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ABSTRACT 

Diel Vertical Migration and Feeding of Underyearling 

Bear Lake Sculpin Cottus extensus (Pisces, Cottidae) . 

by 

Darcy Neverman, Master of Science 

Utah State University, 1988 

Major Professor : Dr. Wayne A. Wurtsbaugh 
Department : Fisheries and Wildlife 

viii 

Underyearling Bear Lake sculpin exhibit a diel pattern of 

vertical migration throughout the pelagic region of Bear Lake (Utah-

I daho) until they are approximately 22 mm standard length . 

Individuals move from the bottom of the lake (5° C) during the day 

into the water c olumn (13 - 16° C) at night. The migration, however, 

is not related to feeding. Although the dominant copepod in the water 

co lumn , Epischura nevadensis, do undergo a similar diel vertical 

migrat ion, stomach analysis of juvenile sculpin captured by trawling 

shows t hat they do not feed in the water column. Instead, from July 

through October, their diet is dominated (70-93%) by b e nthic copepods 

and ostracods. Also, gut fullness of sculpin increases through the 

daylight period and decreases through the night, reaching minimum 

levels just before the dawn descent . Furthermore, feeding trials 

conducted in the laboratory show that juvenile sculpin feed most 

efficiently at light intensities found on the bottom (30- 60m) of Bear 

Lake during the day . Feeding rate coefficients increase markedly from 



1013 photons· m-2· s- 1 until peaking at intermedi ate intensities of 10l6 

photons · m- 2 · S -1 and then decline at higher light leve l s . Although 

t hey do not migrate to feed, the movement into the war mer wate r 

appears t o i ncrease the sculpin's digestion rate, thereby a llowi ng 

continued f eeding during the day . This supports the hyp o the s is t ha t 

di e l vertic al migration in Bear Lake sculpin is a thermoregulatory 

s trategy that i ncreases growth rate . 

(75 pages) 
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INTRODUCTION AND LITERATURE REVIEW 

Many aquatic invertebrates and fish inhabit shallow strata of 

lakes and oceans at night but migrate to deeper layers for the day 

(e.g., Bainbridge 1961 ; Hutchinson 1967; Northcote 1967) . These diel 

vertical migrations appear to be initiated by changes in light 

intensity (Blaxter 1974) . However, the adaptive significance of this 

behavior has not been determined for many organisms . 

Three hypotheses commonly suggested to explain this behavior in 

fish and zooplankton address the role diel vertical migration plays in 

an organism's foraging strategy: 

(1) Predation risk Animals migrate into food-rich surface 

layers at night to feed when risks of predation are low and retreat to 

deeper, darker strata during the day to avoid predators . This 

hypothesis has received considerable support from researchers 

interested in zooplankton migrations (Zaret and Suffern 1976; Wright 

et al. 1980 ; Stich and Lampert 1981; Gliwicz 1986) and has been 

suggested as a mechanism controlling fish migrations (Eggers 1978; 

Clark and Levy 1988) . 

(2) Bioenergetic hypothesis. McLaren (1963) and later Brett 

(1971) suggested that migrating animals , under food-limited 

conditions, may conserve energy by reducing their metabolic rates when 

they descend to the cold hypolimnion. Tests of this hypothesis, 

however, have been unsupportive (Lock and McLaren 1970; Swift 1976) or 

only partially supportive (Enright and Honegger 1977; Biette and Geen 

1980). 

(3) Prey tracking. A third hypothesis for diel vertical 



migration is that predators are simply tracking the migrations of 

their prey. Begg (1976) and Janssen and Brandt (1979) provided 

evidence that some fish may migrate for this reason. 

Many marine fish larvae exhibit diel vertical migrations, but 

relatively little work has been done to determine the adaptive value 

of these movements (Table 1 ) . This is also the case for freshwater 

fish , for which only a few examples have been documented. Juvenile 

sockeye salmon begin diel vertical migrations one to two months after 

hatching (McDonald 1969). Vendace larvae (Coregonus albula), as well 

as young-of-the-year and adults, undergo diel vertical migrations in 

thermally stratified lakes in southern Sweden (Hamrin 1986). Larvae 

and adults of the dwarf pelagic sculpin (Cottus sp.) in Lake 

Washington also migrate, residing near the bottom (35 - 47m) during 

the day and nearer the surface (5 - 27m) at night (Ikusemiju 1967, 

1975) . Another cottid larva, Cottus asper, also shows a similar diel 

periodicity in two British Columbia lakes (Sinclair 1968) . 

report on the diel vertical migration of another underyearling 

cottid (0+ age class), the Bear Lake sculpin (Cottus extensus), an 

endemic species to Bear Lake. The sculpin are among the most abundant 

fish in the lake (ll . Wurtsbaugh, Utah State University, pers . comm . ) 

and are an important forage item for cutthroat trout (Salmo clarki) 

and lake trout (Salvalinus namaycush) (Nielson 1981). 

Despite its importance, little is known about the life history of 

this species . It is known that adult sculpin spawn in rocky littoral 



Table l. Marine fish larvae known to undergo diel vertical 

migrations, and hypothesized reasons for their adaptive significance . 

Specific name 

Hypothesized 
adaptive 

significance 
tested* Source 

Engrau1is mordax SR Brewer and K1eppe1 

Clupea harengus harengus PT Fortier and Leggett 

Ma11otus vi11osus PT Fortier and Leggett 

Pomatomus saltatrix Kendall and Nap lin 

Mer1uccius bi1inearis Kendall and Nap lin 

Citharichthxs arctifrons Kendall and Nap lin 

Pepri1us triacanthus Kendall and Nap lin 

Hippoglossina ob1onga Kendall and Nap lin 

Urophycis spp. Kendall and Nap lin 

Auxis sp. Kendall and Nap lin 

Etropus microstomus Kendall and Nap1in 

Gilhertidia siga1utes F, SR Mar1iave (1986) 

Limanda ferruginea o* Smith et al. (1977) 

Clupea harengus Se1iverstov (1974) 

(1986) 

(1983) 

(1983) 

(1981) 

(1981) 

(1981) 

(1981) 

(1981) 

(1981) 

(1981) 

(1981) 

SR - near shore retention, D - dispersal, PT - prey tracking, 
F - feeding. 



regions and that the eggs hatch in May or early June. Also, the 

larval and underyearling stages of this fish are known to be pelagic 

for a portion of the day and are suspected to undergo a diel vertical 

migration . 

The first objective of my study was to confirm and describe the 

diel vertical migration of underyearling Bear Lake sculpin. Then, I 

tested two of the previously mentioned hypotheses . First, is the diel 

vertical migration a foraging strategy in which the fish move into the 

water column at night to feed? If so, is feeding ability impaired at 

low light intensities? Secondly, if the movement is part of a 

foraging strategy, are the sculpin following a vertically migrating 

prey species? Finally, the research provides additional life history 

information on this little - studied species . 

4 



STUDY AREA AND METIIODS 

Bear Lake (Utah-Idaho) is a large, oligotrophic, tilt-block lake 

(Fig. l). Marl substrates dominate the deeper portion of the lake, 

where my sampling was done. The precipitous eastern shore is rocky , 

whereas the western shore grades gradually from rock and sand in 

shallow water to marl sediments at a depth of about 23m (Smart 1958) . 

The lake is thermally stratified during the summer, with surface 

tempera tures of 20-21 °C and bottom temperatures of 4-5°C . Oxy gen 

levels in t he hypolimnion are normally above 5 mg/L, except in the 

deepest portion of the lake (E. Moreno , Utah State Univ . , pers. 

comm.). Zooplankton abundance is low, with maximum total densities of 

5 to 15 crustaceans · L·l occurring in the metalimnion (Lentz 1986) . 

Additional limnological characteristics are shown in Appendix G. 

Diel variations in the distribution of 
underyearl ing sculpin and zooplankton 

Underyear 1 ing sculpin Diel changes in the vertical 

distribution and feeding activity of larval sculpin were determined by 

trawling over 24-h periods on five dates in 1985: l-2 July, 30-31 

July, 14-15 August, 27-28 August and 16-17 September . On two dates 

( 18-19 July and 25-26 October 1985) I collected samples near midday 

and midnigh t in lieu of the full 24-h data set . Larval sculpin were 

sampled from benthic and pelagic environments at the 40-m contour 

during all diel·sampling efforts . 

A sampling run consisted of one 20-min bottom trawl and three , 



Diet sampling 
transect ---\--1---\---+....J, 

2 km 1---! 

_ IQA_HQ _ 
UTAH 

--Horizontal transect 

UTAH 

FIGURE 1 : A bathymetric map of Bear Lake showing stations used to 

study diel vertical migration (diel sampling transect) and the 

horizontal distribution (Sta. 1-5) of underyearling Cottus extensus . 
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15-min mid-water trawls . One run was completed approximately every 

three hours . Fish were collected from the bottom with an otter trawl 

( 2. 9 m head rope , 3 . 6 m lead line , 0. 6 em height and 5 . 6 m length) 

pulled at ca. 1 . 0 m/s. The body of the trawl was constructed of 

5 . 3-mm netting , and the final third was lined with 1.0-mm mesh net. 

Fish were collected from the water column with a 1 m2 Tucker trawl 

(Hopkins . et al. 1973) equipped with three, 1 mm2 mesh nets that were 

opened and closed with a messenger-initiated release. Initially, each 

of the three nets was towed within one of three regions in the water 

column: epilimnion (2 - 9 m), metalimnion (9 - 20m) and hypolimnion 

(20 - 30m). To sample through a stratum (e.g., metalimnion) one net 

was pulled for 5 min at each of three depths (1-2 m apart) at a speed 

of approximate l y 1 . 5 m/s . After completing one strata, the sampl ing 

net was tripped, opening the next , and moved to the next strata (F i g . 

2; Appendix A). 

By mid-August, however, catches in all s trata were declining ; 

they were particularly low in the hypolimnion and epilimnion . 

Consequently, from late August on , all three open-water trawls were 

towed only in the metalimnion . In 1986 and 1987 additional 

metalimnetic Tucker trawling was done to determine how sculpin larvae 

were distributed in relation to temperature . 

All fish captured during diel sampling efforts were anesthetized 

in MS-222 to prevent possible regurgitation of stomach contents and 

then preserved in 10% formaldehyde for subsequent measurements and gut 

analyses. Stomach contents of the preserved larvae were analyzed in 

the laboratory to determine their diet composition and feeding 
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FIGURE 2: A mid-summer (14 August 1985) temperature profile from Bear 

Lake depicting where juvenile sculpin were sampled from the water 

column. Connected circles indicate the depths sampled by a single net 

of a Tucker trawl . 



chronology. All prey items in the stomach were measured with an 

ocular micrometer , identified to the family level or lower, counted 

and weighed. The foregut contents from one subsample of ten fish or 

two subsamples of five fish from each trawl were pooled into one or 

two groups of pans, respectively . The food items were dried to a 

constant weight at 65°C (about 4 h) and weighed on a Cahn 29 

microbalance to the nearest 0 . 5 ..ug . 

I inferred the sculpin's feeding chronology from changes in gut 

fullness . Because stomach capacity increases with fish size, 

expressed foregut weight as a percentage of fish weight . The diel 

cycle in stomach fullness was further standardized by dividing foregut 

weight from each time period by the maximum observed during the 24-h 

period . 

The exact proportion of migrating versus nonmigrating fish could 

not be calculated because sampling efficiency of the otte r trawl and 

the Tucker trawl differed. So , to help determine when the migration 

ceased I derived the following two indices . 

A - Daytime otter trawl CPUE 
Daytime + Nighttime otter trawl CPUE 

B - Nighttime Tucker trawl CPUE 
Nighttime Tucker CPUE + Nighttime otter trawl CPUE 

( where GPUE - catch per unit effort) 

Both indices are equal to 1.0 when no sculpin larvae are captured on 

the bottom at night (i.e .• all o+ s culpin migrate into the water 



c olumn). A decrease in these indices indicates a decline in the 

percent of the population exhibiting diel vertical migration. 

Each of the indices, however, is differentially sensitive to 

changes in CPUE . Index A is based only on changes in daytime versus 

nighttime otter trawl CPUE, whereas index B is based on the nighttime 

CPUE of otter and Tucker trawls . Daytime otter trawls captured many 

more fish than nighttime otter or Tucker trawls . Therefore , a large 

change i n CPUE of nighttime otter trawls is necessary to be reflected 

by index A. Conversely , index B is very sensitive to a slight 

increase in the CPUE of nighttime otter trawls, a good indicator of 

cessation of diel vertical migration . Index B, however, is also 

sensitive to daily variability in Tucker trawl CPUE . Because Tucker 

tra wl CPUE has high var i ability , it does not consistently reflect the 

status of the migratory behavior of the sculpin. Therefore , I felt 

that observing both indices was necessary to accurately assess the 

migratory status of the sculpin . 

Zooplankcon measured changes in zooplankton vertical 

distribution concurrently with diel sampling of larval sculpin . 

Duplicate daytime (1100 h - 1400 h) and nighttime (0130 h - 0330 h) 

samples were taken with a 50-L Schindler zooplankton trap (Redfield 

1984) . Eight discrete depths were sampled, two above , three in and 

three below the metalimnion . All crustacean zooplankton in each 

sample were counted. 

Light and temperature profiles Profiles of light and 

temperature were taken during each diel - sampling period. measured 

intensity of photosynthetic active radiation ( 400 - 700 nm) from 0-

10 



22 m between 1100 and 1400 h with a spherical collector of a Li-Cor 

1888 integrating radiometer . The vertical light extinction 

coefficients determined from these profiles were used to extrapolate 

intensities to the lake bottom under full sunlight and night sky 

conditions. The spectral composition and irradiance of full moonlight 

and starlight (Munz and McFarland 1977) were used to estimate light 

intensities in the water column at night. 

Laboratory feeding trials 

I investigated the effect different light levels have on the 

feeding rate of underyearling sculpin in the laboratory . A black, 

40-L aquarium served as the experimental chamber . Fish were kept in 

250-ml beakers inside this chamber. Water surrounding the beakers was 

kept at 10 - 11 . 5°C. Light intensity in the chamber was varied by 

screening a 40-w cool-white fluorescent bulb with 2 - 46 layers of 

window screens (Blaxter 1968, 1969; Dabrowski and Jews on 1984). The 

bulb was suspended 200 mm above the water's surface. At intensities 

below 6 . 0 x 10lS photons·m·2.s-2 (18 screens) I could not measure 

light levels, so I estimated it by extrapolating the relationship 

between screen number and light intensity . 

Feeding trials were conducted with fish that had been captured by 

trawling and acclimated to laboratory conditions for a minimum of 15 

days. began experimental acclimatization by placing individual fish 

in 100 ml of lake water in a 250-ml beaker and holding them in the 

dark for 12 h at 6°C . Fish were measured by placing the beaker over a 

r uler and were then allowed to acclimate an additional 2 h under 

experimental conditions of light and temperature. I began each 

ll 



experiment by adding 30 live Epischura nevadensis to each of seven 

beakers while lights were out. One control contained no fish . Lights 

were then turned on for a 15-min feeding period. The experiment was 

terminated by turning out the lights and immediately removing the fish 

with the aid of a low-intensity red light. I then killed and counted 

the remaining prey and determined the number eaten by difference. 

Instantaneous feeding rate coefficients (k) were calculated as: 

-ln(Pf I Pi) 
k - -------------

Xt 

Where : Pf - final number of prey in one beaker, Pi - initial number 

of prey ( 30), t - 0 . 25 h and X - number of predators· L -1 (Dodson 

1975). This coefficient indicates the number of liters cleared of 

prey by a single fish in one hour . I performed this experiment one to 

six times at 15 light intensities , ranging from total darkness to the 

full intensity of the 40-w bulb diffused through two screens (3. 5 x 

1019 photons m·2 s·l). 

Horizontal variation in sculpin abundance 

To see if underyearling sculpin displayed diel vertical migration 

throughout the pelagic zone I sampled the thermocline region at night 

on five dates and at five stations along an east- to-west transect 

across the lake (Fig . 1) . I sampled each of the stations in a 

randomly selected order with the Tucker trawl. Replicates were 

obtained by sequential sampling with two nets pulled within the 

thermocline at each station in the same manner used for the diel 

sampling . Because they were not randoml y assigned, these replicates 

12 



were actually "pseudoreplicates" (sensu Hurlbert 1984). If time 

allowed I took additional samples . 

13 



Diel vertical distribution 
of Bear Lake sculpin 

RESULTS 

Underyearling sculpin exhibited a pronounced diel vertical 

migration. This was confirmed by their absence in the bottom trawls 

at night, coupled with their appearance in the pelagic zone at this 

time (Fig. 3; Appendix B). They also exhibited this behavior in the 

laboratory, commonly swimming to the surface of their aquaria when it 

was dark. Fine-scale Tucker trawling indicated that fish in the 

metalimnion concentrated at temperatures between 13 and 16°C (Fig . 4). 

There were s ignificant differences in day vs . night CPUE of o+ 

sculpin for both Tucker trawls (p < 0.0005; RANDTEST, Green 1977) and 

otter trawls (p < 0.0005 ; RANDTEST). But, because night length 

changed from July to October (7 to 9.2 h) , the migration pattern was 

not accurately represented by plotting pooled CPUE over time of day . 

Consequently, I standardized the night length by dividing the total 

hours in each night by 5. One of these segments (e.g., 1.2 h) served 

as the base unit of time for each corresponding day and allowed for an 

accurate presentation of data from all five diel-sampling periods 

(Fig. 3). 

Diel vertical migration of the o+ sculpin persisted throughout 

the study (June- October), but by late summer only a small proportion 

of the juvenile fish were migrating into the water column. This 

decline was reflected by a drop in both indices of migration (Fig. 5). 

As the proportion of migrating larval sculpin declined, the size 

of the migrators versus the non-migrators became distinctly different 
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(Fig. 6). From June to August sample sizes of non-migrators were 

small and no consistent effect of fish size was noted. In September, 

however, underyearlings that moved into the water column at night were 

significantly smaller than those remaining on the bottom (p < 0.0005; 

RANDTEST). In October this difference was not significant (p- 0.18; 

RANDTEST), but statistical power was poor because only five fish were 

captured in the water column at night . The two largest fish that I 

captured in the water column were 22-mm standard length ( SL). 

Sculpin ~ l year old did not migrate . The similarity in day vs. 

night otter trawl CPUE attests to this (p - 0.3; RANDTEST) (Fig. 7). 

One exception was a migrating 22 -mm SL fish captured on l July 1985. 

Diet and feeding chronology 

Juvenile sculpin fed on the bottom throughout the day but ceased 

feeding when they moved into the water column (Fig . 8) . Gut fullness 

increased throughout the daylight hours and peaked during late 

twilight (Fig . 8; Appendix C) . The sculpin's guts were often near 

bursting. Maximum fullness was usually found just before the 

juveniles left the bottom. Because the sampling intervals were too 

coarse, the maximum sometimes appeared in fish captured in the first 

nighttime Tucker trawls . Gut fullness decreased through the night 

with no addition of fresh prey items. This suggests that little or no 

feeding occurred in the water column. Feeding resumed and gut 

fullness increased when the larvae returned to the bottom in the 

morning. 
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The diet composition of the juvenile sculpin also indicated that 

they fed primari ly on the bottom. Epibenthic prey dominated the diet 

of larval sculpin (Fig. 9; Appendix C). From July through mid-August, 

cyclopoid copepods (Acanthocyclops vernalis) represented at least 40X 

of the diet. Although cyclopoid nauplii were captured in the water 

column, the copepodi te and adult stages were only encountered in 

samples taken near the bottom (Appendix D). As the summer progressed , 

ostracods became increasingly important, representing 53% of the diet 

by weight in mid-August . Harpacticoid copepods were also eaten but 

formed an insignificant part of the diet (Appendix C). "Pelagic" prey 

(Epischura nevadiensis, Bosmina longirostris, Diaphanosoma sp . and 

Daphnia sp.), which could have been captured in either the pelagic or 

epibenthic environment , represented up to 4X of the diet . 

Effect of light intensity on feeding 

Nighttime light intensities in t he lake were too low for larval 

sculpin to feed. Sculpin feeding rates peaked at intermediate 

irradiances similar to those found on the bottom during the day (Fig . 

10 and 11 ; Appendix E). From complete darkness to approximately 6 x 

10l6 photons · m·2. s-l the feeding rate coefficient (FRC) increased 

exponentially. Beyond this light level, FRC decreased linearly with 

increasing i ntensity (p < 0.05) . 

Horizontal variation in the distribution 
of larval sculpin 

Underyearling sculpin underwent diel vertical migrations at all 

stations along the horizontal transect (Fig. 12), but there were 

spatial and temporal differences in the relative abundances of the 
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fish . In early June the o+ sculpin were more concentrated near the 

e ast shore of Bear Lake (Fig . 12 A) . From late June on they appeared 

to disperse into offshore areas (Fig . 12 B-E). 

Catches of sculpin juveniles in the water column at the western­

most and shallowest station (//1) , however, were consistently low. 

Subsequent sampling with a bottom trawl in the littoral zone of the 

west shore ( 2 - 5 m) showed that the o+ sculpin there were abundant 

and that they did not migrate into the water column (W . Wurtsbaugh, 

personal communication). This may have been the case at station 1 . 

Another factor, which may have accounted for much of the 

v ariation in abundance between stations, was the presence of seiches . 

Although seiches, per se , have not been measured in Bear Lake, daily 

east-west variations in the thickness of the epilimnion of up to Sm , 

and commonly 2m, were measured subsequent to my study (E . Moreno, 

personal communic ation). Because all stations were sampled at a fi xed 

depth, rather than at a fixed temperature, trawls at some stations may 

have missed the strata where the fish were concentrated. 

Consequently , the differences in CPUE may have reflected temperature 

differences instead of actual density differences between the 

stations . 

Zooplankton vertical migration 

Of the abundant crustacean zooplankton, only the copepod 

Epischura nevadensis exhibited a diel vertical migration similar to 

the sculpin's . However, only the larger instars migrated. Fifth and 

sixth instars were most concentrated near the bottom during the day 

and appeared to move to just below the thermocline at night for each 
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of two days (Figs. 13 and 14) . Bosmina longirostris also exhibited a 

slight diel vertical migration by avoiding the surface (0 - 5 m) 

during the day and moving up at night (Figs. 13 and 14). 
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DISCUSSION 

Although my results document diel vertical migration of sculpin, 

they were inconclusive as to the adaptive significance of this 

movement. Three observations refuted the hypothesis that 

underyearling sculpin migrate into the water column to feed. First, 

stomach fullness reached a peak before the fish ascended. Second, 

benthic prey (ostracods and benthic copepods) comprised from 70 to 93% 

of the gut contents (by weight). A maximum of 4 . 0X of their diet 

consisted of potentially pelagic prey items. Thirdly , the laboratory 

experiments demonstrated that juvenile sculpin fed visually, and that 

light intensities in the water column at night were inadequate for 

significant feeding activity (Fig. 11) . 

The visual daytime feeding exhibited by Bear Lake sculpin 

contrasts with the nighttime feeding of .Q. bairdi in Lake Michigan 

(Hoekstra and Janssen 1985). Cottus ba i rdi apparently uses non-visual 

sensory mechanisms to feed . Bear Lake sculpin clearly feed visually, 

as consumption rates increase rapidly with increases in light 

intensity up to intermediate leve ls of 10l6 photons · m- 2 · s -1. The 

decline in feeding rates at still higher intensities is unusual and 

has not been reported for other fishes . The reason for the decline at 

high light levels is not clear. 

The low feeding rates predicted at nighttime light levels would 

be further reduced by the very low densities of prey present in the 

water column. With a mean density of 5 crustacean prey · L-1 (Fig . 13 & 

14) and a predicted FRC of 0. 08 at nighttime metalimnetic light 

intensities (Fig. 11) , I estimated that sculpin would only consume 0 . 4 
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Therefore, if sculpin fed in the water colwnn for 8 h at 

night they would be able to consume only a small fraction of what they 

ate during the day on the bottom. 

The hypothesis that the sculpin were tracking migrating prey was 

refuted by the field results . Although the migration of the l ate 

instar of the copepod ~ . nevadensis was synchronous with those of the 

underyearling sculpin (cf Fig . 3 , 13 and 14), these copepods 

represented only 0 . 4 - 4. 0% of the sculpin's diet and were not fed on 

by the juvenile sculpin at night . 

Contradictory to my results, Lentz (1986) concludes that ~. 

nev adensis does not undergo diel vertical migrations . He does not , 

however , differentiate early and late ins tar copepods, and this may 

confound his results (Zaret and Suffern 1976) . 

Overall , my results do not support the feeding hypothesis. This 

contrasts with current hypotheses on the adaptive significance of diel 

vertical migration that overwhelmingly cite foraging in food-rich 

surface waters as the driving mechanism behind these movements 

(Bainbridge 1961; McLaren 1963; Swift 1976; Zaret and Suffern 19 76; 

Enright and Honegger 1977; Stich and Lampert 1981 ; Gliwicz 1986) . 

Some other factor must therefore be responsible for the pattern 

observed in Bear Lake . 

One possibility involves an energetic consequence of diel 

movement. By migrating into the warmer water colwnn , individuals 

incur an elevated digestive rate. This increase, by allowing 

migrators to digest an entire meal overnight (Fig. 8), may result in a 

considerable increase in food consumption the next day . 
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This idea is supported by data on other vertebrates. After 

feeding, many reptiles show an increase in preferred ambient 

temperature (Regal 1966, McGinnis and Moore 1969, Gatten 1974, Schall 

1977, Witten and Heatwole 1978). Regal (1966) and Gatten (1974) 

concluded that several species of reptiles facilitate digestion and 

increase the rate at which they assimilate energy by increasing their 

body temperature . The diel inshore migration of the fish Tilapia 

rendalli also appears to be a thermoregulatory strategy that increases 

the rate of consumption, leading . to an increase in growth (Caul ton 

1978). Results from an energetic model by Caulton (1978) show that 

these fish have the greatest growth potential when experiencing a diel 

temperature flux of 12°C and will not grow when held at a constant 

high or low temperature . The migration is particularly evident in 

immature I . rendalli, those individuals investing, proportionately, 

the most energy into growth. Juvenile sculpin probably also invest a 

large portion of their energy intake into growth. 

If diel vertical migration is a thermoregulatory strategy that 

increases growth, migrating sculpin would be expected to grow faster 

that non-migrators . This is supported by laboratory data. Sculpin 

held in temperatures cycled between S and 1S°C grew three times faster 

than those reared at S°C (Wurtsbaugh and Neverman 1988; Appendix H) . 

Furthermore, juvenile sculpin held at 1S°C digested a meal in 8 h, 

whereas several days were required for gut evacuation at hypolimnetic 

temperatures of S°C. These results lend support to the hypothesis 

that migration into warm metalimnetic water increases the growth rate 

of Bear Lake sculpin. 
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In contrast, other researchers working with aquatic organisms 

suggest that fish and zooplankton migrate to cooler waters after 

feeding to reduce routine metabolic costs (McLaren 1963; Brett 1971) . 

This hypothesis, however, does not necessarily conflict with the one I 

propose for sculpin. At the high feeding rates observed in Bear Lake 

sculpin , growth may be limited by the rate at which food is digested, 

and henc.e, assimilated. Consequently, the increase in metabolic rate 

at higher temperatures may be beneficial. If, however, food is 

limiting, and the rate at which it is digested does not limit food 

intake, it might be more advantageous for organisms to save energy by 

reducing their metabolic rates in cold hypolimnetic water (Giguere and 

Dill 1980) . Nevertheless, tests of this energy-saving hypothesis have 

either been unsupportive (Lock and McLaren 1970; Swift 1976; Orcutt 

and Porter 1983 ; Stich and Lampert 1984) or have been inconclusive 

(Biette and Geen 1980). 

If migration benefits o+ Bear Lake sculpin by increasing their 

growth rate , why does migratory behav ior cease at the end of the 

summer? Juvenile sculpin apparently do not migrate after reaching 22 

mm SL (Fig . 6) . Perhaps the cost of migrating begins to exceed the 

benefit of an increased consumption rate. To answer this, 

respirometry work needs to be done to determine the energetic cost of 

migration to juvenile Bear Lake sculpin . 
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Appendix A. Bear Lake temperature data 



41 

Table 2 . Temperatures at different depths in Bear Lake 

during each diel sampling period . A Mark V thermistor was 

used to measure temperatures from 1 30 July . A Hydrolab 

thermistor was used on subsequent dates . The depths in each 

strata sampled with the Tucker trawl are indicated by : 

lepilimnion , 2metalimnion, 3hypolimnion. 

DATE (1985) 

Depth 1 Jy 18 Jy 30 Jy 14 Au 27 Au 16 Sp 25 Oct 
m 

0 18.7 21.5 20.0 18.5 20.6 16.8 10 . 4 

17.8 21.3 20 . 0 18.4 19 . 6 16 . 6 10 .4 

17.6 21.3 20.0 18.3 19.2 16.5 10.4 

17.5 21.2 1 18.3 

4 21.21 2o . ol 18 . 1 18.9 10 . 2 

17 .41 21.2 18 . 11 

21.01 19.9 18.0 18.6 16.4 10.2 

16 . 91 20.9 19 . 9 18 . 01 

20.6 19 . 9 18.0 18 . 3 10.1 

16 . 0 19 . 12 19.82 18.01 

10 15.9 16.1 17.02 17.8 18 . 0 16.3 10 .2 

11 15.3 15.7 15.42 17.8 

12 13.82 14 . 02 14.0 18.0 17 . 6 16.2 10.2 

13 9 . 52 12 . 1 17.62 17 . 3 

14 8.6 2 11.12 16.52 16 .92 16.2 9.9 

15 7.4 8 . 9 12 . 52 15 . 52 

16 §_J_ 8.3 12 0 12 5 16.0 .2.....L_ 
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Table 2 cont. 

DAH; (l2~:il 

Depth 1 Jy 18 Jy 30 Jy 14 Au 27 Au 16 Sp 25 Oct 
m 

17 6 . 2 7.9 10 .7 11.02 15.62 

18 5 .8 6.9 10 . 5 9.2 14 .9 2 9.8 2 

19 5 . 7 6.4 9.4 8 .5 14 .0 

20 5.5 6 . 1 9.03 8 . 7 8.0 12.33 9.7 

21 7.5 10 .8 

22 5 .1 5.3 8.0 7 . 0 9 . 7 9 . 12 

23 8 . 5 

24 4.9 4 . 5 7.13 6. 2 8 . 2 8 . 6 

25 7.9 7.4 

26 4.63 4.4 6.83 5.5 7. 7 .02 

27 4 .4 6. 

28 6.5 3 5 . 5 6.4 6.5 

29 5.9 

30 4 . 13 6.0 5 . 9 5.4 5 . 7 5.7 

31 

32 4.1 5.7 5 .0 5 . 7 

34 4.1 3.6 5.7 5 . 0 4.8 5 .4 

36 4.1 3 . 6 5.5 5 . 1 5 . 0 5 . 3 

38 4. 1 3.6 5.5 5. 1 5 . 8 5.1 

39 5 . 8 

40 u 4 1 u 2...1 .2..,1 2..l 
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Appendix B. Diel catch data 
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Table 3. Number of fish captured in Tucker trawls and otter trawls 

during diel sampling periods in 1985. Tucker trawls were towed at 

l. Sm/s and otter trawls were pulled at l.Om/ s . Strata : H -
hypolimnion ; M - metalimnion; E - epilimnion; B - bottom. Dur -
duration of trawl in minutes. Times are given in Daylight Mountain 

Time (July · September) and as Mountain Standard Time (October) . 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculp i n cisco cisco Other 

TUCKER TRAWLS (1·2 JULY) 

1545 ( 16 ) H 0 0 0 0 0 

1602 (16) M 0 0 0 0 0 

1627 (16) E 0 0 0 

1917 (15) M 0 0 0 0 0 

1940 (15) E 0 0 0 0 0 

2317 ( 18 ) H 15 0 0 0 0 

2335 (14) M 0 0 0 0 

2349 (15 ) E 10 0 0 0 

0235 (16) H 27 0 0 0 

0251 (15) M 167 0 0 0 0 

0317 (31) E,M 49 0 0 0 0 

0405 (3 2) M,E 50 0 0 0 0 

0448 (15) E 15 0 0 0 0 

0515 (31) H,M 44 0 0 0 

0924 (17) H 11 0 0 0 0 

0942 (l~l M Q Q Q Q Q 



45 

Table 3. cont. 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

1009 (31) E,M 0 0 0 0 0 

1054 (17) H 0 0 0 0 0 

1111 (16) M 0 0 0 0 0 

OTTER TRAWLS (1-2 JULY) 

1459 (20) B 53 0 10 0 0 

1819 (20) B 37 0 4 0 0 

2008 (20) B 178 0 WF 

2230 (20) B 0 0 0 

0145 (20) B 0 0 0 0 

0608 (20) B 267 15 0 WF 

0839 (20) B 229 13 20 0 

1141 (20) B 164 21 0 4 0 

TUCKER TRAWLS (30-31 JULY) 

1401 (28) H,M 0 0 0 0 

1447 (15) M 0 0 0 0 0 

1503 (15) E 0 0 0 0 0 

1641 (15) H 0 0 0 0 0 

1659 (15) M 0 0 0 0 0 

1727 (15) E 0 0 0 0 0 

1955 (17) H 0 0 0 0 0 

2012 (15) M 0 0 0 0 0 

2027 (16) E 0 0 0 0 0 

0109 (17) !! Q Q 1 Q Q 
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Table 3. cont . 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

0126 (16) M 4 0 0 0 

0142 (15) E 0 0 0 0 0 

0430 (17) E 0 0 0 0 0 

0448 (15) M 0 0 0 

0503 (23) H 0 0 0 0 

0901 (17) M 0 0 0 0 0 

0919 (18) E 0 0 0 0 0 

0938 (15) H 0 0 0 0 

1055 (17) M 0 0 0 0 0 

1113 (16) H 0 0 0 0 0 

1129 (15) M 0 0 0 0 0 

OTTER TRAWLS (30-31 JULY) 

1317 (20) B 114 12 0 

1536 (20) B 21 12 0 0 

2101 ( 20) B 10 4 0 0 

0017 (20) B 24 0 12 WF 

0342 (20) B 21 0 0 LT 

1010 (20) B 10 0 0 

1203 (20) B 89 4 14 0 0 

TUCKER TRAWLS (14-15 AUGUST) 

1156 (18) H 0 0 0 0 0 

1215 (16) M 0 0 0 0 0 



47 

Table 3. cont. 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

1231 (16) E 0 0 0 0 0 

1732 (16) H 0 0 0 0 0 

1749 (15) M 0 0 0 0 0 

804 ( 15) E 0 0 0 0 0 

2113 (17) H 0 0 0 0 

2131 (15) M 0 0 0 0 

2147 (15) E 0 0 0 0 

2339 (17) H 0 0 0 0 

2357 (16) M 0 0 0 0 

0013 (15) E 4 0 0 0 0 

0344 (16) H 0 0 0 0 

0401 ( 16) M 18 0 0 0 

OH7 (15) E 0 0 0 0 

0556 (16) H 0 0 0 0 

0) 13 (16) M 0 0 0 

0529 (15) E 0 0 0 0 

0914 (17) H 0 0 0 0 0 

0932 (16) M 0 0 0 0 0 

0948 (15) E 0 0 0 0 0 

OTTER TRAWLS (14-15 AUGUST) 

1056 (20) B 20 0 0 0 

1639 (20) B 61 10 0 0 0 

1!42 <20\ !\ 33 2..Q Q 1 Q 
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Table 3. cont. 

YOY 1+ YOY 1+ 
Time (Our) Strata sculpin sculpin ci sco cisco Other 

2241 (20) B 13 12 0 

0145 (20) B 0 4 0 

0458 (20) B 0 0 0 

0826 (20) B 0 0 0 

1017 (20) B 36 22 4 0 0 

TUCKER TRAWLS (27-28 AUGUST) 

1025 (16) M 0 0 0 0 0 

1041 (16) M 0 0 0 0 0 

1057 (15) M 0 0 0 0 0 

1523 (15) M 0 0 0 0 0 

1538 (15) M 0 0 0 0 0 

1553 (16) M 0 0 0 0 0 

1714 (15) M 0 0 0 0 0 

1728 (15) M 0 0 0 0 0 

1743 (16) M 0 0 0 0 0 

2130 (21) M 39 0 0 0 

2152 (22) M 34 0 0 0 

2214 (21) M 25 0 0 0 

2351 (16) M 39 0 0 llF 1 

0057 (18) M 11 0 0 0 0 

0304 ( 15 ) M 23 0 0 0 

0318 !15) !1 l Q Q Q Q 
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Table 3. cont. 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

0333 (15) M 20 0 0 0 

0449 (15) M 4 0 6 0 

0504 (15) M 15 0 0 

0519 (15) M 22 0 0 0 0 

0907 (15) M 0 0 0 0 0 

0922 (15) M 0 0 0 0 

0937 (15) M 0 0 0 0 

OTTER TRAWLS (27-28 AUGUST) 

0941 (20) B 21 16 0 

1134 (20) B 72 27 4 us 

1352 (20) B 134 25 0 0 

1631 (20) B 97 16 0 

1825 ( 20) B 35 29 0 0 

2057 (20) B 0 15 0 

2315 (20) B 32 0 c 1 

0413 (20) B 4 25 0 17 WF 

0602 (20) B 15 20 0 0 

0816 (20) B 32 21 0 0 

TUCKER TRAWLS (16-17 SEPTEMBER) 

1403 (15) M 0 0 0 0 0 

1419 (15) M 0 0 0 0 0 

1435 115) 1:! Q Q Q Q Q 
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Table 3. cont. 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

1650 (15) M 0 0 0 0 0 

1706 (15) M 0 0 0 0 0 

1721 (15) M 0 0 0 0 0 

2030 (22) M 0 0 0 

2053 (15) M 0 0 0 0 0 

2108 (15) M 0 0 0 0 0 

2236 (16) M 0 0 0 

2252 (16) M 0 0 0 0 

2308 (15) M 0 0 0 0 

0238 (16) M 0 0 0 

0254 (16) M 0 0 

0310 (15) M 0 0 0 0 0 

0342 (15) E 4 0 0 0 0 

0357 (16) E 0 0 0 0 

0413 ( 15) E 0 0 0 0 

0531 (15) M 4 0 0 WF 

0546 (15) M 0 0 0 0 

0601 (15) M 4 0 0 0 

0739 (15) M 0 0 0 0 0 

0754 (16) M 0 0 0 0 0 

0810 (15) M 0 0 0 0 0 

1214 (15) M 0 0 0 0 0 

1229 ClSl M Q Q Q Q Q 
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Table 3. cont. 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

1244 (15) M 0 0 0 0 0 

OTTER TRAWLS (16-17 SEPTEMBER) 

1023 (20) B 48 20 0 2 0 

1256 (20) B 49 42 0 0 0 

1555 (20) B 25 2 0 

1955 (20) B 23 21 0 0 0 

2143 (20) B 8 29 0 0 

0158 (20) B 4 0 0 

0449 (20) B 47 0 0 

0643 (20) B 92 22 0 0 

1125 (20) B 82 16 0 0 llF 

TUCKER TRAWLS (25-26 OCTOBER) 

2042 (15) M 0 0 0 0 0 

2304 (15) M 0 0 0 0 0 

2335 (15) M 0 0 0 0 0 

0247 (16) M 0 0 0 0 

0303 (16) M 0 1 0 0 

0320 (15) M 0 0 0 0 0 

0509 (19) M 0 0 0 0 

0528 (21) M 0 0 0 0 

0549 (15) M 0 0 0 

1301 116\ !:! Q Q Q Q Q 



52 

Table 3. cont . 

YOY 1+ YOY 1+ 
Time(Dur) Strata sculpin sculpin cisco cisco Other 

1317 (16) M 0 0 0 0 0 

1333 (15) M 0 0 0 0 0 

OTTER TRAWLS (25-26 OCTOBER) 

0020 (20) B 38 54 0 0 0 

0408 (20) B 41 0 14 0 

1405 (20) B 10 1 0 

1608 (20) B 0 0 

11-2 July, Tucker trawl velocity- 1.25 m/s. 
WF- whitefish, LT- lake trout, US -Utah sucker, C - carp . 
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Appendix C. Stomach analysis data 
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Table 4 . Number and dry weight (mg) of food items in juvenile sculpin 

stomachs. n - number of fish in sample, SL - mean standard length , 

OST - ostracods, CYC -~ sp . HARP - harpactacoid copepods, 

EPI-EQ i schura s p., CLAD - misc . cladocerans. ND - no data. 

TIME Ostracods CYC CLAD & TOTL2 
(hrs) n SL Nojwt No/wt HARPl EPI OTHER WT 

TUCKER TRAWLS (1- 2 JULY) 

16 27 1 6.8 0 0 0 0 0 0 

2317 10 7.0 4/ 28/ 0 11 0 0.0903 
0 . 0159 0 . 0744 

2335 6 6. 6 Oj 21/ 0 0 0 0.0866 
0 0.0742 

2349 10 7. 2 4/ 39 / 0 0 0 . 1 9 1 5 
0 . 0359 0.1433 

0235 10 7.2 8/ 15 / 0 0 0 0.0878 
0 . 0544 0.0292 

0251 10 6.9 5/ 10 / 0 0 0 0 . 0808 
0.0516 0.0264 

0317 10 7 .0 2/ 18 / 0 0 0 0 . 0973 
0 . 0399 0.0478 

0405 10 7.1 3/ 14 / 0 11 0 0.0671 
0 . 0122 0.0370 

0448 10 7.4 4/ 7/ 0 0 0 0. 0217 
0. 0025 0 . 0152 

0515 10 7.2 4/ 10 / 0 0 0 0 . 0632 
0 . 0310 0.0252 

0924 10 7. 1 Oj 9 / 0 0 0 0. 017 5 
0 0 . 01 7 5 



55 

Table 4 . cont. 

TIME Ostracods CYC CLAD & TOTL2 
(hrs) n SL Nojwt Nofwt HARP1 EPI OTHER WT 

OTTER TRAWLS (1 - 2 JULY) 

1459 10 7. 5 1/ 34/ 1 31 0 0 . 1468 
0.0095 0.1249 

1819 10 7 . 4 10/ 23/ 0 0 0 . 1815 
0.0855 0 . 0903 

2008 10 7.6 71 71/ 0 11 0 0.2870 
0.0331 0. n98 

0608 10 7 . 3 3/ 9 / 0 0 0 0.0585 
0.0280 0 . 0259 

0839 10 7. 5 2/ 16 / 0 0 0 0.0824 
0 . 0252 0 . 0547 

1141 10 7 . 3 1/ 39/ 0 0 0 0 . 1377 
0. 0024 0.1252 

TUCKER TRAWLS (30-31 JULY) 

1401 8 . 0 0 0 0 0 0 0 

0109 10.2 5/ 67 / 0 13 0.3606 
0 .0 528 0 . 2730 

0126 54 10 . 3 14 / 38 / 0 11 0 0.3604 
0.1389 0.1783 

0430 10 .0 3/ 10 / 0 0 0 0.0446 
0.0161 0 . 0229 

0448 10 . 8 5/ 0 0 0 0 0 . 1478 
0.1131 

0448 54 10 . 7 4/ 71 0 0 0 0 . 1106 
0 . 0953 0.0153 

OTTER TRAWLS (3 0- 31 JULY) 

1317 11.3 4 / 41 / 0 0 0 0 .2203 
0 . 0493 0.1499 
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Table 4 . cont. 

TIME Ostracods CYC ClAD & TOTL2 
(hrs) n SL No/wt No/wt HARPl EPI OTHER WT 

1317 10 .4 8/ 35 / 0 0 0 0 . 2171 
0 . 0575 0.1468 

1536 10.1 4/ 48/ 0 11 0 0.2610 
0 . 0242 0 . 1924 

1536 11.4 4/ 54 / 0 0 23 0.2833 
0.0173 0.2295 

2 101 10.8 24 / 42/ 0 21 13 0.6958 
0 . 1966 0.2648 

2101 11 . 8 31/ 34 / 0 0 1 / 0.6873 
0.4037 0. 1762 NO 

0017 10 .5 3/ 10/ 0 0 0 NO 
NO NO 

0342 11.5 14 / 37 / 0 0 0 0.3595 
0 .2 145 0 . 1450 

1010 11.0 5/ 29/ 0 0 0 0.2042 
0 .0463 0 . 13 75 

1010 10 .7 5/ 20/ 0 0 0 0.1679 
0.0694 0 . 0902 

1203 10.4 3/ 27/ 0 0 23 0 . 2 112 
0.0521 0.1366 

1203 10.0 1 / 35 / 0 1/ 0 . 2255 
0 . 01 73 0.1612 .032 

TU CKER TRAWLS (14. 15 AUGUST ) 

2131 74 10 .9 35/ 134 / 0 0 3/ 1.0828 
0.3730 0.6322 NO 

2 147 10 .3 13 / 33/ 0 2/ 0 . 3431 
0 . 1762 0.1516 NO 

2339 1 11.0 4 / 3/ 0 0 0 0.0503 
0 . 0377 0.0 126 
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Table 4 . cont . 

TIME Ostracods CYC ClAD & TOTL2 
(hrs) n SL No/wt No/wt HARPl EPI OTHER WT 

2357 10.9 30/ 42/ 0 0 0 0.9367 
0 . 7519 0 . 1732 

0013 4 11.0 16/ 30/ 0 0 1/ 0 . 4772 
0 . 3048 0.1398 ND 

0344 10.5 3/ 3/ 0 0 0 0 . 0686 
0.0571 0.0115 

0401 10 10 . 7 15/ 2/ 0 0 0 0.3468 
0 . 3186 0.0116 

0417 11.5 0 0 0 0 

0613 44 9.9 3/ 1/ 0 0 0 0.1050 
0 . 0382 0.0038 

OTTER TRAWLS (14-15 AUGUST) 

1056 10 11.7 10 / 62/ 0 0 8 0.5984 
0.1331 0.3405 

1639 10 11.1 60/ 100/ 0 31 2 1 .6247 
1 .0 111 0.5683 

184 2 10 10.9 44/ 151 / 0 21 1 .6002 
0 . 6600 0 .7 864 

2241 14 .0 18/ 28/ 0 0 0 0.4940 
0 . 3135 0 . 1698 

0458 11 . 0 0 0 0 0 ND 

0826 10.5 11 0 1 0 ND 

1017 10 11.2 9/ 28/ 0 0 0.2979 
0.1251 0.1549 

TUCKER TRAWLS (27-28 AUGUST) 

2130 10 13 . 3 102/ 43/ 0 4/ s3 3. 8388 
2.4282 0 . 1892 0.0520 

2152 10 12.1 84/ 44/ 2 4/ 43 2 . 0103 
1. 6222 0.1870 0.0358 
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Table 4 . cont. 

TIME Ostracods CYC ClAD & TOTL2 
(hrs) n SL No/ wt No/wt HARP1 EPI OTHER liT 

2214 10 12.9 99/ 79/ 5 9/ 5/ 3 . 4343 
2.5502 0 . 3728 0 . 0447 ND 

2351 10 12 . 1 75/ 47/ 0 3/ 33 
ND 0 . 1452 ND 

0015 10 11. 3 63/ 27 / 2/ 53 2.0831 
1. 7102 0 . 1196 0 . 009 

0333 10 12 . 7 43 / 45 / 0 0 5/ 0 . 8788 
0.6732 0 . 1551 ND 

0449 4 11.0 6/ 10/ 0 2/ 0.0984 
0 . 0717 0 . 0216 ND 

0504 10 12 . 6 35/ 15/ 0 11 0 0.6477 
0 . 5464 0.0398 

OTTER TRAWLS (27-28 AUGUST) 

0941 10 13 . 4 22 / 11 / 0 0 1 / 0. 79 17 
0 . 6969 0 .0 558 .039 

1134 10 13 . 0 16 / 2 3/ 0 0 31 0.5182 
0.3871 0 . 1311 

1134 10 13 . 2 26 / 28 / 0 11 2/ 1.1 9 33 
0 . 7235 0.2108 ND 

1 3 5 2 10 13.0 34 / 42 / 0 0 13 1 . 2545 
0.8605 0.14 90 

1631 10 12.3 79 / 56! 0 2/ 3. 0978 
2.6527 0 . 2645 ND 

1825 10 13 . 5 71 / 68 / 0 2 / 93,5 
3 . 6828 

2 . 0926 0 . 48 2 5 0 . 057 

2315 12.3 6/ 4 / 0 0 0 0.1303 
0.1182 0.0099 

0413 4 10 . 8 14/ 30/ 0 0 1/ 0 . 3631 
0 . 2398 0.1093 ND 
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Table 4 . cont. 

TIME Ostracods CYC ClAD & TOTL2 
(hrs) n SL Nojwt Nojwt HARP1 EPI OTHER WT 

0602 10 12 . 1 23/ 5/ 0 1/ 0 . 6289 
0 . 6030 0 . 0259 ND 

0816 10 12.6 20/ 15/ 0 34,6 0.7854 
0.6173 0.0574 

TUCKER TRAWLS ( 16 ·17 SEPTEMBER) 

2030 13 . 0 25/ 19/ 0 12 5/ 0.5487 
0.3838 0 . 0670 NO 

2236 15. 6 69/ 32/ 0 3/ 27 2.1909 
2.0880 0 . 0880 0 . 0333 

2308 s5 15 . 7 57/ 23/ 0 0 3/ 1.8613 
l. 6354 0 . 0945 0.0328 

2308 14.5 67/ 71 0 1/ 0 1 . 9377 
1.8185 0.0193 0 . 0018 

0254 35 14 . 0 15 / 1/ 0 0 0 0.3802 
0.3487 0.0026 

0342 55 15.3 15/ 0 0 0 0 0 . 7748 
0.7667 

0357 15.3 9/ 2/ 1 0 3/ 0.4707 
0 . 4528 0 .0072 ND 

0357 45 13.9 14/ 0 0 0 0 0 . 6761 
0 . 6121 

0531 5s 15.9 8/ 0 0 0 0 0 . 2122 
0 . 1878 

0601 16 .2 0 0 0 0 0 0 

OTTER TRAWLS (16-17 SEPTEMBER) 

1023 15 . 3 24/ 15 / 22 3/ 0.8191 
0 . 6758 0 .0 674 NO 

1023 14 . 1 13/ 17 / 0 22 34 0.4805 
0.3477 0 . 0648 



60 

Table 4 . cont. 

TIME Ostracods GYC ClAD & TOTL2 
(hrs) n SL No/ wt No/wt HARP1 EPI OTHER lJT 

1256 15 . 8 35 / 46/ 1 16 / 13/ 1 .2 255 
0 . 8976 0 . 1107 0 . 08710.0321 

1256 15.6 47 / 25/ 0 12 2/ 1.4458 
1.3042 0.0629 0 . 0209 

1555 16 . 5 68/ 67 / 2 8/ 8 / 2 . 9072 
2 . 0947 0 . 2457 0.16670.0432 

1555 13 . 6 72/ 30/ 3 3/ 71 2.4 505 
2. 158 1 0 . 1071 0 . 02320.0519 

1955 16 . 4 105/ 62/ 3 71 9/ 4 . 0529 
3 . 55 64 0 . 1701 0 . 03850.0691 

1955 16.2 111 / 92/ 7 1 / 71 5 . 0275 
4.1362 0.3408 0 . 00790.08 15 

2143 17. 2 82/ 26/ 0 5/ 2/ 3.1886 
2.8294 0.0866 0.02570.0086 

0158 4 18 . 9 60/ 4 / 0 0 3/ 1 .7968 
1 . 5271 0 . 0061 NO 

0449 1 23.0 25/ 2/ 0 0 1.1813 
1 . 114 4 0.0070 

0643 14.8 10/ 7/ 0 1/ 1 / 0 .4 705 
0.3978 0.0225 0.0017 NO 

0643 15.3 5/ 2/ 0 0 0 0 . 1726 
0. 1614 0.0009 

1125 14.6 29 / 26/ 0 3/ 3 7 0 . 8917 
0. 772 6 0.0615 0 . 0255 

112 5 15.6 39/ 17 / 0 2/ 67 1 . 1721 
1 .0 381 0.0552 0.0233 

TUCKER TRAWLS (25-26 OCTOBER) 

0247 25 19.5 14 / 9 / 0 0 0.4374 
0. 3552 0.0108 



Table 4. cont . 

TIME Ostracods CYC ClAD & Ton2 
(hrs) n SL No/wt No/wt HARPl EPI OTHER WT 

0549 35 18.7 15/ 2/ 0 0 0 0.6187 
0 .4 976 0.0089 

OTTER TRAWLS (25-26 OCTOBER) 

0020 18.1 55/ 102 / 1 4/ 117 2.0717 
1 .153 5 0.2572 0.0640 

0020 19 . 3 55/ 67/ 0 2/ 57 2 .048 3 
1 . 3961 0.1888 0.0492 

0408 19.2 46/ 65/ 0 0 4/ 1.5652 
0.9975 0 . 1339 0 . 0373 

0408 18 . 4 48/ 72/ 0 12 6/ 2.1771 
1.2836 0 . 1866 0.0408 

1608 18 .3 65/ 69/ 18 2/ 20 7 2.1954 
1 . 0456 0 . 2984 0 . 2105 

lweight included with cyclopoid copepods (CYC). 
2The weight of unidentifiable organisms was included with 
the total. 
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3The weight of these organisms were included with the 
unidentifiable organisms. 
4cut contents of fish from a prior or subsequent trawl were 
added to increase the sample size. 
5Two chironomids +miscellaneous cladocerans . 
6we ight of these was combined with "EPI" . 
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Ap pendix D . Zooplankton vertical migration 
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Table 5 . Vertical distribution of crustacean zooplankton in the water 

co lumn of Bear Lake during the day (1100hrs · 1400hrs) and night 

(0130hrs · 0330hrs). "AEpi" are V instar and adult EJ2ischura 

nevadensis copepods. "BEpi" are I - IV instar copepidites of ~. 

nevadensis . CD- CeriodaJ2hnia sp. , C - CycloJ2S sp. , D - DaJ2hnia sp.' 

0 - ostracod, H - harpactacoid copepod. "No data" is represented 

by a II_ II 

NUMBER/50 LITERS (day/night) 

Depth Epi Diaphan- Cyclopoid 
(m) AEpi BEpi Nauplii Bosmina osoma nauplii Other 

- 2 JULY 1985 

0 9/505 1/ 15 3/83 D/7 D/0 0/0 0/0 

0 83/389 0/36 19/201 0/1 0/0 0/0 0/0 

215/4701 286/262 1/ 1 OjO OjO lD/0 

115/264 46/ 88 342/331 1/ 1 0/0 0/0 0/0 

10 254/49 58/13 107/65 5/1 0/0 0/ 0 0/0 

10 210/ 195 47/35 74/93 1/2 0/0 0/0 0/0 

12 269/263 34/23 85/79 0/0 0/0 OjO 0/0 

12 197/241 24/39 106/80 3/1 0/0 0/0 0/0 

17 205/1281 17/- 22/18 0/1 0/ 0 0/0 0/ 0 

17 26 6/9 1 20/34 25/9 1/1 0/ 0 0/0 0/0 

25 119/63 14/6 8/1 6 0/0 OjO 0/0 0/0 

25 53/98 7/16 5/23 0/0 0/0 OjO 0/0 

35 47/32 5/4 16/ 13 Oj O 0/0 0/ 1 0/ 0 

35 43/24 4/3 13/12 1/1 0/0 0/0 OjO 

40 53/36 w 38/25 QL2 QLQ 0/0 15C lDLlC 
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Table 5 . cont 

NUMBER/50 LITERS (day /night) 

Depth Epi Diaphan- Cyclopoid 
(m) AEpi BEpi Nauplii Bosmina osoma nauplii Other 

40 6/22 1/0 5/30 0/0 0/0 OjO 2C/0 

14-15 AUGUST 1985 

0 25/35 7/62 10/22 9/126 0/10 OjO 0/1CD 

0 8/81 11/ 115 2/54 74/230 1/22 2/0 OjO 

82/111 58/84 37/47 60/243 46/31 0/0 0/0 

110/113 50/121 26/66 130/228 64/26 0/0 0/0 

10 57/ 111 119/ 148 96/59 231/137 61/ 0/2 OjO 

10 78/110 115/135 83/ 106 189/68 17/ 0/0 0/0 

14 34/252 162/207 182/2 88 170/97 30/ 2 0/4 Oj6CD 

14 37/274 139/225 163/380 186/ 101 7/1 1/ 6 0/2CD 

16 29/429 205/297 408/297 125/42 6/8 0/ 0 0/2CD 

16 32/307 138/ 206 325/269 100/ 83 5/6 3/1 Oj1CD 

20 137/261 216/ 100 192/88 25/26 5/1 4/ 0 0/0 

20 109/322 144/140 174/131 21/42 8/2 1/0 1C/0 

30 246/79 83/ 29 152/ 51 11/ 13 0/1 0/ 1 0/1C 

30 154/340 58/185 219/ 142 13/ 27 2/3 2/1 1C/1C 

35 181/57 56/19 1005/77 17/28 3/1 99/9 34C,260,17H 
/0 

35 204/57 56/36 1168/ 36 15/ 20 2/ 3 80/12 19C/0 

27 - 28 AUGUST 1985 

0 16/333 0/62 3/51 8/387 0/35 OjO 0/0 

0 16/176 1/35 1/ 25 1/201 0/28 0/0 0/0 

137/119 47/65 28/58 540/222 31/62 0/ 3 1CD/ 1CD 
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Table 5. cont. 

NUMBER/50 LITERS (day/night) 

Depth Epi Diaphan- Cyc1opoid 
(m) AEpi BEpi Nauplii Bosmina osoma nauplii Other 

9 140/ 53/ - 38/ - 503/ - 57/ - 5/ - 1CD/ -

13 89/157 69/124 54/109 876/363 38/33 18/ 3 1CD/0 

13 125/177 101/106 156/174 640/158 27/29 10/9 1CD/0 

15 99/298 100/ 168 133/197 659/468 16/35 13/14 2CD/3CD 

15 111/ - 103/ - - I : 661/ - 11/ 9/ - o; -

18 38/301 56/137 239/233 352/414 3/ 5 11/3 0/1CD 

18 73/359 71/108 216/123 407/388 3/ 6 22/0 1CD/1CD 

25 138/242 65 /55 254/222 97 / 148 2/5 1/ 0 0/1CD 

25 128/ - 37/ - 254/ - 106/ - o; - 3/ - 0/0 

30 101/72 15/ 11 80/44 44/53 2/3 1/ 2 1CD/0 

30 89/ 105 15/19 84/48 44/68 0/9 2/4 o;o 

36 125/ 161 8/17 165/82 27/60 0/3 35/3 2D,2C,7H/ O 

36 128/ - a; - 394/ - 23/ - 1/ 131/- 1CD,1C,15H 
;o 

25 - 26 OCTOBER 1985 

0 176/ 6/ 2/ 32/ 2/ o; o; 

0 170/ 3/ 2/ 52/ 20 2/ 0/ 

258/268 6/8 13/11 77/74 6/ 13 2/0 o;o 

305/217 11/4 0/4 70/94 12/20 0/1 o;o 

320/111 5/4 18/ 15 58/91 5/42 1/ 5 o;o 

301/95 19/3 1/25 35/ 81 7/32 0/6 o;o 

15 74/43 o;o 34/56 35/7 3/3 4/16 0/0 

15 63/ - 1/ - 43/ - 26/ - 2/ - 14/ - o;o 
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Table 5. cont . 

NUMBER/50 LITERS (day/night) 

Depth Epi Diaphan · Cyclopoid 
(m) AEpi BEpi Nauplii Bosmina osoma nauplii Other 

20 23/46 0/2 350/500 3/6 4/6 5/5 o;o 

20 47/52 0/3 576/420 28/9 18/9 9/4 o;o 

25 21/38 2/0 426/535 3/4 7/1 1/2 o;o 

25 25/30 1/1 408/484 11/3 3/0 4/0 o;o 

30 33/50 o;o 110/193 5/9 3/1 6/3 o;o 

30 28/80 1/1 123/157 2/22 4/3 0/1 o;o 

35 20/931 2/ 57/ - 2/ 1/ 5/53 1C/15C,5H 

35 22/731 1/ 109/ - 71 2/ 7/54 0/6H 
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Appendix E. Light attenuation data 
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Table 6. Light attenuation (b) in Bear Lake expressed as a linear 

function 1( c2 - a + bc1 ) . Where C1- depth in meters, and c 2 - ln(% 

light transmission). 

Depth 
Date Range 

(1985) (m) Light Attenuation r2 

1 July 0 11.5 c2 - o . o7s O.l86C1 99 . 9 

11 .5 27 c 2 - o . 687 0 . 245Cl 99.8 

0 21' c2 - 0.274 0 . 225Cl 99.6 

18 July 0 12 c2 - 0.152 0.193Cl 98.9 

12 27 c2 - 2.260 0 .207Cl 97.6 

0 21' c2 - 0 . 152 0 . 193Cl 98.9 

30 July 0- 17.5 c2 - -0.089 - 0 . 192C1 99.7 

17 .5 27 c2 - 0 .548 0.241C1 99.9 

0 17 sa c2 - 0.138 1 . 220C1 99.5 

14 Aug 0 19 c2 - 0.417 0.176Cl 94.2 

19 26 c2 - 5.580 0 458C1 96.3 

0 26'- c2 - 0.856 0. 240C1 92.8 

27 Aug 0 21 c2 - 0 . 279 0.183Cl 98.3 

21 26 c2 - 5.820 0 .45 6C1 99 . 3 

0 26'- c2 - 0. 530 0.220C1 95.8 

16 Sept 0 18 c2 - 0 .490 0.240C1 100 . 0 

18 27 c2 - 2 . 990 0.380C1 100 . 0 

0 27a c2 - 0 . 739 0.275C1 98.7 

25 Oct 0 26a c 2 - o . 281 0.262Cl 99 . 9 

aThese equations were used to calculate light intensities at various 
depths for Figures 11 and 12. 
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Appendix F. Sculpin growth 



Table 7. The mean standard length (SL), dry 

weightl and corresponding instantaneous daily 

growth rates (dry weight) of underyearling 

sculpin captured during 1985 . Individuals 

were captured on the bottom during the day. 

Consequently, growth rates were indicative of 

the entire population (e.g . migratory and non· 

migratory . ) 

Dry Growth 
Date Sample SL weight rate 
<1985) size (mml Cmg) (%/day) 

2 July 60 7 . 2 0.5 
4 . 7 

18 July 60 8.9 1.1 
6 . 0 

31 July 40 10.8 2 . 3 
1.8 

14 Aug 50 11.5 2 . 9 
3 . 3 

28 Aug 51 13 . 0 4 . 6 
3.5 

16 Sept 60 15 . 7 9 . 9 
2 . 6 

26 Oct 64 20 . 7 24 . 6 

Overall 3.32 

1weight was calculated from standard length 

using the regression: log(drywt) - - 3 . 53 + 

3 . 74(log SL), n- 30 , r2- 0 . 987 . Five fish 

from each date were taken from morning and 

early afternoon bottom trawls (excluding 18 

July). 

2rrom the following regression: 

ln(drywt) - -0.55 + 0.033(day), n- 7, 

r2 - 0.98. 
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Appendix G. Limnological characteristics of Bear Lake 



72 

Table 8 . Limnological characteristics of Bear Lake . 

No. 
Parameter Samples X Range Year/ mo . 

Secchi Depth(m) 5.1 3 . 8 - 6.3 1985/Jul -Oct 

Oxygen (mg/L) 70 8 .1 3 . 8 12 . 2 1981/Apr-Decl 

pH 84 NO 8 .4 - 8 . 8 1981/ Apr - Dec1 

Tot. Alkalinity 1. 94 5.42 4 . 86 6 .76 1981/ Apr-Decl 
(meqjL) 

Chlorophyll .e 24 0.92 .42 - 1.882 1987/Jul-Sept 
(mg;m3) 

Max . Depth (m) 63 

Mean Depth ( m) 28 

Surface area (km2) 28 5 

Al titude (m) 1807 

NO - no data 
loa ta from Lamarra et al . (1983 ). 
2 Maximum concentrations are found in t he metalimnion. 



73 

Appendix H. Wurtsbaugh and Neverman (1988) 
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Post-feeding thermotaxis and daily 
vertical migration in a larval fish 

Depanme nl of Fishc-rin and Wild life/ EcolOJY Cenrer, 
Ulah Stare University, Lo1an, Uta.h 84322-!i ~\0, USA 

Maay aqu.dc aai111als make dally Ytrtlul mi1ratioos, typically 
uaodla1 lato wan. shallow rcnta lor the aicht aiMI descndi•l 
to cooler, deeper laytn ollakes or oct .. s lor the day. Allbou&ll 
sonae orcaaisms may micnte to avoid prtdatioa 1

· J f'I!Karchen 
han also suuestN that daily miantioe is a thenHreaulatory 
antte allowiq eccotherat.s to lower rheir metabolic ntts Ia cold. 
dee' waters, thus cout"lac eaerc'.s. Ttsts or this llypotheslt. 
bowtvtr, bah btft tqulvocal-. Here we suun:t aa allerutlve 
bypotbesls: that fidr as«MI 11110 warmtr water alter ftedlac to 
stlmul.ce-diaestioa, thereby allowlaccreater feediac aM crowth. 
Wt tm:ed this bypotbals usia1 the Bear Uk.e sculpia (Cornu 
uta.sar) which feNs oa the btd olthe lake duriac the day, aiNI 
at aicbt micntes iato tbt water roluma whtrt ltmpe:nhlrn are 
10 •c warmer. 1M warmer temperatures promoted di&tstloa aod 
allowed the fish to feed aad arow chree times faster thaa If tbey 
hU maai!Hd lo the cold bypolimDioa. Thus., daily ttrtkal mien· 
t"* Ia this spedts is aa adapcatloa allowiac the• to exploit 
tbenul &nclieats I• their e•firoamear' to muimiu eHI"ldk 
l•take. 

Our field study was conducted in Bear Lake, Utah-Idaho, 
USA (42-oc>' N, 111~0' W), a 520 k.m2

, oligotrophic system, with 
a mu.imum depth of 60 m. The lake is thermally stratified in 
the summer, with surface temperatures near 1o•c and bottom 
temperatures of 4-5 •c_ We studied the movements of juvenile 
( ~)0 mm standard length) sculpin during their first summer of 
life. 

The juvenile fish had a pronounced daily venical mi1f1.tion. 
Durin& the daylight hours they were on the bottom where 
tempentures we~ 4-5 •c (Fig. Ia ). At night. however, they 
moved into the water column, appearing at dusk and d isappear­
ina at dawn ( Fia. I b), When they moved into the water column 
the fish concentrated in the reaion of the thermocline (metalim­
nion} at temperatures between 13-t6•c {Fig. 2). 

Allhough many organisms migrate into surface waters to 
feed 1

•
1

, the sculpin did not consume p~y when they were in 
the water colum n. Ana lysis of 330 sculpin collected throughout 
the summer demonstrated that they consumed primarily 
ostracods (59% by weight} and adult cyclopoid copepods 
(39%). These oraanisms were found only in the s~iments or 
immediately above them (D. Neverman, unpublished data). 
Funhermore, the sculpin fed only during the day when they 
were on the bottom, and stomach filling peaked just before the 
dusk ascent ( Fig. 3). During the night the fullness of the gut 
decreased monolonically, reaching a minimum at dawn as the 
fish retumed to the bottom. 

We reasoned that the fish moved to wanner strata to increase 
their digestion rate. We tested this in the laboratory by measuring 
gut clearance rates of satiated sculpin a \ two temperatures. At 
5 •c the instantaneous digestion rate 10 was 3.2% per hour (.j; 1.1 ; 
95% confidence int erYa l, Cl). and onl y 22% of the meal was 
e\·acua ted from the stoniach during !he 7.5 h digest ion trial. At 
this rate, ~~~hours would have been required for a fis h to digest 
RO% of its meal . In co ntrast, at I5°C the digest ion rate was 
:!J .4°'o per hour lr0.9; 95 % C l ) and 80% of the meal was 
tv~cu_ated in 7.5 hours. This rate was nearly identical to actual 
d ige~tion rates of wild fi sh 115-27% per houri nptured in the 
metalim nion I Fig. )I. Nocturnal migration into -.·armer water 
apparentl y allowed large meal~ to be digested rapidly befo re 
feedins: bes:an the followins: day. 
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Time of day 

F11. I TemponLI chan1es in the arch nues of juvenile Bear La.t.e 
sculpin collected with tnrwls on the bouom or the lake ( II), and 
in rhe water column (b). Cla~ed symbols in b indicare captut"H in 
rhe mttalimnion; open symbols indicate densilies in the tpilimnion 
and hypolimnion. Ci rctes,)G-)1 July 198S; trian1les.. 14- IS Au1uu 
198S; squares, 27-21 Au1uJ1 19B!i. The lhadcd area denotes rhe 
time from evenin& to mominJ civiltwiliJ}It (Mountain Sland.ard 
lime) on 14 AuJUSI. Fish were sampled at a site !i.S t.m from shore 
where the mean depth wu 40 m. We collected fish on the bottom 
wirh: a 2.9-m ower tnrwl pulled at !.Om s· 1

• In the water column 
lhey were sampled wilh a 1-m1 openin&·closinl Tuck.ertnrwl pulled 
at I.S m s · 1• Ahhou1h caplure efficiencies durin11ht day may have 
been lower 1han at ni1h1 due ro visual ntt avoidance. catch rares 
or adult sculpin in I he otter trawl wert not si1nifiean1ly dillerenr 
berween day and ni1ht (Htst; P •O.lll ). This indicates that 
chan&n in avoidance or rhis ntl W~f!. minimal durin& any 24·h 

period. 

The rapid evacuation of the gut during the night also increased 
the feedi na rate the following day. Scul pin that had digested 
their meals at 15 -c and were then fed at 5 •c made sign ificantly 
more feeding attempts than 6sh kept continuously at 5 0C (Table 
I; P < 0.026, pai~d t-tcst). 

This increased feeding rate would be advantageous only if it 
provided sufficient energy to overcome the elevated respiratory 
costs of inhabiting warm water at night To detennine if a 
migration could increase the net enerzy gain of scu lpin, we 
conducted a arowth experiment in !he laboratory. Fish were 
e,;posed to either a constant temperature of 5 '"C (bottom tem­
peratures), or a Huctuating regime of 5-1~ -c that mimicked the 
actual temperatures encountered by migrating indi vid ual s. To 
simulate the actual feedi ng regime, fish were fed tJd lib ir1.1m only 
during the day. 

Sculpin in the fluctuating temperature regime p:rew 300% 
faster than !hose ~•red at 5 •c. This difference was highly 
significant I P < 0.0001; Table I I. The growth experim ent. 
however, may have over-est imatrd thr net enrrgy benrfit o f t he 
migratory beha viour of wi ld scu lpins. bea~use fish in thr labo ra­
torv did not have to swim to the met alimnion and maintai n 
thr.mselve-!1 in thr water column each ni@.ht. Swi mm ing co~u of 
small fish likr sculpin have no1 been mea sured, bur moderate 



F'"IJ.l Niahnime distribution or juvenile Bur Lake sculpin in lhe 
water column in relation to tempc~ture and depth. Error ban 
indicat~ +I s.e. or catch ~Its or 2-J replicate Tucker trawls. Collec­
tions were made between 2200 and~ houn (Mountain staMiard 
tim~) on 8-9 AuJY.SI 1986. Water temperatura. were meu 11red with 

athennistor. 

TaWe I EBecu or e:oo.su.nt &nd duduatina tempcn.turcs oo feedinJ 
and powth BICI (dry wciJ,tU) of juvenile Bear W~ ICUJpiD. (Conlu 

ca~) reared ic the labo,..tory 

Conditioa FeedinJ ra te• 11 S"C G rowth r~~te• 
Temperature simul&lcd (ltrikcspcrfllhmio- 1

) ( .. p<Jday) 

S'C Hypolimnion O.ll:t:O.OI 0.7h ·OJO 
S-IS"'C Mip-atory 0.4ZO.JS 2.1h0.4S 

To quantify fetdinJ ra tes in e:onsunt &nd ftuauatina tempcmura 
•e fint allo•ed JTOUps of ten fu;b to diaest a la11e meal of :r.oop4ankto.a 
oven~ i 1ht (7.S b ) at either S or IS "C. Fish at IS "C were Lhe.a moved to 
S "C and allowed I h to accl imate. We th~n fed the KUipin live z.ooplan.t­
to.a aod obsCTVed the number of fetdin& strikes made at prey d11rina 
six 2-min periods over the followina hour. To meu11re Jrowth, filll witb 
an estimated mean dry man of 2.4 mJ •ere ancstbetiud, meu~o~red, 
and n.ndomly auisned to a t empcr~~ture trc:atment ( S "C; or S-1 S "C, 
16 h : I h). or li lted to provide 1 subu.mple for dtttnninina the initial 
lenJib-dry-weiaht relat ionship. In each treatment we reared JS KU!pin 
individually in O.S.Iitrt containen oonstruaed of )00 and l.~,..m 
nylon mesh on the sides and bonorn, res~vely. We placed these in 
alau, .llow-throu1h aquaria. To simulate natural eonditions, fish •ere 
fed repletion n.t ions or plankton only durinJ the day. The diet •u 7!5 'J. 
Ctrio4Dp~" ia sp., 8"4 Dap~ "'G ._, ....._and 7"4 Cylops spp., all bc!Wftfl 
)00-SOO 11-m. DurinJ the day all sculpin were kept 11 !5 "C. In the tvC'IIiDJ 
the cups were lifted from their tanks, rinsed to remove plankton, and 
placed into a t ooplankton.free aquari1 of the appropriate niJ,ht time 
temperature . After eiaht houn we moved the fish aaain and allowed 
them one hour in their new aquaria be-fore fccdina. The temperat1.1rt of 
the S- IS "C treatment wu tem pertd over 1-h periods•hen the fish were 
tnnsferrcd. After 21 days, the fi sh were removed, dned and •eiahed 
on a microbalance. Other uperimental protocol and J fOW'I h calculations 
follo wed Wunsbau1h and Cech " . 

*Mnns 2c9!5% confidence intervals. 

" 2ooo oooo o•oo 
Time of day 

F"IJ. J Temporal ch~n1n in the fullnru of the 1uu of j~o~ven ile 
sculpi n u.ptu red in Bur Ulc. Closed symbob a.re fro m fuh 
eollecad in the water colu mn at niaht. Open symbols arc from fi sh 
aptured on the bouom of the lake. Each point reprennu the mnn 
for ten sculpin. The shadtd area. indicates the time from even in1 
to mom inJ civiltwili1ht on 14 Auaust. Trianales: 14-IS Auauu 
!98S. Circl n : 16- 17 September 198S. lnuan11neous dianiion 
rates 10 of sculpin durin1 the niaht were c.alc:ulated from the 
uponential decline in the wei1ht t W) of food in the"JUU over 

time It) : Auaunw,::·\;,~;~:~~ •• :';; ·~ 0~~0.92; September, 

75 

swimmina: speeds of 1-2 body lengths per second decrease 
&rowth rales les.s than 25% in well-fed juvenile salmon11

• Con­
sequently, the mcta.bolic eosts of routine swimmina are probably 
not SO latJe &S tO cancel the threefold JfOwth adV&DlaJe O( 
inhabitina the warm met.a..limniort at niJ.bL 

Post·feedina thermotaxis may be a common phenomenon 
aft'ectina not only sculpin, but a wide ranac of eaothermic 
animals. Under experiment&! conditions some ~ptiles, 
amphibians and other species of fish seek. higher temperatures 

~~h~~~:~~f~l.~~~~so;bb~:ne~c ~~~:e~~0~p~e:r:~=i~ 
inaeases their feeding, digestion and p-owth. Our results indi­
cate that daily venica.J migration and behavioural thnmorea:ula­
tion can also be imporu.nt in c:ontrollinaarowt.h processes offish. 
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