ha−1) are less common in Delta. Since the water supply in 2011 

to Delta was abundant, this considerable difference in AGBRS is mostly due to soil 

salinity stress.  

Farms with local soil moisture observations were used as salinity-stressed farms 
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for each crop. All stressed farms were located in Delta with existing salinity stress 

concerns. AquaCrop automatically provides parameters for salinity stress by comparing a 

non-stressed farm with a hypothetical farm that is stressed by salinity only. The required 

information is AGB reduction, corresponding maximum CC, and the degree of canopy 

decline in season. Estimated AGBRS and CCRS of three salinity farms could provide the 

information given in Table 3-6. To evaluate the attainable AGB of the three farms under 

no salinity stress, AquaCrop was simulated first without consideration of salinity stress 

using the estimated irrigation schedules (Table 3-6a). The ratio of AGBRS to attainable 

AGB was considered as AGB reduction from salinity stress only (Table 3-6c). The 

corresponding maximum CC and the degree of canopy decline were obtained from the 

time-series of CCRS (Table 3-6d and 3-6e). The AquaCrop simulations with the irrigation 

schedules predicted 1%, 8%, and 2% of AGB reductions due to water stress for maize, 

barley, and alfalfa, respectively. The compounding effect of water stress is removed by 

comparing AGB already reduced by water stress with AGBRS. The reduction in maximum 

CC from water stress was not expected from the simulations. AGBRS for evaluating the 

reduction used AGBRS at maturity. 

Another important input required for AquaCrop simulation under salinity stress is 

initial soil salinity. WSS provided the ranges of soil salinity according to its soil 

classifications, but the range is wide. Inversely, this study estimated the initial soil 

salinity by AquaCrop, and checked whether the estimates are in the ranges given by WSS 

when CCRS and AGBRS are in good agreement with AquaCrop simulations. Figure 3-7 

shows the comparison between the AquaCrop simulations and the RS estimates. The 
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simulation showed good agreement with CCRS, but the statistics are not as good as those 

of the non-stressed farms due to the more temporal variation of CCRS in stressed farms. 

The computed initial soil salinity was 9.6 dS m−1, 14.5 dS m−1, 9.0 dS m−1 for maize, 

barley, and alfalfa farms, respectively. These values are in the range of soil salinity given 

by WSS which are 8.0 to 16.0 dS m−1 for slightly saline to moderately saline soils. 

DISCUSSION 

AGB estimation with Landsat images and regional crop information 

The AGB model proposed here with only one parameter can be used for both 

upscaling and downscaling. The basis of the RS model for AGB is the relationship 

between the regional average of spectral properties of Landsat images and regional crop 

information. Therefore, the AGB estimation in this work is to downscale a regional AGB 

value to an individual farm scale. Based on the results in Table 3-4, the lower average of 

TVNDVI represents less regional crop productivity as expected except with alfalfa 

probably due to the uncertainty of estimating state average height. No significant 

difference in NDVIsoil values were observed between the selected years. Relatively low 

values of average W in 2009 for maize and barley represent low surface water availability. 

The total diversions from the canals to farms in Delta were the smallest in 2009 among 

the selected years. However, W did not show significant variation either. This may be due 

to the limited water stress because of water availability in Fillmore from groundwater and 

water in reservoirs for Delta. 

Parameter m of the AGB model can vary over a range than a fixed value due to 

the climatic conditions and the numbers of images used for integrating NDVI were 
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different from one year to another. Maize had larger values of m than others. It may 

represent productivity difference between C3 (alfalfa, barley) and C4 (maize) presented 

by the parameter WP* of AquaCrop. Also, similar trends in m values were observed 

among the three crops. m of barley in 2009 is greater than in 2011 as m of maize in 2009 

has a higher value than in 2011. Similarly, m of alfalfa in 2013 has a higher value than in 

2011, similar to barley. Despite more estimates of m are necessary to confirm this 

tendency, it may be due to the climatic variation among the selected years. 

A key advantage of the AGB models is that regional crop information and Landsat 

images are readily available compared to farm-scale ground measurements. In the U.S., 

county-level crop yields are recorded every year, and Landsat images are collected with a 

repeat coverage interval of 16 days. It means that county-level validation of AquaCrop 

will be possible if climatic and soil data are available. 

To obtain a good representative value for the regional parameter m, several steps 

should be carefully followed. First, an adequate number of farms should be present in the 

Landsat images to compute E[W×TVNDVI]. The best approach is using the same sample 

farms used for crop information. Samples of Landsat images closer to those of crop 

information will provide a more precise value of m. This study assumed that an adequate 

number of farms were included, but uncertainty due to the sample difference between 

Landsat images and regional crop information still remains. Second, the region should 

have low spatial variation of climatic conditions. With larger regions, there is more 

uncertainty of m. Even in the case of a small region, farms located in plains could have 

different climatic conditions from those in valleys. In such cases, m tends to have more 
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uncertainty. The two climate stations in Delta and Fillmore showed similar climate in 

terms of precipitation and air temperature, thus the uncertainty due to heterogeneity in 

climatic conditions may be small. Third, Landsat images should completely 

accommodate the entire cropping period because crop information is obtained from 

harvested farms. As the number of images increases, the accuracy improves. The images 

of this study covered the complete development of the three crops from sowing to 

harvesting. 

Additionally, the selection of MC and HI plays an important role in estimating 

AGBG. In particular, HI selection could be controversial due to its relatively wide range. 

Earlier studies suggested various HI values ranging from 0.4 to 0.6 for maize and barley 

(e.g. Kiniry et al., 1997; Bridger et al., 1995), but it is not easy to identify a suitable value 

for a given study area. The value depends on many factors such as cultivars and 

management practices. Uncertainty in the selection of HI should be always considered 

when using AGBRS. HI for maize of 0.49 used in this study was in the range of the 

reference HI in AquaCrop (0.48 to 0.52) whereas for barley, the value of 0.55 was 

slightly greater than the range proposed by AquaCrop as the reference HI (0.30 to 0.50). 

The selection of high HI for barley was to reflect the exceptionally high yield in Millard 

County. HI for barley was an average value of 6-row spring barley (most common in 

North America) obtained by Peltonen-Sainio et al. (2008). Although high, the value of 

0.55 is still within a possible range of HI for barley. In the case of alfalfa, uncertainty of 

the statistical models for AGBA should be considered as a source of error. Canopy height 

is a good descriptor of AGBA, but it has a relatively low goodness of fit when comparing 
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to different descriptors such as disk height (Griggs and Stringer, 1988) and rising plate 

meter reading (Harmoney et al., 1997). 

The RS model has limitations. First, if availability of images is limited by high 

cloudiness, the reliability of the RS model is low due to the high uncertainty in 

interpolated NDVI. Second, CCRS of this study was from the RS model of a different area. 

Even though the model was developed using the same type of RS images, the difference 

between geophysical properties of the two areas are still a source of error. 

AquaCrop simulations with RS estimates 

AquaCrop validation for non-stressed farms 

As shown in Figure 3-5, CCRS and AGBRS have good agreement with those of 

AquaCrop simulation. Based on similar development patterns of CCRS and AGBRS 

between the selected years, it appears to be a suitable assumption that there existed at 

least several non-stressed farms in the study area. All of the non-stressed farms for maize 

and alfalfa were located in Fillmore where there is a stable volume of groundwater and 

no concern of salinity stress. Locations of non-stressed farms for barley were in Delta 

because most barley was cultivated there, but CCRS and AGBRS of the non-stressed farms 

still have similarity among the selected years. Even though water and salinity stresses 

exist in Delta, barley is tolerant to salinity stress and the selected years did not experience 

significant drought. 

For the good agreement between CCRS and AGBRS of built-in maize, none of the 

parameters were adjusted except maximum CC. In the original study, built-in maize was 

calibrated and validated with six-years of ground measurements (Hsiao et al., 2009). 
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Indeed, its performance was validated in various regions with different climatic 

conditions. (e.g. Heng et al., 2009; Mabane et al., 2013). The high validity of built-in 

maize may validate AGBRS of maize as well. In other words, the selection of HI and the 

assumptions of the RS model seemed to be suitable for the study area. The region 

originally used in the validation of maize was Davis, CA that had a slightly higher county 

yield in 1999 (443 bu ha−1) than in this study, and the difference could be due to climatic 

conditions and management practices. 

On the other hand, built-in barley significantly underestimated AGB when 

compared to AGBRS as shown in Figure 3-5a. Two possibilities are overestimation of 

AGBRS and non-suitability of built-in barley to the study area. AGBRS could be 

overestimated from bias in the regional information if many farmers having low yields 

were excluded from the survey. However, the screening step could minimize the bias by 

filtering farms with low NDVI. High HI of barley is unlikely to be the cause of 

overestimation. AGBRS of non-stressed farms appears to have consistency from 

calibration to validation years as shown in Figure 3-5. On the other hand, productivity in 

the original region of built-in barley (Tigray, Ethiopia) is much lower than in the Millard 

County. According to NASS, the annual yield of barley in Millard County was 5.703 Mg 

ha−1 in 2011 which is more than four times of the value in Ethiopia in 2008 (1.373 Mg 

ha−1; Food and Agriculture Organization, 2013). This significant difference is unlikely to 

come only from differences in climate conditions between the two regions. Furthermore, 

Millard County has relatively low temperature in spring due to its high altitude. Because 

the cold stress would be easily generated with built-in barley of AquaCrop, climate 
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conditions may be unfavorable to achieve such a high yield. Farmers in reality are 

expected to plant cultivars well adapted to the mountainous climate for the high yield in 

Millard County. Therefore, the value of WP* of built-in barley was adjusted from 15 g 

m−2 to 20 g m−2. Kcb was adjusted from 1.10 to 1.20 for the good agreement between 

AGBRS and AquaCrop simulations. Also, the growing degree days at activation of the 

cold stress was lowered from 14.0 °C day to 8 °C day. These large adjustments indicate 

that the built-in crops in AquaCrop should be used with caution especially in the case of 

large difference in crop yield between the original and target areas. 

Alfalfa was introduced as a crop in AquaCrop using the definition of a generic 

leafy crop given in AquaCrop. CC and AGB were fitted to the RS estimates. In spite of 

the good agreement as shown in Figure 3-5, the parameters of alfalfa should be validated 

in different regions with better crop observations due to the uncertainty of RS estimates. 

WP* and maximum Kcb were within the range of WP* for C3 crops (Raes et al., 2011) 

and the recommendation of Allen et al. (1998), respectively. Parameters defining water 

stress are from the literature, thus their reliability may be low. In the case of alfalfa, it was 

meaningful that the RS estimates can approximate the crop observations in the absence of 

ground measurements. 

Calibration of AquaCrop under salinity stress 

Basic information required to use AquaCrop under salinity stress is maximum CC, 

the corresponding reduced AGB, and the degree of canopy decline. Because these data 

could be inferred from the RS estimates of affected farms, the RS models could be a low-

cost alternative. This study compared AGB simulated by AquaCrop without the 
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consideration of salinity stress to AGBRS, thus the reduction in AGBRS after water stress 

was considered as the AGB reduction due to salinity stress. In the case of CC, all saline 

farms attained the maximum CC in the AquaCrop simulations without salinity stress, thus 

the reduction in maximum CCRS was assumed due to salinity stress. However, the basic 

assumption was that the affected farms had only water and salinity stresses. For better 

calibration, farms with other stresses such as fertility stress and blight damages should be 

avoided. Thus, some field investigation is needed even when using the RS models. 

The RS estimates were useful and practical, but there are several limitations 

present. First, the degree of calibration under the water-stressed condition of AquaCrop is 

important because the AGB reduction due to water stress need to be quantified first. Raes 

et al. (2011) evaluated the performance of calibration for built-in maize and barley. Both 

evaluations were lower than their performance of calibration under non-stressed 

conditions. Indeed, alfalfa was never calibrated. Thus, more validation efforts are 

necessary for these crops. Second, the initial soil salinity is a crucial input. Salinity of 

irrigation water which was 1.4 dS m−1 in Delta was unlikely to generate severe stress on 

the three major crops in Millard County. Hence, the existing soil salinity in farms is the 

major factor of salinity stress whereas field experiments usually have saline irrigation 

water as the major source of salinity stress. The estimated initial salinity values were 

within acceptable ranges, but more precise initial soil salinity is needed to have better 

calibration. Lastly, calibration and validation using RS estimates is an approximate 

approach because of the absence of specific data such as time series of soil salinity 

observations. This study put cost-effectiveness as a priority more than precision or 
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reliability. Since uncertainty of the RS estimates were not adequately addressed in this 

study, experimental studies are still required for evaluating reliability of this approach. 

CONCLUSIONS 

Defining crop response to water is a crucial task for providing reliable 

information for efficient agricultural water management. FAO’s AquaCrop is a balanced 

and a robust model for simulating the crop response to water, but its validity is difficult to 

test without ground measurements. This study proposed a RS model to estimate farm-

scale AGB using Landsat images and NASS county-level crop information. With the RS 

estimates of CC and AGB, the built-in crops of AquaCrop model were validated. For the 

RS estimates of AGB, regional AGB was estimated from county-level yield and height 

data from NASS statistics. The regional AGB value was related to the spatial average of 

(W×TVNDVI) from Landsat images to estimate the parameter m in the RS model. The 

parameter m allowed to downscale the regional AGB from crop information into 

individual farms with (W×TVNDVI) values from Landsat images. 

The RS estimates of CC and AGB could replace time-consuming and laborious 

ground measurements for validating the built-in crops of AquaCrop. In a non-stressed 

farm, built-maize showed good agreement between the RS estimates and AquaCrop 

simulation while built-in barley underestimated AGB when compared to the RS estimates. 

Additionally, the RS estimates provided the basic information for calibrating crops under 

salinity stress. The required information for calibration under salinity stress such as AGB 

reduction and corresponding maximum CC were obtained from the RS estimates of CC 

and AGB from the farms with salinity stress. This information helped to calibrate salinity 
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parameters of AquaCrop without the use of experimental fields. Despite some potential 

sources of errors in the RS estimates such as the selection of HI, the proposed approach 

has the advantages of using readily available Landsat images and regional crop 

information from the USDA and state agencies. Most importantly, no ground 

measurements were necessary to obtain the AGBRS estimates. Given the availability of 

Landsat images and regional crop information across the U.S., it is possible to investigate 

the validity of the AquaCrop model to cover most parts of the country. 

The validation and calibration of AquaCrop in this study maybe less reliable than 

studies with ground measurements due to the potential uncertainty of RS estimates. 

However, one distinct advantage of this approach is that the RS estimates obtained under 

variety of physical and agricultural practices will help validate the built-in crops across a 

wide range of regions. With the availability of Landsat images and regional crop 

information in the U.S., the efforts can be extended for mapping the validity of AquCrop 

to many other regions. If this approach is applied to rain-fed regions with water scarcity, 

parameters for water stress could be validated more extensively. While this work focused 

on developing an efficient and a low-cost approach to replace the use of ground 

measurements for validating AquaCrop, future research should focus on other 

unanswered questions. These include a good understanding of uncertainty of the RS 

estimates and the optimal size of a region for the application of the RS model. 
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Table 3-1.  Summary of Landsat images used for each crop year. 

Year # of images* Periods of Images Cloudiness 
(%) 

Crops 

2008 TM: 7, ETM+: 7 May. 18 – Oct. 25 0 – 35 maize 
2009 TM: 7, ETM+: 8 Apr. 19 – Nov. 5 0 – 25 barley, maize 
2011 TM: 9, ETM+: 5 Apr. 1 – Oct. 26 0 – 53 alfalfa, barley, maize 
2013 ETM+: 7, OLI: 5 Mar. 29 – Aug. 28 0 – 19 alfalfa, barley 

* TM: Landsat 5 Thematic Mapper, ETM+: Landsat 7 Enhanced Thematic Mapper Plus, 
OLI: Landsat 8 Operational Land Imager. 
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Table 3-2.  Summary of regional crop information used in the selected years (NASS 

database). 

 Maize Yield (bu ha-1) Barley Yield (bu ha-1) Alfalfa Height (m) 

2008 383 - - 

2009 383 222 - 

2011 395* 262 0.61 

2013 - 251 0.62 

*From USDA extension at Utah State University 
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Table 3-3.  Details of soil profiles in the study area. 

Depth 
 

Volumetric Water Content (m3 m-3) KSAT 

(mm d-1) θPWP θFC θSAT 

Non-Stressed Maize  
0 – 0.3 m 12.9 28.2 51.4 787.6 

0.3 – 0.6 m 12.7 28.2 51.1 772.3 
0.6 – 0.9 m 12.3 27.8 51.1 689.4 
0.9 – 1.2 m 12.1 27.6 51.1 653.9 
1.2 – 1.5 m 12.1 27.6 51.1 653.9 

Non-Stressed Barley  
0 – 0.3 m 15.2 29.7 50.8 309.8 

0.3 – 0.6 m 10.5 23.6 49.4 529.1 
0.6 – 0.9 m 9.7 24.2 49.3 620.9 
0.9 – 1.2 m 9.5 25.0 49.5 650.1 
1.2 – 1.5 m 10.9 25.8 49.3 570.5 

Non-Stressed Alfalfa  
0 – 0.3 m 13.0 28.2 52.0 740.4 

0.3 – 0.6 m 13.4 28.6 52.7 567.9 
0.6 – 0.9 m 13.1 28.4 52.7 505.7 
0.9 – 1.2 m 12.8 28.1 52.7 481.0 
1.2 – 1.5 m 12.8 28.1 52.7 481.0 
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Table 3-4.  Estimated values of m and related statistics. 

 
 AGB 

at Maturity 
(Mg ha-1) 

Mean 
TVNDVI 

(NDVI day) 

Mean 
NDVIsoil 

a
 

Mean Wb 
m 

(Mg ha-1 
TVNDVI-1) 

Maize 2011 18.373 37.547 0.143 0.711 0.489 

 2009 17.806 34.115 0.151 0.687 0.522 

 2008 17.806 31.816 0.156 0.748 0.560 

Barley 2011 9.075 27.607 0.147 0.709 0.329 

 2009 7.705 17.381 0.161 0.657 0.443 

 2013 8.707 25.001 0.128 0.661 0.348 

Alfalfa* 2011 4.436 16.013 0.255 0.684 0.277 

 2013 5.215 15.500 0.188 0.576 0.336 

* Height estimated on the final image acquisition date for the first cutting cycle (a: averag
e NDVIsoil of individual field sampled, b: average W of individual fields sampled) 
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Table 3-5.  Summary of crop parameters of maize, barley, and alfalfa. 

Parameter Maize Barley Alfalfa 

Base temperature (°C) 8.0  0.0 0.0 
Cut-off temperature (°C) 30.0 15.0 30.0 
Canopy cover per seedling at 90% emergence (cco) (cm2) 6.50 1.50 1.80 
Canopy growth coefficient (CGC) (% day-1) 15.9 12.1 21.7 
Maximum CC (CCx) (%) 84 90 87 
Maximum rooting depth (m) 2.30 1.50 1.50 
Crop coefficient for transpiration at CC = 100% (KcTR,x) 1.03 1.20 1.05 
Canopy decline coefficient (CDC) at senescence (% day-1) 11.7 7.7 - 
Normalized water productivity (WP*) (g m-2) 33.7 20.0 17.5 
Upper threshold of water stress for canopy expansion (pupper) 0.14 0.20 0.20 
Lower threshold of water stress for canopy expansion (plower) 0.72 0.65 0.70 
Shape factor for water stress coefficient for canopy expansion 2.9 3.0 3.0 
Stomatal conductance threshold (psto) 0.69 0.60 0.55 
Stomata stress coefficient curve shape 6.0 3.0 3.0 
Senescence stress coefficient (psen) 0.69 0.55 0.55 
Senescence stress coefficient curve shape 2.7 3.0 3.0 
Estimated sowing date in the base year May 27 April 17 April 1 
* Numbers in bold are adjusted parameters for built-in crops or the parameters of alfalfa. 
Note that senescence of alfalfa is unavailable due to the assumption of the first cutting be
fore activation of senescence. 
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Table 3-6.  AGB and CC reductions for calibrating under salinity stress. 

 

(a)  
AGB 

AquaCrop 
(Mg ha-1) 

(b)  
AGB  

RS estimates 
(Mg ha-1) 

(c)  
Relative AGB 

Production 
(%) 

(d)  
Maximum 

CC 
(%) 

(e)  
Canopy 

decline in 
season 

Maize 28.314 13.264 47 65 Medium 
Barley 13.281 8.888 61 70 Small 
Alfalfa 9.612 4.710 49 75 Small 
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Figure 3-1. Description of the study area. The expanded map in the circle shows farms 

boundaries with crop classification near the Gunnison Bend Reservoir. 
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Figure 3-2. A flow chart describing the proposed methodology and data needs.  



104 
 

 

Figure 3-3. Construction of an irrigation schedule with canal diversion records and soil 

moisture observations. 
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Figure 3-4. Estimated values of AGB of maize at maturity in Delta and Fillmore, 2011. 
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Figure 3-5. Comparison between AquaCrop simulations and RS estimates under non-

stressed conditions: (a) calibration year 2011, and (b) validation years. Note EF is Nash–

Sutcliffe efficiency between AquaCrop simulations and RS estimates. 
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Figure 3-6. Histograms of AGBRSat maturity: (a) Delta and (b) Fillmore. 
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Figure 3-7. AquaCrop simulations under salinity stress: (a) maize, (b) barley, and (c) 

alfalfa. 
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CHAPTER 4 

A RISK-BASED HYDRO-ECONOMIC ANALYSIS TO MANAGE SALINITY 

AFFECTED AGRICULTURAL LANDS3 

ABSTRACT 

A hydro-economic analysis is a useful tool for the valuation of agricultural water 

and supporting producers’ decision-making, but variability of crop prices and yields has 

been a practical difficulty. This study proposed a methodology to simultaneously 

incorporating the variability of crop prices and yields into an economic model for an 

agricultural area with distributed soil properties and soil salinity concerns. The FAO 

AquaCrop model together with a regression analysis were used for estimating crop prices, 

returns from crop storage, crop yields and their prediction errors. The estimates were 

incorporated into a risk-based economic model. This study used an agricultural study area 

located in the semi-arid Sevier River Basin of south central Utah and the results are for 

single-season farming strategies for 2013. The purpose of the decision-making 

framework is to develop a land and water allocation model that addresses profit and risk 

with crop storage options. An additional set of crop yield functions with soil salinity was 

used for assessing the economic loss from soil salinity. Results showed that the economic 

analysis preferred land allocations to alfalfa and barley for high salinity farms while 

alfalfa and maize grain were selected for low salinity farms. Alfalfa was preferred for all 

farms with more availability of surface water due to high price, low production cost, and 

                                                 
3 Coauthored by Daeha Kim and Jagath J. Kaluarachchi 
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increasing crop yield. With high risk-aversion in the economic model produced farming 

strategies with less variability in profit than only considering profit. Returns from crop 

storage produced insignificant increases in profit, while producing high variability. The 

economic analysis estimated about ten million dollars of increased profit with reduced 

soil salinity in 2013. 

INTRODUCTION 

Recent challenges in agricultural production are being complicated due to the 

rapidly changing climatic and socio-economic conditions. Climate change has received 

particular attention as a crucial factor altering crop yield response (Finger, 2012; 

Ainsworth and Ort, 2010). The high demand of biofuels, global liquidity, and market 

panics are identified as probable causes for unstable prices of agricultural commodities 

(Wright, 2011). Growing populations and increasing water demand became long-term 

problems in relation to food-security (Gordon et al., 2010; IWMI, 2007). The upcoming 

challenges facing agricultural water management are multifaceted, and therefore a 

multidisciplinary approach would be essential to address various aspects of producers’ 

reactions to the changing conditions. 

As a practical approach for water management, the economic principles have been 

frequently integrated with hydrologic analyses (e.g. Griffin, 1998; Braden, 2000; Lund et 

al., 2006). Since the economic motive is a high priority determining water demand, its 

incorporation into hydrologic and agronomic models has become a common approach. In 

many hydro-economic studies, agricultural water is treated as the major water demand for 

various purposes such as water pricing and irrigation productivity (e.g. Characklis et al, 
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1999, 2006; Lefkoff and Gorelick, 1990a, 1990b; Vaux and Howitt, 1984), conjunctive 

use of surface water and groundwater (e.g. Harou and Lund, 2008; Pulido-Velazquez et 

al., 2006), integrated water management for multiple competing sectors (e.g. Cai et al, 

2003a, 2003b; Rosegrant et al., 2000) and among others. Besides, extensive reviews of 

hydro-economic studies could be found in Harou et al. (2009) and Booker et al. (2012) in 

engineers’ and economists’ perspectives, respectively. 

In a hydro-economic analysis, decisions for water management are commonly 

made toward maximizing utility from all activities using water. In the case of agricultural 

production, crop prices, yield, and planting costs commonly determine the utility from 

water consumption based on the concept of the residual method (Young, 2005). However, 

the valuation of agricultural water has practical difficulties because of the variability of 

crop prices and yields, and aggregating spatially distributed properties. Crop prices, for 

instance, could fluctuate with time due to changing market conditions, thus using fixed 

prices can result in a considerable bias in the valuation. In addition, the production 

function is not only dependent on water quantity, but also on other controlling factors 

such as climatic conditions, soil quality, and management practices. An aggregated 

(lumped) model of a farm considers the average of soil productivity in the study area 

rather than the collective productivity considering the spatial variability of soil properties. 

This assumption of lumped approach can produce unreliable farming strategies from a 

hydro-economic analysis (Young, 2005). 

Recent studies have focused on overcoming these limitations by proposing novel 

approaches such as including risk into utility (e.g. Blanco-Gutiérrez et al., 2013; Varela-
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Ortega et al., 2011; Finger, 2012; Foster et al., 2014), specifying physical production 

functions using crop simulation models (e.g. Garcia-Víla and Fereres, 2012; Foster et al., 

2014; Cusicanqui et al., 2013; Fernández et al., 2013; Donati et al., 2013), and using 

spatially-distributed models (e.g. Maneta et al., 2009). In particular, the inclusion of the 

risk term in utility enabled the hydro-economic models to consider the variability of crop 

price and yield when proposing decisions. Earlier studies indicated that producers can be 

risk-aversive rather than only maximizing the profit (e.g. Friedman and Savage, 1948; 

Binswanger, 1980). In risk associated studies, the variability of crop prices and yields 

were treated as two major factors reducing producers’ utility. Variability was usually 

quantified with statistical methods or crop simulation models, and eventually the risk 

term produced improved hydro-economic models for better decision-making that is 

balanced between profit and risk. 

However, prior studies addressed either variability of crop price or yield, with 

aggregated (lumped) areas, or considered simple scenarios such as a single crop planting. 

Since the variability and aggregation issues are rarely dealt together in prior studies, an 

approach is still needed to consider these limitations simultaneously with multiple crops 

in a distributed area. Additionally, in most agricultural lands in semi-arid regions with 

ongoing irrigation practices, salinity in both water and soil can significantly affect crop 

productivity and therefore profit. Typically, crop prices can increase with time and 

producers tend to store crops in anticipation of price rise in the upcoming months 

depending on the market conditions of the particular year. In prior studies, the potential 

impact on profit due to crop storage is not investigated. The objective of this hydro-
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economic analysis, therefore, is to provide a methodology to incorporating these key 

limitations commonly found in prior studies. The proposed methodology considers (a) the 

variability of crop price and yield in region with distributed soil properties, (b) 

accumulated soil salinity due to long-term irrigation with salinity affected water, (c) the 

option to consider crop storage to maximize profit, and (d) the risk to profit associated in 

the overall farm management. In this work, salinity effects are incorporated using the 

crop simulation model, AquaCrop, which is used to generate crop yield functions in 

salinity affected soils. Simple linear regressions with monthly crop prices quantified the 

variability of crop prices and were used for monetizing producers’ profit and risk with the 

crop yield functions developed by AquaCrop. The hydro-economic analysis simulates 

land and water allocation strategies as well as expected profit and its variability. 

STUDY AREA 

The study area considered in this work (see Figure 4-1) is the semi-arid region 

near Delta in south central Utah with many irrigated farms. The farms encompass an area 

of 18,362 ha with major crops of alfalfa, spring barley (referred as barley hereafter), grain 

maize, silage maize, and spring wheat (referred as wheat hereafter). The study area is 

characterized as a semi-arid climate with high evapotranspiration (ET) and low 

precipitation during the cropping season of March to October. The farms in the study area 

cannot avoid severe water stress without irrigation. Irrigation water is supplied from the 

DMAD and the Gunnison Bend Reservoirs in the lower Sevier River through a well-

constructed canal system. The Sevier Bridge Reservoir, the largest reservoir in the Sevier 

River with a capacity of 201×106 m3, feeds the two reservoirs during the cropping season 
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with water stored by runoff from the upper Sevier River. As a supplement to surface 

water, groundwater is pumped into the DMAD reservoir via eight nearby wells when 

water scarcity is expected, but agricultural production in the area is primarily dependent 

on the water availability in the Sevier Bridge Reservoir. 

Particularly, high soil salinity in the area is treated as an important concern for 

crop production (State of Utah Natural Resources, 1999). Since the study area is located 

in the downstream region of the Sevier River, salinity of irrigation water is relatively high 

due to natural sources as well as salinity in the return flows from the upstream farms. 

Producers in the area have irrigated with saline water for a long time, and therefore soil 

salinity is high to the point of affecting crop productivity. Although salinity of surface 

water in the Sevier River has improved due to various efforts such as reducing over-

irrigation in the upstream regions, accumulated soil salinity is still high and affects crop 

productivity. According to the soil survey data of Natural Resources Conservation 

Service (NRCS) of the United States Department of Agriculture (USDA), electrical 

conductivity from saturated soil pastes (ECe) in the study area ranges from 9.7 dS m-1 to 

24.0 dS m-1, which is significantly high for crops sensitive to salinity stress. Since the 

spatially varying soil salinity made different crop responses to the same irrigation strategy, 

the study area was divided into 14 representative farms in accordance with the soil 

classification of the Web Soil Survey (WSS) of USDA (available at 

http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx) as shown in Figure 4-1. 
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METHODOLOGY AND DATA 

Economic model 

The economic model is a farm-based single-season mathematical model to 

develop producers’ pre-season decisions. The objective function is to maximize the 

producers’ utility defined by the mean-standard deviation method (Hazell and Norton, 

1986) as: 

Max	U ൌ Eሺπሻ െ ϕ ൈ σ (4.1) 

where U is the producers’ utility ($); E(π) is the expected profit ($); ϕ is the coefficient of 

risk aversion (unitless), and σπ  is the standard deviation of profit ($). ϕ represents the 

degree of producers’ risk aversion with a typical range of zero to 1.65 (Blanco-Gutiérrez 

et al., 2013). The risk term of the objective function is for including producers’ typical 

risk-averse behaviors. It enables to associate risks from variability of crop prices and 

yields in the economic model. As producers become more risk-averse (i.e., increasing ϕ), 

they incline to make less-risky decisions. 

Profit is obtained by the sum of incomes from harvested production subtracted by 

relevant costs (e.g. Finger, 2012; García-Vila and Fereres, 2012). However in this study, 

returns from possible price rises during the periods of crop storage after harvesting are 

included as producers’ additional income. Profit is therefore calculated as: 

π ൌ ∑ ∑ ൣ൫P୨  R୨ ൈ s୧୨൯ ൈ a୧୨ ൈ F୧୨൫w୧୨൯ െ c,୨ ൈ a୧୨ െ c୵ ൈ w୧୨ ൈ a୧୨ ൈ 10൧୨୧ െ

∑ ሺp୵୰ ൈ wr୧ሻ୧ െ c୮൫q୮൯ (4.2) 

where π is the profit ($) from all crops cultivated in all farms; Pj is price of crop j ($ Mg-

1); Rj is return obtained by crop storage for crop j ($ Mg-1); sij is the ratio of the stored to 
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the harvest production ranged zero (non-storage) to 1 (full storage) for crop j in farm i, wij 

is the seasonal irrigation water (mm) for crop j in farm i; Fij (wij ) is the yield function 

(Mg ha-1) for crop j in farm i; aij is the areas devoted to crop j in farm i (ha); cf,j is the 

fixed production costs per unit area ($ ha-1) for crop j; cw is the canal system maintenance 

cost imposed to each farm that is proportional to water volume allocated ($ m-3); pwr is 

the rental price of water right; wri is the volume of water (m3) rented from other farms to 

farm i (negative values indicate earnings from renting water right to other farms); cp (qp ) 

is the function of seasonal pumping cost ($ m-3), and qp is the seasonal volume of pumped 

water (m3). The decision variables are aij, wij, sij, and wri in Equation (4.2). 

This study considers the variability in crop prices, returns from crop storage, and 

crop yields as the major sources of risk. These are independently estimated in this study, 

thus the crop prices, returns, and crop yields can be divided into the estimated values and 

prediction errors as: 

P୨ ൌ P୨  ε,୨,			ε,୨	~	N൫0, σ,୨
ଶ ൯ (4.3a) 

R୨ ൌ R୨  εୖ,୨,			εୖ,୨	~	N൫0, σୖ,୨
ଶ ൯ (4.3b) 

F୧୨൫w୧୨൯ ൌ F୧୨൫w୧୨൯  ε,୧୨,			ε,୧୨	~	N൫0, σ,୧୨
ଶ ൯ (4.3c) 

where P୨, R୨, and F୧୨൫w୧୨൯ are the estimated crop prices, returns from crop storage, and 

crop yields respectively. ε,୨, εୖ,୨, and ε,୧୨ are their prediction errors following normal 

distributions with means of zero and variances of σ,୨
ଶ , σୖ,୨

ଶ , and σ,୧୨
ଶ , respectively. When 

assuming the expectation-independence between the prediction errors for simplicity, the 

expected profit and standard deviation of profit are calculated as: 
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Eሺπሻ ൌ ∑ ∑ ൣ൫P୨  R୨ ൈ s୧୨൯ ൈ a୧୨ ൈ F୧୨൫w୧୨൯ െ c,୨ ൈ a୧୨ െ c୵ ൈ w୧୨ ൈ a୧୨ ൈ 10൧୨୧ െ

∑ ሺp୵୰ ൈ wr୧ሻ୧ െ c୮൫q୮൯ (4.4a) 

σଶ ൌ ∑ ∑ a୧୨
ଶ ቈ

P୨
ଶ ൈ σ,୧୨

ଶ  F୧୨
ଶ൫w୧୨൯ ൈ σ,୨

ଶ  σ,୨
ଶ ൈ σ,୧୨

ଶ

s୧୨
ଶ ൈ R୨

ଶ ൈ σ,୧୨
ଶ  F୧୨

ଶ൫w୧୨൯ ൈ s୧୨
ଶ ൈ σୖ,୨

ଶ  s୧୨
ଶ ൈ σୖ,୨

ଶ ൈ σ,୧୨
ଶ ୨୧  (4.4b) 

Profit from crop storage is calculated as the price at the selling month subtracted 

by the price at harvest, the interest cost during the period of storage and the physical 

storage cost as: 

R୨ ൌ P୨
ᇱ െ P୨ ൈ ሺ1  m ൈ i/12ሻ െ cୱ ൈ m (4.5) 

where Pj' is the crop price in the selling month, m is the length of crop storage (the 

number of months), i is the annual interest rate, and cs the physical storage cost ($ month-

1). Pj' is estimated in this study, thus it also has a prediction error as: 

P୨
ᇱ ൌ P୨

ᇱ  εᇱ,୨,			εᇱ,୨	~	N൫0, σᇱ,୨
ଶ ൯ (4.6a) 

R୨ ൌ P୨
ᇱ െ P୨ ൈ ሺ1  m ൈ i/12ሻ െ cୱ ൈ m (4.6b) 

σୖ,୨
ଶ ൌ σᇱ,୨

ଶ  ሺ1  m ൈ i/12ሻଶ ൈ σ,୨
ଶ  (4.6c) 

where P୨
ᇱ is the estimated price after crop storage, εᇱ,୨ and  σᇱ,୨

ଶ  are corresponding 

prediction error and its variance, respectively. 

The pumped ground water is necessary only when the sum of water allocated is 

greater than the surface water availability and given as:  

q୮ ൌ max൫∑ ∑ ൫w୧୨ ൈ a୧୨ ൈ 10൯୨୧ െ TSW, 0൯ (4.7) 

where TSW is the surface water volume available (m3). The pumping cost function, cp 

(qp), is developed by regression with a polynomial function between seasonal pumping 
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records and corresponding costs. 

The economic model is constrained by the land area, water rights, and total water 

availability as: 

∑ a୧୨୨  A୧ (4.8a) 

∑ ൫w୧୨ ൈ a୧୨ ൈ 10൯୨  R୧  wr୧ (4.8b) 

∑ ∑ ൫w୧୨ ൈ a୧୨ ൈ 10൯୨୧  TSW Q,୫ୟ୶ (4.8c) 

where Ai is the upper limit of land area of farm i; Ri is the water right of farm i before 

rental transactions; and QP,max is the upper limit of seasonal pumping (m3). Water right 

rental transactions are only between the farms in the study area, thus the sum of water 

volumes transacted through the rental market should be zero. It is assumed that water 

right can be rented to other farms up to 50% of each farm’s: 

∑ wr୧୧ ൌ 0 (4.9a) 

wr୧  െ0.5 ൈ R୧ (4.9b) 

The total cost for renting water right in Equation (4.2) is always zero with the 

constraint of Equation (4.9a), but the utility is augmented by the redistribution of water 

rights via the rental market for water right  between the farms. The hydro-economic 

analysis was conducted with the global optimization function of Matlab for the crop year 

2013. 

Generation of crop yield functions 

Crop simulation model AquaCrop 

AquaCrop (Steduto et al., 2009) of the Food and Agricultural Organization (FAO) 

was used for generating crop yields in response to various climatic conditions and 
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irrigation management practices. AquaCrop simulates crop growth in terms of the 

development of canopy cover (CC), and aboveground biomass (AGB) as well as water 

and salt balances in the atmospheric-plant-soil system on a daily time step at farm-scale. 

Climatic inputs to the model are daily maximum and minimum air temperatures, 

precipitation, and reference ET calculated by the Penman-Monteith method. The model 

uses soil properties (water contents at saturation, field capacity, permanent wilting point, 

and saturated hydraulic conductivity) for the calculation of water balance and crop 

response to water stress. AGB production is computed by multiplying normalized water 

productivity (WP*) and sum of actual transpiration (Tr) normalized by reference ET over 

a cropping period. Crop dry yield is simply estimated using the harvest index (HI), which 

is the ratio of harvested mass to AGB. The water and salt balances in the root zone are 

based on the concepts of the BUDGET model (Raes, 2002). The key features of 

AquaCrop are distinguishable from the previous empirical approach of FAO (Doorenbos 

and Kassam, 1979) due to the separation of Tr from ET and partitioning crop yield into 

AGB and HI. These changes avoid confounding effects of non-productive water 

consumption and those of water stress on AGB and HI, respectively. This study used 

AquaCrop version 4.0 available at http://www.fao.org/nr/water/aquacrop.html (accessed 

on June, 1st, 2013), and further details of AquaCrop are given by Raes et al. (2009, 2011). 

Validation of AquaCrop 

For reliable crop yield functions, AquaCrop should be validated for the study area. 

Although the best validation is achievable through crop ground observations from 

controlled experimental plots, this study used remote sensing (RS) estimates of CC and 
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AGB due to absence of experimental studies. CC and AGB in non-stressed and salinity 

affected farms were estimated with Landsat images and regional crop survey data using 

approaches of Johnson and Trout (2012) and Kim and Kaluarachchi (2015), respectively. 

Specifically, Kim and Kaluarachchi (2015) confirmed that built-in maize (grain 

maize) of AquaCrop is suitable to the study area while WP* and the basal crop coefficient 

(Kcb) of built-in barley should be adjusted to represent the high productivity of barley in 

the study area. Since built-in alfalfa is not available in AquaCrop 4.0, Kim and 

Kaluarachchi (2015) represented it as a leafy crop in AquaCrop and validated for its first 

cutting cycle (referred to as first alfalfa hereafter). The response to salinity stress of the 

three crops was quantified and calibrated by comparing between the RS estimates from 

non-stressed farms and those from salinity-affected farms. 

Since wheat was not included in the work of Kim and Kaluarachchi (2015), wheat 

was validated in this study using the same approach. WP* and Kcb of built-in wheat were 

adjusted within the range of C3 crops similar to built-in barley in Kim and Kaluarachchi 

(2015). Silage maize was simulated using built-in maize without validation due to the 

absence of crop yield information. It was treated similar to a leafy crop (94% of reference 

HI) with a shortened maturity length by ignoring the senescence period for reflecting its 

earlier harvest than grain maize. In addition, another leafy crop was created for alfalfa 

development after the first cutting (referred to as second alfalfa hereafter). Second alfalfa 

has a shorter growth length of 53 days than alfalfa based on the observations from the 

time-series of CC estimates during the second cutting period of a non-stressed farm. A 

reduced WP* (85% of first cutting) was assumed for second alfalfa to reflect its reduced 
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water productivity after the first cutting (Asseng and Hsiao, 2000). 

Yield function generation 

The yield functions of crops were constructed by iterative simulations with 

AquaCrop. Crop yields are affected by the seasonal irrigation water volume, climatic 

conditions, and management practices (e.g. irrigation schedules). This study assumed that 

the producers are knowledgeable to implement the best management practices such that 

the crop yield is only dependent on the climatic conditions and the seasonal irrigation 

water volume. Therefore, the yield function is the relationship between crop yields 

simulated under various climatic conditions and seasonal irrigation water volume with 

the best irrigation schedule. The best irrigation schedule was determined by testing 10 

intervals (3-30 days with a step of 3 days) for one seasonal depth similarly to the yield 

function generation discussed by García-Vila and Fereres (2012). 

A total of 33 different yields were simulated for one seasonal depth with 33-year 

climate data from 1980 to 2012, and the corresponding 50th percentile and variance were 

quantified as the estimated yield (F୧୨ሺ∙ሻ) and variance of prediction error (σ,୧୨
ଶ ), 

respectively. An example of the generated yield function is shown in Figure 4-2 for grain 

maize. In the case of alfalfa, the first cutting (first alfalfa) and the following cuttings 

(second alfalfa) should be linked to represent the seasonal yield because it has multiple 

harvests in a season. The first cutting and two following cuttings in a season were used 

for newly established alfalfa farms whereas four consecutive following cuttings in a 

season were used for mature or perennial alfalfa farms. The difference in the number of 

cuttings is to indicate that a longer time is necessary for root growth of seeded alfalfa 
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during the first cutting cycle. The water and salt conditions between cutting cycles were 

maintained by using the final state of water and salinity of the previous cycle for the 

initial conditions of the following cycle. Since alfalfa is usually newly seeded every 

seven years, 1/7 of the established plus 6/7 of regular yields were used to calculate the 

seasonal yield for each seasonal irrigation depth. 

For the computational efficiency of the economic model, the yield functions were 

separately constructed before optimization with changing seasonal irrigation depths from 

50 mm to 1,500 mm at increments of 50 mm. To convert from dry yield to fresh yield 

(yield with moisture), the simulated dry yields were divided by typical ratios of dry yield 

to fresh yield of each crop, which were 0.85 for alfalfa, 0.88 for barley, 0.89 for grain 

maize, 0.35 for silage maize, and 0.89 for wheat. 

Crop prices 

The prices when making pre-season decisions (on February 28th, 2013) are 

available to the producers, and therefore these prices can be predictors of prices at harvest 

typically several months after the decision-making. Similarly, the prices at harvest can 

also be predictors of those at selling after crop storage. This study assumed that producers 

are using the available crop prices at the time of decision-making. The crop prices at 

harvest and at selling can be predicted by a simple linear regression model such as: 

P ൌ β  α ൈ Pୣ  ε (4.10) 

where P represents the price to be estimated (i.e. Pj and Pj'),  Pe is the predictor price, α 

and β are the slope and intersect of the linear model, and ε is the prediction errors (i.e. ε,୨ 

and εᇱ,୨). When estimating α, β, and the standard deviation of ε for prices at harvest (Pj), 
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historical prices in February and those in the typical harvest month of each crop were 

used as the independent and dependent variables of linear regression, respectively. For 

prices at selling months after storage (Pj'), historical prices in a typical harvest month and 

those in the expected selling month of each crop applied in the same manner. 

Economic and hydrologic data 

The purpose of the hydro-economic analysis is to make pre-season land and water 

allocation strategies in the crop year 2013. Data available at the timing of pre-season 

decision-making were used in this study. For the economic analysis, crop price data were 

collected from the National Agricultural Statistics Service (NASS) database of USDA 

from 1980-2012 crop years. Monthly state prices of alfalfa and barley were taken from 

the same database. Monthly state prices of grain maize and wheat were estimated using 

the national monthly prices and linear regression between the national and state annual 

prices due to the absence of monthly data. The price of silage maize was calculated by 

using one third of alfalfa price as a historic rule of thumb. The fixed costs were from the 

survey of the Utah State University Cooperative Extension Services (Wilde et al., 2012) 

and summarized in Table 3-1. The physical costs of grain storage were the commercial 

average costs which are1.34 $ Mg-1 month-1, $ 1.15 Mg-1 month-1, and 1.07 $ Mg-1 

month-1 for barley, maize grain, and wheat, respectively. The interest rate is the prime 

interest of 3.25% in 2013 plus 0.5% from the information in Dhuyvetter (2011). The 

canal system maintenance cost and the rental price of water right were obtained from a 

personal communication (Walker, 2014) as 0.01 $ m-3 and 0.06 $ m-3, respectively. The 

pumping cost function was calculated from regression between the recorded seasonal 
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costs and seasonal pumped volumes. All prices and costs were converted to 2010 dollars 

to remove the effect of inflation. The maximum pumping volume at the DMAD reservoir 

was set at 2.7×107 m3 using the historical pumping records of the Utah Division of Water 

Right (available at http://www.waterrights.utah.gov/). 

For AquaCrop simulations, daily maximum and minimum temperature, 

precipitation, and reference ET for 1980-2012 crop years were collected from the 

meteorological station at Delta using data from the NOAA’s National Climatic Data 

Center (Station ID: GHCND: USW00023162, available at http://www.ncdc.noaa.gov/). 

Soil physical and chemical properties were from WSS. The representative farms were 

identified using the soil classification data and more details are given in Table 4-2. 

RESULTS AND DISCUSSION 

Crop response to seasonal irrigation depth 

AquaCrop was validated in prior studies so that crop yield function of each crop 

in each farm can be produced. AquaCrop parameters for barley, grain maize, silage maize, 

and wheat under water stress were validated in prior studies (e.g. Araya et al., 2010; Heng 

et al., 2009; Salemi et al., 2011; Andarzian et al., 2011) except for the adjustments in 

WP* and Kcb for barley and wheat. In the case of alfalfa the response to water stress has 

not been validated with field studies. Kim and Kaluarachchi (2015) calibrated parameters 

of alfalfa for water stress only with information in literature (e.g. Steduto et al., 2012), 

thus its validity could be questionable. To ensure the validity of alfalfa yield functions, 

yield and ET simulated by AquaCrop in a seeded alfalfa farm were compared with a 

regression model for alfalfa yield proposed by Wright (1988) in a similar study area in 
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southern Idaho. The regression model was developed with ground crop observations and 

lysimeter measurements of ET from the seeded farms. Figure 4-3 shows that alfalfa yield 

and ET simulated by AquaCrop are in good agreement with the regression model with 

some underestimation in the low ET range. Based on this comparison, the alfalfa 

simulations are considered acceptable to reproduce the response to water in the study area. 

Figure 4-4 shows the yield functions of soil type Aa. In Figure 4-4a, grain maize 

produced little yield with seasonal irrigations of less than 250 mm because of high 

sensitivity to salinity stress. In other words, irrigation water required to leach soil salinity 

would be approximately 250 mm for soil Aa. A higher yield is obtained with a seasonal 

irrigation water of more than 250 mm but with some variability. This variability is due to 

the prevailing temperature and precipitation variations across the crop year. Direct 

rainfall on the farm becomes insignificant for crop production as seasonal irrigation 

increases, thus less variability in yield was observed with increasing seasonal irrigation. 

With seasonal irrigations more than 1,100 mm, grain maize yields were likely to be only 

dependent on temperature. 

Figure 4-4b shows the estimated crop yield and standard deviation of the 

prediction error vs. seasonal irrigation for five crops. Alfalfa, barley, and wheat produced 

yields even under salinity stress conditions with seasonal irrigations less than 250 mm 

unlike grain and silage maize. This result is consistent with the classification in Ayers and 

Westcot (1985) that barley, wheat, and alfalfa are more tolerant crops than maize. Barley 

and wheat showed no more yield increments with seasonal irrigations more than 500 mm 

while grain and silage maize yields increased up to 1,100 mm. Alfalfa yield increased 
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through the entire range of seasonal irrigation, but no significant increase was expected 

after 1,500 mm. The high fresh yield of silage maize was due to its high moisture content 

(65%). All crops showed almost zero-productivity if rain-fed due to high aridity of the 

study area. Figure 4-5 illustrates the effect of soil salinity on crop yield by comparing two 

soil types with same physical properties but different salinity conditions. The tolerant 

crops, barley and wheat were insignificantly affected by soil salinity as expected. Alfalfa 

showed a small reduction in yield between the two soils. On the contrary, maize yield 

was severely reduced especially as seasonal irrigation decreased. 

Crop prices and returns from crop storage 

The typical harvest months are August, October, September, and July for barley, 

grain maize, silage maize, and wheat, respectively. The results of linear regression 

between prices in February and prices in the harvest months are summarized in Table 4-3. 

Because alfalfa is typically sold through May to November in the study area, the average 

price of the selling period was taken as the price at harvest for alfalfa. In terms of R2 

given in Table 4-3, the linear model provided better performance for grains such as barley, 

grain maize, and wheat. This may be because alfalfa is more arbitrarily harvested than 

other grains during a season such that its supply to the market has less seasonality. Silage 

maize price was estimated from alfalfa price and therefore similar regression results were 

obtained with a smaller variance of prediction errors than alfalfa. Wheat prices has the 

largest standard deviation of errors due to the large range in spite of the highest R2. 

Generally, prices in February were higher than those in the harvest months because 

increased crop supply at harvest is likely to lower the prices. Based on the prices in 
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February, 2013, all crop prices were high. Particularly, alfalfa price appeared to be 

expensive. 

In addition, prices of the three grains were expected to increase after harvesting 

because of their seasonality. Forage crops such as alfalfa and silage maize are unlikely to 

be stored due to the low seasonality of their prices. Indeed, storing the forages could 

cause significant economic loss from quality degradation caused by moisture loss. Hence, 

grains such as barley, grain maize, and wheat are only expected to be stored, and their 

selling prices after storage were estimated by linear regression between prices in the 

harvest months and those in the selling months. The monthly prices of these three grains 

appeared to peak approximately 5, 7, and 7 months after harvest for barley, grain maize, 

and wheat, respectively. The regression results are summarized in Table 4-3 together with 

the expected returns and the standard deviations. The variance of prediction error of the 

returns includes those of prediction errors of price at harvest. Based on these results, 

barley is the most attractive to be stored whereas wheat storage is not expected to 

produce additional profit The expected returns appeared to be small when comparing to 

the harvest prices (less than 5% of prices at harvest), but the standard deviation of errors 

were much larger than those of harvest prices due to the combined prediction errors of 

harvest and selling prices. 

Economic analysis 

Land and water allocations 

Four scenarios were employed to identify the impact of producers’ risk aversion 

behavior and crop storage: the scenarios are A. high risk aversion (ϕ=1.65) without crop 
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storage (sij=0), B. low risk aversion (ϕ=0.00) without crop storage, C. high risk aversion 

with crop storage, and D. no risk aversion with crop storage. The land and water 

allocation strategies were optimized with changing surface water volume from zero to 

250×106 m3 with increments of 10×106 m3. For simplicity, it was assumed that all farms 

have same water rights (equal seasonal irrigation depth) before transaction. The available 

water is the sum of surface water volume and the maximum groundwater pumping 

(equivalent to 147 mm). The results are shown in Figure 4-6 where seasonal irrigation 

water includes both surface water and groundwater. 

Generally, a larger land area was allocated for alfalfa with more surface water 

availability for all scenarios regardless of the risk aversion behavior and crop storage 

options. Grain maize and barley were recommended to be planted as major crops under 

very limited surface water (less than 30×106 m3), but allocated areas for these crops 

decreased as more surface water is available. Slightly more cultivation areas for barley 

and maize in scenario A than in scenario B is for reducing the financial risk, but risk 

aversion was not a significant factor for land allocation given the dominance of alfalfa 

with 90×106 m3 or more surface water. Also, the expected returns from grain storage 

influenced the land allocations with 50×106 m3 or less surface water when comparing 

scenarios B and D. When considering both grain storage and risk aversion (i.e. scenario 

C), a mix of barley, grain maize, and silage maize produced maximum utility under the 

limited surface water condition. Overall, the results indicate that high price and low 

production cost of alfalfa were attractive features supporting more land for alfalfa as long 

as surface water is available. 
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The surface water availability in 2013 could be estimated using hydrologic data 

and seasonal runoff estimations. The reservoir water storage in the Sevier River was 

322.6×106 m3 on February 28th, 2013, the average diversions for the upper agricultural 

area was 476.4×106 m3, and the mean seasonal evaporation loss from the reservoirs was 

55.0×106 m3. The seasonal runoff volume at 20th percentile from the upper Sevier River 

was estimated as 333.4×106 m3 by Kim and Kaluarachchi (2014) using climatic data from 

1994 to 2012. At the timing of decision-making (February 28th, 2013), therefore, surface 

water available could be 129.6×106 m3 at 20th percentile of seasonal runoff volume.  

Figure 4-6 shows that when the surface water availability is more than 129.6×106 m3, 

alfalfa without the combination of other crops would give maximum utility to producers 

in 2013. 

The alfalfa-dominant land allocation can be explained by intuition from the utility 

per area calculated by price, cost, and yield function of each crop and each farm. Figure 

4-7 shows utility per area vs. seasonal irrigation water for each crop in two farms with 

soils Ah and At. Cropping alfalfa can produce more utility than other crops with high 

seasonal irrigation water for both farms. Indeed, utility from alfalfa seems to increase 

through the range of irrigation water selected while the other crops reach their maximum 

at a relatively low irrigation water volume. Thus, economic optimization produced land 

and water allocations in the direction of increasing seasonal irrigation water for alfalfa so 

long as the total available water is adequate. For example, with 750 mm of mean 

irrigation water for soil At, the economic analysis would increase seasonal irrigation 

water for alfalfa by reducing its cropping area rather than allocating more areas to other 
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crops. On the other hand, a combination of crops would produce more utility with water 

availability less than 500 mm. Combinations of alfalfa, barley, and grain maize are 

beneficial for farms with soil Ah whereas barley and wheat appears to be good for farms 

with soil At. When risk aversion is high and mean surface water is less than 300 mm for 

soil At (Figure 4-7c), the economic analysis should reduce cultivated area and increase 

irrigation depth for barley to avoid negative utility. Meanwhile, high risk aversion made 

utility from planting wheat negative through the selected range of irrigation in both soils 

even though it could be profitable with 250 mm or more of seasonal irrigation. No land 

allocation was made for wheat with high risk aversion in both soils. 

Figure 4-8 shows the land and water allocations for farms with two soils Am and 

Ak in greater detail. As commented earlier, only difference between the two soils are their 

salinity levels. The low salinity of soil Am enabled grain maize to be cultivated but only 

barley and alfalfa planting were possible for soil Ak only. When some portion of land was 

switched to alfalfa from other crops, a significant water right should be rented from other 

farms for both soils because alfalfa requires more water for its maximum utility than 

other crops as shown in Figure 4-7. Renting water rights from other farms were necessary 

for both soils until the total surface water availability is around 125×106 m3. Inversely, if 

more surface water is available, it is advantageous for producers in both soils to rent their 

water rights to other farms rather than using the remaining water. The other farms would 

make more utility by applying the purchased water from these two farms. The rental 

market for water right made water allocation more efficient with the rental price. 
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Profit, financial risk, and economic loss from salinity stress 

The association of risk into the objective function could lead to less variation in 

land and water allocation strategies particularly under scarce surface water conditions. 

Figure 4-9 compares profits between the most risk-averse case (scenario A: no storage, 

high risk aversion) and the most risk-neutral case (scenario D: full storage, risk neutral). 

Both scenarios provided almost same expected profit and variation when surface water 

availability was greater than 100×106 m3 due to the dominance of alfalfa in the allocation. 

The increasing variation of profit in both scenarios shows that more crop area is planted 

as more surface water is available. When surface water was less than 50×106 m3, the 

scenario A with high risk aversion had much less variation of profit. The maximum 

increase in E(π) from scenario D with high-risk strategies was 6.3% of scenario A with 

almost doubled σπ (99% increase). The increases in profit and risk reduced with more 

surface water availability. This observation indicates that the benefit from high risk 

strategies was unlikely to be substantial compared with the increased variation of profit.  

The economic loss from high soil salinity of the study area could be quantified by 

comparing between two analyses with and without salinity stress. This comparison can 

provide preliminary information from the cost-benefit analysis for reducing soil salinity 

of the study area. For this purpose, another set of yield functions were generated with soil 

salinity of 2 dS m-1 for all farms, and the economic simulations were conducted with no 

crop storage and high risk aversion. The limit of 2 dS m-1 of ECe is the experimental 

threshold at which salinity stress triggers a reduction in grain maize yield. Figure 4-10 

shows the expected utility with and without salinity stress and the corresponding land 
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allocation strategies without salinity stress. Water productivity of the study area was 

impaired to the level that cannot follow the law of diminishing marginal utility with 

limited surface water (Figure 4-10a). Water used for leaching was consumed but did not 

contribute to crop production which is the primary reason for the severely impaired water 

productivity with a surface water volume of less than 30×106 m3. Economic loss from 

soil salinity could be at least 10 million dollars under the price condition of 2013 if soil 

salinity is less than 2 dS m-1 similar to other areas in the Sevier Basin. When the surface 

water availability is less than 100×106 m3, profit increase would be substantial. As 

expected, the loss is from the reduced maize productivity. Land allocation for maize 

would be significantly increased if soil salinity is improved as shown in Figure 4-10b. 

CONCLUSIONS 

Variability in crop prices and yields is a practical difficulty as well as the 

aggregation problem when valuating agricultural water within a hydro-economic analysis. 

This study proposed a hydro-economic analysis combining variability in crop prices and 

yields into an economic model for an agricultural area with distributed soil salinity. The 

hydro-economic analysis proposed single-season cropping strategies as well as expected 

profit and risk. FAO AquaCrop model was used to construct crop yield functions for 

farms with different soil salinity and physical properties. The expected yield and variance 

of yield were quantified by the simulated yields under 33 different climate conditions 

with varying seasonal irrigation water. Crop prices were estimated by linear regressions 

between prices at planning and at harvest. Returns from crop storage were estimated with 

linear regressions as well and included as producers’ additional utility. The crop 
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simulation model, AquaCrop, and the regression models made it possible to quantify the 

variability of crop prices and yield for calculating financial risk in producers’ profit. The 

utility of the economic model was defined as producers’ profit subtracted by the 

monetized risk-averse behavior. With maximization of utility, the economic model 

provided different land and water allocation strategies using each farm’s soil and salinity 

conditions. The economic analysis showed the preference for alfalfa and barley planting 

for high salinity farms whereas alfalfa and maize grain planting was preferable for 

relative low salinity farms. As more surface water was available, more alfalfa cultivation 

was preferred and therefore more utility due to high price and low production costs of 

alfalfa. With the estimated total surface water for the crop year 2013, only alfalfa planting 

was preferable. It was confirmed that the risk term led to strategies with less variability in 

profit. Additional sets of crop yield functions under reduced soil salinity enabled the 

analysis to assess the economic loss from existing soil salinity of the study area. 

The hydro-economic analysis in this study was based on the crop simulation 

model AquaCrop and statistical models of crop prices. The premise of combining crop 

yield and price estimates was independent of prediction errors, and this approach enabled 

to derive a simple analytical variance of profit. In other words, the economic model 

assumed that producers separately responded to variability in price and yield of each crop. 

Thus, this study provided a simple approach to consider variability in crop prices and 

yields simultaneously. Future studies should consider quantifying the degree of risk 

aversion and mutual interactions between crop prices and yields.  

The proposed hydro-economic analysis considered the variability in crop prices 
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and yields simultaneously. The distributed crop yield functions allowed to consider 

different strategies of water and land allocation. The valuation of agricultural water 

shown in this study attempts to overcome the practical difficulty accommodating the 

variability in crop prices and yields on assessing farm profitability and also the use of 

aggregated land use information in typical analyses. Nevertheless, there are still 

limitations that need to be addressed in future studies. First, all crop yields and prices 

were independently estimated for simplicity. In truth, there would be some correlation 

between crop yields and prices. The high mathematical complexity from multiple crops 

and soils made it impossible to consider these correlations in this study, thus a more 

realistic consideration of crop prices and yields is still necessary. Second, the coefficient 

of risk aversion is an unobservable parameter with an ambiguous definition and difficult 

to quantify. It could be subjective to determine how much producers dislikes risk. More 

studies such as farmer surveys are needed to determine the true behavior of this parameter. 

Third, other economic motives could affect producers’ decision-making. For example, the 

Conservation Reserve Program of USDA discourages planting of crops in some years by 

exchanging annual rental payments to maintain soil productivity or conserve 

environmental quality. The government subsidies could also be a crucial factor for several 

regions. 
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Table 4-1. Planting costs of crops applicable to the study area. 

Cost  
($ ha-1) 

Alfalfa Barley Grain 
Maize 

Silage 
Maize 

Wheat

Insecticide & herbicide 95.78 76.86 76.62 67.04 27.90
Fertilizer 132.56 295.11 201.13 239.44 152.05
Seed 5.13 74.23 268.18 167.61 207.43
Labor 298.71 298.71 304.09 442.97 301.00
Fuel and lube 39.46 39.46 143.47 68.96 68.50
Maintenance 37.35 37.35 150.75 230.82 72.67
Other costs 240.47 124.99 28.73 639.31 172.40
Crop insurance 19.75 20.11 21.55 4.79 20.52
Accounting costs 7.90 7.90 8.62 9.58 8.21
Travel costs 7.90 7.90 8.62 11.97 8.21
Annual investment insurance and taxes 5.10 5.10 32.35 32.04 10.85
Equipment and machinery 112.56 112.56 333.18 260.73 229.34
Total costs 1,002.67 1,100.28 1,577.29 2,175.26 1,279.08
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Table 4-2. Soil physical and chemical properties.  

Soil Classification 
Water Content* (%) Ksat 

(mm d-1) 
ECe 

(dS m-1) 
Area 
(ha) SAT FC PWP 

Abbott silty clay (Aa) 52.8 30.8 20.5 78.6 12.0 3,454 

Anco silty clay loam  (As) 52.2 27.4 13.3 428.6 10.0 3,792 
Abraham loam (Ah) 48.9 24.4 9.5 683.2 11.3 3,395 
Abraham silty clay loam (Am) 49.2 24.9 10.2 600.4 11.3 2,293 
Poganeab silty clay loam (Po) 52.0 30.4 17.3 99.2 10.0 1,903 
Abraham loam, strongly saline (Ak) 48.9 24.4 9.5 683.2 17.2 778 
Anco silty clay loam, strongly saline (At) 52.2 25.2 13.3 428.6 24.0 514 
Abbott silty clay, strongly saline (Ab) 52.8 30.8 20.5 78.6 24.0 338 
Abraham silty clay loam, strongly saline (An) 49.2 24.9 10.2 600.4 17.2 432 
Anco silty clay loam, sandy substratum (Av) 50.1 23.8 11.0 2,737.0 10.0 430 
Poganeab silty clay loam, sandy substratum (Pt) 48.4 24.0 11.6 2,701.7 10.0 389 
Poganeab silty clay loam, strongly saline (Pr) 52.2 30.4 17.4 99.2 24.0 234 
Penoyer silt loam (Pe) 49.3 24.3 8.6 777.6 9.7 266 
Abbott silty clay, sandy substratum (Af) 50.0 24.7 17.1 2,701.7 10.0 146 

Total      18,362 
* SAT - Soil moisture contents at saturation; FC - field capacity; PWP – permanent wilting point. Physical 
and chemical properties are mean of values varying through the unsaturated thickness of each soil. 
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Table 4-3. Summary of linear regression for crop prices and returns of grain storage. The 

numbers in bold were used in the economic analysis. 

 Alfalfa Barley Grain 
Maize 

Silage 
Maize 

Wheat 

Price in February 
($ Mg-1) 

Mean 139.60 184.27 194.52 46.53 234.93 
Std dev 30.93 60.08 61.71 10.31 85.99 

Price at harvest 
($ Mg-1) 

Mean 138.62 168.76 183.98 46.62 209.42 
Std dev 31.90 53.88 59.39 10.97 75.98 

Price at selling after 
storage ($ Mg-1) 

Mean - 182.01 197.25 - 229.71 
Std dev - 58.19 63.71 - 81.87 

Linear regressions 
for prices at harvest 

Intercept 39.9 26.1 20.8 15.2 23.0 
Slope 0.707 0.774 0.839 0.674 0.793 
Std dev of residuals 23.6 27.6 29.6 8.63 34.0 

Price in February ($ Mg-1) 189.77 244.91 279.80 63.26 332.19 
Estimated price at harvest in 2013 ($ Mg-1) 174.07 215.66 255.55 57.83 286.42 
Std dev of prediction error of prices (࣌ෝࡼ) 34.0 8.63 29.6 27.6 23.6 
Linear regression 
for prices at selling 
after storage 

Intercept - 20.4 16.1 - 56.7 
Slope - 0.974 0.999 - 0.842 
Std dev of residuals - 28.69 26.45 - 54.08 

Estimated price at selling ($ Mg-1) - 230.45 271.41 - 297.87 
Interest (3.75%) + storage costs ($ Mg-1) - 10.05 13.61 - 13.75 
Returns from crop storage ($ Mg-1) - 4.74 2.25 - -2.30 
Std dev of prediction errors of returns (࣌ෝࡾ) - 70.36 - 49.83 48.31 
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Figure 4-1. Description of the study area located in the Sevier River Basin in south 

central Utah. The 14 soil classes were simplified as representative farms.  
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Figure 4-2. Yield function of grain maize generated by AquaCrop for soil Aa.  
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Figure 4-3. Comparison between AquaCrop simulation and the regression model  
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Figure 4-4. Crop yield response to water to soil type Aa: (a) grain maize yield vs. 

seasonal irrigation; (b) expected yield vs. irrigation depth; and (c) standard deviation vs. 

seasonal irrigation depth. 
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Figure 4-5. Effect of soil salinity on crop yield for different crops under two salinity 

conditions. 
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Figure 4-6. Land allocation produced by economic analysis for each crop for different 

total surface water availability. 
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Figure 4-7. Variation of utility per area vs. seasonal irrigation for two soil, Ah and At 

with different salinity levels of 11.3 and 24 dS m-1.   
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Figure 4-8. Land and water allocation for two soils Am and Ak. 
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Figure 4-9. Total profit and corresponding 95% confidence interval (shaded area, 2×σπ) 

vs. total surface water for scenarios with high risk-aversion and risk neutral. 
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Figure 4-10. Comparison between profits with and without salinity stress (a) and land 

allocation strategies without salinity stress. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter summarizes the key findings obtained from the hydrologic prediction, 

the crop modeling and remote sensing, and the risk-based hydro-economic analysis 

presented in chapters 2 through 4. Comprehensive conclusions and recommendations for 

further studies are following. 

SUMMARY 

Snowmelt-driven runoff prediction using the FDC method 

In chapter 2, a point snowmelt model, SNOW-17 was combined with FDC 

method and conceptual runoff models for predicting snowmelt runoff. Additionally, the 

FDC method and conceptual models were later extended to simulate natural streamflows 

in regulated watersheds by a regional FDC and parameter regionalization. The FDC 

method with SNOW-17 is a practical option for simulating snowmelt runoff when high 

correlation exists between the current precipitation index and runoff data. In regulated 

watersheds, streamflows simulated by the regional FDC produced acceptable streamflow 

estimates when compared to the other conceptual models. Both the regional FDC and 

regionalization of conceptual modeling could quantify acceptably volumes of river 

diversions by comparing with observed flows. We found the proposed FDC method could 

produce practical values of expected streamflows from point observations for watersheds 

with limited data and reduced computational burden. 
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Linking remote sensing data, crop information and AquaCrop 

FAO’s AquaCrop is a desirable crop simulation model for quantifying crop 

response to water due to its simplicity and robustness, but it has been difficult to be 

validated without ground crop measurements. In chapter 3, a RS model was proposed to 

estimate farm-scale AGBs using Landsat images and NASS county-level crop 

information. CC and AGB estimates were achieved from linkage between NASS regional 

crop information and spatially averaged spectral properties in Landsat images. The RS 

estimates enabled to approximately validate AquaCrop simulation for both non-stressed 

and salinity-affected farms. The validation and calibration of AquaCrop in chapter 3 

might be less reliable than studies with field crop measurements due to the potential 

uncertainty of RS estimates, but this approach has a distinct merit that agricultural 

regions without experimental studies could be analyzed with AquaCrop model because of 

high availability of Landsat images and regional crop information in the U.S. 

Risk-based hydro-economic analysis for water and land allocations 

In chapter 4, a hydro-economic model was proposed to identify land and water 

allocation strategies for salinity affected farms with simultaneous consideration of 

variation in crop prices and yields. FAO AquaCrop model simulated crop yields with 33-

year climate inputs and provided expected crop yields and variations as functions of 

seasonal irrigation depths. Crop prices and returns from crop storage were simply 

estimated by linear regressions with monthly price records. With the estimated total 

surface water, alfalfa dominated land and water allocations were obtained for the crop 

year of 2013 in the agricultural area near Delta. The economic model provided detailed 
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land and water allocation strategies as per soil classification. The risk term in the 

economic model led to strategies with less variability in profit. By applying additional 

sets of crop yield functions with reduced soil salinity to the economic model, economic 

loss from existing soil salinity in the agricultural area was assessed.  

CONCLUSIONS 

Overall, the three chapters contributed to describe an efficient water management 

approach in a snowmelt-driven semi-arid rural river basin that is affected by salinity and 

water is heavily regulated. In this research, hydrologic, agronomic, and economic aspects 

of crop production were addressed using the proposed risk-based hydro-economic 

analysis. The FDC method could be a simple approach to predict runoff with no large 

computational burden, and the approach with FAO AquaCrop with satellite images 

enabled to give validity of simulated crop response to water. The two chapters could 

become useful frameworks in the case of limited data availability. The risk-based hydro-

economic analysis provided land and water allocation strategies balanced between 

producers’ profit and financial risk from variability in crop price and yield. Following are 

the scientific contributions from this research: 

1. It is expected that the proposed FDC method could be a simple and reliable 

approach for the prediction of snowmelt runoff with low data requirement. 

This work is the first attempt to apply the simple revised FDC method to 

snowmelt-driven runoff and extend the work through regionalization to 

simulate regulated watersheds. We therefore believe that the FDC method will 

provide a significant contribution to runoff prediction in watersheds with data 
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limitations, snowmelt, and regulated flow. 

2. There is no attempt to validate AquaCrop with RS estimates because RS 

modelers have experienced difficulty in model development with no ground 

measurements. We believe that the proposed RS model is a novel approach to 

estimating AGB without crop ground measurements at farm scale. With 

readily available Landsat images and regional crop information, AGB could 

be estimated more extensively. AquaCrop validation is therefore possible 

under various climatic conditions and new crop types in the U.S. 

3. Through the risk-based hydro-economic analysis that considers maximizing 

farmers’ utility with variable crop price and yield, decision makers can have 

efficient land and crop allocation strategies balanced between profit and 

financial risk. We believe this approach is the first attempt to provide optimal 

land and water allocations for multiple crop planting with simultaneous 

consideration of variable crop price and yield in semi-distributed soil 

properties such that provided strategies could have more practical value. 

RECOMMENDATIONS 

Limitations of the proposed approaches in this research were already addressed in 

each chapter. Following are the recommendations for overcoming the limitations and 

enhance further research.  

1. The FDC method is a simple and pragmatic method to predict snowmelt 

runoff, but a main drawback is that it cannot consider the dynamic processes 

in a watershed. This approach, hence, is basically recommended for 
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watersheds whose input data are significantly limited. In addition, calibration 

of the point snowmelt model is still necessary with the proposed method. A 

simpler method with no calibration could be more desirable in cases with no 

SWE observations. However, the proposed FDC method with SNOW-17 

model showed a competitive performance, and therefore it will be beneficial 

for simple and quick prediction when necessary. 

2. FAO AquaCrop model with satellite images are obviously a cost-effective 

approach, but its validity could be challenged. The estimated AGB is a 

downscaled biomass from surveyed yield only at harvest. It is still needed to 

check the validity of the approach by applying in regions with ground crop 

measurements. In addition, this approach is only for AquaCrop, but there are 

other crop simulation models. Different models may require different RS 

estimates in relation to crop development. 

3. For a practical application of the risk-based economic model, the scale of a 

target area should be small. For a regional or national scale analysis, this 

approach could not be recommended. In regional or national case studies, crop 

prices and yields are highly correlated such that independency between these 

could not be guaranteed. The topic of how to deal with the correlation 

between crop price and yield is controversial and challenging for valuating 

agricultural water.  

4. The Sevier River Basin has significant regulations due to reservoir operations 

and diversions along the main channel such that the entire hydrologic system 
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is complex. Irrigations and return flows from the upper basin are concerns of 

the water users in the lower basin. Both water quantity and quality are 

involved in water issues between the upper and lower basins, thus an 

integrated management approach for the entire basin is necessary. This 

research did not address the integrated water quality and quantity issue. 
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